Last active
June 27, 2022 17:07
-
-
Save JanSchm/1b6e2896c83cd1e63eec26066a3453a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Load ALBERT-base model | |
albert_encoder = hub.KerasLayer("https://tfhub.dev/tensorflow/albert_en_base/2", trainable=True) | |
# Siamese ALBERT model | |
input_word_ids = tf.keras.layers.Input(shape=(128,), dtype=tf.int32) | |
input_mask = tf.keras.layers.Input(shape=(128,), dtype=tf.int32) | |
input_type_ids = tf.keras.layers.Input(shape=(128,), dtype=tf.int32) | |
albert_layer = albert_encoder({'input_word_ids': input_word_ids, 'input_mask': input_mask, 'input_type_ids': input_type_ids})['pooled_output'] | |
dense_layer = tf.keras.layers.Dense(64, activation='relu', kernel_initializer='glorot_uniform', bias_initializer='glorot_uniform', name='dense_vector_reduction')(albert_layer) | |
out = tf.keras.layers.Dense(64, activation=None, name='out')(dense_layer) | |
out = tf.keras.layers.Lambda(lambda x: tf.math.l2_normalize(x, axis=1))(out) | |
model = tf.keras.Model(inputs=[input_word_ids, input_mask, input_type_ids], outputs=out, name="embedding_model") | |
model.summary() | |
model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-5), loss=tfa.losses.TripletSemiHardLoss()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment