Skip to content

Instantly share code, notes, and snippets.

@Aaron1011
Created April 20, 2025 20:44
Show Gist options
  • Save Aaron1011/4f3a10661d8a26ef78d6c019897b99a2 to your computer and use it in GitHub Desktop.
Save Aaron1011/4f3a10661d8a26ef78d6c019897b99a2 to your computer and use it in GitHub Desktop.
x_log_x_tendsto_atTop
-- TODO - upstream to mathlib
lemma x_log_x_tendsto_atTop: Filter.Tendsto ((fun x => x⁻¹) ∘ fun x => Real.log x / x) Filter.atTop Filter.atTop := by
apply Filter.Tendsto.comp (f := fun x => Real.log x / x) (g := fun x => x⁻¹) (x := Filter.atTop) (y := (nhdsWithin 0 (Set.Ioi 0))) (z := Filter.atTop)
.
exact tendsto_inv_nhdsGT_zero (𝕜 := ℝ)
.
rw [tendsto_nhdsWithin_iff]
refine ⟨?_, ?_⟩
.
have log_div_x := Real.tendsto_pow_log_div_mul_add_atTop 1 0 1 (by simp)
simp only [pow_one, one_mul, add_zero] at log_div_x
exact log_div_x
. simp only [Set.mem_Ioi, eventually_atTop, ge_iff_le]
use 2
intro x hx
have log_pos: 0 < Real.log x := by
refine (Real.log_pos_iff ?_).mpr ?_ <;> linarith
positivity
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment