Created
August 15, 2019 16:10
ARROW-3246 Benchmarks
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import pyarrow as pa\n", | |
"import pyarrow.parquet as pq\n", | |
"import pandas as pd\n", | |
"from pandas.util.testing import rands\n", | |
" \n", | |
"NUNIQUE = 1000\n", | |
"STRING_SIZE = 50\n", | |
"LENGTH = 10_000_000\n", | |
"REPEATS = LENGTH // NUNIQUE\n", | |
"\n", | |
"uniques = np.array([rands(STRING_SIZE) for i in range(NUNIQUE)], dtype='O')\n", | |
"indices = np.random.randint(0, NUNIQUE, size=LENGTH).astype('i4') \n", | |
"data = uniques.take(indices)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import gc\n", | |
"class memory_use:\n", | |
" \n", | |
" def __init__(self):\n", | |
" self.start_use = pa.total_allocated_bytes() \n", | |
" self.pool = pa.default_memory_pool()\n", | |
" self.start_peak_use = self.pool.max_memory()\n", | |
" \n", | |
" def __enter__(self):\n", | |
" return\n", | |
" \n", | |
" def __exit__(self, type, value, traceback):\n", | |
" gc.collect()\n", | |
" print(\"Change in memory use: {}\"\n", | |
" .format(pa.total_allocated_bytes() - self.start_use))\n", | |
" print(\"Change in peak use: {}\"\n", | |
" .format(self.pool.max_memory() - self.start_peak_use))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dict_data = pa.DictionaryArray.from_arrays(indices, uniques)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"72320" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pa.default_memory_pool().max_memory()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Change in memory use: 16777216\n", | |
"Change in peak use: 753475648\n" | |
] | |
} | |
], | |
"source": [ | |
"table = pa.table([dict_data], names=['f0'])\n", | |
"with memory_use():\n", | |
" out_stream = pa.BufferOutputStream()\n", | |
" pq.write_table(table, out_stream)\n", | |
" contents = out_stream.getvalue()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"820 ms ± 11.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"out_stream = pa.BufferOutputStream()\n", | |
"pq.write_table(table, out_stream)\n", | |
"contents = out_stream.getvalue()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"12576182" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"len(contents)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"495 ms ± 8.04 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit returned_table = pq.read_table(contents)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"93.1 ms ± 3.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit returned_table = pq.read_table(contents, read_dictionary=['f0'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dense_data = dict_data.cast(pa.utf8())\n", | |
"table = pa.table([dense_data], names=['f0'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"405 ms ± 27.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"out_stream = pa.BufferOutputStream()\n", | |
"pq.write_table(table, out_stream)\n", | |
"contents = out_stream.getvalue()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"out_stream = pa.BufferOutputStream()\n", | |
"pq.write_table(table, out_stream)\n", | |
"contents = out_stream.getvalue()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"430 ms ± 8.12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"returned_table = pq.read_table(contents)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"pyarrow.Table\n", | |
"f0: string" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pq.read_table(contents)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment