Skip to content

Instantly share code, notes, and snippets.

@wesm
Created August 15, 2019 16:10
ARROW-3246 Benchmarks
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pyarrow as pa\n",
"import pyarrow.parquet as pq\n",
"import pandas as pd\n",
"from pandas.util.testing import rands\n",
" \n",
"NUNIQUE = 1000\n",
"STRING_SIZE = 50\n",
"LENGTH = 10_000_000\n",
"REPEATS = LENGTH // NUNIQUE\n",
"\n",
"uniques = np.array([rands(STRING_SIZE) for i in range(NUNIQUE)], dtype='O')\n",
"indices = np.random.randint(0, NUNIQUE, size=LENGTH).astype('i4') \n",
"data = uniques.take(indices)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import gc\n",
"class memory_use:\n",
" \n",
" def __init__(self):\n",
" self.start_use = pa.total_allocated_bytes() \n",
" self.pool = pa.default_memory_pool()\n",
" self.start_peak_use = self.pool.max_memory()\n",
" \n",
" def __enter__(self):\n",
" return\n",
" \n",
" def __exit__(self, type, value, traceback):\n",
" gc.collect()\n",
" print(\"Change in memory use: {}\"\n",
" .format(pa.total_allocated_bytes() - self.start_use))\n",
" print(\"Change in peak use: {}\"\n",
" .format(self.pool.max_memory() - self.start_peak_use))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"dict_data = pa.DictionaryArray.from_arrays(indices, uniques)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"72320"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pa.default_memory_pool().max_memory()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change in memory use: 16777216\n",
"Change in peak use: 753475648\n"
]
}
],
"source": [
"table = pa.table([dict_data], names=['f0'])\n",
"with memory_use():\n",
" out_stream = pa.BufferOutputStream()\n",
" pq.write_table(table, out_stream)\n",
" contents = out_stream.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"820 ms ± 11.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"out_stream = pa.BufferOutputStream()\n",
"pq.write_table(table, out_stream)\n",
"contents = out_stream.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"12576182"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(contents)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"495 ms ± 8.04 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%timeit returned_table = pq.read_table(contents)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"93.1 ms ± 3.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%timeit returned_table = pq.read_table(contents, read_dictionary=['f0'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"dense_data = dict_data.cast(pa.utf8())\n",
"table = pa.table([dense_data], names=['f0'])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"405 ms ± 27.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"out_stream = pa.BufferOutputStream()\n",
"pq.write_table(table, out_stream)\n",
"contents = out_stream.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"out_stream = pa.BufferOutputStream()\n",
"pq.write_table(table, out_stream)\n",
"contents = out_stream.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"430 ms ± 8.12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
]
}
],
"source": [
"%%timeit\n",
"returned_table = pq.read_table(contents)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"pyarrow.Table\n",
"f0: string"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pq.read_table(contents)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment