Last active
March 8, 2016 03:09
-
-
Save JPalounek/c530fc0413bbfa6cb7cf to your computer and use it in GitHub Desktop.
Propositional calculus formula validator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import string | |
af = string.ascii_lowercase # atomic formulas | |
bo = ['∧', '∨', '⇒', '⇔'] # binary operators | |
uo = ['¬'] # unary operators | |
def formula(str): | |
l = len(str) | |
if l == 0: # Empty formula | |
return False | |
if l == 1 and str in af: # Atomic formula | |
return True | |
if str[0] == '(' and str[l - 1] == ')': | |
if str[1] in uo: # (¬(a∧b)) | |
return formula(str[2:l - 1]) # F((a∧b)) | |
if l == 5 and str[1] in af and str[2] in bo and str[3] in af: # (a∧b) | |
return True | |
depth = 0 | |
for i in range(1, len(str) - 1): # for each char | |
if str[i] == '(': | |
depth += 1 | |
if str[i] == ')': | |
depth -= 1 | |
if depth == 0 and str[i + 1] in bo: | |
return formula(str[1:i + 1]) and formula(str[i + 2:l - 1]) # L & R subtree | |
if __name__ == '__main__': | |
print('(¬(l⇒m))', formula('(¬(l⇒m))')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment