Lecture 1: Introduction to Research
Lecture 2: Introduction to Python
Lecture 3: Introduction to NumPy
Lecture 4: Introduction to pandas
Lecture 5: Plotting Data
Lecture 6: Means
Lecture 7: Variance
Lecture 8: Statistical Moments
Lecture 9: Linear Correlation Analysis
Lecture 10: Instability of Estimates
Lecture 11: Random Variables
Lecture 12: Linear Regression
Lecture 13: Maximum Likelihood Estimation
Lecture 14: Regression Model Instability
Lecture 15: Multiple Linear Regression
Lecture 16: Violations of Regression Models
Lecture 17: Model Misspecification
Lecture 18: Residual Analysis
Lecture 19: The Dangers of Overfitting
Lecture 20: Hypothesis Testing
Lecture 21: Confidence Intervals
Lecture 22: p-Hacking and Multiple Comparisons Bias
Lecture 23: Spearman Rank Correlation
Lecture 24: Leverage
Lecture 25: Position Concentration Risk
Lecture 26: Estimating Covariance Matrices
Lecture 27: Introduction to Volume, Slippage, and Liquidity
Lecture 28: Market Impact Models
Lecture 29: Universe Selection
Lecture 30: The Capital Asset Pricing Model and Arbitrage Pricing Theory
Lecture 31: Beta Hedging
Lecture 32: Fundamental Factor Models
Lecture 33: Portfolio Analysis
Lecture 34: Factor Risk Exposure
Lecture 35: Risk-Constrained Portfolio Optimization
Lecture 36: Principal Component Analysis
Lecture 37: Long-Short Equity
Lecture 38: Example: Long-Short Equity Algorithm
Lecture 39: Factor Analysis with Alphalens
Lecture 40: Why You Should Hedge Beta and Sector Exposures (Part I)
Lecture 41: Why You Should Hedge Beta and Sector Exposures (Part II)
Lecture 42: VaR and CVaR
Lecture 43: Integration, Cointegration, and Stationarity
Lecture 44: Introduction to Pairs Trading
Lecture 45: Example: Basic Pairs Trading Algorithm
Lecture 46: Example: Pairs Trading Algorithm
Lecture 47: Autocorrelation and AR Models
Lecture 48: ARCH, GARCH, and GMM
Lecture 49: Kalman Filters
Lecture 50: Example: Kalman Filter Pairs Trade
Lecture 51: Introduction to Futures
Lecture 52: Futures Trading Considerations
Lecture 53: Mean Reversion on Futures
Lecture 54: Example: Pairs Trading on Futures
Lecture 55: Case Study: Traditional Value Factor
Lecture 56: Case Study: Comparing ETFs\
-
-
Save zhengjia/fc966102b110f40b88974b0a8cd14221 to your computer and use it in GitHub Desktop.
Quantopian Lectures Saved
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[ | |
{ | |
"lNum": "Lecture 1", | |
"lTitle": "Introduction to Research", | |
"lInfo": "A simple tutorial to help you get up to speed in the research environment.", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-research", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Research" | |
}, | |
{ | |
"lNum": "Lecture 2", | |
"lTitle": "Introduction to Python", | |
"lInfo": "Some basic tools for working in the language.", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-python", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Python" | |
}, | |
{ | |
"lNum": "Lecture 3", | |
"lTitle": "Introduction to NumPy", | |
"lInfo": "How to use NumPy for computing on data.", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-numpy", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_NumPy" | |
}, | |
{ | |
"lNum": "Lecture 4", | |
"lTitle": "Introduction to pandas", | |
"lInfo": "An introduction to using pandas to manage and analyze your data.", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-pandas", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Pandas" | |
}, | |
{ | |
"lNum": "Lecture 5", | |
"lTitle": "Plotting Data", | |
"lInfo": "A brief primer.", | |
"lHref": "https://www.quantopian.com/lectures/plotting-data", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Plotting_Data" | |
}, | |
{ | |
"lNum": "Lecture 6", | |
"lTitle": "Means", | |
"lInfo": "Measures of centrality.", | |
"lHref": "https://www.quantopian.com/lectures/means", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Means" | |
}, | |
{ | |
"lNum": "Lecture 7", | |
"lTitle": "Variance", | |
"lInfo": "Measures of dispersion.", | |
"lHref": "https://www.quantopian.com/lectures/variance", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Variance" | |
}, | |
{ | |
"lNum": "Lecture 8", | |
"lTitle": "Statistical Moments", | |
"lInfo": "Ways to think about distributions.", | |
"lHref": "https://www.quantopian.com/lectures/statistical-moments", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Statistical_Moments" | |
}, | |
{ | |
"lNum": "Lecture 9", | |
"lTitle": "Linear Correlation Analysis", | |
"lInfo": "A basic primer on correlation and how it relates to variance.", | |
"lHref": "https://www.quantopian.com/lectures/linear-correlation-analysis", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Linear_Correlation_Analysis" | |
}, | |
{ | |
"lNum": "Lecture 10", | |
"lTitle": "Instability of Estimates", | |
"lInfo": "How estimates can lie and ways to deal with that.", | |
"lHref": "https://www.quantopian.com/lectures/instability-of-estimates", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Instability_of_Estimates" | |
}, | |
{ | |
"lNum": "Lecture 11", | |
"lTitle": "Random Variables", | |
"lInfo": "Theory and sample use cases.", | |
"lHref": "https://www.quantopian.com/lectures/random-variables", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Random_Variables" | |
}, | |
{ | |
"lNum": "Lecture 12", | |
"lTitle": "Linear Regression", | |
"lInfo": "An explanation of the technique and implementation in Python.", | |
"lHref": "https://www.quantopian.com/lectures/linear-regression", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Linear_Regression" | |
}, | |
{ | |
"lNum": "Lecture 13", | |
"lTitle": "Maximum Likelihood Estimation", | |
"lInfo": "A basic intro developed in collaboration with Andrei Kirilenko at MIT Sloan.", | |
"lHref": "https://www.quantopian.com/lectures/maximum-likelihood-estimation", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Maximum_Likelihood_Estimation" | |
}, | |
{ | |
"lNum": "Lecture 14", | |
"lTitle": "Regression Model Instability", | |
"lInfo": "Why your regression coefficients can change.", | |
"lHref": "https://www.quantopian.com/lectures/regression-model-instability", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Regression_Model_Instability" | |
}, | |
{ | |
"lNum": "Lecture 15", | |
"lTitle": "Multiple Linear Regression", | |
"lInfo": "Expanding from one to many variables.", | |
"lHref": "https://www.quantopian.com/lectures/multiple-linear-regression", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Multiple_Linear_Regression" | |
}, | |
{ | |
"lNum": "Lecture 16", | |
"lTitle": "Violations of Regression Models", | |
"lInfo": "What happens when regression assumptions are violated.", | |
"lHref": "https://www.quantopian.com/lectures/violations-of-regression-models", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Violations_of_Regression_Models" | |
}, | |
{ | |
"lNum": "Lecture 17", | |
"lTitle": "Model Misspecification", | |
"lInfo": "Violation of assumptions can cause a model to falsely look good.", | |
"lHref": "https://www.quantopian.com/lectures/model-misspecification", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Model_Misspecification" | |
}, | |
{ | |
"lNum": "Lecture 18", | |
"lTitle": "Residual Analysis", | |
"lInfo": "Analysis of residuals leads to healthier models", | |
"lHref": "https://www.quantopian.com/lectures/residual-analysis", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Residuals_Analysis" | |
}, | |
{ | |
"lNum": "Lecture 19", | |
"lTitle": "The Dangers of Overfitting", | |
"lInfo": "How overfitting can trick you into thinking your algorithm is good.", | |
"lHref": "https://www.quantopian.com/lectures/the-dangers-of-overfitting", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/The_Dangers_of_Overfitting" | |
}, | |
{ | |
"lNum": "Lecture 20", | |
"lTitle": "Hypothesis Testing", | |
"lInfo": "How to rigorously test your ideas with set confidence levels.", | |
"lHref": "https://www.quantopian.com/lectures/hypothesis-testing", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Hypothesis_Testing" | |
}, | |
{ | |
"lNum": "Lecture 21", | |
"lTitle": "Confidence Intervals", | |
"lInfo": "A primer in collaboration with Jeremiah Johnson at UNH.", | |
"lHref": "https://www.quantopian.com/lectures/confidence-intervals", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Confidence_Intervals" | |
}, | |
{ | |
"lNum": "Lecture 22", | |
"lTitle": "p-Hacking and Multiple Comparisons Bias", | |
"lInfo": "Don't be tricked by false positives.", | |
"lHref": "https://www.quantopian.com/lectures/p-hacking-and-multiple-comparisons-bias", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/p-Hacking_and_Multiple_Comparisons_Bias" | |
}, | |
{ | |
"lNum": "Lecture 23", | |
"lTitle": "Spearman Rank Correlation", | |
"lInfo": "What to do when the relationship in your data is not necessarily linear.", | |
"lHref": "https://www.quantopian.com/lectures/spearman-rank-correlation", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Spearman_Rank_Correlation" | |
}, | |
{ | |
"lNum": "Lecture 24", | |
"lTitle": "Leverage", | |
"lInfo": "An introduction to leverage in algorithmic trading and how it works.", | |
"lHref": "https://www.quantopian.com/lectures/leverage", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Leverage" | |
}, | |
{ | |
"lNum": "Lecture 25", | |
"lTitle": "Position Concentration Risk", | |
"lInfo": "Why investing in few assets is very risky.", | |
"lHref": "https://www.quantopian.com/lectures/position-concentration-risk", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Position_Concentration_Risk" | |
}, | |
{ | |
"lNum": "Lecture 26", | |
"lTitle": "Estimating Covariance Matrices", | |
"lInfo": "Sample covariance matrices are unstable", | |
"lHref": "https://www.quantopian.com/lectures/estimating-covariance-matrices", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Estimating_Covariance_Matrices" | |
}, | |
{ | |
"lNum": "Lecture 27", | |
"lTitle": "Introduction to Volume, Slippage, and Liquidity", | |
"lInfo": "An overview of liquidity and how it can affect your trading strategies", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-volume-slippage-and-liquidity", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Volume_Slippage_and_Liquidity" | |
}, | |
{ | |
"lNum": "Lecture 28", | |
"lTitle": "Market Impact Models", | |
"lInfo": "Modeling market impact is an essential, and often overlooked, part of trading", | |
"lHref": "https://www.quantopian.com/lectures/market-impact-models", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Market_Impact_Model" | |
}, | |
{ | |
"lNum": "Lecture 29", | |
"lTitle": "Universe Selection", | |
"lInfo": "Defining a trading universe", | |
"lHref": "https://www.quantopian.com/lectures/universe-selection", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Universe_Selection" | |
}, | |
{ | |
"lNum": "Lecture 30", | |
"lTitle": "The Capital Asset Pricing Model and Arbitrage Pricing Theory", | |
"lInfo": "An examination of the CAPM and Arbitrage Pricing Theory", | |
"lHref": "https://www.quantopian.com/lectures/the-capital-asset-pricing-model-and-arbitrage-pricing-theory", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/CAPM_and_Arbitrage_Pricing_Theory" | |
}, | |
{ | |
"lNum": "Lecture 31", | |
"lTitle": "Beta Hedging", | |
"lInfo": "How to hedge your algorithm against risk factors.", | |
"lHref": "https://www.quantopian.com/lectures/beta-hedging", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Beta_Hedging" | |
}, | |
{ | |
"lNum": "Lecture 32", | |
"lTitle": "Fundamental Factor Models", | |
"lInfo": "How fundamental data can be used in factor models.", | |
"lHref": "https://www.quantopian.com/lectures/fundamental-factor-models", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Fundamental_Factor_Models" | |
}, | |
{ | |
"lNum": "Lecture 33", | |
"lTitle": "Portfolio Analysis", | |
"lInfo": "A walkthrough of how to fill the gaps in your portfolio's returns", | |
"lHref": "https://www.quantopian.com/lectures/portfolio-analysis", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Portfolio_Analysis" | |
}, | |
{ | |
"lNum": "Lecture 34", | |
"lTitle": "Factor Risk Exposure", | |
"lInfo": "Estimating exposure to risk factors using factor models.", | |
"lHref": "https://www.quantopian.com/lectures/factor-risk-exposure", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Factor_Risk_Exposure" | |
}, | |
{ | |
"lNum": "Lecture 35", | |
"lTitle": "Risk-Constrained Portfolio Optimization", | |
"lInfo": "Investment strategies try to optimize returns given a risk budget. We’ll show you how to effectively monitor and manage your risk.", | |
"lHref": "https://www.quantopian.com/lectures/risk-constrained-portfolio-optimization", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Integration_Cointegration_and_Stationarity" | |
}, | |
{ | |
"lNum": "Lecture 36", | |
"lTitle": "Principal Component Analysis", | |
"lInfo": "PCA is a common dimensionality reduction technique used in statistics and machine learning to analyze high-dimensional datasets", | |
"lHref": "https://www.quantopian.com/lectures/principal-component-analysis", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Linear_Correlation_Analysis" | |
}, | |
{ | |
"lNum": "Lecture 37", | |
"lTitle": "Long-Short Equity", | |
"lInfo": "An overview of the long-short equity strategy and how it can be used.", | |
"lHref": "https://www.quantopian.com/lectures/long-short-equity", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Long-Short_Equity" | |
}, | |
{ | |
"lNum": "Lecture 38", | |
"lTitle": "Example: Long-Short Equity Algorithm", | |
"lInfo": "An algorithm to go along with Long-Short Equity.", | |
"lHref": "https://www.quantopian.com/lectures/example-long-short-equity-algorithm", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Fundamental_Factor_Models" | |
}, | |
{ | |
"lNum": "Lecture 39", | |
"lTitle": "Factor Analysis with Alphalens", | |
"lInfo": "The statistics of determining whether a factor is suitable for a long-short equity algorithm", | |
"lHref": "https://www.quantopian.com/lectures/factor-analysis-with-alphalens", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Fundamental_Factor_Models" | |
}, | |
{ | |
"lNum": "Lecture 40", | |
"lTitle": "Why You Should Hedge Beta and Sector Exposures (Part I)", | |
"lInfo": "Here we examine the veracity of independent bets and their effect on the Sharpe ratio", | |
"lHref": "https://www.quantopian.com/lectures/why-you-should-hedge-beta-and-sector-exposures-part-i", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Fundamental_Factor_Models" | |
}, | |
{ | |
"lNum": "Lecture 41", | |
"lTitle": "Why You Should Hedge Beta and Sector Exposures (Part II)", | |
"lInfo": "We continue where we left off in part I, examining how small amounts of common factor risk can affect portfolios", | |
"lHref": "https://www.quantopian.com/lectures/why-you-should-hedge-beta-and-sector-exposures-part-ii", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Fundamental_Factor_Models" | |
}, | |
{ | |
"lNum": "Lecture 42", | |
"lTitle": "VaR and CVaR", | |
"lInfo": "The loss to which you are exposed.", | |
"lHref": "https://www.quantopian.com/lectures/var-and-cvar", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/VaR_and_CVaR" | |
}, | |
{ | |
"lNum": "Lecture 43", | |
"lTitle": "Integration, Cointegration, and Stationarity", | |
"lInfo": "How non-stationarity can break traditional analyses.", | |
"lHref": "https://www.quantopian.com/lectures/integration-cointegration-and-stationarity", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Integration_Cointegration_and_Stationarity" | |
}, | |
{ | |
"lNum": "Lecture 44", | |
"lTitle": "Introduction to Pairs Trading", | |
"lInfo": "A complete workflow to building a basic pairs trading strategy on Quantopian.", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-pairs-trading", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Pairs_Trading" | |
}, | |
{ | |
"lNum": "Lecture 45", | |
"lTitle": "Example: Basic Pairs Trading Algorithm", | |
"lInfo": "A simple implementation of pairs trading.", | |
"lHref": "https://www.quantopian.com/lectures/example-basic-pairs-trading-algorithm", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Pairs_Trading" | |
}, | |
{ | |
"lNum": "Lecture 46", | |
"lTitle": "Example: Pairs Trading Algorithm", | |
"lInfo": "A more sophisticated pairs trading implementation.", | |
"lHref": "https://www.quantopian.com/lectures/example-pairs-trading-algorithm", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Pairs_Trading" | |
}, | |
{ | |
"lNum": "Lecture 47", | |
"lTitle": "Autocorrelation and AR Models", | |
"lInfo": "Autocorrelation and how to model it to reduce tail risk.", | |
"lHref": "https://www.quantopian.com/lectures/autocorrelation-and-ar-models", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Autocorrelation_and_AR_Models" | |
}, | |
{ | |
"lNum": "Lecture 48", | |
"lTitle": "ARCH, GARCH, and GMM", | |
"lInfo": "A primer on volatility forecasting models developed with Andrei Kirilenko.", | |
"lHref": "https://www.quantopian.com/lectures/arch-garch-and-gmm", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/ARCH_GARCH_and_GMM" | |
}, | |
{ | |
"lNum": "Lecture 49", | |
"lTitle": "Kalman Filters", | |
"lInfo": "How to use Kalman filters to get a good signal out of noisy data.", | |
"lHref": "https://www.quantopian.com/lectures/kalman-filters", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Kalman_Filters" | |
}, | |
{ | |
"lNum": "Lecture 50", | |
"lTitle": "Example: Kalman Filter Pairs Trade", | |
"lInfo": "An algorithm to go along with Kalman Filters.", | |
"lHref": "https://www.quantopian.com/lectures/example-kalman-filter-pairs-trade", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Confidence_Intervals" | |
}, | |
{ | |
"lNum": "Lecture 51", | |
"lTitle": "Introduction to Futures", | |
"lInfo": "An overview of the theory behind futures contracts", | |
"lHref": "https://www.quantopian.com/lectures/introduction-to-futures", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Introduction_to_Futures" | |
}, | |
{ | |
"lNum": "Lecture 52", | |
"lTitle": "Futures Trading Considerations", | |
"lInfo": "Some particulars on trading futures contracts", | |
"lHref": "https://www.quantopian.com/lectures/futures-trading-considerations", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Futures_Trading_Considerations" | |
}, | |
{ | |
"lNum": "Lecture 53", | |
"lTitle": "Mean Reversion on Futures", | |
"lInfo": "Further exploration on mean reversion in futures markets", | |
"lHref": "https://www.quantopian.com/lectures/mean-reversion-on-futures", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Mean_Reversion_on_Futures" | |
}, | |
{ | |
"lNum": "Lecture 54", | |
"lTitle": "Example: Pairs Trading on Futures", | |
"lInfo": "A futures pairs trading algorithm", | |
"lHref": "https://www.quantopian.com/lectures/example-pairs-trading-on-futures", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Futures_Trading_Considerations" | |
}, | |
{ | |
"lNum": "Lecture 55", | |
"lTitle": "Case Study: Traditional Value Factor", | |
"lInfo": "How to build a long/short value factor.", | |
"lHref": "https://www.quantopian.com/lectures/case-study-traditional-value-factor", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Case_Study_Traditional_Value_Factor" | |
}, | |
{ | |
"lNum": "Lecture 56", | |
"lTitle": "Case Study: Comparing ETFs", | |
"lInfo": "A simple example of p-value testing on real data.", | |
"lHref": "https://www.quantopian.com/lectures/case-study-comparing-etfs", | |
"ghLink": "https://github.com/quantopian/research_public/tree/master/notebooks/lectures/Case_Study_Comparing_ETFs" | |
} | |
] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment