Last active
July 18, 2025 13:33
-
-
Save tokenbender/17ab4a01c9bfc960930ac098a15aae43 to your computer and use it in GitHub Desktop.
standalone serverless simple character level transformer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import time | |
import math | |
import pickle | |
from contextlib import nullcontext | |
from pathlib import Path | |
import subprocess | |
from dataclasses import dataclass | |
import inspect | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.distributed import init_process_group, destroy_process_group | |
# Modal imports | |
import modal | |
# ============================================================================ | |
# CONFIGURATION - All settings embedded here, no CLI args needed | |
# ============================================================================ | |
# Modal configuration | |
N_GPUS = 4 # Number of GPUs to use | |
GPU_TYPE = "A100" # GPU type: "A100", "H200", "A10G", etc. | |
# Training configuration for Shakespeare character-level model | |
CONFIG = { | |
# I/O | |
"out_dir": "/data/checkpoints/shakespeare", | |
"eval_interval": 250, # Will be auto-adjusted based on epochs | |
"log_interval": 10, # Will be auto-adjusted based on epochs | |
"eval_iters": 200, | |
"eval_only": False, | |
"always_save_checkpoint": True, | |
"init_from": "scratch", | |
# wandb logging | |
"wandb_log": False, | |
"wandb_project": "nanogpt-shakespeare", | |
"wandb_run_name": "shakespeare-char", | |
# data | |
"dataset": "shakespeare_char", | |
"gradient_accumulation_steps": 4, # Must be divisible by N_GPUS | |
"batch_size": 64, | |
"block_size": 256, | |
# model | |
"n_layer": 6, | |
"n_head": 6, | |
"n_embd": 384, | |
"dropout": 0.2, | |
"bias": False, | |
# training epochs (max_iters will be calculated automatically) | |
"num_epochs": 21.0, # Set the number of epochs you want | |
# adamw optimizer | |
"learning_rate": 1e-3, | |
"max_iters": None, # Will be calculated based on num_epochs | |
"weight_decay": 1e-1, | |
"beta1": 0.9, | |
"beta2": 0.95, | |
"grad_clip": 1.0, | |
# learning rate decay settings | |
"decay_lr": True, # Will be auto-adjusted based on epochs | |
"warmup_iters": None, # Will be calculated as percentage of max_iters | |
"lr_decay_iters": None, # Will be set to max_iters | |
"min_lr": 1e-4, | |
# DDP settings | |
"backend": "nccl", | |
# system | |
"device": "cuda", | |
"dtype": "bfloat16", | |
"compile": True, | |
} | |
# ============================================================================ | |
# MODEL DEFINITION - Embedded from model.py | |
# ============================================================================ | |
class LayerNorm(nn.Module): | |
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ | |
def __init__(self, ndim, bias): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(ndim)) | |
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None | |
def forward(self, input): | |
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
# regularization | |
self.attn_dropout = nn.Dropout(config.dropout) | |
self.resid_dropout = nn.Dropout(config.dropout) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.dropout = config.dropout | |
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 | |
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') | |
if not self.flash: | |
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") | |
# causal mask to ensure that attention is only applied to the left in the input sequence | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | |
.view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
if self.flash: | |
# efficient attention using Flash Attention CUDA kernels | |
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) | |
else: | |
# manual implementation of attention | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
att = self.attn_dropout(att) | |
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.resid_dropout(self.c_proj(y)) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
self.gelu = nn.GELU() | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
x = self.dropout(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
@dataclass | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
dropout: float = 0.0 | |
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.vocab_size is not None | |
assert config.block_size is not None | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
drop = nn.Dropout(config.dropout), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = LayerNorm(config.n_embd, bias=config.bias), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
# with weight tying when using torch.compile() some warnings get generated: | |
# "UserWarning: functional_call was passed multiple values for tied weights. | |
# This behavior is deprecated and will be an error in future versions" | |
# not 100% sure what this is, so far seems to be harmless. TODO investigate | |
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying | |
# init all weights | |
self.apply(self._init_weights) | |
# apply special scaled init to the residual projections, per GPT-2 paper | |
for pn, p in self.named_parameters(): | |
if pn.endswith('c_proj.weight'): | |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | |
# report number of parameters | |
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) | |
def get_num_params(self, non_embedding=True): | |
""" | |
Return the number of parameters in the model. | |
For non-embedding count (default), the position embeddings get subtracted. | |
The token embeddings would too, except due to the parameter sharing these | |
params are actually used as weights in the final layer, so we include them. | |
""" | |
n_params = sum(p.numel() for p in self.parameters()) | |
if non_embedding: | |
n_params -= self.transformer.wpe.weight.numel() | |
return n_params | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
device = idx.device | |
b, t = idx.size() | |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) | |
# forward the GPT model itself | |
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd) | |
x = self.transformer.drop(tok_emb + pos_emb) | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
if targets is not None: | |
# if we are given some desired targets also calculate the loss | |
logits = self.lm_head(x) | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
else: | |
# inference-time mini-optimization: only forward the lm_head on the very last position | |
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim | |
loss = None | |
return logits, loss | |
def crop_block_size(self, block_size): | |
# model surgery to decrease the block size if necessary | |
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) | |
# but want to use a smaller block size for some smaller, simpler model | |
assert block_size <= self.config.block_size | |
self.config.block_size = block_size | |
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) | |
for block in self.transformer.h: | |
if hasattr(block.attn, 'bias'): | |
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] | |
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): | |
# start with all of the candidate parameters | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
# filter out those that do not require grad | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. | |
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{'params': decay_params, 'weight_decay': weight_decay}, | |
{'params': nodecay_params, 'weight_decay': 0.0} | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
# Create AdamW optimizer and use the fused version if it is available | |
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == 'cuda' | |
extra_args = dict(fused=True) if use_fused else dict() | |
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) | |
print(f"using fused AdamW: {use_fused}") | |
return optimizer | |
def estimate_mfu(self, fwdbwd_per_iter, dt): | |
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ | |
# first estimate the number of flops we do per iteration. | |
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 | |
N = self.get_num_params() | |
cfg = self.config | |
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size | |
flops_per_token = 6*N + 12*L*H*Q*T | |
flops_per_fwdbwd = flops_per_token * T | |
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter | |
# express our flops throughput as ratio of A100 bfloat16 peak flops | |
flops_achieved = flops_per_iter * (1.0/dt) # per second | |
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS | |
mfu = flops_achieved / flops_promised | |
return mfu | |
@torch.no_grad() | |
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
""" | |
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | |
the sequence max_new_tokens times, feeding the predictions back into the model each time. | |
Most likely you'll want to make sure to be in model.eval() mode of operation for this. | |
""" | |
for _ in range(max_new_tokens): | |
# if the sequence context is growing too long we must crop it at block_size | |
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | |
# forward the model to get the logits for the index in the sequence | |
logits, _ = self(idx_cond) | |
# pluck the logits at the final step and scale by desired temperature | |
logits = logits[:, -1, :] / temperature | |
# optionally crop the logits to only the top k options | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
logits[logits < v[:, [-1]]] = -float('Inf') | |
# apply softmax to convert logits to (normalized) probabilities | |
probs = F.softmax(logits, dim=-1) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) | |
# append sampled index to the running sequence and continue | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
# ============================================================================ | |
# DATA PREPARATION | |
# ============================================================================ | |
def ensure_shakespeare_data(data_root="/data"): | |
"""Download and prepare Shakespeare dataset if not exists""" | |
import requests | |
data_dir = os.path.join(data_root, "shakespeare_char") | |
# Check if prepared data already exists | |
train_path = os.path.join(data_dir, "train.bin") | |
val_path = os.path.join(data_dir, "val.bin") | |
meta_path = os.path.join(data_dir, "meta.pkl") | |
if os.path.exists(train_path) and os.path.exists(val_path) and os.path.exists(meta_path): | |
print(f"Shakespeare data already prepared in {data_dir}") | |
return | |
# Create directory | |
os.makedirs(data_dir, exist_ok=True) | |
# Download the tiny shakespeare dataset | |
input_file_path = os.path.join(data_dir, 'input.txt') | |
if not os.path.exists(input_file_path): | |
print("Downloading Shakespeare dataset...") | |
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt' | |
with open(input_file_path, 'w') as f: | |
f.write(requests.get(data_url).text) | |
with open(input_file_path, 'r') as f: | |
data = f.read() | |
print(f"length of dataset in characters: {len(data):,}") | |
# get all the unique characters that occur in this text | |
chars = sorted(list(set(data))) | |
vocab_size = len(chars) | |
print("all the unique characters:", ''.join(chars)) | |
print(f"vocab size: {vocab_size:,}") | |
# create a mapping from characters to integers | |
stoi = { ch:i for i,ch in enumerate(chars) } | |
itos = { i:ch for i,ch in enumerate(chars) } | |
def encode(s): | |
return [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
def decode(l): | |
return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
# create the train and test splits | |
n = len(data) | |
train_data = data[:int(n*0.9)] | |
val_data = data[int(n*0.9):] | |
# encode both to integers | |
train_ids = encode(train_data) | |
val_ids = encode(val_data) | |
print(f"train has {len(train_ids):,} tokens") | |
print(f"val has {len(val_ids):,} tokens") | |
# export to bin files | |
train_ids = np.array(train_ids, dtype=np.uint16) | |
val_ids = np.array(val_ids, dtype=np.uint16) | |
train_ids.tofile(train_path) | |
val_ids.tofile(val_path) | |
# save the meta information as well, to help us encode/decode later | |
meta = { | |
'vocab_size': vocab_size, | |
'itos': itos, | |
'stoi': stoi, | |
} | |
with open(meta_path, 'wb') as f: | |
pickle.dump(meta, f) | |
print("Data preparation complete!") | |
# ============================================================================ | |
# TRAINING SCRIPT | |
# ============================================================================ | |
def train(): | |
"""Main training function that runs under torchrun""" | |
# Load configuration | |
cfg = CONFIG | |
# Setup DDP | |
ddp = int(os.environ.get('RANK', -1)) != -1 | |
if ddp: | |
init_process_group(backend=cfg['backend']) | |
ddp_rank = int(os.environ['RANK']) | |
ddp_local_rank = int(os.environ['LOCAL_RANK']) | |
ddp_world_size = int(os.environ['WORLD_SIZE']) | |
device = f'cuda:{ddp_local_rank}' | |
torch.cuda.set_device(device) | |
master_process = ddp_rank == 0 | |
seed_offset = ddp_rank | |
assert cfg['gradient_accumulation_steps'] % ddp_world_size == 0 | |
gradient_accumulation_steps = cfg['gradient_accumulation_steps'] // ddp_world_size | |
else: | |
# single gpu | |
master_process = True | |
seed_offset = 0 | |
ddp_world_size = 1 | |
device = cfg['device'] | |
gradient_accumulation_steps = cfg['gradient_accumulation_steps'] | |
tokens_per_iter = gradient_accumulation_steps * ddp_world_size * cfg['batch_size'] * cfg['block_size'] | |
print(f"tokens per iteration will be: {tokens_per_iter:,}") | |
if master_process: | |
os.makedirs(cfg['out_dir'], exist_ok=True) | |
torch.manual_seed(1337 + seed_offset) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
device_type = 'cuda' if 'cuda' in device else 'cpu' | |
# Data setup | |
data_dir = os.path.join("/data" if os.path.exists("/data") else "data", cfg['dataset']) | |
# Calculate dataset size and iterations needed for requested epochs | |
train_data_path = os.path.join(data_dir, 'train.bin') | |
if os.path.exists(train_data_path): | |
train_data = np.memmap(train_data_path, dtype=np.uint16, mode='r') | |
dataset_tokens = len(train_data) | |
print(f"Training dataset has {dataset_tokens:,} tokens") | |
# Calculate iterations needed for the requested number of epochs | |
if cfg['num_epochs'] is not None: | |
iterations_per_epoch = dataset_tokens / tokens_per_iter | |
cfg['max_iters'] = int(math.ceil(cfg['num_epochs'] * iterations_per_epoch)) | |
print(f"For {cfg['num_epochs']} epochs, need {cfg['max_iters']} iterations") | |
print(f"Each epoch is ~{iterations_per_epoch:.1f} iterations") | |
# Auto-adjust other parameters based on total iterations | |
if cfg['warmup_iters'] is None: | |
# Default 2% warmup | |
cfg['warmup_iters'] = max(1, int(0.02 * cfg['max_iters'])) | |
if cfg['lr_decay_iters'] is None: | |
cfg['lr_decay_iters'] = cfg['max_iters'] | |
# Adjust eval/log intervals for short runs | |
if cfg['max_iters'] < 20: | |
cfg['eval_interval'] = max(1, cfg['max_iters'] // 4) | |
cfg['log_interval'] = 1 | |
cfg['eval_iters'] = min(50, cfg['eval_iters']) | |
print(f"Adjusted for short run: eval_interval={cfg['eval_interval']}, log_interval={cfg['log_interval']}") | |
# Disable learning rate decay for very short runs | |
if cfg['max_iters'] < 10: | |
cfg['decay_lr'] = False | |
cfg['warmup_iters'] = 0 | |
print("Disabled learning rate decay for very short run") | |
del train_data # Free memory | |
else: | |
if cfg['max_iters'] is None: | |
raise ValueError("Cannot calculate max_iters: training data not found and max_iters not specified") | |
def get_batch(split): | |
# We recreate np.memmap every batch to avoid a memory leak | |
if split == 'train': | |
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r') | |
else: | |
data = np.memmap(os.path.join(data_dir, 'val.bin'), dtype=np.uint16, mode='r') | |
ix = torch.randint(len(data) - cfg['block_size'], (cfg['batch_size'],)) | |
x = torch.stack([torch.from_numpy((data[i:i+cfg['block_size']]).astype(np.int64)) for i in ix]) | |
y = torch.stack([torch.from_numpy((data[i+1:i+1+cfg['block_size']]).astype(np.int64)) for i in ix]) | |
if device_type == 'cuda': | |
x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) | |
else: | |
x, y = x.to(device), y.to(device) | |
return x, y | |
# Init these up here | |
iter_num = 0 | |
best_val_loss = 1e9 | |
# Model init | |
meta_path = os.path.join(data_dir, 'meta.pkl') | |
meta_vocab_size = None | |
if os.path.exists(meta_path): | |
with open(meta_path, 'rb') as f: | |
meta = pickle.load(f) | |
meta_vocab_size = meta['vocab_size'] | |
print(f"found vocab_size = {meta_vocab_size} (inside {meta_path})") | |
# Model configuration | |
model_args = dict( | |
n_layer=cfg['n_layer'], | |
n_head=cfg['n_head'], | |
n_embd=cfg['n_embd'], | |
block_size=cfg['block_size'], | |
bias=cfg['bias'], | |
vocab_size=meta_vocab_size if meta_vocab_size is not None else 50304, | |
dropout=cfg['dropout'] | |
) | |
if cfg['init_from'] == 'scratch': | |
print("Initializing a new model from scratch") | |
gptconf = GPTConfig(**model_args) | |
model = GPT(gptconf) | |
elif cfg['init_from'] == 'resume': | |
print(f"Resuming training from {cfg['out_dir']}") | |
ckpt_path = os.path.join(cfg['out_dir'], 'ckpt.pt') | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
checkpoint_model_args = checkpoint['model_args'] | |
for k in ['n_layer', 'n_head', 'n_embd', 'block_size', 'bias', 'vocab_size']: | |
model_args[k] = checkpoint_model_args[k] | |
gptconf = GPTConfig(**model_args) | |
model = GPT(gptconf) | |
state_dict = checkpoint['model'] | |
unwanted_prefix = '_orig_mod.' | |
for k,v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) | |
model.load_state_dict(state_dict) | |
iter_num = checkpoint['iter_num'] | |
best_val_loss = checkpoint['best_val_loss'] | |
# Move model to device | |
model.to(device) | |
# Initialize a GradScaler | |
scaler = torch.cuda.amp.GradScaler(enabled=(cfg['dtype'] == 'float16')) | |
# Optimizer | |
optimizer = model.configure_optimizers(cfg['weight_decay'], cfg['learning_rate'], | |
(cfg['beta1'], cfg['beta2']), device_type) | |
if cfg['init_from'] == 'resume' and 'optimizer' in checkpoint: | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
checkpoint = None # free up memory | |
# Compile the model | |
if cfg['compile']: | |
print("compiling the model... (takes a ~minute)") | |
unoptimized_model = model | |
model = torch.compile(model) | |
# Wrap model into DDP container | |
if ddp: | |
model = DDP(model, device_ids=[ddp_local_rank]) | |
# Training helpers | |
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[cfg['dtype']] | |
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
@torch.no_grad() | |
def estimate_loss(): | |
out = {} | |
model.eval() | |
for split in ['train', 'val']: | |
losses = torch.zeros(cfg['eval_iters']) | |
for k in range(cfg['eval_iters']): | |
X, Y = get_batch(split) | |
with ctx: | |
logits, loss = model(X, Y) | |
losses[k] = loss.item() | |
out[split] = losses.mean() | |
model.train() | |
return out | |
# Learning rate decay scheduler (cosine with warmup) | |
def get_lr(it): | |
# Linear warmup | |
if it < cfg['warmup_iters']: | |
return cfg['learning_rate'] * (it + 1) / (cfg['warmup_iters'] + 1) | |
# If it > lr_decay_iters, return min learning rate | |
if it > cfg['lr_decay_iters']: | |
return cfg['min_lr'] | |
# In between, use cosine decay | |
decay_ratio = (it - cfg['warmup_iters']) / (cfg['lr_decay_iters'] - cfg['warmup_iters']) | |
assert 0 <= decay_ratio <= 1 | |
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) | |
return cfg['min_lr'] + coeff * (cfg['learning_rate'] - cfg['min_lr']) | |
# Logging | |
if cfg['wandb_log'] and master_process: | |
import wandb | |
wandb.init(project=cfg['wandb_project'], name=cfg['wandb_run_name'], config=cfg) | |
# Training loop | |
X, Y = get_batch('train') | |
t0 = time.time() | |
local_iter_num = 0 | |
raw_model = model.module if ddp else model | |
running_mfu = -1.0 | |
while True: | |
# Determine and set the learning rate for this iteration | |
lr = get_lr(iter_num) if cfg['decay_lr'] else cfg['learning_rate'] | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
# Evaluate the loss on train/val sets and write checkpoints | |
if iter_num % cfg['eval_interval'] == 0 and master_process: | |
losses = estimate_loss() | |
print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") | |
if cfg['wandb_log']: | |
wandb.log({ | |
"iter": iter_num, | |
"train/loss": losses['train'], | |
"val/loss": losses['val'], | |
"lr": lr, | |
"mfu": running_mfu*100, | |
}) | |
if losses['val'] < best_val_loss or cfg['always_save_checkpoint']: | |
best_val_loss = losses['val'] | |
if iter_num > 0: | |
checkpoint = { | |
'model': raw_model.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'model_args': model_args, | |
'iter_num': iter_num, | |
'best_val_loss': best_val_loss, | |
'config': cfg, | |
} | |
print(f"saving checkpoint to {cfg['out_dir']}") | |
torch.save(checkpoint, os.path.join(cfg['out_dir'], 'ckpt.pt')) | |
if iter_num == 0 and cfg['eval_only']: | |
break | |
# Forward backward update | |
for micro_step in range(gradient_accumulation_steps): | |
if ddp: | |
model.require_backward_grad_sync = (micro_step == gradient_accumulation_steps - 1) | |
with ctx: | |
logits, loss = model(X, Y) | |
loss = loss / gradient_accumulation_steps | |
X, Y = get_batch('train') | |
scaler.scale(loss).backward() | |
# Clip gradients | |
if cfg['grad_clip'] != 0.0: | |
scaler.unscale_(optimizer) | |
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg['grad_clip']) | |
# Step the optimizer | |
scaler.step(optimizer) | |
scaler.update() | |
optimizer.zero_grad(set_to_none=True) | |
# Timing and logging | |
t1 = time.time() | |
dt = t1 - t0 | |
t0 = t1 | |
if iter_num % cfg['log_interval'] == 0 and master_process: | |
lossf = loss.item() * gradient_accumulation_steps | |
if local_iter_num >= 5: | |
mfu = raw_model.estimate_mfu(cfg['batch_size'] * gradient_accumulation_steps, dt) | |
running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu | |
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%") | |
iter_num += 1 | |
local_iter_num += 1 | |
# Termination conditions | |
if iter_num > cfg['max_iters']: | |
break | |
if ddp: | |
destroy_process_group() | |
# ============================================================================ | |
# MODAL SETUP | |
# ============================================================================ | |
# Create Modal app | |
app = modal.App("nanogpt-training") | |
# Build Modal image with all dependencies | |
image = ( | |
modal.Image.debian_slim(python_version="3.11") | |
.pip_install( | |
"numpy", | |
"torch", | |
"transformers", | |
"wandb", | |
"requests" | |
) | |
) | |
# Create Modal volume for persistent storage | |
volume = modal.Volume.from_name("nanogpt-data", create_if_missing=True) | |
# Modal entry point function | |
@app.function( | |
gpu=f"{GPU_TYPE}:{N_GPUS}", | |
volumes={"/data": volume}, | |
timeout=60 * 60 * 6, # 6 hours | |
image=image, | |
secrets=[modal.Secret.from_name("wandb-secret")] if CONFIG.get("wandb_log", False) else [], | |
) | |
def train_modal(): | |
"""Launch distributed training on Modal""" | |
print(f"Starting Modal training with {N_GPUS} {GPU_TYPE} GPUs") | |
print(f"Dataset: {CONFIG['dataset']}") | |
# Prepare data | |
ensure_shakespeare_data("/data") | |
# Copy this script to a temporary location for torchrun | |
script_path = Path(__file__) | |
script_content = script_path.read_text() | |
temp_script = "/tmp/train_modal.py" | |
Path(temp_script).write_text(script_content) | |
# Launch distributed training with torchrun | |
cmd = [ | |
"torchrun", | |
f"--nproc-per-node={N_GPUS}", | |
temp_script, | |
] | |
print(f"Running command: {' '.join(cmd)}") | |
# Change to temp directory to run | |
os.chdir("/tmp") | |
# Launch distributed training | |
subprocess.run(cmd, check=True) | |
print("Training completed successfully!") | |
return "Training completed" | |
# Main entry point | |
if __name__ == "__main__": | |
# Check if we're running under torchrun | |
if "RANK" in os.environ: | |
# We're running distributed - execute training | |
train() | |
else: | |
# Not running under torchrun | |
print("This script should be run with torchrun or through Modal") | |
print("Examples:") | |
print(" Local: torchrun --nproc-per-node=4 train_modal_standalone.py") | |
print(" Modal: modal run train_modal_standalone.py::train_modal") | |
sys.exit(1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
self-contained nanogpt training script for modal - no external dependencies.
all configuration is embedded in this file. no cli args, no external model.py needed.
to run on modal:
$ modal run train_modal_standalone.py::train_modal
in detached mode (local process can terminate but training continues on modal):
$ modal run -d train_modal_standalone.py::train_modal