Skip to content

Instantly share code, notes, and snippets.

@Idan707
Created January 25, 2018 11:50
Show Gist options
  • Save Idan707/f9baad46693375282439eae8dde4f55a to your computer and use it in GitHub Desktop.
Save Idan707/f9baad46693375282439eae8dde4f55a to your computer and use it in GitHub Desktop.
import numpy as np
import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.winter):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=30)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, fontsize=20)
plt.yticks(tick_marks, classes, fontsize=20)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center",
color="white" if cm[i, j] < thresh else "black", fontsize=40)
plt.tight_layout()
plt.ylabel('True label', fontsize=30)
plt.xlabel('Predicted label', fontsize=30)
return plt
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment