Created
June 15, 2016 19:49
-
-
Save Jakub-Ciecierski/d1be38e82a2f2d13442ac2f8a56c6bea to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
vec4 Intersection::newtonStep(const glm::vec4& params){ | |
// The last point found on the intersection curve | |
const TracePoint& lastPoint = getLastPoint(); | |
vec4 lastParam = lastPoint.params; | |
// Determines the direction | |
int r = 1; | |
if(currentTraceStatus == TraceStatus::BACKWARDS) | |
r = -1; | |
vec4 result; | |
mat4 J; | |
vec4 F; | |
vec3 Np; | |
vec3 Nq; | |
vec3 t; | |
vec3 P0 = surface1->compute(lastParam.x, lastParam.y); | |
vec3 Pu0 = surface1->computeDu(lastParam.x, lastParam.y); | |
vec3 Pv0 = surface1->computeDv(lastParam.x, lastParam.y); | |
vec3 Qu0 = surface2->computeDu(lastParam.z, lastParam.w); | |
vec3 Qv0 = surface2->computeDv(lastParam.z, lastParam.w); | |
vec3 P = surface1->compute(params.x, params.y); | |
vec3 Q = surface2->compute(params.z, params.w); | |
vec3 Pu = surface1->computeDu(params.x, params.y); | |
vec3 Pv = surface1->computeDv(params.x, params.y); | |
vec3 Qu = surface2->computeDu(params.z, params.w); | |
vec3 Qv = surface2->computeDv(params.z, params.w); | |
Np = cross(Pu0, Pv0); | |
Nq = cross(Qu0, Qv0); | |
t = normalize(cross(Np, Nq)); | |
t *= r; | |
vec3 dP = P-P0; | |
auto f4 = [this, P0, t](float x, float y, | |
float z, float w){ | |
vec3 _P = surface1->compute(x, y); | |
vec3 _dP = _P-P0; | |
float dotValue = ifc::dot(_dP, t); | |
auto value = dotValue - distance; | |
return value; | |
}; | |
auto F4du = ifc::derivative(f4, params.x, params.y, params.z, params.w, | |
ifc::DerivativeTypes::DX); | |
auto F4dv = ifc::derivative(f4, params.x, params.y, params.z, params.w, | |
ifc::DerivativeTypes::DY); | |
auto F4ds = ifc::derivative(f4, params.x, params.y, params.z, params.w, | |
ifc::DerivativeTypes::DZ); | |
auto F4dt = ifc::derivative(f4, params.x, params.y, params.z, params.w, | |
ifc::DerivativeTypes::DW); | |
F.x = r*(P.x - Q.x); | |
F.y = r*(P.y - Q.y); | |
F.z = r*(P.z - Q.z); | |
F.w = ifc::dot(dP, t) - distance; | |
// zeros left for clarity | |
J[0].x = r*Pu.x; | |
J[0].y = r*Pu.y; | |
J[0].z = r*Pu.z; | |
J[0].w = F4du; | |
J[1].x = r*Pv.x; | |
J[1].y = r*Pv.y; | |
J[1].z = r*Pv.z; | |
J[1].w = F4dv; | |
J[2].x = r*(-Qu.x); | |
J[2].y = r*(-Qu.y); | |
J[2].z = r*(-Qu.z); | |
J[2].w = F4ds; | |
J[3].x = r*(-Qv.x); | |
J[3].y = r*(-Qv.y); | |
J[3].z = r*(-Qv.z); | |
J[3].w = F4dt; | |
J = glm::inverse(J); | |
result = params - J*F; | |
return result; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment