-
-
Save Intelrunner/153b16a0dbdec73669f7f6edf4afcc1b to your computer and use it in GitHub Desktop.
CV 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"$schema": "https://raw.githubusercontent.com/jsonresume/resume-schema/v1.0.0/schema.json", | |
"basics": { | |
"name": "Yannick Caillaud", | |
"label": "Data Scientist @Betclic-Group", | |
"image": "", | |
"email": "[email protected]", | |
"phone": "", | |
"url": "", | |
"summary": "Passionate about Machine Learning, Data Mining and Data Science in general.\nEnjoy create value based on not enough exploited data: from POC to MVP to Production, from quick-wins to R&D challenge.\n[Kaggle](https://www.kaggle.com/kinnay) competition contributor.", | |
"location": { | |
"countryCode": "FR", | |
"address": "", | |
"city": "Bordeaux" | |
}, | |
"profiles": [ | |
{ | |
"network": "LinkedIn", | |
"username": "yannick-caillaud", | |
"url": "https://www.linkedin.com/in/yannick-caillaud/" | |
}, | |
{ | |
"url": "https://github.com/YCaillaud-betclic", | |
"username": "YCaillaud-betclic", | |
"network": "github" | |
} | |
] | |
}, | |
"work": [ | |
{ | |
"name": "Betclic Group", | |
"position": "Data Scientist", | |
"startDate": "2020-03-31", | |
"endDate": "2022-05-31", | |
"highlights": ["python, scikit-learn, tensorFlow, keras, smote, boruta, shap, jupyter notebook, pycharm", "AWS Sagemaker, S3, git, github, SQL Server, Snowflake, Airflow, Talend Management System", "Agile, Jira Ticket"], | |
"summary": "**Legal and Compliance**\n• Responsible/Safer gaming: help the responsible gaming team to focus on the customer the more at risk.\n• Money laundering: detection of suspect behaviours in customers action.\n\n**Customer Relationship Management**\n• Personalisation of bet offer: adapt for each customer the contains of emailing campaign.\n• Churn and lapse: detection of potential churn in a retention purpose.\n\n**Acquistion**\n• Customer Lifetime Value : prediction of the customer value potential to adapt and improve the acquistion of new customers.\n\n**Trading**\n• Turnover Prediction: Anticipate the amount of turnover expected depending on the sport calendar.\n• Bet Liabilities: Inform traders about the current liabilities in order to adapt the odds accordingly.\n\n**Management**\n• Supervision of trainees and junior Data Scientist.", | |
"url": "https://betclicgroup.com/", | |
"location": "Bordeaux, France" | |
}, | |
{ | |
"name": "Data University France - Institut de science des données", | |
"position": "Data Science Teacher", | |
"startDate": "2018-09-30", | |
"endDate": "2020-04-30", | |
"highlights": ["Teaching, Data Science, Data Analyst, python, R"], | |
"summary": "Teached to multiple class through theorical and practical courses the following skills \n• Computer Science: scientific usage of python and R\n• Ethic & Data Science\n• Define and understand the changes brought about by the GDPR\n• Basics of machine learning and data cleaning", | |
"url": "https://datauniversity.fr/", | |
"location": "Bordeaux, France" | |
}, | |
{ | |
"name": "Thales", | |
"position": "Data Scientist", | |
"startDate": "2017-02-28", | |
"endDate": "2020-03-31", | |
"highlights": ["python, Spark, PySpark, Keras, Scikit-Learn, TensorFlow, Jupyter Notebook", "Big Data: ElasticSearch, Kibana", "Mockup: Bokeh, Power Bi", "Presentation, Agile"], | |
"summary": "**Predictive Maintenance**\n• Analyze the potential causes of failures of aeronautical equipment\n• Predict failures of aeronautical equipment\n• Write patents\n\n**Anomalies Detection**\n• Time series on cable car lines\n• Time series for maritime surveillance\n\n**NLP**\n• Extract keywords from a free text field\n• Create an intelligent search engine\n• Design a chatbot (MVP project)\n\n**Service Compagny needs**\n• Drafting response to a call for tenders\n• Translate clients need to technical description\n• Knowing how to quantify the right amount of working time before the start of a project\n• Compliance with deadline", | |
"url": "https://www.thalesgroup.com/fr", | |
"location": "Bordeaux, France" | |
}, | |
{ | |
"name": "watiz", | |
"position": "Data Scientist Junior", | |
"startDate": "2016-10-31", | |
"endDate": "2017-02-28", | |
"highlights": ["Neural network framework: Keras, TensorFlow, Caffe"], | |
"summary": "Re-identification of people in Deep Learning during my final year project in collaboration with the startup Watiz.\n**Missions**\n• Read and synthesize scientific papers\n• Realize a state of the art by highlighting promising ideas\n• Use Keras and Caffe to create neural networks", | |
"url": "https://watiz.io/", | |
"location": "Paris, France" | |
}, | |
{ | |
"name": "Polytechnique Montréal", | |
"position": "Data Mining Teaching Assistant", | |
"startDate": "2016-06-30", | |
"endDate": "2016-08-31", | |
"highlights": ["python, R, R Studio, Computer Science, Teacher, Keras, Scikit-Learn"], | |
"summary": "Development of Data Mining TDs.\nAssignments:\n• Understand the Data Mining courses.\n• Design algorithms generating exercises to learn the following Data Mining methods: Association Rule, Segmentation, Trees, Bayesian Networks and Neural Networks\n• Allow regeneration of different data from one year to the next\n• Create the tutorial sheets and test the exercises", | |
"url": "https://www.polymtl.ca/", | |
"location": "Montréal, Canada" | |
} | |
], | |
"volunteer": [], | |
"education": [ | |
{ | |
"institution": "GameCare", | |
"area": "Interaction and motivating behaviour change training", | |
"studyType": "Social responsibility", | |
"startDate": "2021-11-01", | |
"endDate": "2022-11-01", | |
"score": "", | |
"courses": ["Safe Gambling", "Behaviour change", "Interact with customers"] | |
}, | |
{ | |
"institution": "Thales", | |
"area": "Trainer training", | |
"studyType": "Teaching", | |
"startDate": "2019-07-01", | |
"endDate": "2019-07-04", | |
"score": "", | |
"courses": ["Teach", "Make presentations"] | |
}, | |
{ | |
"institution": "Télécom SudParis", | |
"area": "Mathématiques et informatique", | |
"studyType": "Ingénieur du numérique ", | |
"startDate": "2014-12-31", | |
"endDate": "2017-12-31", | |
"score": "", | |
"courses": ["Computer Science", "Mathematics", "Artificial Intelligence"] | |
}, | |
{ | |
"institution": "Lycée Camille Julian", | |
"area": "Scientific", | |
"studyType": "Baccalauréat", | |
"startDate": "2012-12-31", | |
"endDate": "2014-12-31", | |
"score": "", | |
"courses": [] | |
} | |
], | |
"awards": [ | |
{ | |
"title": "18th/913 (Silver Medal - Top 2%) Abstraction and Reasoning Challenge", | |
"date": "2020-08-31", | |
"awarder": "Kaggle", | |
"summary": "Create an AI capable of abstraction, i.e. solving reasoning tasks it has never seen before ([challenge link](https://www.kaggle.com/c/abstraction-and-reasoning-challenge))." | |
}, | |
{ | |
"title": "Machine Learning", | |
"date": "2016-10-31", | |
"awarder": "Coursera", | |
"summary": "Andrew Ng, University of Stanford ([link](https://fr.coursera.org/learn/machine-learning))." | |
}, | |
{ | |
"title": "Top 12% on Coding Game", | |
"date": "2022-02-01", | |
"awarder": "Coding Game", | |
"summary": "Solve algorithm problem with Python and C++ code ([profile link](https://www.codingame.com/profile/5317632726e780a76259f142a81d531c5165441))." | |
} | |
], | |
"publications": [ | |
{ | |
"name": "Patent: Procédé et système d'évaluation d'un système de prédiction de dépose d'un équipement", | |
"publisher": "Thales Group", | |
"releaseDate": "2021-10-01", | |
"url": "https://worldwide.espacenet.com/patent/search/family/070804806/publication/FR3108744A1?q=pn%3DFR3108744A1" | |
} | |
], | |
"skills": [ | |
{ | |
"name": "Data Science", | |
"level": "5", | |
"keywords": ["Machine Learning", "Data Analysis", "Data Mining", "Statistics", "Scikit-learn", "Pandas", "Numpy", "Tensorflow", "Keras", "Shap", "Jupyter Notebook", "Pycharm"] | |
}, | |
{ | |
"name": "Programming", | |
"level": "5", | |
"keywords": ["Python", "SQL", "C++", "C", "Git/Github", "Scala", "R", "Java", "Linux"] | |
}, | |
{ | |
"name": "Big Data", | |
"level": "5", | |
"keywords": ["Spark", "Spark Streaming", "PySpark", "AWS Sagemaker", "S3", "ElasticSearch"] | |
} | |
], | |
"languages": [ | |
{ | |
"fluency": "Full Professional", | |
"language": "English" | |
}, | |
{ | |
"fluency": "Native Speaker", | |
"language": "French" | |
}, | |
{ | |
"fluency": "B1", | |
"language": "German" | |
} | |
], | |
"interests": [ | |
{ | |
"name": "Triathlon", | |
"keywords": ["Cycle", "Swim", "Run", "Beyond the limit"], | |
"description": "" | |
}, | |
{ | |
"name": "Japanese Animation", | |
"keywords": ["Anime", "Manga"], | |
"description": "" | |
}, | |
{ | |
"name": "E-Sport", | |
"keywords": ["CS-GO", "HearthStone"], | |
"description": "" | |
} | |
], | |
"meta": { | |
"version": "v1.0.0", | |
"canonical": "https://github.com/jsonresume/resume-schema/blob/v1.0.0/schema.json", | |
"theme": "elegant" | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment