Created
June 25, 2017 20:08
-
-
Save Fred-Barclay/0c4cfbed20bbe81cf2d0a059f1221ea9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [ distance ] = GetDistanceTesting( subPT, vertPT, deg_Increment ) | |
%UNTITLED2 Summary of this function goes here | |
% Detailed explanation goes here | |
tic | |
theta=(0:deg_Increment:(360-deg_Increment)); | |
%Sets the value of theta from 0 degrees to the largest angle that is not | |
%coterminal with 0 degrees and <360 degrees. | |
numVert=(numel(vertPT))/2; | |
m_rays=zeros(1,length(theta)); | |
b_rays=zeros(1,length(theta)); | |
for a=1:length(theta) | |
m_rays(a)=tand(theta(a)); | |
b_rays(a)=subPT(1,2)-m_rays(a)*(subPT(1,1)); | |
end | |
vertPT_2=[vertPT;vertPT(1,:)]; | |
for b=1:(numel(vertPT_2)/2)-1 | |
m_line(b)=(vertPT_2(b+1,2)-vertPT_2(b,2))/(vertPT_2(b+1,1)-vertPT_2(b,1)); | |
b_line(b)=vertPT_2(b+1,2)-(m_line(b)*vertPT_2(b+1,1)); | |
end | |
for c=1:length(theta) | |
clear angle | |
clear x_Int y_Int | |
for d=1:(numel(vertPT_2)/2)-1 | |
% If slope of ray is vertical (undefined, and therefore Inf) | |
if abs(m_rays(c))==Inf && abs(m_rays(c))~=abs(m_line(d)) | |
x_Int(d)= subPT(1,1); | |
y_Int(d)=(m_line(d)*x_Int(d))+b_line(d); | |
angle(d) = atan2d(y_Int(d)-subPT(1,2),x_Int(d)-subPT(1,1)); | |
% If slope of line is vertical (undefined, and therefore Inf) | |
elseif abs(m_line(d))==Inf && abs(m_rays(c))~=abs(m_line(d)) | |
x_Int(d)=vertPT(d,1); | |
y_Int(d)=(m_rays(c)*x_Int(d))+b_rays(c); | |
angle(d) = atan2d(y_Int(d)-subPT(1,2),x_Int(d)-subPT(1,1)); | |
% If ray and line have equal slope (parallel) | |
elseif abs(m_rays(c))==abs(m_line(d)) | |
x_Int(d)=NaN; | |
y_Int(d)=NaN; | |
angle(d) = NaN; | |
% Otherwise, use the normal calculation method | |
else | |
x_Int(d)=(b_rays(c)-b_line(d))/(m_line(d)-m_rays(c)); | |
y_Int(d)=(m_line(d)*x_Int(d))+b_line(d); | |
angle(d) = atan2d(y_Int(d)-subPT(1,2),x_Int(d)-subPT(1,1)); | |
end | |
end | |
angle = round(angle) + (round(angle)<0)*360; | |
correct_angle=find(round(angle)==theta(c)); | |
testdistances = sqrt((x_Int(correct_angle)-repmat(subPT(1),1,length(correct_angle))).^2 + (y_Int(correct_angle)-repmat(subPT(2),1,length(correct_angle))).^2); | |
distance(c) = min(testdistances); | |
plotpoint(c)=find(testdistances==min(testdistances)); | |
x_Int_plot(c)=x_Int(correct_angle(plotpoint(c))); | |
y_Int_plot(c)=y_Int(correct_angle(plotpoint(c))); | |
hold on | |
plot(x_Int_plot,y_Int_plot,'g*') | |
end | |
xlswrite('Distance',distance) | |
open Distance.xls | |
hold on | |
plot(vertPT_2(:,1),vertPT_2(:,2)) | |
plot(subPT(1),subPT(2),'b+') | |
axis([min(vertPT(:,1))-3 max(vertPT(:,1))+3 min(vertPT(:,2))-3 max(vertPT(:,2))+3]) | |
axis square | |
toc | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment