Last active
June 29, 2018 18:45
-
-
Save BenjaminFraser/e7443ce01a98417388fc83e3483732ab to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
# make up random data for bird wingspans and weights for golden eagles and horned owls | |
bird_wingspans = np.concatenate([np.random.randint(170, 230, size = 50)/100.0, | |
np.random.randint(60, 100, size = 50)/100.0]) | |
bird_weights = np.concatenate([(11 - 10)*np.random.randn(50)+10, np.abs(np.random.randn(50))+1]) | |
# combine X vectors into a 2-dimensional array with 100 rows and 2 columns | |
X = np.vstack((bird_wingspans, bird_weights)).T | |
# create labels for our input data - first 50 are Golden Eagles (binary 0), last 50 are Horned Owls (binary 1) | |
y = np.concatenate([np.zeros(50), np.ones(50)]) | |
# confirm shapes of generated data | |
print("The shape of our input matrix, X, is: {0}.".format(X.shape)) | |
print("The shape of our output vector, y, is: {0}.".format(y.shape)) | |
# plot our data on a scatter graph using matplotlib | |
# first 50 samples = Golden Eagle - plot both input features (columns 0 and 1 of X) | |
plt.scatter(X[:50, 0], X[:50, 1], color='r', marker='o', label='Golden Eagle') | |
# last 50 samples = Horned Owls | |
plt.scatter(X[50:, 0], X[50:, 1], color='b', marker='x', label = "Horned Owl") | |
plt.title("Bird Classification Sample Data") | |
plt.xlabel("Wingspan (metres)") | |
plt.ylabel("Weight (kilograms)") | |
plt.legend(loc = 'upper left') | |
plt.xlim([0, 2.5]) | |
plt.ylim([0, 14]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment