Created
October 24, 2019 03:34
-
-
Save Algogator/81f2e91b29af7ef5017d5bb1ff86b694 to your computer and use it in GitHub Desktop.
CNN
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class CNN(nn.Module): | |
def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, | |
dropout, pad_idx): | |
super().__init__() | |
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx = pad_idx) | |
self.conv_0 = nn.Parameter(torch.randn((1, | |
n_filters, | |
filter_sizes[0], embedding_dim)),requires_grad=True) | |
self.conv_1 = nn.Parameter(torch.randn((1, | |
n_filters, | |
filter_sizes[1], embedding_dim)),requires_grad=True) | |
self.conv_2 = nn.Parameter(torch.randn((1, | |
n_filters, | |
filter_sizes[2], embedding_dim)),requires_grad=True) | |
self.b0 = nn.Parameter(torch.randn((OUTPUT_DIM)),requires_grad=True) | |
self.b1 = nn.Parameter(torch.randn((OUTPUT_DIM)),requires_grad=True) | |
self.b2 = nn.Parameter(torch.randn((OUTPUT_DIM)),requires_grad=True) | |
self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, text): | |
#text = [sent len, batch size] | |
text = text.permute(1, 0) | |
#text = [batch size, sent len] | |
embedded = self.embedding(text) | |
#embedded = [batch size, sent len, emb dim] | |
embedded = embedded.unsqueeze(1) | |
#embedded = [batch size, 1, sent len, emb dim] | |
conved_0 = F.relu(F.conv2d(embedded,self.conv_0).squeeze(3) +self.b0) | |
conved_1 = F.relu(F.conv2d(embedded,self.conv_1).squeeze(3) + self.b1) | |
conved_2 = F.relu(F.conv2d(embedded,self.conv_2).squeeze(3) +self.b2) | |
#conved_n = [batch size, n_filters, sent len - filter_sizes[n] + 1] | |
pooled_0 = F.max_pool1d(conved_0, conved_0.shape[2]).squeeze(2) | |
pooled_1 = F.max_pool1d(conved_1, conved_1.shape[2]).squeeze(2) | |
pooled_2 = F.max_pool1d(conved_2, conved_2.shape[2]).squeeze(2) | |
#pooled_n = [batch size, n_filters] | |
cat = self.dropout(torch.cat((pooled_0, pooled_1, pooled_2), dim = 1)) | |
#cat = [batch size, n_filters * len(filter_sizes)] | |
return self.fc(cat) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment