Skip to content

Instantly share code, notes, and snippets.

@stwind
Last active March 2, 2025 10:07
Show Gist options
  • Save stwind/b416c7485825ee158f673a703adbc2ab to your computer and use it in GitHub Desktop.
Save stwind/b416c7485825ee158f673a703adbc2ab to your computer and use it in GitHub Desktop.
dsdfr_amass.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"collapsed_sections": [
"rdd4k58h--OV",
"HcY5qOGVx0pe",
"p_ogqqtmx1sO",
"LtStOkIl_B7g",
"4rN0nR9N_FrB",
"R8lkDJfB_IcG",
"1kT-qQCN_K5t",
"8LpdeYz5_MCH",
"24rC-RS2_OBT",
"EWn7xWXh_Qix"
],
"machine_shape": "hm",
"gpuType": "L4",
"authorship_tag": "ABX9TyNpRCLtWVATwdaqlAOL2i9v",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/stwind/b416c7485825ee158f673a703adbc2ab/dsdfr_amass.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"source": [
"!nvidia-smi --query-gpu=name,memory.total --format=csv,noheader"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vv2sYz00xiiw",
"outputId": "a1bebf9a-549d-4660-ffbb-04f85d2932ba"
},
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"NVIDIA L4, 23034 MiB\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"## Setup"
],
"metadata": {
"id": "7BFLyyJl-8_t"
}
},
{
"cell_type": "markdown",
"source": [
"### Dependencies"
],
"metadata": {
"id": "rdd4k58h--OV"
}
},
{
"cell_type": "markdown",
"source": [
"#### Common"
],
"metadata": {
"id": "HcY5qOGVx0pe"
}
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jHtu0f2h-3yQ",
"outputId": "7f2e8bac-e18c-4ffb-cf66-57bf1e718cab"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.7/57.7 MB\u001b[0m \u001b[31m9.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.3/4.3 MB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m66.9/66.9 kB\u001b[0m \u001b[31m261.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m708.6/708.6 kB\u001b[0m \u001b[31m337.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"!pip install --no-cache-dir -Uq einops ffmpeg-python mitsuba==3.6.0 fastsweep trimesh"
]
},
{
"cell_type": "markdown",
"source": [
"#### OpenVDB"
],
"metadata": {
"id": "p_ogqqtmx1sO"
}
},
{
"cell_type": "code",
"source": [
"!apt-get update -yqq && DEBIAN_FRONTEND=noninteractive apt-get install -yqq --no-install-recommends libjemalloc-dev"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3s6eSPh3xjge",
"outputId": "351caf7b-c7ff-4a8b-9e0d-37995a6cfc3f"
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"W: Skipping acquire of configured file 'main/source/Sources' as repository 'https://r2u.stat.illinois.edu/ubuntu jammy InRelease' does not seem to provide it (sources.list entry misspelt?)\n",
"Selecting previously unselected package libjemalloc2:amd64.\n",
"(Reading database ... 124947 files and directories currently installed.)\n",
"Preparing to unpack .../libjemalloc2_5.2.1-4ubuntu1_amd64.deb ...\n",
"Unpacking libjemalloc2:amd64 (5.2.1-4ubuntu1) ...\n",
"Selecting previously unselected package libjemalloc-dev.\n",
"Preparing to unpack .../libjemalloc-dev_5.2.1-4ubuntu1_amd64.deb ...\n",
"Unpacking libjemalloc-dev (5.2.1-4ubuntu1) ...\n",
"Setting up libjemalloc2:amd64 (5.2.1-4ubuntu1) ...\n",
"Setting up libjemalloc-dev (5.2.1-4ubuntu1) ...\n",
"Processing triggers for man-db (2.10.2-1) ...\n",
"Processing triggers for libc-bin (2.35-0ubuntu3.8) ...\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libhwloc.so.15 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libumf.so.0 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtcm.so.1 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtcm_debug.so.1 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n",
"\n",
"/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n",
"\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!pip install -Uq conan nanobind"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SgfEfe4GxnB8",
"outputId": "2b072c5f-3510-46de-bb50-787b8aeb017b"
},
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m485.7/485.7 kB\u001b[0m \u001b[31m922.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m236.9/236.9 kB\u001b[0m \u001b[31m26.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for conan (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for patch-ng (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!wget -qc --show-progress https://github.com/AcademySoftwareFoundation/openvdb/archive/refs/tags/v12.0.0.tar.gz && tar -zxf v12.0.0.tar.gz"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ux6SjGXBxpZV",
"outputId": "1e2dd65b-5c1a-4cb7-a6f5-45b10bc4a421"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"v12.0.0.tar.gz [ <=> ] 4.47M 7.74MB/s in 0.6s \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"%%bash\n",
"\n",
"set -euxo pipefail\n",
"\n",
"cat << EOF > /content/conanfile.txt\n",
"[requires]\n",
"boost/1.86.0\n",
"\n",
"[generators]\n",
"CMakeDeps\n",
"CMakeToolchain\n",
"EOF\n",
"\n",
"conan profile detect --force -vquiet\n",
"conan install /content --output-folder=/content/build --build=missing -vquiet"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "uUn_z-MExpQo",
"outputId": "29cd0125-99a8-424e-e928-1d6dbd2531e8"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[settings]\n",
"arch=x86_64\n",
"build_type=Release\n",
"compiler=gcc\n",
"compiler.cppstd=gnu17\n",
"compiler.libcxx=libstdc++11\n",
"compiler.version=11\n",
"os=Linux\n",
"\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"+ cat\n",
"+ conan profile detect --force -vquiet\n",
"+ conan install /content --output-folder=/content/build --build=missing -vquiet\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!cd openvdb-12.0.0 && \\\n",
" cmake -B build \\\n",
" -DCMAKE_TOOLCHAIN_FILE=/content/build/conan_toolchain.cmake \\\n",
" -Dnanobind_DIR=$(python -m nanobind --cmake_dir) \\\n",
" -DUSE_NUMPY=ON \\\n",
" -DOPENVDB_BUILD_PYTHON_MODULE=ON -DOPENVDB_BUILD_VDB_RENDER=ON . && \\\n",
" cmake --build build -- -j$(nproc) && \\\n",
" cmake --install build"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jvN9D0lNx3JX",
"outputId": "e2e4a3e1-18e9-481a-9183-92c6f1b25b94"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"-- Using Conan toolchain: /content/build/conan_toolchain.cmake\n",
"-- Conan toolchain: Defining architecture flag: -m64\n",
"-- Conan toolchain: C++ Standard 17 with extensions ON\n",
"-- The CXX compiler identification is GNU 11.4.0\n",
"-- Detecting CXX compiler ABI info\n",
"-- Detecting CXX compiler ABI info - done\n",
"-- Check for working CXX compiler: /usr/bin/c++ - skipped\n",
"-- Detecting CXX compile features\n",
"-- Detecting CXX compile features - done\n",
"-- CMake Build Type: Release\n",
"-- Found PkgConfig: /usr/bin/pkg-config (found version \"1.8.0\")\n",
"-- Configuring for OpenVDB Version 12.0.0\n",
"-- Found Python: /usr/local/bin/python (found suitable version \"3.11.11\", minimum required is \"3.10\") found components: Development Interpreter Development.Module Development.Embed\n",
"-- Configuring for OpenVDB ABI Version 12\n",
"-- ----------------------------------------------------\n",
"-- ------------- Configuring OpenVDBCore --------------\n",
"-- ----------------------------------------------------\n",
"-- Conan: Component target declared 'Boost::diagnostic_definitions'\n",
"-- Conan: Component target declared 'Boost::disable_autolinking'\n",
"-- Conan: Component target declared 'Boost::dynamic_linking'\n",
"-- Conan: Component target declared 'Boost::headers'\n",
"-- Conan: Component target declared 'Boost::boost'\n",
"-- Conan: Component target declared 'boost::_libboost'\n",
"-- Conan: Component target declared 'Boost::atomic'\n",
"-- Conan: Component target declared 'Boost::charconv'\n",
"-- Conan: Component target declared 'Boost::container'\n",
"-- Conan: Component target declared 'Boost::context'\n",
"-- Conan: Component target declared 'Boost::date_time'\n",
"-- Conan: Component target declared 'Boost::exception'\n",
"-- Conan: Component target declared 'Boost::math'\n",
"-- Conan: Component target declared 'Boost::program_options'\n",
"-- Conan: Component target declared 'Boost::regex'\n",
"-- Conan: Component target declared 'Boost::serialization'\n",
"-- Conan: Component target declared 'Boost::stacktrace'\n",
"-- Conan: Component target declared 'Boost::system'\n",
"-- Conan: Component target declared 'Boost::timer'\n",
"-- Conan: Component target declared 'Boost::chrono'\n",
"-- Conan: Component target declared 'Boost::coroutine'\n",
"-- Conan: Component target declared 'Boost::filesystem'\n",
"-- Conan: Component target declared 'Boost::json'\n",
"-- Conan: Component target declared 'Boost::math_c99'\n",
"-- Conan: Component target declared 'Boost::math_c99f'\n",
"-- Conan: Component target declared 'Boost::math_c99l'\n",
"-- Conan: Component target declared 'Boost::math_tr1'\n",
"-- Conan: Component target declared 'Boost::math_tr1f'\n",
"-- Conan: Component target declared 'Boost::math_tr1l'\n",
"-- Conan: Component target declared 'Boost::random'\n",
"-- Conan: Component target declared 'Boost::stacktrace_addr2line'\n",
"-- Conan: Component target declared 'Boost::stacktrace_backtrace'\n",
"-- Conan: Component target declared 'Boost::stacktrace_basic'\n",
"-- Conan: Component target declared 'Boost::stacktrace_from_exception'\n",
"-- Conan: Component target declared 'Boost::stacktrace_noop'\n",
"-- Conan: Component target declared 'Boost::test'\n",
"-- Conan: Component target declared 'Boost::url'\n",
"-- Conan: Component target declared 'Boost::wserialization'\n",
"-- Conan: Component target declared 'Boost::fiber'\n",
"-- Conan: Component target declared 'Boost::graph'\n",
"-- Conan: Component target declared 'Boost::iostreams'\n",
"-- Conan: Component target declared 'Boost::nowide'\n",
"-- Conan: Component target declared 'Boost::prg_exec_monitor'\n",
"-- Conan: Component target declared 'Boost::process'\n",
"-- Conan: Component target declared 'Boost::test_exec_monitor'\n",
"-- Conan: Component target declared 'Boost::thread'\n",
"-- Conan: Component target declared 'Boost::wave'\n",
"-- Conan: Component target declared 'Boost::contract'\n",
"-- Conan: Component target declared 'Boost::fiber_numa'\n",
"-- Conan: Component target declared 'Boost::locale'\n",
"-- Conan: Component target declared 'Boost::log'\n",
"-- Conan: Component target declared 'Boost::type_erasure'\n",
"-- Conan: Component target declared 'Boost::unit_test_framework'\n",
"-- Conan: Component target declared 'Boost::log_setup'\n",
"-- Conan: Target declared 'boost::boost'\n",
"-- Conan: Target declared 'ZLIB::ZLIB'\n",
"-- Conan: Target declared 'BZip2::BZip2'\n",
"-- Conan: Including build module from '/root/.conan2/p/bzip23c098e896e3ea/p/lib/cmake/conan-official-bzip2-variables.cmake'\n",
"-- Conan: Target declared 'libbacktrace::libbacktrace'\n",
"\u001b[0mCMake Deprecation Warning at openvdb/openvdb/CMakeLists.txt:118 (message):\n",
" Support for Boost versions < 1.82 is deprecated and will be removed.\n",
"\n",
"\u001b[0m\n",
"-- Found Blosc: /usr/lib/x86_64-linux-gnu/libblosc.so (found suitable version \"1.21.1\", minimum required is \"1.17.0\")\n",
"-- Performing Test CMAKE_HAVE_LIBC_PTHREAD\n",
"-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Success\n",
"-- Found Threads: TRUE\n",
"-- ----------------------------------------------------\n",
"-- ------------ Configuring OpenVDBPython -------------\n",
"-- ----------------------------------------------------\n",
"-- ----------------------------------------------------\n",
"-- ----------- Configuring OpenVDBBinaries ------------\n",
"-- ----------------------------------------------------\n",
"-- Found Jemalloc: /usr/lib/x86_64-linux-gnu/libjemalloc.so\n",
"-- Configuring done (1.3s)\n",
"-- Generating done (0.1s)\n",
"-- Build files have been written to: /content/openvdb-12.0.0/build\n",
"[ 0%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_internals.cpp.o\u001b[0m\n",
"[ 1%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_func.cpp.o\u001b[0m\n",
"[ 1%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_type.cpp.o\u001b[0m\n",
"[ 2%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_enum.cpp.o\u001b[0m\n",
"[ 2%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_ndarray.cpp.o\u001b[0m\n",
"[ 3%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_ft.cpp.o\u001b[0m\n",
"[ 3%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/nb_static_property.cpp.o\u001b[0m\n",
"[ 4%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/common.cpp.o\u001b[0m\n",
"[ 4%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/error.cpp.o\u001b[0m\n",
"[ 5%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/trampoline.cpp.o\u001b[0m\n",
"[ 6%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/VolumeToSpheres.cc.o\u001b[0m\n",
"[ 7%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/VolumeToSpheres.cc.o\u001b[0m\n",
"[ 7%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/VolumeToMesh.cc.o\u001b[0m\n",
"[ 8%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/VolumeAdvect.cc.o\u001b[0m\n",
"[ 8%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/VelocityFields.cc.o\u001b[0m\n",
"[ 10%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/VectorTransformer.cc.o\u001b[0m\n",
"[ 10%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/nanobind-static.dir/usr/local/lib/python3.11/dist-packages/nanobind/src/implicit.cpp.o\u001b[0m\n",
"[ 11%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/ValueTransformer.cc.o\u001b[0m\n",
"[ 11%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/TopologyToLevelSet.cc.o\u001b[0m\n",
"[ 12%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Statistics.cc.o\u001b[0m\n",
"[ 12%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/SignedFloodFill.cc.o\u001b[0m\n",
"[ 13%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/RayTracer.cc.o\u001b[0m\n",
"[ 13%] \u001b[32m\u001b[1mLinking CXX static library libnanobind-static.a\u001b[0m\n",
"[ 13%] Built target nanobind-static\n",
"[ 13%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/RayIntersector.cc.o\u001b[0m\n",
"[ 14%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Prune.cc.o\u001b[0m\n",
"[ 14%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PotentialFlow.cc.o\u001b[0m\n",
"[ 15%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PoissonSolver.cc.o\u001b[0m\n",
"[ 15%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PointsToMask.cc.o\u001b[0m\n",
"[ 16%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PointScatter.cc.o\u001b[0m\n",
"[ 17%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PointPartitioner.cc.o\u001b[0m\n",
"[ 17%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PointIndexGrid.cc.o\u001b[0m\n",
"[ 18%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/PointAdvect.cc.o\u001b[0m\n",
"[ 18%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/ParticlesToLevelSet.cc.o\u001b[0m\n",
"[ 19%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/ParticleAtlas.cc.o\u001b[0m\n",
"[ 19%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/NodeVisitor.cc.o\u001b[0m\n",
"[ 20%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/MultiResGrid.cc.o\u001b[0m\n",
"[ 20%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Morphology.cc.o\u001b[0m\n",
"[ 21%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/MeshToVolume.cc.o\u001b[0m\n",
"[ 22%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Merge.cc.o\u001b[0m\n",
"[ 22%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Mask.cc.o\u001b[0m\n",
"[ 23%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetUtil.cc.o\u001b[0m\n",
"[ 23%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetTracker.cc.o\u001b[0m\n",
"[ 24%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetSphere.cc.o\u001b[0m\n",
"[ 24%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/VolumeToMesh.cc.o\u001b[0m\n",
"[ 25%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/VolumeAdvect.cc.o\u001b[0m\n",
"[ 25%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/VelocityFields.cc.o\u001b[0m\n",
"[ 25%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetRebuild.cc.o\u001b[0m\n",
"[ 26%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/VectorTransformer.cc.o\u001b[0m\n",
"[ 26%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/ValueTransformer.cc.o\u001b[0m\n",
"[ 27%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/TopologyToLevelSet.cc.o\u001b[0m\n",
"[ 28%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetPlatonic.cc.o\u001b[0m\n",
"[ 28%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetMorph.cc.o\u001b[0m\n",
"[ 29%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Statistics.cc.o\u001b[0m\n",
"[ 30%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetMeasure.cc.o\u001b[0m\n",
"[ 31%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetFracture.cc.o\u001b[0m\n",
"[ 31%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetFilter.cc.o\u001b[0m\n",
"[ 32%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/LevelSetAdvect.cc.o\u001b[0m\n",
"[ 32%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Interpolation.cc.o\u001b[0m\n",
"[ 33%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/GridTransformer.cc.o\u001b[0m\n",
"[ 33%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/GridOperators.cc.o\u001b[0m\n",
"[ 34%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/FindActiveValues.cc.o\u001b[0m\n",
"[ 34%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/SignedFloodFill.cc.o\u001b[0m\n",
"[ 35%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/RayTracer.cc.o\u001b[0m\n",
"[ 35%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/RayIntersector.cc.o\u001b[0m\n",
"[ 36%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Prune.cc.o\u001b[0m\n",
"[ 36%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PotentialFlow.cc.o\u001b[0m\n",
"[ 36%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Filter.cc.o\u001b[0m\n",
"[ 37%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/FastSweeping.cc.o\u001b[0m\n",
"[ 38%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Diagnostics.cc.o\u001b[0m\n",
"[ 38%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/DenseSparseTools.cc.o\u001b[0m\n",
"[ 39%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Dense.cc.o\u001b[0m\n",
"[ 40%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PoissonSolver.cc.o\u001b[0m\n",
"[ 40%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Count.cc.o\u001b[0m\n",
"[ 41%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Composite.cc.o\u001b[0m\n",
"[ 41%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PointsToMask.cc.o\u001b[0m\n",
"[ 41%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Clip.cc.o\u001b[0m\n",
"[ 42%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/ChangeBackground.cc.o\u001b[0m\n",
"[ 43%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PointScatter.cc.o\u001b[0m\n",
"[ 43%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PointPartitioner.cc.o\u001b[0m\n",
"[ 44%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PointIndexGrid.cc.o\u001b[0m\n",
"[ 44%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/instantiations/Activate.cc.o\u001b[0m\n",
"[ 45%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/PointAdvect.cc.o\u001b[0m\n",
"[ 46%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/Grid.cc.o\u001b[0m\n",
"[ 46%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/Archive.cc.o\u001b[0m\n",
"[ 46%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/ParticlesToLevelSet.cc.o\u001b[0m\n",
"[ 47%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/ParticleAtlas.cc.o\u001b[0m\n",
"[ 48%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/Compression.cc.o\u001b[0m\n",
"[ 48%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/NodeVisitor.cc.o\u001b[0m\n",
"[ 49%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/DelayedLoadMetadata.cc.o\u001b[0m\n",
"[ 50%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/MultiResGrid.cc.o\u001b[0m\n",
"[ 50%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/File.cc.o\u001b[0m\n",
"[ 51%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/GridDescriptor.cc.o\u001b[0m\n",
"[ 51%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/Queue.cc.o\u001b[0m\n",
"[ 52%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/Stream.cc.o\u001b[0m\n",
"[ 52%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/io/TempFile.cc.o\u001b[0m\n",
"[ 53%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/math/Half.cc.o\u001b[0m\n",
"[ 53%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/math/Maps.cc.o\u001b[0m\n",
"[ 54%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/math/Proximity.cc.o\u001b[0m\n",
"[ 54%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Morphology.cc.o\u001b[0m\n",
"[ 55%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/MeshToVolume.cc.o\u001b[0m\n",
"[ 56%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/math/QuantizedUnitVec.cc.o\u001b[0m\n",
"[ 56%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/math/Transform.cc.o\u001b[0m\n",
"[ 57%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/Metadata.cc.o\u001b[0m\n",
"[ 57%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/MetaMap.cc.o\u001b[0m\n",
"[ 58%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/openvdb.cc.o\u001b[0m\n",
"[ 58%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/Platform.cc.o\u001b[0m\n",
"[ 59%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/AttributeArray.cc.o\u001b[0m\n",
"[ 59%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/AttributeArrayString.cc.o\u001b[0m\n",
"[ 60%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/AttributeGroup.cc.o\u001b[0m\n",
"[ 61%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/AttributeSet.cc.o\u001b[0m\n",
"[ 61%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/StreamCompression.cc.o\u001b[0m\n",
"[ 62%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/points/points.cc.o\u001b[0m\n",
"[ 62%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/util/Assert.cc.o\u001b[0m\n",
"[ 63%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_static.dir/util/Formats.cc.o\u001b[0m\n",
"[ 63%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Merge.cc.o\u001b[0m\n",
"[ 64%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Mask.cc.o\u001b[0m\n",
"[ 65%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetUtil.cc.o\u001b[0m\n",
"[ 65%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetTracker.cc.o\u001b[0m\n",
"[ 66%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetSphere.cc.o\u001b[0m\n",
"[ 66%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetRebuild.cc.o\u001b[0m\n",
"[ 67%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetPlatonic.cc.o\u001b[0m\n",
"[ 67%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetMorph.cc.o\u001b[0m\n",
"[ 68%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetMeasure.cc.o\u001b[0m\n",
"[ 68%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetFracture.cc.o\u001b[0m\n",
"[ 69%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetFilter.cc.o\u001b[0m\n",
"[ 70%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/LevelSetAdvect.cc.o\u001b[0m\n",
"[ 70%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Interpolation.cc.o\u001b[0m\n",
"[ 71%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/GridTransformer.cc.o\u001b[0m\n",
"[ 71%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/GridOperators.cc.o\u001b[0m\n",
"[ 72%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/FindActiveValues.cc.o\u001b[0m\n",
"[ 72%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Filter.cc.o\u001b[0m\n",
"[ 73%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/FastSweeping.cc.o\u001b[0m\n",
"[ 73%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Diagnostics.cc.o\u001b[0m\n",
"[ 74%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/DenseSparseTools.cc.o\u001b[0m\n",
"[ 75%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Dense.cc.o\u001b[0m\n",
"[ 75%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Count.cc.o\u001b[0m\n",
"[ 76%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Composite.cc.o\u001b[0m\n",
"[ 76%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Clip.cc.o\u001b[0m\n",
"[ 77%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/ChangeBackground.cc.o\u001b[0m\n",
"[ 77%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/instantiations/Activate.cc.o\u001b[0m\n",
"[ 78%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/Grid.cc.o\u001b[0m\n",
"[ 78%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/Archive.cc.o\u001b[0m\n",
"[ 79%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/Compression.cc.o\u001b[0m\n",
"[ 79%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/DelayedLoadMetadata.cc.o\u001b[0m\n",
"[ 80%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/File.cc.o\u001b[0m\n",
"[ 81%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/GridDescriptor.cc.o\u001b[0m\n",
"[ 81%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/Queue.cc.o\u001b[0m\n",
"[ 82%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/Stream.cc.o\u001b[0m\n",
"[ 82%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/io/TempFile.cc.o\u001b[0m\n",
"[ 83%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/math/Half.cc.o\u001b[0m\n",
"[ 83%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/math/Maps.cc.o\u001b[0m\n",
"[ 84%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/math/Proximity.cc.o\u001b[0m\n",
"[ 84%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/math/QuantizedUnitVec.cc.o\u001b[0m\n",
"[ 85%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/math/Transform.cc.o\u001b[0m\n",
"[ 86%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/Metadata.cc.o\u001b[0m\n",
"[ 86%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/MetaMap.cc.o\u001b[0m\n",
"[ 87%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/openvdb.cc.o\u001b[0m\n",
"[ 87%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/Platform.cc.o\u001b[0m\n",
"[ 88%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/AttributeArray.cc.o\u001b[0m\n",
"[ 88%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/AttributeArrayString.cc.o\u001b[0m\n",
"[ 89%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/AttributeGroup.cc.o\u001b[0m\n",
"[ 89%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/AttributeSet.cc.o\u001b[0m\n",
"[ 90%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/StreamCompression.cc.o\u001b[0m\n",
"[ 91%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/points/points.cc.o\u001b[0m\n",
"[ 91%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/util/Assert.cc.o\u001b[0m\n",
"[ 92%] \u001b[32mBuilding CXX object openvdb/openvdb/CMakeFiles/openvdb_shared.dir/util/Formats.cc.o\u001b[0m\n",
"[ 92%] \u001b[32m\u001b[1mLinking CXX static library libopenvdb.a\u001b[0m\n",
"[ 92%] Built target openvdb_static\n",
"[ 92%] \u001b[32m\u001b[1mLinking CXX shared library libopenvdb.so\u001b[0m\n",
"[ 92%] Built target openvdb_shared\n",
"[ 93%] \u001b[32mBuilding CXX object openvdb_cmd/vdb_print/CMakeFiles/vdb_print.dir/main.cc.o\u001b[0m\n",
"[ 95%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyGridBase.cc.o\u001b[0m\n",
"[ 95%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyFloatGrid.cc.o\u001b[0m\n",
"[ 95%] \u001b[32mBuilding CXX object openvdb_cmd/vdb_render/CMakeFiles/vdb_render.dir/main.cc.o\u001b[0m\n",
"[ 96%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyIntGrid.cc.o\u001b[0m\n",
"[ 96%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyMetadata.cc.o\u001b[0m\n",
"[ 97%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyOpenVDBModule.cc.o\u001b[0m\n",
"[ 97%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyPointGrid.cc.o\u001b[0m\n",
"[ 98%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyTransform.cc.o\u001b[0m\n",
"[ 99%] \u001b[32mBuilding CXX object openvdb/openvdb/python/CMakeFiles/openvdb_python.dir/pyVec3Grid.cc.o\u001b[0m\n",
"[100%] \u001b[32m\u001b[1mLinking CXX executable vdb_render\u001b[0m\n",
"[100%] Built target vdb_render\n",
"[100%] \u001b[32m\u001b[1mLinking CXX shared module openvdb.cpython-311-x86_64-linux-gnu.so\u001b[0m\n",
"[100%] Built target openvdb_python\n",
"[100%] \u001b[32m\u001b[1mLinking CXX executable vdb_print\u001b[0m\n",
"[100%] Built target vdb_print\n",
"-- Install configuration: \"Release\"\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindBlosc.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindJemalloc.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindLog4cplus.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindOpenEXR.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindOpenVDB.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/FindTBB.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/OpenVDBGLFW3Setup.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/OpenVDBHoudiniSetup.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/OpenVDBMayaSetup.cmake\n",
"-- Installing: /usr/local/lib/cmake/OpenVDB/OpenVDBUtils.cmake\n",
"-- Installing: /usr/local/lib/libopenvdb.a\n",
"-- Installing: /usr/local/lib/libopenvdb.so.12.0.0\n",
"-- Installing: /usr/local/lib/libopenvdb.so.12.0\n",
"-- Set non-toolchain portion of runtime path of \"/usr/local/lib/libopenvdb.so.12.0.0\" to \"/usr/local/lib:/root/.conan2/p/zlib9780dc2008618/p/lib:/root/.conan2/p/boost8d9c445f1bf77/p/lib:/root/.conan2/p/bzip23c098e896e3ea/p/lib\"\n",
"-- Installing: /usr/local/lib/libopenvdb.so\n",
"-- Installing: /usr/local/include/openvdb/Exceptions.h\n",
"-- Installing: /usr/local/include/openvdb/Grid.h\n",
"-- Installing: /usr/local/include/openvdb/Metadata.h\n",
"-- Installing: /usr/local/include/openvdb/MetaMap.h\n",
"-- Installing: /usr/local/include/openvdb/openvdb.h\n",
"-- Installing: /usr/local/include/openvdb/Platform.h\n",
"-- Installing: /usr/local/include/openvdb/PlatformConfig.h\n",
"-- Installing: /usr/local/include/openvdb/Types.h\n",
"-- Installing: /usr/local/include/openvdb/TypeList.h\n",
"-- Installing: /usr/local/include/openvdb/version.h\n",
"-- Installing: /usr/local/include/openvdb/io/Archive.h\n",
"-- Installing: /usr/local/include/openvdb/io/Compression.h\n",
"-- Installing: /usr/local/include/openvdb/io/DelayedLoadMetadata.h\n",
"-- Installing: /usr/local/include/openvdb/io/File.h\n",
"-- Installing: /usr/local/include/openvdb/io/GridDescriptor.h\n",
"-- Installing: /usr/local/include/openvdb/io/io.h\n",
"-- Installing: /usr/local/include/openvdb/io/Queue.h\n",
"-- Installing: /usr/local/include/openvdb/io/Stream.h\n",
"-- Installing: /usr/local/include/openvdb/io/TempFile.h\n",
"-- Installing: /usr/local/include/openvdb/math/BBox.h\n",
"-- Installing: /usr/local/include/openvdb/math/ConjGradient.h\n",
"-- Installing: /usr/local/include/openvdb/math/Coord.h\n",
"-- Installing: /usr/local/include/openvdb/math/DDA.h\n",
"-- Installing: /usr/local/include/openvdb/math/FiniteDifference.h\n",
"-- Installing: /usr/local/include/openvdb/math/Half.h\n",
"-- Installing: /usr/local/include/openvdb/math/LegacyFrustum.h\n",
"-- Installing: /usr/local/include/openvdb/math/Maps.h\n",
"-- Installing: /usr/local/include/openvdb/math/Mat.h\n",
"-- Installing: /usr/local/include/openvdb/math/Mat3.h\n",
"-- Installing: /usr/local/include/openvdb/math/Mat4.h\n",
"-- Installing: /usr/local/include/openvdb/math/Math.h\n",
"-- Installing: /usr/local/include/openvdb/math/Operators.h\n",
"-- Installing: /usr/local/include/openvdb/math/Proximity.h\n",
"-- Installing: /usr/local/include/openvdb/math/QuantizedUnitVec.h\n",
"-- Installing: /usr/local/include/openvdb/math/Quat.h\n",
"-- Installing: /usr/local/include/openvdb/math/Ray.h\n",
"-- Installing: /usr/local/include/openvdb/math/Stats.h\n",
"-- Installing: /usr/local/include/openvdb/math/Stencils.h\n",
"-- Installing: /usr/local/include/openvdb/math/Transform.h\n",
"-- Installing: /usr/local/include/openvdb/math/Tuple.h\n",
"-- Installing: /usr/local/include/openvdb/math/Vec2.h\n",
"-- Installing: /usr/local/include/openvdb/math/Vec3.h\n",
"-- Installing: /usr/local/include/openvdb/math/Vec4.h\n",
"-- Installing: /usr/local/include/openvdb/points/AttributeArray.h\n",
"-- Installing: /usr/local/include/openvdb/points/AttributeArrayString.h\n",
"-- Installing: /usr/local/include/openvdb/points/AttributeGroup.h\n",
"-- Installing: /usr/local/include/openvdb/points/AttributeSet.h\n",
"-- Installing: /usr/local/include/openvdb/points/IndexFilter.h\n",
"-- Installing: /usr/local/include/openvdb/points/IndexIterator.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointAdvect.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointAttribute.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointConversion.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointCount.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointDataGrid.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointDelete.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointGroup.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointMask.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointMove.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointRasterizeFrustum.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointRasterizeSDF.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointRasterizeTrilinear.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointSample.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointScatter.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointStatistics.h\n",
"-- Installing: /usr/local/include/openvdb/points/PointTransfer.h\n",
"-- Installing: /usr/local/include/openvdb/points/StreamCompression.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointAttributeImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointConversionImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointCountImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointDeleteImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointGroupImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointMaskImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointMoveImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointRasterizeFrustumImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointRasterizeSDFImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointRasterizeTrilinearImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointReplicateImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointSampleImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointScatterImpl.h\n",
"-- Installing: /usr/local/include/openvdb/points/impl/PointStatisticsImpl.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Activate.h\n",
"-- Installing: /usr/local/include/openvdb/tools/ChangeBackground.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Clip.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Composite.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Count.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Dense.h\n",
"-- Installing: /usr/local/include/openvdb/tools/DenseSparseTools.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Diagnostics.h\n",
"-- Installing: /usr/local/include/openvdb/tools/FastSweeping.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Filter.h\n",
"-- Installing: /usr/local/include/openvdb/tools/FindActiveValues.h\n",
"-- Installing: /usr/local/include/openvdb/tools/GridOperators.h\n",
"-- Installing: /usr/local/include/openvdb/tools/GridTransformer.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Interpolation.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetAdvect.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetFilter.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetFracture.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetMeasure.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetMorph.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetPlatonic.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetRebuild.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetSphere.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetTracker.h\n",
"-- Installing: /usr/local/include/openvdb/tools/LevelSetUtil.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Mask.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Merge.h\n",
"-- Installing: /usr/local/include/openvdb/tools/MeshToVolume.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Morphology.h\n",
"-- Installing: /usr/local/include/openvdb/tools/MultiResGrid.h\n",
"-- Installing: /usr/local/include/openvdb/tools/NodeVisitor.h\n",
"-- Installing: /usr/local/include/openvdb/tools/ParticleAtlas.h\n",
"-- Installing: /usr/local/include/openvdb/tools/ParticlesToLevelSet.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PointAdvect.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PointIndexGrid.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PointPartitioner.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PointScatter.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PointsToMask.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PoissonSolver.h\n",
"-- Installing: /usr/local/include/openvdb/tools/PotentialFlow.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Prune.h\n",
"-- Installing: /usr/local/include/openvdb/tools/RayIntersector.h\n",
"-- Installing: /usr/local/include/openvdb/tools/RayTracer.h\n",
"-- Installing: /usr/local/include/openvdb/tools/SignedFloodFill.h\n",
"-- Installing: /usr/local/include/openvdb/tools/Statistics.h\n",
"-- Installing: /usr/local/include/openvdb/tools/TopologyToLevelSet.h\n",
"-- Installing: /usr/local/include/openvdb/tools/ValueTransformer.h\n",
"-- Installing: /usr/local/include/openvdb/tools/VectorTransformer.h\n",
"-- Installing: /usr/local/include/openvdb/tools/VelocityFields.h\n",
"-- Installing: /usr/local/include/openvdb/tools/VolumeAdvect.h\n",
"-- Installing: /usr/local/include/openvdb/tools/VolumeToMesh.h\n",
"-- Installing: /usr/local/include/openvdb/tools/VolumeToSpheres.h\n",
"-- Installing: /usr/local/include/openvdb/tree/InternalNode.h\n",
"-- Installing: /usr/local/include/openvdb/tree/Iterator.h\n",
"-- Installing: /usr/local/include/openvdb/tree/LeafBuffer.h\n",
"-- Installing: /usr/local/include/openvdb/tree/LeafManager.h\n",
"-- Installing: /usr/local/include/openvdb/tree/LeafNode.h\n",
"-- Installing: /usr/local/include/openvdb/tree/LeafNodeBool.h\n",
"-- Installing: /usr/local/include/openvdb/tree/LeafNodeMask.h\n",
"-- Installing: /usr/local/include/openvdb/tree/NodeManager.h\n",
"-- Installing: /usr/local/include/openvdb/tree/NodeUnion.h\n",
"-- Installing: /usr/local/include/openvdb/tree/RootNode.h\n",
"-- Installing: /usr/local/include/openvdb/tree/Tree.h\n",
"-- Installing: /usr/local/include/openvdb/tree/TreeIterator.h\n",
"-- Installing: /usr/local/include/openvdb/tree/ValueAccessor.h\n",
"-- Installing: /usr/local/include/openvdb/util/Assert.h\n",
"-- Installing: /usr/local/include/openvdb/util/CpuTimer.h\n",
"-- Installing: /usr/local/include/openvdb/util/ExplicitInstantiation.h\n",
"-- Installing: /usr/local/include/openvdb/util/Formats.h\n",
"-- Installing: /usr/local/include/openvdb/util/logging.h\n",
"-- Installing: /usr/local/include/openvdb/util/MapsUtil.h\n",
"-- Installing: /usr/local/include/openvdb/util/Name.h\n",
"-- Installing: /usr/local/include/openvdb/util/NodeMasks.h\n",
"-- Installing: /usr/local/include/openvdb/util/NullInterrupter.h\n",
"-- Installing: /usr/local/include/openvdb/util/PagedArray.h\n",
"-- Installing: /usr/local/include/openvdb/util/Util.h\n",
"-- Installing: /usr/local/include/openvdb/thread/Threading.h\n",
"-- Installing: /usr/local/lib/python3.11/dist-packages/openvdb.cpython-311-x86_64-linux-gnu.so\n",
"-- Set non-toolchain portion of runtime path of \"/usr/local/lib/python3.11/dist-packages/openvdb.cpython-311-x86_64-linux-gnu.so\" to \"/usr/local/lib:/root/.conan2/p/zlib9780dc2008618/p/lib:/root/.conan2/p/boost8d9c445f1bf77/p/lib:/root/.conan2/p/bzip23c098e896e3ea/p/lib\"\n",
"-- Installing: /usr/local/bin/vdb_print\n",
"-- Set non-toolchain portion of runtime path of \"/usr/local/bin/vdb_print\" to \"/usr/local/lib:/root/.conan2/p/zlib9780dc2008618/p/lib:/root/.conan2/p/boost8d9c445f1bf77/p/lib:/root/.conan2/p/bzip23c098e896e3ea/p/lib\"\n",
"-- Installing: /usr/local/bin/vdb_render\n",
"-- Set non-toolchain portion of runtime path of \"/usr/local/bin/vdb_render\" to \"/usr/local/lib:/root/.conan2/p/zlib9780dc2008618/p/lib:/root/.conan2/p/boost8d9c445f1bf77/p/lib:/root/.conan2/p/bzip23c098e896e3ea/p/lib\"\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"!wget -qc --show-progress https://artifacts.aswf.io/io/aswf/openvdb/models/sphere.vdb/1.0.0/sphere.vdb-1.0.0.zip && unzip -nqq sphere.vdb-1.0.0.zip\n",
"!openvdb-12.0.0/build/openvdb_cmd/vdb_print/vdb_print -l -m sphere.vdb"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7u1gsKeDx6SE",
"outputId": "34ed20bb-33da-4afe-a3a6-2c3f429714b0"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\rsphere.vdb-1.0.0.zi 0%[ ] 0 --.-KB/s \rsphere.vdb-1.0.0.zi 100%[===================>] 347.43K --.-KB/s in 0.03s \n",
"VDB version: 1.1/222\n",
"creator: Houdini/SOP_OpenVDB_Write\n",
"\n",
"Name: ls_sphere\n",
"Information about Tree:\n",
" Type: Tree_float_5_4_3\n",
" Configuration:\n",
" Root(1 x 8), Internal(8 x 32^3), Internal(8 x 16^3), Leaf(1,451 x 8^3)\n",
" Background value: 0.150024\n",
" Min value: -0.149536\n",
" Max value: 0.149658\n",
" Number of active voxels: 270,638\n",
" Number of active tiles: 0\n",
" Bounding box of active voxels: [-62, -62, -62] -> [62, 62, 62]\n",
" Dimensions of active voxels: 125 x 125 x 125\n",
" Percentage of active voxels: 13.9%\n",
" Average leaf node fill ratio: 36.4%\n",
" Number of unallocated nodes: 0 (0%)\n",
"Memory footprint:\n",
" Actual: 5.289 MB\n",
" Active leaf voxels: 1.032 MB\n",
" Dense equivalent: 7.451 MB\n",
" Actual footprint is 71% of an equivalent dense volume\n",
" Leaf voxel footprint is 19.5% of actual footprint\n",
"Additional metadata:\n",
" class: level set\n",
" file_bbox_max: [62, 62, 62]\n",
" file_bbox_min: [-62, -62, -62]\n",
" file_mem_bytes: 5528004\n",
" file_voxel_count: 270638\n",
" is_local_space: false\n",
" is_saved_as_half_float: true\n",
" name: ls_sphere\n",
" value_type: float\n",
" vector_type: invariant\n",
"Transform:\n",
" voxel size: 0.05\n",
" index to world:\n",
" [0.05, 0, 0, 0] \n",
" [0, 0.05, 0, 0] \n",
" [0, 0, 0.05, 0] \n",
" [0, 0, 0, 1] \n",
"\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### Commons"
],
"metadata": {
"id": "LtStOkIl_B7g"
}
},
{
"cell_type": "code",
"source": [
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'retina'\n",
"\n",
"import os\n",
"import math\n",
"import numpy as np\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"import cv2\n",
"import PIL\n",
"import matplotlib.font_manager as fm\n",
"import locale\n",
"from fastprogress import progress_bar\n",
"from einops import rearrange, reduce, repeat, einsum\n",
"\n",
"locale.getpreferredencoding = lambda: \"UTF-8\"\n",
"\n",
"COLORS = {\n",
" \"red\": np.array([0.79215686, 0.14901961, 0.14901961]),\n",
" \"blue\": np.array([0.08683021, 0.41940383, 0.71699529]),\n",
"}\n",
"COLORS.update({f\"gray{k:02d}\": np.array([k,k,k])*.01 for k in np.arange(5,100,5)})\n",
"\n",
"def mpl_theme(gray=COLORS['gray50'], stroke_width=.1, fontsize=7,\n",
" facecolor=COLORS['gray10']):\n",
" ## category20: https://github.com/d3/d3-3.x-api-reference/blob/master/Ordinal-Scales.md#category20\n",
" cat20 = mpl.cycler(color=[\"1f77b4\",\"ff7f0e\",\"2ca02c\",\"d62728\",\"9467bd\",\"8c564b\",\"e377c2\",\"7f7f7f\",\"bcbd22\",\"17becf\",\n",
" \"aec7e8\",\"ffbb78\",\"98df8a\",\"ff9896\",\"c5b0d5\",\"c49c94\",\"f7b6d2\",\"c7c7c7\", \"dbdb8d\", \"9edae5\"])\n",
" return {\n",
" \"font.size\": fontsize,\n",
" \"text.color\": gray,\n",
"\n",
" \"figure.dpi\": 100,\n",
" \"figure.facecolor\": facecolor,\n",
" \"figure.frameon\": False,\n",
" \"figure.figsize\": (5, 3),\n",
" \"figure.titlesize\": \"x-large\",\n",
" \"figure.titleweight\": \"bold\",\n",
" \"figure.constrained_layout.use\": True,\n",
" \"figure.constrained_layout.w_pad\": 0.05,\n",
" \"figure.constrained_layout.h_pad\": 0.05,\n",
" \"figure.constrained_layout.wspace\": 0.03,\n",
" \"figure.constrained_layout.hspace\": 0.03,\n",
"\n",
" \"axes.labelcolor\": gray,\n",
" \"axes.labelpad\": 8,\n",
" \"axes.labelsize\": \"large\",\n",
" \"axes.labelweight\": \"normal\",\n",
" \"axes.spines.left\": False,\n",
" \"axes.spines.bottom\": False,\n",
" \"axes.spines.top\": False,\n",
" \"axes.spines.right\": False,\n",
" \"axes.facecolor\": facecolor,\n",
" \"axes.edgecolor\": gray,\n",
" \"axes.linewidth\": stroke_width,\n",
" \"axes.axisbelow\": True,\n",
" \"axes.xmargin\": 0.02,\n",
" \"axes.ymargin\": 0.02,\n",
" \"axes.zmargin\": 0.02,\n",
" \"axes.prop_cycle\": cat20,\n",
" \"axes.titlepad\": 8,\n",
" \"axes.titlesize\": \"large\",\n",
" \"axes.titleweight\": 500,\n",
" \"axes.grid\": True,\n",
" \"axes.grid.axis\": \"both\",\n",
"\n",
" \"axes3d.grid\": False,\n",
"\n",
" \"ytick.right\": False,\n",
" \"ytick.color\": gray,\n",
" \"ytick.major.width\": stroke_width,\n",
" \"ytick.minor.left\": False,\n",
" \"xtick.minor.visible\": True,\n",
" \"xtick.minor.top\": False,\n",
" \"xtick.minor.bottom\": False,\n",
" \"xtick.color\": gray,\n",
" \"xtick.major.width\": stroke_width,\n",
"\n",
" \"grid.color\": gray,\n",
" \"grid.linewidth\": stroke_width,\n",
" \"grid.linestyle\": \"-\",\n",
" \"legend.fancybox\": False,\n",
" \"legend.edgecolor\": '0.3',\n",
" \"legend.framealpha\": 0.7,\n",
" \"legend.handletextpad\": 0.8,\n",
"\n",
" \"lines.linewidth\": 0.7\n",
" }\n",
"\n",
"def add_mpl_font(fname):\n",
" if fname not in [fe.fname for fe in fm.fontManager.ttflist]:\n",
" fm.fontManager.addfont(fname)\n",
"\n",
"def setup_overpass():\n",
" folder = \"fonts\"\n",
" os.makedirs(folder, exist_ok=True)\n",
" for style in [\"Regular\", \"Italic\", \"SemiBold\", \"SemiBoldItalic\", \"Bold\", \"BoldItalic\"]:\n",
" ttf = f\"Overpass-{style}.ttf\"\n",
" !wget -qc \"https://github.com/RedHatOfficial/Overpass/raw/master/fonts/ttf/{ttf}\" -O \"{folder}/{ttf}\"\n",
" add_mpl_font(f\"{folder}/{ttf}\")\n",
" mpl.rcParams['font.sans-serif'].insert(0, \"Overpass\")\n",
"\n",
"def setup_quicksand():\n",
" folder = \"fonts\"\n",
" os.makedirs(folder, exist_ok=True)\n",
" for style in [\"Bold\", \"Light\", \"Medium\", \"Regular\"]:\n",
" ttf = f\"Quicksand-{style}.ttf\"\n",
" !wget -qc \"https://github.com/andrew-paglinawan/QuicksandFamily/raw/refs/heads/master/fonts/statics/{ttf}\" -O \"{folder}/{ttf}\"\n",
" add_mpl_font(f\"{folder}/{ttf}\")\n",
" mpl.rcParams['font.sans-serif'].insert(0, \"Quicksand\")\n",
"\n",
"# setup_overpass()\n",
"setup_quicksand()\n",
"\n",
"plt.style.use([\"dark_background\", mpl_theme()])"
],
"metadata": {
"id": "LrIjlzxS_Bhk"
},
"execution_count": 1,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import sys\n",
"import io\n",
"import bz2\n",
"import ffmpeg\n",
"import requests\n",
"import subprocess\n",
"import IPython.display as ipd\n",
"import ipywidgets as widgets\n",
"from scipy import linalg\n",
"from fastprogress import progress_bar\n",
"from einops import rearrange, reduce, repeat\n",
"from base64 import b64encode\n",
"from zipfile import ZipFile\n",
"from contextlib import contextmanager\n",
"\n",
"class Output(object):\n",
" def __init__(self):\n",
" self.out = widgets.Output()\n",
"\n",
" def display(self):\n",
" display(self.out)\n",
" return self\n",
"\n",
" def clear(self):\n",
" self.out.clear_output()\n",
" return self.out\n",
"\n",
" def close(self):\n",
" return self.out.close()\n",
"\n",
"def to_single_rgb(img):\n",
" img = np.asarray(img)\n",
" if len(img.shape) == 4: # take first frame from animations\n",
" return img[0,:,:,:]\n",
" if len(img.shape) == 2: # convert gray to rgb\n",
" return img[:,:,np.newaxis].repeat(3, 2)\n",
" if img.shape[-1] == 4: # drop alpha\n",
" return img[:,:,:3]\n",
" else:\n",
" return img\n",
"\n",
"def imread(url, size=None, mode=None):\n",
" if url.startswith(('http:', 'https:')):\n",
" resp = requests.get(url)\n",
" if resp.status_code != 200:\n",
" return None\n",
"\n",
" f = io.BytesIO(resp.content)\n",
" else:\n",
" f = url\n",
" img = PIL.Image.open(f)\n",
" if size is not None:\n",
" img.thumbnail((size, size), PIL.Image.Resampling.LANCZOS)\n",
" if mode is not None:\n",
" img = img.convert(mode)\n",
" return img\n",
"\n",
"def imshow(img, fmt='png', retina=True, zoom=None):\n",
" if isinstance(img, str):\n",
" display(ipd.Image(filename=img, retina=retina))\n",
" return\n",
"\n",
" if len(img.shape) == 3 and img.shape[-1] == 1:\n",
" img = img.squeeze()\n",
" if img.dtype == np.float32:\n",
" img = img * 255.0\n",
" img = np.uint8(img.clip(0, 255))\n",
" if fmt in ('jpeg', 'jpg'):\n",
" img = to_single_rgb(img)\n",
"\n",
" image = PIL.Image.fromarray(img)\n",
" height, width = img.shape[:2]\n",
" if zoom is not None:\n",
" width *= zoom\n",
" height *= zoom\n",
" retina = zoom == 1\n",
" if zoom < 1:\n",
" image.resize((int(width), int(height)))\n",
"\n",
" data = io.BytesIO()\n",
" image.save(data, fmt)\n",
" display(ipd.Image(data=data.getvalue(),width=width, height=height,retina=retina))\n",
"\n",
"def find_rectangle(n, ratio=1):\n",
" ny = int((n / ratio) ** .5)\n",
" return ny, math.ceil(n / ny)\n",
"\n",
"def make_mosaic(imgs, nx=None, ny=None, gap=0):\n",
" n, h, w = imgs.shape[:3]\n",
" has_channels = len(imgs.shape) > 3\n",
"\n",
" if nx is None and ny is None:\n",
" ny, nx = find_rectangle(n)\n",
" elif ny is None:\n",
" ny = math.ceil(n / nx)\n",
" elif nx is None:\n",
" nx = math.ceil(n / ny)\n",
"\n",
" sh, sw = h + gap, w + gap\n",
" shape = (ny * sh - gap, nx * sw - gap)\n",
" if has_channels:\n",
" shape += (imgs.shape[-1],)\n",
"\n",
" canvas = np.zeros(shape, dtype=imgs.dtype)\n",
" for i, x in enumerate(imgs):\n",
" iy, ix = divmod(i, nx)\n",
" canvas[iy * sh:iy * sh + h, ix * sw:ix * sw + w] = x\n",
" return canvas\n",
"\n",
"def ffprobe_video(path):\n",
" probe = ffmpeg.probe(path)\n",
" return next(s for s in probe['streams'] if s['codec_type'] == 'video')\n",
"\n",
"def read_frame(path, frame_no):\n",
" cap = cv2.VideoCapture(path)\n",
" cap.set(cv2.CAP_PROP_POS_FRAMES, frame_no)\n",
" ret, frame = cap.read()\n",
" if not ret:\n",
" raise RuntimeError(f\"Faild reading frame {frame_no} from {path}\")\n",
" return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
"\n",
"def read_frames(path, start=0, num=None):\n",
" cap = cv2.VideoCapture(path)\n",
" n_frames = num or int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
" cap.set(cv2.CAP_PROP_POS_FRAMES, start)\n",
" for i in range(n_frames):\n",
" ret, frame = cap.read()\n",
" if not ret:\n",
" raise RuntimeError(f\"Faild reading frame {i} from {path}\")\n",
" yield cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
"\n",
"def read_video_frames(path):\n",
" info = ffprobe_video(path)\n",
" out, _ = ffmpeg.input(path).output('pipe:', format='rawvideo', pix_fmt='rgb24').run(capture_stdout=True)\n",
" return np.frombuffer(out, np.uint8).reshape([-1, info['height'], info['width'], 3])\n",
"\n",
"def show_video(path):\n",
" vcap = cv2.VideoCapture(path)\n",
" width = int(vcap.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
" with open(path, \"r+b\") as f:\n",
" url = f\"data:video/mp4;base64,{b64encode(f.read()).decode()}\"\n",
" return ipd.HTML(f\"\"\"<video autoplay=\"autoplay\" width={width} controls loop><source src=\"{url}\"></video>\"\"\")\n",
"\n",
"def write_video(frames, size, path=\"__temp__.mp4\", fps=30,\n",
" preset=\"veryfast\", args=[]):\n",
" height, width = size\n",
" command = ['ffmpeg','-v','error','-f','rawvideo','-vcodec','rawvideo',\n",
" '-pix_fmt','rgb24','-s',f'{width}x{height}','-r', f'{fps}',\n",
" '-i', '-',\n",
" \"-movflags\", \"+faststart\", \"-preset\", preset,\n",
" \"-g\", \"30\", \"-bf\",\"2\",\"-c:v\", \"libx264\",\"-profile:v\", \"high\",\n",
" '-an', '-vcodec','h264','-pix_fmt','yuv420p', *args, '-y', path]\n",
" with subprocess.Popen(command, stdin=subprocess.PIPE, stderr=subprocess.PIPE) as proc:\n",
" with proc.stdin as stdin:\n",
" for image in frames:\n",
" data = image.tobytes()\n",
" if stdin.write(data) != len(data):\n",
" proc.wait()\n",
" stderr = proc.stderr\n",
" assert stderr is not None\n",
" s = stderr.read().decode()\n",
" raise RuntimeError(f\"Error writing '{path}': {s}\")\n",
" return path\n",
"\n",
"def read_video(path):\n",
" command = ['ffmpeg','-v','error','-nostdin','-i',path,'-vcodec','rawvideo',\n",
" '-f','image2pipe','-pix_fmt','rgb24','-vsync','vfr','-']\n",
"\n",
" info = ffprobe_video(path)\n",
" num_bytes = info['height'] * info['width'] * 3 * np.dtype(np.uint8).itemsize\n",
" with subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc:\n",
" stdout = proc.stdout\n",
" assert stdout is not None\n",
" data = stdout.read(num_bytes)\n",
" while data is not None and len(data) == num_bytes:\n",
" image = np.frombuffer(data, dtype=np.uint8)\n",
" yield image.reshape(info['height'], info['width'], 3)\n",
" data = stdout.read(num_bytes)\n",
"\n",
"def sdiv(a, b, nan=0, posinf=0, neginf=0):\n",
" return np.nan_to_num(a / b, nan=nan, posinf=posinf, neginf=neginf)\n",
"\n",
"def topk(x, n):\n",
" return np.argpartition(x, -n)[-n:]\n",
"\n",
"def norm(a, b, x, **kw):\n",
" return sdiv(x - a, b - a, **kw)\n",
"\n",
"def norm_v(x, **kw):\n",
" a, b = x.min(), x.max()\n",
" return sdiv(x - a, b - a, **kw)\n",
"\n",
"def normalize(x, keepdims=True, axis=-1, **kw):\n",
" return sdiv(x, np.linalg.norm(x, keepdims=keepdims, axis=axis), **kw)\n",
"\n",
"def nudge(x, v=0, eps=1e-12):\n",
" return np.where(np.isclose(np.abs(x), v, atol=eps), np.where(x - v >= 0, eps, -eps), x)\n",
"\n",
"def linspace_m(start, stop, n):\n",
" return np.linspace(start, stop, n, endpoint=False) + (stop - start) * .5 / n\n",
"\n",
"def indices_m(dims, shape, dtype=\"u4\"):\n",
" return tuple(np.meshgrid(*[np.round(linspace_m(0, d, s)).astype(dtype)\n",
" for d, s in zip(dims, shape)],\n",
" indexing='ij'))\n",
"\n",
"def saturate(x):\n",
" return np.clip(x, 0, 1)\n",
"\n",
"def lerp(a, b, t):\n",
" return a * (1.0 - t) + b * t\n",
"\n",
"def step(v, x):\n",
" return np.where(x < v, 0, 1)\n",
"\n",
"def window(x, a, b):\n",
" return step(a, x) * step(x, b)\n",
"\n",
"def satnorm(x, a, b):\n",
" return saturate(norm(x, a, b))\n",
"\n",
"def smoothstep(x):\n",
" return x * x * (3 - 2 * x)\n",
"\n",
"def smootherstep(x):\n",
" return x * x * x * (x * (x * 6 - 15) + 10)\n",
"\n",
"def cubic(a, b, c, d, t):\n",
" \"\"\"https://www.desmos.com/calculator/waof4r6avv\"\"\"\n",
" s = 1. - t\n",
" return s * s * (s * a + 3 * t * b) + t * t * (3 * s * c + t * d)\n",
"\n",
"def plt_show(pin=mpl.rcParams['savefig.pad_inches']):\n",
" with plt.rc_context({'savefig.pad_inches': pin}):\n",
" plt.show()\n",
"\n",
"def fig_image(fig=None, transparent=False, bbox_inches=None,\n",
" dpi=mpl.rcParams[\"figure.dpi\"]*2):\n",
" fig = fig or plt.gcf()\n",
"\n",
" buf = io.BytesIO()\n",
" fig.savefig(buf, format=\"png\", pad_inches=0, bbox_inches=bbox_inches,\n",
" facecolor=fig.get_facecolor(), dpi=dpi,transparent=transparent)\n",
" buf.seek(0)\n",
" data = np.frombuffer(buf.getvalue(), dtype=np.uint8)\n",
" buf.close()\n",
" plt.close(fig)\n",
"\n",
" code = cv2.COLOR_BGRA2RGBA if transparent else cv2.COLOR_BGR2RGB\n",
" return cv2.cvtColor(cv2.imdecode(data, cv2.IMREAD_UNCHANGED), code)\n",
"\n",
"def plt_savefig(name, pad_inches=mpl.rcParams['savefig.pad_inches'],\n",
" bbox_inches=0,facecolor='auto',\n",
" dpi=mpl.rcParams[\"figure.dpi\"]*2,close=True,**kw):\n",
" plt.savefig(name,\n",
" pad_inches=pad_inches,\n",
" bbox_inches=bbox_inches,\n",
" facecolor=facecolor,\n",
" dpi=dpi,**kw)\n",
" if close:\n",
" plt.close()\n",
"\n",
"class Flex(object):\n",
" def __init__(self, ratios, gap, size=None):\n",
" n, s = len(ratios), sum(ratios)\n",
" self.ratios = ratios\n",
" self.gap = gap\n",
" space = gap * n / s if size is None else gap * n / (size - gap * (n - 1))\n",
" self.h = dict(nrows=1, ncols=n, width_ratios=ratios, wspace=space)\n",
" self.v = dict(nrows=n, ncols=1, height_ratios=ratios, hspace=space)\n",
" self.size = s + gap * (n - 1) if size is None else size\n",
"\n",
"def ax_frame(ax):\n",
" ax.spines[[\"left\",\"right\",\"bottom\",\"top\"]].set_visible(True)\n",
" ax.grid(False)\n",
" ax.set(xticks=[],yticks=[])\n",
"\n",
"def ax_frames(axs):\n",
" for ax in axs.flat: ax_frame(ax)\n",
"\n",
"def ax_lim(mn, mx, ax=None, margin=.1):\n",
" ax = ax or plt.gca()\n",
" ax.set_xlim(mn[0], mx[0])\n",
" ax.set_ylim(mn[1], mx[1])\n",
" if len(mn) > 2:\n",
" ax.set_zlim(mn[2], mx[2])\n",
"\n",
"def ax_spines(sides=[\"left\",\"right\",\"bottom\",\"top\"], ax=None, **kw):\n",
" ax = ax or plt.gca()\n",
" ax.spines[sides].set(**kw)\n",
"\n",
"def lowess(x, y, f=2. / 3., iter=3):\n",
" \"\"\"https://gist.github.com/agramfort/850437\n",
" lowess(x, y, f=2./3., iter=3) -> yest\n",
" Lowess smoother: Robust locally weighted regression.\n",
" The lowess function fits a nonparametric regression curve to a scatterplot.\n",
" The arrays x and y contain an equal number of elements; each pair\n",
" (x[i], y[i]) defines a data point in the scatterplot. The function returns\n",
" the estimated (smooth) values of y.\n",
" The smoothing span is given by f. A larger value for f will result in a\n",
" smoother curve. The number of robustifying iterations is given by iter. The\n",
" function will run faster with a smaller number of iterations.\n",
" \"\"\"\n",
" n = len(x)\n",
" r = int(math.ceil(f * n))\n",
" h = [np.sort(np.abs(x - x[i]))[r] for i in range(n)]\n",
" w = np.clip(np.abs((x[:, None] - x[None, :]) / h), 0.0, 1.0)\n",
" w = (1 - w ** 3) ** 3\n",
" yest = np.zeros(n)\n",
" delta = np.ones(n)\n",
" for iteration in range(iter):\n",
" for i in range(n):\n",
" weights = delta * w[:, i]\n",
" b = np.array([np.sum(weights * y), np.sum(weights * y * x)])\n",
" A = np.array([[np.sum(weights), np.sum(weights * x)],\n",
" [np.sum(weights * x), np.sum(weights * x * x)]])\n",
" beta = linalg.solve(A, b)\n",
" yest[i] = beta[0] + beta[1] * x[i]\n",
"\n",
" residuals = y - yest\n",
" s = np.median(np.abs(residuals))\n",
" delta = np.clip(residuals / (6.0 * s), -1, 1)\n",
" delta = (1 - delta ** 2) ** 2\n",
"\n",
" return yest\n",
"\n",
"def plot_metrics(metrics, groups=None, title=\"Metrics\", lowess=False):\n",
" groups = groups or [list(metrics.keys())]\n",
" n = len(groups)\n",
" ny = math.ceil(n / 2)\n",
" fig = plt.figure(figsize=(8 if n > 1 else 4, 2 * ny))\n",
"\n",
" for i, group in enumerate(groups, 1):\n",
" ax = fig.add_subplot(ny, 2 if n > 1 else 1, i)\n",
" for k in group:\n",
" x, y = np.arange(len(metrics[k])), metrics[k]\n",
" alpha = max(0.3, min(1, (1000 - len(x)) / 1000))\n",
" ax.plot(x, y, alpha=alpha, label=k, marker='.', markeredgewidth=0,lw=.5,ms=5)\n",
" if np.any(np.min(y) - y[0] > (np.max(y) - np.min(y)) * 0.01):\n",
" ax.set_ylim(np.min(y), y[0])\n",
" if lowess and len(y) >= 9:\n",
" ax.plot(x, lowess(x, y, f=0.25, iter=3), linestyle='-', alpha=0.8, label=k + \".lowess\", lw=2)\n",
" ax.legend(loc='lower left')\n",
" ax.grid(axis='x')\n",
"\n",
" fig.suptitle(title)\n",
" plt.show()\n",
"\n",
"def plot_tfevents_vals(vals, groups=None, **kwargs):\n",
" groups = groups or [vals.keys()]\n",
" keys = {k for g in groups for k in g}\n",
" metrics = {k: np.array([v.value for v in vs]) for k, vs in vals.items() if k in keys}\n",
" keys1 = set(metrics.keys())\n",
" groups1 = list(filter(None, [[k for k in g if k in keys1] for g in groups]))\n",
" plot_metrics(metrics, groups=groups1, **kwargs)\n",
"\n",
"\n",
"def sph2cart(sph):\n",
" az, el, r = rearrange(sph, \"... d -> d ...\")\n",
" c = np.cos(el)\n",
" return rearrange(np.stack((c * np.cos(az), c * np.sin(az), np.sin(el)) * r), \"d ... -> ... d\")\n",
"\n",
"def cart2sph(cart):\n",
" x, y, z = cart[...,0], cart[...,1], cart[...,2]\n",
" az, el = np.arctan2(y, x), np.arctan2(z, np.hypot(x, y))\n",
" r = np.sqrt(x ** 2 + y ** 2 + z ** 2)\n",
" return np.column_stack((az, el, r))\n",
"\n",
"def iter_batch(xs, bs, drop_last=True):\n",
" n = len(xs) // bs\n",
" for i in range(n):\n",
" yield xs[i*bs:(i+1)*bs]\n",
" if not drop_last:\n",
" yield xs[n*bs:]\n",
"\n",
"@contextmanager\n",
"def stdout_redirected(to=os.devnull):\n",
" '''\n",
" https://blender.stackexchange.com/a/270199\n",
" '''\n",
" fd = sys.stdout.fileno()\n",
"\n",
" ##### assert that Python and C stdio write using the same file descriptor\n",
" ####assert libc.fileno(ctypes.c_void_p.in_dll(libc, \"stdout\")) == fd == 1\n",
"\n",
" def _redirect_stdout(to):\n",
" sys.stdout.close() # + implicit flush()\n",
" os.dup2(to.fileno(), fd) # fd writes to 'to' file\n",
" sys.stdout = os.fdopen(fd, 'w') # Python writes to fd\n",
"\n",
" with os.fdopen(os.dup(fd), 'w') as old:\n",
" with open(to, 'w') as f:\n",
" _redirect_stdout(to=f)\n",
" try:\n",
" yield # allow code to be run with the redirected stdout\n",
" finally:\n",
" _redirect_stdout(to=old) # restore stdout. buffering and flags such as CLOEXEC may be different\n",
"\n",
"def unpack_bz2(src_path):\n",
" data = bz2.BZ2File(src_path).read()\n",
" dst_path = src_path[:-4]\n",
" with open(dst_path, 'wb') as fp:\n",
" fp.write(data)\n",
" return dst_path\n",
"\n",
"def make_zip(files, target, filename=os.path.basename):\n",
" with ZipFile(target, 'w') as f:\n",
" for p in files:\n",
" f.write(p, filename(p))\n",
" return target"
],
"metadata": {
"id": "1lMrs3sh_EfA"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Mistuba"
],
"metadata": {
"id": "4rN0nR9N_FrB"
}
},
{
"cell_type": "markdown",
"source": [
"### Data"
],
"metadata": {
"id": "R8lkDJfB_IcG"
}
},
{
"cell_type": "code",
"source": [
"!wget -qc --show-progress https://rgl.s3.eu-central-1.amazonaws.com/media/papers/Vicini2022SDF_1.zip\n",
"!unzip -nqq Vicini2022SDF_1.zip -d Vicini2022SDF_1\n",
"!wget -qc --show-progress https://rgl.s3.eu-central-1.amazonaws.com/media/papers/Nicolet2021Large.zip\n",
"!unzip -nqq Nicolet2021Large.zip -d Nicolet2021Large"
],
"metadata": {
"id": "dKKgrK-d_G0i",
"outputId": "7a7044c6-acff-4431-89ac-2504add06fd3",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Vicini2022SDF_1.zip 100%[===================>] 382.87M 18.6MB/s in 21s \n",
"Nicolet2021Large.zi 100%[===================>] 234.95M 21.6MB/s in 12s \n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### Utils"
],
"metadata": {
"id": "1kT-qQCN_K5t"
}
},
{
"cell_type": "code",
"source": [
"def dot(a, b, axis=-1, keepdims=False):\n",
" return (a * b).sum(axis=axis, keepdims=keepdims)\n",
"\n",
"def quat_axis_angle(a, r):\n",
" r = (np.asarray(r) * .5)[...,None]\n",
" return np.concatenate((a * np.sin(r), np.cos(r)),-1)\n",
"\n",
"def quat_mul(a, b):\n",
" ax, ay, az, aw = rearrange(a, \"... d -> d ...\")\n",
" bx, by, bz, bw = rearrange(b, \"... d -> d ...\")\n",
" res = np.stack((\n",
" ax * bw + aw * bx + ay * bz - az * by,\n",
" ay * bw + aw * by + az * bx - ax * bz,\n",
" az * bw + aw * bz + ax * by - ay * bx,\n",
" aw * bw - ax * bx - ay * by - az * bz))\n",
" return rearrange(res, \"d ... -> ... d\")\n",
"\n",
"def quat_mul_v(q, v):\n",
" x, y, z = rearrange(v, \"... d -> d ...\")\n",
" qx, qy, qz, qw = rearrange(q, \"... d -> d ...\")\n",
" ix = qw * x + qy * z - qz * y\n",
" iy = qw * y + qz * x - qx * z\n",
" iz = qw * z + qx * y - qy * x\n",
" iw = qx * x + qy * y + qz * z\n",
" res = np.stack((ix * qw + iw * qx - iy * qz + iz * qy,\n",
" iy * qw + iw * qy - iz * qx + ix * qz,\n",
" iz * qw + iw * qz - ix * qy + iy * qx))\n",
" return rearrange(res, \"d ... -> ... d\")\n",
"\n",
"def orthogonal(v, m=.5, n=.5):\n",
" x, y, z = rearrange(v, \"... d -> d ...\")\n",
" res = np.stack((m * -y + n * -z, m * x, n * x))\n",
" return normalize(rearrange(res, \"d ... -> ... d\"))\n",
"\n",
"def quat_between(a, b):\n",
" w, q = dot(a, b), np.cross(a, b)\n",
" qw = w + np.sqrt(q[...,0] ** 2 + q[...,1] ** 2 + q[...,2] ** 2 + w ** 2)\n",
" qa = normalize(np.concatenate((q, qw[...,None]),-1))\n",
" qb = quat_axis_angle(orthogonal(a), np.full(a.shape[:-1],np.pi))\n",
" return np.where(w[...,None] != -1, qa, qb)\n",
"\n",
"def quat_lookat(vdir, rad=None):\n",
" rad = rad or np.full(vdir.shape[0], 0, dtype=\"f4\")\n",
" YZ = np.array([[0,1,0],[0,0,1]], dtype=vdir.dtype)\n",
" w = dot(vdir, YZ[1:],keepdims=True)\n",
" q = np.where(w == 1, np.array([[0,0,0,1]],dtype=vdir.dtype),\n",
" np.where(w == -1, quat_axis_angle(YZ[:1], [np.pi]), quat_between(YZ[1:], vdir)))\n",
" return quat_mul(quat_axis_angle(vdir, rad), q)\n",
"\n",
"def m44_rotation_axis(idx, theta, dtype=\"f4\"):\n",
" c, s = np.cos(theta), np.sin(theta)\n",
" a, b = (idx + 1) % 3, (idx + 2) % 3\n",
"\n",
" mat = np.eye(4, dtype=dtype)\n",
" mat[a, a], mat[b, b] = c, c\n",
" mat[a, b], mat[b, a] = -s, s\n",
" return mat\n",
"\n",
"def regular_points_sphere(steps=[1,4,8,4,1]):\n",
" pts = np.concatenate([sph2cart(np.c_[np.linspace(0, np.pi*2, n, endpoint=False), np.full(n, a), np.ones(n)])\n",
" for n, a in zip(steps,np.linspace(-np.pi/2,np.pi/2,len(steps)))])\n",
" return pts @ m44_rotation_axis(0, np.pi/2)[:3,:3].T\n",
"\n",
"def m33_rotation_axis(idx, theta, dtype=\"f4\"):\n",
" c, s = np.cos(theta), np.sin(theta)\n",
" a, b = (idx + 1) % 3, (idx + 2) % 3\n",
"\n",
" mat = np.eye(3, dtype=dtype)\n",
" mat[a, a], mat[b, b] = c, c\n",
" mat[a, b], mat[b, a] = -s, s\n",
" return mat"
],
"metadata": {
"id": "vske6WnF_JdF"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Shape"
],
"metadata": {
"id": "8LpdeYz5_MCH"
}
},
{
"cell_type": "code",
"source": [
"import drjit as dr\n",
"import mitsuba as mi\n",
"\n",
"mi.set_variant('cuda_ad_rgb')\n",
"# mi.set_variant('llvm_ad_rgb')\n",
"\n",
"class Mesh(mi.Mesh):\n",
" def __init__(self, props=mi.Properties()):\n",
" verts = props.get(\"vertices\")\n",
" faces = props.get(\"faces\")\n",
" super().__init__(props.get(\"name\"), verts.shape[0] // 3, faces.shape[0] // 3, props, True, False)\n",
" params = mi.traverse(self)\n",
" params['vertex_positions'] = verts.array\n",
" params['faces'] = faces.array\n",
" params.update()\n",
" self.recompute_vertex_normals()\n",
"\n",
" def to_string(self):\n",
" return \"mesh\"\n",
"\n",
"mi.register_mesh(\"mesh\", lambda props: Mesh(props))\n",
"\n",
"class Grid3d(mi.Object):\n",
" def __init__(self, shape):\n",
" super().__init__()\n",
" self.texture = mi.Texture3f(shape, 1, use_accel=False)\n",
" self.to_world = mi.Transform4f().translate([-.5,-.5,-.5])\n",
" self.to_local = self.to_world.inverse()\n",
" self.aabb = mi.ScalarBoundingBox3f(mi.ScalarPoint3f(-.5,-.5,-.5),\n",
" mi.ScalarPoint3f(.5,.5,.5))\n",
"\n",
" def bbox(self, delta=.05):\n",
" return mi.BoundingBox3f(self.aabb.min - delta, self.aabb.max + delta)\n",
"\n",
" def eval(self, x):\n",
" return self.texture.eval_cubic(self.to_local @ x)[0]\n",
"\n",
" def eval_grad(self, x):\n",
" g = mi.Vector3f(self.texture.eval_cubic_grad(self.to_local @ x)[1][0])\n",
" return self.to_world @ mi.Normal3f(g.x, g.y, g.z)\n",
"\n",
" def eval_and_grad(self, x):\n",
" v, g = self.texture.eval_cubic_grad(self.to_local @ x)\n",
" g = mi.Vector3f(g[0])\n",
" g = self.to_world @ mi.Normal3f(g.x, g.y, g.z)\n",
" return mi.Float(v[0]), g\n",
"\n",
" def eval_all(self, x):\n",
" v, g, h = self.texture.eval_cubic_hessian(self.to_local @ x)\n",
" v, g, h = mi.Float(v[0]), mi.Vector3f(g[0]), mi.Matrix3f(h[0])\n",
"\n",
" mat = self.to_local.matrix\n",
" to_local3 = mi.Matrix3f([\n",
" [mat[0, 0], mat[0, 1], mat[0, 2]],\n",
" [mat[1, 0], mat[1, 1], mat[1, 2]],\n",
" [mat[2, 0], mat[2, 1], mat[2, 2]]\n",
" ])\n",
" g = mi.Vector3f(to_local3.T @ g)\n",
" h = to_local3.T @ h @ to_local3\n",
"\n",
" return v, dr.detach(v, True), g, dr.detach(g, True), h\n",
"\n",
" def traverse(self, callback):\n",
" callback.put_parameter(\"data\", self.texture.tensor(), mi.ParamFlags.Differentiable)\n",
"\n",
" def parameters_changed(self, keys):\n",
" self.texture.set_tensor(self.texture.tensor())"
],
"metadata": {
"id": "_N251QDU_Ltg"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Warp"
],
"metadata": {
"id": "24rC-RS2_OBT"
}
},
{
"cell_type": "code",
"source": [
"def bbox_distance_d(min_dist):\n",
" n = mi.Vector3f(0.0)\n",
" n[(min_dist.x < min_dist.y) & (min_dist.x < min_dist.z)] = mi.Vector3f(1, 0, 0)\n",
" n[(min_dist.y < min_dist.z) & (min_dist.y < min_dist.x)] = mi.Vector3f(0, 1, 0)\n",
" n[(min_dist.z < min_dist.x) & (min_dist.z < min_dist.y)] = mi.Vector3f(0, 0, 1)\n",
" return n\n",
"\n",
"def bbox_distance_inside_d(x, bbox):\n",
" bbox_max_dist, bbox_min_dist = dr.abs(bbox.max - x), dr.abs(bbox.min - x)\n",
" n = bbox_distance_d(dr.minimum(bbox_min_dist, bbox_max_dist))\n",
"\n",
" dist = dr.maximum(0.0, dr.minimum(dr.min(x - bbox.min), dr.min(bbox.max - x)))\n",
" dist_d = dr.select(dist > 0.0, n * dr.sign(bbox_max_dist - bbox_min_dist), 0.0)\n",
" return dist, dist_d\n",
"\n",
"def eval_trace_weight(ray, i, bbox, x, sdf_value, sdf_grad, hessian,\n",
" sil_weight_epsilon, sil_weight_offset, weight_power):\n",
" n_dot_d, n_dot_n = dr.dot(sdf_grad, ray.d), dr.dot(sdf_grad, sdf_grad)\n",
" dot_ratio = n_dot_d / n_dot_n\n",
" denom = sil_weight_epsilon + dr.abs(sdf_value) + sil_weight_offset * n_dot_d * dot_ratio\n",
" dist_weight = 1 / denom ** weight_power\n",
"\n",
" bbox_dist, bbox_dist_d = bbox_distance_inside_d(x, bbox)\n",
"\n",
" bbox_eps = 0.01\n",
" bbox_weight = dr.select(i > 0, dr.minimum(bbox_dist, bbox_eps) / bbox_eps, 1.0)\n",
" weight = dist_weight * bbox_weight\n",
"\n",
" bbox_weight_d = dr.select((i > 0) & (bbox_dist < bbox_eps), bbox_dist_d / bbox_eps, 0.0)\n",
" gradient = 2 * dot_ratio * (ray.d - dot_ratio * sdf_grad)\n",
" denom_d = dr.sign(sdf_value) * sdf_grad + sil_weight_offset * gradient @ hessian\n",
" dist_weight_d = -weight_power * dist_weight / denom * denom_d\n",
" weight_d = dist_weight * bbox_weight_d + bbox_weight * dist_weight_d\n",
"\n",
" return weight, weight_d\n",
"\n",
"@dr.syntax\n",
"def sphere_trace(sdf, ray, active,\n",
" trace_eps=1e-6,\n",
" sil_weight_epsilon=1e-6,\n",
" sil_weight_offset=.05,\n",
" weight_power=3,\n",
" extra_thresh=.05):\n",
" loop_record_state = dr.flag(dr.JitFlag.LoopRecord)\n",
" dr.set_flag(dr.JitFlag.LoopRecord, True)\n",
"\n",
" ray = mi.Ray3f(ray)\n",
" ray.d = dr.normalize(ray.d)\n",
"\n",
" bbox = sdf.bbox()\n",
" intersects_bbox, mint, maxt = bbox.ray_intersect(ray)\n",
" inside_bbox = bbox.contains(ray.o)\n",
" intersects_bbox &= (mint > 0) | inside_bbox\n",
" active = active & intersects_bbox\n",
"\n",
" ray.maxt = dr.minimum(maxt, ray.maxt)\n",
" trace_eps = trace_eps * dr.maximum(ray.maxt, 1)\n",
"\n",
" its_t = mi.Float(dr.inf)\n",
" t = dr.select(inside_bbox, 0.0, mint + 1e-5)\n",
" warp_t = mi.Float(0.0)\n",
" prev_surf_dist = mi.Float(0.0)\n",
" prev_sdf_grad_c = mi.Vector3f(0.0)\n",
" weight_sum = mi.Float(0.0)\n",
" mixed_sum_d = mi.Vector3f(0.0)\n",
" weight_d_sum = mi.Vector3f(0.0)\n",
" i = mi.Int32(0)\n",
" extra_weight_sum = mi.Float(0.0)\n",
" extra_weight_sum_d = mi.Vector3f(0.0)\n",
"\n",
" bbox_its_p = ray(t)\n",
" n = bbox_distance_d(dr.minimum(dr.abs(bbox.min - bbox_its_p), dr.abs(bbox.max - bbox_its_p)))\n",
" d_dot_n = dr.dot(ray.d, n)\n",
" t_d = mi.Vector3f(0.0)\n",
" t_d[~inside_bbox & (dr.abs(d_dot_n) > 0)] = -n / d_dot_n * t\n",
"\n",
" while active:\n",
" x = ray(t)\n",
" with dr.suspend_grad():\n",
" sdf_value, _, sdf_grad, _, hessian = sdf.eval_all(x)\n",
"\n",
" intersected = sdf_value < trace_eps\n",
" its_t[intersected] = t\n",
" surf_dist = dr.abs(sdf_value)\n",
" weight, weight_d = eval_trace_weight(ray, i, bbox, x, sdf_value, sdf_grad, hessian,\n",
" sil_weight_epsilon, sil_weight_offset, weight_power)\n",
"\n",
" inv_extra_w_den = 1 / dr.minimum(extra_thresh, surf_dist)\n",
" dist_difference = prev_surf_dist - surf_dist\n",
" extra_weight_sum += dr.select(dist_difference >= 0, dist_difference * inv_extra_w_den, 0.0)\n",
" extra_weight_sum = dr.minimum(extra_weight_sum, 1.0)\n",
"\n",
" curr_segment_value = dr.select(intersected, 0.0, surf_dist)\n",
" segment_length = 0.5 * (curr_segment_value + prev_surf_dist)\n",
" weight_increment = segment_length * weight * extra_weight_sum\n",
"\n",
" weight_sum = weight_sum + weight_increment\n",
" warp_t = warp_t + weight_increment * t\n",
"\n",
" weight_d = dr.fma(t, weight_d, dr.dot(ray.d, weight_d) * t_d)\n",
" sdf_grad_c = dr.fma(t, sdf_grad, dr.dot(ray.d, sdf_grad) * t_d)\n",
" segment_d = 0.5 * (sdf_grad_c + prev_sdf_grad_c)\n",
"\n",
" surf_dist_d = dr.sign(sdf_value) * sdf_grad_c\n",
" extra_w_d = (prev_sdf_grad_c - surf_dist_d) * inv_extra_w_den\n",
" extra_w_d = extra_w_d - dist_difference * dr.square(inv_extra_w_den) * dr.select(sdf_value < extra_thresh, surf_dist_d, 0.0)\n",
" extra_weight_sum_d += dr.select(dist_difference > 0.0, extra_w_d, 0.0)\n",
" extra_weight_sum_d[(extra_weight_sum >= 1.0) | (extra_weight_sum <= 0.0)] = 0.0\n",
" weight_d = weight * extra_weight_sum_d + weight_d * extra_weight_sum\n",
" weight *= extra_weight_sum\n",
"\n",
" weight_increment_d = dr.fma(weight, segment_d, weight_d * segment_length)\n",
" mixed_sum_d += dr.fma(weight_increment_d, t, weight * segment_length * t_d)\n",
" t_d = t_d + sdf_grad_c\n",
" weight_d_sum += weight_increment_d\n",
" i += 1\n",
" t += curr_segment_value\n",
" prev_surf_dist = surf_dist\n",
" prev_sdf_grad_c = sdf_grad_c\n",
" active &= (t <= ray.maxt) & (~intersected)\n",
"\n",
" refining = mi.Mask(dr.isfinite(its_t))\n",
" i = mi.Int32(0)\n",
" while refining:\n",
" min_dist = dr.detach(sdf.eval(ray(its_t)))\n",
" its_t[refining] += min_dist * (mi.Float(10) / mi.Float(10 + i))\n",
" refining &= (min_dist <= 0) | (min_dist > trace_eps)\n",
" i += 1\n",
" refining &= i < 10\n",
"\n",
" inv_weight_sum = 1 / weight_sum\n",
" warp_t = warp_t * inv_weight_sum\n",
" warp_t_d = (-warp_t * weight_d_sum + mixed_sum_d) * inv_weight_sum\n",
"\n",
" warp_weight = dr.clip(weight_sum, 0.0, 1.0)\n",
" warp_weight_d = dr.select((weight_sum > 0.0) & (weight_sum < 1.0), weight_d_sum, 0.0)\n",
"\n",
" invalid = (weight_sum < 1e-7) | ~intersects_bbox\n",
" warp_t[invalid] = dr.inf\n",
" warp_t_d[invalid] = 0.0\n",
" warp_weight[invalid] = 0.0\n",
" warp_weight_d[invalid] = 0.0\n",
"\n",
" dr.set_flag(dr.JitFlag.LoopRecord, loop_record_state)\n",
"\n",
" return its_t, warp_t, warp_t_d, warp_weight, warp_weight_d\n",
"\n",
"def compute_surface_interaction(sdf, ray, t):\n",
" si = dr.zeros(mi.SurfaceInteraction3f)\n",
" p = ray(t)\n",
"\n",
" sdf_value, sdf_grad = sdf.eval_and_grad(p)\n",
" t_diff = sdf_value / dr.detach(dr.dot(sdf_grad, -ray.d))\n",
" t = dr.replace_grad(mi.Float(t), t_diff)\n",
"\n",
" si.t = t\n",
" si.p = ray(t)\n",
" si.sh_frame.n = dr.normalize(sdf.eval_grad(si.p))\n",
" si.initialize_sh_frame()\n",
" si.n = si.sh_frame.n\n",
" si.wi = dr.select(si.is_valid(), si.to_local(-ray.d), -ray.d)\n",
" si.wavelengths = ray.wavelengths\n",
" si.dp_du = si.sh_frame.s\n",
" si.dp_dv = si.sh_frame.t\n",
" return si\n",
"\n",
"def outer_product(v, w):\n",
" return mi.Matrix3f(v.x * w.x, v.x * w.y, v.x * w.z,\n",
" v.y * w.x, v.y * w.y, v.y * w.z,\n",
" v.z * w.x, v.z * w.y, v.z * w.z)\n",
"\n",
"def normalize_sqr(x):\n",
" x2 = dr.squared_norm(x)\n",
" jac = mi.Matrix3f(1.0) / x2 - (2 / dr.square(x2)) * outer_product(x, x)\n",
" return x / x2, jac\n",
"\n",
"def warp_field_weight(sdf, x, d, sdf_value, sdf_grad, edge_eps):\n",
" bbox_dist, bbox_dist_d = bbox_distance_inside_d(x, sdf.bbox())\n",
" use_edge_eps = edge_eps <= bbox_dist\n",
" edge_eps_d = dr.select(use_edge_eps, mi.Vector3f(0.0), bbox_dist_d)\n",
" inv_edge_eps = 1 / dr.minimum(edge_eps, bbox_dist)\n",
" surf_dist = dr.abs(sdf_value)\n",
" fac = 1 - surf_dist * inv_edge_eps\n",
" w = dr.maximum(fac, 0.0)\n",
" w_d = -dr.sign(sdf_value) * sdf_grad * inv_edge_eps + surf_dist * dr.square(inv_edge_eps) * edge_eps_d\n",
" w_d = dr.select(fac >= 0.0, w_d, 0.0)\n",
" edge_eps_d = dr.select(use_edge_eps & (fac >= 0), surf_dist * dr.square(inv_edge_eps), 0.0)\n",
" return w, w_d, edge_eps_d\n",
"\n",
"class WarpField2D(mi.Object):\n",
" def __init__(self, sdf, edge_eps=0.05):\n",
" super().__init__()\n",
" self.sdf = sdf\n",
" self.max_reparam_depth = -1\n",
" self.edge_eps = dr.opaque(mi.Float, edge_eps)\n",
" self.clamping_thresh = 0.05\n",
"\n",
" def traverse(self, cb):\n",
" self.sdf.traverse(cb)\n",
"\n",
" def parameters_changed(self, keys):\n",
" self.sdf.parameters_changed(keys)\n",
"\n",
" def eval(self, x, ray_d, t, dt_dx, active, warp_weight=None, warp_weight_d=None):\n",
" active = active & dr.isfinite(t)\n",
"\n",
" sdf_value, _, sdf_normal, sdf_normal_d, h_mat = self.sdf.eval_all(x)\n",
"\n",
" sdf_normal_d_n, norm_jac = normalize_sqr(sdf_normal_d)\n",
" warp = -sdf_normal_d_n * sdf_value\n",
" jac = -norm_jac @ dr.detach(h_mat, True) * sdf_value - outer_product(sdf_normal_d_n, sdf_normal)\n",
"\n",
" weight, weight_grad, edge_eps_grad = warp_field_weight(self.sdf, dr.detach(x, True), dr.detach(ray_d, True),\n",
" dr.detach(sdf_value), dr.detach(sdf_normal),\n",
" self.edge_eps * dr.detach(t))\n",
" weight_grad += edge_eps_grad * ray_d * self.edge_eps\n",
"\n",
" weight_grad = weight_grad * warp_weight + weight * warp_weight_d\n",
" weight *= warp_weight\n",
"\n",
" weight = dr.detach(weight, True)\n",
" jac = outer_product(warp, weight_grad) + weight * jac\n",
" warp = warp * weight\n",
"\n",
" warp = dr.replace_grad(mi.Vector3f(0.0), warp)\n",
" warp = ray_d * dr.maximum(self.clamping_thresh, t) + warp\n",
" warp = dr.normalize(warp)\n",
"\n",
" proj_jac = (mi.Matrix3f(1.0) - outer_product(ray_d, ray_d)) @ jac\n",
" jac = proj_jac + proj_jac @ outer_product(ray_d, dt_dx / t)\n",
" div = jac[0, 0] + jac[1, 1] + jac[2, 2]\n",
"\n",
" active &= weight > 0\n",
" div = dr.select(active, div, 0.0)\n",
" warp = dr.replace_grad(ray_d, dr.select(active, warp, ray_d))\n",
" return warp, div\n",
"\n",
" def ray_test(self, ray, reparam=True, active=True):\n",
" with dr.suspend_grad():\n",
" its_t, warp_t, warp_t_d, warp_weight, warp_weight_d = sphere_trace(self.sdf, dr.detach(ray), active=active)\n",
"\n",
" div = mi.Float(1.0)\n",
" if reparam:\n",
" warp, div = self.eval(ray(warp_t), ray.d, t=warp_t, dt_dx=warp_t_d,\n",
" active=active, warp_weight=warp_weight, warp_weight_d=warp_weight_d)\n",
" ray.d = dr.replace_grad(ray.d, warp)\n",
" div = dr.replace_grad(mi.Float(1.0), div)\n",
"\n",
" return dr.isfinite(its_t), div\n",
"\n",
" def ray_intersect(self, ray, reparam=True, active=True):\n",
" with dr.suspend_grad():\n",
" its_t, warp_t, warp_t_d, warp_weight, warp_weight_d = sphere_trace(self.sdf, dr.detach(ray), active=active)\n",
"\n",
" div = mi.Float(1.0)\n",
" if reparam:\n",
" warp, div = self.eval(ray(warp_t), ray.d, t=warp_t, dt_dx=warp_t_d,\n",
" active=active, warp_weight=warp_weight, warp_weight_d=warp_weight_d)\n",
" ray.d = dr.replace_grad(ray.d, warp)\n",
" div = dr.replace_grad(mi.Float(1.0), div)\n",
"\n",
" si = compute_surface_interaction(self.sdf, ray, its_t)\n",
" return si, div"
],
"metadata": {
"id": "1p490ieC_PBw"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Integrator"
],
"metadata": {
"id": "EWn7xWXh_Qix"
}
},
{
"cell_type": "code",
"source": [
"class ReparamIntegrator(mi.SamplingIntegrator):\n",
" def __init__(self, props=mi.Properties()):\n",
" super().__init__(props)\n",
" self.antithetic_sampling = props.get('antithetic_sampling', False)\n",
" self.warp = props.get(\"warp\")\n",
" self.bsdf = props.get(\"bsdf\")\n",
"\n",
" def prepare(self, sensor, film_size, seed, spp):\n",
" sampler = sensor.sampler().clone()\n",
" if spp != 0:\n",
" sampler.set_sample_count(spp)\n",
" spp = sampler.sample_count()\n",
" sampler.set_samples_per_wavefront(spp)\n",
"\n",
" wavefront_size = dr.prod(film_size) * spp\n",
" wavefront_size_limit = 0x40000000 if mi.Float == dr.cuda.ad.Float else 0xffffffff\n",
" if wavefront_size > wavefront_size_limit:\n",
" raise Exception(f\"Wavefront {wavefront_size} exceeds {wavefront_size_limit}\")\n",
" sampler.seed(seed, wavefront_size)\n",
" return sampler, spp\n",
"\n",
" def render(self, scene, sensor=0, seed=0,\n",
" spp=0, develop=True, evaluate=True, mode=dr.ADMode.Primal):\n",
" if isinstance(sensor, int):\n",
" sensor = scene.sensors()[sensor]\n",
"\n",
" film = sensor.film()\n",
" film_size = film.crop_size()\n",
" border_size = film.rfilter().border_size()\n",
" if film.sample_border():\n",
" film_size += 2 * border_size\n",
" film.prepare([])\n",
"\n",
" sampler, spp = self.prepare(sensor, film_size, seed, spp)\n",
"\n",
" spp = sampler.sample_count()\n",
" idx = dr.arange(mi.UInt32, dr.prod(film_size) * spp)\n",
"\n",
" log_spp = dr.log2i(spp)\n",
" if 1 << log_spp == spp:\n",
" idx >>= dr.opaque(mi.UInt32, log_spp)\n",
" else:\n",
" idx //= dr.opaque(mi.UInt32, spp)\n",
"\n",
" pos = mi.Vector2i()\n",
" pos.y = idx // film_size[0]\n",
" pos.x = dr.fma(type(pos.y)(-film_size[0]), pos.y, idx)\n",
" if film.sample_border():\n",
" pos -= border_size\n",
" pos += mi.Vector2i(film.crop_offset())\n",
"\n",
" block = film.create_block()\n",
"\n",
" diff_scale_factor = dr.rsqrt(mi.ScalarFloat(spp))\n",
" active = mi.Bool(True)\n",
" r = sampler.next_2d(active)\n",
" if self.antithetic_sampling:\n",
" sampler2 = sampler.clone()\n",
" self.eval_sample(mode, scene, sensor, sampler, block, pos + r, diff_scale_factor, active)\n",
" if self.antithetic_sampling:\n",
" self.eval_sample(mode, scene, sensor, sampler2, block, pos - r + 1.0, diff_scale_factor, active)\n",
"\n",
" film.put_block(block)\n",
" return film.develop()\n",
"\n",
" def eval_sample(self, mode, scene, sensor, sampler, block, position_sample, diff_scale_factor, active):\n",
" aperture_sample = mi.Point2f(0.5)\n",
" if sensor.needs_aperture_sample():\n",
" aperture_sample = sampler.next_2d(active)\n",
" time = sensor.shutter_open()\n",
" if sensor.shutter_open_time() > 0:\n",
" time += sampler.next_1d(active) * sensor.shutter_open_time()\n",
"\n",
" wavelength_sample = sampler.next_1d(active)\n",
" adjusted_position = (position_sample - sensor.film().crop_offset()) / mi.Vector2f(sensor.film().crop_size())\n",
" ray, ray_weight = sensor.sample_ray_differential(time, wavelength_sample, adjusted_position, aperture_sample)\n",
" ray.scale_differential(diff_scale_factor)\n",
"\n",
" rgb, valid_ray, det = self.sample(mode, scene, sampler, ray, mi.Mask(active))\n",
"\n",
" it = dr.zeros(mi.Interaction3f)\n",
" it.p = ray.o + ray.d\n",
" ds, ray_weight = sensor.sample_direction(it, aperture_sample)\n",
" ray_weight = dr.select(ray_weight > 0.0, ray_weight / dr.detach(ray_weight), 1.0)\n",
" ray_weight = dr.replace_grad(type(ray_weight)(1.0), ray_weight)\n",
"\n",
" rgb = ray_weight * rgb\n",
" aovs = [rgb.x, rgb.y, rgb.z]\n",
" if block.channel_count() == 5:\n",
" aovs.append(dr.select(valid_ray, mi.Float(1.0), mi.Float(0.0)))\n",
" aovs.append(dr.replace_grad(mi.Float(1.0), det * ray_weight[0]))\n",
"\n",
" block.put(ds.uv, aovs, active)\n",
"\n",
" def render_backward(self, scene, params, grad_in, sensor=0, seed=0, spp=0):\n",
" image = self.render(scene=scene, sensor=sensor, seed=seed,\n",
" spp=spp, develop=True, evaluate=False, mode=dr.ADMode.Backward)\n",
" dr.backward_from(image * grad_in)\n",
"\n",
" def render_forward(self, scene, params, sensor=0, seed=0, spp=0):\n",
" image = self.render(scene=scene, sensor=sensor, seed=seed, spp=spp,\n",
" develop=True, evaluate=False, mode=dr.ADMode.Forward)\n",
" dr.forward_to(image)\n",
" return dr.grad(image)\n",
"\n",
" def traverse(self, cb):\n",
" self.warp.traverse(cb)\n",
" super().traverse(cb)\n",
"\n",
" def parameters_changed(self, keys):\n",
" self.warp.parameters_changed(keys)\n",
" super().parameters_changed(keys)\n",
"\n",
" def sample(self, mode, scene, sampler, ray, active):\n",
" reparametrize = mode != dr.ADMode.Primal\n",
"\n",
" si, det = self.warp.ray_intersect(ray, reparam=reparametrize, active=active)\n",
" valid_ray = (not self.hide_emitters) and scene.environment() is not None\n",
" valid_ray |= si.is_valid()\n",
"\n",
" throughput = mi.Spectrum(1.0) * det\n",
" result = throughput * dr.select(active, si.emitter(scene, active).eval(si, active), 0.0)\n",
"\n",
" active_e = active & si.is_valid() & mi.has_flag(self.bsdf.flags(), mi.BSDFFlags.Smooth)\n",
" with dr.suspend_grad():\n",
" ds, _ = scene.sample_emitter_direction(si, sampler.next_2d(active_e), False, active_e)\n",
"\n",
" active_e &= ds.pdf != 0.0\n",
"\n",
" shadow_ray = si.spawn_ray_to(ds.p)\n",
" shadow_ray.d = dr.detach(shadow_ray.d)\n",
" occluded, det_e = self.warp.ray_test(shadow_ray, reparam=reparametrize, active=active_e)\n",
"\n",
" si_e = dr.zeros(mi.SurfaceInteraction3f)\n",
" si_e.sh_frame.n = ds.n\n",
" si_e.initialize_sh_frame()\n",
" si_e.n = si_e.sh_frame.n\n",
" si_e.wi = -shadow_ray.d\n",
" si_e.wavelengths = ray.wavelengths\n",
"\n",
" emitter_val = dr.select(active_e, ds.emitter.eval(si_e, active_e) / ds.pdf, 0.)\n",
" bsdf_val = self.bsdf.eval(mi.BSDFContext(), si, si.to_local(shadow_ray.d), active_e)\n",
" nee_contrib = dr.select(~occluded, bsdf_val * emitter_val * det_e, 0.)\n",
"\n",
" result[active_e] += throughput * nee_contrib\n",
"\n",
" return dr.select(valid_ray, mi.Spectrum(result), 0.0), valid_ray, det\n",
"\n",
" def to_string(self):\n",
" return \"integrator\"\n",
"\n",
"mi.register_integrator(\"sdf_reparam_direct\", lambda props: ReparamIntegrator(props))"
],
"metadata": {
"id": "sXsA2xib_QLm"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Train"
],
"metadata": {
"id": "1ZM5G3dQ_VoM"
}
},
{
"cell_type": "code",
"source": [
"import trimesh\n",
"import openvdb as vdb\n",
"from fastsweep import redistance\n",
"from bisect import bisect_left\n",
"\n",
"def array_to_vdb_grid(data, size=256, grid_class=vdb.GridClass.LEVEL_SET, name=\"distance\"):\n",
" grid = vdb.FloatGrid()\n",
" grid.copyFromArray(data)\n",
" grid.gridClass = grid_class\n",
" grid.name = name\n",
" grid.transform = vdb.createLinearTransform(voxelSize=1/size)\n",
" return grid\n",
"\n",
"def vdb_grid_to_array(grid):\n",
" mn, mx = grid.evalLeafBoundingBox()\n",
" shape = (mx[0] - mn[0] + 1, mx[1] - mn[2] + 1, mx[2] - mn[2] + 1)\n",
" arr = np.empty(shape, dtype=\"f4\")\n",
" grid.copyToArray(arr)\n",
" return arr\n",
"\n",
"def read_ply(path, scale=.3):\n",
" with open(path, \"rb\") as f:\n",
" mesh = trimesh.exchange.ply.load_ply(f)\n",
" verts = mesh['vertices'].astype(\"f4\")\n",
" verts = verts - verts.mean(0)\n",
" verts = verts / np.linalg.norm(verts,axis=-1).max() * scale\n",
" return verts, mesh[\"faces\"]\n",
"\n",
"def read_obj(fn, scale=.3):\n",
" with open(fn, \"rb\") as f:\n",
" mesh = trimesh.exchange.obj.load_obj(f)['geometry'][fn]\n",
"\n",
" verts = mesh['vertices'].astype(\"f4\")\n",
" verts = verts - verts.mean(0)\n",
" verts = verts / np.linalg.norm(verts,axis=-1).max() * scale\n",
" return verts, mesh['faces']\n",
"\n",
"def pick(i, ts, vs):\n",
" return vs[bisect_left(ts, i)]\n",
"\n",
"def to_image(img):\n",
" return np.rint((img ** (1/2.2)).clip(0,1) * 255).astype(\"u1\")\n",
"\n",
"def make_film(size):\n",
" return mi.load_dict({'type': 'hdrfilm', 'width': size[0], 'height': size[1],\n",
" 'pixel_format': 'rgb', 'pixel_filter': {'type': 'gaussian'},\n",
" 'sample_border': True})\n",
"\n",
"def set_film_size(film, size):\n",
" params = mi.traverse(film)\n",
" params['size'] = size\n",
" params.update()\n",
" film.parameters_changed()\n",
"\n",
"def render_direct(verts, faces, envmap, sensors, seed=41):\n",
" scene = mi.load_dict({\n",
" 'type': 'scene',\n",
" 'integrator': {'type': 'direct'},\n",
" 'mesh': {\n",
" 'type': 'mesh',\n",
" \"name\": \"mesh\",\n",
" \"vertices\": mi.Float(verts.ravel()),\n",
" \"faces\": mi.UInt(faces.ravel()),\n",
" 'bsdf': {'type': 'twosided',\n",
" 'material': {'type': 'diffuse',\n",
" 'reflectance': {'type': 'rgb','value': (.8, .8, .8)}}}},\n",
" 'emitter': {'type': 'envmap','filename': envmap}})\n",
" return [mi.Bitmap(mi.render(scene, sensor=sensor, seed=i + seed, spp=1024))\n",
" for i, sensor in enumerate(sensors)]\n",
"\n",
"def make_sphere_sdf(shape, center=[0.5, 0.5, 0.5], radius=0.3):\n",
" z, y, x = np.meshgrid(np.linspace(0, 1, shape[0]),\n",
" np.linspace(0, 1, shape[1]),\n",
" np.linspace(0, 1, shape[2]), indexing='ij')\n",
" pts = np.stack([x.ravel(), y.ravel(), z.ravel()], axis=1)\n",
" dist = np.linalg.norm(pts - center, axis=-1) - radius\n",
" sdf = dist.reshape(shape).astype(np.float32)\n",
" return redistance(mi.TensorXf(sdf))\n",
"\n",
"def clip_gradient(val, r=1e-1):\n",
" grad = dr.grad(val)\n",
" dr.set_grad(val, dr.select(dr.isnan(grad), 0.0, dr.clip(grad, -r, r)))\n",
"\n",
"def upsample_sdf(sdf):\n",
" shape = 2 * mi.ScalarVector3i(sdf.texture.shape[:3])\n",
" with dr.suspend_grad():\n",
" z, y, x = dr.meshgrid(*[dr.linspace(mi.Float, -.5 + .5 / shape[i], .5 - .5 / shape[i], shape[i])\n",
" for i in range(3)],\n",
" indexing='ij')\n",
" out = sdf.eval(mi.Point3f(x, y, z))\n",
" return mi.TensorXf(out, (*shape, *sdf.texture.shape[3:]))\n",
"\n",
"def eval_box_sdf(x, p, extents, smoothing):\n",
" q = dr.abs(x - p) - extents\n",
" return dr.norm(dr.maximum(q, 0.0)) + dr.minimum(dr.maximum(q.x, dr.maximum(q.y, q.z)), 0.0) - smoothing\n",
"\n",
"def make_box_sdf(shape):\n",
" z, y, x = dr.meshgrid(dr.linspace(mi.Float, -0.5, 0.5, shape[0]),\n",
" dr.linspace(mi.Float, -0.5, 0.5, shape[1]),\n",
" dr.linspace(mi.Float, -0.5, 0.5, shape[2]), indexing='ij')\n",
" dist = eval_box_sdf(mi.Point3f(x, y, z), mi.Point3f(0), mi.Vector3f(0.49), 0.01)\n",
" return mi.TensorXf(dist, shape)\n",
"\n",
"def discrete_laplacian(data):\n",
" shape = data.shape\n",
"\n",
" def val(x, y, z):\n",
" a = dr.clip(z, 0, shape[2] - 1) * shape[1] * shape[0]\n",
" b = dr.clip(y, 0, shape[1] - 1) * shape[0]\n",
" c = dr.clip(x, 0, shape[0] - 1)\n",
"\n",
" return dr.gather(mi.Float, data.array, a + b + c)\n",
"\n",
" z, y, x = dr.meshgrid(*[dr.arange(mi.UInt, shape[i]) for i in range(3)], indexing='ij')\n",
" c = val(x, y, z)\n",
" v = val(x - 1, y, z) + val(x + 1, y, z) + val(x, y - 1, z) + val(x, y + 1, z) + val(x, y, z - 1) + val(x, y, z + 1)\n",
" return dr.sum(dr.square(c - v / 6.))\n",
"\n",
"def box_filter3(data):\n",
" shape = data.shape\n",
"\n",
" def val(x, y, z):\n",
" a = dr.clip(z, 0, shape[2] - 1) * shape[1] * shape[0]\n",
" b = dr.clip(y, 0, shape[1] - 1) * shape[0]\n",
" c = dr.clip(x, 0, shape[0] - 1)\n",
" return dr.gather(mi.Float, data.array, a + b + c)\n",
"\n",
" z, y, x = dr.meshgrid(*[dr.arange(mi.UInt, shape[i]) for i in range(3)], indexing='ij')\n",
" v = val(x-1,y-1,z-1) + val(x-1,y-1,z) + val(x-1,y-1,z+1)\n",
" v = v + val(x-1,y,z-1) + val(x-1,y,z) + val(x-1,y,z+1)\n",
" v = v + val(x-1,y+1,z-1) + val(x-1,y+1,z) + val(x-1,y+1,z+1)\n",
" v = v + val(x,y-1,z-1) + val(x,y-1,z) + val(x,y-1,z+1)\n",
" v = v + val(x,y,z-1) + val(x,y,z) + val(x,y,z+1)\n",
" v = v + val(x,y+1,z-1) + val(x,y+1,z) + val(x,y+1,z+1)\n",
" v = v + val(x+1,y-1,z-1) + val(x+1,y-1,z) + val(x+1,y-1,z+1)\n",
" v = v + val(x+1,y,z-1) + val(x+1,y,z) + val(x+1,y,z+1)\n",
" v = v + val(x+1,y+1,z-1) + val(x+1,y+1,z) + val(x+1,y+1,z+1)\n",
" return v / 27.\n",
"\n",
"def box_filter5(data):\n",
" shape = data.shape\n",
"\n",
" def val(x, y, z):\n",
" a = dr.clip(z, 0, shape[2] - 1) * shape[1] * shape[0]\n",
" b = dr.clip(y, 0, shape[1] - 1) * shape[0]\n",
" c = dr.clip(x, 0, shape[0] - 1)\n",
" return dr.gather(mi.Float, data.array, a + b + c)\n",
"\n",
" z, y, x = dr.meshgrid(*[dr.arange(mi.UInt, shape[i]) for i in range(3)], indexing='ij')\n",
" v = val(x-2,y-2,z-2)+val(x-2,y-2,z-1)+val(x-2,y-2,z)+val(x-2,y-2,z+1)+val(x-2,y-2,z+2)\n",
" v = v + val(x-2,y-1,z-2)+val(x-2,y-1,z-1)+val(x-2,y-1,z)+val(x-2,y-1,z+1)+val(x-2,y-1,z+2)\n",
" v = v + val(x-2,y,z-2)+val(x-2,y,z-1)+val(x-2,y,z)+val(x-2,y,z+1)+val(x-2,y,z+2)\n",
" v = v + val(x-2,y+1,z-2)+val(x-2,y+1,z-1)+val(x-2,y+1,z)+val(x-2,y+1,z+1)+val(x-2,y+1,z+2)\n",
" v = v + val(x-2,y+2,z-2)+val(x-2,y+2,z-1)+val(x-2,y+2,z)+val(x-2,y+2,z+1)+val(x-2,y+2,z+2)\n",
"\n",
" v = v + val(x-1,y-2,z-2)+val(x-1,y-2,z-1)+val(x-1,y-2,z)+val(x-1,y-2,z+1)+val(x-1,y-2,z+2)\n",
" v = v + val(x-1,y-1,z-2)+val(x-1,y-1,z-1)+val(x-1,y-1,z)+val(x-1,y-1,z+1)+val(x-1,y-1,z+2)\n",
" v = v + val(x-1,y,z-2)+val(x-1,y,z-1)+val(x-1,y,z)+val(x-1,y,z+1)+val(x-1,y,z+2)\n",
" v = v + val(x-1,y+1,z-2)+val(x-1,y+1,z-1)+val(x-1,y+1,z)+val(x-1,y+1,z+1)+val(x-1,y+1,z+2)\n",
" v = v + val(x-1,y+2,z-2)+val(x-1,y+2,z-1)+val(x-1,y+2,z)+val(x-1,y+2,z+1)+val(x-1,y+2,z+2)\n",
"\n",
" v = v + val(x,y-2,z-2)+val(x,y-2,z-1)+val(x,y-2,z)+val(x,y-2,z+1)+val(x,y-2,z+2)\n",
" v = v + val(x,y-1,z-2)+val(x,y-1,z-1)+val(x,y-1,z)+val(x,y-1,z+1)+val(x,y-1,z+2)\n",
" v = v + val(x,y,z-2)+val(x,y,z-1)+val(x,y,z)+val(x,y,z+1)+val(x,y,z+2)\n",
" v = v + val(x,y+1,z-2)+val(x,y+1,z-1)+val(x,y+1,z)+val(x,y+1,z+1)+val(x,y+1,z+2)\n",
" v = v + val(x,y+2,z-2)+val(x,y+2,z-1)+val(x,y+2,z)+val(x,y+2,z+1)+val(x,y+2,z+2)\n",
"\n",
" v = v + val(x+1,y-2,z-2)+val(x+1,y-2,z-1)+val(x+1,y-2,z)+val(x+1,y-2,z+1)+val(x+1,y-2,z+2)\n",
" v = v + val(x+1,y-1,z-2)+val(x+1,y-1,z-1)+val(x+1,y-1,z)+val(x+1,y-1,z+1)+val(x+1,y-1,z+2)\n",
" v = v + val(x+1,y,z-2)+val(x+1,y,z-1)+val(x+1,y,z)+val(x+1,y,z+1)+val(x+1,y,z+2)\n",
" v = v + val(x+1,y+1,z-2)+val(x+1,y+1,z-1)+val(x+1,y+1,z)+val(x+1,y+1,z+1)+val(x+1,y+1,z+2)\n",
" v = v + val(x+1,y+2,z-2)+val(x+1,y+2,z-1)+val(x+1,y+2,z)+val(x+1,y+2,z+1)+val(x+1,y+2,z+2)\n",
"\n",
" v = v + val(x+2,y-2,z-2)+val(x+2,y-2,z-1)+val(x+2,y-2,z)+val(x+2,y-2,z+1)+val(x+2,y-2,z+2)\n",
" v = v + val(x+2,y-1,z-2)+val(x+2,y-1,z-1)+val(x+2,y-1,z)+val(x+2,y-1,z+1)+val(x+2,y-1,z+2)\n",
" v = v + val(x+2,y,z-2)+val(x+2,y,z-1)+val(x+2,y,z)+val(x+2,y,z+1)+val(x+2,y,z+2)\n",
" v = v + val(x+2,y+1,z-2)+val(x+2,y+1,z-1)+val(x+2,y+1,z)+val(x+2,y+1,z+1)+val(x+2,y+1,z+2)\n",
" v = v + val(x+2,y+2,z-2)+val(x+2,y+2,z-1)+val(x+2,y+2,z)+val(x+2,y+2,z+1)+val(x+2,y+2,z+2)\n",
" return v / 125.\n",
"\n",
"def soft_grad3(val):\n",
" dr.set_grad(val, box_filter3(dr.grad(val)))\n",
"\n",
"def soft_grad5(val):\n",
" dr.set_grad(val, box_filter5(dr.grad(val)))\n",
"\n",
"def render_sdf(data, pos=(0,1,-2)):\n",
" scene = mi.load_dict({\n",
" \"type\": \"scene\",\n",
" 'integrator': {'type': 'direct'},\n",
" 'sensor': {\n",
" 'type': 'perspective',\n",
" 'to_world': mi.ScalarTransform4f().look_at(pos,(0, 0, 0),(0, 1, 0)),\n",
" 'film': {\n",
" 'type': 'hdrfilm',\n",
" 'width': 256, 'height': 256,\n",
" 'rfilter': { 'type': 'box' },\n",
" },\n",
" \"sampler\": {\n",
" \"type\": \"independent\",\n",
" \"sample_count\": 512\n",
" }\n",
" },\n",
" \"emitter\": {\n",
" \"type\": \"envmap\",\n",
" \"filename\": \"Nicolet2021Large/scenes/suzanne/textures/kloppenheim_06_2k.hdr\"\n",
" },\n",
" 'sdf': {\n",
" \"type\" : \"sdfgrid\",\n",
" 'to_world': mi.ScalarTransform4f().translate((-.5,-.5,-.5)),\n",
" \"normals\" : \"smooth\",\n",
" \"grid\": data,\n",
" 'bsdf': {'type': 'diffuse'}\n",
" }\n",
" })\n",
" return mi.util.convert_to_bitmap(mi.render(scene, seed=0))\n",
"\n",
"@dr.syntax\n",
"def mesh2sdf(verts, faces, res=256):\n",
" scene = mi.load_dict({\n",
" 'type': 'scene',\n",
" 'integrator': {'type': 'path'},\n",
" 'sensor': {'type': 'perspective'},\n",
" 'shape': {\n",
" 'type': 'mesh',\n",
" \"name\": \"mesh\",\n",
" \"vertices\": mi.Float(verts.ravel()),\n",
" \"faces\": mi.UInt(faces.ravel())}})\n",
" z, y, x = dr.meshgrid(*[dr.linspace(mi.Float, -.5 + .5 / res, .5 - .5 / res, res) for i in range(3)], indexing='ij')\n",
" ray = mi.Ray3f(mi.Point3f(x, y, z), dr.normalize(mi.Vector3f(0, 1, 0)))\n",
" si = scene.ray_intersect(ray)\n",
"\n",
" values = .5 - dr.select(si.is_valid() & (dr.dot(si.n, ray.d) > 0), 1.0, 0.0)\n",
" grid = redistance(mi.TensorXf(values, (res, res, res)))\n",
"\n",
" # Gather voxels close to surface\n",
" indices = dr.arange(mi.UInt, res ** 3)\n",
" near_surface_indices = mi.UInt(np.array(indices)[dr.abs(grid.array) < 1.0 / res])\n",
"\n",
" # For each index, get the world space ray origin\n",
" ray_o = dr.gather(mi.Point3f, ray.o, near_surface_indices)\n",
" angular_res = 16\n",
" n_angle_samples = angular_res ** 2\n",
" r = dr.arange(mi.Float, angular_res)\n",
" u, v = dr.meshgrid((r + 0.5) / angular_res, (r + 0.5) / angular_res)\n",
" uv = dr.tile(mi.Vector2f(u, v), dr.width(ray_o))\n",
" ray = mi.Ray3f(dr.repeat(ray_o, n_angle_samples), mi.warp.square_to_uniform_sphere(uv))\n",
"\n",
" # Trace these rays and find the minimum distance and modulate by sign\n",
" si = scene.ray_intersect(ray)\n",
" min_dist = dr.full(mi.Float, 100.0, dr.width(near_surface_indices))\n",
" j = dr.arange(mi.UInt32, dr.width(near_surface_indices))\n",
" i = mi.UInt32(0)\n",
" while i < n_angle_samples:\n",
" min_dist = dr.minimum(min_dist, dr.gather(mi.Float, si.t, j * n_angle_samples + i))\n",
" i += 1\n",
" min_dist = min_dist * dr.sign(dr.gather(type(grid.array), grid.array, near_surface_indices))\n",
" dr.scatter(grid.array, min_dist, near_surface_indices)\n",
" return redistance(grid)"
],
"metadata": {
"id": "fOdZ6oWu_WKT"
},
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from argparse import Namespace\n",
"from tqdm import tqdm\n",
"from collections import defaultdict\n",
"\n",
"def make_refs(imgs):\n",
" rfilter = mi.scalar_rgb.load_dict({'type': 'gaussian'})\n",
" size = imgs[0].size().x\n",
" refs = {size: [mi.TensorXf(x) for x in imgs]}\n",
" while size > 4:\n",
" size //= 2\n",
" refs[size] = [mi.TensorXf(x.resample((size, size), rfilter)) for x in imgs]\n",
" return refs\n",
"\n",
"def train(args, data, film, sensors, ref_imgs, fine_iter=420,\n",
" lr=1e-2, lr_decay=1e-2,\n",
" reg=([128, 256], [1e-3, 1e-4, 1e-5])):\n",
" set_film_size(film, args.resolution // 2 ** len(args.render_upsample_iter))\n",
" for s in sensors: s.parameters_changed()\n",
"\n",
" folder = f\"data/{args.name}\"\n",
" os.makedirs(folder, exist_ok=True)\n",
"\n",
" scene = mi.load_dict({\n",
" 'type': 'scene',\n",
" 'integrator': {\n",
" 'type': 'sdf_reparam_direct',\n",
" 'warp': WarpField2D(Grid3d((args.size, args.size, args.size)), edge_eps=.01),\n",
" 'bsdf': {'type': 'twosided',\n",
" 'material': {'type': 'diffuse',\n",
" 'reflectance': {'type': 'rgb','value': (.8, .8, .8)}}}},\n",
" 'emitter': {'type': 'envmap','filename': args.envmap}})\n",
"\n",
" params = mi.traverse(scene)\n",
" sdf_key = 'integrator.data'\n",
" params.keep([sdf_key])\n",
"\n",
" opt = mi.ad.Adam(lr=lr, mask_updates=True)\n",
"\n",
" opt[sdf_key] = data\n",
" params.update(opt)\n",
"\n",
" bbox_sdf = make_box_sdf(opt[sdf_key].shape)\n",
" refs = make_refs(ref_imgs)\n",
"\n",
" vdb.write(f\"{folder}/0000.vdb\", array_to_vdb_grid(data=opt[sdf_key].numpy().squeeze()))\n",
"\n",
" seed = 0\n",
" metrics = defaultdict(list)\n",
" pbar = tqdm(range(args.n_iter))\n",
" n_sensors = len(sensors)\n",
" for i in pbar:\n",
" loss = mi.Float(0)\n",
" targets = refs[film.crop_size().x]\n",
" for j in range(n_sensors):\n",
" img = mi.render(scene, params=params, sensor=sensors[j],\n",
" seed=seed, spp=256,\n",
" seed_grad=seed + 1 + n_sensors, spp_grad=64)\n",
" seed += 1 + n_sensors\n",
"\n",
" view_loss = dr.mean(dr.abs(img - targets[j])) / n_sensors\n",
" dr.backward(view_loss)\n",
" loss += dr.detach(view_loss)\n",
"\n",
" reg_loss = discrete_laplacian(opt[sdf_key]) * pick(i, reg[0], reg[1])\n",
" dr.backward(reg_loss)\n",
" loss += dr.detach(reg_loss)\n",
"\n",
" clip_gradient(opt[sdf_key])\n",
" if i < fine_iter:\n",
" soft_grad5(opt[sdf_key])\n",
" soft_grad3(opt[sdf_key])\n",
" opt.step()\n",
"\n",
" opt.set_learning_rate({sdf_key: lr / (1. + lr_decay * i)})\n",
" opt[sdf_key] = mi.TensorXf(redistance(dr.maximum(opt[sdf_key], bbox_sdf)))[...,None]\n",
" dr.enable_grad(opt[sdf_key])\n",
"\n",
" vdb.write(f\"{folder}/{i+1:04d}.vdb\", array_to_vdb_grid(data=opt[sdf_key].numpy().squeeze()))\n",
"\n",
" if i in args.render_upsample_iter:\n",
" set_film_size(film, film.crop_size().x * 2)\n",
" for s in sensors: s.parameters_changed()\n",
"\n",
" params.update(opt)\n",
"\n",
" metric = {\"loss\": loss.numpy().item()}\n",
" pbar.set_postfix(metric)\n",
" for k, v in metric.items(): metrics[k].append(v)\n",
"\n",
" return scene, metrics"
],
"metadata": {
"id": "zmHv2L49w6NK"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Training"
],
"metadata": {
"id": "KxWvCa9bwzPb"
}
},
{
"cell_type": "code",
"source": [
"args = Namespace(\n",
" name=\"amass\",\n",
" size=256,resolution=512,\n",
"\n",
" n_iter=144,\n",
" render_upsample_iter=[64, 92, 128],\n",
" fine_iter=64,\n",
" lr=3e-3,\n",
"\n",
" envmap=\"Nicolet2021Large/scenes/suzanne/textures/kloppenheim_06_2k.hdr\")\n",
"\n",
"film = make_film((args.resolution, args.resolution))\n",
"pts = regular_points_sphere()\n",
"sensors = [mi.load_dict({'type': 'perspective','fov': 39.0,\n",
" 'to_world': mi.ScalarTransform4f().look_at(mi.ScalarPoint3f(p[0], p[1], p[2]) * 1.1,\n",
" mi.ScalarPoint3f(0, 0, 0),\n",
" mi.ScalarPoint3f(u[0],u[1],u[2])),\n",
" 'sampler': {'type': 'independent'},\n",
" 'film': film})\n",
" for p, u in zip(pts, quat_mul_v(quat_lookat(-pts),np.array([[0,1,0]])))]\n",
"\n",
"verts, faces = read_ply(\"15162.ply\")\n",
"verts = einsum(m33_rotation_axis(0, -np.pi/2), verts, \"r c,n c->n r\")\n",
"\n",
"ref_imgs = render_direct(verts, faces, args.envmap, sensors)"
],
"metadata": {
"id": "DT0w5IvBDH4u"
},
"execution_count": 33,
"outputs": []
},
{
"cell_type": "code",
"source": [
"imshow(cv2.resize(to_image(make_mosaic(np.asarray(ref_imgs),nx=6)),\n",
" None, fx=.5, fy=.5, interpolation=cv2.INTER_LANCZOS4))"
],
"metadata": {
"id": "QsgVsjj4P-yV",
"outputId": "4b4eae06-8e3e-495f-aafc-210201e14dd0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 401
}
},
"execution_count": 23,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABgAAAAMACAIAAABttDubAAEAAElEQVR4nOz9y5LkypYliO2XqgIwM3ePiHPuMx/d1dVFEQqn/BsOOeWMwjH/jV/QA5JNTqqyKjNv3vOICHc3M0B1vzhQj+i499wsZrMp1d0iqRISAjMHYIAZAN177bXWxv/T//H/EIBMRADmkZnE5GMgAgIkYiQMc/dYtxOLABJAMlFEmmvqgExAdHckKsKZ2YeNPgCTkEqrRSSRxlBMQ0B3l9rU3HS4R62l1uqmAJAJLEJEkeDhbpYREW4Wqvr8eu19bKfLsrTb/X46nS9r+/D+vbn246BSl3UbvRNiqVKFxrHbcVdVYa5t6X1Xy+XydHp4dzlvUsrzzz/e9+P8+K6rqXaUxXRQWCDv+17THh4fy7peX5+P66vpWCt9/Pj8sNXT5VGBzfPp8dzO7xDx9vyxW25LS6nLupr78+dnMzez8AzMtZTtdCYGHYppEOHukEksAAmZnoDEtTUpFQCO49BjDxsfns5yeg8Irsf19eraa22RCbqrOnIlJkJEHz3AVCHjfD4bUGj3pLosrppIBBkeQMxC2e+Xy2XQsh93SKxFiAgJWw6qCyJFJIQ5EGRguKnej90tlqUhkXkUIUIUQo0wTyFQh0hgzHCn0kotlIFEETHUBKC0Zm7ppn3nupHI6FqXRpCbJCK+dgMdkUAsiYmATNiPw5GPQ6/3vi2ynba1VciUUhLQdKiqBwwzACgitZa2bglwve2vz5+3pTxcLl3t2HePcLPWWkZExOh9qeX/9t/9P5fKpQoCZAJklloeHx7XZRUpTIyICYAAxIxIAAgAkRGJAOAe5haRmZkRnpkRSMTMGTFGzwxhYREWRiAkImaAuL6+fvr08/PLpzEGMROzdkXI5UTLubAkFyZqDIvUykREUnCFjP34gQvCaKb46dPnvfdSBAn323HsHREBAAnXtpy21TMiEhDczNzcHTGlMIsQ832/uw+kxAKYhEFYoNRSWq21RYKbImU6MBRwBKTQhERmQSQAEmEplYlKqcKipkRca8U5ANzNtItUImKmIiKlIKCZ6ejzHidEKYUQkYiJS5Vam/Z99H47DmQ2UzfL8Pv1aqO7W0CeTpff/+2/+/6v/m1t6/NP/5D9Y79f+95BYOSeOEbaCGfCtrZaS62riFgPSHf1yCx54lwAoI/R+3EMfX55verRyUgQEYXg3J6WuqbcJAEOef14e365SW3n8+l8asSk2u/j8xFqnklgL93vJk1a4aUsgIQE61ozIgO2rY1uHnl+OKXg0EGYiIrorsjCSKgj1DwsmYiZiQHFRaTy2rsfo/eu6opADFKlQKJIZRaASHCqToQMNIZ7ZCZIEeHCRbA4Y/Uj9/0ekUTkOf63/+5/T+B12V5v98/Pzx5Zhdd1uWzbsrSMMLc+rDAWQmFyt8wAt0xngkDZnUc/MI2JRIgANcB0QARAZkJmQCYBJKJZeqZ6Pr1/j0R2XM+rJNfa1j70508vqmrm7t5a+d/8m799PDfQG5fiOhjDgwgi3TwiSISKA9ByYZHkFh7Wr27++dPzx48fQzUhe+ByefTjGDaWVm0oFfnu+18RUinFM8fQCMeyoo+1ckJu5/O2nG7X11KYctRSpEgmLQVLXdT09aeP2+Pl4btfJ5/2Y4x+9OMobclEd1UdmFAKckSEJYCOrpZtWft+IwQ7OlZhhGRprYjU5XTGDCJU9cxI5MzEUKHst5ePP/5E/bOqYUZ3CG5MqEHZtnU9+/0F9FZPF2oXTbwrWN+P62u/fu7mv/qv/u1vf/83WxPd75dTI6JPz9f79TkjzyV4OZ8fngIgxn5/ebl/+qfTQort73+8Qmn/5r/+24eGraSrVZFMcBDVsZ4fNfDzj3/YKkmVv/tPP2wVM/zIgsvl1OQ4jvv1ajbOpy3GuKs/XC7r+fH9u6d//Mc/vL5+9kgw+/Vvf/9f/zf/ttYGpgaZFn2Mf/93/yEjnx4eSLi2ejqf0/wf//7v76NXwrZubTs9f/pontfr9brftQ+3cRwdgd//7q9//av3km6q3717Op9Pf/jhx3p6ALNhcT5txzHatj2sbd2WbV3bcvo//1//L++f3r97er8up6H9frwYmIeNQzMgI9B5hQehyhWSXPFwHO7uHq6RAQCIBEjAWJaybKcHkTr66L2b6fAx4yUhWdf1/dP7h/OlMmCqHsdxfT2uzxFBXNI9MoMZiNw9MoglM80tEgIgI93MMwnJEyy0qw5zBxAWzxhjqKu5I9LazoxUpCFikUpEmTHURIQQLdJN3b2IEJH52/yQmURYRFqt6mpDSymttcv5/P7DB0aw0SMCMopIZCLicjrXuohwuvkYlgEkhBDaISMiLBKJikgV1OMwU0REZkICIlUjRCEAAFNFJkR0iwgjYiSWUiM8whApPHDO0wgIqDYgkggRwTyYmIgiZljFc0HNAUGkIBERR0RkRkJGEgITgut+3xMRWCLnrIWAkB7uDkRIGAHhlhn3+37c761yqUtkEDEgAxIQlVKYOSL7GGYmzLUWRJxRLhAjCzO727F3Yq7LUoWXwh4xxlB1iyDiUmstwoRCdN/vZpaQbm4ehGDmCFCKMMsMDGqRJigirRZEAhJIV4vMyAQABESYZ0WERAi4H7urerhHvNuWREAkgETACLcIACzCwoSIIoKE4Z4Bme5mAJjzyY4AgJmQmTR/BkAiRCIA8DGu9/vcAyB5REbUWghyDGWRGVkBgEdEzBuJRSQiShFEzHBGQkLVEQlD/ePn5wRYakVCHWM/ug6dp8osy7IkYCKcL5cP795t60JETEiE6dF794hSxFWH6u31uR+7R0QkACRAAkRkZGZCAkSmmu392I/9OA5NTwiRIoUjQ81suLkjIgu7ORJIYRFmwn6MSEPCUqSWgsiJERFmamoYHBaeAYDSGCAykAOLFCKMCGBkkqfLh8fLU2MpwpARQEPdIs+nlQEIgBDcPdzVfZh3czdLM41ggGXbLuu6CEdpgTzG6Mc9E2prdV0AScfo/XALZgLIiGBiKQxuTCiMiEkitTYEjDAkSUwdI8L323693l9vNzWDzJzJWwJXocLzt+vHGNoDnRkRiJKJGQmoIjO+hcJMiDQvJzVLVDPTboTIIkhJnMw4ukopYS5UCm0RdOsvgGge+70DEDMRICGmQ1jWUrd1VdXX16tn1iKESMyECISIM9SHT58+/j/+7/89/Ov4LzLyn38H/5l3Zub19f/88uYvl3+5cwCIL7v6uvLXT6F/5sC+bvLLo8Jv3vk6cN6JAPLNCr9c7b/YmIc6AAzAAOLLOwywALQv6ySAAjiAODAhRERtDcnDEzBQeKISQDQOTY9aSqslESNSPcxdiCACiCICIoglwhFRmPtQQCilRCYkeCRTAKINB0hAPI4DABGpFI4IVWMiRJBSANDNkCg8TM3day3M4D5jA7zfb1JkXZa+72urx7ET04yZ3JSZMhwhwwzCTI1IPOEYx/16q8t6fnzf1iXdqZbry+c//PDpf/f9r5MrIFtCAAwDQCVib9vzy+u7IqMfmAN1vxsTAiBBxkOBvZ6TmywnZj72O9iu5iKQkUVEmFyPNEdEHxpSkGhZqnvoCM5IxIzICIQoLEVKInp49gOlMhHUgkUKc2010sdIRqBaAcFVhYrU4gnqQRCcAQmAiB5MSERE5dDIiLKsrfAYwx2S0FSfLpcsa2GJWCCcmGthQPJuYV4LEkIQV6ZwCuLGKNCPwQEYZojk7urBa1ta6+pq5q6MGJGJDJkRKbVmeBAjheogZxsDiCyJISshFhYwNd89WQSQoVbv6gGCeTrVYwSVRpnR4KFUhAxzlyitAgAzEwgSD9WKaO7mAX0kJHLtvatpGMwpqhXxBGdmYstEgNrKsiwZ0eq2NCEmQmaiSKilihQWychMIEIiAkAEQIREEhQkykwzJ+aICA9zo8yYayORFBZ2UyRmIhYBQGJBQojYTqcJ1nz69FFVmaXUAmHruUiBTAqHDANWzIRIyNUpIgzRIAsCIaaqqQ6kZCDAnJFeZDISMZVaGpOaIWJk3e+7uwNgBoqUti4e8fraCZMCKJELcyMphYgBsIgggJmlh4XpGMtSuS4MAjAjEATA8CCkCKfaliI6Rj92Ys4EJjLtzAyQmREBahoRIoKIHjF6L0WIGRFn6CgiwhKu+74fow/zvt/u91uYFwREJMaAIADMMO3pitlkrVcd2+OJi9zHzd3NwhOKsKldX2/L2oaaSCFkxswaPtLitgBUXOrCpWxbUC2VPj8f1i08E5gxA7rdAQ4uzCTrtpnFfT/6QaqHFE4fnQwrIhJTGXmEKwVXETX1iFpkdILIpVUEgkRhESlcCzOHKgYwNGUHigwIT1VDSoICkJAEgWbh3hECMDBxRpClIRIyCjEhg6lnehwA5EQhhSjRLN2SESGgwNJogRMw077fk5KQCHFpi9Qq+7EujYiWWpcqrZZWi5vdry/IItIKJUNAmrmnKwvXZX09YvQemREQAOlYGBFAAxhRiAEp3Ci9MHkAQIQ6IgDAdtqUI9N8DGyNEdMNMmotjC0Rej/4cU0nQE4UC08gIRzHPky5NNqaJ4Ub1ZXXiyARi95fCLwRRqGMUE8ELK0d/Rj9COS//v3fbOtmoy+FTQ+R5fV2B+tm+vT+1xlgvd/003Hfvcr7p8v67tfIBRM4x7i+6v5aWmunRwwX8R6d0iETyzr2e2GBTGKq6Hq7eqY7ACExz2IAgGOtmelEgszEhJiZGVBEnGAmVAGZiJDAiCLV8AniWchd86bxh+f93vvf/O3fhA9uKzACAJaFdRBRoCARF2mQf/yPf7e/Xovw0+NJ7bHWFsgkNQFfVev9WNq9bucjEOzoah50uL/e7pfHRqGYlKNjCjMbLmHKbUOunPru8WH0++3l1d2GFzPQUIB7sQz3Wui0PlyeHtLhwU2118pdnZe16mFHl/PD4/vvl2UtzA5JiI5+vd7DY6iZmwhHwH67acStD5aybDXU+n4MNe19v73qGIh43randx8S+PLuqRHdnz8XgQKa/fpweXRpXW+lCCOs20K1dc/+encLpLrVtdUGCC/Xz+YdmTPBhqcjJlAUhgaAjj0BgDzRMRHn3J0JRISMiG7OjJeHh/PpYYyRQVyaKubdA5yS1nV59/C0LSsTQli4pXuGlVrdEyAjIAETINKHKTNP9GeoIjEg3W43Ym6tRWSEReTQoa6OFBmImJhASZDm2vXe2ioQkBThb4ltZkRILYKQEJBJxEjEgG6Os+gHGAkBSEDvnp7asgjzdtowA8IxgyBLKUUoIob59fVlaWPbtkxXVwAQZncnxEyaVZI6MzAIJkgiZJqYhLtFeIQnwoRebAxmdlXCAEiPAEQ1w5xpeta3qDIBAHLeRhURBZBYInJCCRDxFhABuIWlSinIwiwZwYnIGW567G5q7sCFEuediEwIkEzuFqZlWVnYjdKNiUh4qB96Q0TzXNZ1204iIiIAkPAGUakqZCDScRwJWetSBDOzlDaTdB1HKI2eoabmw5yZS1uyd3cjhDCLTJh1O4B5PRABEAVgOIxjMNFw1yKiMRy2dcGE9PCIhCTkTPBIEUrAiGDEObUlS0So56w8ImREIiIhImAfSojCDIjmjgFMLJXDMN7AGsxIDwcA82CWCS1FZnhiJDFRqSK6H/tQA0QgYiQ1nw/5tEzAWfVBRCIKj0iPQECMCESExMQUYl62zFhXQqJPn5/3fWcRQqylAEAfQ9XU3CITEpGY+FXkOA5CqLUKE0Da0KP3pbXMIKJlXSMze0dKBEigyEBKipyB3kS1TIexRG3ej66G6AAYGRMeCg9iTnV3Z0IqQsh97xNkBA/KMAgiSABPN40wSo+wsHAkQsbwQEACiQzPiEwgfHh69+Hxu4fLmRIww8OHBVKurZTSIBzSiTkSELAQl0otcxx96GiQ27KcH56IONwTADNbFc4GzJgg7rK007q4nfqxqyq8JQ8gRQotCFlFCpOIAHFCIhMRqeqe5OF8lmXdHh4eMtPd1Swjmbks7eF8qrX0vY8x+hiOiZAzy1NTDQP2zAQHJAiIcJ+gjDAGSXhCWgBQOiAkggUAEbOkAxDs9moWSAwIrgEERJSZQAhEgMlAy7q+f/90u+5qZmYAkAQBkQkYAEhMlJj/c2bq/zq+QWF+iQR9XSG/vElf1kwA/0uwzleQ6CtmhH9pha8Lf4YB5Rc05+ty/OmG+A08hN8sfP1H/wwO9T9x5C++lv/8CAD/Bv35unkAxDfL8xsQRJhkhswspRhoBgQmZCKRZ0Y4EddaWAoyH/d7RoyhuysTRmQRZmKA1GE6dE6EpVYuhdwAKCPUHAClNh2dmdMsAZC4FlHVt5QZgAAj091dNQE8PDIispRqESxSS/Sux75fzmdDMNOhWrDM6EF7r63OuUGEGeS4TRwLhOX19frXTw+MCYn34xAmG+Pnjz/3/Xb57jevn3N/+ZyZ4W4+0hWsx7FfzmslwLYs53Np2/X1hSCZuEjyuno5HWNcto1rhetdzSqGjR0Q7q8f79d7kbI9PESEmWUkIZ/OZx0KYZmR4RE5jt10rK0FSyEOVQtvrWCTYz/23uH283k775AAgcg6RiQEYhIypAeoqk0akUd6REQtTERAJWfmWmsAHtcdgbftVBsGYkIkAxElOAMCywCkxMhEJCkVwix0act+2yGJSk1EcgjkAnbX1ADwBEA/9goWZQVkETY1D3M3gpDSPNNNlUAYk2jbmrCwMJXi7pjobqWsl1qP/Q4BHghADsIVpKSbSmmBOEZPNyASYmZ21wRiylZbuEXwJA9EgIeqaboTNoioUrA1NaO3O2kZvSdAXZfTtp5OaynCRMLMzJlIzABZpEQmRAAiEdGsYmUQMRHO4L8U5ATI9IgSJSMTMiLcLdMJEYgR3yAgJkYphJOWA6356XQe2vtxIGKpBciR4i16Vs9CmB4WgA7ogTjGyMRCCBGuLkUkxMNRABCQcOK2EW8l3aXUdW2RScJcKJ7dh2dmP0Y7LW1dgEJ1RBoRr+cFCCPcTDOTiImZIoZreAAmvBX5ciansxIbGRZGjmP0UiuLuPuk3UUClwbps6TGyJmeiJHppmYDkRAJE5i5lho5o+fY9/sxxu2+3+/78+3lvt/Q4+Gy1iYi6B6QqOH77eW4vSCVof7D9YeVRQYdcTvgAAWg9IEACBH79SgFAKKUUloQFY+MPPbAoCSGUhcKWr09nM6bLhYenlKLEwD6GB1MsGBZ6JJnYX69XTWMGRzc8Tg9bQCSphheimzLwkzX2wtJohUkqoXdfXQ3z1YBKQmyEGlCwUKMiHh0VXWzJCTIBCBMwIQ0HmmEygSu6iPBsZTSWiEQRCZCD4/0SGcQcAJCBCKCwASWWisjYzAwZjpiciHAIBEmMo9UZeHzaWNiwkTAcN3vviztfL64mzAJGkFKoQ4xPAEZuXgePlFSwFkMCCR3F2JiJMSISCSEACRmfCPOQb6+vJQq63b2MRCHjTGGLgUGCZU687TrPnSMIoJUqBaQLY7n9DuIQKSZVUhBdB8JAOPgWh0g3UmVMRAxiBg8bCzLOrH7dx++b8tKzCzCpSA4mLbabPQAXNZt3U79fgNMqYfuz9I2KWu6E2F/vfX9VaTWtoIsgcihflwTZD7hj32Xra7bKWzkcQ3dy/lp3Mboum1bqQWQ+/0qzEgMEZieIciAiUEcSLbvwpZUBDORMvK4XgUtpKbUYJTCrPzz3/1TH/p+36Uup4dH9lP2zwVNCgZmppBVsFKF+rW//PTHQOr7ed93Lq0tK4MT11pL34/r9XZhsXG3sXviveNdXepSKfD42I35tHFbvSxUzvb6SkiaYLdnpsz0Y++FUAMBkVOt3/coTXBbFgBaWl1PT4Xw48tLqB69Y8CyPYUcl/fvl20rpaAbEjFiUry8PpuOd+/e1bYaAGCqakE4r9WAgaqlWe9jaNgYoyOXD+8//P53vxeREXl5fFxSXxYG18u7XyXJ/np7PJ3gtN1vt6Wwue3HVSMiMVRLbUzgpq+vz+5GFZA4RvqIjJxPffBUGIRBGAQIs9SdQMTIQMjEYq5EeDqtrdVJYSOhKuzuxOTDlmV5vDwtbRHCdB16uA3rOxBJWzAi3ZHZ3XUMJJxP0d6HhRPx6EPNIlOYEyAgItzDzfT1fm9rQ0JITPCYmT9h18M9THSpJ5gIYwIhuYdZlFoQKaXgxO6Ra2tmpkMBZ20Of/XhV1srAEAsRABh6Y6QLFQLESIkeN9ve8/TOcPNBhOX2hCAERNgmIpIWxZhYgKI9IicZMAMVc+IdM3IblaESykJEIkBBMiQQIimFmEZSYQZYYgAOesxTEQsxBTuCBNFjQQESHMPD2EmZpiMXBYEgIlrZCZAqrmpmiEJlzJjP5gwRmZEumt4VFiIyBEjsy4LMQ9VArTwHGqqY4xSOMMmyEYALDzDMLee4eYeEYmYANsmtS2ZOY49MxBhQls0Y4/wAEDIAEB6e34CAE4IIRNmMk2c6QngHp4RngDBQ+/HqFXCI9xZOBLcfCIs5kYALCUhhTnmbOFRRSblR5iIGRCBo48RCYk4OdGIQDSrV1Iy1HzOLuTgHoQAkIRITBDhHhEOScTc2iJFIuLYd0AEgPBI9xmlIKImEgUxE9IsGkECIkZkpCOATWI8JROT8Hlb+9F/uu8xRhFh4rf7MdLDzTwBiCjcR+/rukgRQgJEhEiL+37ftq0UZhYpEohzfXjjMhEDBkZmMvO8CpiYaQ5EwAxIyjfStyckuIWbllYnPTwDR9dEgEiETATXcEzAxAQJPlTdEyPSMymcEBKQYDKkwh2RL4/vnp6+u5wvixRI96AEYIJW+XS5MLFp18O72iTfnE6X8/mU4WMol8KEBMhtYSI9DgtH5vmdmPvMFZhAWBAAWy1v2CJmJhLVImE2Lx7IZEmuVUohplkaVDVeyd19VURS92M/xlAk2pZlW9ZlaWtbMuLoY37DCWk6xtBDh4Mxc+/9dryGTs5BYhIAEGAhcXaPyCk2SQBMEkrCSRwCCiQ0s8wAAGGpZat16f0WaAnpCLe+4ydY6vLhw4fX19fbcX+LjN+C5BlnQqT/T8nM/3X8jxr/HIrxS9AE/5nlOSbOEv/Zlf8ihecvfsQvqUb4i01++Vf8gh99ZQB9iy79/2v8j4V+vn76PKRv2UwTNVMA+kIOAgAGEEZU8PQYqgtCFRkWkOTuAB4JRYqUAly6GbmbDgQURgPWMYho77otjYhKLbf7fZht60osRGweOnpEMJFH1NpaW9yNWSJThGstRMjE7t5Hj8zjOOaM5RGQUNtCiLPANUm8LNGPY12W+aDPCEJKTEIgxMJUWvNxtNLqVgM4ItRCKKXIcbtdnu5Zyno6p+/767MNe319OT99tyzl4w/32/2u5gg5xiFC6Pb8k63rQnXjZfFIJEqAWis3LuvpSIYMoqAEIHC3dD1utwy112fdx6dj/I65tfVQf71el6Uu20ZISCundTPrQ9bYX19VLSw8c12XIqVSSG3hsd8O/fxcSQggAxhtFo0RghAJMSO0Z2YQpgiXwgAQOhKQ24rMYUosHqO1djpvkAF+IBpSIXCUQigBkGacHoGZEJE6lIVlVgWRXBZBLpg9QqqYIlAQiUd4ZCtMIFYaI7g5AIS5HcfSaiClHpymR/C2IZFIDffj6G1dpTQAiEwPK0F13ZhZ+xAhJGoinkBSQk2111KwNoKMcHdPCEgoIohkECliEfM+NAszR8RlaSJCTAmQ7oFYmM2s1orERLSd1tpqYUJEJq5SkcjcJ6tVmFHkrfiGxBnxVpVLInwDhhIQqSC4x4wsx+imI9yR3hIGBCwiLBUJJw2HiUup59PJTV8z932PpFoJ0jPSIdKDJcLNEgjZYRCVxOoaDkGhERkQiPRWO6ZJywZECJ81Rh19IGOpZTICtstpv+6hnhH9GO1Ul9MlHPf7FSkzUnsPSASkhcwGkXwttRKiW0hLRNSuEDY1ccJEgEAIkOEuMi9PeGM8ESEIYjIzS8lgESYidxcuVAggmXn+RpwMlGOMfd9fXq/Pn59frs+qw4YmGq8evKImODJx78f9ft/3m7TN1CiWj/uPYMYrUFBiQqRrIiEzIwtEgeSRGoCFONA1hwQgYC2SGES8LItbdOxmHJSEnIgIZaXioaBMScJ4vpzrUj59/txjWMUmawHEABvWuCFCa+uYQSENtzSzugqS7PcOhOdaGQDD3SxiVt7FPUPTFQpzJLkD4htgbxlqLpM9ZhgWXEqthalgEiIlQnoAJOUknwFCQnImEuHS1qU14TJ0DB2ew0ORsizFQUVEte/9CM91XdVsaZUAuo607m5MBKG36/7uVOvS3F0i+PxgyXtP85wF0ymCGH3EOApSxUyQSCCEJMzgSCACImYOAfD00fvjw4Ur655HP+73nRiX2tRhcsT2oS/3/v7dg1tgWxhR3Soj4zJ6Zvpp1mwZdH8ZJGlr9L1fn027EA2P7umRlOFutbC05en9e4zIcCE4jmPbNhuftmXdI9zUzFjq6bGK1GO/6XNSXcwM0yFg3G9EtL7/NbOU5VLyuN/uzMzLZR/P6WY6Irit2/3TTa+fUSgjuwXhpLQXZOMihQVYgJDsYKa6LiCFIzMBC9voVMSOewIgS7piGodJlVHOhKL9NRLc7ec//ri1up1OebxQ9BI35BZ+6FAhpQKY0JdlDDXV6+2GgHU1HaNxcl1z3WRZ7+b2fGd9BYS2XT5/epVSH94/ntjWpbglQEHEl58/lvUAWYlrnyzZY7/tY3cYgaW1GPu6Lsyc0p4um7Ds9/1yvnz4/kNGUqk/fvzcr1dVdS5lOS1tFUxwi0j3AMRjjL33zGQWrtXVzJMyI0OI1/XMQmDH/br3Mcbt1vf98v70/a9+/dvf/zWgWHprteRYWgm35eHDXd2vxyTrSKuAbL3bcZjZctrMRu8dKM3Mw4kpFRgxItw9PRIZK6JAGiR5JkBOrmLMPJUECTnTkaBQyczrbU9gNyVGRDDzcFvb+u7pcWnL1AV7dB29H0daJ4RSGzJNUiAcwxL2Y58qINMcwwJNhxJzbZWYAIGZPUKPfagChLmS0MTiAabwJ4lStevoqlbLIlyIOPANfk1IIpYi2oe/ST/KVMKYaSlyOV8ul7NAQoRPnqe7MImUUgsjuId7EGZFv7182u+vy7Jga5CFIAMxYSpYmQlhklgnOIAI5mYGiIwACCOiSFnWJQGZJcORMAHcDDAQkBBhYlAAU34NSMgECQCJxPimAUDAzAiARCQkTkRCICZmKW2WZ97oduPo/TjCDRCJGSZfCN5YMJNjhQAiHO7AgYgkBSMQJxkHJJOZj6Mfx47pkBGZ4U5SWCozJWQ6klCmW1jvBxGplrpuAItpN093F6JSKyCGmbshodmYgIgII0CpFYnMRvrXnGDKzSEzAMoEU8x1DIN9CmURAT3eFABvrCiABJgkdshAxNfX67/7/fu9q7vjG2+ZmXlZWsQbywqRIsLMIZEIkaUQw1t4JGaWOiZxBTARkZlnDDljJJKKiLXWSWzMDDce4zA1QI5MmeJlnOYP6BFhGh5fTxWBhCkFBLGKfHj3iAB//PGn3jsAuk9Z5Ay9IhP9C9UNIRdYiWiiZGamY1gksbBIKZLpkN6SASEymQQR/EsmV0QIoQ0ZShDu6lP1FpFh4e7hAQnuBoRVChJhknYNh4mIMRIFhoZnMPFaCyDctbs5E2UkZIa9CfT8i77xtF2+//7XD48fmIuqplsgJTKLME/ilYaHmu37kQAipW5MpXEGeqQ7oRAhxZs8DZOk1IQ8nc+qox/dIkQYiRCIoTiRqs4CySzp+heQ2zwIvMLIBBZ+Q11rLbX048gIN4OEUgpLGToiw20qIBmF12ktQRTu2Nq80dTUIrqO/Th3G/v9dte7miUAJwNMSiIiRUBCADEAgJu/VZ8RSRAjw2dcXc/r5eHx3Q8//iMIjBFhoTqu5vIo5/UECAmB9FbQTISMaW4R9pYI/+v4X8T4JfLyF9fJP+XafN3qW3YP/mI/8yX96Zv4i62+3ecvF/BP3/n2Zf4pe+hfOP456tPXM/Ive+Z/8d7myv4N2Qe+vJQvPKYAEIAG0yACUcEBydyZoZQGaAnmppmZAFRa3U6mOva7RwhhESnCsLSMDFdCgMwqkus6rX8mqRQAMGESkKVIZGACEWYiTK6NGgubagLUUo5j3O53Zl7aIsI54VoE91RzROJJL0Y/juN8PvWj4+VcSvGYjyERYQhrlBhxOb17/+7Dz8/X5+dncLtsy/W+/02tWFtrrT+/9GEolInHcSxFzkv9/OM//fR8jYxay9oqE3b1eqoRcDikB0sdOgKynD9AXfRlT/D7LRGRkQnt9umn+8dPtUnFwEb3m/74T3/83d/89Ywk7nuPWWyBdNcYvd/vp/OpXp4gAwEi0CMf1gV8RAQzAsDr4eX1Jq0gBCIui1xvhxAAESEVhmWp6aaWjNEqA0B3FESOWKtYig1dW12bJNLLaz90MAJXzogAZxE3w7c6oYdjQAJiui4c+5EAFDaWU0tTYYjIWisLEWQCYaq0RUQ4IcNBCMEARUphkdC768gkKgVI3EM40iMAGIGYrUdmjvtRmKtwLSRUmQhYAHIM48m5BRIWQMRQAEiE8IScwB8ks2cuy7L3PilRrloJ0t3MKHLSExBSTbkUFiZkIqitzPoTAtAM7hFngSsymXCGBTgByJiFScic8BFlYkQgwRt7GjAh3RXeyNs53XbmBMki8KZ4T2IWrJBxPp1779frFbpzEalvTkKAEBaEGIwBYWYxRqmNpaaDhSekVCEC5mX4QIQxiBIgwTIQMCP2o3u4MJdWpQoJI00JFboqUxvHIOZlbbf7/bjtgClFuMosbSVHeJhFeiaCCLJI4Zo+9tuOSlzKNPvxWWjMSJAJ8uJ8rGW8EaoB3DQByAESmJHagogAkaYZloHIEuFD+/Pr6+dPn6/X2+iDMc8LKwlBISyIZKbjGExG/Hq/vrTtwXSYqsUR4hUBoCJCRAQkOIdDacTCmZgQNgh4BGlkAGWSeaCHsVQgWFrDyCN7AJoHJcK0bsKWgIFJzIBwaU2k/PTxx2u/lrKULIUXWikrAMD5clG1oafDXsfQNApFJQ+AVgqlhLnCmPzkQHZMh/DMSjIVheA+a4SR7oBg6BDD0jSkcN2qcCGkqRrJSBuaGcwkhWfBLcAJJsWHAalUQczr7RhxACazAIINrbWo9kUIK3MREtm29dgP9ailEDNjEBEG1FqIee/62mPbGIjRR6EckEgkjGHuOiC9FIAMzuTMuiwW1IcmRGSykCRHZnq+PL8A5PfvHmtlV8jwZVm4teu9M2EiJ/hdc1NAQLIQ3AsakEQSij+eVx8HhCY3s8GkZgcjQiiKCMPQXYgUM9yQVkJYWqulSWi4IuXL61Xq0rZzIlvf5bSa2e12f3x85Lb53uvlw7KeASDMpw1X3VZCBqSCObPitm5GgsSZ0VoFpH4cfv3J9Sjt3ejDzRIx0ntXIt7O55lUQyay1HWryxaJAZ6mGBGZ7gHgYZHA9XQGgHG7kiS2dzrs5fN/WlolzNv99oc//KGdHi/bB8E90zGU7MjjHoAC3pOlcALWIof5MYZH+LJySfW0xLaeAKss53HcwPg+lNP/6te/lfP7FjeiHcXXbR1D/bh1z6fvHohFtef6ZFA///gfXTsRCSYwVMnzwwMwE8mp4dYuRWomBnIpdWHeM0eGu63LmYkRycwyMZES8n7dIePy+ICE++gQEY46OiSMPircTutiEzMNvx69D/v1dvr+N79bLk+uShHLUl0RxRHtfrsbkAibuXl8vu7btrblhIm432fdf/Q9MAFz0pYhc1JzdBghcgEEBAlghySPBAxhhhmXzCAGpw8QsZCpuu8JYq6EWaqUQpfT5XJ5WOs62Qru6mP4mywXkBkAmBkAALEtVc36GPvRW61ISEymjkQiPAXjXCoC9n5YaGIgIzJkOkz9EQF62ptjS2ZQHwdkhkQtK1EiUeRbHcOnPgIRMiNpShc5mYkezqfL5eL9mJWM8CiltFallKXVPobFQGauS42M7EDUWqtFahF4K0JEABJgBBBGZIC7jpGAKBIJzLg0JqxDA4kS0gPcPcPCY7JEp73RzJAndTTUcVYYEMODEcGd5ryXwEAKM3UlmjxIQAhLokxCSCJwBze93a6TacvMAQDumYkABAJf/fwigSncQQ0QIGOSDggRCBgIoGRmH3q73cLD3RKSSLZtW9aFkBIyMqpQQQmgAIiINM90KYWIIgghww0zkUiIM5NFWGiiNzHLy5kIlBkw0fYv6odZBAXIL6g/AmDGxE8mjSkzIL8kGj7lMG8nGMcYAAARbp789jVHJGa6ez+itfYGOE10hzAjkTgzEaEQSRFE3I+9j15rZRZmIsL5hINJnEGaN/uE/g43Hz0TPBwQHSCSACAzvvCwYhLEELGU4hGAABFgxkgi8ng5IcTf/+EHi7fxRrF6SzvCIyBj3wEJRSQjI9ze/HKSIiQjMhIDQlGCuQAACzLy24Mgk5F7OjMJEyNBZJgHEdIUI0JGvmnOApDYVJmqqkUCRGZGKZI+SWHJgpJs4RQQGgmuEZNTY6ojYtlWRMygd+++u1zel9pG+OiqvQtBq42KIMhxHEzYluVcZDmddOhx36+3uydctrWVCjHFZ5lDSRwmyoowg9Blaa21/FJQD48ECPcxhpm/3YbuPWKoJiZmCqMn+higb0VGIjJFAFxai7cfiERE3dIDMocq+ZsfSFtaKSUTMtzHcM8iVQCYa61rQu7r/dPLp5fX526dhZHfIkcgnJRBhjeDKqIECEgk4lIYQZOIsay1CAYJcJUxlIkcUk1//vTzy+szQBLjvDmQgYl8noJnyr8gq/7X8V92/H9FT76SXL6CPn8RM/oWTsK/tNuvmM6fCb7gGxDnzzb8M8TnW9govxFY/QvHn6FFv1z2L/v8VpWW/zwYlN8szOX48j9+Yf0MgACoABtAAki4E6FUgQRi3seQSplILJPrgABSKmQKkxJFxDGsLcjCRSQzgcnc0kZYFhH3jHDMyAn9ZLDwpJNY7ylfCJVEANDHkOCIEJbMFOFtXYf5TLkWkgDofUxPRGFGSISKiKN3W5rp0DGIEIAtPCY9FrJKsMg+rNX23fe/stFj3CPBIkWQBZdFnv/xdVd993i+PD0RiwFcnh5/0z98/PRMwr/69e8CsR9DgczxcVtQJEgoCAGB8XrfBcr1fo3w/Q5rqciUlgsTv3uojGq2hTPk//vvf/6d6nLaiIu792PP2phSCG63/ev3rEMFE6QRQi2U3G7XV3AtjKelqnlCYKZbJCSmZZAnqnaCzAhh8gxwd42FKAIPi1OtS2ve6FArjAR+78pl0koTHBIIM0wtw4kwEjPDYlKN1cyDUUHTYxZMCLHUah6IKelIDBlByCxcJIZKaeiqmoSwtBLIkC2OUZZFastMCHdDJkTt3tM8EgmIzXzcr0QPRBCQmQgRHhhmoUd3pDeUgQBQiAjRMxHS3QNzepBLbcXTxgBIyACAQ72iT88eEQl35AlGOJAXbhFBxCyEkzyDBAnCXFvFaXVMlNMpEB0QKN9U64g07YEQebr5TKQjwhGBEEiEWbgUJsYZCCEAkkhBIEDAr9FSpo6x318wnRCTyD0TMYwj08EQETMjw2wgMqZMM0J3myGd7xbo9Cbix/AgpqHm4RmpaebOyueH87KtxMSApTEjgiZVGN2P18MjuHAmECKzELHbdPzMCMiI2uDtcp2XgWq46XwsEkQgIJAjYmEWgCSEDJxBc4QTkIVBeDARYSmVEDARhEwtIkjAPXrX/b73rkizLO6Pjw/DvZvFgMv5PPL44/OLu768XM+PH9bL+6696/2wTpKSM+x3ix5JhSskWTiBi1TwkumRFj6YChIDBYIbKKfxRA5qnSZWw9wtMjIm+5gII4Endh1FytLafXy2fh96KiuylBGdRRDwdD6VIX6LGLummzpxFhEhzsTDzEJtKIEEQ7irRVuEs9i8eDMJATgTEsMJBRPcNQDbWmstGWBuRAQIoVOqm7UyAITnxNycggAyPUC7pqmr67DOUiLNMswNAdd1EXRENuDCwiKTcA6IpfC5SCLkIh4xjv2+HxZ578PMBaIIMRFkptmwN2Vxd1yIFilIuCyrIyfsZsrzqmcRQCRHj7H342yX08ZLtjpqYU8XwoiwTPP4+dNrP8a7d49PD0urVGkDJL3tW6XQcb/eDeX9X/1V6a/e7xiahMzIrYFnxj0zMlK4vv/w3R/ud1VN12Ut108/uR/9yOH28OG7Tz/9yLGfHj/cPF4+fxLGBbkVOQmU7SHCc4BwifMjEpb1rL0TpiUBCdVNbwez7Mc+LxLQG2YkMZQFk4veAIAQxxil1mVZEvw4hqlKERIRkUwKQnUDCKqrAwEsLDgcZX0kpqVdLHNcx89/+Ae33irXerpe758+Pq9/+EP+7m9+/Vf/BiH8+Z+wGIv2fW9MQrAwl9pKbfDybJGYbuO4hRAdMHzvmpnbfiPIbtX226++f//0q99q0IYgaq6x317SvbYatJgn2BHHNevp9eX1OPal8mltW4mRuZ0eeHvEdJH2+N3DIvSyu6oNjdt9T6S6rKXw59sRmQDogWpOIrf9uN1v++0W7q1ur0cnInIb/YikBLSx347j06ef0+wYdtuP297bej6dH4Xg+ePHZTsjkZpDUnLtlm5mYZAAxGlRBFvh9Kh1gcj0dHx7PDEDIUWmR+pwUw/zstS2NUh0MBbE5LS3CkkmTHglYD7ZEsJHOiSiRwRDJlOWgutyXuva6lpkGquBjsPcALEtjZaGiMd+C415wwYAMbFwV73tO9Ok1iFTmZk2M4nI0OHxFm0y48T0Z5rnb/bUmI5MAm/ASlB4uDEVRHCzCBcp8BbgYUTglxNjwrW107ZC+HRMhszS6rIs67oI85tAGDCneYuUtqCa7/ud6ExujDil+yKCCBZOkIUSEERYh/Z7DwDhhrOfAKW7JsAYPiewyEz3N+osJiICYkYQwtShTylZEWm1ZCYim6lnzJlXPRADceb0zFJQZMY0lOAZ7kAsmViE3xCxzIwAIoCEhJnZA84SG2V4YronQkK8Jc+ICCBz6u8RmcnAQ83Djn5IkcLsrsQ07ZORkKlkhmmP8KkUM/M3V2rEKZqFBBEGJCmYAeDqlgYwqcdTuJIzlEAEwjBH5HyjP+U8lYyYEUlM83CASQ92j/xi35yAkVNYQ+Q4xsjw6cJZSiGRjNj3I6flUymTGB6RIpPXHAFQagNAN73dj5EgdR4+SakAb7a78cZQJkQsRLhBmg4dZPPW8XSfmIkAIsC8cqZv92RdWyQmQoLqqK2xyOPlkoA//Pzx0/Orm3lM4fzbxUMIwRxuRNhaQ8TICH/T+2S46vS5goQY5pWoSSEkESGiN9J2eO+ZmVP7zkTp6WpIFDBJQG9BJrGEh6lXyfAIcyZiwiJVmIaquxNAeoInIVWWwDeNhmukAyJZV0YCJOGKiH2MMDOdVzqAWWMh8MiAIFVlonloCXT0cTuGql62tQgLEROkm2uAJCJBZFL027FeLsuyRARkWkQpFJFJxMI2DSIzh2om5NuPDMREpUywGDMIafr+EE9Dg5CCCcjCFVtmmupxHPf7bmpSxDweHh+EOTM9pmkaJiCEqnq6U9LD9tCkHaMvSzE35us+bgFqqjY8OAGBaVqG51JOa9vUxoA9UjL4sL2/7oAGkGHBKIBACwnjUmRd+WXX3j1zWkonxGQNTvvpfx3/M4//3zRT/xwVCP4UGPozSdd/5rPwF8t/pvn6i+v/coX//Ol8ixN9e5C/5A35L1bIb0yd6S+hRf5lnekB9PXl18+a5YQFYPtyqMKM7s4sQGRqx+glkphUNTzMA5kTEhFUnQlbKQPAVAnBkQjBwiPTA0yNBSzS3SOitcaYs24ARVxNhOYsO7VcmcmyhBkhmls/ekIg8LautZYi7O4BMNvCUCIQZiAwibCqXq/XKrLvu6lGJjOZBSMspzPpq2AcDj/8/Pm3f/X7X/3mNz///b/Xoe/ev2tLs9Dx+unTx0+1tvPDg5k/rutxHE4N6/bd9x9+/PHnUoXbA5UjPGxWegthXdwcjIBp3+/j3vvRh2pkwMPDsjQb5MgoqEhYi4/j3LiWghC1ltJa7x2TIgMjqDSpCxIHYIa5mxDQRC5Ml209rn6MQ8BPa+O2DnWD441mDOCRxNmHFiHKZGZxH55mGZQsBEAs4pCYXmz3KHeP6VpXRBIRSTJd990z3JSlCDO6MsJw96FSigESQmAiQj+OVgog2eiAKJSQSFLhfjUi8ow3G0VUrAyObogOEUtbZNlaK/ejmwYyhIeDhEYBlVo9A1wPC5QduRSipIgQANDRZzOjzHQ7mAmAImNdFhT2obMxFwK4R2af4CMjFiauldvimYUFMibFOpCQkJgRJQHux16rALalFpgsdYAIAJZVKk59+FvtKxDfkABEnPWfiVywTNl1RqSpau9Is0xRpFRiimlcGUkMADhjSiQsUhFyO9nj05MIKtxMfSqVQyepfFL6glkSLQHMvUhBQpHS6qKjI2VCwsAhXiqnhx741gEkMSFjmioJ9X6wF0xAgvVhseFFWFhGaD8GC9e6lMKTxLfUxTihjwFDx8DMCW+NPlw9zFkkPVQ7MaYFQBZM80nPny1EiAslCLgHJiGJ85SDAUARIgBX9ZxhTfrRRz9eX1+fX65tWR9qY6HC+HA+Xffjpx9/dLX77W6uAnS9d0J7ff48vr+bmykMswKLqntqBkQiYporOFCG1YRADPAckDPgDKQQkKCstAgLR+GKjoyzJSJYxshEnFy3BIRkRJbiHu65LO0UZ7uPa9+LnMJHZnBmHwcS1lK3umQEoql2MKBGzqFuQJCO5jn9g0d3EsqCgTEf9swIOH+7QcRSJQPM0FzTc0bJaooYUjgIqSBXIuHJrUSAN4YaZqKpupmG+9C7pQEATt0sQkAgpJt1HSSynM7hPtuvrFWWwlzIzFX96BqQ63YWN/O4q97ViDkzCDAAzEzASKa/Ulhi48KIUGppGQCQb22GOCkimSDcf/jho32X27psl7OgY+LSKLnlMIQcwz7ruFxOa6u1UQqF23H9EdBdfVejyhgutcSMnyG5lBo6VFEkhxFhuhHh+d37148/P3/6+bL+5vT0QfvO/fl+vepprX4FjlKXvNntepVS1GEpSHUBaYUoCTMMuS7bKuvZzYnZVYKKJpdlZQeZNq61FIyBBMSzN826LgE4GSLILARUmnuGuxCmKiKXWgKqDQMuXNd0SEAuhccgJmJB0v319eXTz7f9aG0lRPMohUXo88ePgQzt9PD0xPVB71ciXJYKmZRSuC11AZI10lVrwWPvwyOdxrj2nz8i4WXdimAir0LbaYspl0XBLImG5ZRFam3pfPReGTPz/vxxHLdS6PJwFmKHvLx/KsuiSQ784fvflLW2tfn+E6oe92kHmg6kFqOPUlXNGUk9Q/t/+Pt/IEJGqG1Z1xad+8y9IhMsA6Yrvtk4hh7H0KGR8PD07v13v2KUcdxuo6+XSylrEAUycRl99H54eBBCRGUGd/VQUxujFG6lFAQplUUSERzcc1ojc+G2VRYKCDLERMKJyBIk5Js1F7jnF1YOAyUSpmt4EjAQtrosZS1SvvS74bSBmEIc6WaxrEuaEsmx3yADmeqyZAISsRQ9fIxBRDBTdCIEJGIPi/BZeHDPJMSA4MBZvHGdxJ8iS63LjMQAMNMDPFPcHWb9Y3YoBJhdLokQEiHxtLbT2qwfuylmAKQUEZHa6mxi5WY+Z1K3SbYBIvURGtsGwlQEuyYywTS4ichMNUVIAmhvHSsgbQxM8xwWZuaegFBKRUxCCESm2ZwoEyMhmZC5IBNEhnskiFSpNT30zZPFJjJDADG9AiuRFERC8DdT9QjtfZjTG6KPMRtxIOTkskZ4xkyGcXbQAniLPFOnScobWXhWzBBFCp94NkzkoZNq0ocOGBGOamaWmSh13SgMx3w5QyUAnM/5zFZkcnUmEjfxGgCYhsLMhMjunphEPDulTIscjySaQdBsvBYAAETzYQvAk1EVEV9PGRIiPQOnG9Js3TU8UaAUKaUAgLszqY6x3+6vmUS0bWthnjUzJAQkAETiUlvz6MOO/UDCZVlqrSw8O6PlF55OZhLLIsJM15eXYz8QoDBngqrO6OvtSgfIzFALsIl7umkg8vw1WJj5+9bWZX33dPv4+fNPP/4cgIgTvctAoMxMUFMSJsJ522YmQBCSh/ddiREEeBKHpsJtxnCQRGSRPoVjZh7JxITkFpMMFD49hSEDJkIY7uaeHhAhUrZl2ZaFiETGNNNJQCSutZUKTCLCnuA+mco5Ro/IbTstbSHEnBEGJHCJzOHpfdQ5v2PkMCJQc7XUSI8cfXyOCI/TadtaKSjJ4GbkQbXENMAinmLScHdTgAykeWm1IkXkrWcf0uwTa2oR7mqmFplF2C0cQoQnJghvfdyQiHTYF7k9t9qIaHA3teO+A0CtFRBMbVmXIgIIUoSJ7/seI4QKL9LKUltBwla2l9vr9f48DjdV9CRCYI9MQro8Pm7L6X57cTrczFNnkY4k3CI0Ic0jGJiLSKMJ4wI6UTIjUgoBEGAC4re0j38d/6sZv0RzvkVhvgJA8KcYCvwp8gJ/qhf7pYUz/qWtfvnRX3f+Z/qyXx4zfgFlvsVuvj2MryO+2QS/wXHiy/JsxPMV1vmK9dgXhVd8YwL97QfRF/RnDtExmDgiiQIgRApAmlnk9EwHQnJzyOhHZyZAnNODuSPH5EG7WQDI0hCI3My9tSYi6VbKrAQkZIqIhWcEEYZ5ADABEUGCDxVmRPGIZWkAEB5TU8KErRZnmkbvU0FTRO5Hz8jTBs+fP7dtSwVGqGVDwlgu6haUKfz8/HlpYhmR+fj0tJ4f+/3+ww8/fHq9vXu6nB7fSfr++llqc8DTu+/ayyuV159++PH9r7iwJORSy11zKUNKLaC7Dk18uR1H19P5PAu56r4R1lpMg5mHahVJKsgMEEPjVNhVCZKZaqkMJqU+Pj323gEgwltrhETC99vt1GQ5n8ItgUpdeVkyswqFsyDcfVq9ZIQLUcV0YsxYqnhkeFgSJ9Z1A5JQJQLS2w4nI86EdCeCRMCMqUZmlp4JgMyMmEhUEZPXSMC06dGnY0QANh5qnpDuWcrKAkRSGhMnEDIAADEDqHp45IKRkXVdpYpahCoQE6BFcClMtCxlRrG1LYHknmE9ELkIcRb0Hp7JiMCQpUgiTsGajgFICQkk+ObkB8Mi3MMMfXz34X2yTGE1EWJSIIgITtMexASMxGMcr1caZWir8uZaZUnwervX8no6nbfTiaUQABBHBGAKIiS629GPMUYRsZtnZinFXQEAAUt56wuFb2FkfrnhZwvKAAgEZmHmFTL9wRDh08sYw4hRRHy4qbNIBkRGgiNwJIY6YgAoDcxSpLSEWBaQUtCJGzz/dBXmbdsSUm1gwOy0VRq7R4Zy4coVHG1oWpKmDYVIHap9tHoSESERLiKUCQd3yI6ELNx1mLkOs6GFBYEA01yRwALIaJ4h1smld8i3QiVP0Wd4uusY67pGBBGq6VD1SCJHhP3Yf/r54+PT02k7LevChE143dbHBEL6j//xPxZJHeYWEHn0/X59vb0+a9jH5x9owZ6mmkKKaASLUAFPQkSUCNDUdPM0JiDMBM9Ad2RZlnK5tKfZd8KwE7OOQcyZPg1f4810ATM9A4WJqSzt/bYsx9Kfn599DJo+GoQRaaaE2dqChJ31dst+HFC/ZBSAaRCaCW4emcCYY/cvVS4QxETcj5GQUhByyhkgIYcpKBRsTKjmyEhSqAETFuG6ig3ruxJLkTeTb1efndYSIAPTAQkSc0a3YMqYRLBfr4CMzGa6Le3hYauMGTNxap9vY1tk2za38fPz9a2/oQdhUi1uVoUalwTKUsD0fnT1JBEP7WOYB2bMc4gMRpDCmdDV73uv63l9eELv6aYagZKAOnR3c9Uwa+smQhbOxO38aP12vz67jrI9gB+WqWqYWteNm7QCWWxJ9Lw6gEfcXq+ttmvmzz/89PT+/bt374Hrcrfzw7vKlMKJ1RLMFDP0uKsOrdzqr05bEBcuNQypbVg3t0CS2VVneIYaAUqpJRIAhRnAuK0MiBmMgbUlIGMScWs1TD2tltJqtX53G5bRSknPow+ql5DCZOEHUGlbIYRZtb+/PB+3Z66ttqUcr8d+nNYlAS3x+vL57/77/+673/1tK9zSua4lTMdwXFBK3U7qiXg/Pz5t6/L5558+v17VTVX7vtcqUAuVCunr6WJ8AhJGZ2aQ78bzT8INeaHWWOH5+Vkp99t+9EP7PRM9qJVy9IFB15dbXbG2pdS6H+ZJuyVHZBgD9Pv1PjTGUZjQjIXTPIu4+dPKClUKVyJmZLzRuu33+y1rArqpei+FoC3DAonN9/V0+t3vf99qeXl5rUJDr7W1nsG1BSBJkVqLu3YYx6gI7x4v4J5gkLy7rdui5ntmaUVqUQ8d4y0tQZqxUKYzT5h0Pr8DgN7ojJFMhACJpKAzeyRmFNzqIri2Vh8ezoRM8JX96USxrYvXcn15drc9ggnNbdoFE4rNHtsJiEDMqhqRUqZVcyAgJavq0fc+xn7cPYKYEijdE2OmOrNnZGSojhl4EWJkjtGrNCbKzKEGAFwrM+UUXzGVIksp521bllZKEUwAJimIQEwZsd/vkLN5aZipm6s7EQWSiDDRaVseTuuM0CwAEAMDEdxGujEhQ1q6mxJRuN5VJ3xQhC2MmSHDLIix1uIekTELMARQl5qeb5gIIBGjCAAd43APyJhzK5GUOls4SSkNiCIcM6dF0j76GApITOw6At9QAUSarbLMRiRIqcg8HXanV8uMhAN84hOzMoREmFkLzSZrHEWkmtlQU7VwQwAzjZjd6JVYas2YWrM3k3HCTCIe482IBxGmU9EX355pNz5xLZiPnQRAFiQqNBG2gBnSZM55imAy06Yv0VtukdMvCZEQp1EjMfbRVR2QWquQmYj3/Tgz11KJiBGJiUQQEAk9sw/tfdRaS5UyqZzMImVZktieX67Pr6+Pl4fSGgsLs7zp34WZp42nMEkpZt6HujoxliKIby7IJIxA04drUp1IhGm2VydEXJaFmUwVkL77/vT47mnbVkb4448fAabYCQimAQ+Fx+iD3xp80MT3gAgSIg2TaLZjyPTwcAdmHaqmUgpEmvn8NaebOyKCJwCERUQgzlYgMDuYVi4UuLW2Xh63bTtfzqdlAwIzM3NVzS+aL2IWImJ2j6P3oZqZYebmpdZa6+SgwZsbDgPC1DpkCiMGISZA+r2rWgICcWWm+VNbQD80cZdSuDZEsoBQE2FCnh1tMULHSHdERBHCykRCHJlkFswRHBGYs9uYD7WpqosIQgrAgHR3IjJzBKvLUmuBCQciWIJPVYe5ardXYymZqWbrGMvSCk22VrZaGNHDEWiaYEPgtpyEymk5Paz7fuyH9mHDYqgNg/jjT39opSHltPIhgMTgwhM0qwuDoQi1WoFTPd5IVJiMUAsGJgADgkdOWOxfx/9KB35RRf0ST5lYzLcCKPhTfOcv8n2+7Ur2Z+Kv/NM/5Z9uxf8yHpN/+bj80yP/lqTzS1Hbt6gWApQ/fce+KMXym4Vv//+zvcmfHqqYh0YK5xTs8psHgSMSIAiJFAEEN2+tEqIR6XEgMTHcbvd1WaSIAEwl7ro1c56NUXPalLAkwKRiAqC6v76+RCLMNkIRpQgTyyrTbZCFPRIB+hillIhAQkES5mkm3cfIzEQsRfrRj35kxvCoQudTq7WpxUhYl21oP582Irh/+uH58+dlWz+8e1zOl+j328sLl/Kb3/6O2oZuIuhhBFlaPZ+2Dx/effz5009//EPdTh/ef7+uxYCG3qgYmHF/ub/az5/vt6P/taAQu/r1eltqaSKhA2euRjjjOCL8+HL93X97cXfCPO77dtoYLNyJkVvpqimcQSRFakv3o/flOEpb98+vghXTISf3FyJUKCMsgZMJIcEDhTUm0ECAU+ePp7UgZDenNESQ8XrgmWpRHcDTI8UzgaVaOL91bbXIrISWoA4AFmbcBBFROAKCRDidyL3rkY25ClBhdyitUYTer4FkHgWA0wdKQhDxDEmplEq4ns7H9badT0TJ4ShgKVyaDpUqqjqOLqmnFY9uwY0ByHWpEonALFIUMNwjbFbLhIWYIEFt9DHGsV8uZ2CB2ecx06eBZa2EEB4s4hMpUk2P49gzfYZl063ShwOMY4zr/b5el/PpYVm3UgRgVmxMTdP06B0gqZRay+jHGMfUN5ZaCCgARAq+NYl3EgGYM2pgJhHJWy80aq0hERIBwsfPP5p3g9nKIwAMGCb7WmjuKlE7ZIHAocosxCTMhWk75+1+DctSRIoAgLAYGiJKIWLJ1DFGoybn4hmJ4BnHcYzeayumERb92BOWwoVJaqvE0vfeqS+nApSRkZi9H65mqMw8J/xMZ+Y0L7W4c4T3N30ctdKIGRGGqQ3t+y7C61JNh8abuG5GqcdxfPz5ow6lC7FQute61CrrsqKU821///49IxaR476HJQKq2u36+rI/345rnSZOSblUSCdQXCkJKlZASSMo5iM8IiUxVQplZhgwr1QqpCSkjcPfmOnOiJfz2d3d08LR3CHSUNVmHMUs5+1B8Ni2Vce4752YINAzzWaplmormRiRTepsQyFSEYEqmmkf+qVfFhERBJQi4FGEI8GEzdDNE5OFeRaLNXA6qxDKMn2dAIUQAWVygwwhgYALEfJxO8yCC7elRMJ06IRpj4QEiVIKYUCkLOjuadoKXU7r0tYMRzCiZpEoBbkRoiUyMxMstWQilyKlvL6+tKVkBCXyulGM3pWJjqPf7XAAN2fEUijMhRk5CWCoEcL+eo3I9999uKwnzIBjeMCb1DKBiF+v96MPKae2XfZjbI/v7C7D8nx64loQwEYPN8IMqpp6V2epl60CnOA++rG/fPp4enyKzPv99vz8ejlfrN8fL6ft4aFWzsy+v4xjZMLD42X0jqGvBy7b/fQUx+1lXUpmltosyLRXBOu9328kbTrBS0KWipCFCRLa6RHLwrUCShx3ZCEElmL77fr88fLuESVFhAlTTjGb3iIt50cDDNMcdzfjBdfTI0Xf9+M+4vryTIgihSAzszVh2oykDydX0/6Hf///qq1dTtvS5LwtKFUi9965bcuy9baYGQARBAH0fjDmaVveP5weHh6Aa++9LufH998/vnu/32+tFPeQCBIKEFM/brubX28vt/tdMEuRzHh6/93W6vXjP93UkFhE6nrqfRyH+uvNdFgftYoBJNKxHz765XIqrTYhDTsG9n4wyT70dD5JRoYJgLsjRKMEKVDLi47dgriQlBFdHX7721//5vd/2xg//fTD63RoKrf3jw96v9OyeoSUUmorvXfVfr8VEV6a3/ZpRPv68rmWcn58D+QRNrqZGgBIESo0PcVEiJkRJGJy1wIygQAAZ7tqQsJCUorlKMSJsNX1zOdaFimLEGcGImcChBKCFMIEJFy3bb/dPcMc3GKyckQqAriOMINpP8c8G3qY+xQZq9vovWvvPhxi9nAn4Qz0tHzr+AzTQ8XAy1qB3/IrN430Ji0zxSzCzY2oEmIQhjuKLMtyPm3C/GbySFPuYRGhkZk+6TzulkhB82+Zka2107aet42IImH64wJ4RkA4hs8nPBFUocpLZA5T1RAiTCeS8tZviadZQakLuU1rWIggRJy94iFyUo2Z1HT0YzaiIiQUhgwBiJwsFcp80wPPMNrD3ZylqI4Mj/A30ff/EOYH0JTBltmJUVWBEjMZMZiEBAAy4k0ChhjhRDQNwYCSWKRW6sNnI05VyiSMTBhm/TiW1mZA7jpQBJkREBBKrZkwv2oRgYQvXoRISJkQGW+lAyJ4E4FNT6NAhMw0j7ce4l/OhpDUbboGZSQCQcIkr+GXHOK2D8hkKa2wMM8O2TY0IlutgeSRLIKEmMgIRSTcM3McY2p5EIGEGzYi0vN2H/rTp88BOA2hWimtVqAJwchpWbatMYuICLNObIUmIVS4yZf6CCTgLJ8VkelNPUGZSQxEIoC3Lk6P5xN89/7z8+v96FNnH4QYRASzyyhOH3gEEZk+DIkkVIgwKWdn2IipmwZizJHHbdfw++1+3w8PJ8KhMekt4VFLQWzzsprsvLpU2VgQt215enha13XdTsvSIsLcTVVVLYIQa63CjAgAaBa3/TafPJiZ4YhETFN6iYQIjMwICU5hoWNMYaSbmY7r3hOhtrW2ealA74OlaASGtZZiwIwEUEpBrEnMATTRbKRIxwik9PCIrIWEMDxm8+XZxCNoNrDV3jvkrKVRRByHTQ8Dd8+EbjaN7KWIsMwrnJi5CBIic61NZzO8CBsahHPzpdaYZTOAjNAxVFVKrcynZfXTZZj1oX30o+/X/Xrv9/txVR0TWBRhIDQbAIVKNtke319czW0Q4H3cgycVnlolZuDpRoVoGZxYl3+Jte6/jv9Fj69mQPHNO/gLPOVbQIe++dPXNb/l73zL/fklLvOtJot+ARX92fiK9Xzdbfxpe/tv18xvdj7X5198xLf0pa8HOW85/QYD+jPx11z6H5gIX4ZEQhGOL90NpjfP7NKVCubeyipSEJEJRTgzrFVT8whmabVERkZOg9veOyIIYwJG0NLahLZxTiRMAIDEgBDus2jh7kBUW0XDCJvAc0KWIhPVZqJMKEVUNSJw1hzYISkKTa64k2TA779/9+7p4eU+1LQsa2LPCBj3+/PHsP6733z//unxeP38D3/4p//0x0+//tWH0/mMGJKEhXanSA/XbTsdfWjAy+fnl+tViFZ+evru+/urqVmoI3MV/37FHz4ef/yHf/jtX/+1StFhnz49P2yL0PyiChMHwHC4XC69dyR+9/59ugF+2u/7utbeh/U7uCty3+81fTtfpnle73r9+POylK1KKZUhsNT7yyfEGlgYO4MhEUB2c4AQ5gAOt8gUorWQMAviYYGZjFnLBr7Prm8QZDoYkQhbK2oRkZwhwoSYYabdvpQujUmILJy5EBhEAEBhTC/qNlSRQNXVE0tdluaE4ba0yjGIBF0PKreuNRGQCcMTzXNb5Olhu9/3JqCRTZoPRwBguggNNEYEZip8wRijlypS2mzxQNMPJ5OEEdnN1I2BPaL3bqOfT2tdFrVQNUIkwqEWTG/l1oSSoG6QUIXqspQimdnDCMjVeTZDTTA3d9eho+uy3mpttbUiJSNNlZjXdYN5JIjn8wmJ3dzMEJgYGd/6qkbmDNoyDIkRQERm21QiIiYAWFozXTNyP/bn65iNvaYemxKntWdMdInYdOzXnVGImauwoEhdWkPifjcWYZHeu5vPrreIaOoJkJFCLEwAgUzE5GRjWGu11TaOyaWF0XcCautm5kx4Om0RzpXMVGoz7aN3V8/I2kpdaqSrewRb9uGViWQIJiAxIgwurS0ePh9VERYB01baYzLtkVl6P56fnz99/IQIOtQspRIxm7uZndbLr379u97Hzz/+IKWeHy7X+z3HAJD7/b6PQw3slpDOAITCUsq2hVtCJieEhysjhqX5wDBiZ6gRkc7IREDhxlI0AYBu9/txvwvRetpYqlmgEcRbF15ADM+A1DFFB1RoeXx47H14RkSq9gQgBiJEKoRZmEmKu01nNEZU0/lUpgyphUWkCiVWZiqRiRhZGKe0NommLUUlYikFiqoDJS741eU/GC1CNX04qBNK9z08CKk2Op0bE4Snefjb04MKATMxWk4xo/sYWisvpQ1VvO/C5GkIWOvydJkJR7bWHoAaY6vFIoGECK2XDLdArrKsTegU+cI+Zl9jVQOEWgoxpRkjMuLwSCTmpITQcezHeVuJWBpnP5ay8u1gKZhxP/rzy/X8+C4wSXI5XYzwXVmxNrMc949EWJdmOogYhfT2jAUooTZBqYLxenR9/ZSq4P766eP1crre96d3766vV37/Xi7fHU6UuVUA67VIQd8VtHe9f1of3gOy2r0UcR1JEhSfP/6EIsxl1pqRolUmxFJIUDo4QdDpPEbq+Ix552XFGNr7BKtrZUcmOWNZSDhIiBqXDuER6ohclxwHn7YMH/v9j//wHxxAagWPHB0zWm1MxoFU4eiORJahffw8tDAdl1NGeMTz7WifX/+rf/PfSKl+7KMfACBMCMhM5209revD++8Cir08D0uSBiRtvRSR+/NnWi6JPo7DTMfQUttPP/br6+tf/eopuTDG5fGptfW4fm7BZTnVhw+8PNz77npc70djvt9vP/zcl+1U2iJyY2GYuSDOIjoglWy04CAAj9gPBUdI1BDIkTYOAwO2hCqLbAVe7p6IxMw4jm6qnnS5nPqxH7Wct7W7YqaaAaBIyfRX0977iisRmamZZTgjt1I0PN3cZuuomT9mBjARM79JcgIycVrT2ezW/KXx4rKsrRSmtYlkYqlbkzZbbs2uQAgU2j2ycIMkj0DE0lpk9n1/azeJNBt4CcveQT2m1HSCKTo6EonITJCO47gfR1Ai4VSHSS0JCSMt/Ytf2+TNQGYyU0C6GbEgMyAwUqut9+PYd1cVkclIaLWcT1tbF0IUptIaAEQ4YIZaYgCAZ7x1+ZwKc6J+HJBRSj2dTrWJm41pKQg5DY+JkQuHAUKIIEnJ8ARkISRDQEhXDUIWTMBpiY0RFhNdAATM2TxyylsNJBMwAeYaiBkORDODnxgSF5r9McM8cvo7x+hH3w/k/w97f9bkSJJlaYJ3Y2YRAKpqiy8RuVBV9Qz10FDN//8n8zRN1dmZERnhiy2qCogI893mgWGW7uFRPT3U+dBZFPJgrgaHYjMAwnzuOd/hMCMWljlfpJnBAQJEYkAphUqB6UGZbqr5LX+PVQPOheys2oLq7piJBBiAhB53ctBMDRORmZXJ3A33cGGJ9BkqH+6IlEDExKXNj8Ssh4Kcnk1KDICvPh6c3De8g1QmXNenX+gOAJpN6vmFH5rw1R8EEDA1MZgT2OhDkbgSmM95JZRa3e16u9223TyGDvOspbRWBAkg+xgAiJAaXvqoRViYEIj5tJwup7Hdbtu2Wa2IJyQZt1t4TC+Q9t57E4JwL0UScKhOT9P852OpUpiJASEDPJyJ3N0jC6I0IaTIyHAEBMQxepipDiHwaSXmqaIIIM4yq5S5zprEl5RKYcbCQpiYQIEEBDDfCZNbfegY5sfQPsZQjUQp7e+++W5mxM6nU6mVhY/9uG23zKilLLWeT+uyrG1ZhO91H+aed8NWYYCMoAlViABAD0PAUgpkzPbUDOiRZjbTALNbwE3DlCLSXSO6ByIwUmG67UcfYzU7nc6JYTqOg9MdM47ekYiFK3NbWksQKR5ZyBFSaqNSESHG0K7g6Z7L2qTI1vvLy02KlFqEiLDMp5OzeTciItADmDKpspibDu2pIlK8FHEEyEhmruWMhHPMJ5z1cimFcQYVMxOAmKsIQM6g5IQDIAKJIDEyPSCYeVc1s6663W4v2+t2XMcXzMEcigRkerLIw/lh9D0MtY+M8HRknCkHYkxGFgIISSAstf6NAv0f8vit4PIX0gz8Qkz53/9F+GsJrL+4Efi1wPT1HvHXf/73Dv8i1vwyKZa/vvHfps8AoP7/kpbmdeax/RoDlDDPP/92EwkACf3Xl4iUMm2AGTHDWgBQazV3EQnAtpyScH49BwAmFilMrKaIiARggYRzLJDTin+3ekoCzFMsECXAxKEJs4hMy2veAxVldmb3Q0uRZVnnvIhFKkDv3Uy/LGgCIEXu4GR36qMH4OVNfTi3tWAjuDR6Cby9XkUEKD59+vzPf/wJib/7+/Nw+PDn//WHH35cKr15Oq+t6vVT6gbLBYyKHUd9A8xc67KePGAx3V6enwmmVSPUTDWAk+ta+6nK623/Xb+1x9O6rGYWgImEUupdeD6c2tPbdr0duu9xuWjfCQHCwMhdIdFz9hbY1nsgc7UZkdtvr03Oj5cLlEZgxKWIsB5HSpoiEgMwhjFxPSUAgzfiBFhqq0uxZGAhNyAKiwzkti6BgUIcObII+ehBONPldfZsSFV18iTOy8LmjiAEwcgWzqUiox8K7sLYd4UiOpJIEDJM00CYhidiclkQM0kqcVdPQCFIEmES8NqaJbb1lNbNzDQAgpg8Mgi4rlIk3cWOjGyFUWoiZcaszGAALpJIebd2460fHjHGOC2ltsaIgXi4J0KrC0Ga3VkSLDyhToUIM7djX6KIFIxMKoQ4dKTnpK5kwACNI80t8tU9z+fTw+Xy+PBUSoFMIgx3VVONWrktrURxc7xXqkrcpzowjd0AUx8kRCae/R6Z4QBQSj2d4Ptvf9dqfX7+ZGlMbuppiAyMDAD3nL/l2LrqlUTaqa0PK3huPcATEdpSprG/nQoBS5Ghw8xMjRsT4Pmy4hxwYpQmLIyezIVlpIejmY3MMB9A8yzM58fztl0BEQn63jMiwlk4ICIcgOneLguQ0zyYk1wBmGpjvtVLK8K8rAtAmHaIAERzhyQd+nq9/vzTT+5e29K7NjUpbWgIo5pD+rq03//dP5jFhw8/d8+cryCReV6vt2BhEshBHAhMUAhKIgNqEFB6oiPT0UdAMkakVylCjzmkp+UJpPG6LEJ8u12J+LbtRMCF67IsVTpAOGECgkSE49wxwgwQzNqdy+WSgMy07/ve98xwd0By8yJChOYGkOauEWYWHkiAIlwEEcIdkdyTGQlBCgKWJAYm9ADA8Cy1lirmQYgAlJrIAJGQBI5jV4AED0LWww4fiNjWdn48cQFzQ6HaOAncIjzVfREmdAYiJ3NHcAI6hhLlUL1USJDgQpiP5zUTMCOT1hprvZRa1MIsONVP5eOLm9lpqQQQCEAQjsMzMgCx1cbMs6psthBPEBEnRKaZbS8vr608XB6AORJCzQM8Mtx3t23fD42lFuQygWUVqR87ZkgRLgsC4PWz9RtlrTkWCMPA8GVZKjQBTUY4LeHhenz4/Cq1WsDrdnOAh4cnqifrexHqx21dVx9DCrTCul+Xy1MSqVoRToS2LLO8HEAqF2KBhKSswuAj3DsgMNNyJirIuZxOx8tHO26EwK1QcilFePa0FQgn5HFsXJmYWAg5lNI9KI0QHfjzTz94f6XQBOKETIVauRRIyDQWSmcFILLwSKJx6Gd/AUDIVFVz/+d/+l8fzqd1WY++oZSyYO1GmKfL4/Lm7fr07b4fmq+mvu+bgEutjEu6edjt9eft2B2Y68nczeNQf3xYE5mIl3Vh5Ms3f3emZmMLQAbzTAJcRWopGxJDCmGpy8PD4xjjMF0SYvRWakYKU3JBFhEOojiOQoDchgdJ0364Z6mLwxhjbNtuEZD5/Pz8+fPnh2VZllUTHt+8i7DM4PXEQ2fdDFPWUijLw+Wyda2tiTARATEhJgkQqxpLJSaYsHt3IiqtFpGI9HQITAPIDE/PiJxzlhTEdb28e3grpVQSyohwLIuUOr/uESkjfRxhnWpx49kPAMhARCLIlOMQQeZmHgnY1ZO4iLjbsR8TTkyzWok5ibL3ucV39bJWzATkaYxhkQh3n+Q1hKQveR8CzEnxy+mdZpICkfU4jhEOCUT8cLm8eXxqtdbWEO76FxKlE0DOWQgAZCQhOsCky01/RRU6r+20FjcfGsd2RBoTmdl0QzMRcgixcI4+IgyRCWmpNTK3bT+Gt7YgolAWYTUfQ1EkidIDEAmBKScYa/YxMSETWmBiIvEXAQgSUZiQy4R/9X54EEzDj/m0EBHLnM3MEUzMXnm8l30y0zQ6ZThiZgROa2XmdBwzExDPYgZCTMIZ40tICEyPucYWKcRyb2kABLCYq1n2iVIaYxAzJHAp63oiMpiV7RGEMGNd8aWPfabDAGH+EyPBJNybu/u9N32Gw2DWlX1x1xYWQJhSQiYQzuW6uXtm7H0g8bZ3TyCiWuvptK5NGNFmdVOkuUeCmk3A4lBl4lpruafU0vbNI1ut9wHyfdFu7v74iII4k31DdfS+7yIEleD88NCWxiIZieGZ07zm5piIhasIklNmMIqNrmois0rP050JiaUyWWJt7enhct0PO4Z7YiYgpZohergEMbO7SxgRiiAIWAZDIaKACYQWVVWYlAm3iESqywIszWNdz6f19Pj0WEqBhFoYkcxtjPE7+v4Ohw8npCKCzBE2v3gziQjv+TLAiIDwDEKkiYWstZh6ZFqkqoerBWFZUXi+RdMCQxsBLxURNUBUM2HiVQPx6GP0AzJaW5bWJgHKXW2i4omLlDr0bFFKEaJWmIlrKcL4JcnIkx2x3zYppUgpVZhlRgKRmAWW6mZGHgrpDp6JahmBxAlJhGGhZhOLiQgwPQGChZiZS8HMrEVEeC5iJ0dJbToJiIkDI++WQ0fEdAtNKVKL1DrNy6GXy5vjzevt+rq93Pbr8A0bcCI4ZCQmMMTQYz82t+GuiVCL0GxHvecrLcBzSsh/YwD9xz/yF56XXwpA8GuBBv6a4wZ/cc2vf/5S6/mrGs1f6D5/od3AL+4uvuS8fqvjfBWDfpkm+2XQjP7aY4ZfP+Zf3vWv6D8J+cXskwEA8xwCANARXhAEoE+WkBDNmHQiutmUZnRoae0L323xmB2Xd6JiLXLnpWWOYUxUhA5THQqQs94yIz2j750QS2tT/bnb7xARsbUaEdt2k1KIYBJ2l1ZLa4jEyNMKO0Xi49h9jOmkYGZOJJ+LCJLzeV3P67quSzkVYNDzaQmg/Th8WFh++PBhO8bl8enY+48//fBP//xDH/rt24fWTkSgwY6Lvm7git5LOWdrRWRtpbY3Zp7mtTGGh2v4AKBj6OXUwvu58adXf7ke37/Duq6qAyJKW5OxlQIIffi6yppOtff9+vos2o+llTeP52M/YPSlCrRzZEiOHWKMXjNZBJgtcD+8NUFMV+vdNBCATA0zE5hY0gcieYRgPjSWWsuy9H0gVUFmKUzkpuZOZSWMOG5EnBnUFsQktohMmrknIy7EhUgpLTwskIn3idVBUHVBqpCCQFWOoZGpZgsvxIwelK5Gd+h3JtdFTYcrmBO4D6dWMEIis56A5OiDICAgSLSPuSUUlmWpZk4ECakkOHvESTAjp+8CkoUzMnLWmJFDRqZFIGFtK9N0tGEtwphT+5gLPGYmQjMLd4NciLUfAgkR4LAu8vjmrYW9PL9OCXKeAS3cDkdCSHx9vaqamj9eHkopc3y6lBIeHpYJEXM2SMKChDOeL8x3ssMsNEmYA2dCNtfeh/ss6cul1u+++e7N49Pnz58+ff5s7uZG99mmTH8yArFw+n0xXRaSWhMiAmuVUmmW3Je6QIKw5GtApsgkN860JoKHDmMhBBwW58oPT4+uaj6GMxNnQkBgChc0Q3dfH077654RJFSozIz99FwjMt2npAkYRGVOQV3VbCBQa41oVqojEs+1QgLMWMrry+vPP38AgPfffLMsJ6mtD1XVzpJJ26FlPx4udW3L+bT++U/j2I5QKHUprRFXUDqen5c3F6D0XcO7FO37qLWWhYyCWYFSg46jIyNgCFeGh4pvQ8LMfvrpgz6qeazLej5dmKSI/PGPf3h5vX63ngKgNgHM0XUyy8zGhEfMPiBP6Drufi7Gh4eH02lVtX3fr7crMy9LcfNW03QQhqa7+XBdlzbLSUppwlS5hCdAEmhmCguzl3uvCxBzqY0QqlBAqgeXLJeie84PB1hC5KxLNdMpaTqpp4ETIrS11IbmeVxNwcNtOa1kdhxjskIYp8SaTgmA51prW6i0DIOY95GuPTGX5YSErZZx+ygNWltENA0Fw3VXq7snJjKjWxYmQUBIdWuzASCC5jI2HAKEMExfP79wWQDx9XYb6kMtbCBkRgyP0taEsIRjOxoZEQpBIhNVQNb9hv2F6ylsnJvU9XL1iN4rGJ/PEXh4LlWmBy9tZF0c+fLmLUS8fP759PCmrRffn4EwM9vlob+8rk/vKaPvvS1AUpMaQLAsgAPLAtKQC9emasS1nBbbb+4+xetwUx3pXko5Msc46rJKKek2YZymfWBn6/z4RvtR1ms7XSghIQiAhIqsiHjcXvvzhzxuYxiVgl9aiOe2ATJZpEgi0Th8ujKyOCJBpqplhB39k3789PHT97/7vtVSRKSUWst+HMmV2kXW85LRCkfS7fp6WWrhGrq3QrqPSLfRgWsC3K7b9bbt+26R759O+7bdPv64rCeWFkQcFcHZB4E5USuCLG09E5NIJaTz+cxEdvMizHVJ4gjbb1sAJUsY2dgzYqiq9wjDjHBjrgbIUvXYh45ZLeqJHz99hsfHzFhOJ41c20oU5s4sCGNaWJkKFHi6nJ9fr8OBKAlxaW3bj1La7mnDg4KYAGlO0JCwNYlIs4j0L93B6AShkYlFipBcTudvv/1OuDACMYGbeUxRDBCRBBIye9jharupR9RapAjSbMcGQmBmTC9rVYvjmDyWmfNWQiQpCcClAED4rIc/+tBkWlojRmGaYw/iSXJmAEUiRJ5xvPCcUgIkTGJJZBCXdERUETEzInq4nM+ntdaSANq1tXJPGEVEepq5a1gk5KQje4RHjtGJ+Ni2d9+9fft4Po592w+32I/eWmPKe8J5AnSYW5ldVjgMCKO1yojoLiJnKZOYl+EWMbV9ROx9QAYRmSMTRWQgJsLSKhHpUIvJzJ7FIndWGhN4TpKyY3j2npgz30TMiIjTzYMEd5sVchEiypheL5hTudmiPmH8OXvicX74JsgP3C0D3A0gIXzuhJnneA4S0N3DHJFEgJjc3c3CPdz7GO6eY0TAssK65ly0IEzbCt1ZzjkbmRAw8D7UjVljMUE5pgoA02A7yyunp1jNdQwAcJHpR/uyxgD3yAiA7EOPY3AR9zx0uIUUqdt+quXp6dKY3aPWBpDqcfQOgWYx833ujvceeht9DLWXeJnc7kwnyDDbTNO9FqFZYpoJRFWkCp5bWdaFq7TWwo2dZitZRKp1cYFEKHLXWyMIqR99P451aQgwM1QkMeE4wnI+L0utR9dMyMQMCPrSW5Y4bXslhIUt7hMqhKRAotQcyGhBQ3vvY5qV2+l0Xk5E7AGX86XW2mqVIpAxJQw1rbUxT3O3f8U5Z6Sq3bZ9Pw6Ru9Byv9rkhwEUuetxOd/RSB7TqkYRgW5ZGhHxfCrM5mAWTImIa5tkqwTCaSBUNR0dIoSJayCLjbTI8Eh3Atg337cNkJjw4bSu66mWWoSLMBOKCBFGhg/Toe18evfmySNvt83MJkSfkFqpURBVj2OfLKepeyFiKYUFADE9JtJoUrTNwzNbLUTMhF8iIAiAPAHonuaWkROQMOXDu2OoSKkCCHPBLERSC6zLw+Xy9PS4H++O3l+359f+6RhHxPCA2cx3OT8cuqfnhFILMzIkWJHzupxv/dOwDjAr3fQ3++u/Hf9hjl/GsuAXsax5/AXQ57fHby/8q9Cc/MXl+OsrfyUN8W+sQH/xW/8HH8BfFaT+d46v9+W/UH+mCeiu+3x5MvnlpRkJP+OXlByCxL1xIH3iciMjQk2ZieuSiH30Wep5vxkCVZvq0jyRuDszfWW2TVIPMYXaBM6PoXSPkjIASyk2NCFFeGlN1YoITE0DyE0zoUjhUiJczQAgI/QepQ2HrEJmKMyyrm/evgVAISiMtz7ObRnmTycp1P7wxz/96fnzy+vr796d3r1/IuGff/zp2+++YdPzUk4V+usznh6P6+0YB5oKyTKOennXlpUh6+mcEcwinJxxe/7MhJk5m48VYIaT//Tzx//yP//fU7jI6jrW0yK1cUZbl7qcVXXoOFEJiLFvCeDu59MSfYSNtrJUiUzyWqvcXm9AABB6KJP0AB/WUBCFBc1tDGXhTIZEEjKPyyLMRGlrqx1LBGgyc10YRuTkzkRUiK7HoZ4CWqQ4ULhFQKnkQ1kQgEptSNCqCJVInJhYSLcgwwTmNBsQhSBJ1AZKK0yZPskS3YwSPJIyCoPkCCKpNcZwEA+z7bYS7IBVVrUBmYc6swDiaanHsYOOx3M7XZZtP9x9GARSmEppDOHuaj5NMJgQZiLsAMQUHrOvYQI4+hg4V3mYMyOG9yIvqKW4GSQAYiLdP7SZ7p6eDjbsYCmny3ocxzjUPRKAiROAkTPCIeA4zP319aXV5XI511IBsBRh5qE+vc3MTMyI5NaR+J4wB5qt9wjooUQU4B6hY5jbbJIgQgwUKY+PT6q6bTthCImQEBIEhPucVM6x3leW1lzSJIGphUVdGJHCPCFERMdIAKqEAJYBDu6KCG5OgQUZIvtxlMrMIpqja2lRhIEgNHXoejlN+hELSWlukQGzGMU0mBIrSBXEueEIBIrwSCPBVlutCxETUkJGWIR6uqebpx7j88vL5+fnKuWb9+/fvHliEVXbu0WCJ1Dkth+l1LaczucHItLhXKoUKaVmRt/27Ln9+IwVwyzeSU0Y+7VLfaALCyQnZ5TCj2/b7bWn8sJvn9bvaz2FuY5+u22vr9e/S2ASZlzXti61tvb8+aPqYKmnpTEJIo0xMlNEMtzdHXJas5nI3IXQPUTgfLmM3jPTdExSZno0kSZJlEKYHo+PDw/ndahFYFlqYSHCCHDTDIpJ4nd17UMDWSAzZuXcbP8V4LNQocKkPWBYOMKd1OGJiYJSGCDGuKEiIdGplVpgZG2FyGC4sECIhqpnK4AemEA496UnbudAgvBaiqupDYAYYxDh0oIBAXE9Lci0bwrunHrsQBUMgWFinrliCHimZyITAlFOBKoAuM3sAmKCx3Z97UO5ln70MToCUDohauTtdrMIhji2bfRN1lKoROzEAOFor6w7FUmmCMLTGzVVYDo9LeczAOrL4Yh1Wd+sF9eemYiAUolX9yuYEiQJd+2San3Utizruj68s6Fca4SHx+36qua9J4F1z1oy01U1AItUNzdPCwzLiPBh/foMjGiaAMnVAqw7cMsj0I/x/OG2b2srw3q/7kv5V/mH/yk8j7GF5+nhkWVxG7ePP4LewDoDCFdicQ9iHl0tcphXqYFEBMyUEAhYa40I6ztkgDuEq47u6X/07799fzmfa2tLa7dte/70ab08bNcrp6/Lcr3ebvsBxMvljekO+YLCvJ5l6x9fns8k23ZV7UtbPr1s37x7VwWq30ITkcOhLi0TKMxGV3URZsQ3T4/bLtvWKYNLq+EPSFLLiAwdAXF9ea7LKm15eb26akLet5eYDD7UzRQEhoJ5eGQfwy2IREqNpNJWlmWotnWpTKYDAZD4fGq1NULqe1hYISoiW9/GOIpgLYUpI2wctlQnmbXHAAQYYH7vrPsSxYFZDwYMknw5nc/r5fHhcVnWjEBMIgjgif0DnKWBsxpeISLczN3diB+JWSjTFV0ZE1rlSZKBQeDMeNuOKQydTtXcPYEIM6Gr9n6MMdSsrktpFQjMvfcDBDhJWERKBsa9NDMi7QvGN6EwZnooQiOkZITEUsrS2jfffPNwuaxLEymqmjlKYSJyt5nYtXH02zUS5lObcstc+ekYrUoR+vz8bOYiAoiXy4UJwo0QGSEh3IIwcTozRBpz4TsaO4gSZm381GhgO8bstDfrGc4IIpUJEzARE3CCRsYYQz0QCYiFEpAmRg2nSJI6NLSHO2AwEmRM+K57MNHcOU/nxUyaEZGH470JPhEAkBAD8B64CkhCwskMygAgJvZ0RJQikBlmgDD96bPD64saOB1feBcJwt18UpGnVUenhdj9S2YLZ/ldZsCMbxH/G6oo0SMwIjzmMGw2oANCmM9Nb0QyBtZqPuNTmZYzE6rDEu5Fve6hOkiolhIZIxUy+773fd+Pfjot69JO61pL8YgqFBFCDERjqNtAwCpMTLVUQMyM0Y/n5xeIbHXCsMfry3NEAsDkZK9VHs6rrC0q9945MJGIaGnLLEsdanNoZm5IEyDzhdODaOaT2eSZCOCe23YLdxauIkXI3AmJmSI9RhAhiRQSQgxBRGi1AoGFBfjhhpgMSNRdkjBUO5Fczk+llPPlUkpJwN71SwQwRx8IIMIAyF9K7mfBPItQRkbk3Yc1SXnEIoSEkB5zjoMUaW5zEB6eccdsQSIHoan5sQMJIjoCmKmOXa0gLqUws5QKLO7ubhWJax2lxhhjHNfrLagwcfi9RZqQJ7mZhVmKmT1f92NYYRaRWuuytHWltZbI9MR+bIl4eXiohYTo6H0/jrz3vhEkCGDNyPAiApPvQQRIQjhdgoRpHrPVj5lniFbNapU8goVbW4hgIiZKIUT2CFVFxPkFAgBjKACKyJRNdQwQnkWEEenuRYqwiEi8ZB8/REZ6mI7n22cHMFdAlFYImahGavgYcBCx6piViB5/E4D+Yx9f5Y+vQgn9QnP5q/ac/M3v/vYKf6EBffUW0a8v/6o3ze6tr2FC//XVCH4lDP33ngX8H5B7fnt8fajjl1oP3GcI86/xi+vNUJjG3DUCIgjXCu4oODuhkggJeD5kIiTa9n12XsS0M0ZqhDAjJBNGQibaGJOEQsyENHonRkBhEpEyMT2lFNVhqqUUgHQ3BKlFCICJiHFutiFh2/f1tFZINZs750wACCI8jv0Ydr4sGV6E3zy03333hChjvy7k4WHHDcrDy8tni9Dt9fHtu/dPp/OCjPHDh48i/P79u0cY6kmlHr3r9hqOWM/ULmqjujXMy2l9Db+cz+D6+vlzYBLO1AIuy5I4MtyGrev6//hP7V/+9OGHP/34P/0//+vlctn2fRx9XU+MyYiyUGcUJgIEHVKFar1++nR9eZFaABBIMCzGcDMuVZjcekg71CsaUnVP8xsTn04NMwhxXVurJai2SmNkpoP1BHBLIFHgdl6EGRhR3cwRmET6cVA5EWhlcISI6RTngljXpjOtb85Era1EoOOY468ARqbG5AHoloDIomaGTAUztAMWwgRwNUCKgCIzox4UUIhhPQXCcRxhOFxFah8jMuZSLEIxw8PROiOGjX0XRgRiqUgeYIzhRx+RiEzheZ+cWEdakAskzO5bN6tShhlkSClI1LhkJmPu3bV3rjwGQDogTuqBWTBDrVzWJR2XUwt0IpEqNWt4ZmrOdeBs3/BEBEcHSzM69vHy+lpLLVISoFQ5r6dSq7q1WlE1PMxt+lfVpzw6QXoQmX2oEJvr7Xad3xREAHNsGI7IUlotJS1EKgtDog+HpEwnYiAnDhGZL7sweqR2J2DmnJ690UeIMHNdmg2FRKCcrA23YCHvVuupnRZEMD0sgJgKVWewcA4XxIRgIa708uk1wWurEz5ZSuv9MOuqChDES0MUkQzAJCBgROaKAKdlJZK50FFX04OFw9Mxddix78fYdIwx9A9//OOyrt99+11rLXF3BwQCxPDIAGE6n09Pjw/73l9fr8I8+gFAtbaImED0QEINlyicSHn0Vy6rAGWOjhRQiDB6aZfzbK2rrTKLqu/m/dj3Yzuvp7I0ZHoiWkT2Y29LLaVGBCAy4RgjIALuhNScWXNyj+CAgFAdpZQ5k0YiFikiwx1gEPHsIGu1nU4nglza6plzW4IIicHMAWAYatHVj0ORZJkuasgZWABIIjTT4Z2wxsjQ6YQDgPky5LJWgHTT2ZJXW4uAOYerFevCxaEU2juOJEDAmBxfBpiCvCSVMfpaKIZFEt7dbLFWkeypkFyo1ARgHJwexMnc1T1UiJJkqBXmymKI7oFICXmPcyLOr3xmzkiAoISj76N3FsFMiGDMDA/zz58+XZ8/vX3/vqwP2+2qFmN/Ha8f6/nChJJIkNEulgVOde9jjJFSMfI4DqZiQLVyQadSFWpCCCeFHa8fMqwS9NvL9eXz2F6ZCMGrjloWG9p7f319ffn8MfSoQijF4YPt1+32UtoixEkkXKQujBCRwBPujBDWb8/UFgxb10XqGe0gKZ5we91YyPi8LHFay7F9Fsj0tOuHTN62nhDt/GAex+vr9vyBC+PAJsy1IKBAGsHsM46Ibd/DU2QOmQGKQO8QFm5uloBMpDZs2NWdEZbC6z0Lxbfb9ed//QMct4enp1lJ2Pfj+vr67lsgYu8blxWAuG1C19vLcx9jWdc3b95iwZfrUSHBtwJ1TtwRskDu+60PA5J+9PBc1rUyv9og8KUt0lorxSI/f35BgMvj6e1lVXPGoIwMSyRATELznBv84aH9oCkZQAARlVJKWU8PUpfaqodx0rFvvFQAzPCllOV0ni3kiDDUfaYy+tiHpiohminoQckIHB5mTkgENNMQEAkx6S8Q94hHtrY8nB6Xur55fKy1IgAQIaSam8fd3wkACarDtcP0TUdguHfX42DmcIOwDEvIUisiju11HIeNHslM6J6lCiSEKRBjxNH7se9jDHMnIISMdASKmZXIGV1D9CTiuBtRkQFYuLBkER3dzCONCGdnVikFM0+n09s3bx4ulwy/n5tmJF2HzyVlqI2u5pHZaslIKpiZ5MGzoUn4uo8qXEurSwMiTmfK6y3gy+gu3RPscESWtQqxAAIBzI+/hGQq0HStMUq1YYQ4PSbMTCTI7InEJCRI9w6hgCTiuTUlYoDIzEkrCLd+7DZ0Jk0T0u8dIzIh05AYEJnIPIuieRKVpvfctAMxIs0cJU0YM3DcC7pmzBknyWRKA1JqqS0BADA98AssvNRCPrPqSEQeYQpILkRTptOhs2Ftvnsy0md7gxtOJjPSrNGgLzUACDDrTQHvQGgkjAxkxMR76fiEAc2xsDskxDTyuyMhAJjaMYZIud328wlbKa2IWXg4sYjw0fX1ttVyffv0uJ6WIkV1qJmUcj6fGC+EM7KDMRNqEAfBvu/StbUkBHc7tFt4FSnMiPBwXk+ntdZCxKau0ROIWGbXFUtpyzoV08lHnOOtua8rzCxJwowYpup67Mc4dmYC/3IijpmbTACIiLYul/P6eFmJycIc8vFyAZLr8bKPXd0yjREIMQPXVs/rY5UidQGgMVQtpFRPjIBx2x8v54iY+XoLh4z5LjU14VnlwEAc4WRca22twn1FlGoakDDLPBHNYwLHZnv80btFtPURWQLdQ809h0bY6NvttqmO79+9W5eFmJM5kRigMUtlBcIkLwKEQ3W/vnyRnIKI5pIoAaYLLzOPMTyDEQmQSy1dL5ZxOS21JBGgqMN176UWUx2qvau7YeJMWSImExMTM2OCR897dhY85qcPmTHmSmQa8N0ZYQwuwpICgDjL4Ph+zBFs73r0SYLLWXuCRKXUWmFdlmnI710joquZKiKJlLWeMAUikXB477fdIiKAEIXL5fTm7cObz9ePz9vPaq9D91nmBkgTzP3//6b7b8f/hY6vwspfaD34C9kFf53q+vqLf6H10K//+hfZsV+KTb+88XkF/03U6+sVftsu/+9+dAD7hRr19TkgACBIQgBYzrACxC/iYAgg926LzCLCTO6BM3EAyQDCvNTqEWY+TUCEoKqjDxFysznzYmL3mPsdjwCi4xgkcL4sAMDu4X4c++xjco9aOSMdjEtZ1yXc79KUe2aqqnRmpjAzDxEhIpEiBIyu47i+jIeHp2/enEW4Mr15OF851nXVxG07qPG+bULw3fv3cnn88NOP/+0PP/zD9+9+/+2bx1XOT5dlWQ+NcRxbt20YUamtrQ+PGD5uz4vg5eHdeV09zD3G7aW2spxObmgeiWgRPo7XY3z7/Xfv3z4w4IcPn/5viN9897t9u/34ww+qo13OY+9uox/7cLzdbgvlaa2eCcg//PThd9+8FcawsVzO4Vghtu1GoYABMSQTuHiijg7a17UZJ2dALUA8HKogIrXzYqZdi0hFHQDgAZfzGrMvglm3HRLINbkwIdeS6UgsBMQ4vAMgFxlHn1DDTDAbUmSWo3qklFIYEPnQoZFSpvcWpJTteuVWARkAXDW0Jwsk9O7regqUwLQxSiuUUEQSoRQJFmYSYdMBSBaZgOTJKevCTo0zsFRK4Eje9q56RBBgLchMPQKBPL3WlgDpNnmgd+2ESi3lbtvO0G7IiJm1luM4tozCTohc2ow+Zcb6uK7reVlWQbG5VnWFRBF5fFzM49hv7vfAGUyCH6RZAhgAgoOZEw1ixgNfX7eltVILkiytFKal1Zn2H+bEMpd0mff2kANC9dChAMCERAgAmTGdYqWUt+++2ffbPnZIBAf8QkrkRRDg6FBqpSQI7Go+goAnHHSOFjPTzGCOt2dWCwgBIKIUwcR2aqU0Fo5MzoJMAJmYXGTOsyMjA+ta99seZphoZpiswwBoPZ91yOg7Epi7mvIdf+gIQbVCYKZ7RmGkxOO4eVqkp3kkeuYYx3H0MSwRhGXf+48//PBwfnj/zTci8vyyAcLsk1Uzdz+f1m+/+X4/DIEA4TiGqTLRu7fvmECE1dTSdt8QZo8GmL+agRQMF9vQe3tcHkQEGYiRSbjS+RKzq8NMAbJWyQTDFOF1WWatXkSWUpiwlNLHCHcdXdW2bVOzM11KuJoyAfNi5tPAOEmemcnCCQyRgCScJA0mnBSRiCMdIN3DzAHREyxyV49IktJqy0gRrnLvdQbCRI90G2F6gx0YgRuWKrNVFgHDHCDnWQhlFgln7wOBSCgxCUItr4cREYhEYKuCoUM9M/Zj9/Ai5MClFsFMZg+AsDnnpIyRcTPOyG0/eiQgEpJnQEZ6BKYQCE3IXLpFEgAKAiLgfGeycCHuYzBhRDKCurmjCIfPGTgiwu35+Z/+l/9PbbW1c1vO2Z+jXwmV0RFKjBtIBSBieb1uh072AcuyxHFNhPXhoYQigGMyI1Fx9+35o3ug1MR8eXlNHxmeJMuy3ratFf/xD//NXDPg08cP276fl7qcLyQFABqhXT90KlBPR266/7lfP/WhjFnaUp++WdYzAuTxupwuldcVPUNRToJ0y5eyvkMk7iYYHFpPlyRJYNWOCOvDI9V1HOPjv/5v/XiVthSNSM8kSmXKgMgMN+cwA2bhmREFRkvQMZAJpSKWU1sgA48+7MXDXm/bp+fXWqsGlCJMdL3eTuuyPr6J0UUkM15vt+vLxybU9709rBrhiSzYb8exH9+8f//+228K5ttL+fzjayeClpRZq4SZBjy/7vuxPbx5x8T79ZUZ1fw4jpG2nE4EWIhKrWOMcB3DUo0x0fVUaN961IUgiuAtibFmhKBPW4drMNE0o9XK5/OJia/XKzMhNQ4yC0tEoMpShUY/+O7YyDdvnvrRUxUyiblhaOZt+GlZGbgPDw9AlIIAkD79CgGBeGfugkh9PD2d1nOVwkTpjkQolGZz8QM4mW4zY2uuI+/5ZQYgISBiVwu32dMnrSWSqZq7mh3dhhmSCDN4GObwsGGnE88lm5m7mdRaWGaNaiIA0sTSmxoBIQomZgR4AnDhIqVERjCrWZjlDKwFMLOIvH375t2bN4hwHFNtQZxnVUJTJUZMw1lMjwBIpZWIPLadiLjI0pbWWqHZ+wHEQkLFLYFIBCIAshBqgGlY5uOZGdNMASgIAbIfPZGAmDLNLInMIRISEhEFsQozoycNVQmRKhmR4HmP3PKc5SAEApgrZVjkGN3UuJTMYMJM9+EJgGYAQFIAg5DhbhWeXGTEBOTpFRJEDEwByTAdyiJfbLdwJ6HFxDVONnSIFEAwdZ+swQS4T3QEkMINACGnF0PaPQqUcJfAEu/Z8ABMQYJwvpd9e1D4NIrAfRo1O7lnxwJ8WdDPNQNkTDElI6dBPyIT0s1nocqyLkzcR3f3OPy8LrOdCQAmkKWW0moBJEEsRQjxum9HH60WANAxso9WNQGEaalViiCCmWFGRCyt7Xs/jj0zMZOZTqfltCzMRBDrujJTAnkCZgpgEAHC6767uYi8ffu21VYrAMAwG0MJkYVnchcxTW24jn5oP3zsx7ZhZqn1tvfrbc8M87iPKiEzm7t3NUlGAkTU8ILExEWKZ5glYEJSJAiXZX0od284AnCtyzxlmCkSjT4CMg6fYbpZnTFVRbxzgO6j9QT0qVvdhZAp0zHJ3JlhTs9Lpqt2830/unk5va1Sy0IsJqUCQt/H6+vrftumNK7InEiIQJwAVBdAdM/igZZZChP5v3HBHRGFmWtBwvAY/VCf4hoCoSO7hx0j8l7HKZBLlWDZrzvxEe7p1kd3z33bA8AjCOHpvKzrggBIWIpMnbGrEQZkFmaci3BCD+hHN7dZfEaIiJ7REdGFs1aaS17ECIgIm4GPhJwIbfMiQSzIQIjhbj7G0MhQ93CNhD7GPV0IaOERcd+uelb2QreFa++qw5kJWTJTZ/ui+uwY/NvxP8DxSxnov2fzwS8yzS+ln18KOl8v+cv+rC/HXzSF/VLc+YsbnD/wX8uO/Z88fvnsvj6XCQBKBAiY50IEaAQVAQF6wggwBHVIn+ec+w2JqxNEIiXSsjQbvUdIqUCcmWMMvBfdJ9C0wSJkmqlpEkISJWRhLrXOPqbMFKLaqpmb6uTVzw8wQLJM7+KcZN+T2AHu7mpmnpHJIh5upmOMBGRGj2Sppi5EayutyuXh4entO4ig5TzkwU8t7Ln3sY+QwyX0zbn9/OH5058+Op/Ob75/fP/uu/eP59NCUlANl1bb0i1ex3Xcnokwl/VyOddWay3r+YJIP/zrv+zPH5liLbIKv0KWJsdQSLgdo5v/4z/+4/vH5fb86m1oH0ff072JuA3t3NXNfds7sfQ+unU1o2XxTEL+/HJ9WPDxzaMHqKUF9KEZmYDCCBDDnCDt2FuOJhV8CEQGUiKUMxDvI9A6gJOHNHSHsGSMsW1Q6lQJECFNl1oECkT3FNPg8FpKhNXCDjQ8kJgApNTZHJEAXMT7YMBDhw9/fHzsA7iUr57PgrCeTnBfrkZm9GgRnhECkK7uNP0vtjsRt2WZ3pPgQjN2lUgEAeABkiqpOVhaoYzAhURYDRCHJUnJ0DG0chGhiETCWsU9Z4tKJIZ7LXw+LbUUNVf3UANwDplRrPPlEm4IySwkHB6RAUBYMTK2lyuzsPBccgFQAlaBVhviad8OHwaYMwMYAV+JkHN3ChAJMAXQ7Th4DBYGOLWHMxGNcby+3obqsq6t1kQmIiQwtwhTHXM6zUIRwTKrXRgQ19O6ruvD5fTp88fX7QaEc29SpCxLW9d1227mToCuPg5lYi5MOMeZaWaZMZu/EZD5PshGSCEGpsLMXBLJp9GO2D1YpDSqhEEBAOEwd+Z96xGAyYwYkSKl70emL6dFyokJY6q7ZoicEJg4x9SZkZCeUVjOl7OHEaDa6OZxjGMb2t0tYO5w1F9eXq/Xl8vlVNtyuazH0WluWhBVRxG+XE6ndSUkc9u23d1aaQ/n87I2Ec6A237Lz+EwuGLlEsrqW6S0WhLKqZ2WtUHBRKh1FRRMh1r9dB6jb7dbLSJC67IwU480975tgTP+KQiBREtbPBwRr7frbbuaWSllXVuYArPqmFPZWSky3/CIBCzSlsISYOPoAHfBBCDT1WZtTXzxbCK3Amu7uIWZhnurUkuZq3lAzADshA6wWTqkACAlTxNqIs8NTTokUrS68J0gExHmSQmWkENdzYGwSgGqCBAaxLn1JHDCXqhhLSgNCcFcX6+jd+a2tjLUn6/ba08R6XuHhJlji4CA8ITKTISRaAmZYJEEKJWZIC1g7khgMlF4Yh+bYIJ5RinViVw1mDgi0z/+/NPHn3787vd/j5jmxlJPawsqpT14mlMZzplOiA+PD1IXyGSWDj4X+zYON43AUgiBItQjpFSb5So2zEZ6UCVg6cP2bXe3pVViYfRaS2Tcnj8AUGtVcqRtWM4slIlYODCwYCID0NiuRcp6vnx+eV0vc1BvAQgBVOjy5m2USwEAhP31X/twWrKtJ9ORkOf3v1/OFzP/9OMfdHR3GzufHt9s11cdPaOX0zlncMCUCYS4tqajF6bDx3a9JfDbh0tpzT2AhBCHGhF9+PDBVH/8+aN51NMDQbZl2fdjO47LGKa+LhVL3W7b6/OnXJolsqclH+aj94QsQuu6tloIwOREp3edEqPg0AsRUt3dudbj+aUefVlPy/mkahHRlvLh5+fzvp/PF+uduCTAtu2tSuqohRPdIhUQ+22ABNExvJTS7lYwPIZlxAzOENG27fuhl0vlUrsqDYPAVlbTIyMOYS56u242uqqm58PlAul7kSd5NLfoeyXRRClMBAwULsCQmTNFlITuCAhMMvuSHtbzqa2YM3LrlkgCOAIAZpAZAGeGBQBsaGbQ3AGzJCATDzeG0DFZgYUAwXO2ZwTAsAQU4iKEmKFDM2lqzWpqkQHJRdpaSSgg+zH6ULOY7BsgCALGBAACBKZ1WduyTmD/HAbM4d4s4qilPDw8fPvNeylFx5jbrrU2JNDeMZGY3AaDE1FtdQwNiPtjccvkx7fvzqeTEBSC49j7MQCwpTgAMWbG9CwjAQuOJIhQHccYAexJIjRNam09ZyRgTKDhnFwgYSZa+N5HvWP+EESAkABUdbgH8LSFmZqFEaJHxtinD4/vHkyGcABUhPQIAJECiCxlEnDjXmwfxIBIEfeJ0rz8Hj1CuAsrgJBAIjAnQkRftxURM9+VkYkwg3hOJMAw2+URAZKQAiyBGYgyIzEEBOBOP8mE6duZWUIznaZ4RJxtF3D3nOYMHuMXF9XcWM+OqkibhVbuHgl5B0Ln3IVUpJjtBAAAyIwPl3MkJEBbFmY5et97Z5T1tDCRRyDMWs1CRMg8ercvmYCtd1IjyKHDpt6KSIQ6BhOt68IsgHC+nAsTARCTJ1hEaHYfJQBIShFV34/DAwDp4eFSREqR07p6LTOslhNoY2P0rjq0d5pcp8yPn1+IcVg8v17nQNHMIIGZZ7zu6HjikzAzwBg9SgAgIRUqQQ5gCcBURRa/IyaRRaQuy7KkR6mJ+5QkfBbXDDUzPfogvBWhVmurhXICDae+4zru1ekBSQDIXKQI01wmEpME62y2GgrE54dLrRUSEDCR3B0RWi385v2yno99D6BhIcISCJA2LLQTgMh04wBm9AzKr/VvEO6aTtOchKnD1Mw8XHtmSKnLei7rWYoAkWeYWQKgjMicSQEbh6oCwH5cTTUza2taudVicPfiMzMyy4RQ5vSko0cAQkNioky/46Zp5jOnGMbM7NNISAjC4pIAYXd9LRO3bRtjlCKlFGGJue3F+zpYTSfoKiNiWtw8PNLM5ga+69DPH15enoEBKSvX3kdiJLpnuGX63wSg/9gH/uavv419wS+q4vE3Asovj7/6bsjf3OwvI13015JoX9Wfv/og/88c+Zsfvj6GCsAJJ4L21/JmG8GN4TnAcirUXwSgspy077MgQscoBFmKJ2CpU84283C/V28D2F01TcAp3AYAgCAiinBkpDvOEzBShnEppQhAbvvORFVkQLpHeBSZPRE0E+AZWYSGmkUCpA4bQxHw3dNlmLsdvl/N+rny++++f/PN39V2aueTY0khBtr3n9N6Qa61/N03by8Pb/f45z//0x9P7x+fCtflsdS1teYeambHa3t4+/T2vfLy/Fns80+ve6/g53dvkNvwBISXz59te/kv/+U/udN6Wlrl11vfdCCBBcl6+fDpZS22jfHt99+vp1Pv/XK+fN+aHq+qThn19PZHT3cthV4Pu338/Ph4mT2X22HcYAwDKSilW4YbQQJQoiAGaieAinZZl7VJoixtya7IhUmQSlqP4wbMEn5ckxhC3dM90Ye21pjCjo0AqVQQ7AclokWKGxB6ZCJngHmGWZFSGDQwLCJQh96HWDHdrQxIBBnqWGR6xZmJpUz4YgByaKHY1QDiGExJAZiAFbGW0lUbZnJBQFNlJsgI9USJDOsHYnh77EOViMU5YeYLHxZOZjckZiLIxFpwlkwRJgG+vr4ONYJc13X0EREihQBI+D6Ky4wwAiBC5oLMCJmzqh1wHGPoEKFaKwRMB00pp3tlAEVbzh5w9GtkAIlbusH0ZWcAAgJRZKDf6USzwzXCt0zMiMtJEIlxe97GGJfLubVGzCKSMZP/gRDEwGIJe5Ks7WJmTRoCCdIBAQnhQXiXmebUpLZS6tP1ep3TNmYutQpLQpJMxy9ONGTA3NVMX1eEBzJxIia5TcxiZCYxvb68nB/Oy5unxBln9wmCikgAshHpUUudE6RzPSXEeiYpxRRtqIf6VJsQiImJJsQg0iAlMRBhaS0zlnWpaqdikvIpPh/7mKocYl737aefPyytnc4npMqEiQHgiE6QBHm5XB4fHzKBFQcf5bxezud1PbUqE2zQvAkLohOlewRgZoNorkKIwhlsRDiNm1w5A5hJRDAdIU1t2/aIbK2VUsbokTkz6n3fAFI9z+czIbRlefvu25fX2+fn59vt2poQUikFM1qtmDTTKu7uEUsVhFkZJImo9rLvtwmDnNavOb7KmCWv4BAAKSxFyhiICJVpYl9RCIxdPYIooJXm5EBfpPpZZyeZGLOqOBMSkEQAEzIsDBAhQ01FSlvaoUMDKIGZSlsDVMAx0yMTCbk5oPVxDN2PnYgSSR2GozoiRGQQY6uyVAakTg7ICcQikZCAs9YHEBshZZRMoGThSLBMBGi1qjvhIEHiOjyIiRBUDREIQQiO2+uP//qHp4cHG12dAgXroxTmuoRpuJtbDHt889gub263PUwhvS0NmVEdcQViH0pEmElSKhVkjv0WGcSMTsR4ulyE+bi96hgBScySIKWUVq7PHykMw8BfLRMwiTSPW/oBxy6MicR1cWB3t753Jiauy3q6PGW/DvRKEkCnN9/vI4HIUPaf/tnM/fW1nS7MQu3Ey5m4Xn/6l9unnzCOiChrubz7fTm/2V9+Rh+HhkW6RWEqQumIxIiUGWYGJJent4+PZ2Ryd5FahPsYmLHv+3U7rtcbCT1gAQQpUmodXbfblUj6EetpHeb99lLpQWpTHcdxbPuhjon09PTm8nCpbR23fe+6PrzhNGD03rFJWU6vx2tbWmktwkfvtLTbtlVhRizCOkZ737LIy/XqpgnZh0l6JL9uB0AGl30fGUcpFRH6GEu7cDLHgHQRgeSEBOKX50///E//y3e//0dhOdQYwd1PpxrmkDmOw0c/ej/64YHL6XQc+3HsgWw2EDmlrsvaqDkpAxFQLffqgOmwQwJASk9mWtoJAZdleTgtaj60d4JMmqoPE87+ypyTtQzTka6ICbPhm9A8ej/MPTN0DGEiYfHwTDeNCEgUIhIGBIzcx1Dz0hZkHttrVzOEqUxwEWB01YgMzcKl1aphGeqRwTkZKLW0ZVkgITI9IuGeVDJTJmFuDw8Pb54eESkiiLmWYqMT4cxmRiYhTCMBzmInzDHMzQEBkU6Xx8vlccZxEHwyAXrfIWSiAdI93IGRYuhQ9zDP7bB2ekAuROxuHqAWOEZE1FqQmBMLJRZOAKDoIyDYu0tlKYWZMuIYqjpmHwgCAARC7seQIggBxJUZvpwlJ0TZ7d4aLneUySwA45y2nOmaMJuTKSZGmmG46S2Iu4w/uzzzvhbGBEawu04047nwxWxLxJFBgIg5MU5+xxBaIBFmMmQEBuCdZ4z335sSw1y1M8sXVwlkAiVNTxlFANNsKpvWk1lgPx3+cL8c5pOD6RhlnIhryDQ3M3NzAsiEZWkAFAizA+DE/K69KaWo2X70qbcm5HXbAWht5enpiVlm70Dvg3CedsBnePNL+zoLF6kifodacxGiSIsIs0zQiNy7zbgZAJhaH/qD6bZtbVmWpZ3PJwLIO8XIzSzvlWdOCMKckWZ2jLEu7bTWUvi4HT7h9wlra9M1lZGEM9GcbmZmgBCeeS+cgsp1lZNkoqkigUiRylzckxCFpYmZq+d0jGURmTsWImFiFknEACiTCY0os2qkCRKbeQC4ux7H0CSRSJh87sq8tFpbVQd17Nu1IBFSqLorRgBAuzzW2jISicwU0iBm8DMmdHW+WakAzsQlGAFAYYhQ1TGG20ZMdVnmILYBAeLox7HvGQEZ4dpmQUFmgE/ZkYHDfduuqmpmr8/P89803W+QzFikwOw6BGQAZiqFmHgOKecW1DxqLUQVJv89g5GRKSL2o3tCEQYmnnToBCQwuJfEzwaViNyPPoZOWXumP8OnwoNhPqep7jm5h6pzf3qHLgGmuUFkKTLMNQYQ4OwgC/C/CUD/Ax1/VWf5pXbzNQv2W4XkL94H9Auv0G/1HQDgLw6g3/5f/LX68+97zHvRhEDgL/cSAAvAAoCTzfybFyIRFoAO9xTYVH/mD7KczjyBpjosnACR77HiMcYEBXn4/VkxOgBmulptdc62AyJ8NnYhI1imZ1CCTBKuiNQixAigNjKsiBDGCDcPokQzRLx/h5qdlmXvfTajY3op1d2r8DaOfVgp7f23v3/77v3jN98dWYIpjisF2Nh++Pl6Wtv/67/+16fzUmP7/OnHLMvl3Xfvf/c7f/lwPi9D1aNmktFqefBxnL95b7yU8+MLJq6LhflxGKebRd9enp/Ze2UxaVRKRZRuvQ/CpFpPtV41/vjDdWB5fzkvp5O5Z3gr5K/baTlVkod3b3zfPr9oE7FluerNTBOQ06nIVTlfj+VEyIiEaVYr8bIEliosSQ4JwRAJHkZpwEEgZSnTBLouyuLaPd1sCMisDwhiU68ioNaEPWFExrEDUIYxUbAcHh5ZGSJh2nDupaGzJyJsrpuEaVnWzOhDE+895IQ0fPCMTbtxPQ1VRix1Qmp7JFAjJsykUqiJEBMrBAFLMe0RRiiqxpCnE+8KWVYp5CQJNLb+sISAemQliEIBibUgAkEiUZi6BVCo53Hso/d0X8+nmFUZkapjevAhXETcbFqhiQg4EXHWWCQmJIRGKYScAerqzCxUPTphS0aPSHApDIIxHAIhGTJUDQEAiJgIEu90rMhIBPQEdVdTtTHGsSwNEp6eHhHR3GKPWZ+0H8fc8a9rKwU1P419xywIEwho6HwMvb4e27bdeZAAiDDne2Y6ozRuAQjCJEwk5OGJQARAQBV9RLiiAyaKEAJND/bkWerQ+W1FjKa6MMHYYy/QJDlxEqsB/A7lTgDw8NpaeJBwqbCcSqtl9Nwz4HAAQIR7ty7NVztdzWjMLJRaECNiFOa2lLWc1nYKx5+fzdImpvp6uz6/vhIRlUjAcWgRqXs92iaILOV0Xo5j324vrcjlcro8XEqpY4z9ts/1Q63FKCwOPULdSqvgEklgOtZdsjFV4RLhkYF4779CwiJSComIe+xHx0yWKpnMzAAmfN13dx2qrUhE1lr/4R//kZnd9D4TIJQi7j7n+8x0J6oiTl0Mie/xPKBhEQCCwfSL7mG6uzQzU82ZZ1tQRoJ7IiGRjKFhMcmpAZGUgOiHgyd+0fvCIgi5MfIEWygi6BgWet9NpScLlUbmroq1LqcVI1hKMe9DF6Zam4XfXndOJ8DLeZ2TWJskACk5zNMmm/PO6konEiQO4EAABFcTZsbkdEFghMg7gTUzgRGJOMMBIIERBXE/Zg124IwTEkXi50+f//THf3l6fNBIiLGsq5oe1xcGzwS34ab7fni+jtHNAwBbq2Bxl3gMKS2DAmZuKsC7E8z9D0C2VtZWj207jo0hCvM4jg4AESycSJXTTDNGZqK0GDsAxOi6v3oiymzXbTYOPa46eru8aYXWZbmN7snCBCRYL5yKpY2hwcyIfbvF/nz++/856mW/7tG3zz/+q9mgtERuy3J68z5fPpEf/TiK5Pj8qRReWyFKu6oncKkQhohcSiB/uh6EWUQuUiPTHd6+fcrMD58+//GPfwoLSM/EQEKgBL9db4+Pj8dxLJWZqB+bmzMzMd0OG72bx8PT0+n88HB5RBIRseNYvv+eS90+/jnG9fi0n05vwpUJiSjMErErqY3eFTxakWnaX5blCaLVAhHHGBFg7hOQIYVyS0kVIANGosysrUopkDGOA+anFTBc//yH/+3jx0+Xh8fHN+8RTpel9W0fx3VdVyTOsWHE2mp3ZMYfP3zKcOCphUEVTi5VSrdBJLU05uLuwZYehFMxnTYCaW0hkrVV81R191Q1qQviJMfATPMg3unRiBAIERCAS2EubPvR+0ZE7jHMhiYiuBpARGgMnXt492CmeyKeJAAwzNw6AIqQMEulUty1lLKUky9Za3VTs3EMtH5EOBZqtTJzRkxZcEaH7k1D4Ux0WpelNTcPtuFAhOZu7nrbmFFVl1oI54OLVI8IVb8n2iJbK8yUkBYebgpeAIggHC1mR8csjR2pRoR771MRPj2+k7YCEhDpsQMmSxECSANM1QldwlqlCkNGE9JAbg0A5yKy9z6GsTCJEBIRRqR71FYRMROZhWkG5Oak807DnPpX3gsU4G6Mydn/PpsGI+/bzhBEnNbNgAkYcvM0RZbJ70O8a0eQgHjP+kTeCQyIQCSRFgiYwPOMSJSZ8QUnnJlEAYA0v/4I80sD2ITNEfF0Q81bvDMZAxkJaG5PYOICM2elFURGAjPd42KT5z/lKUwMgsgco3/lA3ERczte9enN07qexlBVZWEAVHeR8v79mQB6H/txzLfRMfRQZWIRbrUIs5mqDjedZzodHRFP5zMgSimSNSGLlFIKI6hOtNR8j4ObN+IZFzYzMxuq/ejCXFs7nU+tlLWWUjgjTHWKWSyMyG563bbXbRPm82ldl/qffv/dP/3rTy+3bcbdETEBIjPM+1ApwsROaKZTFxIqCAjBLCcEoYhahVDMfLteAa7LcmImdIOJACfiIm6GFCGUPj8N6e5IVKSIMEJmBiBJKQwC9wRqAqFDCWLk4maFKTxwvgGJfDKMjyOJuDQmdEsIp7pIrcexhyuCC4pAQmgiZWImeCZSEiNzISKAZNUEIC4eQVJEZM5A3UPVI0NKO60rlNKPo/cebqPvNo5lXRnJQXqaqyaEqd2ur0jUWvvuu+8QgEXCHWfA0A0AkZKTIeE+mryLxcCcUzkqpUDSXBsPtbZILYUTJvMREZg5EjJi33cdCkg5e3IjmRAZJ14RIACnY+DOTyjMUaRRMbfn12ukuXl+qe0DAEyg2XGWkJFmGpAEKFw11W24+b/b1vxvx/9ljl86cb5e8jUt9cuf4dc//PKvf+Ek+poUg/uY9d/UH/h1bTz+Oin27x4B8y9391XPan81a3Yvj4RMUIQt4apg/oUP/eW8KPtxhBkRkRRMASIbh7sjUhExd8x73U24FZH5AjFBunPBeUo1d2TMyBl7mOsmYi5FEiDNsk6BwIcrRCytIWI/jtu2Mx7r6cTMADibxQkRCOzYz8vy+OZtEt2uL8fRW2vvnh7ffv/357ffnd+8e315MfMgdDPvt3fffidS6+lhHC9j+/jhw8c//by/+f1/fnh4pMZFkFFePz2ff/df9PjY3v0DiaCNS6VST/nuWzOt65tI3Lfr/vnDzz/98Hq9/uPv3ibGw+Np3/ZIcsiV/NNtr+e3ZT2htFtq8rJtx0m1P281natg6L5tensd47DjxsyzKPHd+zfbfmDmmBD+QreRmttS8LS2fiulyPnpjQMutVBYIO23TY99KiOOJVikVBb2wH50YiJARyqSnE7rydTCDmYptfg4ynIa2w6JoRokImWptQi/vN4A564xGKGUKphhHTIdC0EyEhDMzC56ZuKyLGHq45gF2O4eAUJMmak6c2tFhM/LPhyAkIogVgILBxtYKiDNlHgGgEApAjZAx1oXXNg9SIQAL48nzIgAG8MiAMmSABITmCkyAUuijaHhPrrq2B9OF67rHG+6GgFEeIZ/KSXNO9ABMBIggpgj1C2Ey/nx7EPNR4TLFCulCjUAliIkYt08VVg0+lAVBACcr0AmcDDRbJY1ck4AmtH9CLAc4+jHsS61LWsppYog4NEPU9uEkRKBaqsijAhb19GVKNW0FAEMH2bDPz1v296RUUSYeJ7mVVWgEKKZTQxh7wMJ66zRTEBAIQwPA0VEdACLIosUCSCgmecEJHT3jGAgS19OjRB0HCQNSWYZb3iAB0CeHs6AgESYYObEuZwrE3gYEi/LGlSEi6WpamKqDQpyN9Wu3pe2EjMVYUbXbLisy6lxPa3nVpb1h/bHH/5sw8zsw88fl7Y8PT0J0Tb01ndGERzwAsLYhFmECEWoFHl6+3R+OCNQOfj6+goIrZbg0zGgv3bz7kSlFgQOG0ATSJbGauyELiXli9HfzOVMVWZskCMDEFk4j3DTgFxPl0SKBGZGFnePyPP58p/+83/erq+IOHpf2lJaxQQkBoWu3S1qKxPNPbs/zO6AzwjPAMdU02mqDzNgCiD1mExZN5tbnblpYCJ384Tp4wLEcBcmZNHNwxMpSuXMNHVuhYAZCRP7McLchlEjgMAkBBoWCVSXtbuHW3ggUSIgIaGDiLvlGMeIwnhZmghfr5ubQkQAjq42B7QkkAQeFArE63qS0ob52A8mrIyUwQhFkGu1PtI1gSIBM5Ak566JJd0ggyAL4nBjwNLaGBSA6T7UPn74sCyNmNP92G59366fP55WWS9va6mwnD5/fuZjBCKgLEvrfWQEi2QaMw4kyPTIWpEIHYpHZyJzk1TEmmFhGmYiuFDu1rtmFSTAwihU0hVCKKy0Ojf8gSytFW59KJpyFaRMVxsWO/r+NF4JVSVGf/20vv8+w5BY+xHuRcrp4fH2GQAQSDJQj9vnj39yG0GSHsKGEDaO1IOQkpjGHpHEDCylSu3WEVpb3EY52EEIE5FWwZGwHZ2IzOPpvK7fPnz7zdvedagSEokgsHkIsQ4FSJK6Hbqsazf3NAGoxPu2JUBdL49P71upy7pYcj86cannJyKugrft+erBb/4OpntFh2OSCEaEjdttK5gPa7ntx6fPn795/77WhUtLd9yOvucxBpKYW7oKIWS1QAS4c2QiWxF5vLwm5FDig7AjYhHu+3XW4hARZVxOi9SVpI7ewbwuCxGspTIxAe7bdt32Yz/WdfGMYX65LOGJwrXVBAjAzIx0nt1DCUhSpNVSCosn7LdtUuabLLWu6ZoALGWCPdzdzNU0MwEpmQRJGH1uV1pDiMwswmPY63bc4AgzFqRUTFeozKVJzTioYJPiYft+vG4Hrqu0RQonTqpOWepKwJCgbr2ruUckAkLgUhZh8fQIJ4bpgLivDBMzfZa+Z/q+KxIUZqQizMnkkZ6AxMQUU3Ua/VCd4ghLzQhzNTcd4/nTR59cfMzKFDo8MRVHH0LQhyJEmhbGWkoC1lrbunjm3vfbbV/XhbhCeKQKUldXyynaSilONFlR6YBIkAFhEeBmRJPlDIQgAI6gbkw0xZ7ETCD3IEIIn20IGYnMU/xhpmkKzQltBxKZ2RMNAIR7RcPsN2GaVfXmbtPvHAmQPgl0noQ0gy2J6fM7f3ppidggCTAZ53J6trNnBODXcjlKvm+dpxXL3e9ZMAAkFOQJN8mMRMrMe8kMTnbnpM3MfPFsJQDAjKRZ7MtMnJQI98B7YESMcW8+IqLWllNrP90+f/gU5bYTUamFgw7rd/jmcUy8uJRyqtXM9qOrGjOT0r7vER465ixqqbK0FhFE1GqdAV+WMqu4q0hiIhHgkFKHuc8upkyMO/mOZ9kbYGTs+z7jP4+X08NpFREWzgiaEIoMVb29vhLAelparYXl/dPDdetdNQDCg5jn6s/DRz+EsZQS6d36tIPVwgQcyYBVAyNBAwZ4AJqamanF+XziL4reFw49jN6n+cjDp063sjThRFLVsBE+DV+MCAUx3SOMUhDRIZCAgAPRg+7GQYSIMB0AVBOSGIggGYh6P67XZ8xohE1IhAE5Cc18GmTMrHErUqbdV5jd1MJYpLRTeOtHd7fKHBFDDcJH3+8esQxVz/CwYWMXpu0uaGcpcjlfvv3u+7mZrK1MnTQz52o8ItRMx8GPbzKT3AkqUDrAveAsMhOOowtzxPzchKkWESklpISpmw9UMwuP0TXn5BlwkgrCACKJmEQ8MjKO45j90UXKLCTMzGUsiBCTG31/jEmIEzwKk2sxaVgEwuVU11uHjN9mgP52/I98fFV/vgoo8WuVB75c/lUq+vpb9EXWwS/qzy+vT18q2L/e0de7+Pd6h+WX//hdTwYE+NJjPSc8v37QAAagCR2gKxwDhoN/Mf4gACY4wOyUFSTQPiA8SwkggAwPFiFIzyylMGIKh3uGEzOXKoyeAJlEGIjuwEzbdVuXVkoZamAeEaVIhOVdRYrZgwAZU5oVKZAREYjg7vMsrqND6FLb+ent5fHp9flz7+NyPpdSn775+zff/Z6kSPoimBlSCNri+a2AnSu//OmfW+PXj5/+27/88Ocrnr/N7Xr99qFxocp5jAPGdhxXzqM+vIsM+/Sn+u7vsl/Lcplf+f12ff786eOHn3//u+//4e+/LWUV4ac35w8fXrejE9Pj22/LejE3FnYLaatF/PDDj4+L9Gsul4WQdLti9tfPvRZ5upx7H5bZWkUq1+2qkeO2N86kZT/UDdelnd9/Y0OHZ0Jee79U5rqgM3NLgCbiyK3JPQ8LqG4QjkyTZdiPo1FvtXqyBwWgJUgiZFJabXUzxLJEdA1GBLcBTJQJ1JDYY9hwyBgQSUEgUovr0KFIJIBzukWlmZl7h0xiIZE5YFRVApSCjsSCpUotfPSeJADALJEgGIIABApEiGtDRQpTCEkATDfNIphB/djOpzUSAwuTFkBTV/NsVYSJsICb5t7HfmyE5fTmrYhse0/AnAwjkXSYnRCElKkT1wOIEamjw5epmVsiMouUJsKyrBcb7pkPD6dIxMR2WnCQqva9e5q5uc+mzykZBKEjExgAESPFzDnPKooEI9v3vZRrW1ZmLsKYwMKtFYDgIglgoardQkq7jGNP9HQAIyRLzFmXTkmQQEQiMsGO7j6sX1+vCQCE4f754/PDu9N6XogJIM2HhwEmAHJBQB7eUyokheY0pyfCMMvIwkBFNB0zTbUtpQClueXsaaVaq7Sy345xbNPaUxdMJHOAYHASoaVdMpBcATAhPHS7bW4+kxQR3ta1LEhQmEoplaTU5XQ5c+FahGqRf/qXP+z7DoHXvX96uZ5Wc0xTU1chQQAlyFoXCATDllK41ipSmJgR37x9Gn1EmLqOZ0UHEbIBfTsIDMkR2beyxVHhECqE7IO5CmKWUmftz1QJkWcLLRBhKQyBqnrbriJ1rm5Vbeo1brauy9Obd9eX59P5XGuZs0cABIRwJ8KltkwDxKmeQwaAwyzjIEqAgEh3N5/vcA+ICATkQnPy636HkAYAMS/riVkjM8KZaRrOePYpIhODuU4mBASkQ4Kbhw0LSDaEDGEgLj/88GfT/enNE4QfarUUBLBMRAamSMyMYQAsSOmu/dhH7wExPInEbUBYJkUmRFImSJ0bgPPlfLtuNggyEEEQpNREiACb3FXkDBdCmNTwSEhHhLmKE0YPykhPSJZaquoA95frjf/0p7/7+99LbbfrNbSbW9/t4V1Vzw8/fQztQQSIT2/eSamaw90a4+hDdXQ1YSFCd+97d5TMIMTCjCilJIYTk5RigLisK5BsN8REYoTg1jICkzNcg0BWqo2gAwbJGupDe4EEyFoLU9VuP/35h1CrtSSR9Q6fP57eFsiWPvTl58c3jwyyPr5dv/m7AP7pj//8+vEHiA6RmEmYhR37y+d//n9LOwFQRmg/SmVGam1miWiMUc8nJ7Bak5b1fFFVLogjqpB5ICQgWTKQfP/dtz/99DNLKVUeL+uw2LcrEI+hpXG3YHMDWAgz0Pp4fX2tVU6Pb08Pbx9Oi42dWm3rwpllffBxQOh5EXUYxyZUt97B1RAJQfctRs/w27CHirWeAmgEUSGCOF0eNCnctQ8iJBD3wYghFDCDFNyWE5WKGcx8OqfCJsyFab2cS2vPr9vpcqm1mvntsF3j8bRCekIMd/TkAEaVAmvlIo/C3CozMWUcr597qYizrsgD0kLDnQAgkFEIgeoiXNMCKXN2RTG35dzWdYZ9iQWJpvPUPcx9qKUrE9alUab2wyL6dD4EEPG6ltmjfRzHbduYsVEAoQicTg1FDtVIF5Httr9cX7AUaU0IGUuEBqVwuQNiEvs4jj6OPoAAkJallXJnvgYkfeUDJyDQaWnfvfvmvC5FZGaK0iOJCROZnJhlnrwyM2opSy29i9vzcTcT5eQJ+d4nbXWSdpFlbYUhh1ofQ4qsrVapi0AaV8lZ+4NUEJERwsakDU73CgMlQoKrzRcpeeJgabpdOcIJEoHUwhNKq6UUG9NrBqYR7vNrFhEtQMEZIWMaZvnuYkW8A5KYJ7aQZqIHZjoaaNIJASJmcZal+cSTiQhLAUAPB7f0sPTZYQRIcc+IIU3iLzMh3UdNUogZZ8Eh5AT5ZyaV8qUTHO8ni9ljD3QfQce0MsxibICcZp+Ae5ciIElGUPJUjhCAOS0A4j7hnQOGu/xHM9wcc7OAd38MrqfL5dSuN+n9OFSTGHcmxFlDySzTdUR4b5agL7vrSJ81oxk+0SuE2Ec3M4JAzFoEEIlFREopIlOLgXnjnuj71vs4ele1pbW5ZpvYb4/ICJwpe4DrdkD4aV1FBDNNB0D047jdrhOxBQnHsMxkwrWVWsowh4SJPJyRL3WLdCmSiJYOCUTglpDzaweVciROigIiqnoiWqYnllanEi2Fi4ibETHxPggQ25ztAaJZzF44MwdTRiBmJCIpZmqHAxCZhkfOoBySCAKghSNSlDyiAMAY3ZJkAvuO4/bpg+nx9untUoSZpTQSnibiImXoGENF5HQ+xSRljq6DUYdFztAf8fTuCBFKKa5qrgAgRFzK3MEhgJticGu11sXNEHHylDMxM0CBkMx0Wulra3QHO9P1tnGprcid9Rc526AzU5hRyiT0AAIxT0wPecw3RkToUDOdDjpEnOvV6eZDBBKZ6GzCsOHHsZv76XRqpfhc2yOUUtblsr8chBTgpp7gxA0IM+HebgiZAKYu4EoKMGXlvwlA/yMff9UKFL/Wa/DXVyszKvWLG/lK2PkKEvqqBMGXS+LLD18Emfvx7xgEmzerCbPYlBLuZ6sEDQiARiDwbw1fjvDxBppgAGppDgHTBDqnHHcJSRixtgUhdWjvg1SJOTOA+R4BT2MUrsKAc0ZhqsAoRShijHR3yGQutZQ8nSDD3IkoIo8+9v0QhNoc7zlq4DmaMR2jC+H/l70/6ZIkybI0sTcSMcugamY+xZBRXVWNRp3eYIP//zP6ANh0IzMjwyPc3QZVFWFmInpDL0jMMyprQFUBi0Z18CKOhZmquqqKMPPj++79bgQSkapg5qP5EnM/DkH8/XfPKeW2CbA+f/PD0/vvQZSEhLnvd0l323H7EsvTu+cL9rvGaNuX++f949v2Dz+9yeWbDLjdtueC5+cfiAneXsbol0W87Rhjffpw3O+xbyQ1Efq+H/v+8c9//PTx4/ndN//2f/p3YenRzXzf7m8vHyn6m8G7d8+6nIpya8f9uC1l2VvHcfQscpJx3NMa2VhPyzGGR5TRvv9wWTYzEJVOBPvR3eztiFqs9XF0fN0HQ57O5xYYo5tnrCK2dwdCLrVWkS9vb9kaqoy6LOuSETn6ZV2aeTMbATWT0pxZEWw0iyS3KoiQpJXbrR0YPrQAECFphCFhIrl5As29d2AO97IgGmIMhMjAbkaULAyIkfHo3Mhwd1EtTN0sItyJtQqaEqY1IWTRcE8AiYFJkLisJ46w7W2kAqvI4ok5TSkiHn68vuKxASCLilA07z0Yo6qOPo7e19NikN187w093n37DTF1By1lJrZURMChSG99TldIbD4goAKaOcy7ASQzJ+VSSyYnRma+vb54T+s2Wqv1hI+GESyl1rpG39roX4czyMTIBEr0ScmBmFTIr44SQADPiGitbduhRdelsrA4iSJiWrfAxORhvY9e6zpmh28aABLBfm/HfWQkMiaku89qcRG2YftxAKKbE6EUHX301ssiSAKEkYmz1AsSiUHmlQPDIwHDZ1ccMlNghAUpIXJmlLpgUnTLCGJW1TZamDvPkTylEFIsq2QMA2YWmCvaTEQk1ZMUi7Yf7j2OY2QEARIJ16FQCTTcXQOSAgS4lmpLXT68+3DfjiSTKpT46fPHt03rurCUxPTokEBOm8e2BVc4XU44cN+2ZS1AuNQS1/NbQushplVXQDOM2Ho/jCCXtSiewRWB+xjHcVyfnrUICyHIxDYM9wCYSBFPQyRhrOtZiJZlab13d2HZ9q27D/NTXYDwODpiBmRVRaRJWHK3+TDFRGa9aAEidz/2ve0HEAjLTBG4h5m5hzARswN6WiYQUWRO0Zzmqjk8ERKImbCiWQAIIRwNiA2QbSRxEoNHEAA4eDdgTkEzNzMWAoBETwgW/X/8L//L9fnSLc5Lad22P//MKhPkdFrXohIRpGXREnbs+zFH8wjISMYYwEURzT09IJhpAAlAu7+N4x5AaxUI6CMYCBDBzSEjgkmJFXwAWsSvBfYJkEQzfwMEspubh4qWUmjqQ4B7H/f7/cOHb0TUhZsn2M2O295y9A7enWUp5bi9QJy0FAz0dmekrR29WSODyMvl5H1vIKp6P6YVUVUrClWsESkiRdmGUVVmNs8kCq7ALYI9LBFPhQEBtFqEIyOX7m4hYdZtOFgptTl8uR3ffX9e1hNfqZ6ekUWQM5BFS1UpJ6Fve8r2888//fjHTBdG8V6r+n2TqszYJxmPom23kYQIKqRMDoika811KceRohKkE4R/DPMIcyjMwDE8tgH3+2trx/lUpTBJRYSi4lqH+3E0RPYIfb6C+f12X89nH53AL9dvT6en0/Udc973rbo/n5dyvj49PX/5+W6eBJLlTCzghqNTdEsaxwaQnEOJBuFri+upXs5ncHPWmeaQolyEVJNVORnEj54+SGowsbKHr0uJyN56sjBz2iiEl8ultc6itRb4mmDa9+Pd9YJA960hYnevym07XLp71GV5vl4v5yXDC9N2UxUM97lUm2GRxCTSRc84i5aCdKmEZB5EqIy8nOpyRkjIUFGSBxg4IzKcMGvR6KFVlqVaO0Y3SocYGAgsIoKQs9e71NJ6i8xOUng2GEgAIRMR3ff76/01IwRDEIWJHZK1C0Q8nmsjwtwtPSDAoVR9ND9kzF36cM8ZpHS/nq7vLs8fnt8v6woJD49MxqMzyN3dMWfO+1HII1VrXerSpiw+xpjZLo+wiOl2cXfAblYuS+nDipbL6aS1nC+rZBKY728JgCjIwiSWToiQMXudISJx2hGQADyTmea6kJBFlQApc/KtMrnUqqr5KNBiJCzKvf+qWyU+Il6AMJNWAZDITMjJsxQBAVBUWHj2os9g1eMOnjBLTtJnaydEpKhOmjIAshaAnhGJkO6A03j08A0BABMBYk4e8NRiCNGnadohAWKyAx/60xwUIif9baqMGOgznjZv08T8KOFljvljPmJcOB1DjwdcnwWRkY5IQMkegQSTMjflJgKAWcxCpKWcCr8/L61KH9E8A2Hb91LqvFU9Qsk5kUpETAhgDwq1hTs+csqDiRnhbYylcNEiIohILLPx/dFcNiNDmG5jmpIy8zgORKi1zko1IpLkhIyHzdyT6BbWWi/KVXj0fb5qo/fMmAycgOiOdoyX+zbMv1K7U1XXZWFGRGi97W0HAGR6lMMqIvHspUnJw6OPPssbElDKgqzmbhEFAIhmbykSaVH4SilNJPcQVRZCggAgKZkRbU8bqOr46ERHliROcggXFphPRCKQMcxrqeMUSfiXn37ebzfxVVR72z9+/LnWxTyaxXIp5ta2u9alLguxSMZSSillWutn/PyB+XCLCItZqpeeyci1cKpkLpBh1UYfR9vXogmppRLRUisxCnNkmnls+8zlIYCWkhHHcbDIuq7KorUwS3fHtAhvY0ZZcYp+hAiJkfEoXCeaA4/1AQAJyMw2JizB82vF7oOyn+DuCQhpRDk9cK213lrrnQCEcFmW+bRbtDyfr7ft1WP0vT1mcUT7KvBEgrJWpIjdzQ/qDo934//vntD/dvwf9/hVlPkXOS/4quNMX88MUi0AOwB8FXr+ReDrX0iG+J/QgOivjEL/ocnov+VIeBASCHg+YiY4QhtwNPCEg2EpUDgBoDu87rg3MABzGA4xz0x9KF6JAATCIF8+f/7N70/hXopaFzNDjER0dyJlRgyGaR+FGWEGYrKIMYwAWBiDImMcLSPcvajMb3jeq7qNBMw+CFCLalHMIGae8UsEQNj3LU2RAMKaBQESy967p/e3L59/+eV3f/g3v/n9H5i19R5tBzrA7e12F+hlWWQ9lXV9e/nzcf+89+PT59e/vO4j8Q+/+42wRPjL1qsFHr1oyYywDDmnW3gvl6e32+4Ib59fAvLty8dm4/mbb06nq4joIraPL58/t2MLwOX6Xp9KvTwB4OW0Pp/rP95eV0U7OvrINl5voqrvrmtaH80KQustCNal8ML7cLyugsZaWusA0Mw8AYjc+949pHC3tBHu7oo0Iv2kQmkjMUYfw9jYW2dM75ubH4QBERYiklJ3t0cyMJwg002ZfD66ZLQ+MKwfxyrsJAC5lJNnOkSOlpFUFiYI44jcjq4ECAQsiDg7nZk550yDj24MIgoAJqqKgNAjmHFODCqPnHREZDgz03QeJUViMweA5XRalwVjBDHYsLTwwNMHBGBwFh0dCEO1pI/ZKmL9CFQD0Iynb7+B5TQsElAp5sIQMkgYwpd1cfcxBhKrYmZ2MyUEZJj8w1kZMRCJbW4Se1h3Vm1tS8SiiydAQiYykyjboICgx9CWlDCRlwDhHmYP++v0jgDCw3oaYWBzatEiSLAd91IZhVgVY4oFFAnn81O3w21kUG/e91QVSiy1RIR1T4B1WSJyjOHuU5XLDFEGeFjWEwICUYgoZyYIIEkxYdpJ8NHDDh4edV1K0dHGcd91URFOgDADJGASKeEwmtvwJEDCUgupaVFRBIKMREJAtgjzrlKqFk600c/lmme08WLpkRmQiVT0HGa9H72NqATJdGZEEtbL+fLh/fuh+2gGgQOP8G67XZ+eZUFrffTEIO8mSud1vVyvl/LUW2/d2hjWBxfe+35e1uvTc9Hy6Uu+3h1HVKbr+izE6NSOUSuFOWYQZFVBJkYJNhsyzM2dJcKDiZjJ3CEDWZhAllP1MLPbfv/06QsiQsTldB4RBJkBb/f7UoqU8sgGAGWmua18enp6vt3v3fq+bx5RpDJStz7j9O7OTKLqMbvheb6g7pE+9dFHopEgkRGJhWeaATKylEBQBOjogOEQTISMnnMhlgQ0mpEg8cykgocz8Bjj7fXVzN69e75enzyhuyEQhH96uQHgUuTpSVADSRpIlUxIdyBw84BwKcgAx3AgIUJJmI0tEcaMioQzsjoGti40fdqIzKKKCOAQYyQScnpQZjBC0oTxps7YqJu1Y5I0MmN0+/zp5XQ6nVYagSjqsWS4ptfCt9eOPgKD/AgKpCooLVAmbCN9OwwAT6MTpEKYp7UmjKRFlzNR0rCsVJZThDOQrCtDWj96ZL9/QYhIkss7DI9oiO5YUteyrEHFt7sup94ak6sUFa7LEpkoNbEsl3NdnxMxPaVtdV1CaIDse397/WTH6+gtIYWKLGu7v2L4tse376+sMMYbktr9VZ6+6/0YFjQchUrR3lq73zNTRFsf+3bPRBKtiuE2PFbFiDxGvLy+pbmWUlQd8H7fl1pUZTmd19N52Bj3WyZcn98d3dqxUTxaI1BKqdWOjRGfLucTe7lcVQuXNXUF+pY8iurWXpVCWDEjw7Ss3Yd4qyrX6+X5elWmxAzriMgAnIGJUhdmRh/mHCJFJDOBATLD+rEfiBkeM5fElKfnp/N57e1YaoXEse9tDGGx8dxaV6XwgAzPrnoGyL0ZZAC2WgsADIsBcbmea1lgtrZzQOa8Dpzqc+U62uY+PNITpZS04WFaiuiSX6FUhFPupwg3s94bEi2qziBMaaYEoNz2MSUM9JgejNHHcAfCslQ3Y+XzukhZgPXYttu2EXMbByDyPMvTkwWAAzCFYhikBYBlGDgpsfOMbSKBheUjixQejgEI8NtvfvPdN9/VUtf1NCOokJSZHsGzMjqCRDIyw49jBx+llqnMRmJdTm5j37Y+bPaLmydyRvij3QqARL9/ei76YPq2vVFhSBvmAQjoBbkwwUS5snqEErpbZiBTTi0KADzMvFYqqqzS+pgaRACxsAgXoW6uzMosjOYmjJkU8z6NQJPrg/DozIog4hSAnFXrgLPMEsl9TEwyJE7ezmQBEVJgACAyQ4Z5xMOtQ9O5ke6I6O5ImAHzkfXhKn6UQHjmAz0yO+AJAREDMjGneWoOCjMyhsgAGBHwqEWceTIxGxEZfxUNI6LwmPCUzCSipHlbT1WMSIKgBwYoHrsuJESDlEh7OKEfxYt4uV7quvQ+brf7y70li43hNpAYABPy689OREQ2q0DSrNsYwgxEAImRyFlKKTzb27CoEHNGEtGMQM3vtvV27P1orY/hNsJ9XZdal9NpfahoM81ACIDDbPbKE2FYv7+93cFH7wTAzOGR6SwERIA45qKnjwSYCD8AKEWv10spGu5xSzui9QHDWAUhMX05rYTsYxiRu49hzEQ0xzLIiNbaXM/MIFumzDB25LxvG7IQqyDlgyY19UTJesrwCa+xad8VCQAknTFSQhSRsqxjjBb7sOGA/eitj48ff67ruSzr/fb6+vLy4Ztint3cMwUJIUc7Zgoy3JMpYVrZAQCQQJSRiVLdbD8OdxsZOQYC1FqZYCbFbNiyFDkYIwlBVTzC3QgZ4KEpJgARTpNXQhJSqWWpSykFICMe+nLr2zbHJET30FKKVq2KmYjQJ+6HmFiYaW+dmeaXmua3iYVAIpvlI+nzlzsJSZndzIY5WGOi58tFihIRfBV9Fy3fvPvAhL98/tT2PtIxMShhzDxAzopRxCRgRBhmw91jQgf/dvz3f0wJBv8qpQVf/2YKOvxXvh4EkH8/+fWfUn/+hYqUX9HR+PVzf/3X/Kv//W87LDMCmL9qlgkOMBy65TDo5iMSEpkZErrHGBYJAegRFgBISUKBqIgESAAJBCB/+vOPovL89ISIqswPsxxq0YxwwNlEEKMnAiOysBHFGJCZCEIYAJG4hXmLdV0yQ2RSNWAg7Nt+OZ8fk4zIMLPRIdMjSlEASHdgyvRj622MNuxcSyYw4T/+449Aelrk22t9Oi+VyDU+vt3MEsEkj4iU9cIQx1/+YbTt89bu99s+knX9u99enxY9Vbzd+v3uf/rx5+enp4rrU9rp+X0fPVjasWeipe/7cXv7st3eXr58Pl8uT6flw9Py8eMvq3K7v233t/P1ysTr5an1PJ3Pfd/e3l7I2qmQmRfvperw2Pu4H9Z7O0ucwUpdve2q7MdeELoPUF2WxTAy2b2ZIWPWIqO7LByJ1pq752gzLK5KoQxIyGL7bj4aREBYk0XpQGqRaZZIp/NaRPprjxyPUVAquA+PsOFvrbWOKkwkSOZpPsZoEClFOcJQQVEm1Fs4EzBhuGEmYYhqhIcbMRMxEoU7E2Z4bwczAyGEE6IQRlKEASpAIECBaBHDQzXDhwWTUpIAMhNxXYST0tw7IgCGSoEq8wQ6trsgrusyAgFAwM2sNdt9+LGdr08tM459KcoI7sCEiKDMOQ4AoHSMuVAwBEoUsw4Iy3oKGxGBKXYMRJIqCBw+CKku073MiBAR4NZaT0Ni0VoyYzSjOUfGLI0l/tWhnV+NhUhIATCBPPNKgTPqaMNnP3eQkWMV8m4AgISttdOyFl1QiwX4GKKhUswNAEHQuh3HQYjh2Ud3c0RgJrdHTntmPCOSZLrtUwQAETOQKAMjA4IeGAJAUcmI0YOFKy9EgIxhPkGVxOSe1nvbD1KCwGPfuaYwRGAmpVN4lKIINMaABOHMyG2f1Go8n68AtN03D5dSROqwYe2wlnGMA38x8wxTpogsWn74/ocs9suXn5jK+fn8+mXzniThMD5/ecWkcbgyXdczF2BdoJSlnPrY3rYX85a3dPfL0/vru3fX99/H3+sYXL47WAWSxuEZo5by+9/99nw+X86X06kCBRMLk7vUWsfokDl6YyJEFC2sMdqRkSOAMZel9oEf3r9/e7u9vb3dM3ofS12JgAkispvl3JUib8c+zImJmLfW/PGsAAmEEwGFlARCDAIiDAgJMNvAAGlOKMgkzPOiT8T0gCY+el4QgQWZFggPCLJMAHAX4sD0EUCPQQ0gETFyJBQVCQDvDqQBcLu/7vunY3z7/um758s5w49ukXYMs808AeFSSwViIEgfQgRuYwzMiJDh4ICPR9BIJVxqIWQkMPd1qWfJ/cBj23tgphGzpXrvCkGqjgTpEcFMQEiQwwMACFGZCGlkZjgg4Gw19njbjj/9+NO376718o6R6vnkibrWxeCN3phC7Fir1NNZS+l9ZEKELedzc8i+iZD3Y6laIeRy/fJCo+8ktSxr9tss9RGhGY8uyymtj97t9hnCA1JPz+fn9+3+9vbWWDls1FpFJBfcj8MjpVRBWtaFkFQkRjMzQIvAjNDlZOCUIUU2y/328svPf7m/vVWl6Uc4F9F6jv0u5Rp930ZgGrjft9cRcD4/oZbb589JcGZcFsVoDs7M6/kZ325Hb1IvXBZhgBhs7bQsrwO2+92sn0/n9bSeL9fWOjMf2+aQ67quhRF8qPQ+HISl3l5vVZBYgSuX07bdCeLdu2+0LJ9fPl1lX69xOl3gd//jtt33j39qFr03Yiq1AvB6WoGFix75OUZenj48Pz1/ettYWESYxdMRaakFEEW4785aRuQYpkwA6Ta01jG6uU0w1XG/pTsS3rft6Bbgx9HCeyYsaxXKcDc0QBoBafnldivCPsblcpEiQKQox+3WI6CEamFSFSUmHwaAa7mI1NFtxIToWgA4UAIIawKnDyBMnEPjvLq7mY1js9GBiBEw3N0BgjAQydzdHKbxB0YkZTozuAdmFGUqjESR1MzubZuRzQHu5EUJI2M+XBGEe3efhqMID/dhHgkoNCHG5oY0g1bkYQTEon/37fe//e43pVQiTkgze2A6iNIsH9kcykgbw0bf970otzaEp/WJmTmsz0fWiMREQGRmISCIiKjK6+m8Xi4MyYzW22gHDReGrRkTRXomslpkmkcimc+sVTKkRxALC8SwyBQVFipFSUq3dBuztpwkCbwdZpEiKpTRvfeOQMSECfNZFWGi0iZhTZLmpQMf5B1MAHSPtPYYA3DyEPBXegiRRIT7bBQCEiSYtQZETJmE/JB7HkgUIsgknEYeykyahSzuATatQSwyvaVmj6r4ict8GPK/jlVmlhNPgviVGR1fpSVEyCSawAckJJohWSPI5Ef3QiQRhrkD8nzF091cEkyB/Wsj/JwctqP3bt3sbWv37X65Pp9Py307LByJCKmoDJsM0ACiKZj6GGY25TYV0aqiupRSRCAtM1VVtNjokJHA80YlKplhw/cjw2cvG9SyiCrgZI4/GtAYVYTdvZu1+Xa3HqMzoYq4+33bPEKFCzNDJtKUtbgoD5v+zakXJ0QpOgxqfQS3h0WCEbGliy4BhDBDYQQIY5goAvPow8wyE/E4mtaipZRhyoSE4DYyk3iu38A8wDthzpw2IydGAIHMN1JSYiYmEgoK8myqXU+ny/X8y09/RhbktNG6We/9ONq27yJyHPvofYzRzZv50cZKQW7D/ABgLZlg5hENpodZmACJJn2ppAchEIlt29G6sJi7MkvRWsrphIj4NPFhGYRwtAMAdGo0hMDCxJCCmfu+9X1PAGahh04HGWnuk9s9n3BrrZ45Nmsy6iiz3Wu03m0QC7F/taAlE5Vaaynzrg6AnSIjpgA4PYCQiAxu1kfHzMJcZoGuKiKOYTltZUyXdTktvzkvp7XUnz7+dNtuoxsC4VwkBRjMujcBpj5Gwnwu+FsE7P8Ux68v88xk5VcxKL/+5b/IavG//yl/7RiC/0DECYDxNVP261ee0qL81Yf9aj76r3/PpTl2A6FHbmtGfKe1JwFJQIjTfIzY2nALsxiTTwmcmAkIwEmJIYJMCpPoHwGCgD/+6celFCnqZu5Ra/UID6iqRDh79QwAbQBLPAr/SoQzAkAiRERMYvS8CtuwUpSZVlzy3TthLKVAprt7+tH6vu2qKiIT1ouY4Z4Z97ebAbJ3VSHUbW9O8eHdu2+/+35llLxzxZHnT1/eRhul78t6xu3LrfW99U+fP75sHRkul/O//c1vn65Pv/z8y/3jj+fLddsP38lOy0xGKJNSBcgxogW8vr3tR99urxF2vjyVosDU+o4kRxsR+P03V1jeYaJU7WN//fizZ/z4px/Ztt//9nfvn67r99/ct/5yu5MIJuxtV67n9ALm5yfbPuvp+XBsDuO+U6k4IbxBJ+Vwr0IcwqU48H10YXi7W2YgZrqmx96sCnnrBigUqCWoAFhi+OhC6FINBTyIsPdQDJSSmQ7o3cKGswQXRoBMZjbI2A8WCm8+YKAEIHgapCBYHwmgqsxsZoQ4xvBhSCa1FhFECCIzSwAbA5AyzBErMxGbOQCC9wSetIcqCJnDgnnuUSQK+OhcV8bs28YwUJQREglVvPcoxbGIYuHJJ3BIQiiv963Z2O63p3UdVMfofb/FomupkTDcGbINsN4wjJBYhUkcGElUBA4PO6ztk4Dj4WCUU2EDCZPATAAmZBFECre00Y/DegipqBCTVpkpsLREn0vDSWOcd7IEwMyAmMMAzlI9QsxZ0JoREYI8e6Qn3CUgMLAsZVaumgVSKQqUSEkEuB+NWVJz2zYLa8cw88gkAClMQkSoVcaw8BQBpPyVDYaIyBAB7g5B+Wh8C4CMwPuxuZmqrJcFhIWYmKelCUTCxn7bkBEAIwPlAaN0s4GVADNplpZkQF0KIvY2lSka7oi5LEtd124NOCPDR4fBldQLeObtfk+3y7p6ADqw4PVyfbl/AgRkevfNh7Y1XcvLx72NFp622fLNE9ZoR9/oDsjE2trR/GhtywbP797paZGlnpb193/418lj2z/3ZrcvG5NIkdPzen1/+cPv/4ciKgz37a5aiDQiS1FhvG83yLhenxPRrRGLqFjvEL5vzfpAnA476H28vd20lNN6IWYVXGpBIuijR7TRMjMy+9Hf7vczECF1C4ucrS6TSxoJxDzZB3Mw8nAznztjEWLR2QEHiMgcQK01Dy8qs1cIIEupIIIeWrHbgHRzm8UlgEmz4iwxwBEoIdtuALC7AUqQOx6hcffL2vaFqYgAQKUMYY/cj/6n/ZfzaTmtlTln+6xFRiQRdXNLJpFFySISYkLRtRSzsDASjuGTmEJuw4MSI3oREoykFNUYEJgAKASZCBGPfSYAYgpgPP4uMRMgzfzlbVeC789Pox0XXSxguTyr4+UmQFjATu+/A1lGeES4NY/gwh6xLIsIpR2AAEAZHuHCQiQZMBxRKnGfSA5GynHYaG49wCNjArwW5WCugsu6Ti747MFUFVVhLQg0N+KQ7mm3ly/LyW5MQJU0AGDYSMCXz58/f/zl06dPY/TjfmPRp6fztRoTracLacG6jLGP+5aRNnpBLGjbcdcYT9/+Gxw38sHrArK4OVCodwA7ts9ulyz1fFKVfPfuCgf+5aefrudzPV3Op/VyvUK+QTgLt/sWtbubijLxvrey34VpURk+CBmlsJYx7PvvPzxdn8axgyyfPv2yXi5EWiij6AtoG3FvkaPNzp/9OE7X52U5H3u7Pl2u33yvRcp+3Pf75fLEgtvbkYT22D8r5ZpOKrKNwPQYnYTW61NvI8OReIxmvUlZJtaEVY9t9+0mIip6Pl+en66QUXWpWj693ojwdntdVHzYcjqJw7a3y0LLUo7DhuexH0KFUNI9MZUKAfW9uTt85Z1a24mkalFmpmRMYibAhPSYYMMYfXiE2RDmdBRWRAjPMXprzd0QkphIZn43l6IW4T4AqdaKQgFpo2W4FA3I3S1JiCwB3UITErGFR3gieiQQm01zRiABCaNPw0tO0h34UagUKd88f/uvfveHUirgzFkiIRFGMgOAAz4aHomQ8H7f3MZ5raVUoknDedhekLjUhSMtAhKIRZlUiBDcbHiOYb0PZXQz781GjxyEc5eEiNiGcesjYju6gzAkIBZmoYetuKhOGwgxMWJYn8E6RkBhIlZhhDjGIFHzcX/rmGFALAqTdzZVcYCv7VkwZfwxBmCEu0eICAk9VAUzRADkOchCwnynPTZe84orgnOXRTRxQrMFCRF4WtUAiGi+ZyAhwhGR6YFMIiSAcPMIh4loRhTi+OpfQCRImL3XREw4p2iIBEKcjpp58Z8ZNKSYIZfMxEeWbOJm8GEsAogIIcqvnWLJwAmZhDobBGbNNtVS//zTL0f3ADiOY9/2PuJ0Pq3r8vJ6C3NiIUIVKSoRidP64s5EUpVnYotZVEV01v4SCiCIKhEiYCYQf3VDZwLi6bQS8xh2tBa3DTDDvbUdZ5I+gpDY42jHsW3uMYSFURCYJ5IUMoKFIcghm4VQiDsiIWFR0SJuOYvV+hgfP78CgKoSsbASMydEREKM+UZmCQ0kDneIyIQwJ3InD8t5axDhjOjtaK0T0VKUCbWuUr4inBMypvGWWUWLWofEiARzczNLFC6ilWYB5wSHs5jnth/7fqiUzHDz2XQ+9nbsm40BiL2PPkbrYz+aVEYAIrJhASjMs8nUzTrCaV2Z0FqPhNBAZq7rqmkA+37sx1bqO9YiLMwyU5isujALEyGcbFVVYjxaZ+KI7KObeyllraX3FvkAa95vt3n9cY8+zN1ElEWyNWYGxNEbAej5TEjL0+Ju4d5tjNHMpwRJ3aJ7TrfmslQgfGCAAGz0GYeEPiZ1hCBnqRkJE8xqtUcYYbJF1qWstRYthPTjT3+5bRN0nQBpASpk7gkJAcOdZ1cl/S0C9n/GY77qv4o+fy3u/HWeax4OIP9p/44BHH/18b9ajeY/8VctaRqC5D/49P+Swxxa90gUpr/+BiYMSBiIQABqkW3PiPQMdx82CxVirhcyATA4MpiQgQghwRykLnXb9h///Jfvvv9WmM0nYRbczQiL6FJrH6PW2o4dMyZ3QBhINcOYMTyQskVT5ra3UnVe3QhJOS/rMmxkRu+9jwdCF4kjQpgC3WdFdyYzrmu9bZ2E3fpSdIa8r+czZtSqMU7hO2eAHbfb6we4L0vZE0fff/r4+Y8//vx6P/7NH36onNFeb2mvv/wI4NcLkAquK4NHP1Lr8fILSrXISG5Jv/z88Zeff4YYKvLhwzuQZVjvbuntw0lSr0/XM5BEOkgdxy97j/Bj7Jvb7m0fSieHy/V71yXTGei+EdXasS+nsuDp9S9vQJKyIPg4Rt87IVEaICxFbDhQKhMgMMQBuS4lzCNh2Igex9gR2rkSQ46UVUoO229vUgshKsey1m07btsdMAnRA4S5lNJn7AZR1xW6p3AgYUKkM2Ndi7sji+s5fIQZZBRiFq2FJgTkkXsScTNHMHfoYw4p+bWs1MxYZAyvqqQFIBWLhfkYFUIRAyjSF2XgyspmAcxCZL2lDxtpHuSJ4aJlDHNPEvWEMCPE7q6zjYrV+iCC3o8l8/L01JKGa4bv256RWkq6p5Y+zA2sjVrYrJ8uV9KayEyARRy1BxCBlpKATNN2kECsXLq1JEASkuLm3poP8xEQ4GlAk2zI4UGB8RX3HB6EmEiejvkrZxEe60TmCQPApLk/SwD3kLXM6U2QzEZiZIal9d7dXQWr6ul84qRKqlpa65HYR+uj2/Dtvr293SbQEr9egpDmOT/nRIdJpoaImEF0zMj0MPNxjMku8DHGMCIcrWcKCyPiaENUIjJyRAxkTISxN9HZepEZOB82wjMcAOOxbCEIT2SKAQCEgCxCSjCi9yMDhWR5OkGQWW7bTqqHeWyHalmXpRYt0UspDt1sY0bm7G0nJmYeW6unQgtmRNsbjrfIBMFmW8Bh1j0h0Nq4xxZa1lQ7X1b3e2/99FQRyQNT8/Pt5fry+cP7bzyj1kVrFWKfncZWWz8+fv7S3GupRR6QaWGmqeJNRGVkKQITnQhw4M4io+Po7XRaMWPixrUURESI1gbAHYmPox1Hq6WE5rwDISIxW+vhDpMYxMyRPjwJI8DMEFGIEjACh414tLAmiUypbvROooQkKo54+NFzAM6TOJEJMcNieuxHG+2Yw28u71rkwDDP8nbb+qcf8Tc//Pb7b9+Vsu97OwYRuflwONoQQq4CAAQdiVgLEgGkAOVDtEJC6sMs2u0YDAGIb293c28j3AMizZMhGAaFACXOKmVIQmAEzGAWV47ZqE2JgQhJgEAJ8TW/wNocbh3O+35ZNCMgw0cfx1arlus3ub303n3bAzATR+8A2I7X4VHrikylqpR6bNvYjnQ/n5cSrd+jtyZFRAQeGoBheppBumoNCVFNt/3tS1kvui7gYZFIQpQIWSmVUuriHmGOZObRhx/95e3Lp/3dN6DnluCj377cju3FzET1tNQd3FQj4vX1TQn1YidkR10WgujHsRkolLMgtu1NAPjpfUZXtNv9dnp+Wtd67FtYj3Z3T292e7nR+Sny6XpaLOn17Yt1lyqFkYUwU1SO2z5611oT4PXtTaQQ8xhx3F5Oy1pLiQ4WYW6ROcyRdN8P631Z12273/dD4Gi3t+PYzKyZW0AhIhRL8ITtaOvpBCT1fJ2sDSS6XJ8W1fnQC+6EkPPpjvlogHU5Ke7bnbQSU1VlSEp7eX27b3tEnKqSaHebrVvIQ0rJzOHJTAA43GdkYJgDYCSers8iJSOJMG2oqFzq0a3UhUkf0HcggBytu4NP0QFxmmKuF1gmOhqnHEKAAEme7hEePtwyk4gRCZERgRjdo7cGPpigqCKxQ0JEhk9sSiJIEWYmkaO3mPXyGcdolgkI6AHEqErEEeHgBu5AnkQAwJhOQAQAxDQmXMuDgEniulyv6/X98/uny7NoIRYA8PSMAEIgTHOP0KLhMW0/LNKOtlRhYVXqbbTW67qSiNvIBBHBiBwJGYxZVFR4pp8Ifdg4jo2XmuFhxpgTV5yAEZbEwDISEsA9kRPcLV2VQSQ9zDMxVTgz3YwmFNKG9eHu9XRlQiShGITZW5unPGQkUQZwUZgs+Rnxyvhn0z7SvM/+M2U5IMKmaXe2sj/iV/jo92wdIHMWeydgRiRMMw4/FDF+9MrPK7ibTaTgdFlO9cHMcEKIMlkIH4ViTizoEdOGgFNOxF99wo/skXs+bFqQCcwCs5wpk5JyLmjMZjvbvFghIhBMZs98tI1Mf9CCcAbvMBOSMRM9EVFUP79trfXhgZBFy/lyupyfAvPjpy99WCllRo2YCCEZmQsxIlGRCex5yDrETMzCQsoChNOQpbUQYCAA4LARbqOPBBzD7tu2bdu+H4CkWh7BPSKAdLfeGxMx0VILMzNCRjDOLWCqpDtt3dqwSaBo0cMchVmIhYiRPCZPxsM/fXl9frogQkIIP7Ymo/cI720/na9UKgKkuSBKkdkz/+tLME1zDFlKeYAdmUpdiDAj5rSGADTNPpnkjlgm3yoy3dzNk5WAYpJbiQMSCT3hdr/d7vftvl0v18ePvCxLXWw0d58bRLNxHLuWOrr5UpmQBSYlp9sg1vV8IqL9vv1y+8gEtVbSkgEYHVFItdaFELZ9v16fiQWIJ48g3AGgFF3XBSHTzMeQWgDQE+b0qNMqKLTUIqLIbBE2hnmY2Rijt9FGn/DxeLC9wN2P1hKhlJIpjHha12JyUBvDLDISEmL0eSLnDj4XqEKSGe3YiWma8mbUC4UIibWoCMzpGsMtJh893ZBIRZ6ul6L/6nq+/vHHHz99/mzpAPBw3AEQP060zFnuof9Nj+R/O/7/8vhPWW/w3/8zAihA/+riIYABwAAOUP+DT1SAAx4QwV8Vogd5CsC/6j7lP9rU/v/5yJmFqoUjU2WyZx8HIxCCI0x7sSUkYAB6+NRbPdIDZ0YF5tWaMDwkiQkWASYQFa3F+ujbfqzLkoiW0FtTmf81Wk8VEfuwZV37GMMdAMyMGZiwjwgb9uCugSplBAgD5BiDhTMDCXsf7egkDAhCoGsNt6IEwYf1Ptq6ni6nSoTCXAqvej6OVoSu764//Ob76/vvWPAIOo5jHHcaO0eLHG+f/mmD5cdP2x//9Gdm+ubdabu33vvnT59/+Obpw7t3w62e331zvb7hu769sN2NrL39Mizl3Q/D+bZtXz5/Yq3f/fCH148/HSNPa/XWBnL2diP6/Yfr3npkR++o+3F762ME8uly9R1i/+yaGz89na5niUjvW9P1QuBBNUBItb7/DhCJtaAGchx99FbRj8zWOsTQuvY4MBORlqqAeLqeCLCbtaNPpl0iD7PA9Ajk2FurLKtSXTRQCTyjhw9L8Eyf9dWMkOgkGMmI5gGMTGRtQDqgJJEBxhjmgWGEkCBzoTG5s3PYlTlWEx2tHfteliWT3B0QwxMAw5wgLbwfR1VWXY+to1lCeCoqAzIwT7iMAaYFY5IUj7TuSCpFM8LssU0TCEQ8uiE4RdJZiSkszGPf9/bl4w/ffjdLRiOhnk6ReQwrC2mtxIKiXtSLHPtBCK+3o56wlMrEtehgsftN3RZZZsrd08lH4RMxhkAylPWUgH3f0no6QAIxZUwCe0ZkJkY4Ai61MvN+tD4MMHEavx9q8Bw1iSaZEjIhZgU1QJqhhiDBGCMI3Rsi7vcgYWSCBA8D0geiElFET6ezhV+u50zorfEPPMbYtq219vnlS4ABpCijOBFExsP7g5kRHogokEkIQQCZ4Q6AhEnMGC5FWASQYlgCQSQhpbn7qEtJhvvbnh6pX/NsBOHgAMzT+hc+3dWlLOsJSfqxQ0ZRAcjW9+M4mIlFHC04tGjfW6RRENfingVCdWpLkGKYmZbAwIsMa0AdMS9PSzlpWdmPhBFbvwGlrktyNxvIWAuP3H95/Qt/qev1JLV6kBkQyUSNiiBwNL//41/+fuv36/ndeb2U0zI7yzJCaznnhYR/+fTx7fb2/PxEwgICKCoi7JhxtJZhBADhzJwZve1k0tuhQhmDEkgYkUR1FsSYu29bwrTgkdmA3QcrILEQJhTVPkWUObkCTMgofg16ZaYgQwYRTWY5IhMSCSZieGZaomACsyDxQ090LyrImB5IU4sEs0iP3p05TrV6J/OM4bAdY/SX2/377787L9UjFovIHAmAMszftmYep4UhEQjrujCh2xi9D48eUQWQ2CBthKdhOhIHYB8jEsN9dqNIUY6haJwIHuEtwTOACIUUkMkffvmYFz9IgiRAI4iYYhApC5Zlb14QGNQzfXsDyHp+Xp++3Tz69iXa3SJQTwkUvblnolg/AOHy/h3rAuxtvxUVj3RhDhNBjM5c0wPCEoBJmLLWkrV4BGS2/djum+73y7tvWQSOnac4EFbAyFz1m/RGlD5aZtZlPY7GBD7a57/8AxCP3sCa+ySj5fnpydwID61i3T59fmlH+3C9vnsP0V8gRoLU09nkFABt34DKell8+zzAl9PSzWILNIfwsGHdzbJ3sHjFdPAnJPrpLz8jBEOGj7Bx37aEBCJIlwwf0Cy6vT2/e6cqgkCMoBLbHQBtjLe3t/NSLYJJeu/raWGtL7/8BQHa0TNGhIGbu2GpiayqcTR3jzEIEzJ6O/Z2f7vdT+uJVPtoy1Jba0Spupp5mgFmdDMflNGGLcCUqaIt2jj20Y/L03NlsDHBXNPVT7Woob683X/59On98/vhcbvfP315y8zzUpTpfH7SdUkbUoQowEeMEaPL9WxjEIEIE1D6A66Y4YmIRMx0Xtd1KcxMj2o/iHz0b2eCuWc4+PBhkFGWmhmjdcS8v93C+rqgllqWEo9k/ohu7gFISMrkROiebVh6cJK7pxkh0noKprCOJJ6WZsY83PqIdGQQwExMmlTpBFGJwAwHyOfTh/dP795f3z1dnkTKvEblV3vqNNkAOjMzc1FlSgSIhPW02uhmfrN99F5LYaJ0m7/qBx+BKBBUeHJePQKJV33E+ccYOesLmQlk1i8nQh9BwJIZ5oQowgygokSY4UwAQJaP5+uAbG0vyh55tJ4RXJ1I3cdj2xDOTEQakICEkMwyYx0P6w8+JmUiJibEmpnwAOZQREQEEWqpAAgID5qJx9wTzc5TJiKkBIjHVRgIMSLmrzAycMoDGQA5M7/463yOSIiOkO6JxCzT9QkZM6DGKQ8IED/oP+Y+Q1WYgEiMQMSPkMKEQGPmg2FEMfNzEZDAMtOIno/pI9Mfu55pTp5GiSloIiYhIeMUgD59+YWJAUFFTufT9XItSwXE9+/efXl9ZZaJcC6lFNVZ3Uv46E2bEw7RxN+AaJmC4GPyiXBP5GlcirZvCGDurdswcxt9jKMdpVQiZGHIx8IMBCmm8Wq2ePtwh3RSrioAQAge3jyjDx9mEcwkwsyMbjgjixkZyDjBQ+P1dj+tNSISg5ASEgEz/P72plJ0WTInHY+TJg8k8pGmIxuW7rRUVoCMKgyRrfXJx3FPivAcLACTKDl8y/B9MzcQAQQuFaQC4hh9jNkEOjVC325v2/2+7wcTnc8XKapDLucTpou0fT/C3cNH72ZGmDPuFmbHsNYON9f1bAGQTpDrWsJjmKXZHDaQmLWO0Wz0jLBpDXCHDIoxLVX7cby+3VQIYGafta6LaJk2+Vk1PUFQgFirnkiOPjLTM0fvrbVlWMSjzmKCmmeCMsJ8jKhVWJBQmE+n83w32hgWYeaWCRNKn2lus+yUIGVW4MGU0UJm/WqpxDTP8ZwAoumLzDD3ZakiXETePz/bMLPxut3GsIjwATN4gUhmAQnp+TBW/+342/EfHPUrMMgBHCC+goHg31dwEuCc8IZgX8HP+tXpQ18/Xr9+JPyXqj9fPzYACTJBCCbNbd6GHpfeaVZyiIDm0A1sghOmYXeGxdIj0KczlFiBSAOBC8EioAKyLIu7LbWeTisTtz48cnhs+70U8cgAqILzlEYiTyQi5BxmyWRjMKa51VozoI++rgsRjWGiYq1PTJ0yZxFELFzMh4qEQW87QWaMda3n00Jay0m+XZOJtcpvBFLWD8/X5+fnFoHDcnuzY+uZ58sKY7u/9KPtuNL9/lZVLpdltGM7tvPT7344wQ9PVd7/JrEQw/7l42//pz+8vIJ9frv9+L/S9Vu8fujJL29ffvn55946Kn7+5RfMfNt6ucToViC2Zrf7rfU4nerz07Udw24vvR1ILFKKLpZj4b0I4tMPHVRLhAGuFSL3Tx/r02oB0AcQju3o0BMkkAr5usqx5dG2dns7V0HehsVS6teWBmRCJoqIFC6lqHBRsd4NCSlpYowRhwcxo5uPgwmWZemHResAGaMnlBFg3kVYi6C5JQgLr5NrC2Y2hicGzCfDTI+MYUwChKIcbsoyjc+emJksEuGPMDyQVsJHOQWONpCwKoPgPYEIbs3XZa2AzMiYY3TSWpTdI8LnAmkEhvUxkYmZEaEYkH66XE9FxuhEgJBmsR/7OLax305aaLm2mLUbgQBaapmQ5wwgLkKANLKwFCIcvVECAHhkJpqNcPPo2+3tfH62GJwUW0IoAYoWrExMfe857Nf05wzgZ0ybTdIMVYIvRa/X68fPL2PYVzD2ZGNjRkYkcjwyMwhfJ/CYE+fs+c50S2fOiDAgZaqsXNmG9dEtgYKDollX0arV3WXGTFien5/d7eXLS+9ja3dWQo7gWfwRGdMQlJE5TfUZyEI2ApLbDqMPEQaCeqpSdBbMP/JfxAzUwxGQBAMDM0Qo3IiJiBAZkgCYtUzZgpkzcXhg6yKKDOhpMTBj2HCzUk+l6CJLlROChu/Hfo9xVy3LqRb6Nf3UixSPCIcYJquQMBZcr0VYykLeKKc4zzD6oessl9VIZ8mEcXu7u8dKq7ydx+GWJuuKGHbvk4zZjrvpxjdiKiJ13w9VfbA2EbQWZnK3P//8522/r8syTABdqCCSEi2V3I0JhHF3n1VxPoZbW7Ra25kEiUDwOA4mQqQZSfi6l850MxAmEGYAMjdVFtUM98h+9MwU4ZxI79lqMbvpp3scgrAwFlWCMgwTR1AiIwbgzB4S0YghSsLMQIEYMyMBlDGpFDl6RKJbjxjkkgbD/POnT7+8e1rK9+ci2XFrlo9G3gzP23a0Bsp4qiJzE+xOiKrFbCDBLK1xH4AYAZJBGQxICAZR6/JwrqJI4TSLyWQgSkBP9EzBGeyfGRGnaTJFggzySOKMhMxaq4je7nt0zOeriECS1LWojP1mNsxsPoaJCgUYBq1rWmYCiYgoiSBhH64CwoxEwqRC1vbwlpii9YHyNuBliQhNNBtW8uhxWVYmchvjuGFUlBLjAGYgJohFCViAMlk8yc2n9aPtm4dBuKowwvQNEdG61LYrTMKwx+vr6+gj/NDYSXR99xtZVxrHVFsgocI4+mYItZ6fllqWdfv08WhbEgG4IyEnjL69+YeTwoHvn69HG5ABTECaANYaZAiBgDHJYLY2xhjQu+Lavny5nNbhcTqf3j5/au2QH/5wu++uwqptmEXU9eQ2uOL+dozjCCBmBS61KiKuuB+RiPB0ve777dVatO3t7dZuL9Auuj7xsiBJlVKqbvvh1heh+9YAkpi59+wN4RkTRYAgJeOkRMzdPIi1FL/vtehpXYKrmX3+9BnMxnzOG82s332NgNN2eGYpKlpHv2eEm+99LPvhYUxLKYvKgkGqxSPdo91vRHC9Pj8/PYkIPqqoEgghwSOHtczMcIaAcEirpTLi2Dcfzd1sDMQkOdelTj1CgcIxIcwNeCmqTJppnhGRI0xRgGZ9uDAAlhVYyCObh3uQjbQMhAAwY2UHSkpC4mlkAU63tZ6/efft9x++Oy2rlkJMNgymXPX1sRAAaAJoJvk4kpkx3SxnKzMRf3h+WtcaEWGHuwNOBwlqURIupRBCJA73BCh1EYI2DB4I+OmKJUFQEWLOkQ48bVt12joIa6HwAEIhioBmycgJ0bsfewugmP1rUmZRbPoDKV1K8ZhImpw1n+ZOj3bth/aTDyWIZgxqUnXmDzzLGkh1ptsyM9wymkMwTocj0teczmSuEUnC/LCv43dMOyKGW2YQC4lCps+a0a8XbaAJ4oHwwPnrjmCR6S2arqIMm0oK0BwMHlAhQGB6EEi/7pZx7gD8QZKjhIx8wKvhAUl7GJPnqiomT9cfqOpHFxgxiyAgE1+u56pFVU6ntVRlogS4nE/7fgSAKItoqYuqECFPoJ0wApgZQgpLTNxxpmXyRBslRkYf5kHCRADgZpmRYDZsWEISYh+eMJi7hKgIAhDi9BwBpHtAZqYjpBZVmfsPEGEGqubNdAz3SJJJqUZA1EKPOwwyAw2zhGy9s9IkJz1Se8pMOKzf7m+LO2spWoWVaGoRGPMXiAgZrdk8+1WZsTz0M4C+7W4xzIAZSQHDzdZa7eieGA6URqK6LOaRkG4RkDzYIQlp4LFt99aaue2tL6sjpo/+dD5d1+W27x8/f2m9CwsgZDggt3ZAUS3lxKwE235kRrcR7hl2roXlIbllJDBmQoyj7RtA1CK9HTaNb4jCrKoqwqXQA15uiTkisPWpMwIkAWR4ayPzQZbVMqu+pBDJFGJ1ZAARzXDffhy32+04Doh099Z6w37s27Is6/lUSp1s+wX5wYAHmAXT8MhXzkZhLlJmPZ+7M2GpK2tBBMT0TDfvHm6mQswCmb21cEGEWsvvfvebhMif/vjytuWIyKAk9+BCdZF4/IL+Ov3zt+O/k+M/w+v5rzrm5ypAABiA/se+2sMxlIAAirDCf+4t9V/0zWQ+/KpzUP5n0QcTYLoqEiAS3DASLGFkjoAxAXdENEMqAAHzRvyoviSA8EFOBaewChggRSXW9bwua62JbJEeMcFs7Wj3+9Z7r3WB9HSfoeRIJyRWdHdhUsbIzAAkqqW01mhWA1giiVnHcKY50uTovR1NTrSe17eX8XrbnlfmoiKIROfLVVhOtTLzsqy//f3fbUez1Br25fZaid6//7bdPmeU/iX+6acvr8f+wzfxux+ef/xzXt/9RjG++ebd9fl9cLn46/n5PHD95dOnpPXjlzfBxHr1chuGbdvreuKMf/V/+XevX15v97e//OnHsiyA/vLlbXTfXj8nCYcH4On5m+++fXdbtvv29m/ff//arLVRVQ84UJfAerk8H5Yro3kmwrt1uV0vXKuFg9tx3/dt66AJtK419xufn0pd1nCI9HR2HyMWeJRdZAAiRiJECOFyWoQlIoxFRXJ0DK+nBYiFIJLSu7mhqJYKwJZJGViKcfX9gJj3GmKGDJhNjaqqTC5qo7/dt4ioy1KEi0oCEBGJRgQjIgRBdo/WOyEOtxyBuhYVRgJi1ghPAmfGRNktGbwUbl0NgMgZRSgCBJiQEolFqO89EtySi/bNhvks+5nvUyQIa1DPjNLH3l4+Aev99XW0o7fjt9/+gFoyMsYwN0IuQmlfkW/pmAjEZZGCCRFMiEhAiDlxmTGIjWYVbj/2sUhFhKxokKUwCcWwaH2aRmclQsZsdaKEr5MZIjOXUs6n1T3Mfd/2mJbh2b7+ABBQPqQgmJKVKLEKCVofWgQfDbYwLeKPveVEC4bH9B6hE4q5EWKhEpEEZB6tkQifz6dvPrynN7TsgePXOpKEWcgEs1EHEYFz7gndLAFYRYuQUFkKAnJiWATFzEqYGSTUWp3Dm2kVgLCBhElEmZgODhZB1o1V67K4B2CYjXDXwr31cKOUdnRRIUAyAWdAGmN8/Kdfum1M0rd9e81+XWN0LXUbL4EDkJKSSgAhEbCFikiZljRpOPa+XS5P5UIkQcxFq5Vudng3Ow5YD+vZoweaXJU4jo/b26dbRK4uspg4Q2Clk3IBwKVWQmJW9zG9XaXo9XJu/Xh5+3K9PKsUYkxzKlJrPROf93G+vL283mAaRjAIEMPBIYkz3EcSmaxnAAx3pDm6REQg0jzP6rIQog0QJsZkkLfbMWyepCwy19E5PWjTHj9ZlVyYkwUWICLafeLhbD6igJA4CWCyUpGSGelmw0gZGRKDGcqy2uGJjpTkSUP68Bi2hf/xj38kpA/XU1GJBIu0BEE2hkh0G0ez0cfRbV1WwRShUurcSWSCUARTAoqewnoCFqWITNB4ZEsTmQPZc4AbsBLKyMd22jORhSZBgwggIAkRhmE+wtjB6ctSiKmZ/7KP7vD8/HSthddTQNxeXoYFyZouy1kok9CpFqortbH3EQkRgBkIsBStRSsjjJ1kmfR9rqdmWQmZxTxIJCKJKVEispwKSBfV0Y+w4e3oPuT0DqRKhGpZap0bUUjJhESotSRA7z2iW2+1aBWx0cPGbHpDgKWW+7YjoZYShsPj45fb00rnoqenDwEQbSM/cvRaEcd9UZlPis9PTwnQVccNhdnYOHGqdt999913P/zm/Ydvb/v2+W3rfSTk9ekpA25ux/0ggLpeLLESyuUUgPfbmxCUUo7hyCUzEXx/+fJjO4ji+fIOkP7yT/8bgv/P/7f/+/7xL2PbPaK1xkDLaUWRWiog3DfGjK21jGitn0/L+XQl5vuXz7cvn/zltj49l/Nz0Vq0QEKD9AOUug+771stwpnZ7iOw9bEfO8Zw6+PwkTwVGTMHgPV8YS37fUtvbm10k3oSQvfuGPuRf/zTP53W5ZsPH1bFk8q+j9f9CMzXbVtKUdV3z98ty7kIR0DvFhF3ZsZ8fn5ifoQBIRMJkRhI/NiP44hwTKf0jFjqKioxxnR5pA8M02XhUgMp08PdPCfil2DyatWje85Hu8joQUkZrAJMZj2SZFnYbPRjHMMwAQGoIjxashXIKSOTZ+UAEohe1sv3H759ulwf+4a5fSAy8+knpYn/iERCj5hhNyTAB/YXM+F0OtXTqVY1d0fM2DzR3DOTVYoWntx2t5hkOJIEnwl0j1QCJJ4aCTMDK7inhwUgqjBGRu/92EyLKDNmMuZ10bqc7vv+6VNL4r07CxAxEM8iaCYwQkyay8iMjPAJ5YGAQHp4dhDm3nFCnaf2ig87D0Y4IhDzV7NuPnpbEJl5dttDBpMAxJSG8nER9snU+dpWlZHJyBHhNibvBjJpNqViImAiKhAyuzukT8cITPzzYyM08fbT+AIJQIiWA+BxrcOEKXHhLJ+ayF5CAmAmJHDznDXjOfWhh9Nngv5mAC38K+0oESAnLmdCOd8/XdZ1nTg55sdplQm16ul8OloHoAgwdyQqrEAcAJgoPGOFkAgZmIARgAnKTAQ+323uCSiMYS3chgWRFFUk6n08MmPE6/lU61pUEcnd3WZLjM9XRKWoyHSKQXoRUsLILGqlPnAVTDQpSCrimBYeDqqEQOYIAAFpc+nIOM1egCgivY/77RaRWhwSU2NKIuFugDAbbDPDvfUGCIhLKECmH1sA9j7M7OidRJBj9CPct21XEbMBYbUoknDvCVDrEh7EasPe3r60fS9VdXqXCJnh2DdGfLcuWXVE7sOlLA6ECeGRmR7WWmQG84mZRYWhtoDhbjbcDDOqCiCpallrLVWY3LoyKlNrY2/3fnMLZ5JSl7oubopETIyQRFBUiDAiRjsAAOnxVhFVgIxIy4QxpnmtiIBIZkBEZExVVJjOp1WZjlqbDbMIt/AwyAhIJA9QiQgTLbXWUosKT7EPESN89D6jgqXozCLYsAzLjDEG0CMaZpFtmLWDTwskMmO4JQIXnaa277/9xrxv+x8nFx0gxvAEVFXiiW36Ww3Yf//Hf5Td858//jrJBQ9D4D+Hr74Gfx//NwBiZASEQD5sQv/sBP0XX/O/5FtNQPBpuJu3FMgAC0jAsIyZ8glId8+0QEuaiftMsGGRD19pAgWAhwcEAjKBYgomjNFSjoRIECRiIjOPxMwwDx8DALQUXmn0vt3v921balUEcyMWICJ6UO4sotZlRbptR/S+LKW1nuGntSIjIYiqCu/7hpmRcN+OInQcu41mNhhCiAEkPQPg3fO6rE/3bb8K9eP4+U9//vb3v/e+2dafnr/hUhUCt5c///TL/+t/+6ftOD48PwXrzz99TFp++9vf/+5/+DfH/XMEjER8+ruM7UT+d7//u9eXF6xlu721291Qv3z+5HL64enp6fk91dJP559/+gsxWaKU9QjY27C3vdby4f07EP3088/XpydZlhrGWqpvl8IJvuCZkHco274z12RAgEAu6+lZa4TZGDZG61/2biAU4d48ulkNAata+AzNDMNZsO2HqLTjECYmxUwSJcJ1VYo8DoMMMHMzBDM/nQv2PqRUG2OgMIAHehKpYuZwdO+EGIkB0IYJCzIXljBbChWWdHvxB9UgwwMZCYVkDo45qZaEBtBay0wGbzYi4XQWQkQiUXXrme6Zgdz7Eax0bI5amHmt0N9GTjYpArob6JLonsAEbViA94REIh+WkSyMRIlgWCGFuVDuP//lx6M5swbhs/JyWg4CHCMikYQJwtNRAgISZBpUCCPchyUJFwXAsPZYhdlQgqRHvMR7Jj0UEFRCoXCzNqyNDECECIAkAmRmJvYHhTACsqhO/zaLqMhBRBFf1ZskCgQgJo+czEhiEqblskAmEGS4FskMH4k4b1HpwwZ0yJyLswzwGIDBTBgUaT2NAykUCGI0tQWBtGppbC0zPcJyToKAiegQ+KvIlGAWbbcYScRTTSlVMMF7D4eAJKfpVhpH13UFohgxurEgEksiYHhGmFOAFAn30cfp6SpakLp7TiS81qWNbuPwned+ZnvdQ2GI23BAfLqefRRRfXn9st9uH3/avY/lVHZ+NUxiRcVI93YgOyZphdk9ZYdFhlTHkiQIaQRi0VBwwZN3K5cY6Dm5x5DJox9j+7Lv9wM02DAM0k8v97fj09+33/j5uj1dr8/PTyJLTGgmkoqsa7Vsve9vb/F0+QCxESuy1vVK6vXiXD6V8nnf79s2IIAwh4NnljwiHZCkiHtHLiSzLTjcjYkSycMXFmEJNy2qTBi5jWmEz1JUijAhAvHMrwPmvEBzIIEnRHYM4oOiYPI03j/UJWH1XCJAiBIz0if/GODRUVLOAkhKDH5nTLQ6GkQEE5qNX37+CZH2D++/efe0rGvNnMz/YM6E/aAO3d2/3Ntta+e1rsrQBgIs60LDM0MIJ0IHWaQUIWxHY0YCj/DuQSzgYY4kyyyfdBvEPNMNc3c9WVqZ85IAMwgWX2+ytUgtFdwsFmJuw+uwikLCUru5BRfS8P4qRVmVkB2QyxLNvY/WewEUkffvnsCNwsb91dDg/D5VBiqxEWSmIyuXmu0YfQMmFmWWDO/H5r3rUlErMZAwANVa63qKBHMvRQxh9AYkTBiJM+lx7FuVC6ZRRjuamc+n7qoySokEJXAvfYze++sWQV5ud8jUyEkdNo/hcb1eErCb78fe9+Pt9eU4jkBBCc6AEcysWoLkfnQRfXp+j0S9NcLkIvzuXSnl7ctnOT3h6Gke7hDWuoXH9XIJLr31/fZa62oQ4L3dX2K9AgZBZHLgwvX68nLr3URXyvAETOxA5N6Qzd33JoSFaVnO5/OJIPjpXfjoe3t7fX1/uopKG6O1wSQD4PrhXb58iUwthfnkJMPGtrcEPC8aZglQGJO1HQcTglsR1iKVz61LYeqtHfcvxEWFSdjS+jBiebvdns7lWi9A3M0vl+VU11UqJuz7VusFUZgxc7R2nC/Xx/tyjnKPmY9IirmbGUAwRIZDRilFtNBXKCkgCrOHw0TgAU8ObB/hZhFOhExp/Qhr7jaScrKc0RCZRIaPzEASG80JAsPc++7BGJGYPJUOIWaAZoZALJiZReTbd99eT2cCsIjRez4AwxwZmOARiB7h6Y6BEQEiwgxhQKhFn8qHiFiXWkpl4USCiDAZfbCWKg/aL4QPN7MwTypMZUHbH74VgOEhs9sL0AOJpioRMzJMwmhpj4pS8AjGfH/iSkGUzFBqtZg+QELiJLLIYeHpAROu7EgP4M4cm6e8npCJQIgeOTPsODvVkZEoACASIJAQpzwU/tBOEpgImSBxMtcyHREzPJG+/rcIJ3Mb8tcr1ePPAEg8kdEI038LiChYYqoNmbNWkoBylhtNRlImUDJLKZqAo/WAeHADZ84rHHOGfREB/cGAdoBkRkpB5Ed5VqbH11sFITyUH4fIYRbuzDxjawAzPIbudlpPtT64KpPjA0TuLsyX00lFPIGY12UtVeeTvkW23o1IJkARHvcmQHCL4GQUpJgvNBNHgvXuNlobiFyWqsygEAnruhJz0VJURQSJmNEJIkNCIoOZdTpdMRGBCQnSrHvvY3KXdC4iCQHcHTCFKTERf60xmSV+MFND8y4Sj+/WIwMiWtvzYeoqEaGlQGapehzDrGe4Z6AFC/feSyl9DB/DExKpm4ENmwWrUy4ym6HvHFZYhKF6RykZwVpm6u96ef72/XtEwIxvv/mmtT5fxOwj2u5jZNp5qS9vkxlEkek2fHQQsWFt37UWIdbK4EEeAA6Wo3dr3TO0LhfAdV1P51PmUuuyHvtovbV29N5a72Nk+tj3DnsCiCgzqwpkivB8r87r2LTIKRPO4hcPn3azh0cIBaBnmjsSxrTgZQjz+byqldliZjN4FuPYNzcrpUBGOxo8PScyTIYeQFHJBBElbhEpKkQEY5iHO0YfAQbI86Sz4WO0mZic3T4k8ugpRkTCouW8nC/1FHknJiR096mqMnOaE/3XKgN/O/6PeOR/+g//31C+H8SdhPyrYvhfv/w2IBynm76N9ICGcDBUwaJQdO5D5/X4oRkBTI3+P/NzIEB6M0sA5ADMnKP+fA71zAzP4WHuE0likR7giZEQOYFaAYjIygyS4PZIoAghEXgf9xkA8rQI4enw8zyODUkQIsIgIZwRkwhE5Wh9+xpGnbvxdV2Sk4l0tkwT1SIZiN4UbT3zeq5CMjybPfyT+9Ei3NyZUDG2Yzz4sVgIcztGOZ1eX2+XWq8aXz7+IgK//NM//PmP/+vzSus3P/wOSZ6fbvv293//D3/8f/8/r0/f19Nl37788Y8v//oPf/i3/9d/x7IKk5b1trUROQKjmUuSv/ZPf758/9uT4PJ0/mU0TyhC4/5mSD/9w99nWfdtK8qOlBGj9WEWqFKWpw/fimrbjj/+6S+cXqsuxdHH6XTq5pBEuqz1m4A4r5UyUSMsApBUwdiHHftBWvv+s54Cg49bQypx7JKDZC3CGXG4E4G1o8qS4VxUWdx6JBHT6MPHaN3dkxlsNFRtw5R2rifEzMTMWcXRE5hZIhMiCxMCBvtSGBOChErxzGgA4Sx2ROxtMHE7WljXpQIwErnZ5CI3M0eggZmp04lChEAZDoQMQWCJGAAJE/ZHSgk5C27Sk9ogASKCCgdjtBHbq10+fI+M44jWDkpLVtElmYc7uBEVUUViBNBax05jWC0rLcvry0s5P40EG4Mhp90cgJiZwG3MVoUYYxBCjF7XExLZGFVhWO8+EYkAJII+AiJyWddSaiZQIcCMcO+j7X3a5mkau4supU5KqHseRwt3Fqm1TnAeAs4lFTMT0WN0c48MUYaRiEBCoiwq6THMapXlvBBDBIRBepIiACprZGQkcgJgt4YQRCXTEaBFs3YXqgKLwxDBEz8zFMgUETIYw2bOBwEiA4C+FpEFuWOID8Qg9zGbVYoKRPbW296KlmUpiIQTE8EckWNrre2tNVaqJyVBdxjD0ImLlEX3ey/LElNvc8uMcXRFSXXEdEjKRI4YOLoTWjqcT+vz87N+9z3jhFPEn/78p8+fPru13t+8JBDPABEgJIZooWLg7gf2++YHa5XlUuupurvlcGuIcOF3l3I64gZQC1ZANEuRiolfPt4IWBc1P0Yf1kvUyDGO4w3xL5d9H+0QIULsvbn1dT3NxDgTpFCEmbV1uTy9+0br4oHJcQxfz8+n6xfznhneByTc98ZMCVFLApKbAfJyIkAmAkjCx0QVS6lEOPnWkhg+0AehC6UIiRDCBOCAcGGmmeAgZqTkwhZuFp7JgDmMIXgSu5RACCJtZw7xmMAvLMRLZRRiJqgQkBGRBDbu0GpuCJFM5B6TFPBP//iPn3/5yf7Nv/7N7/7udDp560qeiBZYVDMjO07289GtHU2EVFWXE9dq7cZEAYg26lIBcDt66wZEC0NEAlICeURkKgkimRsiMGsCoJuHQ840TEwSJzyWeDgRLInJhCq8SIpqd9r2fd+2l5cv799/OJ1ORet930ff1Yy1KikWVnDl0rq9vd2O4zi27XJaINHd53Nh9IAVgdWGV4EAsh6R3SOKEpUFkXMYY2J49I5EABIQpEVLRRQpQqw2OhIBESDl5IFnmrtgdDvShx17RyQij8xMZUlNIHhXlgm8CHe8pwMMG697z48vp+tFIsKJS+nD4r4TxLKuY8Sf/vhPYMMzhvtSSykMe9t6M9T7tsnL67uE63mpTFwWZnn75cfz9UmFvdbTIoIpKgEEkNmt1qpFl3X1wJ2TmItQMzqdVsEsldHH5bLe37Z+bLo8LddG+y36q7AQYQCNALTBqigS2z2D6qkuVddl6dvbEVlPF1zPry831sXdX19fGNHC9n0bgzHztFTWUtclkff2qbe91nW5rOYRQAnoAKelnqoiwnmpT+/ej95eb5iRpSocntnMLRHMGpIexx3ClsJrLUhYl0W41FoznLF49/t9m2S3vm+EoART3M/MmetFJBIJd2sHpesE7hKIqJZCXGB0n6YUQCLmWoEwMoa7mY/u5j6Dv54RfU8HgEizFAWPgBwZjGDIIaSJgNndPSmE7LBxNNDiaRgAxFTXTALIuqxVylrK6O1pPS+lunmgE+IMmyJLphNSMlSpXwUUykzmB5k4AZgYAUCKiDIhkEycWNqYnnMpupzOIgRmIxOIcjo/wjPckxNchBkBMjCdbESEReAwRCQmC6BMHwPCRVhEPZGYlEGYAtL7wHBMj6SYbMSnoQABAABJREFUKBwWVgUABLDpQZo7K0iS2ejkiKCimTnG8HjsaiIiEx6oYn40bRnM7BRwBmQQckCkR0SwCBEDgPsc2YOQSYSII2bSDAISIYGIeXpqH+PXLPRkFkRMTDfAjIeLByky6GsQmHXaZtJjFgcDIU/CUEbM3iwWAUASRkcAEKZZvUlCaZMtDADTGpTCHLPrKAPcM5OAMuJREBkQEcyss7DMfepiQAgQvbeyvJ9CyQyUzd3VBJ1rYS1nADj6EGFGDAwS9mGj991MVWud6aHJ1AHPGBYsyaxQ0Ea/398gg6x/paQmExMzsYzIZSml1AnbnkipCGTICLS0mbGDaW4DqoWnD8h6vu3HPiwB5v2OEQNimFtGYs6dYqTH8BEDCViEBYcZBPAcigADgB9ByGQm6y3D3az3TsSimhmQ0Hqfs5ybWx2AqaLIJRJU0AMow3ugPDhbWoqWQgg9cgQIUObkv4ePEaMDkjIBaVmqlJOILkvvxz7MgtgJQ2z79HHv9jjPJpUsw82IJSDbsGB9RMAppQAztbDR3TN6H92zjyGEHH66nNe1lMJmsR9tHcPcjuMY3YYNM+t9eDpjtRHWOwuvtYawu4fqulZEiq8u8uksi/DWMzIJESMgoahMgxwi2iQCIZ6XBU8rZB77cd+2MYbZ6G6QTkjDzDNP5+tgKnWZ21ae2HUk89HtGL2bGyLOrVDEtHsXAOi9uUWpFZAhPD1YZeZlPBwCe+9E9P7p6d52MzcPImDhGcSnr+HKvx3/3RwE/wxj/mvmzn+JCehffMyvkJ3ukACL/NUHIsQAO/IwGxYROXzqooCESrgU+u6pksDDDvRw8syr2b8Hcn58wZz/mGlj7zEsEikgI9HzVwz6DPuGeZqne8xE7ZSHEgiIIDEypp11ViEAoDDjg1ySbjYCMibvLj1CCGCpasP221tdT6xFRM1Gpk9b4PxltNHc/CHzZyDiaV2QabaWMqEqX5Z6XrjAocpA2gbuRp9e7rf9vu3N3VkQALdmH67r7797hwBje7lvu293lBJ23Dv+xHh/e7u/vnx4qpuhf779+WNcPr386c8//uaH719fXz795ce3e//mh3UlSmy/0/O75yeJ4yTqfbMEZBKCAAFeX26fS9Wfv7z+vP/v7P15cyTJlt0J3k1VzXwBEBG5vKrqqiKbbLbIfP+vMt0z3SSHZLGq3pIZEQDczUz1bvOHOpKvR5qzkDMiLcOyFElBZgAIB9zdVPXcc34nainXktqPo+tPP68Jcah3i+39FwgjaTDjJSi9b0nEpb2/H89X4vPToWOt9V3xfd8WQe9B7emwXpGqyCKIPkpbLESs93EwkLsRYG31db99+vRpu7+/vn5DKcxO4yDEtXlgjYz9vkP49boy4ZfPn0gk3Y9QGEZr7b2bqgVkgqtBRLcspMYZZI3jcr3k+ztmohuhL8IudS5tFghm0uqC0QMzHYA03MMK8dbH7LPtELNz2iPAJhMxpj3y6MpEmcE0e5zL5CByJBFkpDAhLQ9tUodFELVaAZEqF2YkRDfb+6gi26Eisvc+GTFdHQEXxtQR7pymhxVMbKymlQg8GaFK4VYOc4E4PEjdUyNQExHRH6ppeCJ4IFL60DHqckIEBu/a790zgUXS1AEolZCBRQOW8ymHoyAVHPuowv1+9N0wCQmIuEhZ21K4CDEjHkOPo6vZ3O2t64qEtZWTn/ZjZ+Z1Xc18qEbEFMIeUT1Gqcwsx30302UtSDmRmQDJ82SeBJAQOUZ/NNgAlCIJObwTsOW4b/up8ZF3z95qBW4MnuCJxpzknAAzkJ8zUP2frBOYPhOhwcS1ltqKp9twU2cSqRXn4BETkcL07e3mEUiYmBjujoDCUkhdBNdLFSnX5xUZANF8ZOT0D/Y+uJYHnJgUInmphQsBrqX8+PnzcjqF57qemKUt7S9+95f/+Pt/PI597+8h4mmW/fX97dA7CCQgc/FOtml0iUwuSFQAABA9eZprtPt3fR/9VpZL44WwoHSpJEfbih97z3AR9CGEHAjecdx3yK+uI10jrX/6XGtRP/Zxq7P4LxMxTueXH7787vOX3xHXfdj3t+/fvn7dewciSFiWJcNHoocxACFMTIe7pmet4k7hIqUh5KP5hQpJcfMgkKSguT8c5lErB4CZlaWUKqaGlDIhoMIAgJxcCB3dR8SIwBnGI6bkgARHC04oUVkcYHQXZiIGQRauQhEwG6yzZHw/ew9wIKLIiRHFnOg799v9/sc//OHl0+dS26VOgPTg8JUJK6BxODIE4uxV2QFwuTwzSmSkGwL0Qy2y96NVQcJI8CR4IB6LZxATE6U/Vm1ThQwmTECf5gGATPD0IqI2TRVgCXZsh5seu+mwoMpsTu+vbxkh8nMAbsfwoSMBtl5hE4aynkXWtrSjj0h4uZ7Wpe337fBkRONL2ig+KAN0MIu7CKYjIVJZ1gkXSb9xeiEIsKNbhglyrScRmXnRGfdcluaZUhcgznF4QmnLse8aW2XWY+tSMLOIIISPIUS0rJDBRgkCEQQQFu56HP1+v6cUCl/KilgTtJu+3noRHvfdHIFESlukrK0tArXwbdehvqvj62srsqytltKWpUGO9+Z61PUCxGwXKcXDPAKCjBDTe+99jNaWU2v33oF4jvT9uN+//3EtUghrIfDNbXt6ut7Q37bvBH4+PweS9gMQayn37a5j1NZYyuV8qrUsy+n76yvnUtdLOTTddtPX799P68KYiIlEuFxTuzCXUg91Jv7y08/miekF4jhMaglPcr2eltvRj3EsY7zf7pnRWoFYBHLoGBiYMdkZPvZb77XV6/lSalnXkzCbp7qXJAJIszG07zdhWtfTLP/+bR9JRCglPEc/MowI0yLSibCUWpczATrAPITqMJ+A9smwteyqpke6AQggMXN4BmLOYz0Ac7DFSB2AQIXbkm6piuCIlUqlUgpAkoCH54hMc0X0TDifrn/1w1+c1sWPo7CcT6fZBA70YA8DIDFFZM4EqjkjoggxTTur+QTVZSSQB5bZaImR9KjxSvKAysIikGAxOwQAiTBCVY99j3BhAohCxIjhICV1qLvXAp4IAYwYpjRbnWYWA3DC8EYSS/FEcwXACE/gib0kAICcrfdDTYRYBIAQAGkmrBMycP5iM2D2niBBxscOFjwcAZjQg5gYmdIREZgYmHWMjzKv6VxMJPpwFuGjzB6BH/EunHrNRBkisabNiQuzpP/WBeGIBEg08dE4UQmBRPE4MxdIjHQ3Sw73mCxEJEQAYUkBcZ9M5/ywXWQEQMywFwMkAn2oXThJUAgOgB5EmEz4SLE/sEQeCY94OAhxrXWuSBGBU/GceEI3RGylEEs/+ugdoMCs/TZ3d1Uzc0QSJmJGZCJgooTUYbWW2hohmOn2/g6QwFLK1OMmRYiax1F0WZenp6eJCQpXgMBZqIjgMSA/CE4IHhQRYWOoDo9EgIkzEiIkG2OYTkQTMrFkwKwvdCpYKk/Od3hIkVqbqpYqEMAkPDFVlB4+RiT01hZiMvOMoFlFmeQZ5r7dt6VVqTB5YJ7QHc1U3BGz1EWKMBFKAaBhLnNAawHhAQ598wQXCZNEXiTANE3BjDJZBIkH9t3y7b4N1czpLY5aa2lLRubMVxLPbhL0jAwkkNYG8z50STrMxtD96EzMbamFIZEyJ897lXVprfc+hmaEmm3HoapI3GqFzImmmj6gydqaqLAP5gnMgwA9iFvEDJFQMBNlAqYy08ZwN/QHmmRd19qaqmofNhSIIny/vffjkFKW5UQipVRmUu2j64RGj36YB05jgnlCTmN8LRURzaMAsdQMD3C3GKq5HwlAxPfbe9ehZoRkpq6Wc5s9YUzp7vb/WlT4p+v/8Nf/g7jzm+sn/zOf8PijD8kH//N85n0AADR+jIF+y3eZjaGmI4e5OVhMK2kyEQoFs6k1lkwwy67hmVNlPq8PwRymkjQfQES6d/VjeJ+uREBP8oAHuW1uRWLmQMM9LdIiIzEBgpgIfiuwgMRIyDCPdLPZ6h4RMQ/pkT611IlrECE3OK2rum231/P1pS1NjCHMjztkCmQhHO6IYB6zQyEBPOKytJeXZwFL01bler2eGzC6pyD4ycJf96SDS2WLz19e3Awymej56ZKZR7e2Xq+nT99e78siRWi7vf2bf/tv3jb78ctnOn3+P/31f6e9Z9i+3f74y9f/8//8v/ztX/91Xa+89XFs3Nr7273U9e37r99/+T0R/fTTD7w+j4Ba16+//4/Pz5/T4fv3X3aLX7/+6WmVb+Bv29E9bltvC+7H9Bb6aW0oNbBEuJtxpiVaP6K1yhdvJ020NHQ3lE5s977iEkCHgd9f28tL71rWExEjkWvfD4WwDOTCdTlRlhL5CRCJbn0uoNHVBXY+Xcz2BOl9IPJuGwIgkBAwI3okkJQK6ho++ni5nJAZkDNyv9/KZdGu5yaYqKNnZhU2TCBALg1CpU0jRmEY6sJVuwa4qarPjBIASWnFXQkBEkqTjEik5XRSvwlL4bjdN4CJl8puDiQcLpiFmaW5mrsZcAQs68rps0eKqcw4fYrY2E9LM2BATB/RBxMjgnsUpoVxd66FmBncpTLZvu8W+3YRuIPUSl9/sZHbT231JGJBxEAcHoUJZrYbUZggC1SaLbI2G+uBWSaHZabDYiATQ2u133trvFwaQBKFj9TNMLG2SsjpaRY9FRsCphPGPJQS78cREaUUn65zgCLy/HRdlkWYzW3vPSL3vr/f7xSInAQQc0tBmOmZBAnmhoCEKMiWbjqD0OHuXJFJADLAEQAFGHg9nSjZIiLSRiqbYwSag0IyJD1Alx6ASAgAeGnn6+U6PG73zcExAAWZyVzNbVa5lVba0ubAlgDcVbuaeiIwPZAsZo5EwkWIa5PaKmNb1nV4d49M3rf9uG/ny5kLuxs8BrABoBBQ62nh+lc//u5yObuHENYqqppRzufLv/iX/2q7380NSEqRb+9f399f//T6h2/bHxApVMM4HeuyQh06FEx86zgLnIUhsR8joAcYmBdI5ACEhZ6wTBlvWdIS++ialkN9YmDu9ztADu37cf/27dfr9cpLImSV1phd7fnlh9/99Ld/88//x6PbsIjxbg5DB4QvS/vxd3/5y+//Tvv++fOnoXrfdtUDS3DJdKhrYYGIjgAANQHhESjAx6zCE2AOEWMMNVMkRCaiCDQWEXzYdXjiOXB2yQFkEqSmJibOFlp2z1SPyPSMsggGZwo8on+OOFtEICN7V1lYKvU9ATnBVC0BCMmm4qLj6YfP6/WzYbnt/YkEGyNAgZSCRYSUcLjrnAgQpiHl0CHHvQkEFVUN4YCEjNZqLcUT17VV99E7zzALcya4KeKUsZQyeIY+EhlsLpRz4s/M5p6zCz6h317x6QVY3m/3Yf78dCVuKLJt23/4d/+OiR4xatfT2oBo32/Gi8AxukqZk4+2LM3MsSRhHq4BBHYQogAxFWCJCKZSBVtbzQwyl9PFdMT7G0CeTguzuGcElCLERfsAtIlv4wlbQrBxrILdzcNFSgBmhOpAwFbExgAApCKz/kANEfQ4eF1ZxEdfanl/f3/99ZdSK12v1FbEQuJ9v//jr2+YCXUtdbXI60rcWphGQmsyAMwtUu69n4aXZdYz+/VyVh1LW9Lv0U6Zjtt3GilUaym1Lvvef/3ll9/97ndlWeN2a+crLYipY+j723ueWpq21iCBZSXOpTVfl3U5nU5nafX1e2z3MVR1mCewiNTqHhl5fX7a9v193xOotSUyeu9EoKo9rFISkrR1mE21Yhzbvu/rp0/QR+8G4aodEEqpLHxe2zbs//I//U9//c/++eXp0zy+VhGuJUwLkghFcncbI0pbRUo7rcJCGJjxfDkjN0Axi72/4f1+WpdlmZ/wsU0DAMCJhjEbEY6QBD5NaiylrheWkhEsjLjUCHULtwQACNfhAdaPMQ5gIs5CBYXNEzTMkjimQQAQPFVDhS+EEYwYhObWd1nOTMVMmYAJDSsSAbHZqJSfl9OpVgqUulThWuvsep+1CgiobpQ8f5yZKsoMJgaiR9c1YQSmu0ccfWA/Sm1tWUq5CE1QOSELkiAxAbCTRdgk1CGZ7r/+sj1/+sJSKW32zIW70GPXHB5jDEuS2vLBV6AMUM9SGCPD05IQSnq3gICPDDPTrK/CWWuOhDP6RlPTQNeRAMwUH41UBOiREI9GNwSYWgZOwoiHuzMLIwfDQ8b6AA/nb0Vdv51rAeHBJns0M4pIfJRrzYeWhJw0z73wiAASJGQ6AmYYQs6E0G+nEWZiJJycY8AMiwx8dIAEZNKk3kyJMB9uKJ9FApDz1kLE0yw8v+tjSgxAQLNCkWEe4AMAINMi5oo8cf4zdV6kqMd8iU9vFBCCAwIJoxTJTMJ8fft+Wk+t1gSoIktb4iHNTEhFTC7yPF04eGYKL0urY12O7V6ILUJ1ZymzPAIRT6c1AO/7YW4QFGF93whA6mOhnC11NCndEdtdYb7/+wiz2Rk2VTFAt3TPUDMkJEoCDHBPR4K5dBIgETIWc3dzSCBEIXp6ujDX/TgQEMDdzN1GBn6IZfHxY5ZS1nWNyP0YcIy2nsw4MroqIZrHUuhyuSaCmSGRlKq+q+nugehEVJk4g5EcaNfIYxzulYisEyQTktRSCpshYWZA5OTHM/G6rk9P1/e394xJgs/MZKmIigEE2WQ9MS1qt9s992OoHUNJjPd+jioEbgpuiMhUsBQ3T8mcmS/hfhx9GBORyOQelQlPyISYk0kghEfob7rKJ0NEMANTdb5XzX3S10Vk9hskABNFCDEHgI2hRz96Pyw8Mkyps/a+rGu2avOrgQrLrC6azoWIMDMznQLQrBrU0YmwFapCCHiMcbvd7tuembW2KRZCwrkt6Tlwpl0AIZEzINz+qQXs/98u/M98/OfXb8JQAHiCJhBAwz9b7yE9YFewQAEIAH7w2CAjdNh2mKqrffhxZtAXAGlK7rkN75YeabOrLhMBhLEgt8YTdZ6e7hERw1I91EPVLaavBy0xprt0whDgYRWKSI2MgEfpI368FdEAZtHIowAgPiB9nh4+14p8LP8PoxRKO10st+PYw7QQtcrDBgKICEHz42buYQrhXb21ct+6lPL5h/Pnz5+/fHr68vnTdUE43oahXH+UUvv9+zFsN9Rjf4sS1KXGXzxfEXJpdfQhLOkjIm59vN6zrRdcL4oognxCunWJ0S7PLusIfv7yF62Udl7/pR63b386Pz+b/6vb1z9++/Uff/3+qn1sW3/5Z/+9IB7q37+93f7j79siz59evv76dvvT3z99+mRmr2/vrj4wxvBPL8/L02fk8vb6ut23isQLM0k9rZoyzEz1dDor9Pv9XtuiY79++csh1LdbRocEApt9poV53w8StNH7UH+/UYYdOxKNbQMMVZdaWQSTlvNTLueEqIj767taJxbIvN1u67JQWZZapC2oocdOAuE+LWFFikh5H++qWmtphbC2TKJMadRKYwKiBcMiXNJZ2IdGGEIGOAUzWBPSwIgU9nUpr3scQ4s8dIgigoljGKIAu+2eAELAiGurhcDdiQQIe9euSSTp7giCNAbImpPYupaiKJAPb5pbAjh9vDxrKUEsgEjsfTBRlRxmAISlRea5EqUyCxfGTAIonM4UZTktqyY+ff787ev33//p28vLp0XQMrfbvq6VoDAmZAohg80CVUdJgHQX5sowzFE4JuMQUUATy/Q6rM+nUkukItLxPhBECmdieLo5QiSn6bRRkLqr2gzSD9Nfv33PyKXV2ioLz14MxCy1SC2jDw8HeE8IZgr3iGChIswMAImEpcicOXbdP0gTnDCjdYQExJAzDN9YCjaTDBlHZ13QWK0nRMB831MaZiAEAyAZnE+X6/ny848/n06XAHy/3/7wx99j4vTDb/vmDsyA1dq6iIgNc/e6LO3c1Pwpw8y6HgnZo0e4m0NBZFrOjVDMxrBpjo+0IKAMeP32fnm+zBIcBIL0sQ9Mw4VffvfzrBddlsYI1vvr6/d7uSOXtpxKPbErM0stp/W/25++/M1f/bM/ff3HX7794f1++76/cUNaIhyRiRe0HrfvNylyeroApIMGHeaReZCgtLKUlYMzM0yXBeuyjp42gJu0Rve3gUjpEOmH9v79qIt83/64nkuRttSlcXm+fvry8rsvP/3l/d5f32+RcLtt23a3R6gjam2n89MgaK21ZTFTywyMYVq4CBdHCHVBn5PqOf80Nw8nwMyYvbNjeCQnWD56Y0AahkfJMv3/CYkMmekeE2aRDjp/yYSCNTMM5yAskDLcCUjtkRcOTyHBkABKhIQMyDR/TM885oQcED+iv9yWtS4n9ewat+3eBOuyOIqg1lI1IQANPJIzPAk52c119KQqhanVrSsUmQgqBxDGtRaDIkSEaelAQkShIKFz8M44x5pEAYFASESU4SgyQZgRkw8qGa69U12ktVJh+olaKQmZ7hAWfZ9D2gAMbgOP0W0Ffbqc328bEAJSuGfEspzQjhRAlozIekJky1IgI0EI1/WECRE+gx4W2a6fpL+b9kKYARBQWWg5AeB+vxHxPHcxJoZ6OABRQKs1I7fRPSLHeHp6ul6vYdZEaq0oBYWPyKWWtbBGMvPYsRAONYfddLy9veGnFyGqpRTrEHHv5t4vpZm6Sg3y2137vV9Oy3riX987ES9tQYx0G31npLKspbX97TVdIzEjDBuxMUlFPp9P+w632/1Pv359+fSFa9vv988//qS9j90h4X07QI/PPz1lJjEBUmE9nS7X64mIKqNfzvu2JSjXpSGe16VI2e43Frmsy88//+z/8A+OQFwygRBrKW7ej3G48v34/EPhwqljz/j6/TXVzoAJRAhqXpgpw1QtUJZT2fT1+/d/82/+9T//F//DaVkpqFCam5timGoSUriX2pDIPJnlfFrvt9fpOoOU1pYxvO9brdhqFREmJKCP/SMiUQJq13DLdHfn9Nk23S5PPBsJXCGdmLhVHh0hBd0sdES4xTiIOYRmVoiIp+UQGRHJj2HpiAWhWNx5/i3hQerhauZHJgJKBY9C+TgAuf9w+vTl8rzUurKMoeqGUa7nCwt7xHH0afqY2z8u5TG+R4DECSuZ5R1IxDK7nLL3PvTGUpbTudbKS0MgwI8KLbdZLRmAxELMQFjM5nmPiTE91M3MzYKwCUnDSCjQBAWJPgAiAUiAaBaQgTThr5uPft8PtWCpAcgsZYJs3dyDhCszAs7mIEQgkQxn5nCfde0542EBCdPs7oiILDE/IKytETEScBIShQczE6VHMFKST8MUS0GAWQiAyHOFRaRZ8wCQwCTEOHNhpT6IEQkQmQ9VBhFiBrsmQigeD3uCpdDczQ0yARJJEP+sbXsmt2cIKgEhEZIQErGUOlEzUxCPsMeEOCMm1HZS9hEIGSjwQ9jKWXuEGB4JWWtblvboucoPnQ0xgVBwkqrS3bS7de3Hm9n1eiUklkICCFlKeVTLZcxt1SMvADg8uI9T5UrUakl3HSMnKSkzwoGQiNel/vr1da8bQEJYmCcEuxNJImQCTXOvmepw9wwfNlwtAXIy8RDScia/UAgDJ+sqH2n/qOUBcf/AcUC4E6KaesDl+iRSiImQPJym+wVgHIeZl1qlVHw4qVFEiIUFzDQj3H0yr0QKIrgNKpVlppvTLMxGZIx9uBkRsQgyJiQWQSK3cWw386y1VqFTFTRjGFzX2tYJNC+1zCUPIDGjhF2X0nu4qvOR1LicmTKTIviB2/MgKVL3t/fb0AE7ASFGLk0wkZHcx3HTGUjEGfJIqoB8ktqMWGbCS7sJMzBnhE/NjrDOIOE0AiEh0oy2AFAidvO0h5uQEISYmWbhXXj0MdwMEWsRYa7r2kY/+jC36VkY2n0eXgGkVEkAACL0bqY69wZcSsykpwdAMgK4h2kiJ6J5uKepJQLqQEhmqnVppSDg+31TN5iUzkRCDP9NCvin67+V67en/J6gA4aCRRLAqcCpABO44T5geKonZDKGIjBNU01apJtrhHqopU8vzaMUCEUQAcwz0wDg4bXJRJgjDLyn74MQPjSaCM90S4s0D5v2nAQHjJTZMzAjW7+t3AkYgDmtno8cMjyaHn2y/x9flNNQOu/8j2JImGnm+c0QUmopfDm/h299W0ohxPO69uNACEiNzDAzVVUfw4BQTbvaMWw9XT7/8JeX63q9rOIv/dvf75R96NuBb7fjfqiqu1lwkVql1uPYtl9fT5Xf/dj3ThCllJunqzEkMn57f7u+fPnh59/V1xu1ldtpC1hMw8Zh9vT5h5/+9gsJHm/v9fPPn798/lvdfv+Pf6z5Fer1/NPfrMspjtdw//v/8B8IdBU8xvH3/+Hf//jjD/v9DRE//fhTqWsFdfTbPlz7U8P1enl92+vTi1owEDG25QsC4ffXX35/24Z9f31bvxyNkWq5dyoUIMJlmcvlqS3hOvajq9+3e52AP3Cpi5tyIVVLSEhkKozkEJzw/OXHoSPcuNTS7hZgGTOkTQSVARiBGCEzHB0tIcLDdFlPVBogIxfyXgv20UtthZnAT0sz8whwj++vbw50WmfQRwxEA7lwpBFzExGEwnC779OlYREBWBE9ERFUbW4RmRAACmNta4Rh8eFJBISgR9/cWy2suqxLobnDSjcDhLQBXAMyTIeaRVzXVikNyL3jPDmkuUcpBGGZmGnLUoPE3QlhwhXM/Bi304nAQUq9Pj0/X87PL9d9OKidWl3bwsIRWRpDukBEQgDNBgfIZEJD4VZjHG7mCWYWaZdz44TzS1vOBWJu/YQpoaaPx5uJH8QW+GjagA9cAnGtItKPw9whQ0Rabdtx3Lf7uqx1qUVEzW/32+iDGNMwImfNCj8YR8BlkkPnxCXMozYBSEpIhHDDyiQ8S8cS3CxFhAC10+hHDrPQhCwskRkGTIyBAng9n6+X66fn5y+fPq+nq5SaAF8+ffny8hkyal1u97u737dt9G5ut/tdiLNB72NdF5FHHyogeth9u8c9HJJZEPB8XTOhHwMIK4J3cwsf5h6zPtc9jn2HBMRkEczm5qf1/PR8BYvXb99O5zMzmUcfuh0D+U+fvvxYS00AD9dNRWRtCyE8/eU/v9RTN/v+6fv/7R//F4eenXEJcxxjjHvvuJWFRQSLEQIeHOAGfalrxUZBmlYXtBgAiNbyRMtFloURQUd6B2FOhHIRrp4w+tDw0aRcnn7627/+V+t6vr3fvr0dE0x89HH0UZc1pJruph2F7GMGSYJgefQjiIDXhdZ47BRFdQABOxBzq9XdA5zmToqqMIXz8MGEXARKjN3IwBmlNqHZBpOz5900GJCZc0B4SsHMGO6AxEhqFpkQIOwewUIRc1hNgGQIdZF14dv7Zj4a1vny42kQyJiYHXP/+vXX9fxcThcm6hpv2/GEZGpHhIUCEUISMwFmoGoQMhZAZJQCSCk1LRCgtKVPYACEuY1AJCqMQnTvA8M5nDECkCEMMBKIMNKR+FHoPBdufBy+MpNyIJeMpAhKAMh41NwAUilCrBba1SxJ7m9vuqyEBZE1QN3VtWDVpIxCJZZ11T3WpeZQlbMFpllicDslcWlNau33OzMm18h0H7yeRCjv30OHYG2thDvZAIBSq45+3I9SV66CJMxlsjcIJ0UNaq1MyISuikittVpEM8MM0j1oMmcrC7ZGAOvJIkPZ3P3712/racXTuiKu57PG/no/bm83Avhlv4sIsgz107qslT3S0sf9bQtlLmP05XQppYxjCyaRc83Nkbyd1zXvh2FEa0K4vr7592/fSqmlVFPt+22pizMDAlLBpWzD4P39qbQICB2lVqkt3bbtPlSXZelDl0Wg8vV0LrVs78f9disEXOpyOt23Q4/72LK1Joi7mbpjgI7t/vr1+fMnIfnT29637Xq9MgD4WGpd1nXsm7m93XZCZEQujEyn0/k4+vW0LqdVKNOOaNVsQIRGWj+SQRaePQDTEJDWzex0Oi/LiVgBqbXaWq3CCDiBKJkJD/cAFEb1OVTzSBfC9fIitc1wfrgjzqZnQ4TSCiUnoB6H2WAmFLFwxLQId42whADko9vYhxVAAcTKfE5hyHRz7ao+gACwSlnC9xwRHpieAM+Xp3/+F//ssiw4p3nukOgekVGAPFNEzDxMM5yYfwNRIgDSPOpDBOTE0kciMXKysPej38e27Qjw448/gBsglbaUUnD+VhBICmUAMgOUUgCwlAqENiY4hWa5vYgUokwojZFoqk6e6UmExCyZkY5mBh5FSkyCJddEIpLS1rYs07aEQlOeRiYfAwky8xFvm4Sd9HmT+EAd0wOtABBuj25pYq6MsweLEWKy82FKMxM8yDyXaQaANMhwTIjMnE3tkzIN8DDJABHCLOeCj9tUeMDHMCcjiJmFkMTMp4MMaWKoHwRlljpTM/OYnZEP/vQshY0AAGJKAEqYCX2YEKAPK+nDVoUz7JYz4UVMYY8AgKqq+czVRkar7ccffvzy6aX3g4ihFAaITMpkJp+cx4QIHaO7mjDdtr13ZZG2rq01Ny+l1FqRMIEePqO5ygBk5tE1raMPQjhmr2Uty1LnLxYzx7F389H39xsJk+swfdw/pbb5MzkhI7ir6jD1CI8MoukGNbNHrg8SPOamD3Da3NKECyMRsXnMAVVE/OYngszzeiq1EDECiXCoqzsiCLObHvudEGttpTACePgkPDJxrc3dEUBHn6+/jKDMMezXr19ZKvMUboIASpmvEvIMSz5UfT8KM8wqTMBj34n5WNr11K5cmaDW0mqdprKIKTPFceyOvFzPINux7xDxgE+5z1whAEAGM7W2ILG6v72979sGmZjpXpd1lVZys3BPikQinsk7q6VkTgtgHkc3c3MzpFoKE9VakKAQCYAjPujP+XjG50+KJNIKAFCEm1HOLr55IKXIJCIsCDMriEzMS5zqtpt7mg3zPvroRyYkYGZOjhWkZ4SHzybjIjKfPEIKN1xWEZ7JPiCUUk7n81BV7cxYuLKQsADA5bTuvXfVrR9qZuDD8uMN+E/XfyvXb+rPzeHooAbqYAEQoAM2BiEIN/VwnwPHBAiM+DDPZsBDUXn868OtSgIAGA4W7j6Ldz4uAAQgxIG597lJ/cD6wCOTZQ/EFfjchwMneiJlzjX6470GmDjxVZTTsZkemWH+KPlMh4f8/aAHTW/sxxACGR8VRADIhAIJbkqp57UtlRET5lwlIdEDRz5WMVPViGkSjuMYX9+Ov/0XS2lXT9r2G8qzHvt7j9f3/T7cNNU0tLsqQu77gci34Yd6EgfJ3v2p8Hktu/oxeuE8NjXef/fjFwEK5m7x+n6/XtbT+WTH8f2XP/yh29PL83FsrAMwayl/8y//x+o3t+GUydQ+/2UjX2rZtuMv/8pv90FtgXF/vpwWKfW0XCsh8V0B3o7o++V0xXZ5fm7RltwPBCZE5AqUl1H304nb+V399PVPP356znCWmqm1NK4Lus5AnjCpmbvt9/thg0pdWnW00EFEAWRurokQmIGCYXk6UWE2TCSStro5uwNlkzLUZV01oggLoQ69b8eI/nrbWqFWG7dVhxZ09q69WgCLqEvsx/lUAyIyD41txNF3U315ESmyWzqkdosMsFhqDUehyHW5d0uctbrImIDMBMAU7scxSl0KdsIihd7eA5KmCx0Jk/m2jeF0ERrH4eAeGgnMBcBJJCEpAUXWtljvZgYZWIgyoBbMrKXOEo61cPcADyBCYskgFkIYQyHjella4xz+6Xp++mf/vFLc7luDR/8DYXiiiAgheIQTCjEgJIAbQALX6behtmKAm8LYyAaXp8v5UtbJSMDEUhdIw1276ZywRkaKCCFKkckl+Y3BWIp8enkZqq/fX5+eLj9+/pIIRx/bvr/f3t+3+7ouEXm73cMz/MN9nUkMH2solyIRs5EDASZYEpBS46Hw5jSJJwYCGrr7ukIrLS23977dDkyQKlEQEZjl6XxZ1/V0Op3W5bScTqfTul6YZys0YsLL0xMSM8vz84u7Q+axb2Po0HEMDY9t29RsBuWEMwGIF+ayHbt1TU7iZKRxWBKdTuvYxzgGAAIRYbSlJcL99X09NxZgrOvlGhRS8OVyLYWX2qzY3o8kTCRD6H2X7Z2Y2+m8ljr/alOFSCTIjOv5+Vnkh08/1iJ/98d/o6z7cdt37/fRu0qDbbuXWlqBArWtxUeO/YCGkASEunc7DnNAcSp5FlmeC2ScX/jY8jZ8DF2Wsi61nvl++57pJ/nycv755x//upS2H7bbbYLc3K0UvpxPw1SzN76kFIDc79v7+5t7P2xX7V6GcCHCD0VeSZYUDbLQ9O5SLokB4B6ZHsAIAh7O0qgACZiid0TiueFnlumJ8UiIDwwbymW53rfNNd5tx4pVxNzUegJJKfOYg0jMyATMDAwgAEKpToAIYLMhJsLD52ISkZEWmdt2f3///uNpBazu0YcfRdVi3/frCc5rFeLJnTCFRB7aMUIqtfNF6rKP3hJGP9ydhSFCLW77CPdMb89P16dnut/sOJjAHCA8XZOEmJgZ7RHE8EwLg8xMmMtghLcK0pbz87PNHu1IgJC6tNK2+ybpJbVTBoZDvL++5uvb9fnp6dOp9+N23yCdsCNiXU6IeUKSdooYaq6WGMf1ugpAsBRZS60WaECQCWqRsR8HEZ1aKe06/L201VUJEaVijhww1Cg9dQTA2O7gnoCGnBnujsSViZnT7f3tO3IBZmKCPoZ5Rhx91FKYRZY1EC0RResS2TtLHqq37di7PjeiKst6smSu9XxaGtq29U3n/cQR5Pl6HkODyE3fvn8lLvtQYj7u9+vaLs9XInQbyIZIlKr7XRCiyHq+3G7v37/++vnz5+V0vr+9+dqJ1+Qy1NZ1BT69H8pbZ0z0sbYSCe6xHf1+u3GVZW0EcGplOV9qbczy9u2X0crCtbW1a4zeU0cSIpKpChMQNllOknrsdx3fv75SDo+g2uLtu89iKcICXCZmwjXNZlpnXevz07mJrMtyj6H9KLURod7uhJCYTMmM23aclpWlmI1AlClPSKnXKsKt1GmpxofrGogIgTADKVEIQR5bpNpwTsvdXMfsoBpDVVV41m+SZVpkACOA9aGUk0Bhesy5eURYms6VTneqspTFEIIEJHMoYgk0JARXolRMDIiEl+sPP3753fV0WVvBiASsrW1HP/bNzKosiEnCCJjmkQaQGBNFjERT7M30mEjjOTFkES4VWMawiL4fx/dv35bWlloSuNQiUogQHy0jCB9V50RUl0WKlFINwREgrM3UVamaaA/RjT3DEz0SgFikCHugmc7a52GJkJFEwolIVIDIIjGBpECmu+d0CyDGo6J67nMxwsN9kvZxqjLIOSegPolMPOeoCdN4GeAY8/0IjwheBpIQkWDOV0EWYXOYEgwCTdcSIjJTQs7Gz3Az09nGxbOBCB6b5hlkmlt9+mhjiAQmBkJmqWU2rD++hkt5xMoCPAwBCRBY8DdoxZS/EeNBHM55e4fI5Emw/k+JQkjAOcaJ+O0wMH1Mp8vl/PRMpZYSsyktIsDDAD7K4wEIAYVZhOl6OXd18zSz2Pa+dw9n4XU91VrassxmUGYhxHlD9rS+7cfb9+O4A+CyLEtbWq2R8Ns/3759P/Y9E05ri5lFR5rAVCA8jh3c5/BjqgBmDuCVJCFmCHGm/kppGKbeE5MIp5ZBQEVK125qRJwfEcjMNLNC3GqNGVGefKBMyCQidR1qPNXGDBaZrW4Z4abJScTEjJGag5AI0cLNLADAsQInkDAV4cxESK6CAGOYqdvoCUDpRgKRieAeGIFE6tE1zupSZJYqqHbVR5hxDNXItbSW4ToiAln60cmUYYLDITyCGQBEeG3LUfvoPcNsDGP2YukoLKXWPskBTDlVKkRDzEgNVdXt0MhQi0NYWBZrpQqUkpgzTweIai6ZRGUKl79JnsxSpPAEc0YA4hgjAeZL/4HWonmUkLYs1SPT7fU1IwCnjOVpaBBj6DQNIaJUnu14QSQRHs4sXCoAAIS7zzcjZp7XdTCXKlUEH7xvkCkeARw6umof4/X+RvhPAtB/W9e8kb45HAPUwBw8JikudFI5Hjv2MJ+BjYwMeKRA87F2xLxZPCoB5poAho+BxOOfqcJAzJ0rfLSBPSSoee9+fJp6ms8/QZgzTshEzulmmMrTA/HzvxHZMeeMYPLoZt30NDs+1KWcKx4iwGMBKg9cEE5AnCzQoRR5+pQ2WJjKqiAeW4SX1vS4kxTWwQRFyDzM4uiH9j2S/+EPb1Iv3963/e1WwaidLHcLEMwA9dFDe2EARFdllusq49hrIYNGHGVdKYFI33VkUjk9D8tvv/6yCqfLfnQ/Pf/hLcrlel6LjkFkb29fEeTXt6/Pp+XoGcDpuaxX9r7kfr8Zvnw+XV/khNr7pzMsax3btqzf0325XmphGRsX4NJOp9Po21C9vHwy15MHsQw+b+rb7YbjuD4/Uz1r3/q+9fOpWyQk15aBpm7hYTuShEi41VaE6RjZXBMqcYlwJkzziDh6h0izUVoFQLjdGKE28eDHiwMBEoUFSLhIbHuV5AyswuXy+raZKZEQMUspRcYwwxLjSGwlFSIJ0VEilMBagcJ4D3i97VIqcCVArAUAhkZOFAUzAZZSoPux91KlCUcAcWAAzaBMY8+438d6LgJ0Oa9774zoNjDCgj6/PEmpiBDhoQo8aztBDRKAM5gnO9OYyRwOAwYNj9OpYIIUQpARaInhERbvb7day2mppch8BRJ4RkD67374Qc4XINy/vyZQxJgcq5nkXtktMEkIwwIKQqaVAknVEhywChCwjsP7u7t54v39XiKkCALnzDCN0GGmNvcBE3TFmUTMxLO9e1ll9BERCNCWlpmntZ1P63pqInI6rafzuqzL29vrbbu7zSoxInrUkcDsBaKIQDcrhUUwgROCCHIkABADOUgh94h0sGnxTUjCpBAeNvatH9uAwFrqIvV8Wpn55eXppx9+WC9XJobMZVmKVBKZwpO7z41duE8UTZUS6efzeakacAFINYeEbd+Pfpja0OERHlFLadLu2y0iRDgMM5KZfJgOnRMYLugRLGxqpUlpRJiSQoVIcllkWQqQB3sRBoa9j+3obVmLcEaYGez7ImUCDkTEPAjIzc7n82ldkIDgb5/X8y/ff7lt93//9/8BcZyuLdKtB5CWgCxcchGiPQYYYGRoH7fb9qYJxmuWp2SuwJ5hIKmHIwyqAMRSi5mm4WX5/OX55+vlZV1WqUsQkd0jY4KxiUgIHMEJai2n9Tnzi5Tyhz/8/e9//3fciAtAYpFK1ADY3cw8qgMmBplpWE+0tizCon2nig/K0xxMs2Ji+gxkzUawtFRMhoebH2vhzFQdANTqMoZi5NCuMUt5IM3S0TXneWS20ZVTzQhzRZtzdAQs3cYwG2N8DNwiwsMiI97e3/d/878y08sPv0Nii+wjADNRAqkuS6Lk0ABESTRnQIuAjNoalbYgCrHbCLdSKtXaezfTCrF3BUCudYVLR1xOCyMet/ft7e1B60hYWlMdQwdyiUwAnGhzz4hILqfry6f1fLXel1zG0HHs6c4lKgO7OfLjjZRpZl2tj7H3waUevTehSyn5/t1KBcAxbG1VseVSsA9GnRmuo4+KcrsNyBAIVZ2L8X3bo/d4eSGILAtxBcCUMnofvY++W98igSzF/f3tnUna2hLJ3d0MgCIBgRqFZazrgrOoaJZFIE+CTGmL1DabPqWUhPAIIiKW3ruZ/fL92Pbjxx9/OF0qEj19/qHoGyD7fUcHQmKujgJxDFcz3799348x3FlkbW27XF/f3p8+fb4IgJChEAxXPSKlLkUIiY8+EIJFIvHt+9tyzhNjuG0bnOUckfu+XS9npva+72dEM+vmr/ej/7o9vbzUuqI0bmcshGHLemEpHiG1nc9gOhQiZvUb0hhjWWQpbSBub/dW6HJZdBAi9n4kyaHWapVS922XUgKw74/T7bAwtXMTlgKIbVl++OFLSh37tm/3dW1Yn7idltO5j7H3XhkisXetS81MEWGmIjPTM5M+EJFITFwBMh0QKZESnEVKrUQ87b0ZFqYAKUyes7ucCbGPsR9KmCKcFoJyKbzF6KbIkuFm3SMACBgIiw4XwYzw7EAFEXEhMiasAYk2AICZMunT+ukvv/zu+fMPl/NVCAjSMjNy3w8AVItDjaUiTFDso78KKJEJI/HhK3+APCbVEZi4NSY2j9qamre2qNre+7KutUCtTZgy0x/5pjSPDCMRRCx1KaUwI5QSOuZOGAmJaHgqIM9McyQ8ag2gndZCGKYxYHSdsSlmIakJGIke4d08UpiZpnKDgY+SJ0ACQqK5WQ4EYBGawelkZkZiYHQzrJWJwz1FMmJqYEg0b3VzngsIBByZGPQxL8WPjTJaBLHQA0ry0JJmF3tmTHvRbFWblWTEnOFIFAFI6BYAjj4BPhCQBIkfzqPMgKCAYJJJvcmY7g6MTJGChGaW7gBARI8ylnlGmPoSoUNO/lCkYhBxYtIc8ORD9MHpVJvt2qfz5Xx5wvQiNAfEc+jrHgEDgBIBHJnxfD4LgQUcw97vu5p76MRiR6bFvXaJyFILIprpY7Nh6mP07f2431z1fD4x83zMBOAZfYxt27ft7h4zg8bEREQ48f9OiI97fkyTVrqHmhFmqagW5k4iiWDqQFxKYSHVgYhqGhmQoDbMxrTtADGm92O4eyaUUqWUDBi9qwd4EBEgjqHuSUSliAhBumtgghAfxw7HUVotXKRWZCjC873wICJPi/ScW5hNFwCGWz5qHoqNQBiRPdBMLQ4ARCbh0sdwZgAYZmurZmZmCSBMszzQ3MyUMbEUKWKejnTsO7i2NvFunOFoIxMDsQpfzuuOMHHHe+/A1IqQsIg0IjWDB0YEIHy+RwtxrbWrWbcIVwViMffFm3vWIk2SAAADieaK9nifJ2iGqjLLMqsoCdxddcwH4B7uHgkeaaa/Mc2FSZghs4hQaQAQbmpGma1VY3ZzImRiYZpoCCDiD9B7uDMB40N3ZKSlNRFmejCqP87fyUTEXGsxj2HKRG+Xz/8/Fhz+6fo/2JXwHrAPGAaeMJ2aswrJI8390QnpU1H5UIBywgdi5kofFbpziI9IAUQYgeQfoXGY9rfJ6Xq4Rz/aCH77YH4mROTw1EcUe0YCIHLiOqcbLmYF3kc+EgFzmlLxz77ph9koP2xOOe2QU7SaC1kRaI+3xuNvF9JbBfF6LZcrZNR22o+DoN22HbnKeu36FiiYgxDdAyGEcIyROaS177djjH17fSt5XJ8pMjF9u93GOPZtY/SI8rSyJUsq1rIWtGM/kmpp5ikivb8/WimJM6EnLoy3fTDLp5eXy+Xpviut4j6kLMTZ1c4vP32/3UbvG/ZTkeMIsnjGweTbH//jVk+nZSnPX7bXVyuXeqlE/Pr29e2+19PpxOe12rHFGUWq9F+/qxpxAaQ2vp8vz0SX/hpNqFye+rB6OgtoEpZl0WOvtZqFH3fGdBuIbq7o1gqtBQXKsqzAgiIUQghV8n3TBCytIKF5SJG9H+QKuIBM4MZUqUnNsFSCjLHjHKYE1SIbMyP0vc95AoaPYWgGagZ+A27Lcq5rkBBBJheRpyvsI97343aotF6IlyLElIWPiIC8H9rT22l9erqIFEsfQxmIMxB1dAgMx2xFuIpFAhgiL61FuBkCMleUIpSJUk0TqWRGAcyEyhNJSAlzt4kWGSRMpKqCSOkBJIIZ1ApFhtRy93Ab3UOITicYj4kBeJiPqD8JMez3u7kR5YT+BCBwawiRQbO+bEIMM0YfS2VTcyoZfT+GYIQ5ZTQiYAi3rfvCJ+Siqv29v/96n6xcIhIujcjdmSgi1Oz09FSXxc2+9U6IiBjuRLTtvbXDPESoFiJmdzc7mfugjoiqRgTImJk0TevE4R4WEV6XBkBuHmCQCQwAszx6NrOFB2BQZhJKkeIO99v9/fveSjtfl/O6nJdlWer1er1cn0+XCxGHBwu35TQ3Ukzk7ukBkQkwc20RbhpIxEwIZW5hW22ZeT6f+uiqZu7bvulQNSOihEjSZbmko3VNDwfDgMKSDEhEK43eM+N0XZAcoDiC6i4MLAUR3YZiHp4ETJXiSCYCBiQQYaapj2hpBQDc1CBvb68ZRjNPTnxdLuWz3M99aZd/94//+v3+zYy0I1MiQuG6xMXEWiNGLATC9OMPn93sj7/+kmYlE8QdwjR0r8vCT5/kdJVjIyAViuv5+edPf/vy9PL8/NLauu26rqfz+fT99TU8mAknHDI8I4S4tnVdariR1GHHvX+lgo1KpnooUHMD8yhcIDDnK1RQs8cwjgLpaGEqlCwsLEkcDmFqgUIcdUkh6ubEj+LjycUBSBY5ji5csCEbMRZLJ4IQVRt9VxSTSkiUCSToFsyo6qpbKSURRcr37bvno7Ymw/2RZXgsJcexf/v29enlU2mnjBzaa+EiOO0ASALgwzLtUe4+A8ZFBKQEQt83AnxwoAsTNogk8BWRMiistSJ8WZbF+n66XvvRQYepBUBhDlMzRXcksmmOzTSLejq1y8v1+WVpreMchI6eNsZgyFMt+8gwJyEKNk8pxRMsvPdeAVttn5YiAMmcEcy0b1u6qXppS243R7wf1ns/NEkOc2u1tCKjH64jIN0SiQGoj8GYYDcqy/v7O2aomfUeo/egWpEZgygAKwkROiQyVZZFqJVCpabsyOIR++ERQYTIQibuJkzzeRDhZV2ZKSKJGUgjAsKN+Nu9p7w/L8LLiZczkYsmbP1+jLetk9wZwQINOd22rtveAeLLpxcKu7992+7vf/r168L5008/tdMFQgEzPHT0436PAI8cqqd0aYubRuay1Nj86Md2e41AEczrdTmte9jWTc2K1E+fnl+/+vfv76crX66Xbqoe2sfr+80ia9HaWhFe18Ui+hgWzkSVkiG51DGscX5+flKg99smtdkwJNKetUAgeYBlDnM1j8TwvG/b9/ft7b5/einMSG35/PnTrrEzYiYjnp6eqKzvt9t7IrOcGx3HAcSl1kigefgmJIDJeYkHGJdnDQcLUxKoZgKxAOCsq4vJWswQZiCYnzVjYH0EIwikeSDS6fIEROTjbXtzV0/TOMI9k4Lq9GO7IwmLnGZXNwIiG0BNAOXgQJZ8Oj/9/PzDl6eXpUhYD+YgBmT3DgDu8ft/+Ecp/PTyqbZlUllmN1NEkAciEou7zX1sZkLEzFsTQGQQYavVI2iou5sZALKU6bE17ZMclIAB8BtMrOuA2/ts7XHTmTsDSNwPS6zrOom+gUkomMEIYapIDD5rTHo3T3BVIJ81ToDIHGpEiK0WtyEsCY/4FDF+WNojAUiImBCJIjJztk0xCywrALlqAshjEGLTDovMGIEBgAwRs+JizuLmLZCJprsnMycmaSKhMx7InAdaYW63p0rx6FDHiahhpkQkSkRwd49ZiMSZ6WY49Y6JGbYETiTER0N8IkJ6JHkGTuIMwPzh55Yf53dApIz5kBPg0brwsCr7rJmnpEh/PNQ5oz5frgnEjEQPTkRMNwQCAONklEJ6ACKzSFqcTsvetatN+9TEBuUYSuzhp9Op1QYIriPCdXTd76PvmNnWVUQ8vN/GKEMmCdgDAZZa3++HuwFUQMTEBIp0VwczdweiiFQdZnM/Yq2VEp6QGuFDERGZTBUQ12UpJGaa5IAMicMHExdZENA9EbGUAp6RUWsppSCQWRSmxCQmZlHV+XR6uLkDQKkFkftQt0BCV4LEfAiONI+KQFRKmdYwgMyw0cfctEw7MyJwBnk4UgBFpJqq2QO3ipQjsYCcJDL18WsnslllgADgbtqPMEUi5BLhaobaw93LitQqAbpnEkAyIIkstdpQHYqZao7HQdkQMNEJEUlmJwkSJTIiNZYoyaUt67ofx3EcRx/zoGqR3gcAJiCCQ069bPZRBEASkQX0PqaVyd3XZZl9FrVIV50byqE6hrobE7MwZJphLVJYKmNZVo8YHSuxEEmRY2iUfITkmT+wvggPMkMmIjMDxszEEcJHi7wxojDNl3ZGqDpPnyNRK/V6uvz85cf/rysM/3T9F1wJgB+mxf9ddPNDLvnP/On/m39HAijApjAcAIBmpuqjPB4izSIeEe9pqokP9+RDBorIWaqVEBgImEQz1w8IBPDoV5yrwVRkIh9QuPkjxMOx+hvSBzxxREYiMxM6PAQeyEeqFuAjffabxgOPfGVOMt9vvyHERMAPs2h+kOQSAAixMCzCrXyAFRIQQZalJjUNdVoRpSxNE4IA9rHdN7fAsqADVWc/SpHXt3tX/eWPf/jhx5//eH6+PH+ycfTb7fPTVU0xU8fo99t934aNJrRi9gOfTtUcCxcN2Y6xFDGuTNj3rR/9UK+lFhpShJK+v/f78KentvXx02WBBGK5m3Ep0HvvY+86zBHr22ajonBE4h75eQ2CMW59u9d6Gsv16e3tXgoSt8+fv/zp66/fvt/fy/LDAudT+9PXDbiW5WQOmR68Hl1jk8zjaWne6A7EKEWEaGWpLFILY4ITEoaqgSlX8qHgBnA5v3zSbS9FAtAyhdnHDhm1FgSotQwk3ffMDCAF3r7udbHz6VRbZUeUAohH76R2rsWTjjGqZAayYCslc3K/OdwZMoksAIW64YJUCnttAOA+Wl2lrSjlfNs9QoeWczFzxIih4SGtnIj2Iw91oVzXZhF7BBJ6hB4q6xltmBoiJQoCQCQJEKEDFiFACHeDEKlCKESG8OiZD0MMZlID86C5FAPUIoLAIF1tP8a6LGE++zjdbF0qLdSHZELf7+8UVJbMvH/75ej69PzFI/bv32/33WdIOAKIGgbSg401aa/E1DhcE4qoBhCI98zpi04bQ5ikCAAEikgVajZ83HXcBgQgIhPV2ooUZskIV+tjXK7X6/NzkbJtGwkL4vl8rrUCqGfc7nv9/vbpBU/r2irbssyBB2xJQlzZzab/vNQilYhDJzjA3d2oIBc218QkggeMBR5u+/lGReA5oOv7uL/uYHC5rJ+fry/XS62VCJZlacuaHpFALKW0cDe1MG+twvSNT3qRlPDppp69tsxEMOPyxPNOtbSl1jT3pbWjH/vRiaiPL7f9Bsn77eaaNkZpdap5iAQYgBgJgKhGxBY+iJ2E1uXyZflEyJjoauFISeAgiaFWpbrqvt0TcOxlWc+BSI1LEXA7L/WXP/x+3/v5esEMHUOkfjmdl/UU6X/3B3l9f4uiSI7IKzyxUASWMgUrFSFPvD493Y4+dCPMxG7pAKfL85nYpexMIK16hBRZ8svL0/MPP/zu+vxy38Zx9KMfpa0TjowAOkYEZMQYY9u29/ut1SqFVft+7EffV66Aw8OG3RhkqadCKFhLWxjLLe49Ds1dB3JSkVawTK9+WwqwJcLobkmJgOm7DQIn5HRjLOfzhYlxLkVu7qFjEFEpVYAC08kym+WdiT1VSmOm0c2UjnSAAAKIVFdiEiljDBCZZym3MHcRAkS3REwz/bf/9l/f7re/+u/+5vPLlyjVDIRBGFttiRghCTGGzVqiWoqUSm3tw/p+D+uyNFQUBEIoIrXWwrBv24g8en96fqrnk+lwxHY61+W2me1D03KpuavNc9Cs7mPI7m5ua7milD46IJ5OLRLT1MAEnBChlIbcbZBjEWHBY5ginC+XWpbZT39Tfn5+kSptWcJG6nEc22G6Iu1DibCGeoCqpZmqUTZTUfexHSycQB5jidi7FkrMQN2h21KLaXf3AEERKbWU1kR92rV6YjqzACBgIHNXTaT7tlWiUqS1JT09Un0IoY2uHse21SJ1PRHRPEPWNjcPOcyBPDINcGmLJzCVQ/02vDtGAEYiTnexurtbZDgTvJxqXRYbI4n/+Ov3r/vxvh1PL5+v13Opi4NiRDtfcpjZ7qMzwOV0ClNAfH97i8zLafW03vvrL7cMLz//9Pr6rZT2/HRldFyr7retd4RQ9WHet/voh7n/8vVrKfLp+VNdlgSKhGOM0TtT1FalnY5h4Valdc+6NiyxHco00d6uQAS8Xi72ftNxqOrcEekYvfeh/sPTJSD7HswkCe7hCR65375TGRaw3e6C/tPnJ0G63e5j9FKaiAjPs/WETM0SKEqA3kcRllLSHWjiwlD7AAhkzjCIeBQ/YyZxqfXYtqHKlMTowZGDE90DRdC5lbbZZjE0hsURThiOvM4NQJDkYx6ZHMTIDgZBCBCYn6+ffzx/+Ysff3p+enn99k3HLiKIiMTmzkjL0txGmH/7+mspZVlWKVKlRphH9HGIFKLyMRnPCEeCyb22vgdQZBAiMyMaIkUkC5dSkGmiXxFCiFAgEoZZ5cTMsd/3e0xjemRkTO9JWGSpC3swZ2QiidqAAA/HVEwvmADZaqsi+7DX2909pa0z5+XuMwAyxoAMJJ1OFmae9d8iXAoLU2QWIUAUkUhAevhJ3H1SFIhosgI9wsylCBIDunvWWrAgEAFwPvhBkBnmDokInOhEDDl7g2g6PiZsCCCJBJFcdeqAHxZGmMGiR1k2kQ0lwnwQhTMi5xgJYDr/ACHDLAlnN9m0PU1gc0x7JsBHAI0jpoEiAMA/kgYfIbFH0AkRiCg542GbmKm9JCZzB6SElEKhCpOChA/XlscssJ/7PiCW1KPWWou83XziZggxMs0M0WLyC0/GhG4KmYQxk1tUSmttTheOfnx/HZM/va4rEopIho/embBIQUJCmg2nkTbfjzFFOLOhBpgWcagSkWXOuRSDQAJ4gOcE2CGQsEQkGJJIeESCDcvMcEgEKTLF3lLbehJE1o++8KnjuM2aXH+srVKI2LdNtcPjnBdmIzweQgZkTvxhZriZhg6VWpFKPM5sYIkJs4p9TuJQmOczHxE4n3YERkaiZV3Pp4ubhxnOV7XHtt337S4ipmoOZC5hBGju32/3hrAWIgTECc8JBlyWJSftOMy6HeHmBl2kiJRi6mBKTK3VyhMMgtgkcqmlLEV09UgALpHgNswdER5scrQJKQg3M8uEeViudTHf7ttWa1lraUIsPFEmHoHIyyoAABlhnpiADEgBCAhj9PneYRb+OGVIqSJcSplbYfdAIkJyt1QDCEBmkgiFDJxeNiQMfGhBmRmYicw0MYRAlAnCVEv5L5UT/un6r75m6va3j+Gh0eCf/x/4iE799uF/sQaEgABDZ/dvFkBCcAL1NMsIN3dTm7Xg+WcCkD9uR5kfHwDEh3YEj9YBBAR/rBtzfvqb/Sce3Y3zZj3lo3mjRXiYYn32SCPMcj+Yhk34jav2n5g+D2Hpz3hzH/S3x1LysA1NekLmb7+r3x7nx38CIhCBSHaFxlJDN0u+BxBLa+vlYu/fv6XrUEeIR+h1BDHqvaf7v/6//s9h/ee/+lskNrP9OJbKqbcxjt73tFEYmYUJL+fTecHEdRzjtm8ODEBrgd1z24/tfluuLyTVI9i9nEqp5/f9dTgeHt+/f//5xx+kSCG83d5VB4tQqTGGlFp4pnMQPYbDP7z288JkB/im4w7gBu3bL18B4Meny+fnT8efvpnZmy2/K/XlmV7f3qQWsxxj3O+HlPW6rGPvkX5a1lCrpUhpjA/LFGUElaGdzEuRQG/rZeV8f71HhJQqT9WOfagjZ2E2xsxyqlXOZ6IYlq2JD1VIJUQSZDSPR4IXwTMZ0SxRCmY6yFClykhcl6YZR+/PjOFYhQ24z7M3AyQcagkHiDC2urTIWJdWRGqhPmwkj9ErRYa7+cisrSUhztElZrrhw24Cxk0QIJGEE9AjCYJKYUaPyEgEyHAkHuoskKPHnGPE6NsdpbZClJAok50uhZAIAcxDmITrhM8l8COvz+KBwowN1SI8brteyyrsX7/dPOn5p+X9tqm5OsxpEjKhBwI2xkQMc/UMiOgdM1mkVdrdYygICSEyRiYWBJRMUs8m0hpj0IoUoIosEoUYgNpSaqkQCMk9s0I5nU+1NmZuy1JYIrwUqaWylOenp2PfiRCJiZlYai3Nqlob/TAbUpgF3TwjPYOTAgCnyTpCVWXe3yhKmRXhCZFzsJlAc0XMj2C9m1NybeW8LpfTui4LlzIX4DGGMJXSMGGaOeZEUoe5G89DyoNDEDB3qO5SijMJUkACBPHsPopMmOMbZi5SahFAiF/yl6+/xjAA0GHmcL6szGJqQjTJEsdx1HUlplJRCp8vy4lXjFwqCxcEHqkUBABNSpgjh2Ak8jAzlqFjmN7e763JWqXU+vLp09tt3/b+05eXdVm6OZN8+fw53McxQPGbvyYGawEhz7BQYUTwTA9TC0mu5/VUKxPDYX9MzCrJzSzeVQ0ghVBqObfT8/Ll+fmHly8/D/V5alLTAAYkkmJjPG7KhMR0vO/fX79nxPm8hPbb/TVJw2BiXlGO6L9ChZ9eftfqudZ1qK6ZeqgOj9QqdV1XBoJggHRUQnAnDw5wd0tLBqdaCAwc1vrkNlhqJmS6qi2tMdMY+rirE6GsIu3c+r5vA44EL8zABYEoMCmkMDOCYRowFssoROkGc1kDmLwqgKQibTlZ6M2//+kXb6znp5+GFWF+RuLlVNol379xaCIDgEEOVxQJoAif7lUuhcLDdN8OrvUsUihukZGu7v04xlARaecrQYrI4dkDCOOu4cFlpjoyGFMhzTwANnW/baOPTy/Pz5dPo6uqAqIUHqOjlFYb+Ap2IDEhZYSKnM+X1k5mqqNDae10vpyXZV36/a3ftR87lnr0vikIYwCNoVQqzmG7mqeX1gBpDJNaL0uFMHfFlARkAAhVQlNl4iBGKSj1GGpmnFbbpR8DmRjAIiNpJisDkSZlDAIRkKkIzd3G0VUazbDOPGTW2vb7DedQvrZZ4WMR5F4Zvv7h9+L7r2/b221HZGIopbgbpSMAI2eCEHm42ThRqwsH0KmJexmq9307n+rl8iyGY7/b0NaaJ5tuPvbl5Xp64l//9A+g8vz5M4ZC+mnh77/+ctzevv7h73754z/+1d/899fz/9BKZEIRuVwvUqUSSIzuOsYBGeaxnptj7qMDkkXsvRPR8/WUVLjUr7/+ggFcl/thByhJoaEJ06IB99fXvFxaa3OrdRy9jwEAQlCYPDO5NkYML2lUy6+mXGqCgI3Re0oNO3755VeCfD6V07IIy7IshXmexmcYDRKJKAB8tk0DuzlkIDFS2ujhnoRg5kOJgEGm8uEeo+ttO5hRmAIAEWtpoSNCrVvXAKaFl+24jXFo9gjjMAGhUi001AMhwgKDiGe+GjE54bq8/PT882W9nM6XBCARms4UojALD2SsIHK9zq5jA5RahWeHF5fC8CD8TTyrw8THwvSDAxGZ+WPnGo+arbmlZBGcmSNiKTXCE6gWcrdZXDBM9ejDFADcHcImeywSu2/MbKrEjIimOrfX09heCApCYUQEIZw13EmIyJPuTETE0xiP/0niMAcMBYAORMBEjMBMRCgsUgoRL62kuc10vAUyhYXHzGCCYI0PRK2aswgjzWc/IIuUhAjzhGQiCk54EBcQ4WH+ZWbhjyJ5CiJJ/OinB8QHSZyIEoGIZ0/DHBQTMEoizl4IJCnhkfBAoOCk/oZPp5L7/5b7MPvpH6SgfETFENLjkU0AmFPsR6IKaRJHhdghzCfKOjPdHmYpxln4MBES7lMbBABC3HtQOgIy4el8krebuc+g0ySbznxC7zuE1iI5KV2tcBX3OhWlDJ+YqqE2pSV3sxHbfgBAQroHc1CSf5z85sHJI0x1qJobALBwEnqEQU4aNNKMzzICunmgz0J6TIpU4QqZQwckuvvEuboakkz26mzAQ+KKDRGnWsfMRya6Cz4aAGeVmwhn1ozo+w2AmAmJAjmhTMokIEZ4mkEYRYaTTyQ5EUaKUCYFoOosiS9zxPdBZ0JPu9/vtVZALLWdzqd936b+BZnmfvSxD6seMYZIESEwDo9wP1R37Xdhlplde6C+EJFJ3DUiM+yuxmpcKqkgHpFJEUQz1c08+VkIgFRLKUQTEOYJat4HHvvRj73WOrnvGfEgc0V6hLojkGoHj/DYGfdWLqd1XU5tWWtb5iFaTc189K4xAIkw1V2K1NrMvKs9zsABbqpqiIRTlSaaJ3UAFGECKMLu6e5O8lC0k4pULuD7HSI+vEJJCEA0T9Dhbu5m3o/+X6Ql/NP1X3X9uddnZpY84XDwgGsFAQSAPcADNCACLMANaoFPJ+A//z4Jvykg+QDd/O8rRFOBRQTORMcc2edi8CHx2KPeITweUg9keMQDkBkxS7vyw8cDv7mWAAAMf8P+wJ8HsuZ9d+Z8pxF+OmYREcERH0ssBiQ62MdP89tcgB71v4+fYvZBAiDxNAnNP56mToBZToB/ppYhTRjQhBkmoAWQZxIQAjMWQjFqZPeRdcvFdG/N1/MTgjDKupR+3yrlrvnRSm6qelkrY66N/vHv/v3Y33/86afz6dRf37725Xy6ghtiXNbqEdv+9nz64fkkmjgshydKqXJWs/t2AISNg+tSayOmdHJ36wOJ10KY2WpTx9vt/XS+PD093d5eex8wTKTUWqU1tziOAwBOld2inpa3bbRSt2Owate/l/q0vd/6fuf4+fKXn6tIILalvm36/PkncH250h9f9y3jFn4cowmEQx8GhFIXAK6lpjuB9zGqSLgRoblh+Hq5UK3EdL4AE4QaMU5gDIoUsPP16gmQubSmx7aushTcCIoUJ9rv+9qktiaUmdC71tMqJMbiZo0hQSBSEJcq1+ulm4MrQYIwh3brXLgwedLeByCINHb1wGEJXElS2COdmdkhCIY6lVZAE0lj5gwfFSdzNyFCSDKR5Eg4txRTtrfICfZHImRmAAQSpD66EzUhQoTwVosDeIBCMoYQZDgECpeArEg2RjBDwlqoiuxdkaiwpNs2IgGZ+Fw5uRKB7bdCASDb3lurTNQW9ERAhkwmrqUwEyAZIKGnDgtMwOphiLWVkcFMhVNdwroFcCsMmBTEyGBpcTqdLst6Wpf7dg8ELMTEIi0C+t7TUpY6T9dzA41EfT9UbYxOLEtr+7bNEpAH0JGo1nLK1cMcQn2wIIm4+mS118rErJqmwYSOs0E1iIB4EqMzPKdiG5EWlikMlJFgKCStlNlYnNN0M53emeYhHEDhqkhcWjVzNYXMNCSErl1KIOBUg3xuLyyz1AJs7hwJgGr6AAgTExOvXGuTUuZ+9tvrt1IK7vvR+7Ed58up1DIjRADJDPVUa3WKrIXPZa1Y3/ebkBAVC9tUIaJBRUTA9DARAXjMOM2096NIud91XZalNUZohd/uxz/84U8/fX5m4TFGQn5+fnH7q3F08/F63MPKNAUTZRUugpCmSgOFhE/XU++553c1s9A9tI0dACMHkZ2W1mIBEJLKBY+hEUBMpdQxjnAHlLkE2GN/nIxUWut9P/rW+33f3iw2FtcI1UGS5/p0kZefrj8uy1UdVS0ii5RTPe92g4z1vDBRWlCDIgyR3ikcPBIXlJHshFjIyjSMzC2L0fx1oRAx07q0+7b33mf4sbLUWp6ul6GXruMYu6pxmViTBI5SpYhQkXEoRJpZqQH0gYojQoSMAEQpZf28eKppv8P4w+svn7FcLj9wWYbFbR8ldhuHlIrErVaEHDoQoCDQ6ZIJqbvrICRLBCY3327v7rb1cVratu373onwy48/5nDre++9eyIXgHQgZLDETKDQcB/m7iZSSjvVyulDxzi2bV1Xv1w6k7v1bXg4Zyzni27vaUckZnghIACAKCIIAKWuSy2ES63n0+/+7ff/VYiYedu3UgoxeWagQEITJsgxPDzTvZbaUQVBpDDiuqyqmkAsYqbjODwS1yLcfI58wkst4DPSOU9VIFIyDAAIkRkZpLAgxjxZReayrkSUGaMPESm1eXggtmU5tls/OokgcWsLIQ3zTQMmGQ3AgJcq5iGErTBU3ruF6QyUsHA/bN+PtQqXGhDE8nQthowk79u4PNHTyyc7X+nbH2/bUavYgffbW7l+LsulLee14LKsHJyZw7wK77c3tyMBwrUtTUC321sfSsQQyYUKPlj9/f5+Ol9JKhPvx44kS23r0ph4OT8jwtEHRFQRFrFh4SHCXDjcdXQkLEKpfXffex/9CBsIwQQiUoSX1t53bQyLcIaDjXB1M6qllhoJXBpmDrfb69dzeSqXtZRWiD8s2wBIkEBMkBBmmYmAERZTNXfzfrg5IMQYbgNZIklVicgjrPf7drehpTIBREBksgiW03A1tQRyALVBWcx8tu1IGYjqIzzVHCzds9e2IuFAJECR+uPn3zWUpbQm5b7367mcr0/HvgNAhge4zD6jTHuUdTgkMAIzQzgS8PQws7ibPozkkRHIQB/8YDNLnC4YYmEwcLOH7JEREX9GlERgqKXYGP7xYnPtERO8bl1NSgNIi3T3UmtmziDwbGSfqeQBweCCgDg9HM4sBASQOXPRiQBZpniPgESTx5+P/S2ig35swT9KFXmeY6vwbFow82nTmGsrEup9A0QfI8y8dyJEmFAhJqLSlloKS4WMTA/EDAdAEnRzYQnTDGSW6bxHACky9wA5C9RxdpNNP4ZEuAi7z4eJSMjMGRmUE82tYLPqZYaGMnJmFGBagYBtPhEfyyQiBiVGRgQwZmZyupqbwUMiekR5I/wxMkZAgMJ8uVxLKTBB2BHuD65ERJqZmZrHGGqmy7IiQmU4LXUGkGsttgcxPQhJIvkg+8zCYEOEsNzDMT0ziMndMwyJRESKDNW+HZ1Z3d9uO9F0VKPHJJ7OrNeDehoR6u5hHoEIGQAOCcSIRcrHIQdzyo6ZAZEAZkaISNhKPfYtzBCFURIT0itJqU1Ewt0siGLS9aao8YhmQCLio/h1fpIHIrZWEXCM7hGmIyJKWwjRVT2jI1YmwUB3MJ+putKaDWVMAQzAyEgIAJw+O5H2UcMQMIvMjw7ISCClXc4XQty2LcLC/f1+u97v9fm6LjXCzcI8HMnUdIw0VXcJHJEYLqVAxiSfI2BAqoUFsPkKWHJGQEHDM1NElvUkwhmBOB1JhDS/dBpmAGmdOT40C0immYdPHd3MWUSmy+6RLyHATDNT9xqAQAhm2o8+edsT9MMkSFzbUloTlgAlDzXPdEIQKddrnRqTDQ2itJFIJII07xk5K1s8vAjP91WSAIRajmOfFnpEYJpYbkFCNTPVPmw7jv9PxYt/uv4rr/wQaI7ItwN7T/OMBAYogj5gqYmI+5G7xrAP2QXzVIsW4pJ/9s0QHiaX2arz/yQ/lv935v7lybUkvfbEvqf73htAxDknM+tBFptqqaU7lKknMmmgQU800D+rqcw0kUwzadKyNlnfflw2u8liFSszTzwA7O3u30MDRySTVeQVpXuvtTA4dgKBQAAIYG/39a31W5B43aHZB4vdH6Tn8FmenlPoyY929omdN3Pznwg8PwlA/7BegPzHv+mh/vzDV/7QcB7NAI+rIR/C8xSOH4fq2a+NgPBArf8UGXucq6cHF2aZbGQ+isoS4INbN7dU0/75QAvPKSjSzJVYQAAIAQY4gayStF2wZWsWzO+32ziudTlFsLsXYYrW82F5TUjKOG365fOn7XRGpGH2+z98/Ytvjv/kN18SbMD13Y9tWwXD9n17fiLWP3w9KPbUbQSdljMIN8/b+7UdO4L37tLupazEUBAZYIyBGNtWM5OY3+8NEG9hy7INiz3EPYnCxhDio9vRD7xsq4pbTE6hLqf3vQ+PcxyUvpRs1x++vsinz5/+8MMfxtt91HN+/UNlrUq//MXl779/eb3t/dau94PCEMEd/MgjBCOCVTPFdq3PmQzZEhBhsk4LC3u7yzzIjoEkzAEZ+7BF67Zq72O2UgkFMslaiNgT3ikB6LTW8ABKyFyLUMG9s43GaSgkIEoZwwicIq0f1g6pa1lXoXi5NlFJRwZHFGK2fvTArBAWnjNE0yEGuWmpwYU5GaI5NvMEQOIWIRiAJEKAUIUZsY9RRMwsMhFn5it8RBLNfizPLKIhHAMFId0twwxrFaaPMrEIM1OmImSISlIoD8rbPrQwREZ4YjKkeZg5EgdipB2h51U5h4+mIn1i5pgQYr7NmUkJEFEFmQiIGVMcO+HIgRkIAcgqyGt1622kZbIWJvYwyPRj349+lFq0oLKqnpVOl/V2vd9HS42eO7FASWbKlvbIdEV4iAgCvLy+3ffjcjnPV6n33vZjfuhYpJQM96KlqHoYYAgT0UQwOyTPwW24eQQFEUMEPmzdGeFOTATkARERhhBhvaXhWhYWUKZp9p3oPmJFFhVVVZpHQsKIbN1KKYg0XYWAsLBMMBASYYZb9tEBoPdRaxWVsDlseWwD5oOex5HLdhbip/P5aAcAtNb/zV//d7f9bn0APXzpzLg+nZYShBNkAcMheVSSYSOJAZiJXtpth37REyYe+66iiBIZe2/rsjyd123dgOR2v0dEpEPmeVuOMX7/48uX50tRHa1D1W8+fcm/DPpb5he897fhB3KoaCnKzBx6tGg40vO4vXd/P+D9etz6cJIcw4rWsvBaLwRlDNh7fmb14PA+R7QJgMgRieQ2+nzn+7CAFMaqPJZtjHa7vrxffzS4CVWPRKDL8vyr5z//5unbpW7N0o4+xgBIJt7WE/KvDO40dy+5iwsIebcY4pEWRhqyJBpmIllFZMARmbt1RlbKyZchQIRcq2Dm0TukQwZhCkLZtjXqsK31/jjVhXs4Iy+8EFPhxzA83AAowhKAiOYWkcxGBqCpIgLb8O/ff3i5vv/i8/W7L3/mHvcB26IF/dOnJxXeb9a6kWgP/Lvf//7y/EVVaFmP1lVLILpHRtx38wz3uLeRmXOjVt+vtZS00Zsxi2px9wT08MzM4O5tMjABA0WXupy3wq4A+X5v5pmJupw4wW/fR8S9jctlhXoCO3Jaa9Pv7y/Y1tN2jvBCADFefnwZo58vl/1+/3TZ3Ib1jgrhwCzTf56MBCAiI60dhzAWESFCWYhxK/V2fR9mrXePWIWFgFgDEtyIAec2D32MAUjEgukkMoZnQhu9OKEoC5tlIgEReMzQRHhISZp6ukettd2uYxjVWphhDJ77VXdIGD5WTlhWmhq4WVVdlYEQxazLsMGJ4k5It+7n5HDx0ZdtQyRLvHUzdyzr+emZgOx4s2F2tObx9X3P5cflIqfnXzDs5nHaVkHc73s8P6nQvt/Pl8vl6fl0PrXb2+v7e+tDFl3XRev68vbqjnVZsF2LijDdj7at2/vbezv2y+m0bSdk6ft13O+tdUBmBy26H/ueAUjgjgSMSkrDxvvb+xjDzAomMBapy3p6upwicr/v14ityGXTGP2+39uwqlDWDZFKKaL15fUrRC9LrYvMziGESbJgIETiOSWeaSCaiZ1HosnCDBDDuvUDCQkTEDPRE6xbb50RgVkeBFJAkASdJHjAhHT33Me95VGWU9xpDHdDKAwJOUBEKbXIhYWKnBDBMj5fPv/i869Wlowgnq1DITIN1pQ5G6lQBAEJmfq+E3PVApDhY6JjhCcmdkoWc6WMM9sS5lx06gQZNpePPy1Yh40Ih3RwJ5xZIZreD8S00cxs9J4RRcTdPK1PHgdERGJE9N1jDHPPZCkAMMzgUeIOjEgQTDSR20jMIlMfMRse4O6jHQNxWpDm65qTpIA0jUWEgADEiEjTuRMZ9wSahEWiyXaKmOJFMjPkzGmBjYHpmTCRT0SM97Yt5Xy+MKKPzszECpk2esweP+LMCB/y6CECygwPgBg+O6cSKMMdEoEiI5iIkCIcCWG6cgjBk4kiYZL7HnPbSSxGDPcAFBGPzBzTbQRMH3oHACEJU4C5ERITOc2NeXg4Ao4xps1p7lREmFlPp0sta3iIlgibexIb1lprRxvDPLO1drvdnp+fnp+ekfgRsxFeqt6PRkCJkJBEQJNdmgD+CK9lZmudIInRfXQLCGdmnkMnSGJkRgBaaolEEcFH4fEcxX8EKB5dyxCzDgcTHBiFRRcpqgKYkdBtmBkCGGDSHPXjcKulWh9ukQ5EOc1KmIDEKkLEMKUcd2EiJBVJwDGGu2XkIzE392BmkPBIUCDM5zIAupuP1txmfN4jexISZGTzADRlDjOA1LpAeB43S4KHrEL+0N6mawE9QhO01Mz0iKJl1Dqs04GzLO/Y9+vtqipKyIg+t3OYno4ZxBwf+0PP2PfDIxiR5dFuHAQZwxIsYamVIN299zQbx9HWYUSEJFIUWndPSsd0BHKiSIjw1pqbuVlEAuKyLNtSEIAR0g2mUZOJmUVZWGYNnkdGjNG7jTG70oQZkBApEQEpE8weYU8iIsLwcHMQKFoe709zsyEswgIIzOQW7jbf4b0fWsqyrErsEZihRW0wJE3TX++DCZgoI819eHSzY///XwdQ/sk1/z/Tb/5HvPxDdOtnXwLA25HXA/ZmfZh5EMJSJj+PRsfMfGDPu88dKCH23n98E9UpZwARbAqQ0A0iEhGEsQgA/WSZmTYZgMRweD/83uKw6PZw/cyzvEfOJMTE/QDkh+ATEWnh5p6PYPNHvAt+Qi5PLfcD+zMnJfGw3CBA/ISIm29t/IfXQhiXKkXVPPrwibuVmVtmYqLJwsd5CoN5gnmo07OG24YnAuT0jT7QIT/9oulUnc7ZuWaAzEDwOT4J8MwAkKIlIJZP3+oPP/a+i5SRYLdrACsRiProBFYFfeBSC6Q9Pz99/vxFREnraPfex8ttHPrtd0/LIlnX29/+/kcm+nT5ZivL2/vr99erA/M41vPTQGaskA2Qrd0zsygVhNEbEXFVR3FGM9Oi27Zhohl8fb2d1+pYvvn2u2vz0d289d5H7D4GJby9vpfPZ0XcW2cRcONMSFTCnmCGu3X/ww9/+ZfndVtjjP16f3vfT+eNEbRkiDCJ1I2IkzQgzfdAEsHDgtJAREnTXZmVKIlLKYIoykvB9bKEDcMMJAAilRgHIR2WPDLyEX/v5uEEmcgsGOfT0p2LStAws1qEMphIlNayjtZYxI8rImdgLXXdxvH+fn99/fRdractKW+3NmHkzVNX7s0mVCTMEiCjW3NmyURC5FIRSaHfPCXdAUWrUPpwQ7Rh4RbmhVgQkyDCs9+BlEqZ2JEkDLOIEZaYQWVuZgjCx7EnKxJHYmHBOVqEBKI+TJgNvSgOAACuFRkzkLuDJSQQIIjM8c1MKmI3p7ETwecz2x293QdaAhdlABJlBQBM60kiiEAopAwTgeUjk4fnSFSm4aWjT7j2sGzXe+ttGKAuRhtCo2QE3lYFAmR9//73/biikGqVtXKU5v3l6/dpQ0u9XW9u/Xze1qXu+/Hy8hoRZv76+irCQIiMHIaYszkMCUXZLD2chLRIwUSEMEJAUiRKTMjAOb1iCJ/en7lnToiBowVmKlQtRViIUIuIFmEhnmMXFtGA9JyFsEQJ7j6naYjIjIT8iL7P2pSHyZCEefp85rLLMxyxqM6VySTfuPu0my/LsizLF/oyhSkt+lf/w1+/X9+P/YhMViLNddFV4GiClC4lGAvTRiKIFh4ZCFRLbf1479eVFoBsvYvEY2vtjZOWWhMJYHUbGeS9EcbzeevdHoY1gPT0jPN6+otf/QbQ/+7Htvcbc5ZygcjZ7NgyB7bosR/XEfcQjEYIVLjUskjxIoVIh/sAX+PTfm+LmPKR04M6LDPcjUERkRjBZo8tRiYzL1VaK6Pt+/Fyerp8On8rVJdlOa+n7775xVq3SPTWSyARjd5YZFFlIrPqLTmJShJjjLQBYZmQYOG74QZECN5HSMEtDIASMSLDCXrwsmAgCKmyykkIoduADDfreBSsy7KqxFKKRbh7H2P04REQQELCTHVpY8zNw7RSXs6bMlt4H91LrFwQEyEQE4kc/Pvvf9vu10+fvn16/navjwTi6fy0rlvrgxIJsR3N48dSy1KXslWzmfWH7bT13rwNEXgklRmZ+OvXl21dtm3tLEpSl/V2v7sHE2UCEh5DzEdEkCxStmXRKkKKmO5mL/sOSOfzqZS6Lsvb7Xbcbvt+MEYBfGwhkIJUyxKQ5lbcem/HcR9tj75nPwDPRInp7gNJhVASnSkigcS9R7iqIhGJChFrBXBELMLdUhiZ0TKiN6xBwpA5xkBms27us8ARiRgZENLDEoZZUpTzswMewxZld08zhDUhw23iQ1pr4c5FHVLK4oCsUhGDWNy4WyLgQGRirVpqjAJHW9e1LsXGqNirlna/oTUsMhwsAUSXuuL5gpm9dcqwPrZ1hQjwY1gIkxTN+90TPfnv//77J8PL03My+v36+fSNCC8fI5AIL8jbtvVj34+jW1jg0+m0LFtv1vej9/7pm2+enz+FWR8jIxFy9KMfbVnX0+ViHtYbFg3ANkyOuxM1C7fRW0NIJj5/2tIDgDK8u5k5JqzrRizffvP56emyLmpuozd0Ptflfr91z7pt23a6nM+Z2fo49jtkfHr+/PTpu/PzOR9BekxgQBKtSDxG98lLRvqZp/rhyMj0MJuCESKqciTYMOud0oXRgQHAWwec+aPu7oGZ6elhZuaeEERMVBAX4o2weBomccLny3dKmhGn85lZROVyvpzWkzL7GDMzbaObkQoi0ugGgAHTKj9m3VOpqxKkdUfMaYMh8NGRmR6AWU4BEpneDx8Dp5jwCIVhRkRA5KQgZJgzASIho9uwo7Uxbm+vrR3DDBNU5XI5Q/pxNNjvWIBFAB+sYuudCcfRbfSIPI4+rbK1VBCayWdmmUltJhKRcItAgCRiN3c3iEB0EvF4sBmQZoIJGT/++5i/YkIi0vjJHvuxAZnGnNmEgI8ljT9KW3wkIKIjmo0xxtjWtYh4pNBssEYAmhCiKRtO5MqEfzKRu4lK5uwZI0eO9Om+cXcblhAixWPCPnOMXmoFIBF5GHwQWWQmvgMDM/PRVQ9IlAE+69BnIWDyYy48rTCEohIPhjROu7G5R+RD0CNilrospSgxAmlmByDIGGMcRxtmY4w++r4f99tt/vz5tOJpW7ey1GXRAhEjDHGSF10IAIFIiAtERHh6eJinZyY4jLBFFiIaZpHOTA8DEUBVbcPNjIQxaVqQIsDT3R4hjYScMGYhOi9nFa5lQmF4FnQI8w7Nhk02a0KqKBMBoA8noEXVzVs73JNwooTxg6wc7n1AfnzYcabjmVlQZzxrvoYJ+eiSS4gMRhJhSJ3EqwgPsJnvSGEA9ASMsD4yEyH3IyHceo9EB2CSaVebBfRA+PAX0sGixJxJQDHcrterx2MlB4jHcX97Z0RQZmJJEhFFRGH6aXcKgAyYGJ7Z3ekDaE88SxIhE/vwolKVJ4igefz49UUYSdcyc6OQhYRzfOS/+r7f31/f51bSIgFp33ehPK0rQKaZz24vgEhqbs0sM2stCDFzdKIiKvOzOfqoqkRMoiICmb13BIyIWbk7h2+RMcU1rtJ6b8P6MBEOhIzAhForIZp5ZphHjkEeKhKPYN1HSse9j/CpKCfMNe2+7/8O4sa/58s/ht78e7iff/e7+nd5DA+vC37kpD4eSiTcG+wtx7AxfBKXiWgm4NNjQALAsJg8HkBkIqZEwD7GGDnvRAh7ocIkQluZS0UAgBhTDAGAdINh2cybR/fsBsPDPDNm7UnObpBHACzC84Gum1Lm9AJ9uG8eXpv48P48wECzcx3+oeTr4c+ch1ucO1JEBGFgJo/weEDNiwoTmU2V9pF4ZiZCAYSIxxzm447/4ZWNzLT08IxMBCZGovkYiB9lYsw8Jyk/IaXTPcMzwTIwACEtQGD7rON2u77s3QFFAJw4cSVrszMUiDAjw4lRGU9fnp+fPyFCQuQ4iggD6LLuw146w27XJsPxaONyPg3wylnX8z7AEd7vvS6I3XzYfW/3FgD0/PnT59N2jPHD13cfJusCnutpK8u2tzFGVIxjmBAvVffhny8bMb9d33/4auZpmYoZiV9f3rfCwOV6u2GCJ356Os9G5HU9xX4PlOvL98/nlbb65eSG5a9/94MuC9xef3x7N7NS1iKciLfWMjJG//Lli9QSHtEH8cKQt/eXWmuqEOFtbzViparMAT5GB9JpGLJ7iMrsg00kQt29pwdkWCS5FQGuqiTzTGRuROKz+BGxSNaFzawslQA9CYg/faLf3fff/v77JF1PKzIXpuvwYAFiG45gZdu8HeuipQiV5b4fgTgitVRhAinekwu636twrUrpI6IPR5goYCKERCiEtzF6kk5jJ+Wq2j3cEoFEAIEIyAEgPCIOgyIfOkQtYYbDEJkBRLQuyhHM4A7IBAGsoiLdjAaRoPUePg8Zbo600LHvtt83pd3Ly9cfT0HUTFWjsKoUrg+nG4CPFr3RelZV9z47JBMRYoTVoSUkt4LM6JB9XKEsl8vzHPdtVX/74++hZg4PNyRiodNl7dd3iyOGMY6iy3rSymTHPW0w+BxSROS2rTrs9XoTpj7s/XojluHDckcM5TUiJiKeFWeXB00yKAQEsJCQTnBdOCb5dH8/TlozPuoQBumprGvdlBUgp521iIgKZBAJiyAxopjnbLMZEQlZS4nMo3UVQYrMnLs1SIh0YtJSmBkRRCQjLZIIPXxvPd1rLarASJk852djDH4oWxzh67J99/kbZXnlt/v9FmZSiEdkEkSGMCEKMyMbArGaG6AQIgMJqZt174zkmeRmEEDq3oXx6Me6rKeqLhzuLjRGT+utHX2wLysS5QcjYKv1N7/4i8j4+v59ZmtH8xaQIrwZJ5COtOb3Y98Dh43OZVm3kxZyj6Pfh3XlUni1aEd7C/90vQUCIXImeQARAGatdbSGSKwc49HbWEtZS1kr/+KbL9989+tSzqrr50+ftu201iXMex+qgIjQIaaTex+eg1z5vnJVSjR4G7PQgjKmMo+AQICQnMP3CIuWzHQ+n1g5DMKhd4g0nxQHwiIYSRER1pMgnG0MZkaeFAsiAHoseX3Wv6mqCEXk3o+jNfCw0UXvkHH3/vnbT0QZj2MSkqT18X5/u9+vwwYJLPUX7vj6dvXAUss8yyNCmgWXNjLRF4ZCGKV4bxmemSo8ocSIWIWLyo+v12Hj7XqLhKUuc5eSMTwCkPbW9+NgCNJ1qbpu9VSVMH2/Xd/elmVpHkC81gKUtRA3WR6D3HAU9z6Sy6fP931EYj92Zi4MvQ0kZkbwTmBjjKK8FnrvHomYykxoCW6ZpKW0oxUW0TL5lCxMCHF73W+7J6HIg4YAMEZXqsgckDlLTxLWtRLB6B1rUQCC7P1AIohwt96n9USsHdlusazANHqfSMsZwznaME8tlQFICABF1QZloo3BWlEYkVgoI5U6ILU5yWYldoLUsrhFcSSMtagooEg7dkA0BzNTVSH042jHDZCKVsgURuQCkKPd316cRU5Leb9dT8sC6WCjUDJmEPTj/vXHH477ex/j/PS0rpcA8nApNT1EytPnZwZ4fXn58YfvuxCzMHNVdRuitSxL652YfLT3MGGJWRcJyUSAcNyv1+tdRIZ7az0zl+2ynU6lyOX505fLGhA2Oufox/23v32xvofn89PT5fL06fOzJ7y9fD0E1/Xz6XTpvb++H6KFaO69kesCJG7DzcboIgJE6QAQE6QyL+EDCDDpYwKYiGCjp3dKm6Xu1ntmEpJ7Nw9iCcCB2bLvj+lC8QzVBaOs29Naz6HWjkOZFpRFlIg2XerlUosULUUlAFV1Fm+aGyIIS0TMoaOHIxUShXRdNsAJ4/BAZoQM78MAUXhhFgQkkfSJCUZgmRBAwkf7NtCkKZt13/ddVBixqKDObbPf99v72+txtD4GAWrR0/lp22qGibAWtSn2h6f7XOlPnjQnOMW2Vo+AhEeSBZwIakIpy7quc1WNAELkCJAphSDF3QDJw6cKMkU6e5BxSISZmKZk8jFJcvcP4Obk38E0A001Nh4eQ3/gRdzjESlKIrExxrB1qetSkRghpj0B4IPTkDGXDZmQ4RkOCcI0HCBCSkWwab6ZHInIKWonM6bHdDjaGKJTZwdze9ipf9pOkGTEXCQIUXCGA6qCWUaG26ORDAAACMnT3H/iVjxQpjPJOFFQ69OzlAWJSqkBPHonlhhm/bDRxxjtaEdrEVHroqKqsq1rWVYpBQFOp+3zp6ejm2d4uscRZgwgVBnSR/TeMsKjBzgxcCLMGQJkMgIhBkICRBJiEfbINi0ZMQBppr/mXzAizeMn3raIPG0b8wPYzkyZOf3Xp+V04AE5JfFBSIkYbpAgJKrlbnci9tFjRuoIIdPCVOsDpw2ePqaspqUQy+xOjcfnAnP6VuZIYB7qM4lQUGJKdOEzbjcMICexJt2t0gIAs58+PDLDzPOh8sBMfpVSmCnMR2v3hOJLeBHC/b7fbzci7H22cUHvg+iemYTIoqUuzCzM7mARhJhmzR0BYpoDiEWVp/oWjnNS+mBIiSh5ghRA4oR835tfb0xcShWRpdbCmJBHO1o77rf7lCd5pjHhsUFOJGESZc4KAEEaNFuA093np/LR0ae673f3sGGZqTQfBqiwZxx7M7fZdFmEE3KW45VCFmE2ImaO3mgQ7jsCsDDOuGimR0yhkImWpY6+H8cRHggYPoYHEJVlQYthw/qY8MF/Qrb4pzEyf3ybf/fLP6fUxMc1+fHr8F/wS//Ia/M/7iUBLKEDTDglONBPqrxntwdxTClFEZIRQShnGSFOVwtkEeDpZZnBJgTIdE/LQABVPVepdVZagRscZsMzAoanx5RD0TPd0zMjJmgD5yyAZol0BkQABGAQJT3IapgZ7hgAFBAA9IFWnonCCXKe+e4PyfXhmZ0oQQIkRhUGeGB7mJCFCbAZeKSIrGuppUSAkT3oY5PZRoT5yKNN6y4A5Az7Akz0z6OrPqdJl1hVWAB8cmhn/RczsQqJTlF1xt4ycNqccBpdCcXlZP0QtJPCWx+1KDE4lpf3YenhkAmJmEiRzsJrLYSRpO5JnEUQdEEpzPp23b++3e/Xl/fXr5+ezz++3iv7cACRTWV6rXx0RLjdu/e7lHK5nE/nC3Ap6t+R3PeW7QCAU13B7dj3tUipMhCOY0cwJvzd766n85YwC9io1HLsN0YcfXw9jm1p6XBYBuDRyuf1tF6eezuWZXl/f5U8tfv7cn6qWr751Tf/s6cvv/vbv91bnJZ6PwiYRoQyM7E7nAr84vMl9NTu77sbM3NZqEcRcmER7CNgHEfjIoS8qpbXtysTigumVVZm4BhV4D7cI2opQhmJ3SJysAOkBzMAMJF71jIbxGcLJBYiLoJBid0BEPzpcvqhHe+329sPf9i2VYU2t4MZAmJyH/sQwUKmROakosNtFawFC45E2kVAixJ6GDKCY41R13rvybxmYrj3MRYV6gnICAijI7EsGpGFwUmIeZKEPXJRue9jJiYIANI0zJjMEQGfFiWCANCZaETYLZa1KiFDVEJd+f3tHkiRkOPoFlqX0TuGm5lr5fXy6RtalgVlMm6cEIwgSYhAuPRuIAu434cbEHFJgtt9jzGWkxaBqpyZQJgWrHri2Syg7u4j970v5aClQqSFHz6IuNTTvr8F2JzTVzmVrVBhdvbhkXm978fRRGR6/9Z1zf14eX1trS/bErhjsuiOiOYG7MxkEG5ZmIATnZFTlS1GAmWCPwLgkYnhjJgGiUDgCIlFdZGqIsQ4AWTElBCMwMK1rqwlkiKxFGHmIhruvXdEVJbIdA8BNhvmTvQImGYAKwo/qhAC0mxCfFgYx4TdBACnMAPQMAs3QvLwaac/bQt8/kJI+3GYNEvIEDfMiJEQELD3A4Q1V5UedrSmS8bE4IIH2AjPUBs+MgiAudYinmjmkFCqzpXgGPh2vUF4P3Yty7COyJCoVWpZIuxyefpXy7/6/Q+fXm+vLy/f/+H1+/1qn788rZcnSrRorR/7sTt0A2OM+w7cM9K0QOQqvJRyIqrn52c3A2aEJEJRBViQCCB95vWIH0f0AMgIh2Wpn775toHW9VT0VMuCoCI1HCLnfJiQWFhcBjiM7CiudbMRPXaP7iMgUVWQ0M1RARRZcYyROYgZE90jPYjPWhbH4IUJiJkgPSEtUkupSMexpydBmdiUEJlUC8wURgLNgu4xzAAiPJiICSKkqO/e2tHjdgDh+ZulrBIe7jltOBCYHuWsGPH1/rv73972dv32m19eADLhlGdRWU5nIsCw8/Z0eL6+v72O/WmttSqXMisR1qKtjW4DkNvu+30OXTLCkCQgw01UMSOajXHc3m8Itl0uSVqEFg6CVKHX99t+3zPdPC9rwfaeVIusT5fL69t7v92JMHUlALJh5sTcjzuP/fL5m8O8apZST6eNwzzyfr93VQIEgAkz72YZsDJ5ZJjhzGStqqqekOG3Y6duM93tETqdj1LCzTrU9VSU2n4gIScABDhWFRLJyLKeYr8xCwEwYdoA5MxQVc5FmZoN6werejdB6AnRe/qotSYyIABLO5oQAiOhiurE9LrDdHxkxiTSCaN3swApVdGWYcS6bKtbgB0ZVuqCUurSaFpxEaks5/MJ9wO+/56gr4WWdU2SYdm7h90hx9HHykAxLLJup+ttv72/eN/LdiaicBeVDHeLbTvtiKrTc8H1dObrbQRSPWtiYWEWlrJsuB/HUuu1t/v1qEsBwOlPnAllMx9mx3EMdxuDpWzbWmqpdVmWExK/vb4BCacJjB9e3n7x5fkX3z231lVAwDFsEf7222+kVEu83+/H/SrracZcLQBIPcKGtXZMycCG+zR0W0cAzABCCkxiUgWADLPejqP7GDY6I85pGauSltGbN5s/leQW4/CD5xqLpei2ffqUlrUUBB5mY2mQzkB13U6nk9alnE6YUVTnzsvNmSkhAWnSgDFjblCRpdRVGCnTPMYYHRCIIRMS+tFUuCw1Hiam4NlAhABIPgY+Ai9zD/tADyQkMZnZ/b5PjoYyqTK4Hcex70frQ5hKqafTed1WKcrJCIFIg6OPbsP7sHADQBFmICb0zLkDBMCcHNwIQGy9uxkRlVpIFJiGGbt75sxDucN0OLpZuDPhnLhGJmL6GAEDp7wQwSwsjB+ybHyINoyETABJs48PEgDdY6JhM2cCKSH7EB6j99b2Q2dQkUVncCw/ylYep6ejHbf3KVKoargj8+hHhnuAJ02SjFDcW1TVWpeco8Egj+QIM5iKmJnFzB4CAYLFQCQEEOaY7XQQiKAi0y+TGY+NCX6EGaefhSl9NsoDi+TcHhOUdWNRIJ4xtIjMGL0d1nuYIeRSdV0W4sdlWeqyLKXWCX48nc91Wd5v+9e3169vX0fcE4Yy1SXCR1iOYQAxfHjM+H9R4pEDAh08MgAxMxiQEpCQmdBimEXAbLTzsBnpQwAm0qJzA5MJR7fzSZlImD3T3NwdkU7rWUVH7+uyHMe+9yMz0nN2t7nZ9C+zCCKpqLl7JLEgIguHRc4ytek6iXR3ImKRGeFgoojkWX9GSYQzguqWs2yZmad7bl4fmeDo0Cc9CpESQkQhJx6oW7ioRkJ4AOGAZBEPiwh3y3DvjZj2/f4wF5mpCDO5u5kjYWSmW7YDERDZfSBxLQpI7WhIFBE8p7cf2Sp4wEhQq6oUVh2AjskCM6UFkDa8p/UxRMswK6pM0I6jtTYRdTStVW6ZScTmsbehwosyqzAzkwDRzEjaGCwqpapymLXR54lYmMIsEQjRbECHMcYwn0eyua8N9/v9zky1flqW+uMPN3hoA5iQ4YEAIjLPC5NdVUqty8rCTNgiX16vbiPCI7KWcjqfllpl43mQv91v4/inHUD/Fhnlp8jev/wH/yXSzLzb+LjZTzf+oy//P17yZ//Sv/in/r1fEsAQ9oTRIQwggBIIcnpoJ44AMorQZLYQAiF8cG8gE5gJgOcf3DN9FuBMJ0wkEQlBEcDMsNi73Ue0ERYzdYXxMwVtkpgRk5GR0fwxLzGPhGBGJp5xYv4pzhU+zLinIQjlcAJz8HnQfyTAEEBnABYej/zR6vgYx0qtkkgQ8VCwHu42JGYtKqUiko0hTBFJM9b1ALnaI6QGyCIPIqGD+cPkNFseP17rdA9CL3MZhdOxNN0DmRn0cBdGTNZRAjOL8GPdf1iU8lQ0Nh7bOQHJx/H1bc9IQPrItVGmRYCUlVTDAzEIEhJY1lrX7fwkrD++vry/v/f9amP87nd/uD2dvn2+SKlVSVgS5f7+isz3NgIzEmvVdbuU5WyBCW551NOn9/eX0dv7YX/2SUaAimDV541b87YfIpSIb2/vRNEOIwSJdtm2tu9YND3NId0UadkWhNCilfLFoo2DWFrvbnjEPWF31D/7zW9+8x/9R68vP462v93t9f3abods5cvT+frWl+0Lbl98pNZ1nntUl/UU7iHcGXLdVikVVJEgkDx5mAF45iiUBQNIWwwbSBgekeFJvG2bvV1Fa0YQACHVIpXBPS0hI1ULK40++hgXFaAkZmHrh6+L/uoX3xx9vP74lQjM4gAV0VnmNSIIklAYwYc5lrm/SAQhZK5AumBk2w1SeOawA0rlpSRlH0AYzGCOgimqbB2sISHKMjys90wQVSTk9BFZKJQwEpAA2y2swlJHJljHCCJ0gH1vhrwwFOFmfr0fa2EhyN4DJZJ1WY79IGIoq5IRTGwdL+tpNwfBdtzqtqnqGK6cBO7dgkpdVyTSqvMjkHVdKdJsEJVlzVLSHWJgUOvBAoig4H00d0RWR8GIEfb69t57Z0ZLe+9XLEVKJVazBplu2bODwmwbLUUh83a7H62JOxGq6lwr0OD9OO7HfZayEnOpIgVJHsiunPN4ZKAkgcTHbI8wETw9I9CnUUgelR8RSUSFihYBSAJk4XVdTtsmBMt2Ri5l2YjVPbrZsChamYVZiDnCZ1xqmkQieTaKdessnGkARYuOMe6322wDQSR3r3WpywqzuDBoTorpAQZMyEBkJjpt56XWddv66P/m9jKJbD1aN2SsBDw8Dhr9sKZxOp2F1JsRsYNHeveDPEdIjMxMZUYWTzmGye2KYb0vU78oZfnuF7+kjFkkNMw9ApCXUlnEhplbLeUvij7fPj1tzyrLb+G/HXzjUBk6+nuQo2JRWaSMYf24MSMA+FCEAdLBdroOyj9s276tz7UumUM8WUpvu6hg5gPWHeH+cBcjAoumcgzNIEJWqQDYmyF4uhPRnMICYAAOt+7ttBZAowu2txZ4eBgGBwSTkqYAgyYRuI8IL6VAQjAUKb31ADqdz0IirKUUYurHToSllP16jQiEGL3xTARDICuACBOXYuaTojWjbcSsQgnTeFbcI7IDIhesJw3zD/QduHm7D2YoRTIdybpd/+b7v/rh/ffn8s2nyy9/8c0vn5/PejrXdbNxAONpXT3j7bW/XW/r0G1bEwACc1hGQgQShHuSKFEiMmRgaqlIwpBUSmttmJv1z5etltItGBzGOK6vT998aq0fIwj7tq6nWpaqiFhUR0QRZGEEBCnWW0JaO1g00pGljQFmiaSnLZD6fiRSG4ZaElgluVQhNEcEB1ZhjMx12/pwICFWRHQfCRAksmgOI6S6bjlaMgFgu99hCaIipRJiu9/H/WZaClaKSEAfQ4kCkmtNMxZlfhRXWxbz0Y5DrDHTsBFAkIBhksEIXMsYRpMQPD+YBJg+P7mBlOHM1IdN556sK2bIujEBq0LC/ehv7/dSl8IgxMTsEcqcmdf3tzGsCNdqx/Xd+hERQkAQZakbyUiJiHa8uPsetgiIaERG+H67clqElfXS+369vipTESHm9XRm4dFHA4/Ep8/f+WjH0Vj6PpICMXwa1p6fnwnA7Yf0kFLqsvTerXcOPLrbGBZuHix8Wpfny0nWi+iaiWVZ5Hq7Hwdhvh7Hj9e+j9cvX+jTeSulejsiBkn99vlzsry9vd1ttP06LIBhWkN8WNiwfkAGSzH3MXwmiSYkSCDSxwS0AUC4pY9hYxzNx0hAJByeQliWmqItR1bBSCfobsfthoVUi6YqybfLN3W9ZDokYPiO9fCI4bqu6+Wiy1pLXWoVpqrCLMu6Hu1oR9uPFpl1WQEgIxPcM0ULEGcYMjGyhSeC6gKQYaMsC6tyrQQ4EyuQyUwe2Ufv9/sMUJlbuE9TiZtPp/vonRAQckB2CCSCcBt9uBNRqct2upSiUkopRVAhw70LwxhgZkzAJDJFB0BC9IjBIyMnmmcGbRAx3SPhdr+5j7qs06oIEUgIQEgImdN3OZewAEBIkQEJSDiGEQITekIgsXCtdfYTATyac3HuByJJaFmWfHSsxxhjWkohIT7SYgnZ+xhmtOMYRiSXi0ZkBtgYmSkiiAwQLFrW7eXrj7nvYxhkcFlUZVgApJbqEQDUM1s7hnR301JmFdQDKhEwi+cmGgkSpAhO1g8hMQNgmoPbT4xRenSr0oMrnAiZ03KbFO5pYRE+zU9APMzKsizLRqIAOFdZmdGOfuy34zgSUEupWkhVeNqK6WGe+tja1bosK2qpmfH29jWTmLelLMS4+33AGBk2LDJICIg83cxnz0hkTL4pRCJwAoTnJDdFTxJGmtZGnMA6EVHR7bSZ+b7faymqMqdXgeBmbpGJwoSz5ZC4HUc7WoZbmLAQ6+yQH2bmEw5YMsEnXf6B0wYijCSEUFVIzMxhhkjMOD1iE6GIhIQYOXNkHB7HcfTRZ2UeC80Ie1GJCDPrY3iz235DVhbJ4kwkYZzRfToHKRPSc7iPjhHTssNuAyCzh5kRc8y2+2nwZBbRR0BwMmXzY4Do0doQ1VIrADywJv5QABFwpsZKXaZzMNzn9tKTGZMIGYmIbNLpR+/hCI4is5EAcGYsp5BEs9FgeAwPbP0GyYSsBRBU9enpaakLsDCx1ipEbfQYHSAwgZnDLJlYFYeB+36/moVqKbXOXr9kgvTRxn6/r+tW62JmwiwiWop7XK9vgKRaRPB84eM4plClIVQKkrTWI2ypZSnKzFWQIQgIMhLz6bTasf2RcnEHAICfrv0j7SYADIB+wrP/8/LHP/njf3Sb/JNr/vS7+LNv/QtloPj/RjD6D3ohhAgwg3DABEqgmUby6Z9LYpxev0wI/HAJPVA2U1VBi+jdhvk8LHs+Alxm/nYHgDTPNnx4zj71iQxDgJxZ6Gn5BHi4TT0j81HcyEQwKZo5oXaIgOEEWVgweAxpfdw77c0QghA1IYEzZ4sOVEFlECKaxhz8gGhqYREUxgSYB5TIYd6HE5Gosmoiz81drTr7nqccPD+2PkPCgGGT1pP2YBQ9BKj5N6ZZWukekA4Bbkg4DUuRCE6EPR8G1XikfJhUmEUIwN2kGVMeleDpcrkfffS7JXsEhIenz9cUKYCQMoAskJgymZjDjpdr/9XpM7Nebzdre7t9VaFvP6112brFyOQMc8yMUnIAX19fSYv1dn6+qChNqJcs99uV0G63/WFdKuvXW3tapGK3jnpShL4sZeooRCnCQuYBqOtpLcgszC8//rgWdAvKtNZOl8LMPvpSaR8CrPdhl7Wa5bLW799u+HffX55O9XRGHxj909O599b39vl8gtOZRdK7m42jqxYN7m1flzLM0KuHVQpmSOstQsqKOarKqpIkCOjEzGSuDvm8yBde7vebEGYEM/Xeq0p3V0tDVCVJS8vWx7JVYixF72bDHcKAdK2lNzsT8Xl9ux4OZFl5WSSAmMBtWtu0CBPt9zsuJ1bJTCc0M3DkUoDErTFiQPQ2sEDV4p4RudTT6DcOjwTJZOYvT+teurdDi5SizaCNPG+6nerReg4bs7kU6HzeejMJTC2llKM5pGekrHx4HgaEkUT3Zpm4Mb6/vb0CiUpkX2tVRigiohbBzGHHYaFCSVIW8Uhm7fuNcCVE68MxwX09L5iZEcgMAXo6IxJG88R1W9ew1sbosF+vdDoJ435vTG69DwupK6QpEjOzspnf9z0gBjZzzz503TB1utUAwv0gYEoxDyZQlqJyYalLtWGish8t3Kbp+qeLKqSwdUd/iMZSPqo5HBw9YTJfENiZcBhDYs5xpedj0gsgJCrKKITETM9PT8+fPj89PWeEimhZ57K1LqVktnZMcmFmRsLeBmQy4VIKADJkRE66Qe8dAAcPHQowQ9RjXbdaamTcbldAXGplmlAoQAL6WHxMA/C0FrMQs/yr/+R//vnzl//yv/wv7njcYk9DPHrZTrwUNxAkb+HqpVRKktSAyHavWEdYQA49wGAaJx2UIq7399eXH2Q512V7fnomSRHNzFOVMLve925GAFWoLrXPSR2GdVmX9cunz8+Xpy+fP7/dXxhluCMso61MDGXYcEabKZ5o4g2DyAn21hj99z/8fnm7qn69nC6IXOuWCa3dS12+fPk2AfMRPcxhPd1VOCBECnRJiIwRZg5oNgB8HAdkLksVxu4QbpEdMFvvGS0ahDroQOMxMsO3WmlWbzAEOHKSIFKg4ILFw9vodV3wg/tPRLVWVZk45/V0ZhHIONqRMM2sCOCIXLSwaqmz6TkRwD20zByOPJaRW5WVUlMqs/JxDCZEonC/vRzH61FPSqwzv0ecY9h9v91u99/+9d/cfvOXv/7NnwPkJSMihDhs9HaM3vpEi0aKKGa2QAcSLYiQQUtdWNQiCsIxRroDk3siErKYBz9wDalCYQdv67CBbmst77fjL379+fPnLz04EX308yoMBxm7LeZpHg5sAcMbE3jvKcrhtS69HV2J7xjmRaUFM+Jc5qene19LsSBAQpZCoMjxfg3v7lMETCax7AnJzLXWuq57xpcv3zx//vZf/7/+87lat7evEnZZ9d6JVCHDzDIcACJCtWRmIBXmDD/2fT2dSXSM4ebdsnL0bkAsyzLMZd3cnGtwZgIKk42R6ShirSORECvhGJYAZo6t0VrdxmhNi06Y4hiBli9v9/OTwKKibID7frgHESdia8dx7dvFEXKti2eUooD4fDm/fP2qdVvOT4eEmxWO6/urBFoksWZYa2Nlfnl9JS7w/e+L0Ha+ECLr0u+NAHm9ANK+3xbMWp9q+YQQJETpRQtsyAhvLz9WEZCKTG5mrXkmkR7tvrfGLNvpKdIvl+fnL78EwqK67zuJbmu97TsKG7Aup9+93r62tz/7pX737edPl9r3qyACMREzS+/t/fX92A9jznQphZBH2yEGE5l7H54JAMEsiUiEbhHDEMItx/DRdgCHTLBBiAGYk7dXStiIdAoPSUACLXZ0XMvGa5GqySdaNXDs9+BHtSJBDncmJi3rupZSa12Klm1bIDMAzNM9Rx9mPQFv13dEVJUE/OhKjzG6HT1JMkFZiLDUdTKPE4lZIjwsUTQjA8DTmUhrdY9EQESPRMSAB8TSI80P9zEzzBOMneGQER46R/AIieTmxjZFAyL0SJwzXBEiIeEIAJYZZ2CRmXKNnMZ2SMQwiww2c4/7/TaNOJEx5R8PJ2aavBxheOxzMB/ZvNlWFEIiSOaj1lq0mDtPy/7j9g97j4oQIjJNhsNE8Aj+ZIPKTAhIiDQbfQy396KqRZQlYzYE97CxbCuTBFPEEOZ77x6xH32FWac5K+xzkvsCAHHxMfajRURdVmSYwHvAYFYkCA8idvdhnhFIQIFcCkxPCSASPR4fwPyTMXJCzhIxJGTiDDJrk/+jKphgGcS8nS513VTmMxEAttHbcWutMZOW+hFxFWaeXZMZD4cUgCcAEVVdTudy34/zeu5dRVhLJYbK6+vt7Ta+ttYSsmIxhmHJgPlgh8+EwlQtgYEeBUBMokzMSJQIylRyTstl3dZlWVtvblZr3bZ1FjmFTe6OZ4QZHPuekMe+h7v5mJMAZvFIQnCYxG0CQLOYZBKiiEwbg2ZsA6Z/igFhUpfGROqlz63iTNYT83xFIBORttNJh/Z2fMSaxmQ/qYqqLsvSex99dDNve7Nea0EARGSgMJt7uAQCxPAEIkwPy2BWFEeYcsfw2dUQRDB5ODAzfYCIOCsI8QNglBFJ/xgckkmIszxOVbdtY5kS1Ri9ZUJ6IKEIAxMRGnOD7EdLgqrKosfxehzHhJRM8DrJIwOLM1uY2cwTEoZlpIgAMnIpWgDTxgjKqbyO3m2WKvjAoPsYALAsdVvXCUepqsiMSCL69OlLJjABsWynMvpIiMcWW6eAaIhUl6KlEnFG9OM4RkdIYf7uu2/7/aaM61qZUIWJSBiTOUGIyMejBcwBAsABOkAHeAcQAAE4A9CH/hIfN/vTyzymTcdN/mPV5udCz0+6zM8VIvzHsbI/vfE/mf/659Jqf/rlP3f5DyQS/fRaJQABiIAZpKU7YAbAA2o2NdMROSweqjzAI0Ty8aoIERKa+QNMP+8/MwGEKCL2bvOXeiQjzve/xQcD7nFigEdmd26JEjwhkaaYm0QwDZMPBlgK01bwF2cUTm/j9TZeb/0qYD5VZsjHeyAJkRGFsTAiYgI6YAAhyePzKAKAmB7ubsaUTOEBCBAWgfOZA9KjEMkszMwsPMIeCS+bhGcAiIdfNz7qfIAImbAwVIFFUjmZIBE80QImx4gQhSARC2CCENOsHqSH/ZMluASC20u+/z6Tb/fRHY4+ACHSu/kYbsNElMuKMQitmSoFUA3dZoXT7bbvI75+/eHTSbdtiZRT5d2QRMJ6uEPm7dZGP/Y2vjmdgJhIt/PTtmhZ1n23cXs/XT5H/vh+72VZxujLsuz7vi31+Xyy3nkSMjCVkFFGNyZCJmJO2RgHZa6nEwKSX1kQI0cfzcZ522C/nS/b65szAEipS70fRxu99b/f3pZFJ0S7u9Gp1l5pH1bqFgDX2518oDvIWosGkOYwZK1KPZmQYniSlsLRVCQWBQ9WJcS6rOAjkdKNmVYSws0jhrkj+XDHYOZ9P7ZtDc9ZQyGFmYBRsFBxzwTwaO0ADEJAERF6OoGWaoGqVSP6A6xHTMZEIxygSGIV6cMcJByAKRLcPACSeF1FBY4RvQ8EYB+qXISZxCNY+HLaErl3ZxHPCb+dDWu+Fa6yXK9ZYwxP1sKIEI4hTAkAVXm/WxWohSMwinIO8p6kCBmZR/OBsEAQQGiMQBJmAgKw9GYxRmAGUhLINEbBcLjfkcXn0jtIVl8QACMthgdiE0HsdxatRXpHF4EMyioE92N/fX0HQMKZeWneIrVqwW1dImL04d0RWIH7GA12XRSCAZMYAcF7JiEAuHlZ+Pn5ufVel2Wm0NO9MzdCCEICJgQUVV7WyowOjogRQYIAaAZTyQWMnGNPgAgAEELCxGkWmUWwglxQmWSGQ2vV8+lUSzFP4eLA+miCAiRO90y4H60+mgzDPQAyk2SCbKa2IKwp7t6HuVtvjUSWUqfxv7XGIiK6t0NE5l4cATwTcYrrD/hZ9u5MkCClfvPt87ff/uLL5y//z//mv/jrP/xrwB7N3+5v5fK8rduybFolPPbeGBgYMQEDNz0HY/fGwEl22i4qRXXFzP1+u77faO+fPiETR9jT07ON4e1QpowApFKrqgiTlBIR3rsurMrEsq7rn/3y1/txz4x7OwD47//wOwT/7dffvr+/38sPyAf40pN9mNQFgkiQBSjgvt/wfhz7LliIXy3yuF8R8vb+/s2330mpAGi9tXb0di+1Rvr19hXA3HV0Izw0HAkgsvcGkCxEmGM06z3AE2JYekvPQRLowrQumx73m2NTmYjgOWOjyf/Uqe+GJ2YfjaTAiLXiYMQjSikoOvkFq5wxoy7L8chTAAKkm7uywNz1ZKS7IUBRzUjgFKZcVauiVk+3YWN4uKcKEo1jtNuwHoCDFctJZC1ImTisewQ297/7+787bL9fr3/2Z395fvpETO31bT/ukClaIuJ63bV6rUpISYX4Mfs/Xy6q5f2+F6V2b91ieOu9iehSy2uEioygAmDu7NHN9ha9tdOin0/FLO/dXNc27Pp2vL7fKI2ZVy0tWhvdc7JIMoESgZiLCBPYMdLtdtspDJEzHQE8EnHmOBYRhTHmtsDcAcHCefTZFgwZ6cN6RyKui2jZ1tP/+n/3vxep3cZf/k//F/+X/9P/Efd0G83suSyqj0pcooGELELELOLzvM7MzN12ixDmShQeheBoB0RY5KoqSIA53I77TRGTFmGykSIFMGdtLxIBgpZyb20uETzBxrAxdD2lO0CSyLosvff317frG3z+5hvidIARmRnr9hRtf98Nj1ZrqSpSy+dPz++3e9mef3n+sr//mHEsdYGaigmZ1/24347e96JlU2dVUZXCmBm97e9xuTzd3t+s3dL7+bkLoZv37fnpdA7vx+1dmarycZiNcRyHR67nJyQ6+qAwKRUjjmF9jIhERVElqqdtXUT9A2vf+1jX9ZsvsXevA4ajCH99u46Aeyf5j/8ccGHK1lvCYITe+h9+fP36h787nU5IwsNkBj+BPGLYIyo/y54ICZkRAUQIIgFjjBwW0VkURAkAwyFxRk7cE4nBjcyauFFq2Zj50/JtLU8SwQ4A4Pverem6IZBDbtupEC6Xp9N2KqVKLVrKfd97H1oKQkt3d2OWduzHsWtZMpd0Q4CMHL1Z74oQ4YxIhCyCEKUUZI0EC1fCWekqTNd9ny7Gj5IQQkRFmpFhYlQCQOwtbIyH68f6bFvHRxMt994TANthvRahXriqAqTbcOsAKVKQCaaBBz9K2mHaCiY0NmF+umuZoIPHQn9qNf7w+DAzPdgjkJDMhEgAk2sZEclAAODx8fcCmAXjnjE98XMPDI9TLzyqXQCQmAGZhVUYMTPM3Wz6J3J2YvYxvn59JaJlqYUfYIYx9lI1gyCcMW301lop5bSdWFhUcwK2PSfimYmSGTIjoptDOwApZ/SJxMEmyfrRswYA9EivT+u+R8x5dUQgYWYSYGJGJCIm4gMTgZiQZuZujzwAYWZMl6Kw6Kz1ACTV9/uttQ4AddlKrfjwVxEzP2bkMgvXMBIm5Cgzifl8udS6uDuRZGLv4WNQ8Kpba93c4RhTLrAwZpIik5aMQPN+wKfbCZFYV/zAsYMSKwizalnqsiSA2aAHQgDMPbqbWe992GxnzT5GLWX0joBC/Mg65MgEM9+PPsk+7mHmP6FpE5DJZxPzpOoEfOwzAX3WWkEyQwLPcjoinKVAgESC802FAKM3hPQAtxijEyERi3ApFYnYZfZOp3uPmC/mHOkjokcAIJIs64IsMC0SZkikqm6jJUT4TF1NHHUpCxJGhIpMZpIquZtbJIQEz12oMCOillKXlYnGGJl5v75KKVoqMzGXyCSP2c8185UPiwEEhM+ndhx7uGPE8CBhZgXC+embkjdzAWIbIzOQyCO/vry627atBEhMiwpiTmOXm412UIQUfrRx98EidV2Jiy5rZrh5ZhomERXRyHCzMYb5WGoVKVqLKN/v9+7OAdnbGIOJl2WJhKLT3hpNEMOrUC0CAJ5JCEjMKhlZmQDAAPo/1ncSYAAEwBXg8qFo2M+CWj/pLD9XYeJPrvx5IOun//yR8vJHkg3+7Kf+6N5+fpufX37ODPqje/63XH76qT+9w3+Xy8+feyYIQ60wEgdAOKY/juyPpzeB3DlV94/HNTtWEjoGAEREH272Ybl/HM9wuOuHBxIAknHq1JmP7q34UH/i8VbFSJiQjcTAxLkjykdIkohJCJ5K/vpznS5MKsd3Ss8L9c4JMKcFw8EizWN4eAABTB9hAIDDR8cAIuKMEmdA5hwbQwLQx47PwT1pHoVmL8SkUUfO7oWMmeSFJCJ4AEEBSebJev7eyrgKboU2RWEKwJbUgjkBMohQZlM2YiABABIbyPQEQUaiSIx+G/uexA6ZHbgSEXFP64QojHNR45nP542kYoz09rY79Vtdtm07t+O4Ob6/vx3t/rxcIEmV78fYLp+0rMd+Neut9fNWv768baeVRD9tNZBZtDv5frvf2qfPny7Pn8xj2AtrQUiMISJHs7O7WS/TvWxDtTw/Xe73Wzv2930kYT/unkhCy7J6u2VRNxeVPsbb7SjLZoFF5Xx53t9fWcs0CK/irbc3tx3i8vz58vzZbQTweTsf++4RS63DctybCmYeKSpMATCBCowpOXrIsiyWaOkEnJDArFrGcEuwY4QP5ewdAqIwJLOZ3XvgZPHGmE7scPNEe/SATmdsCpeEMMh+vPcYBgUxa/CU/UhqYRQqYEgqMHogAsRSaiJhRtpAQiVdLqsSuieDJ2YgBvK6Vsp9dkQxC2s9X4qHZVjfozAiYy0lhYd5IBfFhZfTylVwBChTS6hFhShJhu3TSl/TgIsKAWRB0FOR/egd67K4+zHcE0lVYHrK4NoGA1QVB4NwRnKP4U4k3no9aSKxluv1Zi+HMhNQXbeyLW3fFaEUzURPTrsZBGQsC2CGICc5c8AC++39ejOVUopEpPWeEQA0GXVpgQxcxMMzERmWTRKRhJdaRx+ZKSo5CAIBwDP68Fp0emVLKQS5PF2I0Nz6sOk8JMJSVCYBDyQx3IMFAXPMTqRMQkKGhHDDDA9IguIP7PxsLqEilUEYmYiKyFarigCKDR8jE7B1y4hSVFQhQcvi7nvrBJmA0+qcAOaelvPYJCyF2N1KKa33MWzWgEVAmFkm9K5Fmbj3nlNwBvAxZheJMD2KMSZyTyTvB33mZV2//fYX/6vyn25/tf7Xf/Wf7/HuFv12L6xenFQIGQAzwtCjj7016H5aTwUXYpVCnz99oyJM3PoBAW0fw5q7Reb9vmfiUotH3PediIZ7XWoCRjoDZ0IgRiSZpxlEANL59BSZ2+kZEz5fLpH5m9/8x3/z939zvb/8zff/bR95Oi0s3bEHtSDoAyUFE4/dMzYoCD6Oo13fr6K8//d/dRz3p+dPmdjbsR9HQMhx39sLSUb6GGmSZl6Kepj5SHNhul8HIPbem42ANieNMU+GCIwFI0+XrW5y+KvhSM9MzFAm4iTogJyImZQA0EaP3JdlRYIAHgEcIbXyg2zn4CGqyHK73RKCiRJxnozcZ8jAhZlKqZPjm8LKsDHVHKPbHjasvXezZHYuDIRa2YePFvvVdFsQiVl521is7Q3Y3/b343Xcjj0QfwVwSbBjjzBhSsDIyeFJMTdigSDCACbEZuHokdlaX4re9tbaMSxRKpFEhJbi8SjvFKR7837fX17AzZ7Py7377evt8nk5rcvtxX+43f24FeUAZhYfHhmQ6aP3romkItM4o0TMRYu2PQA5jja9/TMhPR499KFFZ5NRgMcYqEJE4ZFuftzdTWVFwPPzt//b/+z/MNfrcb3+8PVrJNzeXjF8BB5jCJN78xHAJFoyEgk9s4ogIRFDRgC03oNQiGbSEIHqVmHfGdKJhBHdu3vzKJJ1WdyMVSM8mWbOMzO5FLDgSC3LR+cUzieFEEtVVkWm2+3uHr/7/d+vgufP3/Vm/TjiCe73vY/OhMxUaiGiT5++AClmqCy4nSLTbBQtRUAwxrBbOkCaR6znW7NvVqzKp9OZdLm9fN+h1s+/8pfftx9/+/7DH8pSVcWbWLshwuW81aKEPGx/+frj6+tLIq/b1vuwcWMALktYtNseQOv5MlMYynw+bQDoTgEDI8za6fIUEHu/UqmlN/IOtu83/5H4fFp+8+tfhbUx2rIUAAcf1vfe7sIEiHZ9W5atlMr8gIDATL9A+hgqzILECCjhHmFgnSCm3pOzb3ZGdhHHcIwgyMgwa0eOAqWWuun5XJ6JBdfqxwEAghTHjpmFBSpLUUGs26nUlZkwwYZ1C4ughBgjrNuEcrkLMdFjfiwibj0zaykqAkhjdI/Y1pUAPjA7genMEAkj4mjNxsiE2YoEiBBOzALTBERuFgCczCLoUJfSGuYeSCjETDSpq2527HsC7LXWUlrVUy3MPMYAwKkRxGw+ZQyY8hEQ0yPrRJiJnjFhnyRSAM1t2hsiwtFp9pLBgwU6/e/EPCnMkJ4x3QkcGTmMBInFw2/X67puwpLoGTm3AUSILHOjy0xz2GIeCLkKJ0KYM4MAeWIAmsroHTDT7X67mbkKCSaEQ+brywuxEARDiHDOHXERkjLdZjaAHpbcDAciRJnobjSzqTwRYAK4mQgTESBFOiDiXPAjunsEpMccZ88tAQImzdL0eLw6HyVW+SgPRkgATAQMT1m0lDL3ETEbH5DafkPU0+VSykLMgEhzSgAwiaQfEeZAhMnznTCLUuovf/2r3/7tb3/88auIkIiZZcRWToc2s7t5jOGlSmYOG4lJSOFhaQwswAg04qMUIjEZAzLASWhVFhKPGL3NzBEzuVlrDRI8ZpWehXs3Q8SpFopIHx2BCTMifAJEPMwDPEQKElFOLjhEpLtBylzhZMSYm8FZJseT5EoAOXMXHztURKRwYyEkjogA1Lows40R4cNmONL6GB7zLQEz6wEANsajJwjgpzna3PGG9f3moqWu6zzpRPijrTXTxvhARLlKAQB64L0edqQJDwqPTE0tE47LxJExxmAWXdZSSmYiApP4GB4+s/3h0XuzMdJtjEEqhKQsWy1F5Xq7VS0IOM0Jbu5jIAsiJWCEA0xFHok5A0WEmc3tvrf+SBMXwsQMyFhqBREkKssSCe/X93603hv0ZmaAB+33Zd1Uy3DrvU0wCxOaDXdzcxOnMM0yRUAi8pjgfptSVIYPHytv6+m8KtroylSKZkTvPQCBCJADgssyPmJfP4kg9KGPJEAHeAXgjxv8PPn1zzl0/lRM+VMF59/y5c/v7Sd/0B9d4uPfn6tFf3Sf/5ymkz97Iv/hkmL08Ysqgio0AjpgNLSkjPnwHuEomDMTgMdHMjN9jl4SAOb5F6duMrNU8MiRuQPNXdwkxAUCQgbGB5758YklFKJZl+xu2S0gcYo/CEAwD3IqpMKF8bsLP9gOAAAKK+gqmhU9wcAdzCHC+/Cj+/ApUWUkJkIttAgF0oj0QECIBAd0QHDMj2L2iLSMETDPjB6P4nlPyKkXAQKi8DQezoQ/RiRO3ggjZRKAMq4Cq8CquCghcQsawVPgwczZOCszeA2Pg2FkhsV0Q7GwRO9uA8cO6Ri2t0OX9elyegEa1zd0Z4Rb9xQGklJk78LWP1d464AZrIvDuN/f9rYT4q1b2fBcC23renm+3Q4HTADVupw//WXdvr5fHURLUa2iqy76+vXH3psu2/W2uwegZMBaCxOUpWKM0VqtlZHOl8vbW+7tkLfXz5+efxxtreTAa+HrMSzAW49uhcNGz6D73jwcIYsuZDvxUpcqFIm6rVLXb9sYw6y1Xs9PkTmInz+d3u+3WjTGwIwwt/A0DnAw65lL0fNC7jh6ii5IQkgCMbR6YCRqUSLCdAxv7UDIPpxItGK7XU+ntTKuaKNIWqbbUguEAxJAegJmIsB936UoIm6Ke7Pr7S3rOSIgOqWuTyfg6mY+2ZjplKyqgYmZuiyeEABhrpiI0XoiEyIX4cwZNgdgOm1oHt47SCUWjC6FCAq6RXpB+nSub+8HF9gWeb/tAF5FhbIPGCCBxkQIQWCX05phw5GYi6J1vqyqSu6d0gvD6A0yPSXQmUiJIb17KlEpWkSGWSRsi3xTPv3uDz+YG6GE+zCXsiwnLs+flYmZSQu4xejvu5+B67psy7bvzUdHoh6IHlXDYmCM6/V2O7JsZ4BkllKk70eGAaEwqXDvhzCjkKw01/GtdxK20cMDgSITMFSVgzAQRlqEJgDi9XrbVltKFaHzurZTv+2Hfxx5EMGGZfKcijAJA5mPSZpPgISkxEyBtAjMZEuPiEhnQHBEfHA6cVYhMkXkMEdzszCPRMk8ZhdJrbUuy/l0IsZw5/m3zugjCCkzRXgeRFp/NGsC5LosRWNG1hHRcfrhdUIkwy0zImIuPh6H2szeRkQKExGXUgjx+vLjaKfnb7795pvyv1y2Tdf/+8v/1Y8bzTwuETPVumCi+fDh96N1czBI6EV1Vt6+vb19fv5EiJgEyGVZ7e6vLy8AoFoSclYnIta5fP/xhx/uy1rrMmEW+NiZDxUc5pGYgKoFAdwNMxKy6Ppn3/1F6999ufzyv/nv/nWPIYWPHJDDWkbHoyMl99ZHH6M0ET2O3vsh5dT7+Jv//n84X16AWJnWp3Nv7Yev39dNGHV0G23f6biczzXL0a+AIai9B6OQkpG7DPAEI+BAMkDY6qciW3jc93epjAgBFknoHOEJJkhMAkgOgcCILCRCOJFEs92AItCNkSKBCVEFAApC5tpbJ0LVqrVMw/ZjEYBERCJaVVA4NVMyhvnd7G77S9/v3XpQoct3J1WegcTRDOhxorUehFTWtdRV5DiuPTO+/+F7i3Y9Xr/78uu1rltZ1tOGspgZJPgDD0EZgyHrUtdS3N0ThqfO0AF2BEQSD+hz460S3SIA3Hfv7ikY379clyIpJTK4yHfnqusW3/3C83uncDMzh/BHjSUBAnApfqSqEHMRpbCnpwsxu3mMA4ijH9vpFMyZOfowciJid4tUkbHv67KczxdhPswigtJnNyVz+U//N//Zui4IqVwAL/+P/9v/mVWtQSARZm+Nl5KZxCSiE6xLIuy+bSuqpnvrHZHMfTRjhAS0YUksLKLa951KdcdaK0f0PpiwLrW3Y6ZylDmIKQMIuSwL8HGDMYym3RARECtPJjQfIzygDSOPbnbb++i/Xdc1LYV4WbeXH79/f319+hKn00VLaa1t26mgZ79mBGKclkWLgPW11l7LjZK0tOHB5GYACMgj5Vff/hlmHLdrQhJ5OV22banK0W/CVEu5XM7h7qO1cdzv9+vtlpDbstS6RESt6xg9LGYNjUcWpLosxALA/X6Qbq3tC6cQIJCURc2KHvtxJYynU2XCMcZCox0HYhalgcIEby9v769fJ80BMtzz2Hd3yziJCiRGBgXOUYoKFWX0gQQAyQRjb+AuKtPKMA+ewjiL68yc0lOJhFLLyeuTPAnXItWGkc36EKaEzMFE1g46P5fzRQgZotRa1yUjRm+9DaqFRXrbGUGY+n63jAybIZ1lqZB4v773dpSlzM+1ufXe6rIioPXGBMAQ7gABuiTONTaRqI8RPpA4Is0GT6UYYh6yYcJNmIRUq4oWBGJClukQgd56793MzHz4vfcxulgvRDmt8BPSkx97DYQEnFTOB1QFIiemZGZYABApORkRWCQycQz4cAkBzjMhQoKHQwIRhsOUWpCI8tEvLkzdsLU2hi3LkowBhoCJM3NmkCnKNCtOEyDBzI7jQJiAOZ+eKBYVZBSR9EE6+pGZLVwIMD3hpzawVKYMr8tKoswzTPaw3CLSzKdM7wngLGdiZsowhkSimPgIAmYKQHscrPFhlo0IDyRCejhlcnpxgQCCmDKBpruGcEpAE0bT+0BAgGTm7XTRUqdoYJAEyYhEVNb1AcwmBnyAYCbQCvkRZEN6EGq0FmbJTCK8nM/f/eIXb69v+74v6wqAmYhAv/72V7f7vY1hMZBGMNjIdjQmAkQJWUtddVl4TQREZuZIGOHv9+vr/mbopoQIJBUyj32HjCrcWu9Hmywhnx1nBKKMMFFFqLW+365YdZY2zJ7k29HM0iMBm6hODj3AR0UzQMQj1ZFTRolgCgaZBGV42ADThgEgiwhO/8CDvA7gCEmqxNSPgxAnv5aZkUhEQB4eBwyabxUzgwfBfTYszHcEJUDvzdwQcV23BCAkES219t6j98TMzKMdojrvf+yDGNOj9zYJQbNJGABEBGbQD9Hchw0icpv9J+buETbfu2Y2HTelLGVZEdJax7rKsoguTDvWikTCPD/I03UVGRDpNszD+kEsUuqDyB6Zkd2tj27CAFCEIUyZl4VjGKmWZXHzpS4R2Y59GicDEGza1sIiwkaCjX6oMEyYC+EYBtQzvJSyLMtUJwlRVSMSIAmwDTfz87aUlSFC5DHu5VLNbGZmkYMP+XkC6+cOnZ8IyvEzLw9/XI//lICCP/sW/Mm3/tT+89M1P6f2/HTlH8lG/5zBJ//xNX9qL/rTn8V/6pb/Hi8z/MUAgqDzVzOkAiYyUQRPleNh/8zp1gufreoP28yUdYAICIGEdHpzER7F6gkfdckIH13pmbMt8PEckRARmamUUpZKTGbOMsJtqks+DTkETKhMRagKMv+k/kyplhEAgIADEghhxlim5KyMAOmRI+Bc+fxciAUs3u7RRyRgs3QPt+gjhsdwdE8PsEgPeDBDplkJZl070cyRMxbVWas9pxTzXKOq80UgxAmGHACAMEAAxAgdMWE2BUUiGoIjwPQfedgDaBZzCxABcru/M1GBVBgDlWppZuhJiMxieFi4R2BGP24iRGGeuW6nBe3oQ4931NMYHSCE5dNp+c2f/fq0Lj2ge7bj6COezk+n04mQQuovT+frfS8EIrCduAWu63q7HxHZWgs3lcnb01orSx0dbrf7sLItyxjGwprL1/fX+fBgGIyWuhIJQJoNVcpIVPXRiWg/+o8//ridn2pZnznj8um8Le/v17rU8/l8P459P9ZF2v0+EJ2ktX0RHtMqT5iATDMYD+Q9kUZP2U6V+gHsHohx36+VCWgBFiQe7WBQVU0zYe7uTGIB7NGD1GJVXYQWZlw0vTPC8ABUpJiQXQ+0cDD2MNvH7eWHDC+izMxcJWIRRaFbNweU3jMTAhP52A9iRhlcqlsAYLgTgTJaxFIkWREJ/EAIIGZWnW6OCFW4W5RSM3JP7BZrBRV+vSYkMOJpkXaMv//Dyzefz1S3ZVXz6KODjaUUIRyJSlkr994qB8YgouOw6+HDDCIDgCQRCYggk1gUJho7ghMJwqIPO6366XK63tt5q601BGDCpepWVZm1KNfV2pGmR2uJhIiWyDpTfwN8AMTwiHbc9+PYvZw+67pM6x0hnk7r0dvo/TiOBgSSA4coE2M69H3s91uSM2trw32C6rRWW8omoJE+uhOxELXebXR6QqQqws+Xc7NhrU/eszuIyiSIZiTRHOcOwAQEFHY3bwAEEZhBARHpZgMyCDiBQAiBcM6lkISLWby+va9OSAKAkcPdbRhAAjEXuN13Fg4Pmx2oqioyhmWmEInIMO82mJOlpBshMjMi9t4t5jGXAJGIk0J1AQTrRwKzCAJ5OJMsdYmEWktOrhtzIbbRjvfXenq6bOdf//LP//xX/5P/+t/8axaKGGMc7biv6/lU1+PYr/0akB4JlJbGgZwJhL3b9fq2bSdikVLWjAg/9v315avW5Xq7EeDT04WIpKgWOQ58e3/Xo+MjeF8ACSLMP5IFJL336RKdIAjsTUh5kfP2tC2nf/Pb/+pl/x5Be48gmI/qdm1tbwTH5084qzdKLdt2MRs//OEPx3GIlmVRqvr+9howjm5iMIZ561Sg5R0zGNhHJ8RNLoC474dsgGzeEqedH0JkUVgINHB4jvDDoYVHNk5zd0tyFGYGT5/hdxFlFlFNgKka+mg+sjVW4rmpXpaFAEUEcSI8QUshZKBk5ox09/fbnYW1LFWViwZTa41gI+d2BDlhfIARgJAIMepJddV27QhoI9qtMdMSIKrMoiX3973f41r3H6/fO9hTfcrLd1LqUqjUBZjH0XIyzwPvrR3djtKL6vm8ZTho7ebLshKC7d1GR2RlDg9mJIDdzIYXgPr/Zu7PmiRJsuxM8G7MLCJqaubuEVGZhWoUGj3UM0RN/f//ShOBGlVdhcotNrdFVUWY7zYPrOblEZEAeoaoMKMPmRbmarqrCPO553xnYSGgyQElrszBBbk+Pn00D93r9dZj30ffM2O2OnOR2homlFKkNmG0I820sswR03wO4FrXs6navegBMwnAxxhix/nxA7VKkFKEhIATLQDow+/+/cNpm+mRMVT7fn39sbDg6cHVdPSZg84AaVWIEyAy11bXWpmpMB+mAFiXxQICx+wPAuJpp69tNdMZcY+JfS7FzI79mIGQjCCEyWKBCS/1G2F2cyaUIhhTCY3IRJYKsQ/blmae1HvPPMaIuHz48ITpdVmQiNHfnp89AOjxdrtlwrJtrchQq61l+th7uiHgw9PT9Tief/4ZIa0fEXGMLEu+XV7Lj39qDALj9tYtoRXaTudSBGotp4/rtmbGOI7X5+fM2PedMBHQPZCIS9Xo3SBC98tFxyitTfrM+XSiuqYIltWO0ceozOpATIkspbWq4fFA3Nb0cSzr8nhm8B0ZG8W4vT4/P6sasJzWSiIY2WpFJLPZnSVSCkFmBgG1WsFVR78vrNxdlQgyIBHcLDMYZdpLmBIBgLe6rdv2aKZwdODKIErFPB0JxszVRmpgwvpwPn36uJxOaZoZpdbW2u1yHWPMOLmq6jgM8bSuLAzqirxsDyKlSun9CNPJ+gfiyAzz2lYmvl3e0q1Q1NMZESuX8Nh7VzOIQSiOOFtuMzM8iBOJMKbnOwEmFUQQQFhG2rJttVZhJEQ1I2Im3sdAtrnkzoRDnSBLQUdjmKZoRpKc7n1iRPL7KnxiqRLzyzB3xk9yphlZeLr5vwy8Z9IxI6Z/CGaLk89B7gwtTZVoJobaMG3QmAiT7vNjBMxkJiKcvb+EWGtJYQ9npATPpO5h5jyMhQszEFGGJR63q7lPxxQTClNljsxwLMLL0khawIw2Yc4ilgQhygiWidvTzEBgJkykzHclaZpbEAMYEUh4/gPLdKnQbHUICApMwvBARCZGgImNuNOa8a74xoyYRzCS1LptJ5HCIjgVCS7ILKXOE+50SjLzjGfQe7YiIiZ4GACkiJQqzB4RbghYS/n93/7+n//pn27Xa20NCd2CF/673//+4eHhUPvzD3/6/vlfiNFHWCazFJatLKe2fXh6QmTzmGGoltBK249jP3Z1q1Ie149bXYTo6H0cQZiRUUqd/ASg+6hNWLhwzNcxAYkjDJkg08xGGDK5hZohCxPBhH7ANLDEVNNwfhiIMCERVDXDW2ul1Ln7AoAp3NRWOTgjEp2Ykclxksox3HFqP0RflD8ExBUjcjbB57T+RtyVR5i1cwl3I1P0bpBvqsrMrS2lVtXBzCEylzHh7q6IyIhEAB6A4O6QFs5IxO446VM4s8YSEZGp/QBAFo6YPrLChJFRiRU0MiI9hotIWVZpizAHUlvW3o/58UMkRBARpjsE+ujjOA61mXUeRQrSEqbuMR3iMVfda20ihSnciZmYQy0zWmsJlJn7fnObHty5WgsAJOa4d0f7fDqAQIyESMQRKSLHcUQEErilu92Vv3DtN2pYGgPwJLHUVpaNVS3CM9HNejnmDCDehZ6p0X4dj/JfGm2+eGe+KES/lYH+aq7qt5rL10LMX9WM/msazRdt6Lfeonj/w69zZ19zi+jfWP358gjXLw9yIpkdEN9zwNMJAzkrIJEwg5AiAsPncToZQRjXQpVJCKsATZUfUD0i89anB+fdQTNvLJEwgUiERMo8XNVFqKYHYEih0nuCmrndhiYA3eFjWBgf25Ts318e/Fq1w+RJ6wJUQkrhdEwABAJGePx2yTwlJpaj4AjMrqEj9sP24cN8WHjMR5tfxdky31+hmb3FOXggKkVQypR655WnOfGee0OchZ2eqYAUDEnhk+w3NbLErwD+eaeOUN5LlhCIEECEyM2CKBOJyIYDNxYmuzEhEwkhMwZAmOntlcCJy/AwkoD88edXxBdwK0ylre383cOH30WSHccxrtc+rrd92U4VCwMHByA8nPnl5VrcgDsAXi+XbVndsxC2WokQYHAtES6Ipa3gPtRrcXdjgON6RWIDKixmNzNb+iVwRaDWyrEfFXEWxTEkCureL/lWPtURQOFd9fHpo+puegPPsV+3rRaiax9JeQx1GG1dEgCAHh/Wy5tBpCyL7jkRU8+vl4e1xM0VkMOZeO+DGEEi3AHcutNWgIggF8FISgACBYAism6buVXOp9NqxpfrTiS7OSBOFkxxp0RhcIuX17fj6G1Zt0Lt4Rxp4OERoRZc1dy6CkNBctsR/HYYMJ+2M4MlhV77aSGWgoWRCiITkQ1FnN0vIGXJSDuu1o9KWAiGpyWgZyZG4trKfnRwE4SfOozum9Ljqa6SYeXqNo7OCMAyNM5bFcokvF0P5VgiDq9tXfIYAn50JQiurJaAQGmIeERYGA53oN41Elj46eNTWY7RFRDKrHlEJMBWpLRaCvVk4GSqMp3x44ZIEAYIaf31emhAf3vrliDrk4ggjN4RURDu0U1m8wgHWnE2DEYPDAx1N9eIOVpABDcLTzBAFyMID937y+ubEB1HV1Xz3NYFESNj9DGLV+fpigjhbtOIO1XFnQuzUGqYv+f9YJIgw9Ph7n8kJm6lNWmFF2GptRQpOvTYj27AJEg8J89MQsJm0Y9xQLZWwS3ShTmmsOzmACMPWlckIsI5n0oWxGlEDJ9jWiQm1j5SYh4L27I6kpl5uDABkEdCaFkW5iKl7sdtf70sbdm2k5pd/vLH0+Pjw7r9ze9+/8e3v0S6i+95yFGeIglpqWtYQhDhhHq4B8/FUCQMNenHuq6titC6nh4ub5e3l89q0cf+hz/+aaidz+daRVhEpEpxt3B4OG0A4O44TzXzyQAkzBLmJEKzjAzBAKTwfDx//F//4//+z3/6Ty/Hz9d8Ce2HjX137ZEhKfh2va3b6fHx6fnlxcIeP3yKgM8//uhuvScBL207Dr19vlEZLIWYa6sCnCMcyPBYeBMuCVGEySFTMSbty4kKBtowAnbQLObZIyyN0MDMhw8mdE6LHLsSytqWjEg0wIgMPfauA4ASINzPp/VxezBVE5FShKQ1ysgIZ+LpOiNAZDSDWuTo/e3t7WGtWNZAEmCPkMa6hA3tXe+hxfQMQkapMnarmyTk6PH2wzU9l/NYzxsS7S+3sSskHK/9rV4s49r3cQSyJBUiQsjaKmWMMQix1OqBh/oxxu04AOF8PkPE6XyW0mg/3ONtH10n/QRHQFIDBsR42Jow7cehEa0uobYfXUoj4g+fvlF9gufPN88+YthRKTyTSlvXZS1lqSKtkmswj97DA1xnviQShgFmEk1MBbj2OS1hzPV0Kq0dY4hIa0vf9yxrJWPCdvqY4TEzQWF//C//KASI2GozFkY4Mg9Pj2TTmx1EvJ5Wmu0+IpY+YpYyZyOKWiK8Xy/MMsVZaY2KqIep3fMzRCBsvZs7+ACuFkhmRASRpprhhFhrZYIiIiitiAVjJiAuS+uWrZU+NN2GMYqo29GHjV7X09NWQH0PGP12u8pSJN2vl9eHx0cNYpEYA9xKqxEQKKUtJMKR/dhr2269t1EeH8+uOwpC+nEcVBaShsSeuK7n7eFMgLe3t32/Xi8vx/W6bNv5fL7d9uvtNj4/SylDFRCP/WY6Sm0TaVG38+On75ZlicTb9RoA5fThfNoAQy2SGlDfHs5cq9tss/Cl1dO2MEFkoseP33//5z//uXsCl2U9ARfoPWudCnIkLMtSREw7JtZSMnwc3UYHcITIyHCfesUsImImn5APCCTBVstyfvz4ezaj/uJcleqoqyKO6KkDZiqKpAifz0+Pj4+PT0/rdtpvb8d+QOJ+u+23GxdhETdjSMsMdzRd15PXWhOJmQhGP47bLQFLLcvSWi0JwGFEDJDCAiJViBFTuyrcjr734WGCRIK1tnSbvbGllYhEwGn3c9f7uYLkDi7IFJHWmjCZDkQspWakuAuzFMGEWWYHMQefkHfodrkPHhMQgogzKWPyOCjdMzzvOxNE+NIKnMxEWMPN/W4BEmbIO7hhEnYQkO7w0ESYbZX3ajwiFGYdnZfl7vcAiIwE5LsDJMEDhZklKRgEw6WmI6lN9oQNNUCCxEkFskhzAMwqwsKlFEQQSETk2kqrSBJu9w0JMPMse0qYXqiMzADA6ZZBlrnaYkicTmALllkEACQ0N/yzLGzCYghRJ5wckpAS0cxm8osRzQNmjGA+WU/kpFofnj61ZUUAzPR0RI5wU6+tlVoBOc0mGBkgiaZLHCKAWWqtLHfXTLiPmD0crjp06OPj+T/8/d//6U9/erve6tKS+Dj6aVuqcK0t4vfPL593eyPCBGDkta5PD4+tLpEwMVUeYRaR2Vrd2nZ73nWoUqDu+CC1lKU1Rtx7d4v19BD75divJBQZBCTCY4wqzdwSQNUQcgoUwwwYE5AKxnTxCEgp00uQEw0HCNOLTYj5heWbapYJgLi0ZRYiI2K4Q4aIIIKqesZcVEPGLM0DBCGGd5p4viOTmBFxcoWShKZCAjir593vJjhExAw4+nGMXkTiIUSK6oCZ+YJEApxA6IpEGJ4WPqGzCREZgpQZQ/tUNiOcWDKDiMYYpVZhLrUSorkf3QiBWUptmamqiAGI0ppMkpd7aau55xhEJDTtWoEwpRhkZikyE6ZqBgkYbhPtE4EAHugMNnrjNSItgEUI2W2ERxKV1jaciZ009wlPel/L5TStz7o01aHqzDOoCmaKQL33McZsq2BmZgagVqQfx79cXk/bsp1W5oKQjMSlIAJSYQJi2k5bfq3+ACSA3zvV7sTfedTAd5YwfJW9+m0c7Fc//1YW+Vq7+ZUb6L9tzPla0/ka+pO/1Hrmhb76zdfy0Bf70r9pQ/yvXo0EKABLAUZQAzXABOZZ6wiqRDj7DTwncA0zMplyrbIuU9/+xbPgYftwopjZ5nelMaeXh0haq4+P26khc9K9XAxdgOcNVQAQVfnpBSygFAIkQKiUjechIO+vHcR03kwPJYJnJHrYJEoiAkIAMmEkxp6Bl3H4T6/jZVe3GO6HxdAwd4t0z0kPC5jU1ru+lHD397ybNwMSwt0dpGAEIPqsW5IiIsnCBRkRPe8pUnKkSZp2x5zRXURGmgOWfzWQAiPNgUR4TK60qBkTYxGSFsdOxNc+Nlrauli4jj6zafOuwgMhhCITCdLDmRDdiILLctpaLTQMiDETj9sV0rf1tO+HLCcBQ5C21DG8lHa59RSw/Vm7PX08aTe3cX78QJhvb69hJksrQse+17Yc16sVut3w6bRWxtuhCSDCQAyysASrByaRrNsmiHY7zAdwZxQXq0wxrqNUHGRpEVdmuR1m/cbolBlMCCkYLni9+XV//vh0RsRWCj6cx9jb0qKW/XZrhJWcWQppJlkEYgIxEEI6Edoww4B+1LYEgGDW9WRuXUcm/vh82So/rfh8ywl1g1IhePJEKyUJher5YdH9dr3eDg1s57qVx1PlpfQ9BsDrPo50qiVRPMwR7e21uMqyALEm3m77dtp8KGaSlNBjrZKYRIkZrVZAEkZiI4IEbIKQbABjjGGUySDU1cHy7doz/DVya/TNWX52HjrUDkx8PDXKfLaBNI/IAQCUgek3xxZUtracFiYw93Ebkck+hlG3oLv0y7NpE1kIiYi07wfC3jUBIpyIamm8Lm5eBJklTLsNFrHIti7ppmNgutkIHZ5+6/by8wualuUk69paFYzMqEUYUiM9szF6kktBIc+QLOHOfu/sw2BKsOF+JBIBAURa2GW/sgyR0s30OEw9whHwh8/P8sq1FGISkUVkuPpEBWZC5lDLd8q9FInMdPAMgAQB07h32UJiwKwcZuRSyraeGEorjZmXuiCCDvVEjJkPuC7LAoBmg1NGppsCkam6ayuFKvTeL5drLXxaFyA5jgMAqZRSBIncEyL70AmvYJFSCgCgawKU1sZx2OWNpYS7964zjoIYmcd+REKJYJbz08fRj72rjz6005WQ+e///f988/F/ff+f1GwcN/U2btdsC3M9nbZ13a63Y9/36341dGEOwHTf3RmyCgegerZFvvn2b5al/fDDDwFu2p8//3Tst9qWx/PWigCkag/Atyusy0oIYQos8R534lKnWZQphdEM3Rxp4p7kYTn9z7//f/7w/JdXefnD27/48TkGrktT9Uln/OHHn//dv2u/+913t33PsI8fPm7rmmGmZqqtrgRo6vt+vdmxPTykAyrFAIcrL1TqCpS1FHc1G+AIEMgehsCcgBaa5o7mMNIDQxCZUJJQTQW5Sg13JC5czJWZIxL6XsuSRMfRgYiSVa2yxAosMmcIbkbMpZYxkgkByd0mXIqQtrUJ01Cty5JUPVwQEzEQW+WJ1lbHuhWpHBmcBIB1ZSS24cdLt+6ZsL8e/U1J0M2nZ8Ud9ssgkXCi/eenxw/r6YwZpS1SCmawm0cwYmnihmPEcRyZER7rUvPGhWfofmrQc2Y5K3uNqJnrT3s+rXjtvmz1mw8nIBEw72+ZIKV5QC1S61KL6VBPQ6nr6Xx+OKdrEwnIYYbMdxMyMhAzqLuNJL+8sQ9ONShtWQLRzLeH07KdzMN9TzcBGDo8kiBBqCyrmY7uwmimP/zxH0MNBa0fMTEetYZrEkmtDirMtdQqvDCqmocfQxlSCjChcO1qRDNVQInIwpg0dHdXd0oPYkGiQAAiMEjXoQ6QLEI5u0+5VMYxpllYClo/JhmEkEcfCEnETbKLMGmKJFI/9Hq9ttNjmaC5eg7kYxgAbOdHmFsUAlMHNyKq3NS1D01ilMIJ/XIhGr0T8dOnDx+ut9vnyyuktNPjx29+//D0AdJ9dCx0u7xGQN93JNweTpfPP3WW7XyuS1yu1350t3DtARjhSbNoextqKGtgtcAqUmuNCCmLZbTCaqGq2+kEkNJHpodFeJRal7XVQv0Yl73//HK59uGRp4dz6GFqIlxKJSnELCS1NbdBLEiYHsft5uMI06SEDIgE83nETvdSJBHd7yu6AAaorT66g1+v6unAwMUA99ttjCPdhbmEyXZ+fHr83e9+TwQixcyEeGnV3fuxE1MpzU2FcZEF3A5zaCsjMYRGuJnNyT+AFN7WFYkjZ7EJIQsBoDBCMMIY/Xa59kkdRjbPZCiApXIaQHo64Dw64X25NzMmy7JSBvgYGFPPKMLuNkOd0y7KLJDZSvGIwiJFEMDNYg4hke8pFyQiEOLJDgJABEqbdJ7pXgOYsZrMBHAzyBQpyJSZHoH3oco9rUNMoUFESTS75DN9PhgAYGIolGkZeWdLJ+Qk+eHdejQtIUyYDObT80hJxAgMKoyZHFGHuprGpC8jEWdGekIlqbWRMM+QFEAAMd5BOm4OlATzHkhT051g1r5EIloEE3FpMQ1lpjPMNvlGHiAMzKzT4QuQEa4227jdbKZaZslMvDtKZoWZmbk7IAJTJrRlW9eNCCM8IpDuvqrR94fzI4lEAEtBoowcOiKt4jR+IjJNrQQA0lGHEmKG7XsfY3jmWpdvv/1UhP/pX/5l7wpIx9CfP78J87qtjenvf/c//dMf/vmqF8CoUk7LaWnr3XbkHhmqDGgQDgDrslJyPzQwPl8/vz6/nR/PT4/nbV1OD6eu/Xrbx9FdPSCQkRkx04ZWqZO06h7C5JYRYRYpCADImAaRYe4JICKUd6LLDJtMxnYQQADShGuDue57InEtZTK83f122xlzWRYpEhZj7JAQXz6fQCySdyUz5uc2PIhQZKYXg1MQlZQAJt77XYVKBMj3nW2q6uefPs9tIjLNhwqIrbXT6UQz7XVv5bvfyGRPL20hYiR0j4iOqJGOiWrDRscMj1VYAFHvwTGrtbFIZvRwdafR51emFpl5u0lVsTvIFhCRMzCBiZdSAxIgmxePhIhg83sLfTDR2iojZYS/p3WAEKVk2gwaEsmyLILpkSRFaoVED49Ij3j/vvtx7Puxi5S6LNBxNu6aGQB4QsGZQlukVCYcfb+9fDaPfe9EBghEtCKVWjAB52lVigE4zGaohERPGCMBgBlQMOJdDGJgAHzfvX/to6Ff4njwlz9/rfXkV3/1RdTIr/7k6yt8bT75+vp/9fKrOFjCLwSjL5Yl/ren//z2ggALwDLXdA2g/fLOl/u1IgsC4NevDubd5vlLdaxb7t0ONfVQ9/l9r4ULCwmXWs/nsk6Sz7w5hJmVvf8MCAAi+d3HpY9khMiAgMKAGfNPEnJGO6eV8/2XARGquWu4RUaoh83PjPoPn3NYdPVjmHpmxrgTPcCnSzthumoTkBDjF29nIpFr/qsdLBNASRVZptknEqYnblnaslQRnsnNu20xQN+prIAgMl161CpPZqW6Q4AIe6SZZ95T1bOcMiPMPaOsqZdCEG6zUyQSLFBKa62hD47AUsMBKWa/CokspRAtXGop1Ja1tnp5+Ww+llqW7/7WI47r29vzzwHlw+PDwkutSx/7WqkyKDX343q9iRR15dG//eabjx8+PD8/v70+E3Ip1dyCOPtFM/Yik8e2H3tmzklyeTxv/Xh7e3PCQsjErcreoxQkkaMbSNlHUBulNSlFVcMMEsa+NwrL1YceQx8WqJC0LsctIqGhH/0QzCoFAda1ZQLr7WkhKPK0yM89ELFnLKUkACEXQXCZn7W+32Iqi62JYz9cw8bwn173U8PAsiueF5ZWEwRe47MypoM7MMfox+3FnbC0VqVtG0thwFbk5ppcFsbWuB+KDIoSvHW/ZiKXkjH5sxFmSxOuYsNMNdJqoQQ6tc0S0h2TwOeaiQMXztB9D5a65vXt7bG1ZSldfUS6uwec1vbhTCPCAwXQFdZtMXdCSOLKUtHdjIjOTXQM10OKANDDUjvA2/Ua4Q5cWsOYpAgCSCaGzEQg4nTc+xARD8+AWmhpwkzMp/n5tzGEMWxgXRCMmLO2UFM3VYtMzvh03opwcvXEzAxPwmB0NRiRlBbMiVRKYSIatXABCGMPiLrimfDW9zHUujMRFQKEDDBTt8AFiwguC0D3OQ+OmHmcbann01ZLOUZ/ebuY2vTuuTkiShMijAQIt3Sc5AFPJjE3VzczYrJhLLjUti2nUholE1EtRcpMQQuRZ0Qit6U9PT7W2vro+213NxsDEKOU+aYgwH7skQDZWi3ILCIIQIjhocPukMJpGSfSMSKztUZcjuOmqgiJiAmYHggAAemOpdRltQgAtjFu19vp8XFZH8JGEa6+PDxsn19f3eObDx8/Xx4/v/1cqC4iGNr367ZRa6tbeMsZez3MHIAzzFyY1Ok23G24p5k14b/92789nx+P/Xoc++22z8lb4YxSqdRSqrnbUGM+P54RWj9GumYCFUz3OWY0c4JorcxBLiGlm1tWbt89/r7RVnPN/p9/ts/MhTCGKs1aO8SHh/Onj9+o29A4Pz4yASKYBXH96ce/pMF+HYB43s5MTTX36wsVeGxPbsZtYaauAyUJMAwtNRERCAHVhkaARKBCAGShFEamRijJiDw9qiXcXL2zlEJVIJExIJFxqc0tR+999NfL5WF7aKUWQQsfajMZQSyzQyOIiMhVA+5FuZU5Wx19uHB2C+2UWWtlERzaLxrusrAx17URQUTYMOtKkq7zfJVh956dcKSk42WEQtnsdbxeX67/2//m3333u5lZjgSWUoVnwgtyQlkJAXofNrRqTN5/W5bH0+n5M2hApqURQzBjYOlm1+GXHt98Kg9rYeJaMEMzIUwyiAGXVvWQaKXvvjw8fPr223VptisSUM7S3LszerJ0TSZAKsBQE5JK3As3gSbKAWDCQPZjz9gRGdER0RNZ2m3vQo0ACLN3TZE+DletkzqBVOoC0F1tXTdiQRICUPUAM1XzTGYyO9wKS+jAzPBslSB8BYNaR2dCniRvj5QihBgAWGuYAQIDFCkzGDidwoEY6YCSKON2KVUAxSMtkoRtKACsrao5uQcos7z+/KNrz9GX9bQ+PDFhM4sMU40MISqtAUISSVkCZdix7zshSam278hsqv/+b7/79LAywdrq24Wenp4+fvi0PH7DJDHeTGCojdHBMQHfXl8Qgpd11ixaH5mZkeO4qemw2Pc9gKUiSUGoKIsnHcfo2IWglIYM6qFXJQhCLFKlFOYj3D3MNGpdapk1Tcefv//zP//hD6+vb21dqSzpDhBltl8XERJiCbf0e+igj1l+NWbcA9LCNN0QMWetOaW5hgcgcy3ILXlVi9x3AQxiT0TzSAAd1HtIkbZt67IUfnp8klJKLeiWrgBYuDBlZqjqcdwgYlmqRmKpnx5XkmKjT+eolELCfd9FmFC4NGQJt/Akkcl+BEAIOMZh/UgfagE0rewcCX10hEKQrjZlGnfHAKAJJiZiJqQi7KEIwTyt9XeGMaQjQquViPvoZlGqIL6HaQQgAhEiZ9+swJyShWUEExNSvLcIQQJNBz/eVaCEjLnwdZ0LcBHOuK/R7y7ZCGQBhCmImCnAHREUmcSUHiKEyCLirolAQO/7aGBCEZ4dwBMMwUQAkkTej4JWWRzQkxF1BhDCeW5OzH3WCw6PgkQFAWlu1XP2ds0siUcmIBILRbKqzdfW76UwFAF97wR+55SxcCl3736mmTMBwB14MYM8kI5EQIj3Cp2vdhIIzIyA4zjcPTMZKZlPj0/LupqZmSbMGiQmxDHGN+fFE5GJATMhMMjF3MbVRHhpjXjaVYwAmXCMAUiEYDr2fUcpS2Jt7Ztvv0mA//Mf/68x+nwsf/nh5/NpAeSlyf/y9//xz9//8Ofv/5KI6DjURWMhJC6YsSzAjKpmEeuyPD48HoeauZlljlsfvY9vP33YthUJSuXTdjLz3jsSZiFDm/1yTKQW7p6FS2uQkIngE4AV4MksgPlFmBCZhc3TrRN3LiPOPwMGQMBhircbrCsTgwgLu0Yfau4TrTg/tOY+mSPE00/TJmQ6IyRzjK5jIKKUEgGYwSyZwJCZQDTlPcjpI2NJyHdP0By8xx3NFVFLOT8+lSLT82U6aG5QEcMDIN3UpqFtfhZIEJESCdMMIvN6vRz7DoTCMmk4cp+/Tv9Rmg3tOxEj4rptIhLmhTlNMxwASJgRBDEBKzMW9AhMQMlwCyyZ7b3OLxlBiGVSpYAAw81hHlxEgDAjAUKEFyFIIMgIy0QmwlJIOBNMVc2WZRGRGYcxtVILIg7VBBQWIFZ1i14thKlIeXx6rBhLFWICpMk1mzSrAEj3/ThuAEeAa5rCUDgOuF41ANeFl4YWUGuKYC0QAlO9YgLB+fF4Vyq+EinyN0LMr67z23+CX4o1XwfQ8pd2nr8q3Hwt93wtP31t86F36ee/rSv9mwhDv1K8/vo/5y/Un/uvf/ELuMemYB92qI/h5o4Ap8anpRQhZJHWtvb+Uv/y1n771IhxW+erJ/eHlgFmkJGeiACF8kseLANGhMWl2/Uws3Cz4akB5jHM1SI8zNMn0yjTfK6Lc4Yb4r2fHhDt/nS+flAxc2AzC3xXrjySfL5080CfALf9mKrpjIwSETED5KwDAAQCJGZiYsLWahGOTLPJN8svfKU5l5CxX4rIbnLoPjwdSEQaS6arqbqbe1vW1lo4WeJCSFL27gDRhBAjkbm0VnhbttNax34xdwehgsu6DnU1l+M2TI9xPMEChQTA0qL3cYx1W4G4jyEsUhAg69I+Pj2a9v16KVyAhYg6liWMIB5P23AkQPXofSwLhvaH07rfrsNCwzMHUoFID29lbdtGVJgZCEQowgr5Q2tD45pkva8LHn0Qyz6sMJxr+7B94Lr1/bYfN9dxejiJOS5VAPahO0RjWgutWEwP99Qcy9JAWI+jVJlzyJnwi8JMVKlghmosS+vDWilG0oHYvDUiPz6t0o+jh0gMVXt9+clc1+1RsU7wLaTn6I5IIiubJWQGg1cCyOgASeKeZgPT13PCQJ7TLVeXCiRgo3ejIuSjSB0Jao4cw52ZCb2wRF0IiAnAFimNRR6adPejWy3SD0vEbW1CGAGtoHkAoqatiAtZkEA4tZqQhDQUcDhTCFMpMoP0RYoFdHOWkoCmh7Ra2koRQOmlpZtZADELliIMzkiYIW2JMC6YgAPQxiBUlkZSRQRFHLhGZ2LBpdSaSN0hMhlA1YcnMKf3YYOlgjAxFIzQBEEvCHM8MbBKxUSKo88uEgMkzJyvC5gqi1QRrGmq01vHzLPIfnIFxtC4U+ABCYtIJrhGMiECEpkNSAegjETife+QgMCzkCU8RIpIyQgiFsFW28w/T75PQq5bW1r98LiubR2+jtO278cw1TF634ll32+D50qd+lC87YtHKaWUomYE6O4QHrUBM+B0YoXpAMgipUhzO2Y8HZG51iSK8ASQggSwLCsRR2YDNHdxm8eXQmSRj48f19PDetp+fv7x5fWllaVKxQQmrK3WtiiNhEYISFBtSpTK4VLKsCA1AsS0dN33S63l22+/Tf/o4W+Xy/Pzy+jH3vvRB0lZS4FZezzT6cjhEGHhd+Udg0plAdJxYMJcCovwPB72YYj8sJy22j48PP7DP/7j7ThU/Xq9XvZbaxMgV5Z1/bS0l9fL3vsc4QozSVnqWrh8fHzaHh4eTmez+PzTj8dxWdc1A5LB04+3z4pHKbLWUxhgh7SEEggl0yICwhPf+yqTAtFTE9STKAiDASAgk8ncmZIaW6ZnLLUVZkKotUBoP/a11YC1z7yxGSFABkrYsDE0EqowwYz74YePH7ZtcxSIMFVwTRsw6X1FmMnVuzoQLueKGW5ztInrmd1g7IFEPu7ntfv5eVrlNd6+f2URtPzpxx8+PD6ta8MUM38/51NkQtyj3cxF1c1G9u42zg8P67J++vRNwfznP/5JikR6ExJGVS/MXX2p/OHxtG3nIhwJ8zypIOZxqIZZhCMkMq7bqbZl9AMAxzGIiJkApYjMVuVpgQ89gPDOSheBMSIAIRDw+flZMJMrMUWEQxLXRBCemHbsamOgbC09Sy2EwIBURIpMyDGUUusSpkU4gcystFpqS3fMLJgWOcxdu0ICl1IrExXCYLkeA7rOWSNSueNXHAreMwaQKUwQEW6RgJGCmDSH0sAigRzEyMUR+n5NIJHZ9u1IeFqXMUZCgJR9319fXzEzOON2qJv2DhChYyRtS/vw6du6LMLc8wBP9XA3YOGyiCdH2uiPWzsXPG630/n83d/83YdP3314PFukmobb9XK97nuGFSID+Pz8vLa2PTyEGiPOaZgQHbeRETqGJ7R1q+uZpXGYcHEHDCcETEw3H1yXZonq+PhwaoWJsVIzMzW4jVurVDlvt/6HP/zxH/7hH7//8ScmFs/L5crhzDwrvqoUFs6ABBAijxjmZsP6LcLhvXPb+gHhNLfMiYhpERGKlBnI4CAZ4ftQIUIuqQf01+CCkUjYSvnw4eP5YdtaycgMQyfCHEMTgKVE3umQEZGQl6shy8Pj09La7fKqY4wxmIkzGLjUiliJpLSZqSFwBaCI1PDIdDVK0+OqvacnIqUH81wU2sgsUkZApBFiqQ2R7vsH5tlj5pEkIoAUXpjcNEwBIAFZyiJ8HJ2I9v0mIVR5hqB5mmdhtnZFzkk6IMxKBGbGjCQnnF/VuWC/hzH9vVB3RjPCEfA9BJMIgJmYkTCjPESI+QXuO9WTsIxJzazMDBkEGJiEBDid7AmIQqjTJeYOmExEQhCUIhhJkAmUiLUwE4hhJE/BemZeZtX64XH0XoRbrbW0zJgw0vn2AUwuBSIxUszKPzMFJCQmJpnkBh/E5V41hzAlqmHOlYh5WjzgS2OU+/1tyvt+E5EBkwADcEaBcL4FCKeHh+30AMREEW4zNfwFFp6PW86bQUICiCSZDszIBPXIoRHdPaQw0/zYDCF2gOM4ALswL0srpX373bcvb2//8sc/dR2IFBG3fYeMx/PDN998/Lu//T0k/PFPf9bx/cen8fio67qKTHY3mUVGuhsiPj6eX14v+7EjUqSb6s/PL7d9P63tdF5Kadu6MPP1djuOw4Zpxtra5KnO+kJiQp+pWnRTTMnAzMh0xIo49Z57PRYzE2MGAgQwWkZEyPtnKTOHdkAoUhYEKiWZySkiLUbMCrZ3Pg4zAmKprbXF3cxoaE8LZg5md58ztkxgmd9cAlQdOrnas08o3jfK941gYCJO5jchShFCQCSknAKqexDdOQAR5mY99znta21pXJBIWCIccSzr5qbmzu+VVuFuADju0NzJZkn3MZRE8rYTIhM2QiKKTITEDAhKYWIGIC5SJp0nXAdO//XdZBeBiAz5HqVBRJlBu3kmRSCY+l1CJN5xTHMZEUkChOSZxFKRThv0fkQkS5mbf5i1tsIsZe5rae67gIiwlQWtE/N0Q+DdRzzzZhjhTfCffoB+m3gpGH3sh/ahAHArXEQS4bQtDyeZpVGqoAYisG5QZkw1gfAXfp+vVY3fenl+5Qz68vvf/vBbweLrv/r6jugrxedXP8Bv7D9f/vbrKrH/QZ6g/9Z9IP7Vf8VfX+Po07+SAClMlelxqw9rxcnPp8w5H/jvPaH3+8OvXu0ERBBOgLH3w2GrxESHhnt2NTdTi0NtqJmHTrRzhN+h9Hd1JSLfu70m7me6LfOLVD+/DBMgOJHVcJeAZ9n7/d2YzfUwrzxPJF9L/XMryXOi61N4zJwrEgCz+Rx7VxbKgHlcQZzDBQCAEYmIsiuqaatgQAkaDinUx5joaZpYuJz5SNIkVGscyCiWpVWYhkXCUuq6njyEsJw/PABy7/31+YdMoHud2ciIQ13IaytmfqTURmb+sG4E+359/d03T4UiVVlkXbcxegSk9kRyohByHW1dt0XUfO4er9frWvgAqMsGt1sAqGmotSqZZO5LawBBkOtyysh0SwxpZei+bNvtLd4u1/XhzAzjUPPu4RuXTFu20zF+JpH90KenZsPXpaYtVwx0PBIIIFkqh5uBaz2dj2M3U0Z2U4fgRGrV9FZK48jzWrCs/fIZ3Dj3iLwpu0Z4lFIbCwvYrmj9drm083lpS5FlLka7Z7oOYANI0+GziZwL4Uq0q3VAwkQ1hKjjpQoYLX1ohLFUyGQuw8w0mXPBQIE+9Db02mOp/NBK4QSCRnFY0LYslZmwMDgAhL699fXhhAyBaV2JGQBMTTPTsntHXrSbCHGYJQXmuhQSBkiPJIJWC2QGUGu8VGKWbt7RLaJZdx1m6UBI3ISJuFWhDEIsgFRIx57jVlrrQ/12daBclvtMMUGKFNHRGTOCyALLuoipH0dSISl1XYdZ9oOQIAN8+AirHAxGYeqcgEmMzMytrIXbOPLYO8JERyQJISI6hDuKlCIAYKqIOIM5Y4zLBUqR9/o5xPdvKBIlpKp6+LybJAYHRBx9aFdELFUigghZSpGWESTysLalLcxMxAlAXIjr2+XqZk749vJaPmIttZzWh4eTqu77fvSh5pOtuC6LCIsUd79cblJYRFqpAAnhtRZ1RwBCmsUQBBjm3R0SEqZfKSJ8hDOLupd770x6uKrO+BgT3V4+jz4M4fHhbBnLeno4P0VGv3TBgo6zBhcQEHxd27KeynG7IM2OoevtmoxVeBYW7/vBlBXdAa6X/fz4UbWvtTUus+d4v12O274fu4/x1nutZVma6xijE9XSKkLs+83cCZAR+nEwSwKM3jOBmQhpPS2A1NQ/P39OxLXyx6fff/r06fsfvn95u3z/w4/lUoCQhCz0ejvm9kW4CMvt9iZSpuL+4cOHdV2J+bpfbre3t+Oy1np+OmNhQ7j0myRxWSI9kUUSQoICEQBJinQfgYNMGIoQh2EiWHS1AZAB0eR0p2QIJGTm7H8DBoqwIIYkTIpwkADEwGLTAT+vmplDMwCQMuIYY1saEWeCjt62B1WNKEOUkJhISDJhqXIwA2Q98fZhAZyYqhSBtgJv5XYhKimL2AjXHFd1izlIrUVmUgMRjt7/j//0nz4/P//H//Affve3f7edTlQa8oqprgMFGGrMTh8EZiGATOyqJYJLe/j4N9vL5RjHFFIRonFybZ/7i4iMLFA3bhU8zCIBzGI/9tvlbXa3hSmXehzdf/zhtLbZhTAsWhUhggguAqVJrTNR5V3No5RCUtzM3ZgYmSJCI5tA+Exec8nwCEfEcAA0NVXUjkXo4eHh8/ewFPKZvcNsQhY5iwTdfUZaYHYWBRBSKTiL7k01EEup27q5zz0BeqIgVNC1ZRToSlyIiNQ8MlIVMqUuqiMyIRKZEjETI3IujiOCSx3mCBmzuCUrzjV/QiEsBYHrSLwCqEVG7j//xC8vyDJ0DMvJILy9vb1ergjZSi3LWtfT0ipLUXUAJmlEgwhXgQ/NNa51+fbT7/6OS0tI1b3vl88///TnP/+la6xLbUKjdyTxhKPrsmxUllZrHTbUAilJEHXbnur5iaQe3VpdZaIgAaLvsZ0hlRCXZbtj1MInX6YwMLGQVNpEUkR+eH35P//zPzy/vC6tLeuKSMwkKMRCXOgO8yCHSEgLHXvvo+u+ZzhA+vS6pgUkJkRYZgBSJKsbQbLbUGXBtj4Nz+EeQ2utNRIjgABLE5aPHz59+ubTeVsow00FIEwvt0tBTOIAEOGJM3bTueSrS3WPY99nwic8CIlnKSYSIdS2MNG0pVApgNiPbsfeZ9E7AnANzmWpM8fEpanpvcB+3pkpiUhr9xaVe5N2QqaFpYIUEZ5FC2M62ZkIEoi4lgKgUesXBDHMrQXOHYdPWYaYE1CALZxmoMnznighQCQgIMCEJMQJeZ7N8R6JTHMAOrvP3MMdM2Ju0d0tAZgoAYgoMzIxwiOhVGamTIhpUphb3DvqNy08fXbT36nH6RNvnAbEECwCAUQ4ec8x+Zk4bSNg7nOwquaqJkwAFWegG4nuFIb3JfSsbyfymA8ScVYUU/Y+iDlp0kDvp8oJ7bz/P+DMGQGCWwDA7LnKTAIkYU+wofheiA731wGYuLWFiIglI9JNh84k3YRBeMLM9wAYTv8JopC42/Aws3DMdCISbji7ySOBUaSs6wZERcTuSQT59ttv3i6vf/zzPngkSLhnZLxeWOTp6fzp04fnl5f9dhBfDrUir0tbSi3rurQq5qZDE5CZl1YiPCTUDACnpnXd+zH0tFo8oJuPo5saM7lFh2FBMw8C86Ewa4Sw6LD5GQeRRAjwwoWRIcFzbiUpIiATBJLThyFiwDuvCsghr7e9VbvvFTNodqJNv0ZCpk+4WAKUUtytH/v8lDAxUGQAMedsI8WZU0tE8PD5ciIAM0/SDQMmgAia2cw3EVBiIgIxz3awycKfV8gIRJnCzcTnIwJkuI6RgQgLbyyYPaWU1hZlhqHTFv0uNLtqEM03H6QUA0BKYmYSZASAwLuW23XkMCaWAkQhzJVIhCHSARWZkRIyAQQJhNI88P5FmIYFQEoAD4BEJJglJ4CIyEc/PKLMpCdlDAANdYNIKWJmt/2WieuKmTAb6OfyW4Qj4j7yQUQAd+8RaD5GF+Faa6kFayvCdwAv4cNp/f4H1eNCCIgQnkNt6raqOK2DBLCuD5AQDm7ZD1QGxMwFmbN8JVx87cH5lQLxKx9Q/rU/+ZXBJ3+p48BvBKavr//1nf5WA5q39jU5KH7zyy860a8e6v9/XTJZuBS+dxAjbEs5Pyw5Zxa/kt/+v7kgJGL6vb2LoQ//6TKOSVMByHRVV49h0TXUXP1e5XUPyU6cHqRHumfkVwIQ3PsMJhrsHhucrQcxVZ4EpN88eoR7JO1f3xNEBCdiyOTkqUFPCes9C3p/OVDVEAERCImFqjATZkJGACZkCGTuY0QElRpQMDpBlrK4jYkHAwBGBGaqJx7H8IzLFUsFpFKrlJJAiFTXpa7r5Xo5160ghVmr5eG0vb69RSRxWwszgjudtmLMP39+7sdAzPV0vnVtdeHjerm8EYH2vS4rZlQRA0wjmzVkhgrU3XIMIlyWBdxfx9vry+cP5y3lXNclwuze0ujWvbTS2oIQ4GZ99wgCqNtmQVRajsv2sN1uOyNWIqg5DuNSLCK9l7Uuy2KRx9HVfFl5O22hSgxBDLYLM6Q4kOAe0W2/JOFQb4WmIpAIfeyAXldX1dO6RKvFq2Ai4XUfgB4aIEvXrLVI2Of9rbLUVk4PJ6m1nh+id4TsIHtCehamYAiLNFXTtrUis/CAhlkTHhafD3qg0VqspVoGjwsDHuUUyAmolomjsABAd9z347iGfHpwSwojKV3j8+fnPNetNs98ufYISiEH2o9RGSCjZRinMLVSbkOd8tbtehsM+XgqhaA0IWbTASytipsnoGesJRKIhANACJHh2v166dtSmNEMJji5SdbCxK0SFKFIQEpaTuo+9tusY2CsYS6Fw8MtW2XtaQ4eeV4k0kM1uCSgiBiAuxeRDJgrKCBgRA3DA+fga5qB58NauTyOUP353ZgHGcn3BhN3s1lJn8mtlm3dMvPtcrnuBw/0CCJyCxFgliISEJBo5D4GIHAB1wnVytHV1DIy0ttSJz4AAd2dMddWmZmISq2ZWApJaaW0y+VyjB6uRPn4+LQ9PC1tjYyHh4e3tzc1632oWS1VShURc7/5VYfesWEItRQgcXeILEUyASFlEmQQh47wBCRkJIbZRg2q++0WrqfajET3K3FrS+V12c6PXA7V0Vr58M13avb2dvn5558cww0LYHhM9pirhh7STuu6uflxHEWklJJpacpMkKDuU8zPCGC47nuEv9F0KXMp9XR62FrtYzP3o3dErKUNHft1l+bhBSBrrYdqeKAgRCYkMwayqpqTqmZCba22+vh43q9Xhoyk7XT+n1p9eH7d1uUPf/zz23E7Rq/aw1CPPo+uzHMfbQC2nDZIZZb92PfbNcyLFCoCQgHJDhkREMTSyhYB5s5YZpNxmAW4g0oSOBEzOqdZIhAweAYESXELcweCyAg3xzKGJkEtVc3DgFDcB7j1jMv1AlIY6XTaxsij92PfRfaPH5+EWikRASRsHu52+fx8WsrFuhHWWqsIOHu4EBaiKpwSdREbFpHpTgXrJiwIyTJmMXGWletGd+CVJTICgTB7vRtrVe2HH3+CDA//3e//3dOn74iFpREfHpaUjhWspylTFoh0sx4viX/4y/dLES6y8jqGqkdhZKQMryJPj+cgGU7i4ImJDMhjvI3Rx37sx269J1eSxcYQwskSguilNhZhSsqMsJlzAamjH/AeSJkO9nCrwlQrsrgeCRMdAhHp5EgYbhEgpezHvpYwQZFyfvogdcHQGOpuayHneu0RGcwYiUSUIgAwxgi38OBS7zFzRBAh4tbaMRQCEcHDCJHSl1qTQIe6e5AUKaGqiQlYRNDU5wwokaUwoVuN8JhPkzKBhABxAfU5rJoEemYpXBHSulYRJOz7bVcLtzA3AMe6LLWUkhG3/QjTa8Y0GX/49ruP3/4NcaU0Lq01Py3lm/NyakTMCYcUsDQ1s7H//PNP33//49v1xixmpF1H76fzB0bow3S8XW9XBgegrmqBXCqpt+2JZAn3gAwkC1yRIgKQqVSYaOGwdVnHUEe6KWBYlayCAFBqXZZGgFTKvh/MUoqIMCGzCBkzyyRnMTOx6G3XMfptH303V7Uj70CxzEhilLX49cgIIDQPtUShwLQJ403tb2/INecusR/JzOujEHJZamsPHz58/PiJ0713YEkA7YephkgVMTc1Q0Ai4ZIJsbSFpJiOAYmQk56TyMhF6sKZkD7DLBaTKZvpFuGqOnudEIB4XR6e+rH33mk67gjdFODuINDpDFIHSCDy4WZqdyOzIxFCyNKkFgdM1Sl+EuGUj1ChyKwQQ4v4110R5iz5FmGkSd3ywgyIGRA2woMICBARhAmI3RQIBfDuaM98r8IF9xCiIsyIPT2TIGMmrO61j4AwrVPuUwY6et+27d19cKegzrVzRIQaADBSFSaRMM2M2QcqwtM2QkTMEo4RAZCR6O4ImJC1SEkARHMfw8zjOHprVaRMJNE0YALCjCzBe6kWzytEECL4QDcSue9cIad0lhYiHHfUaRJP1pu+Gx0AEWAak/OeO0i3ufZorUXkUGWRZd3C7Q70mWQHYoR7U3AptQ+9N1YgAeQEMoZziUlFCpZtOsCO3jNTpIhILaUta4bPbhoEjIh1Wb/75pufPz8PHeYa6rNM/fntzcCfzo/ffvvNX77/4Xq7qdqyrh5Jx6GqT48PkzC1H7r3GzGVKhFJhB6JAEg0PVVDvX9+RoDZgKFq7uERduvE3JZl7qSKCITfIjARAoGRihCRqTOyFGEWcvZwuM/tHRlt7osQPZwSGRkBHSIwu46M1DGEcUqNE+YhJIiYk9Qa4e5Siuow8+kwnTN893Bz82jLOu1FAIDELI5j9OPABGYGRMDZEvbu7QLIr+rqZn5/hIfHGF2HzrAMvGfEWimllPl3iKSjM5JrN3dEzmkNm1DAGcOk6Tf0ocYREUlEUurElLRlYRGASY8yU+vDAUHe25aSOZHMQ1VnEnYeLd39HkFAEJY6icpuoAaQSJJMRQoBZEKtJSIJkVwy4hhmx0HMDkjMrsrCkfH29nq5XNZ1HWOwyEwJTr+hTexmBDMBLOBsEGlaKQjiOIC5l1pqHSLCTCJCiB5wvR3eO0DgF+112i2mIRshs2aCR46B1xsQgTs8DygC2wM8npK/bMvf//e3usxvM1nwVfv7Lzb3/5XLb9Nkv5V44F02+pUm9eUuftU3/yuxAd+vBv+9B/P/swtCETg/tG2pmYmQpdJ8t94f8F83Ev3fuNz96wgR3S3SIt92Her7Mbo6IzDOc0aEx0RPm92NPzPhPYWad79Pxt3SNzWgjH/1AU0D03y18a7Y5ETQxvTmw5c1B0xPUN5/uB/Ep4Ge8t3ZMyvQprZ0NwF99aLN8zQhTG14/mK+WkKCMOBy3bctuS5Qm7uakto49tvoNyKsy4IswwwgCHEAS8T68HD++DcPpw1jBg6ISjkt9Xp58YgxDCG2tZwfztfeOThcE+z6+rPeKCEIYhzXx48fCYHZvOuynZ/fXn748edvvvkk+5hDG8hgIXBEKgA51KvIctpu+3Aby9JaKZfjdjhC3B6ePox+jHEshRE4koSAMSFcSjmOPSdzZL9l4LI2ZtbjBpCJ6aoCDsycLrIlou+XWpdFytH7cdvPSwEAFNRjGBkgCQu6mXqiALrpQEBhVPMiLJaAKGC2357HOJ3PTmzaT8siYaWQWVhAIklhTGiVxqWP3tu5nU5LkXZamCAdtSdLlYUZ3IgRHCvT9XYNs6HESK0w0LLvHQAEwRMPTzZP8HBHTJU2q3UJMyD6blDMI9qyFqFxu73dug8VUGlt76CZ+zBA2oevrXrgMPecNEA/rwKIY+hslRYG5oYs20PJiLpIYRwjhg6PaOzmNNtSwuPqWbdqOigMkOZ5RRA8cimFCKVWisAMTIcALNWAMwYiAjImcjtRHObRDWqBUHeE0TtAllICMDP3YZTuCUhwqjKQXP3oI9yLcKQXJkyARHOtxJgUGjDzHXvUBWtbtvPpety0a3hgYlpS4/s3M2Gu9pno6fGx1ZoAzPxyeTMzYnT18Mm6BaR7mSQBhicK9t2O/YDZVpuQDpM3YuaMXrhGqDsU3MIdgGaGEbmYpWC2mnl6ICTV47Yryb4+PHERAVTVZV1rxNKamuvQcKNaFqnp1nt30+4mzOGOCQ7ALETEiElYW0Ukcyf38EwIIkYEYmrrGgkk5fZ6tTZ4jlYJMlx1DB3oRq4vz8/MvD1+6H3/y/d/+fzy+fZyresJSgNAc7/eduTLx7qt61pYXt5eb7eraAl3i0DixrKQZAKEhuk49tcX7LWsrbIUotKP3pYFQGpj8iilRoTrUNX96GW0UttSK2YUqZF5N2ffY7U5D5qWkfthgGIx6VEJBJF6jFbqhw+fWmvruv7xhx/2se/7gQUZyQOEMeOutVcCNRvHYcSqPUyZ4LRtVCgg/VAUL0RQpUnLwBGDgAHR3bX3wBTgxndaASbGPEugA2ahAlmtJ6KWyo4OGQSSGI5HjIGAnKUPTVBASMh+7EPH2+Xy9PRxpvd6PzJT1V5eL6ftxIQRYYdBRoan57a0fr32UIZEBBZGhwBYWjFrdvX+NhISGM/fiVSUiiSECdKyEM4Jemiw0HIukIiMejMifnh8PI4j3ZNA3f/LH//yerl+fnn7+/8wvvt9LttTQt57OVh6n3Rds5wNM0lmry/Pe63bshaR58+f7/tVwH4b51a3pRXCyHDg+xkQMQP69TaOw22QlHJ6VA/TQEIPkFLUvSJNa08RUYOhJsSR6Yl1mewGhwwiwpytpSDCmGWamhhhDA2NuiyaWU+PmdA1Iuc2Fs8Pj4iTEpIZMcv4EiESMKBtq3mIFEsXkaERkGmWbpDJpTITEqlH+JzsICBqAAFdhqerIyOL9h1pEkNg7pORqABEpggRpg4TZs3Q0TO8YOIEokS0UszdLcKdhJcmSYUivHuptRQWYep2Op3+9E//EFSoJEaEO0tpRAqA48CMYfDzzy8k9eHDN3PHRuv677772w+fngoB18WR9x/+sdMWJG9vry/Pn82hLVsrQhifX6/bskLmdF3t1wtoYrjP2j5EYGKpOm797Q1JuEqaB8ikVLR19dtoDF37cZQEinT3QszdU833NItgyKcnWlplqdvpRMNmPyxmSimRg4jxnQXS9/04bsO06whTNx3vDgKcBe8JxAhMnuGZGgGAwpyEGrEPYxq+X0sNKjUzLcAjJdMQTzWXVh9Op1qKdQtG6zF0uNtkB7u52WCpy7a56pxur+viOtRtJlaSuG7LNLwD4LK2SeTxiP1280jIEITMnCIgIqUZgt91HAQ3975D5gSBE2EiIUOaejgCMETomLufyECgpTY1m4sAQpgoEJijwQycdddEc/5IxKqjyAQ2IxHRPLYwR4bPHDEzMIX7iIgIQABLhJzFJSLFzSAsElRHrWWuaae5YE5AhQjSZ4UXEHnENNq8s3iBiBLQjj6G8nyHZ6gtc7YmYfqXcSlOEMuswp1oLYBZ60SIzMwTHRIOnpYQYdO9ICI2Zalt6eqmQ80B2dznMV2YQC3cZALUTIVZhIe6DcvKJLWUuN8T3MMJk2kdEYSAyECQUy7IZGZzn1PfiQZCpCKcEW7JzIDAzG5uZkyciJ4ZqggQmcxyT8klRBqX0pAnqmJWg3lEUiKhiKT50CDOIozEOkZKvaemJj8uw+eDgYyEUuTp/PDp6fHPP/10HCMz1wLBeR1D30ar7cOHx67H99//dLldEzJxYSAzY8RlaWp6uV6OPoARGQFTpHBmQoZnDohIcytFELCUigiqdkfAoLe2LMsa4W4aAEtbeutz30SlOOfUkTLvW6AMfA9czDM6pL/vkac1KMMyzYxYXP1QNyJmkmkhvrdOTeMgI3gQReRcdLmrKhHRPKHELA8CKHUh5lkISyRTFXW3jJxfI5G7EsFMPnHr6jERIUhjDCLLzGn/mfYDRUXC1pZ1XdvSCGhuOdU01NP9Xg0B1o+dmed+kujOeY0IxFZKQUJVnU1ns519Ao3m0dHdTMedPo9o7ixyd/sQEiEHq+vog5gyQS0AoJRSgLrfG/rgbpwlkpIteakJcL1ca2tMxMyt1p77QBjmIpLT4BbBkUTcWo2Ifb/NOGgfYxyHZwAAAk1l57TWh3VtRWZJHE2zW8TUCqcyy8yIoPsbRIR7pN+dj1NNg7uHzgzeLru5b9uKiDp0Oy2ZoOoHRGRbGwoDIdx7K35jzJmXX2Wy4Ksrf/nN1z/jb4SYX/3wtfTz5fdfyz2/ciHl+6cc/9p/4ld//uVG6Dc3Al9d4a9KWv/2lymHAle4P+rJ7v7yj/8fXn7tyVK77aOrDbWhoeb7sK5mHgTJeDdn+jxKRhDGpMUHwP0DNE1AkdNWeY+D5TvEbX4tAea0IvFLrvfrJwh3SffLE77bVr/+x+kUmk62uxPuLmG939Y8jRDhrI4nRrpvNWeFLC6FPy4kt71vTY4xfn5++/SRRCjdHEmH+dSWEsNGK0KSfUTOMCcX4ro+fGqnhz4OUKUch+YmK+Lej5tZRhigFua1lr3r1Gjd+21khO/H/uHD01ILSQOqkSND17aM3l/ertuablqKuBlCraWYWaktXN8udlpKhl2vpkP/5tPj41oUWNVfn59bqY0LIEXEuq55vHq/ESIicGZXbeuiZlJ9DNtae+tjWUphCTD0yDAzaEWlLhFHd5SlPZ3PfWjfj1KqhzvSvveyrKhK4AsalnLtgpjCYN0IRUQgkzIIQqkCppsGN4JIwgAvhFsrGmwIjLBUEC49o20Px/WN17MlBMCSewc3g/CEtMIIwMBcAA4pxwjqvbIUBgZYSklCve1LmbRG6moQWU5nYkEdQ02WKshqB6KU2qRQJG3n5eV67J7B9VSWVnytWxM81GspSy2auEaWgn1IKVggLrdO0ixMxzHrS7a1pdswTfNud8zknLphjMrigaYdAa+X21CtwqcCHsDISOBAGNgqL5Vc3RIg75yFMTpkFiZiHplJUlttREvB9DCSTNBUM5/DfJZ0D6BWGLT3iEDwyLjcRhVamzAxIIZZn1FqJiKZUktdBAjDY9hhMbbTZkv0296PwbN9Izw8HOcIPUurakZEtdbSymrL2+ViwycZWtUgwT3mF9MmhS+g72qaRAkzYE00l5zMScjzARDAhBMQyTzcMCUSgruInJgJ4fNz34fp8wX5Z+ZSSpnrjtbaw3bqo+/HcRwjIghxWZZwd9WJvTfTI5JLmWRoEckkIo6YM9X7MiHMANI9kXpmMsJ6PiFhWzcifnv+rOEJNNZrmJa63NSu12vdfjK3P/3lDy+Xz97VpWaEewx1pHx5fQ3kb76RCUwk6qU0hOTUBCrCCeiR0lZHBD1i3EBOzEtrzQwgTISGufucDUqhEKaAvN726+Wyrq69M1OpS60L4jzM4szOY+J02EemdlPymGEHcGTIhOtxMBEgf/rwaV23P/34/cvz635ca2kEwlyIMQJcXY9bppPI29ubMC7LKdFPK3sPiASZy0gmwMjsNjCzZHXIYephyAJBOPMIiaE5B9qZjEmFirnvfSeGhGJoLDS1fQ4CLOPmzDSFM4AkRASMyMvbJTyGJQMQZVu3Zdlul+vlcim1QOa6LHeMAFhbPnzEGs8/2+sFXCkdmEsCLHUmEj6/XGABKEgIy0rE4BZUeH0oEbG/ZVgCIDcRBGYch2em2ihrWXnRQ+e3AJDertf//A//8NNPP/4//tf/1+9+/+9abVJbAmROdkLxAQ4Tn0XFo+83M6si33zzwQJu14uO3YMCOUmo1MgkTIBwi0RyU4fUxDkVrA+PmenjIIhamruNfiCk6SAEh6RaCtRD7VBzUxHBDIKMDMRZdcnDrJrdvWfMkCGEVGtkFsJAqttTUrkMfRy+LpEAbV3B1dWmZq1J3eyOkSZKd0R2M0wvy5ILZfj++pzIXEoRoQzIuLxdkHhmGUgqIpjR0a9htq4VmQhQ1ZdWAFHHmA5kYYokkTIFwcycvkbPjHApTQqHeUJKkal5zAMQIGiEqSKRlGXZntZI98GlRDKxBCAi33kTpQKkWwRy1/jp55f9UCll3R7Wbf3mm+9wfTQpKDLGQLqO28vb4ZdjuOd6Ortq5RzHZd2208NjKU11uEcpMlQBECIaU0Z0h2VZ01WIr/utXx3qQhA+Ns+43G5VyrIup20lHiQiIq5m40jXUhcDVvPPlxuUh+f9eLnsRaQPFWbhSVrxaaZI9wTY3XofXcd9+6bDzYAgEiEhh2JmELRaosgYQ90jgTOtexTM2Xh5HJU2QQDrcSfKcmCtrdVS1nUBCEScWjzjJCVja21tbS147Lthba3htmGCzVUQpo3hDixcyuruHmqqEQlMRRgRou92e+uJpZRSq+1Hhkk7CbMCuIaOAYhSG7P34+buRNMGOx0SScuSiOmOhFKLmddlcVOIiMxaa6S7Z0HYlrYfPZFmizkzlkYRPqviZ6XX3MHinDrNDS0BBukcWUK6eWQQce+WEaWW98A0ufuUoogpgmdqOxPw3YE7V7jMQjSZvlPMokxwswgfYyzrApEiZZZ0TSBORswwIxFmkLklIiAlYLpFBAIG3i0AtdbInH1OgFOLBWGMoNm/znNPi+TmjNAKV2ookplFxHQwQmFKDEYEEPO8l3CXYgE5VywEIQURSdpkIHk4IArRmE1qSIhwL40FiJi0dMwEuj8ogBn0KzKtSVPMYsZj6OijtDXvMVuccN8ZFmPmqSNPE02tVIQpZnuUZ5KZz+SCWrBQWxa5s5yyiNSl9qMfvQsTEUGYhSPAx6eH23H72dUhHK2rJ0KM+On5+ZuPT6eHddtX8+uwbhdlZEaGjMc8z/M0ZKoZzMPrlPanrywS1N1dWJCQCIiwlGJuzDypEQ+Pj+Fu/UjwwvLNxw+fn18tQmo5wjKjlMLvHCh3Q5yWc0wEV5/4fEzwad0l8AgEBPlZ5msAAQAASURBVHXMu+TqPuvwiBPnnisyiXOG15hhjOGmmRmu03g1TyVM6B6IUEqlTFQNtPCA1iDR7h+/lIlvR8gQgBxjII6I/HLvfYyJoHo3rCQBEHJblrYskJCUhOgx+9PvAlommjvtt7oshJwQ7la5AtP0x80aOCQO93QzUySeGBOIJCJmFj6JyLHfjtFt6Bjo4apDZK68uZRi5lMFFqaYIxHIiAz3mKWMnp7BLJBBGP049v02QeSE6AmaKLVRuQOuMujt9Xn363673m7XmSUzM2YuzIwQbtfbPiO9pRTJbRFqQrXca70J5gAmY5IO3Kd/X1UJvhBc4u6ymGdFhNl6bR5mfhyDiBLS3IU5MgDw2Pm2Sz1jAzgBJMDlXVj5Qtv5bbDrv6FEfBF9/mtX+63Ekb+5cvzyFr78HF/9L3x1X19sSr+68QAo/5WHAV89wf/hXqFfP9j/Cj3ov3uZlh3MdwUo1T6/7rdjhIdadPM+rKubTWg4IALeqz/TMiZz/Z7MzYDMu+Lzjv75Uv51NwH9KxB6psXuYs2/vn1T2vnFf0zCe/6r92daeeju+rvHyWas9D72SECcrZQIM7xMMjVqRBJkRGIqjN9s/L98qlIpC+NDpZ+Vnl+v3376GMzpOkflQRwUSQTIXFuB49ivYSNFVO3y9lLaEpG963HcPj6ehOnp6fx22SN2U7+5L60AeLq5mo09STyGHgcjPn746D6nFpBSvA8fvQoBMSIRMUC0Wrt7aIgIEwhXHUfiguinpXaml+eX8/m0FNSekGHW10oeMCyqAK1Lur7tGTZIKiHpcC7FzE+bROTjx29MD48IN66MItr328tPzBUhj8MQgblR2m337eTzjEhERODjWJYKuBBG4fJ6dCECQTNrUpiKj71myloKehKH58KOtNiAW0gPRy7SSqoXgUJ0Wur1DZ4PW4uCFAhH7RG1j4DsyILJUiU83X1tjdwz++3YwyW4tkKWxEitCREXIoisp3MpTIhc60+vx+12nLal1SpMa2GLJMAitBYpD3louB21iECGJwRwQSniI9wUa2trGcPMYm0tEq7DTON2DClLmq410YMZmdATQziYb30wcZFICCHEuoJHKcKYhD5bRWCO3YjSbb8eESClORBE6L4zyyRZmMN+O9z1jtWwQBYzN/dSRErxRAQUiqUUYkxTJ1TP1tAzPz2tEE4YnmAeDjirX+agedr7M6BUMXTtfXTNBBGKVifjuNY2ss/6vZh7Kim3fTf36RBGQFNLSCIy8/AIijHG3cweCQQ+HHJuJgEAMmB6qEVoAu0AICAYxe4eAgf08GAGRkDhuHcTgru/Xi4e8eOPP+/78enjp3VbAcDNBhITFyleIhNUh6sBQK0l3AExEIdbQcx9p4xsDQGZwdz70IlwIUIsBe9eYj16p/RyepjzSKnt6elxvL0AwNO2IJ+O/TjG/ofXfdhf3Pr3z3+6javETLOHWtjl5h5tWZ4/f1aLx8cPEXOkm6VUgtMY3dwhLQAzkBCIJe9FKqXVCqDhpGrmcYcgEBbGKiUzW219HMfRRx9DrdTeFq1VmLCWFvej5f3IG2bdHJkhsx97rVXkTtZ090xwpG3Z/u673xeS5wsGDHTM9AltI4QMc7dMr4WJmQjbtsoJj8sYr50YCwoBEggAJxzqisnWh/rAzDKXnkERBpAQgLNEGJCZ8o4ZNR397ZoQcHo81VYJmanVsnri9KrOtaxIwZzASLhermpYl1akqN9qW9ft9Pb63EcnSCnyeH7wcbiOcI3wpa1XeqvMh48+LBJFaFsWIjKzF70RZN8RBUtFItQek5UxDkdGBAwFbhKe4VmWgkhUcCmnA3b32zTzZ0Tv/eefn5c//8uxXx8fHtr6kIi1bcuyzfmduSeKzH1puO37Z7dlaRHZlnUizLPrCLtp5vX2sB2tLmpqEde3y+W678dtuCmwHgd4qOrW6rIsgJBABQMy57n5GGGmtS2AaOMAQkIyjMnb4gRkzKScWOtAJEk3gETmishEpUkRHAaJfDvGeSuItLbFEqSWjEwmC9BIKWRqUgqy1FIAeKJ4ENJUMYGm/xGx92HuEL5tG2IyesgiReDYtRMAT1/A2goTmfmyLpIeROkUHokYmYwEmdb3ROJC4TH9BTzn1znzMeSBpZW4j6GtMcqytvMTYqlhL5+v82veljUyiQoTZTgS4lIpUyZ0OOB6vWT42+vLp2++S8/vf3g+1B/OT0gUwT8+6+Gw3zqmV0Dre6nclpXESm21LZkuTGs7vb1duzmGCUtipAMg1bbpUML1ertCaDpFIreGSMdxNbcxutkJmUvxyiQEkTAhu+tppfYQVF7fnv/lv/zL0buIMM7mZHDXShwRrj2R1N0yA2AChAkgiOeBGSDCIc1Uwz24icO8DTAP6IcVYqjLQ+1kqqPWlYASYBZvE7Z12R4/fMcst+uNCSd6JgilVq5tWdZtXVayiFxqQySuS0LAkbMo4PTwQFfkZQGgXburJeKpLRE+Q35EWdtCkcQcmb13dZOA8+MjE2HhWVhJxAHAXO6ys1kWxIxKIIUCWSd0mYQYZ8BnemqkFEgGxCIkXJL46MM8trUJkeltPgwbvbWVmb940QmBiSODEBED3QHhdjUiZGJizMwxxsyAMGLM0qv3xhJE3vsQJgagykmsZgBf1u3gkQA+Z34AOC36RAQJM0fDwgDI97c975uguRN9b1EhonAFmFIfRjgTsUiaQ6bf/wIAkIhrY8oQDAdGJvAkIXdnyHtwGRIxiXECgIAlQsydIVqrUoomEQuR3ue0LChy5zpjMkDczf0RkQgOCHdODQBhzh73zAgkRHJ/31NEACAxBwQQMnHG8fr8maUs2wNAZtjcWswEXyZ8/ulH5IJ4L+RyJoicWaN59s9MIDR3C2e6tysz3/ubiPC0rjGBNK6jD8z48HDK/DYwXo5LQg7zyHD2hByxL7U9nE8RPkdTo7sAhTsklFYRYGm1uCXite+aAYWwMglJJY8Mzz5GERZmQG6toL5TkRGEhaRexkhTkNxOm3lcb7uIgIO6CTEB0ZR9w3Oed2GO6Z2QiSjuv0MMSMcM9wSSQsSECJnMNHMfjICBkC5IiDmbrTIiM2ZD83y5ABAxiQQmpCyCkIoUA8g0AeKV3XWM4bMkgZAQk++hQCbKSBKZfquIcLD7LjZhfihba6VWRIwMSLy7iUrFe78SugdCqg5mpkoQMY7bXagKaOs6ZcGJm8RS2AQA3c2uFym1FBGpxCBSSqnmEejvu+g01RHBTIhYaotJpUWcvut0D/cEsN4jY6Ih3PVyCdOOAFxKRM5yP0Zatw0R+xiqCgD92C+vr/ux995779POA5mtVV6W82lBFEZALiIsIiKSORVnnuLT1AgYCRBLKZB510B1dzNT9bhPBN/lnzu/LCER3BlVeW6/R1cRZqYiQoSXV14qPLXpuYIVcUcggC2BERzgAHCAmONHgLkCvWsPX9mN8D2T9bV551eWnC9KzRdB57+hfHzRd74oPviVWvRbO9KX26evfh9wdzbBL6/2V3/+H3b5Vb7pXz0vv/i//xuXBB/q5kUoMz+/HS/Xw9TVfKirhbqbhcf8cEBOASgzMz3e01b3xWR4gEX6ZELHPQj2Jf/1ngubMKDZNfiv7wVONw/CPRg2Mejz45AAdzT0vejwvhx5fwrzBSFCRgSC6fgpMo2JMyqc8xgijHwfF2EhfFrocWNZlopU13N75ONy62+Xy7JtEBgeCdD7kGXl0gDJ0wIIudQWQKhqGSMj1FBNxxjXvpyBAWlpnNkgBwRdLrswMiEXSVh7391BEyjpx8+3D58+ZByqDuCI8emp9U5XJcREII+QWrYi6d4as0gTCeGEnH0/bVsvkMNjK3Ta6jhGIoiUGAZh/Xp8elg6FIgb8GnZVqDRh1eWSFSDh9N2HL3UBbRD0lpr7yOZLZeIFBG9XR1o26AwXw8drhlgx9VB9GJryW2tmXS7Xc+1DmXK2RmvqYO4OCCS1MKUDAhVsm0PwJKmCrKe6lCispAACnCOp28e99slwkxHUstxWHRfVgcPoIXYEyuCM4/9OK0sqwDKGJr/b+L+rDmSJdvSA/eoambuACJOnBzqDmRVCdnS//9v9FO3CIVCSndfFrNYNzPPEBGAu5up6h76QQ1xTmbeW02ySoT+EIIA4IDD3dxMde21viXVkNl8qSSXLWe8P/3p+TkTM4IEiLkqP14ftNV1WZUBYNo5OwScIwUfItiO3Pdj3Yoqn00gkbsFtq7rqoIiRYmOtoMlS9EFEbkwZjhDjpHAMACBeHQvRc3i6ObeEbkUXdLbvrfjODIThdAJmVjDulQdHUhIRcac47dGGqCaBARctQwE87Hv3UfXUiKCRJC524xNRkx0opmbL7UgwKSAE9G8FAVMZQGJ8nJZqy5hOXpmd6Gp3yM5wYDZwElMZSnt0W63m5sxcyLGGMNMrGfyGIOZRZQImElJtWhvPSHDPBNExGwkJAGNcCKEoPe2gxQRpCTKGfacHhx3zwCLpMgeQ4tpOIkkntcJZVnX1dz3/YjM/eg//fzztW2MUFQ8YVq+ATDS3Tx8QCYh6lIBMSJba2N0G4AISLRetlmF6mYjEwCmt19LyUxkYBFMXgj18rSPEZnLdllUKOP5+lTWtR1Nit7sxy8PfL39/LAbF4BAC/cAcyDCt9u99f78/Gx93G+3Usq2rsp4v98mjSN8qEj4wGgsGoB763WMx2NPkNEbpGmmijazDBfmJPFIQgKCtS4QoBzpt9H2iDArS5FSlpm9hRnkCE/AgJiJJxTxcDRAZAJEpkxMSM/c1stvvose+9GBq9rR3ZOAVMsYw9zTrCwVMlscSmA7EZJWFUVZA1EJcIx9jBHmIYaEijqL2Ag9gUgkPBxC5+w8HIFZimgNwMeOb/ebksSARFAtjBoWRBThKpwAjEqsHt7bPi+D0ZolQO4iHJnPT8+qaiNF5TiObdvqcrHRlyLWmxBIhNYy7CCceyoEzG0pz5f17ecHZmrFsuDEl/bdzCKciRU5w50LIqRZQkz6Oe6Ph2yKBMToYxAjL5KBpS497f/zv/5TIXl+flnW7XK5vDx/IBZzXC7XsmwihNatHwG5H+MPf/iPy1I/fvpU12duDXG/31p8/vK0lp9/+pEF7/f9MCeWo/f2uLUAEFHEsq59DNHCTEDF7LCzyZmIsbcjM5hmOCsgQVe1nlqWSM/RZ8aTEEWEOUW5+QikBNAJvrDs988//OF/6q0//bt/N8ZoY6hwJpoFs5Rl8X4wnSbBUisAeiYzEnNmjN6O243rEuEqihnLtu3HkQMSqdSa40BChsAIRiIVn9N5QsxkZmFar9ujWXKctILWatUJZ5mVoFX0uN+DJYuwarSuwoKUASwyywcV6bnUYaGis9yNMllk2bbry4ferfWRAIAqTCoFiVo7mFkg2u59GEAn5D/9858KWOpyNAPmHkhUl1XbsR/7UbUCogFWpLWuT89PHgGmUy3XUkaOul18dB6DwYFo2VZRpVqRgbim9f24K4Ouz7KRD+u93+4EhC/Xq1wWXdbjEY/7LlJ0LcDiOb78/OPr2+vs68n3WL2WCq17pCXGsEjHk8aKyTwysDecivw0fBOSlACwbojEIhkeiZbpj6aiutW8kO+zl4enEsCQa60fn64vHz6h1rz/nKN7JiMmii5rWS7LuiHCfjRZaqkrIjuktRHW3WK9bIRYKfdhEUMJeZJIMDEjU9zDe+iyLAh9uNsoRdGQVaflE5GEMid7OIIp0wNpWleUSZKZmGFWX+FsqrJZuCLCWkqZ7XiZBIAEpdQpSwBgH6OPkRkRaWezEllmRtCZoUzO8D7u97uNnsRMzFyEADFBOIOHWR/mjjE1dTe3UFUUCuC9GzPJsGz9nXETeXZvAyQKIWYOHwFp7vOKlu7hMa0BU6DPSEicJ685eWBEZp776hmLSyQATED3cLNhJqIZJ7hz2vAZqaoy0X40nDvMDEACgkyH2dnECMjz9M4Asd8zhrASEca8zhtmeji879Lncn86rcJnqM0TMk+zyWlOOEfFCcyYAUSYyZlJ5x4C34FIRERf316B6Dti1TKZ2XMlYBGA9OXnn0kUiZF4/tW1yrZuy7KgKABMONDcxAxPItKiWgqE9X5MSTHN9sdttCPcMUZVvtQ6dzWzatDDEcFiPA4z85enp+vzFunWMzASsA9/HMcCKcwqLKTdLM0RwDPCQoQZKSAiHSL1zDQB85S7AgBH7613Vek2+tGOowHAUstpbOTax5lJBMTwZEIbPQzWZYGKmYJEHpHhGICIBCyC4WSz1BVPN5hnYqKHj32wsDD5SS1Mdo8MYWHiTJ+YGo8AQJZ5TOZ+PCZH6b0ECJgBUDSncyf4LA6hnIX0U06N9AhgrrX0PiO5jhCzYCsBJkpytl1BAjGdhwS+2wmIcta/9jb10DnIyrDedias62VqIFKWZd3ee+6Gm2V4ZiKUs8WMmUQyws0CCXIWGAATi3ACjN5t9GVZVIsWXZY6ek+TABARJJ4U7Wk2F9HJNXGYJQaIAOY22nG04+3L18d+nwz+pZb5Jsj5jGRE5lL0ibbX++5zwoEIiBZpGYWVRSajd7IOpiqNgECgwsfR+ujzDQunNDPfZQ5ndVl4IJOfMWEkG4aERPQ4jsd9v72uf1T67onXhaHyy5IBIICYQJAPhAQYAJrYACxOHAwRzNwGzI72OVA88RJ/beGBd+3mX8yR4b/0Af4rP+TXktDf3n6dCMP/CxJe/+dvvzx1OZGt/7lvBAAATLfPb8fRRmFChK+3ow0bw4e7nS06YZPxfIo4U2Sf4dycjX3xzfiTGZEWpwnoG+z5tG3CN+3vVH/gNPmc787p50GY1ZnvfWDvLp7poxXhqvy0CBM9ehzTgZzATDoXcUizy0KUda5cAWbiFac2hEmzuxTSA45m8vnnL5+eLuX6YbsIkI7erDciiozeByEuWjA9xkgUCGRi003BPe1xu6H8XNctQCKxtxbgo1tYbItWZe+GKY9jJ6KyLlwEho12U9EAtsTXr7d1LcTsrbejb8t6eV7h3lRrFh8WSFBKMXcRua6rhWPGMM+I1pHJi0oSX56uYH4jIUjGfLqWYbm/vrUiu4EKE0QGlO3p5UP5+cvX7fLUjocoB6TZMA9AiTBVdvcBmESz/TTGgHAmVM7b16/CZDlHyBBmRxuVKSLu3TzhsFhEgKgBxf0tAamW0VMJMlp7HB4A6Dp2cM1SBbUSY+JFWRMOg4+fPnz4uI1ut7vtr18ehLRNq34CCdoIG1wWEkYAKcrAkAS1cFA/IiGZIDEiPZPa48G6uI8E8YSizAhjNN4qMXkP9CbeRDe5yP2eHhgZj0c/zC641sL7SAxHAvdIUGIGosoM1pHQMkcms4CbGyTBALlZoAEJpjljqEhm9u4RpFXdjBiE6TZ87y0jGHxddFtLgeS4YKazvu4NALZt2dZatCAxzHJTdMJgQgTCZG+NBAnEzJSZCN3Zx9jbIxK0iFShMB8WUJAh09MhMzBjwnlvj8f2aWPFqyzePCZsA2FhZcTHse9Ha72zCAtPd8+8AYKITH7TJB2ajTF6RLJgZKiqjZGITPTuME332fI5lZ6cOXJ3g/doOjBCJBDOypIxBhMzyzSvwhlhRlFFhFLK09NzJuz7HhGt9ekYefnw8sz6Xk3K4YEQqnJCE4fpWomwtRZuGdkQiMjcMQEQJz00AQFJFMkTiUoty3bRdDruPj05CHVZXr7/FJlCJExYSk1cb8eXx4/743WMnhhhLtb8GnjOWnFYu93uRaoJk0gVuchmxwOsqziqLgXTpAdSqWJBhG/3++fbY13vyrgoZxJUhIx0DwBnttEYAZAgQUVUsvC19dE8GEJFRXn2rBOzj95jJORZOw1AzDlZ4ukIyarTagGZhqJafvvx9z9+/tHZIiIOINaXl4+fP3/h3uiskQbmoNp8L2EQFHIxrANzBcPRDm/GtKTNTAEND4BAViCfefuZxAHEtPRwqSUiiMWTilbr9rjv63JB0nZ0mG3ZLERUhc3jvVd1zo8B4LQ2t2OfJvuqulR9fvk4zPfjEJVZkEeZkFm2bQm3vo8AwNwKTQr4ddXfPT8dOmTNtAClGbmKSMg4HamEbu+QbwdR4ZPhGglOlOtToURUJtEcGW7rtjzeHrf72+1+//GnH64vzwIcES8fv79cn7fLUxFiImFpffz00w8v1+3pw0doba5k3f3ow23c3l4hR+9G67PFiHEARFnWWiuLAgIRT1OM9UYQOU9ZBAEy16DhnhGqPDybJWsFSI4IkTBnIkQUpgQcHgkQGRP2AwiZMfqAz/8UPsz/cc7OmWhZlrevO7GkW+bEAKWqqJQIO/1l4TG6jc7CwORjqrW0LWtmjoxvTc/edqAURC9iYyRyAN6PLojr5YpAk0hCwqMHiRCidWNhKcuUestSCaB7eGYp9dh3QkxwxHxaqrsTy1L1aAOrMAJjEEFhulxfluvTsl5FBuJh4W5R6joFiyl8u5kFzu3v69vXt+vlqrRVRMKjt9b65frsAxJImJDRzABDCIpIUQZgjOiPYz96RhJRKesg6fZGNCPuTiJgtq3Xsl6t7wG3djwyCVkQcfQewB63WhbKR3hMx9bjvud934/H15/++fb5R7NRSpn9SkgiAEg4bBARibZhYZM+lOeQmZgQ0x3CCRJkks4Dzs4asTEtiBFELCpUlK+I4x5vvT8u2wshcngR/e75+eXj99vzxxiHM0gp+753G7Ksi+p2uaiK9wNVAbR1I3QAmBm0y/MLAnjfH7e3+/4gkQSUsggRMyZyRNgwd1MRYEQzxqhFCHOuJok1wxgzIVsP8MbeIZoHjZFEB8oCpN18jMEACWDuQBJgCEAIYjtyRfdEykDvLYFVZPTWe4MEBBzDIBNwVrOjEJgDIzBkjB4+HveHmZEUYi4ilJ4OM6cioj672IH85N/OA5kgQ4RnMQIzO4xJYAHgSdkiSEAwd8SYoFwkjNnCjQgIozVYFhGM2eCXgQCElDw9IAmQCOgJMTwzRXHSXaZLX0WRsJuxyLfK3yTshgjWWi8iHqmlIEAAwhiACSd0GSM8DFRkqcVV3B1ZpsloKZWZzB08Z5kgiSBQxHxHT1AvIGIkAE1P6HRFIUCGuQgRQSZCTFvQjDOPyR9FZiQSwv329iby/PGTaqGMxMlCiky30TEigWDSoVn28N7GZRtPL8/TR+KOzAiJETGPKBsjvNsYE5bvNkZrAMHRM4bo8vx0+c2Hl6+PtzybuQAQZwyod1ORdVkvq9+s6UpmcXZEBCSluyvzZSmMT4+jd7Pw8D5IFTLna58ZrTsiXi6Xojg18d777XZblhrp5g4An798nYHBWvR6uTCiuc9dWYRNDQGZ5sZwcqDCZvwtPEEYRASZMBIRwwOIMhN8WkjmxTP7sOyDiGQMRBRiKTpfPGZARPLzhZFZbN88IyY8azLLbUbCkbUouzHLtGkmJBMdrc1aCHQwc1JhYo8ws2EjzAHAzHprqsoihAhCvzgKEoCQiRwiI3EuXIUjovdGhBHhY0AGMwMSIqkqkgozEXuIjeHuPqwnIICFQwITzgyih7sNd3MPBBBhM8uEd1ISMnMpZfqLIlIYYT9gHrgskXC0PifuQKQCM0QaHjbG/euX3g4hqqrMbBHCPBeS7mE2hicOR8RtXQBgjlVP9Bjx9DQxwzBDBJxDQphPTAqzmYXZuR/HX1i78C6zJgAmepyd9hOdNFdfPMD6aK0R0Q8/Q1F5edradysCXD8gANxb/vgWpNRGXq/85ZZvd7dhc2/y9CTK850Bpea6wAbfjEH/udu/5sH5Jv3kX0o5375K/7pvCN+hP79Wf/4vMfj8H70hgjlkQBLQu2T1zU/zi7dmymGWcOK3cD/G0cbebM/0iKPbMBvjVGzdYw6l/BR05tsR4mwZOEnP/q4End1epxJ0xgn/ku/zblbCX30uCX856ujU99+T+VNnpIkGYxLh+ZYERCIQBqKYcYEzhIsIEIhJZyx0Hkv0jScdmZY5Z9tf90gfshv8f//TD5f65eW7T8oFWAAswkbrEcZMmAMSzQPYp01XIYGQeW0jcm/3YxRKBoPgoyWhLwKIWGsZLCOxRPZ+b/ubLqtIAiQiLetVylKYCkFi8rYh5ecv92WttRRgTENmKstWhJBo31t3J0QgfrnK59d7eh8xzaHAMJ5frpEY3qtQcrle8/FYb283WZZHs2tZjmEM3Fivl83HLkzRj5yt21WR5e3tXrC7+yyIHMNqRWQNN5JlWWu7vQYWYKF+qJRmCHu7RSQkMSVIAO5OSCAsoAsSZl1bG4jojsgyxvDxGCKalMPXqn1vH56WggbICLZentPby0ut9fa/3m/B6yq1FrNIJMk4BNA8IjEikwhnwsQHQw7mo0eMY9EAEBWWUucCp4+uWESEaTY9Z1EeEbYHaGGA8LEoz1LSnuA384TXB7jbHqZ1Aq/H/nYTUVViSiZQwrqu7RhH37eFVlEm3JAfxxAMKpoY5nncHxnJKhBgoxumorn3Y9+/u8q6Pn3+ent+fq5lscB+f2v3lqVqKavKpbBFDjOhHD7rZGICHKaHFogc4OiD0YlItQBBShVMD3/7+ioZzMKVncgSe4AARGAiAXJYeDgRepps1HtYd2YmJmSoXKSyNj32Y7qmASAiZitDKULEBLDUOsbYjyMyCKmPwYYsUpfqw4bNUBjPqeNcsmWe3jwb5jFEzlQXxHm9nvnPMTzjWBaaujIiA5GIzqw8uDPiuq7uOWxEZtsPgPzy5a0P+/6772rRJCwq4TraMU88A82PxiKlaJ8Dw4xjb2VJMxcmLXXy1wOwte4eJAIAi2hg7hZssF6eL4U+fvhw2ZZZfOtm5L50Z9X0/vHpJSX/9PMfj9tjjjpm2xIgqmm47cdelk21RKTFmD08QoJSCTMrlLK2fdelih42Oo7h1snxNrCkgFRGJMIIP1rzYUxQa4WEiFDGupQPz5sF3vaGEH7sJCxamDLe0fuIePbpEgWix/QkBxIhE0xUcm+Qudblt59+8+X+MwwfHMuyPB731noiq2jvAwV1YYgtwbFYZUsakaa894fbnuloMBJDRBEFEljkGDvO2ZLL7CqcSfbJlRDVWpYPz/jYHz+8/vnl5WVKgQAI0x4S0fuw3gFAVyRCUQ4HgGRCJkguTtCPtjNap4SttMvl6aWP4/Xt/rg/fvvh95eX7/uP/8yAKiiqcAzBZPAiGJC8raXWw/rD2n3sXowLz+VrRhC6yoKkTt57RwBhLBNBxpUgA6iSCDMAegQMx4BwB0/rna/XfrTb7Q7Cfd/vr7f1j39++fjxu+9/8+H55fnpSVlUZVu39frc9j1VzaO3w81Y68jsw94efV2Wx/3t5bpGjnVddoPWOgdguorUZYmYF9v0BCSpRcJn9S9HJiGKlMg+emMxYlGe4JtBCDTR2ZnjOJDIEwhhDIhphiAgJpCaMd124BH/7b/77//H/9f/Y4IniRhUGMBzosYZrGc4AozeAaAuNUnDo/dRxI+D27AAVGYMRyEOtpxtuLMBGufBg+5IlJjDE84G6BBAEgbhyABPYk7vbfiyrHG029e3739bE+jogxGUKCJK0VoqxLg9jgCmQj66QC9Fnj9+x6ruNmyUUpSIEbUqgZj7WiQgtJaMPCBnt/qff/7M33//xEy9gbtqzdFTklml1vvtq5kxF0B2gONoCTjcH/uDWEXRW3cAravMkcow8xRFQaRSIAyRGYGJjvsX0AVQMoK4ZNDbvQ+O0X1Z6uj7/riPvn/+/JN7U1VRmVuCfd/DXVUQoLV93RYhYYBJn82chjADSMKACMggEoh0Ah/dzbEIimAGpwMiMMFkUY0EVQIcbnbWOct3v/ndy6ffXT/9HsHBdy6K0z4GvCzLtl1VZfaLIFLbj0wnAGKOABBFUbDu/dhvb0jkbpmIOLAW3w+ptYgYZNgYPsBYi+SMgqYQETADprtjOmOGPdpxl3D3AZmKgkkRZv3ooyOgE8X8e5EQkokKJaW7mY/uyD4GZI4AIHLzOdsk5hmtG4+9HbvRxCwRZrilu7djB8S6rgCzI9UT0uGE7RJjrRUzRBUAJpPj/NqZnUBiCk/G9xUzJDJCQhJBxOxQQSIWlkzHWQYPkHG7v10JhElEMjJiXl/pnLgCpDsxsZNljuHEKsIzKswnkisBwM2RKNwz0wG6hxCQlJnXnQwYnE6PyZaaLnokQiyloGMeDxJOpMjIhHVdWCSQPFt4AgRHjJkUCAdAEVGRmKGBOTRyA0gzd/cwS2BVJUSHyHBAQOSEDLfJX1RVpkOU+35/I74+PRdVAJiLx0zcj06aSEzEc/vCTAHwdTRAkAk5FiFmmDTDBu2xM6YQREYfkTkDDy4MFCMzmKiI/Pa7j//800+fH6+IOTl34e6eNuz2eF1rfX56yfEGnibpHoQ0PQ4R2WOsdeFaNpURUZfly9vt89cbswhRZCCgmUf4stSlLpYBYwzE1vYkJ4CimpDH0SFDVL6N4t3DJv0qETJJpYhOT7D3Ee+ZqkiwMcLmRQ0BaY7REZIBI2JipABnqQRkpo8xbCCAqlQEFSGSqagQJSdNOdbGGDZGO1QVcF5YQISZFQCmAo7TDjDpRCeiySeDB6C5x7ygzi3fZJeGx4CRAArzlc93s9hZDwRIqjKRx+5jGkreSUJAiG79cb+xiGiNjHTPuVtgRkJoPXw2AzpgxgmEzm9iq7llJAGwyGyjB0C3QPSj9eGpIsuyEdOsMoxMAIoARPBp6SKy6XxLIABE2K4XGz0jVLWoTmG6lIKEtSgm9tEzs6gQzuMhEtIjb/d76w3yCkslJmautSL+lRgQojoDtCfM6V1SmMyVnAoQzg+ITpde5KTMRwTgeTghAsBBo7dxvz+Y8J/+QwyPeEf85gz1zxgpAgAK4/3Gk9Qy2dXXa/3Nb+GC/0Lq6i9Ejb+Mcf3aH/RXlp+/sv/8OmX26xv+6hu+aUD0l3m0//Lbt4f3f/4H/uWd89f/RSA5Ew+ZcCq63+71HrPy4fej2/DWh3v2YcfwYW4WNl0/M2E5WwU9/F0AOjWgmC7Qs2s9f+X9OVlg7z6f990F/OUjng7Lb8/3tPkkTLQdwgTgnQoQAhHJbB8AmgoDIxFSdwDICdjl99r42QKJQEQAjDOYlgn0PkSciiYxAyEDKANhtgCpRQi3t/vj6x/+kAm1lm2t67Yl4RjeWlOmopKU6R25IKEggdTk1ROGOYA18+uqnz4+r2URpbZ/ZR6PozOmUmQlTN1bwyNFeNu2++ORo7n1LJVAF2UWlu06J8tjdNbLcl2+fv4i3jroUmgTw6BSyqO3nx5dlEZmmkMtpWy3nz9jAPHCTJrd00Xk+Wl77HocLb0dO2G5aIAgsFbvo5RU+eAASqkUWNam/Lg9KCyIMAaCVQBgzrQEQiqlVJNKbky58fgCdd+baD2GrRuhSNgxO4kSCaUmoI+oKlpXzUVUobd0Sb0E8QhXt4tWsA7ErTsCBi+WGCB4fdk++ePtRoRFpUIaSC5L4FzKMKJBogUA1zaGTatYAolkukhhVSICkgC0/c0Qkfj54xNhthGe3Vo/gMqcT7gjymVjAgRSAijLeiV+HPDldqAzJt1vr9u6XVclwdEHIOmyjBEpWKUgUCJuom+9CwZTaWPW0g5mWis6CpFgldFatwAqAAdw3S4VEN/2RBVi4rKsxR15rULE92ETeJ6JyqSXxTz6gNEeSsAixkIkATxHPb23MYz5JGaZUzNDGwsQlxVZ2JOJQhAAGNCG+wgQNgspuq7lEcdozowoQAtylrKW9bIce9sfR3t8o2mgFh3dCGmM8fZ6ExVAHsMyg1WXqpdlA8ij9db60RogiohFpPtskZjp0enTmyVBAZEIROwBZsllxk5hLjIxLYNQdJpap6FZWEpR8xGnuZPMI8wwhshijgBwvV5HXY79PptZRvQ5TCuqp9Exfdooe2sYwXWZ453ex33fI3LbtqdEhPRAfjwWFdw+HMPs7fH89KRlGbYn4uXp5dOn4z/8L/8LBC9woTvZI/AjAgZyMDOkOAYTJ8DeGtzus8LcrIuoCl9reeyP1vu6YiR5t/12xxgZ6TFaQAIu+SDiZV0FKNMiEog8ZlEOR4Y5FuHwrLVagEUgBARCGgYjITFnRJ5twUmizJzEijDLVs/qxslKIRKtiPgb+vRKy8Htse/t6GOMdZWB4/F6Wy4XHizCKgB8pzk6T+o9H+3uXjAY0lnI7PTDIxck8rQ4kgAnVW5ZuJQCgFpKqbUUd19LWSgpw30MrMtcibz3HccYA0UEZtEt9t7CHcKIKBGRKMLe3m4I8Dj60f3a+hxNA2CEg+jsRdWyMT2YMLEgpTCU5SkAtoj9OPIV3el2u+UlIJMQPBPI3Ru6ILFIYYQwkGlYZSYhBhRdEWFC85BhdmeKal0KBByttdbM+hhjvz/afnz9+vWnP//p+9/85u//8b/5+OG7Zd2mmc7aA6Psx1FrXdbLqZBG/vnz2/Vi10Iv6xPE9eujR99ZivVh1mspy3YVYk8AOwABkCxSGSE5EKc5Lz2BGcaAxOkII2I3yxjADETWGyBmBgIm8WGGDkrILMQKJBEzNG5Fyu/+7u/+h/8nTPcwMpEWZvYxem/ALIzRfZ6fEwlQAAkAzIYg99Fa62dldfjwEFVIBAz3keEA6ZGlFMK0dkjRMEsECAdAi2CRBCCkoI6zTcYsagWkx/7w4cK094asVQsiBTLX9X7PPQB8mLkQRhLqtrKG+3xv1rogAiGa99ZbRDw/rftjN/dFeV2eWIq52zj+9PNP2/X6ooh9cOXRY611CEPo/fVNtLjFvrfH47EfTaTsj7fRbX3+bt02hyOBRUrVBSOYCwtlhpZFdGnjOI57gjMBeRsJyJUZayl10arY7/feHvzqffLJw477Vy5lVi8xi7mz0BiGCUjoNtqeHhPKEm0/AhIREwmYghXBviUOCDMYWdDdWIoIg2MilI1Gj320cf9RL09A5P1hPur6dLk8PX363fW73yzr6t49UlmSSevSW788PT09P9voHpHIM0TDIlqVmboNxHS3eQ3gZREtiNi6R0aMgRm5d6hKbX8crhDA4oMBgstCyNMccga73CaIa7JjYn1Jc4h4B1IOBDT3GF2JZOFuw/qxLJXrNl0zYf64vUGmA52UJQASYWLPjERl2S6bm+37MfZDiZRBRQIQZ/SJCDLtRITAxCQRJk51GE+WMyDPFoXZYubhmQGA5p42FAWC5ihmso8zz4J2BnDzeMeRZAT7JNFSzpashExw87mkRjyXyARARLXoGGOOXOfVMD3NHYFmDAfm2eGcA0EgsVAimDlOyt+8siMDos9NIgSBAKsHIBdaVg/IdsMMYUJIgnDkQCCk3ocnxOiM2KafoigBzyPQ3ZGYIIDS3SIyLZjPdIioRqRhUHKQw3w4ZkVFtQDCeLy+ul2fnlWLCPuIzDR3JOJEmAf5VP8QM/PnH35QFVWdkOwpp4kIJGAaQTCxLOtUCQDT2zH6DpBSF2ZaS3nZtlu/bVtpbRxtTO8EE7rZ/e3rpw+/fXl+OvajBAzzzImCBDeLjNv9UIJada112RYm9OHAbOb7MYQny0tUpRSJ3pFguloQACBZZL64c4M9T6duPrEyeFpgHDORKAFURZEis48+xjFNmhZm5ohY6hLmUGA+UacPO+OM08xA0dx2RowREedDnK7ejLRwIi6lAkC4GcR0i2emqgpXZJot8j6d2DmISUshQlXpEQDJyEXVyS0SztYwJgZKnN4EG+NcG2TqXA3gNAIQzA0CTgcVutv7G+dM+IX5YTckWtaLMEcxZhVVpjNQBoC9H8NMeF40wd28n5zK85kndnMRJeGMGB7DW+umxdd1AwLwHtYhHYGJKRHTI9weo0/jZQIIExMttW5rvV4vBKFaiDncIrOWMoPPImI+f29mpLDlXKsRBaR72DDjKQiDnHz0eXbHuXMHRIiAiPwLuQAmRAkT4JsMRBl+ikHvO3TMaR+frioAR3Szo/W5wc/EM6IG510mlIWQENERO8IpIhIwUTtaxtN3n/BaQX8Vv/qm1/yVdvNXEs+vxJBfPohf/ftXbqBv3/m3AhD/5Tf8l9/+Nrn2f+C+OW1Yf/2QZkJhFmkFzPU62MiIZISiiDiVUZgj3tbsdvSjWR+jdR82LxRhHmbhMwMccTK64l39Ob17v9Z68teVXr/OecEZEstMnEa0aSA7HzG9P83vEw2AU6IlOu2EkzJGM2xISExCnJDmiRNJMScn50EJ58E4n5xMwJg5r+l5T3ezTMgp/SjPuTYVgpWTEfdmsiiDD8IYkb3b/eifv97X8vXp5TpVLE8ggG1ZIrM5EgSrlLpCfe4jPT0TRsDeA1WuT+XxaMu6vr3eAtI80DuGL2tlJkpoHqO1IoVUC9FVMdrDcoGEp4+f2v4Y/XCEsBHCotrasZTYR25FbNiHTctW/9Pb6+ubowgTLiQjHWTtFizBKq1He9zMshYlpnbgY09wz3CVdWXo42iRMLDdbuvlooQ1dsClFjkIkSSGXQs9DgSiFbvJViofhl22Ya66WnvsI7RSH4QAwuwBADE3n8qEgFJLjIGIrHU83p4+foeQA1zXS7DMxrHe/OWytG4Eed9HWRZ2QL0kose4vnzsfRCycAgmhTsDAAnTUgsACzIQA7Mfu0RYZDevdVuVA1AFKLFnoHsVTci+9+axVCYAJhwOAbTfH41RmIXz2E0YAUjqxgmLohkrCyFdrnUnx3DMOIuwEgRsI+AFBTgJMzPGuBRkro/hxJgjEJlrFUoBJq3DugMkUEZ6QLu/wdOyXq7jYcOjagWtNg6ERMJhtglq4TDPyWVUDBYzz8Q+gggiokUb7h453MIsPdelAMNWmcMenZPZAay3zKgFEYhVhidE9sOOR1u2td1b39t2uVCKjfCRGelgrFiLCvGyLVK01HLsx+ijFp1ngG69tUNEpaj1MY2mzFTroqoIICwqkpF7axZOAEkkTMySkIQYSSNHWgJBQDKJcFEpTFxEAHCMDpBFExFICkJGGAKwqCWI8GQiPB6PmOs5FmEmFiZmAnf3DCRc1q21NpfU7kGILAwImWTut8cjEwTAIZEIWNZ1c09x73109/04KOy6Xa4vHx5fPg/37777QJBHO56fP1wuGwIc/Whtv729ASAFeLftsqzf11zNvBFfmCiRwt2Gifq+PzJ85giATJhv91tmbOtCREjq3UpdGoTG3sxnD9HofX/cYeKTIEQSgUnKBPzacIA0N0vAt73WQsTWh0gIkwO2PgIoIcy9wOn2jxmdTEjISI+EeHeLQ4rZIIBtWZ+fnr6+3T5/+fLnxw8ImUBlrdeP14Ac1iYNFgukRo60APd8u7dx21e5EGNVFdEA0BREkKLU2MFxYqHSiVhLRSIRsdEJsZaCiOl2e31lVS0l3GerFFEgYsAcPxPAjCAxImeM0Q9EAqKANIsEdN8t8na/l1JZl2VdvB8gVdeNbl9UeKmrJZoZZAAlCzFk7I0yhEhZiy+9PSABiWl2pQPYGCSJIEiAiiJEzGDIzMAgKVMMY0wkSBgRp9q4t8dxPCK9tUZCrBQREOM44PX1y/rTqizEZG5pQyB8jLquWhZdOCYzBKBb7kf79PxSt8uLXvfxAx94Wevodu87uhUCXUokjebZO2B4oCCxcHgGIAmvlwtmvs3hKnECITExoSwyV+0BgKhMiQQsYc6II4AVMXOGcBAQgDzg+fn50+//4acf/nwOHRERkpjcRiFa1mWPBwKIqiX2SB8tI1jEkSpRKQpA7gZh7oGcBIEZiAkJlKmQOB8QImb2sU/PLzMnBACIqvcRcw/rSSxm4Zmzi22pZTAHkQOVouvl2QF/fn0bA5CwtYYzgw457KFlQcBSaqkK7jZnv+YAgcmqNInriSSSBFmYMuzPn3+G3/1DqYsoR+wZWRi+vr0h5KzsWZbF+96HRYJljgS1MYYkOCYXEdpWUZmL9MftdbtuzGvumZdr77XdXqUsiAVZE5AIivJx+2G/vSEJxWA0IfIwhJy1aJDAxBHOiI6IRJfL9Y+9tX5M03W4AwKdEf0Ed8wkosiMDM9IDFFNDLfMZkgg6xIGxJ5q/THd33ckCabH43XZnrenj9eXT6UuiIlhkRFIlEBAdbuGh48OGXbsSCLCtWw+RtgwwzGMCKztiHSMYe7LdUVEx56ZTCQE0fborR+PY7c9UoWKgJQlrCMrsp6DSKSMGL13R6MKgIjCRWeWBIkYmDL88Ziz97DBrANpeEigMAnCSINMksosSKcFo7fpYltEBYklkRETiIa7j+7u6WVZlZmZMnwCRM5lMgAEmLvIOeHwyOHORAAQESLiGe9WBiBCA0xAmG2YPFF3ZO7jzHFAZJq7JJSiASDCRbTWhRlt2LmPQDwVo2m2R4AMgln4BATo4emOANMbk5lzlQ44IS1pHiIzf5czVMBEM08957zTd4BEADDP1YnJy5oJ6YbMtRRiAkyCZGYgzoQ+O4dtaCkACMQRwMKIFD4y08x5+rkASy1zRnEapJiRwIchAzjDuZvOUlSLzj929Mftqy3rZVmWCI88xU6YTVW/bLswIyzN3Xvv375EojZrlQiEaSnEhKUIQ6aDQwRA68Nfv67bEonXteiNAXH+AGFCQiZUJOh+vL4S1yKSSYg2g0I2+s3dLXf0Y4zh8fIkhFhr+fB87WadMLOaOSGWWs/aeyEgmFaUhSo4TPwiMc9jyYZBZqmVi9owQHRzYg5zRFrqIiqA5GZHPwKBCnNw7wPoDNbMkEdEJExN9Tx4EOeQBQEpIxE4Mz3Ce5g7E8/2qAyY9FZmhlLRxjzCzWxYz2OSXHm6GAhjJggh0zJGjIRIR6AESCRkgCQETA9UYEABgAifnCA0m7tRQhIhEMFMIoT524HPZOJ0O9hIACKeR2lkWj+6cIQRsY2ToWPmRVVFS5mNrs7Mbfa1ZULCLJtWLcQyH7mnQQYxA6In9DESEmKMtkMGIkfCsDF6c7OASdYFIlJRKWWpWlVwXaYJV4ndzHyoqogAgrAUnfMJC3REdXeIQIBF1TlGB3M7WluWCjkhEomT0T3Nge40sU7TkA/v6XlMSJzYp3dwDsI7UTffPYmAGAjvRGlEAAMwO/f4+V72BGeYDKeyPGPz76TE8yAKonT/6Qez8Yz/Rl50Tpn/+vZrBxC8f4x/aa7Bd8rPv2i6wb/599vnCYD/pS/9V7glAMBA0P89FqA8Cf8zfReJZuB+/hR8d88kgAi0kX2Eh7unu49hHgkATDjjyDOalZEeE8gVZmYep4cywm2GPuP8J/P944yYYtCswXwvcT/F31+cPqffZ3LI5rr2lxd30gbhPVl4xgvP/9B7q9f5VxHA+aMDAR0mDXSeyPGbjDg1XTgbpIWSkBLOUSPxxOGjT2lmNukAgo0OqIyL4FIRAZvnl7vJWjV9NMaRwcwYAQiPZrc//qRFvv/uA7OEVGBC0KI0bEREc9ykKjqPCEAf7gE//PT28vyiym+3A4nGvtci1s1JBYnEwJMswx0YXy4rAK7LUrzvYUn49ctnkDKOAxmGRw1fa/n5y6MoF1UWXFkeRy8iy1JH9N3CIPe312VZL5c1iTCGRrLq/qC978LIrEvVUtXNi+q2aOYgABUmYQK20R9Jbf96Qb7Wy1c3LnKVure7SBnHvRYoZeP0umygpX35Gj6GXILBnUCrpWdE9JZkgByjA2HdNqJC7MrI6yJP1/1x92MnyrrUMNPoggaBEW4pR4CT9AA8jmUtrGVZVjN8fvk4+m4ePQOjj8SiBBm1KEcSM0gZnoEoRPuxv97u//Bvfq9FIpJnn2nvRdmNlIlQbp/vBUGWilpLYvG+BwohZbAqmHGOI0R1WdDNRvdgQffRHqOqeooBkMG+DySYlnpC8HBmue2j7/16XZD12HelXJbKqiLFm2VEH60Nw0xKuGrcctxb9pS1LiuBR+qyrMzSNMKIhCEQgSKY0gE8gjwxY1OQlG4pyq1bJvRhIxwzL9uqqhE+gTgMsC4KQMGSiTaauxOmIkWEEA2zfT8SYL89SDkQ13VLhHGMaSh9vLUHw7IupRYpirOHFTDTR3frDgBFdDK4EmDSeWopyjpzBxkpKgmYCI9994hwr+syxzIduru/A8yIUapUIYaEiHQPFbaIMcascqu1IvEwywREzkzMUCZXzW2LjNE7qSDjmAXhCR7pxzjZB8yKNHqPzDmSFRFCJrNuNnpLYnOvicvGmXG9Xj0igVrvEJY2bl9/TtHrx+/c2n606HuaAYonPF23sPiPf/hDa50Q3Zuq0AUDsuW+5Lbg01JKMLn7+8DMplM90xFwWStBRriWKqUiFWJvROZBS+ZxCGYP8oi9NSQqLsx8gjuEEQAyAOaAlJjIM9rRRQWZExFZPNMtbQ50iEdEEs97wbk5iXCAcEIC4jkaAASEyNZKfdqW5a512da3x8/YRYGEF8u+729C5JDo5IFmMTJGDgjRgrVqZiClqBytE3NC+sDwubQAYiZk4vmaprUjMgLRbUSEtcZM4aO3nYBTSJFBFImpd2JW4T4GJJayuA/r3u1gVhWOxMBkBCRoffRurY26BiIdjzdZoSxr3S7+uLHKktUwH93bSDkekGHDZ6/8sMAUHiukJQcKlspuAOmZQQzhgUSBGbMvnISYYSTMth1Bj2DhiBxmwyzSgJOR2uP+9N139bKMY0dkBhyj32/31/rlelnXukQfvXfmePr0PXFRkRjot/uMTQPk9fljWa/3+092PABSRdKdEK/PLx8/PCeJWTLEHolEGWFuKqoqBcusxM7MUpd899GlD8wU1XCPTKQZZZggg0BAJPG0MSzQ63ZBTIC0yJqJSP/df/9/+/GHP03fLuSJdK3rer1eRdTcRx+AKEy9De9DhEspZiORlkWJpB+7ecDMTgBAprIQMRPQuVJF9zHCEHVEMAJnGEBOG21r4Uaqw2yO9YgZiJsnWHCpTDzcFlZAfLvtwxMJz/dPQJ47ZHHAsixKFO6TSsMsmdC7tzGYxQNYiqgSCYap4hjWH2+fP/+0Pv/mabkYw6MZRLN2IPLcxwAhsLz3lZJIjra/ehNd6laJkZMU1Twz0ty/fv3y3adlWS8JEG4NUOpGASTMqoytv76OcYSbt3uZ9LNSS9E2RlnKUmrm3BQBiwhgrevTy0trrSwLEI0+ejveK8znKp8AITL6FG4gyAHAKQPcuzmrIBORhJAwBkQO9BasAZS9HxG5PX1X1wuzeHuM8fAYAgVZmTWBe++jH4jIDBmWMFtjve/7sAAIdzjMwgZGXLYrZsK7QMxMOY42+r3t7djD0hMzAGghJI3ujxttH5JlTkgtYbibJyKSVNKSkQiJzCriCdmslgqQ6SMzYIyiYh7dTEiYABJYii4rq6S7igYgUGu9E1FhdneP2dAsK7M7z/2qsBCih8csYBY5V9CIHAZGHnmiDpDmEnQ6N2LCeiADkiFhVn9DMhHgtMSGIBGvEZERCMhEkOZn1zuVuiJxZGRME5BPP8ic5CJThBMJnWtrGmbqzpPBeQ5X37csCIjILIAhRDjX2gCnX2luIokAYK7rAQAiIqEdR+9NmISFREQEkDoOTyRAkAoWAOjurIU5jCnCmZWImSee+ZTLCHH+mhk/7zamshMJM9k0nwdVjYgpihECEUf6pJv30R83G/0QkQBULR4xz07TPfGtFk2pzrr0jNmhgUiUGQTJpMTkEf14gIsKCwSBEyYgO9D90TJjq8tW11vbz40NZFEVIRxgLe9+sIJqEZYIL0VL0e1yWS9PP/38+e31K4QnkRwtkFj0cr2U3l/vDx5mMPd7SEKBZ9SGCzDprLHqR+8+YvSqlRj7GMOMWIi/IYptugIvl8u6bXOHN+YWkya+OmSr7ACewpKQNh06+cskPwmBcI4LEgEyBU+3ESSM4XZKObM0iqfEMJ9jgJMzM/m1vff5mXP4j8gsEZEYlj6tIjHde0hMSCzO3wrHEabdy2dGeB7qCJRmAQmoMj1xSEgweXEUzCJs7r31mbQippjviwNz5osBEAmQIiF9qevChA6JJEQUHnH2Yc9oC4mWWbp3eplmCiohe4eo6cyYbuP2+tXNWEvm9BECIaEqMamWWquwLEtV1XBzYYRZaMCAyYTzHJ3hiQiQIjyJjcNgtHB3FlJm3YhI5qlysvwYcCZ7IE85jzAJTtkWp7E54Rd5+luMJ2cQB08FIjHfP/2+zf/27e8yTX5LZr0zhZIggoiSTiqWT4fYeSARpH/98uWyfP/976BAJpxFa38b2noXVf5a/fn1N/z647/6DL6HvOBXEtLfpsP+K95yLiz+/2Kl371YmdkD2mybDZixLIhJ6Z8vTkbkmIR5n0GteNf2zgnOeU6eGcjMyLk2minIE/M8ZaBfRJ+cZ9CIyHdRMs/zy7sQk+ezeNpuTlWKzmavaTxkIWF6f4PPx4G/iHrzHhPwc8ZIp5EOzscbU2jHU9wnfPerAsyl09l9jEKYCSPQIolACPMdROAz3hn4LllBx+yMkmKK5sGYkhkzAl1UOGE4eSQzeAZySSpal8KJkQZOwlVLuCfLfhzCBCyVIYwjw2z8xz/+sGjZqmT4x5dnkoLXrY/eegDSiNGtOaAyHY99u1z70fa0pUBi7r2JCp6nKWy9Z8LTKh54vWy1ruAx9rfb0ev1yeHG5sOyiFw4aqmEcOy3bJZcZwLubTcEe1lxk6QPvxnNHntLH6UWQXD369PiAffHmw8ar/fLFZ5kHMfx/e9++6cv437vsbcVKXuDqbUhJ+Rtb5ihS2UpGI6Jw4a3VrbV3US17QfgTgBrEVEBwuEBEZ5ImaONtE7ct0oONSJFhYieN3wczSLGbj6ibrSuFcH6cbdwIuqzmYkTOIdZZiieJLkifHvs5uO6VUGvUnui90OZqjITtTgPNAxbLs/IhViXNaENMPIxiAXdIKMFqKoPf2sPVL49euu9j35ddKklgMIi0lnJIi0hPIoASTGPHtSl3HpuPJ4Xysx0R2ViNRwZrlJYuHcyiwC2wNv9cXT7WIulb6US00ILk0CGQng/zAcBMCuzAuTc7Lu1grlcSxJ1S7cDESrBWnTb1BOHA0C+3u1a0ANEMOL0GEfibT/8dly2miKIMNyj9e5QlSEpAR396M3NVDghjzYQMCyQOZmuL0/96K9fvpoFIBaViKQEIi6luBsxLXUppSzLpkWQxMykVGaOiNv9kZG99VILEjFREM/aVybelouwzBPM9OYuRcy8ObgHIJJIa90jmKWPljHJKoGIylRLCTNIt2H7Yw8HFply+IzFISASaa3qgu8nC10lwo+jKZN59N6HG3QzaBYHQiQAARFTuh+9v/1v//Hjp++enp4D6MNvft8fj9vt7evbAyBsNCTJTHOLSBSRBSN8vx8ljqXuC8lSLzHM5/nWDRK3WtZ15bKs27Xdvn59+/rT56+A9HyVJBBhInLiUtQG2IgEYATI9DChgFBkmqf+2TpMMx5AAA5mo/W2Xi6Q0MSJiISxe2aeEVlAInCzRCZADyASIjklIcExe+wRrmslAELatssH90z4849/fhwEQLrk5fLSjz0RkLDQxgkCcZGkC7VxVC7erBC7DRtjToISnQTXSh7onSAgwt2HjdnZjIjo881eq03eZD6YeIz35lcAYZq0IgZE1ZNjGa51ES0embP/J4OQIsEi3If5MBvt+WoJtW7IKizPH78/jrbfv0TG0foxclIzEqgW6Z4eUJGZoY29RbMWGTiXs6OP9CRkVBq9E2ZwaFknTml6vRPRT0yepzh4sBIn+HAbY7msgHOHpkQywh6t7cdxfXoKpOgNrI9jXy5FGJW3TGx9AKKyPF2fE2h/3I9uwPL17TYv6310M69FdSkiBUkAYhyHRQYgRNaqNpoNE1ERtdFHuHDiHOQOnwWCRISJrR1PT1VXPeZS1hBJStGiAhHTDQ9IHvDb3/5+Xddx7AnJwrUWTLxetwwwHyLaj0ZE7egRAeET2FxLQUi34IoTo2JmCAnEzEIEgiyYbiMiwwwARxsJYGYgMgPlCdha6/2A91Q8JaT7crnc+a3UVWtJNyIyGOb+5fPnvY1l29yDECZkClmIqagyCwBY30dvpZT1evWA2HfEaH0gmjAt2xOL+OQ1iMxuo+Pt59H20X9fazHvj7fPEJmk3TOG5eMxZ5UTqTY3/7pcmCXMmGqz3rrv+8PcjrZDQmtHXTYA9AhHKsvKYISYENH33h5mEQClaNVCkCS6rvXoBiTXl+98NB8GqSAq5pfLZV3XCd0Id4uYdYiciTon/BEzI4mJ6TxXVd2TUJgtYm+HAEUGgDKXQhmMNsZwR0KWcv3wG2I2D2VId8wUEa21lAVJxjgyeLrt0s3GmBV6Nsx9cgOdiNxGRtZlK0VgBkUzIizGgPa17bcxHBPYB5IgKSCEO4rU9WlvB5bFHAhyjGBkFSgCQqnr0s3TjQiBuVuGkAemOzMnUJgX5iOb2TBKGN72R6BAGMzUMgAzr9vqmRneHndkJi2LbogwegfCPLcvGQmz6jsyMBxJ5nTzXN4i5sk2PhMrRDC9G5OOJFORiRSWMZpoIM3PwPS9z6oQyLQJzo+QumpRSPTwaC3cEWBe8pgIAlJ+6bdC5KVKbwcx934sy0IsU0+BaegnSg/AtBMAAZApWsJtZs8jkydvFoCZzQbMJuBIiCDMwCKLMIsDpLuqIqJHIPFMMBAzT8qsaIQjcbpPDPb0m8waIwAId0SIBCZOnN1kE8WTqpzBkYksZGbuta4z+zaBLhkZCGGjuyXg01J7G3PnY33UpUIAi+DZIkMpqemYgIyADAAzN21mSZQevbeJjS+U4U4806xeVJ+W8ny73o8GaRnYdouRpRQwpOAAvFSeMYnWx+vtcblef/ub30ip3336btvWH3/6sQ+/7/22t1Lqp08fS61bRgBMcMvwYS00mRCcgBkzwWzMlcW6rcfjCHDCaViz1lqp9bHvYwxl0VqRREoRUYBplHZmJgNACCIUEmZwmENeAowAt3HmABGDEhg8UUjCAgKQVE7a8Fxxp2eCOyLSOENwc2sJMPVEnr96HuqIRMiZMcwtPAGQgJSRiGFKXQSQ7ykRhnKKlBkWJEXfDW7zoo84UYbwrX7a413jAEAgIsUTrz4PYIwMt7bv4V6X5ayNS0fEiOFGwOzzsJyiG9EkZJ2RlLmaQpyoShF19wjDKdo7PtrDzVo7iIgiEkF4FtgTIM5RS0aiIpN4GBJl5gQ/QwZNVCTzFJgCUIRFNU+cEUwSECKKynkegfeMzXw7T5pmgrBQrVN7meLOBLTku2tnvsfxGwsnTksJ/sXm//3vPtXiX9wfs9bL37VhnAjmmS2dyDIEDArKicbMiJEIGT//8PP//XefMpMABKC/1/7GXxZ4fZN+4C+1m38xvfXrnBfMadCvvvSvRbTOH/W/x7bzn73NZ6j8Qjv+V28JkJDN0C1btz7cfCYMT2HGc5asn0D/yPDI9PCM9/wVTJ8ewKn65GnM+ZbRTJ/2H48J/Zlpr1P3Oe+TOQ1j748JYJKXz58TCDN0Rt/+Qjh/+yydPHG7cwqQSb8yBGVMb86cgk11JmbUcP6+CfhJAHBEJmUqRVSElYUIMhCCEZmwCmLm3qNZWABHeGCCJ6Bn5juf6P2KBQGgiM3AkyCTCAQiEUCIXBjecf2AyPPpAAqSlsQ5tJAwjNZEF6oLlXV0wzQAfHq63m6vrbXLWspWkUV1brlj4bIWeaXRR4xhbdho+7peS60WiUyC5fa41RrXp81G//7l6ccf/uzK13Ud7lX4eRNvDVUPh8NJyDlNlRGCiIE1VYnwsmjm5X5/SAxWUc9hx8j86cvxb39X4/bDsn0M3PoY+7BtETQ/mi2S5pFUjqOJiAMCxO3167VuQPyIcXhjB7PML3/aQ4hqrcUeN6Hq4JKGAMtSD0IEUJG6XdIGImWiqnBZvA8G7B6esC0bjhEq1g8jz2Uzj6ro1vfp/gWBs6XegAuw7scIN6JCLDY6GHXE1tuqTBKSsRCb0tv9DmEIcH/s23YR0W5mfVQl8OB0Rk7wT5+eiyKgIFIOz4i1yAHpIy2jFATjo7Xe7NH6JRUZHdDd++F9qXVdvTfzkKIYAWGF0FqvW0VkRUOIKuKzxoq4GWAgWQgCKfUMVVllwU0+f3YEcMA//emHy/VlfXpOJJyXQBuMAdkxOwASl7osx94mhQ6IjhGIpMzh6ZkEsDDMAWgMIyKBrMKYaABaCBH6YT0iETATklQBECLPxSZNM4gHjkGdU4FWPL72tjsCILB5jHFEBIvIUrjo9nTZam2P1s0yMhl8GPHp9GRiZk4EFGVWICkJ6yU+EdW6vL6+zrOMIAICE4enAAqq0DTQAiCaW1UuRUWYLDyx9wH3B7EwUZkp63RETEJkcQyo9SyWyPCIYZ14VrKcdRCJABGIzIUndDoAATAHlKXiYHWHjD7Modl+zMsqIbIq42yOsHbs3o79+vb93/+jJ12qIMXx9qZFXl9vffgYE52WbtG+7CiwXPQtv1LNYPtO6lL1aDmiUbIKKcNSK5CILraYfb172E8/fcbEjx9fSlHCvN2y907EqgxuiCjCU8kAYiGIMNFCQgrgNq+/CZRKhG79sYsQhpf1MsEoE3SdADglCkJksYjTxUmEGfOvgASCXBjKugArh20XEi3Lsq3X7X/75z+kUeVCOqtloGxLWKBHWMcAqZrgkIEBgBIQUqD3gwkhoa6lXMAdx56xCwLOFRURqdZJJJyTXmaBTB8j0I+I3tq6rdNIqiKn+8lHuLn1bV1FS+tjXlWY0C2HB5Ioow+z3vej03/zbO7sVmrV9YKsa7szAbgNz/sxpg41r6nMrMDCtC3Sdu5eArynHzGG+XEbdoSutayAmMhk4bCPjMYorARBQJDoDh5oJOgJzAQOgISUWouHQOQsj2/2eOy673tEsii4YYDtO16uCGXf7+YhqkT08vIkzAzgkY5StGzX57fXN33S4fnTjz++PD9vTy8QQMRzX11LjfTEs8OWZseQgYiAY3oGQSJBBAsRoXkiUmG+Pj2Xujz2Py2lbpfrRBG5jWEGSZPrKaoI8Y//7b//wz/9vyPhN7/7PYR5b4JARedsQ0Xa6CKIjoIFM8YIqjXCzXstEuPgWlTFPZc5ZI80JMwAmDGkJCZZlgyL8BkfZ62R2Y49IokoI5JYGEnK5bLdt/WyXZC5t4d5sJb769fPP/6EWnS9xBjbtolyjM6EYaP1w9xsmlCI3KoMQ5FwI6LwyYfVda0ZECMAQFiE2WbJXRzHj//Ul6ft+iwiSnxvo3t6DACaCpuWet3W43gQ0lqr1KUd7bEfZqP37mEq+ghYlgUy51aTuRTtRcmHxf4IH+7W7czm1FKYqajWZd22ZYxxWNS6DDwh64oYkdZHmAPTGGY2jqMNMyZwRE4ixgRJUS6VRLJ7WiTMaDJHEqsOG4+vx2j3+vR0eX5OR+GSg926U6y1CKEwMSVAPvadBZdlIYDwcdy+mg0hBp+4XybRzKAMEJkJZLMup5qjFl55IUiYd7/fvN18fzWz5fICSLqst9cvrY/2sJ3pK9D1skYEetbtWQkXpbSxiM9+cgCryjkd5oDpjZDhPfQAmRnOpYhq763FaNZeb3cqKxDTMBQlQsRIJELaj0cVEQKMIKEx/ISOQHqcK/FzFJ4nMROJMhwy8V36gQlkQQTIk7ALKcRJPLcpQTEP54ggxJz4D+DMnIVLboaQhCi1lrogwBgdMQnfK3Zj8k4CICYB+ty2ZiKhlKLdRu8z4vptOh6ZDBCQbp6AEQGIHjijrOeohlBViMXMbBiccTFgzNncoKrI8t7rdfo75iVo+oZyygTERBRn6BDCDYjGWWTOmTSTJYTg7hNCDJCEBAynVsXoHhCgooDELH0YM88aUBHuvSdgAiYAM6ybRsYYo4eHJ5BnBLHkuW8CRIIJJ51QGaZzIzWvj2aBaJiJwQhENKyHew9vY5CDEHUgIR7dkzIdBFmK0lmlxcO899HM7fXeR1yv27aty3b5+6Ue+/G437y33vrXz1+uTytEVOWDwJNAECiTEpAgPZGBwN0myhoRrs8XUQlLAiLiGcKQgohl2y4sKiy1VhZi4gjxMAQKT8RAoYxMgumciqBwFxbL9D6AEZkiIyxZKEmsOSRgAnEhQiQmEpy6UozezcyZiYg8ghHnWGtuv6cANJk+yIhJCWkZiYmBmOThQHMtcDLqp0OT3skybif1fFYE4BR1+AQKMzEins6X+b58z6TM42e60iZPy76lO3tnYp6RK4AMH70ls8dJmJ4rTcggotMvGYHu7ySUmBYIZkGYa/ucDPXpQ0Kmb+6YqdFEpJllhrkzQq3PIoJICZExpxKsrKw8A63hAfhNeAJmKrXYsEyIBH2vdIRJzCRBeAe5RHpmhikzEEZS5LtmgDBrkhJ+ET/mSRHfUz7nKexUM96fzESkJMBzLckIiO4whsc0mMe7dwcRETMg0TEwKCARidApAY6j/c//4evvvlufLwUJyrvaNE+SA+A9yArwN8rOr5WUb8oO/uU3419+5m/vez4NiY4JAAK/gmf/F97+dfVnsn4scW8wzMxtDJ9j4unuyUj7JZx1IplnBvbE88wQxZQ7Zsbv3fkyBftTKZ3ZrpkCO7E/3zR9eJ8HIyIEzpKvSf+GGev79nB/cUudZp3zajKj+MLECIk4f6a/fzcCECfDe9ZrvsOTpjzLp3Hs3AICACGo0CSdsUpVeTdTZQQmQ+t2H94sInPYrHZF4anl/sKrBgBmXIpsSkWJEDKij5AxRmQS4KJ8ZJpnuLVmw60QIwsEsJLlUsIQRnjcx3iqUBGglLaPvbd1KcRFwZEUEkUYM0i1deyWy1Igh1mYJav+/d//3bouZfnwdr8N8wRHYnOokUvZtPD39G9++vM/ewQmoChSue8HwSuULcySwMKlbEhNgTwAPDMsHCsabsvw6MN0vSxU17Rd9U9vwWB1vF5ePtZysdGtDwrj8nK0RxVuYyyF4O0nvH6fQe1xv/C9lCd9vhyvnTP248AwhM5FIbGsmwUgoRa+v+2TpO1mi0YR9qLQHqSkciVizGN6STaBpbIJ3R9H6PXRvzAOj/tCua5Pj3QS6c1RFIkh3NtrAjmAEBMAKUezorUnsKgqYgSY1YvebqPtx9O1vN6a1oiJFTVr5kutCCi0JICCKXMgoCCMZsfOa5Vg7W7p6eCGfVhEskANjkRhUbbUkjnacdjoJIzAc3NfC3fHt+aDTJERgAkIc5hT3ZZaaEQfXomRqI/R236Ful4vEcLMSyn4tg+D19evZak+zEZfLxf3IRSa3VVJF5z5C6KMOAYYiydV8rRhnoIhFH2YRbpj9FABJqDMRVGKQkIfHpAIUDJrLfTERxseIErm6ZlhDpRueUT38GVbylbGGMfXx+x9bMeIDBUNz+N2BB3LWuuyCCDubZjDtErYaTxsfbAMFKlAM79JLLVuRUvR6u73x31OXRBRtYjo7M6cju5MGGMQYCPam21LkXSa5RTWl1IwM3zgu/mwSskEZEDUhNz3h41uonOtPBfXcF7v59CViREBM6MQxwy4OnIAMhd3ZUbmbr43Hx5uoQHCTkilVGVUd2vHj3/6T7q9bMvy3cv17//u3ySQp/zw+fMYPXJmpXHcvVxJFy0r9zhaq6YjqKgyGbSjJRBA5XrNzPvjzbrVopPf8fa4laXW7UnrtiW1/fB+LMsiUVS1lJrhrfe9DbZQFpTEZCdgPVcoHoEZs6vCzdqkO5IkAKtMutwYw2exIqYSNPPpqBeeAURLQgYijMw8Wu8WLCKKl+tlu2xV65/+9OfjcRz3JhsULYX01l7fXt8sQAhWwBkTrVg8fITr2raLu6OPJA0UBSjwHqafTlMi8nQMaL27G4vUWqHI4xZ9jFnP4mOCduYKJyKDUSPCxih1YWFx9wjJTIDhHmmiUdaLIT5evx6tX64vu2Nkoi5FC4og+FJlKC9F78cIlIhwyxEoKlpIEJailLmEMKVnNO8PG1/98daaDzsiwJIriWoSMXLk8INEFCiSY6aY0wCUAcLSMiBiACkrg89dX4ZBi8fb/fVxv10uT7os3nYfTZnqsj7u930/IrOU8ne//y0izF1EqfXjy9PLp98K83G/BZcg5ro87o9hg6XaMMiQskxrZwIC8tQLh3m6ixDgpLlxZqhwZhDhLDI3M6bjuhRi1lJwtoCe7RDhOdGDKSz/9t/++7evn4/Wa1HlNZZiw2pdLaJk2iAmygDCIJ0QFJ8Ay0LoU4IZg4gow9u+FDASNxtunmjDCNxRuehodt1KXbdm0IZNMwUSJSASsQjqQkQJtCwbiWaMdhyPx74/bv12ywyTYl/eRLj1/uNPPx+Pt3//D/8ARN1MRYgwIczcw6rP6IRAuFkPEEB8vH1lEQBgVcAQUaC04+HWmdjuP7/1B0vpWoZ5AiLz8FAtInR5er5eV2UBiLQjEGqtxzE8kJjYGTDN4vr8iRFa7zE6poO3aD1GI/QMM7OjjcdjJynXq0eEJRYE0fry8RO8vh3t2G9vM5nY2+HhXJHQhxkituHDBkVgOCSkcQgjRZKCVsyeqEAdkVRKeiLCgqXZ8fb5y+jdQwkWIC6LMiuOoIiq61pZ0MH9dnsbvV/KIsIA8POf/9j6QYjLep0vELGocNhIN1UBjOM4CCkzRh8E1G2H8FXYEu6325//0x8+fffiAdNj45F9dGbpr5+bR2RIKShVi6zEAoE+mGD46OHOpGVl0cKe9XLc7uaWQLPlbFJh4zSWhECOyIlFsgiZ40kijxRAFCLiulQzswxK4Mxx9Mhk4cJChHZWAk0bv0EmsxJP7zlEIOEZYppbrolFJYhENAuHmFvlzMRk4TCYKRlMwjn5jQgVSaRE5GEeJogwS/eiz60CESMkMb/neU86TPiITOEpbcwYps+hUCYSBZDEGBlnEGCykgEhMlvrhDB7svCE8ooINj8IppSD4UEQxDL3oXTGWMTc32UmiDm2nmEDcACAM1uTEc4ikN6PRsvKIogcjufMOxzeifXTrATfogaezHK5XEh0HnaiAgkDw6fSxAJImY2ZKQBVCWBaMDwcw3FW0kyPHsI0gSR929JjQEIkJnhYeCRFEcXwWUiaaXu3t33vcybHgoJFeFm1qLbH2HcjIgUcwyxCWcqyskhrY3Rb16oizPL08iFs9GPf748YOyKCFmKCNCTkRT0HEgnI2bmEyUKEhAIkFAlIuF02SIgIoLzWdRypUlikaGEmgDS3s4UKHDBHGBoDxqwNJ5zmqZgv8CnHKAmRDydmM3N3yARPIi7A89Weu30Smf1C5gPeTQWl6GREJsDchiLBGGFnNh0RkPjEJ0FCeGQCM2GehCMRPg8yhLkjjOnvOovehc7GNBKR86WEzAizU7Q4k2UZ890BACxSSkkAM/dIDwd7b6OGTLeADHdzVy3ClMHwnm6bx+QUKOcFyD0SkpCYdSkKaeDDzPoYmPNAJUSeG3ePmO+szLRht/vOiLXq9CuLqCozMcmUjUhLNbO5q5/gExDZVLsMiJzqFCQgARKGR0afu3Q+r/XD+6FCToQZDCdqOM/wEGR827Ofvo8JLcv3HBCdgsO7ioL4jowGwkRMAiTGCETHd1/R9HpMSSEhAYkIgd8TYpBgNv74083N69+9LCt9U0xm8EkBGaHN//3i5Xr/nl+Ulr8gAf1Vp/u3e/2tsDP9Mh3g5z2/fHVV+v4TfAD4r+EEer/7tx80p9LTUpV4P+DRejefLYf+ns/Kb21ck1s1MT2nCjf1nW9/67t4NyW3TIh5zJ9C0JRdPCfdJ2cs7JQfAeAdxlOEhKEb7MM9fi31TNlzfuabrYbytAjNAhk4293OP2u67zDfq7gSMM+zwPQRzbjxGROcmuyslMxEUS5Fa1Vlvhb+cOGMvO15a95GgOKwUARUePS0iPMRZri/H8/n5W9enBiZYgKqEkeCtNYhgwgjqAh5okUgQm/H97/97XWtlKMgCSETJdbD397ePgeQlt9BgjII6WiNJxPdR9D1sY91XbaSWsrb/dE7uGXbd0Byz8fA73/zcVkWcLzdPg8b18uKmSrkkJApzFLKsPG0XWqtXEoh+bq356oJO0mChTJcnn63P15zmI12/9pxLZ7ALAtjQXo4qZbe89N3n/ajhdtAPEasC6oKxMgBGM7L9bgnkbfAnrq22/DiWAp5IXAquD7tRx8EhMCJhQGJLXh6wDwohSOyCj0MfRzQXhEzmdfC3h/qBxEidMC61qpSpdCXt71HcK6asoIDJ1EK6X0kYD5ur0hloZ77F1g+PS0lMiYyYttqZVeSwTU9HLyoOCBC/uPffR/h18ulj0wPVVehslwgk5QSMXqn5ITUskoRGAh0AZbsu1ZJmkrBPNE5IluGINRaYIa/g9zGSF6lbpeKKIbEBeLRSy19hKz1w9P15y+vR48MUCZEqEKMhmHAFE0ozcN7awAgqteXa898e3t8+fnnWvTytBK0+20k8LJqqRstl2OESiKiyFI0reY+olQSAvCRGOJAbIxrdAME4ZQqbR8eUUph0WFu3glB0AmTMNBT4ZTkWRWRfNKjgdLBBtiwZV2uL0/evN9HmBGTTFkViRA8Ijw7TgotAGRkYMyQfEbEY38AASsP88oqIpAhS/VQYimvr+04CNDCVaqqtNbCe0LeHw8krGUGV8MTgB+RUFWYyIftfRByrTXP+BLA+1h1Tr2EZfpURWSOSc0GIooQAcSZAT9tIz7jsydVQQAoIZiwMNdtu90f9XEMDweEOOVkIiReYAzIGL2hjh3gn/cdID9++u0ImP6a3hoTZuQwVyQPfzwey1KObLvsVSsTCkuHI8LnYqAd47HvgCJatyUf+44I9/vNgUgW89RaR+/mc29gSByR7mBmmcms6dH9MEJhLKUSUSkYYyBxsgEgQbR27N0igUW2ZckIYgSguqxgRggqPGkaNhwhSRgcMv1232spI3DvIexnCQ7Sy/OLWfyMP8EBCRE+IoYujI/AgVq3UivQMo77eo1hBmHLE7v13DMVARORCqJH7n0HQBVFxDGMRWDaUueU2g0RiEUBiHg2s0wAQUB4bySKkb13Ypl1F+u24n54hEXm0dtx1CLpxkwi2l5fZdlKCpgBJFGCHekNwwAgSeqyclA79kSsRZciCJEJEcGlLGXjTPdxgfqUeZH1Z7i1iBZ59Ba7e0vciCsGIAUlOiskMhJiRmbyxIcmmh3mjTpEmEpRriiJLElw27/e376uTLBdCTLMXn/4YyaOyGHWW1uqrteX2+0VILWu18tSqkAY2iEYVEsi9d6lLNY6kGPm9fmjJ55Dp9GI2RI5oWgZcEBkUiCiikQYMwFXHGOMDlKW7VIZLkUs0jzaGFVFZd19ZGR6IJVJdbo8Pb18+BA//TiOpldlktnv7e4WTizkAWQQc7zOwrMsNq0diLgsy3E0YXY3DyiX77dSv77exn7PcAsr4PNkFQkGlEdLoHCv68XN3Gd3lLBoJh7t4Nvt69vuX29bgbcvX+/7w0f34SI0VyKP/bg9Hj//9OPHl5eAyT8OCBMuFoGZYWDQA4G19GO33qMU1erIhDpL5xAybfSjjd6Q0MnTI447ykL1ImUpIlIWVkWiy/X5uq3rZdkuTz7uty8/modQEM9e8XKDx9F2i2wjn7ba97f753/eH/s0Tkyihpu3Po7WzPxpqwmYGa0dLHwcjUtZL082rPcGgJf1ioTt2IXwaM2OAzIzQBAx/SR/zbUiECTYvkdvGOOdATtE+BjhlC0zSHkRRGEpT8/Pt9v9aIcjYgAAHvt+PG5FuBSRbSEks8mmhyIqpS7rSoQR3tteZCPCaSFhouvTlbiEjf1xb71LRnvc/vjjnwWh9bE9f9DLh6XWtj88sR3H7XYnJtmeEPhxfx0BQYxlq1sFH6O3wzyREZFi7Ptn0uWySF2WILHWAQjcwJsNJy7ASGV5PHZlMDNKVMJt28whzEmJCIEoIgipqOL1su/H7fF4frri6fiJpAknnLEIJpx15Sfuxz2QkJHn8hwA+FRnEGdbFKAqTuhJvG/LiICBJ4wG5iXSEgCGuYgAcQrAMFaGDLcxl9pMNDs3MzEypqGFmIjYASbXJQCYdannqMTNWXjyfVjYzSd8yGfPF8u0Xs5AIhEhAxAnBDGJaIYDIqJkDCABYiTKSLcBiInolkhJSO7xq7k4euS7voXEgpynHxjA3UTk3DwlACbzZAwDZNKvCKMQiAypzEylVBWx0YgAkQNcVQGAWJDoeHsTCQBgRpnNmABhbjlYZG7jw2dYb86mp5mCRQQT3Af4cHcza26MhxYtpXh4a+MYo4/Rm/VuEFBLKbWIEqRzBGPuR+vmNk1iEO5GCKxKjPvRHnkQobBcr9uyrq0Ub/dhw/wAZhY28ERnIg+fEfjhPvO2BJw5u94BAIlEeMK805mIHB2LCnHu4+ZngTg2a1CCErFjeKbH6ZfgqVbgJDAL/v8I+7cmOZItSxPbN1U1c/cIAJl56lRVd80Im5SReSeF//+dQuEjW8hms6druqvOOZkAIsLdzFT3jQ9qjsziCIUhKUgkMhB+s4vq2mt9SzwCztg/2zD3zAwRyZN2DIKCgE/Kx4lX+jGRN7NtO4iGyAQ/x8RIq2pEtLWicBo8k0Xg4RAAkBEMCSdN5GSK4FSXJhcSAIhI5MTEEkpmTrw9s/DEKSIAoLtFxImpfn5PKVVKAQARcZ/EXNfsXEphIUImjIDMHEOJZ6nVmXbziOdeekaczm6mBGCWZV3B1bWrKhMl4JSNIhORWSTdGImBEMA8hur7/XGxGjYgY4zRap3b7rnLJZbWZj+DT/MgAmRmqyUz3XzG5xkkE8wcIIV5rnWJSAjVHXG2RJ3qRJ5hLwQAOH0aP/44p/cif2z9/6DATMMinq5CgMz0CAIALIyOBDFVpGRCFiqzFX46Q84M2bQVeSCY2WPv//rrx+eXxQOqwLoI03wATAB7Kil0WiefdJinEPK7aPH8+oPq8vt//tEN9OPrA/C3d/jt6+M4tAgBvMDPcAGQHxk5/F1omqmn/7/C0HMJ+8M4g0/vGwzLQ+MYrurDbAybHTWTFPAk8rh7Ptu45pbl1Ol++HaejzS9P/EE60wHWDx9rfD7p4fndXWqoSeNGQERZZocMQABTwz8dGAhABDHU7+B86efJP75zmNMHND5TOZDRp7upFN4OzUjAESsDBHgc7wQGAhMVGohouncZCLEZAgJV3NXG8O7hil4JGFmzJP9dG2eqlX+/nF7Jlo8dj2YCYFnFg1SkNjUMCMSPQkpS5ExxvX6sl5vAADE6sbMEAg4zMPNPt6+IsKnT5+QsDBHkJq3IpfrS6vLsd+1+yPXlytUZnd9ebkurfzLv/z19voKiL/+9vXz62dCa0Lt8iV8LE2YMQNG743hZV324fV2KyRTJ7u+vLbLxQx++/VfP115QXppvrbPX//2tyOjkrxthx7HIqi0ZEQAlvW61JKQt+tiaghcm1wvl33fBhUQFAENx1IDPGO015/v+86UvecD+Vrb2I6tJ3GdB6KRQB98u6EQDOVKCSlSwgOZ68L7R8/3t7pciLkPWwRj3Nv1S0rVrlBJooPciHHb90/Xlbhsx1i7Vu4iq20bxvj2/kagF9IFupT1ernsw001IAg5YLbTskrdtw1Vu1mh4PUyHHx0H/ehWiRrlXF0wsj0KG06MjKSwRtXTIhaVAMoUWQhUrfwrCWOkQFMmBBO6ZUwa7ERwgwsayuFxT0Rc3vsk6EwySZq5fryug83HY/HYQKVaakUnj6d4sKBchi0JqXkn396QQg3HWboQ7dABMwg6yBLrNcAZBYSKkyzyBbQKTi5dPfZXuEAFl2KAAoRYwzXCeLgAFRV8xACMO9DE8UgCs32IpxnOUCGJuJkCJMd48jQoZfLrVyWj/cNAwoW9CRKYZhtIGkOWBLRws181i9h5LxQeVhSCJd11SINOQHS3ff9eHt/O449AdTNPYhSNQGg1DIvptt+zNUnArinmrn7ZV2JCBA9/OijlgJPjuDMadNs/gPIDJ7cO+HInCPueSWoczUidWIv+iSCPi9FCMSMHsgMxHR0Eyl//vOnx75HQu/dRrfITDDVjBCiTDQdbupmj//n95e/fS+XG3GJTFVzTHcjhsjY3vT6ImMY++i8HywitdYFmSHz/njQ9++JMnpnsnq5PPYPMxMmYgkPLh6how/1CHQppQ8d6sJUSylcADHTbei8xGathIS1ggUAIBFgaWuJsKamHmqux3F3c7Wl1WF29SxCZZqqmQHmVM1xZAIIk7Slj6FJjBRuAOAJxIIoP/3087quv/7612P0cGtLw5HE0Hi53VZANLN2A1wDhosnRIYi4QVIe99JANw1ilQhimkgr8taSz32R1tXIh6jA4R7zI/VfRqQkTnNRriTMCAOHaW2uizMPL1ebVnC01zhellacbfee2TWWpZWS1vTfOsjTJlwezysb32ogniGiIQaYC5FLmu5LI0RpdZA6hrrsgglII/ej2O/rtaWy33fdtWtlX6Ye1Kb2QRKhmQHFKDMVEAgQcjAJPBgmeu3AApkRBHkZCKEoqEaPoDRgwFT+/ahAQT1UkSO3s3zv/+3fyHOv/+Hf18un8py6R9vX7/+1Y779fVLu3263x9Icrm+qmXvO0MgU6ozM6Sbh0gppbIIE4WriHiEmWMRBvAAs1GL5KCZj/ZMRloK7mAiZble3+/3ScANRPOsmVyra/z8y58/3t8twlQzzCIrIJeiqpkIxB4KRMhSW60ikMFm6FaEWAqzummr5CCRaaq1CvLLYz9y35Mozbtarc2B9FAqBYmHhdRlIbExAomQJ1hl37Z+bI+3r3/r2+gjM5dlQYThIFVCx/fv38z0y+dPLy+fdvUGWBDCLYi5FBsKmOYuhHYc7paQEMFM7jb2eyLUuiQ4pfc+0gaJnBk7M0KFsSVmLheUUpcXsw6RSOKWwhRJw3Mc2+WCw7zUZcru9jHSwxID4jju7sEIbjoSAGDuvcx8HN0B2+VCZaFCDXFdl2QqUtpaHx/vM0S2LM0Lj2NjPq+fHgmZTASMSAVIZm8qSDGzGN3dwJ1r0YTt/mCEQ3WaUutyfbldrtfLcrkiMROamkGu66Uwp/uvf/kXHf3ldvnppy9FZLu/9zFMO7NwWZHY3CA8EA+RWsTd9/sHMa/SiMmxrC+fYN9CRxwPcMVS//Snv1tfXhFJWQTL6I9IA+a9DySmwqXWo4/7/aEeS6sLEZcmJRM5revo23Y8xvttXWttM5CSLMewcdhx//DM5XotbelHv/d93/dSWxUstRSWqe9hJM99MUNmrkslRIDsakyY4QYepi6CRJlAzDO2kjAzIjaLyUQwHGapKMKE9P2+T0BEOMvjYTLjpj8+E9yUmU9Wx8TCToqtpZrlYxcRRkCgZBDiM+KBCQkBSZDTKU9EaMo0q7uEE8pUiIhn3m7q3Qn4NIBwJrCUqWolwAzERFgmI9K5aSeOcOKaSQFISMRlpgHP+FQGxHwuEYkzLgBAkEksCIiMMzKDRMJnambalzITEWQKNBkeAJgIExADc5KHmeBDh5aWl7YQM6SHRylIOAl5yMzvfUREqTUCiKlgVVVVJXefSFI6IfYZfvoi8EyDCZ+L9ikTRGQKQ4AQH1vvx2DhUpiQfATiVKwmSTCSIDOHHuSFhVttM1znbv6cT2TCUIfsUuR2uzC/bg867nd3ywwWdJxaF3lGYQYAkXliMaHYnie9bR6jCZFASAQiNdGoFkYCNbfQ9/fNzZERCrKwqRODRc5ysUnrTkhitLnYAiBiZHDLiDTVyalxn6sGs2m9YUmK2epzKgx4Gh/mTtAjw01VufD15ZKWj/vDwF8ul9EVHIWFgTFP49XcbM8po45BxMw5m7DMT9UFYbICsyQQk4jMDfSzxm7GFqfjzDNSSpn49Uw4jsPMZE47Jz2AXM3D1BETyEcXliI81IiktcXc3CzcaWoTqkTELCyczBlpph7BxIhBz1686X1JACQhYmKWp5Tj4dNO20cARCUkAAuPo1tEK1VKKYWZn2oN0lkIHoFMhJOhznheOhIg53niABEGRYRFRGoRyIQz9T+vLAAnBPwpVMAPYwhNQwckPC0gPwQ6xKd28CMUNkfCUzhgQqIn7pmwMNXC83vDZ8VAzkI+IiqCtbC6/+Xb4+v7zkREeF2mqw0iMVBkXS+fGBAKJwFURMkzovb/pf5MaSb+kPbKP5LD4Xxh88sBLGGP7CMhgQnC47FthOuxIjMwAQaYZh/eBH95kam5PCE459uSMK9Izz+cB/tTq/JIVR8W3dI81GJYTLVxmM1S9jNgCmf4KyfrZ/p6nrrOieo5Hy/z+QA5r/GAmdOk+EP7ORWR8xPLOa06n3xm+qlw5SzfUE+b0cPz7cofytfvYlY+XWuAkDkhI/EDE/VvomKnanTWjCQAJCE2wUvl4aGeGjBzwRHpmYQkTKaGIpjwgfgviIiZZ13myb3C5/MBgJN0/TSywSz2QIQETUd3AD1lY0BAFIZAAvczQAqIiMkiP33++bpemTJTIkwipMp+dDMFgDH6/f5WarldLpkpxIHRChXG108/c6nbx5vue7oWcnN/e3dPZOEiVJdXNbsfncEh47q2o4unMlBrxdK6GRLdbhemVpcmDJB+HMexPWqB63Xdh7ax4xBhQ0yBWNnKUv/l8bAMamVzYAy1UYoUFh19aTXTKUMfb0h8W2tkE6nRd04nEVKrHPD6RcdxQXxpGMCJLOJdfV1Xn9e5BLIjZSmSoQNFSi3HrlAKY7x++WLjsKBwS/MNgzRW/ibl833fCEzWisvtdllce71+ikij3dS2rmWRQqHWNXERVgTKiNG5XAEYqKQN0EfQkgZCHbNwuB2d2yK1DPdIHPuRAA55DAUEonQdVdA8uBYC9KTwMY5cGBlA/bAwBkZG240QbpeFRMJDMD0gzRizFl7b6uYJ4G7mYOruPpw8ufdOBBCBEFzqlQkJ3zXMkAAPxYyQQm0pEdz3LYIndcAigRhIjr59fLx/er2WVtnHell5WWpryKX3g91Qam1i3SOZM9/3wz0urYpQDTZvRx8QcHm9AV561/TNhyamIE9/bRKDFGauDCRLH4ebiSMJA+D+2Bi5LQ04qLAPHXsHp3ZZf/rlp/1xeB+ZqaqQIMLnwC1DhLPWiFC1GVVztzkOGN0OGY+PO05PB8S+b9+/v31/+/54PFhmz1dMZB3N8oj0BOh9QGbDhggaBopDbVmOZV1abZBhuiHzdWk0l60A4QFEM9MK4bVWBCAgy/AIY8kETC1MnIilAkD6hKnFXHNnBpMAghRBkOmeba2VUi6YmVBEDsz3jzshCXNIkdLM1d0EidNBajfH0fuxPR6bjUGChnb55bJ/7LfPCxfRXZnsARskrYvPzEwiYuC+PWpbi3AtxXR45JzLIqW530Ta68u+7eIephBRSp14mlrL7LzrXQ2CiSHCTImAaC7T5n1zMvQLVXoRcZsdFYG1EoKq/vrb367XKyFe1rVIAjECBWBCMFKrRbjVwiWAuEBi7/vwMAsRKVxKEXP/9u03M+6HL5fbl8/w8f7Bgh6a2VXt8EjrAs17hSiJg6ol074DE1xemnViYCYhFBFx0/V6JeCj75kpUgDMFMxsThYh08xyFgIGQAQRl9aKMCB6hKpCZikFCYhYvezb3kc3t3W9/PTTz25jbI+P799s+0jTbmHuAeme7pGZ0y12qfjlurSlsdREToB1ZQBYLlepDUn60GO7r4/39/e3vW+PoVvXx2MPdoAkSRJgqRlJJSHZu6YbEiMBkDNTKZyUjEySxNPKjwWlYfOE7gHmhYqIg+u4v9MSdb22UvZj/OVvv/3jv/9HubxyeC0l+n6/7y/XF6g3lrrIVmtZL5ejdzON4/H969cEWJaK0zzMz/wIExNnJjOPMQALlwIAw/px9HBNbsdxENF9HLelIMkMtyIATQgFIBJ5UngA8qfPP7E01THUECIyLb2UZsXMd88p9okUoXRwjHSCLEzC7JkQ5u4KlBg6tJYUhNLqx2MvdYnwZBcUKYWE53QsEZBCzTJCajFLZAYkKm2/34caiXCHM/WZMM+xY9/v72/3t2/I8unz/1Clfvv2XRlbK4wTAsLhXkuZrAfth7CU9ZpIROze3TMTHNEpyd3DEDEiaHo6JmQUUzDt8XUcq5tTafdtJ+EDIX307UNHN3eS5uZ7f6ssxBCutaBuX++aH1//mu6BlFJDlZkzoPdDdRxjSGmZfhyb8OX186dlvZa6IuaxPYb21pZ01WNDlnW9EJfSrhOvnW4IgHVBKeln50ciuptnWmZkFrPhGhxu0U370T/dbj//9Om6rm1ZAHE/DlNz90BgKbfbKwCa6q9/+2vmL6VdL81G76PvBFikqh6FVzuOqXJoP9yIAPbt8Xj7+unLT8vtlUS2ve/bY/v46Nt9O/pFqiN+/+1vy7Igl72rW6pGmPa+c12YWFiWBhY+UUaXVieePF23Yd++fn17bPetfyzren2RIrMXtSyXBFAbhzrVxXzr+zZ6ZxasKy1t7geQkBDUIiKIz1GuezDj9XIxM3ML96FjADBpKRWZ8AyCJRNnBiAjItDEvp6b4ThdMwRIE54MieHOZdaNIgMHn2RmQDQ1kRMmm4DmTs8U0Biqw7AIQk6ZhhD99MPnhK+4+XP1nJEYFgA6N4AJUAgiYZoqiDkCYjoD8rkZyOlqAgxAIHfLMNN47oVQLSSV5DTpJAJxIRJzSxgAT78AgGcCAhPRzOzmLBLACDtLUZgBgQgjAmHuJgmnYccVYb5vPGc5xBiRQvDQ/v37t6N3cC+1ThEHEE0VEAgoEKRWYk6kyAhN1cPUJmhJkIAQVCEiwsJOE5yUkzxspK3WMN2PHpkshYC6eW77UGWR1krLEGapghggEWQZjYiphj1CPQtlE3l9eelq5h7ul8sKmduxq3k4RJz+CWH0RFkvHK62OwUTAiUCTB0vMpEyMs28FHo2BdFp3ohgYgBMTxDkgiyEgExcBaqUb4+HFDmzRI10OPE0XKCaniayObyffZAMSBSuGUEAxDShVK2IAE9Qt7uGBiKyCARM1LCHm2pkAgsDInIpCATmnghIPLNUQBTmnk4ywVYIBD+CLIgIARaWJwIFT8gR4LTLmUeGEUNEMNN5foHH0xwwt8GThCJEk8V+Gp0y3QMRmEm4MtsYBhlM8jTgIBG21i6Xi4ePPiby1cwDn2dhJhOfuUTIZ/4sIFN1TNpVBJQ6O+khPNzU/HS3uDsJR7hPpzMhwOxKw8hELBHZcAEAmumruZOfb68bJqQbEc+9bpESPHFF8kOYmJrJybP+3UmCT5nuD8a8H4aR87vnmwe/f8vTTfLktzxFo7myJxKevpLMhNlBLUKCEMBqPiwyp++D11ZrEXM3mxnQqECXUgDxGH6oa4zcj493IZZSyuVS/uHT6cuZmpgBDngSh/43X/iHdBj8QQbKJ2c6EJcFiS5uMcZIj20/zMpsnjKzbe9q2QqZtb//qeJT9XmmuRwSgGke7jMalB7dQj27xqGhFh7hnuo+q7ie/3iePex/UHniCfyJH4f/SXrOEwR0fgaRPzg9+UMS+Tf6SwLN2B7iWemG9OP/ByTG6dzxJ8L/D2IfQMIfZK3fHVV4dtnNIvfzkePfPPqPr/hhzHlONxAJKWY/4Snj5TkOATyZ+57ngz+f7A+b02k8mvakfEbAwCImMgwRmXKa8s5rxVOLAgTBNIDESM50pEyMhFLX9fZahGcNJJYaRA6h0Uvhz59fE/nYt/ff/kL+qS4XwALpqiQU/fFrHINZ9n0HAAVzc093oI/7oxb+uV2lVDMVrg7hnq8v1+1+J+Za12ur2/09W0OSbQxEYIJZqb0fam5trRA61N7e3i6XdlmvH0nb/v7TclnXa61MZYVDgVCY3CMAJwvMPR59a4UxAzOXtQVQW1ZVLcSHy2bw6YVHeSmkJY7hah5rk4Dp9KHEQoQxTMgznELTol1uhGI60h1rWVszMwMSsEQiyG750J1IuhqWuiYQ0qfrOgLcjAmY5TAHHcIwMta1oXc1C2hyf1S+eHKOx8u6+KiqRq2ge2YuhY7NRRggj/vx/b4VzHZ59cj7GGsjZCmXBdREJAKAAiMwvbYG6cfeDwuc9A1IEJEw3beuyURVsI8AgjRv7FzqnpwWGeY9E0ikSrp1K7VsuyHA4dlgLESqwQzX2kgKZEJQplLf1RFVIUfKIoWrCCQhQgT89ev71seffv787//pn7CsJA1JhHzsEERJ6K4BkZga6W5MxIxSS4JXt7fHLgSuRysFKILSCSe71sNVQ9rCKASAePZ6ZxK3lRmZSYocH5tUyUguzIIZcP/+waXKUouZjxERsw2q1lpEKhEhqXtkMvHh41nwEELkERgYHhF27Meem46h1t/e3u73jznSPPnKs+oJEREtHCAQoauauRQ5b9LhkTlUSzlabUjkH49j6FKkikgphDTNkmZupnO9e/S9lAUIIb2Uop6pvgqJKXKiaSkFWzULnoGK0xorLCUj9303s218B4B6uTGTlOW6umkPwABk4UwF1eVyS1oUeIzj8fH1P/0//uO2bcBRBT79OyZphETE1sMP8hWP4UWMaAhLBkQGS5pVoF6kjKEJ2apkmJoPHyUp4k2ES2uMUAsBkpqPfrj5+30rTFV4XQoCJWI/OkEUFmGBOThNjAgIBMhJR5xhYAKGCIC8Xa+ItG+P8Ny2vbV6ud5aLQQpIrWUVgsTl2UF1UgMhKQqaEubS3YAwHW52Iu/v327f+z71i/Xy7IEcUECUx197EdvIlwgMkgccCQoAoMjeQFETj4Ob9WK0BgdgZbluu8PUzVTN1W1+/0OkEIUjrUVAAQiqZWFl2WJhIxZlgEC5BH9OOa9oxRBZsQ5GIl0A5Lvv32VwkK8qxMLS0a6qlsSs7RSuuoYipiX61XqwmWhspjpGIYQXNcEJKS2LCK8XG6X9frx9turWiLfHx9/ff/6cYxk4IqE6DjPyMxIYooIJARwqbOtIwkJefa1AhImOYHMG17vQ64XXq84Do9MPcwGApYIM9w+3rfH/fX2iplAJK06FpE2+o4xbmtlQsIAzLJcTAcAhE28fxYI0JHAc5SjZqUUIZrwExHGiABAInc/jqPUZhpJSamJ2aZPwI+uoZZq3moJ5MK0Xq7r9Xp87TgJwp7HPhA9AQHRx1jWy1yc68fXDyOpbW0C6UMzwJkZuQzTcAc8SieuBSnUNAHX68sxRqiCIAByqUKogCzFVInZVCfaU80ScjsO1ZGRUptEXJfV3ftwS1XV0ffKpVxWBBYhYUpMB2QiNzcwGyoIxOyJ6ZE8p2ygNkz1XAwZus+eqqQEYgg3yAwz4kgn02Gm6t/ffvvX2+c/ff7pzx/vdyHwseV4SBEP2PuYS7cjFIfXttYafX8ce8/wTEikAK+1Ph6P79++53RDZJbCzNJqXdbLer2a2hj32mY/FHh4awsCMlERycS6tDGOem6oBUWAGTDBFAiJeWrqmOiRFgqZYdDN1D0BHvuxXq+lFWLqakfvXfu5iHWg0kSqgayXy+X2JYFG12VphDAb9wzSYGIm/dKqEBKC7x9CaMP+y3/+T6+fP9f12tXuHx8f7x/7vt0f9+tl++37B0AWkUtrFjF7xMK11CatJBARixQMR8R0JarEdHx8Px73v/zLf//12/f3x9BAkkf5/vb66RMzFyH6+Hg8HpjuHvvj3pZF+9HW67peHBFYUgTJABKQKoNFzgKVIpOSG8zEXCUkalsi+nGoKkUw4rwZ06xgh5hhLmKJ8DDLhGkUynARJqbndDMRKfw08Ec4IiKzICSTqU48DRNGwjRFZgYSqqfq4FmpQHRmCRIAcRpnEsAitLtMWYonrWN2AhBmnkdaRphLrYhBLBPb52ZqRiThXkQScVYhJsAMrCGfBV6ZgUk6dJJjpbQfa/dpgMrCCHNzmxM9yiREOBm106ac/nu0J2eHGfEk7yaCJWPmOQnK2UdGzIQZEDHGyMxHrbQBMec0NiIQIxMj87Hv0wolzG6qoycAIg3vE1KtqghBz45ic2dWKVJKSUr3TYduxz7UpZRSJhgKCaAUKZkzqVkXBkIp6GBq3KQwMwjnsIQ8jj6Wvq6LGj/2famlFrldWx/+29fvxzHs2+hHb7XMzTRgeiRRMtNzKz6peZAOnjYGiDAKeg8Mmw2hsxOZaLqj67oslGU79qGDQK7ry7btFq6HAsPEjsdER1qARSCRMCSmzB4IAwCiieYJFpYioT7VUGAUZhbpo0cEAOno0xg2w/TP7eSsgqZw8zAbRkKlFWRIAGLMwDg/smQiiGk4ORUYwJwdFUTTd3amACM8ASLAwcjRPZ4+FcBp6UKewXNIeDagnDjqjFBTQmKRCTQJmtdCjFmRIDwZLURChO6aEUUIktyVABNwTK6+dgRilloKQEJOhUdVexUh5mnGwPTQYztifzwyvZZaWwMEcANM4h/b6rmzRWKurZoZYpCIsADxUw4NRBzjCPeJ7obT4YHTDMZc4Bk4jYhpz6Ez14X4h830dHQATMgancaeUw+EKQM8PV2Zv6sCT6o1TZmWRGhp5fVSKmMTMo9jeJyGmDPJxwjPol5al9oq1yIRHBAEEBGCuFTKTHfwRPCMiDA1M+3HvpEe65ebENMRYEAkQJJlBtP+qH/8Qbn4oy7yR0koEASAbrAkRNA4Vt0dCZkpM7uaqiHR661++VRe2um6eSoo4R7DgglaTt8xZZhqWJw5rz68m6tFZPrJmYoJNDvTVHMicMo/zz94KkLz+jmFoadINF9RPjvafyikgM+UZD5tT1PtQSB4GrcSn70Ekfi0Cc1VdD69Q+cbFeevp8Ppie2Z5WIEZ4Js6iwe5zM5nYMJM6QnU8aFaU5CANDI0JjPiwmR0CJPZ09CAGR6PmWo0wD4u7Mon86zRERGmp+4/eANJc77y3x/5lBlvj8JAAESKOrjLMOBnMWby7IwYiAhoEgw5jAP4uWy3vDSrjdL+P5293G8v3/Q46iXlwT6eOz3vf/pl18+vb42pvWnnzjVTZV6H749PiK8lJbgwgyBrbbL7YuN7eXamrC5AWaQUKn3t+/r7ZUR3t7eXl+vGc6pLZzbcjhfb0zMIzq5iMDn109fE//y/Qh37P5y+0Rcutp54obeGqt7IIlUM5upW/Mk6FSFiNWUmfuwHDtyo+vrxxsIZoU4jAuE9yPKUsG3wS8Lry+v4/7moQuOxhwRTcgwI9wz0Y5XDpClVhQAJ+b6CjBkrUSzwtWXWu7vDyCuLMYFbJhHhjOj9xh9gA6IKAzej2EApkuQQgJCKQwJhWG7PxxodCtx9BDgstyus+wwI/twkCxUqBYACIMAEjQpFcD37bGZGwCZM0RZrm5DR/8YwSJmQcRupmoZ1tbKiNeFj2MQSKnFIjwxMxkCiYgDkYYlJuyEAYURCVMwACIw964zw0AZSXJZ63pp2+O+MFTCHXlXi03bFTbDpQlwSyBKrMs6rZ4JOTQ2C5BlvZR0A2JwQ3eCEMR0s34IAKVL2m4+kkolFGbkhFxaLW1xM+2HBRaaWrOzLG1ZHm/30TsgHvtRCxdiMPW+Y1vW2xUAHt8f7pEBRL7UUkRiijiInrPLBBBBhNzCxhlF7n30PnSomauN79+/ZwJxAj+7KXGWzJKZJSQhllI93MzsMCkiIpCoZrMiYd8PERlj9Fr3Wqvw9XK9rAuzMFN6QKlTA5p5KJaKCJwpRAnQkTNJMhgC9ECcZ/pst0GmmSYjDa2t9f2hYyytuSqYC+Ptl1+O7X6/v3umjd1dy7peP3++38fHr//9r//6L9/fvv36l78ExHJ1uiZWR4K6SLstX//Xb8KVuRHTUIWMTBLhud9PmCwYml1XvWtrLWHYFNFGiCGRIPGyrKW19/ePceyekKYQxEQA3JoA1fX2mqbMkoCeP2odpssep4mdgIAgM4gZMhDydl2ZMSO3fT92S7e83i6Xi5SKJOq5qULXOZ4otZmpML18/vy4Px73u5q627quox8fH/f3t/fHtpXGy6WkFwRlltdby/DtMYKMw+tClapajBFS8nEfBISJUxTbt20WPgOh6hhjqOlQE8IE9DNTPG3HyITMs7Kj6VA1h/Da2roux76Zam0rsVRBJsC8PAACYJhDjp9++nc//92fjz//49FHQhLzfe+Pj7uObm54f/PRGbNdP9XlmtyAC2fC0LABQFIqZpgbpnNaq8UvV+rD3Na1veo6zLAggPejQyKVzAAWzKQII0FSZkLEGcfMaTHwhEJVnqrqXJNte6e1Xi/XtIgIzUiAQgbjeP/1V0S6f/n55XZxDybZj47lIVU+ffm7dVlGf1TKn376WbuN7T0zqCzBViK4tsyw0R3BIakURFpbDVUqJTyIgKSm2TAjHcvl6mZDzV1FquoGSIj3PqwPuyxt1gtGBBP+/T/8469/+ysShZupklhm2jginYhaa4UiVPdET2yERKDngCtur6+A/PF4BHpQNQR1iKEJjJilliB0IiJQNWZcLxfScMjr2oDoHpaAOjTM9jG2+5Yw6wETE+/bPktiQnX0AZm32wVLU9WlyroucwXRzSIiw4kowsMt4qSWuOqkx2fMPB3osQ0zRMLSZiQ9zAEzwsk00ywjI49tG+bo4+effpHSxrG5h8jixCAIXIuUDBfCx8dvtt8rA0T6XNYLuSsiq+m+P5Dxy09fMtKTLterFGERArehZo7EgE1KyYhIkdoYkgn7yEin8NF7LYwgLDUBkggwCAWpJALVKkBgRmFz8r1b9M0QIAN2HR+PfVmWVl09zFOkSPHjeKzL9Xp5ldZg6O12ZRZEmvjtybGs66URkwhgs2MHQqrLuiwpCL/966eX1ax///pN2o5Iql2ECZGJDw87BouI+7a/XdeFGYVr4sJEkUlSJ7LV3LkWaUtw2T7ev/3lL19//cv7/bH1kFqFChAD0GPbM0KEwgMRIYOQxvbQ/QHEBWB6UsyMl4bIiDRLgITBx9DRESsh5dM/XxiBBYlLKb0fbjZ0TO8YeiQFsyBCuLEIEWGt8MQ9IBPgZMee1BsmRKRwnzNWdy9CzJLpmGdnUD6Hve4+4yQ5bMLX40nNGTNyyTw3zDm/OWOikaf9AQCEGGaOL85m6QBQNUBkZiIW5igx5zdIiMzgcCaCzQGhtcbCCljoREln2tyHqipNWyVMXkwwMpa5p5ziESZNryq7GbOYjnN7jpwJJMgngmJaM/l0Q6UhQTi5WyS0WomEiGYZDRMwESBonpE2D1BwQM4ZB9LRR3oEnUpdpNnRj7O8mMinuSMDASJ0750Qai3Mk8MNAfB+3zzmJrasS1Hy0AwGaZw8z57IjAD3FGSurbiiiGTE3vvn11sR6GNkJgth5HUV/uXnx7bft8cYffROTLWWyJAKkAh+amSYAQlEHBTg7ub9GKWWREiYFAQHQCJGAGFEKPuxpdMYpmngUXj9/PpTQH58fO8+ZtiQEH3o9IhEWDpkxFxQzW0jJoIHEyMhEc7w1OyEZab5z4z5nNGSUGKeAhwEIkJEEIIIl0SDECl0QYuzD4SYZjl9hqdwQCCggCAiYeS5fiRiSvAnshuIGKbOEXOpAHP2P/eUzFLkafPJ4DMjggAAEUAUHgGBiFILMbtZRBBAQI6+4yB1z4RS00YPU4BkEZHCwMToEewYLOlnRCYiauHzDnuqPzLPWT6NgCCF5LaqKhMXRkRaihBzE4JJpH5CYWotGRURASk8HDwyCEmESykZidoJmIQJz7azTAgLPpVT9DBTm4LmXHQ8dZJT/IkpKcYPCSFniyDC6aSAczufT9fFDz3l+ZmcbmIswi8L//uf17lrN/e1sGdmgkXuY45LkvD0m5i7H6HPt26yigzgtw+dziMkvixEhG+PcQybbbv3ffzLr3BOFphLkbqsl1e+NCh/eG309Pg4AP2BDP1DjsQn63pG14iBVmjtB6UY0gWjCMNNsk5zDzxls5POEwg5VfWwIAqzGOrqqRo6zCzSQwAAMwQzwAODIYLcwwMcIBN9YrwRkAA9HWcA77zO/+FhZ24On1av88ScMc0fF2A/WUvTBQOIGKddDCJmFgIS5y7udP089Z98Cn/oAZk/DJ4wed7Ppi+MmJeDyeLBmALjNBtNYTCBCJiQp7c0wTPVsysQRRGa6OjJkIZTtZoOJ5z0tSlHTsVqMqXnqpkJmVDoVIUtghKEsTBanGbBUzWLaar6QUdCcSASycyY3sicjG0DOv8eQSKRCGqKIb9eGWvzfW+Cm/HSqkVCphRuzITIUrldf7oxAqqv7+9viE4wAKJv3916WS6/XFqWul4uy+UC62ox5s3GhoqABh5q8fG+XC+tln6MpRZC+Nj3W9par7LeWitu3vuG4ODjy6fX377nMNvvG5Z7e3mRoETKTEmDcAEWKWu9HPd3NwWMGBHLS8VgYXNj5CL52Me1hfFrpzasVwJ2JTQXCnRz96EPhLrf5XLNg3p/4P1brU2gQyGnMoYL+sJ+sKQ5MkG5IJ0n8+3LZ0iONlgYWUspSe1uwccuHGE6RSS1tD6ISjLnoYGAiX14IEptHunqi4RnqGM/+tqkLrW2xoxqAYkoMlSFADKEqnuUVXp3BAy3t49NtUc4lDWRqAgkqvrhrJntOQrfDvVJnneU8wRIIFIPZCDgiF1tYIggExEISyVwC1OpJSJsHOZZRC7rklFTFXQwQGFOj3AEgFsrruPgFhH397d//s//ebneXj7/8uXnX/jzT2hm+6aPR+FUx3b9fHn5dL/fPz7erI9lFWQ6QAB4hMNukPuySGttBI2YfVfkka6jFSFM4GQELmwWKLLfH9fLRWpFkmk777syLMtSmEm7AtdwQxYgMnPEQKRRbPZJB6QwG6KUgjzdpIjBiKFjHEyjd3cvtUkRd8sEd0tgCK1Le3plyWc1CWImSKG0cwAK07kXceYpiBBQ7WxSqKrC0och4W3FmfyM8EwMyD66mbUFIiQCijATI7ECpkdjwcxQTSYAZEAIB8RA0NEzkopIqbVWEUH3y0UCxROQmFjAgdKVISG3bXv79utf/tf/+s///M/3+z0z6qcsL1iuPHoK+PXT5+M+jse+XCBMqV4I0D3dVZjmnDqOQwevF1rXiwjv2z0ShAgzgDjDh+WyMAt/3D9o73Nagn2kCCEhE0L60KiVA7g0nTsKpHSnuSACY2YkzswgFiR3JcKIcwqwtkbMLy+34zgI0V37GOoBKBFBjDK91Bn7dh99MOO+H7VdzePj/T0SZ7KmlnK7XIaZcD12DU9CuiyfIr0fvVTyVI8dQYbmcUQrDajoSAgTRkATEUAQPJdnTASQpuPSVmL0yN6Pedc298yorUwlmjPnPa8s6xjHffuwoeuyEOMkUCAxi1xutzE0KV4//XR7/cSltcVukZgJJD+ReMLj/fv3b7+9LBKfLiR1vVwzUCPMXefrDEBTVSUEinFOKJilVEnPQAZv18ufStliv+97ZiyXmhmJOI15XFgKhUkGEHOAQTKdZxFCABIlkKdlOHLNyK5+u15qgTFGqAqkSsuIIPr4/rbt+/12i4Bt2xKzlOP6879//elP9/f3949vn3/5cwKb7bVdmNBLjaAYB2FGoAFDBDGv69pq2+53rIQIvXcgYeJk4ITr5bYuy8yssyxz61vqUmvV/hi2qvmcnBNhY/ry6fX19fX944NFUj0j3W2CwkppmVFYSilbHyVzrWXfD+TSJJVLKQ2Jljjz026m7mYaQB44LDLOIvtSKsE5WbahhSk8SqmBNI6DioyPNzMlIkgoIhyqdsY/TTXMEHBtzQC2+3tlCgBhonRXh7MIQDwxIhlp4pO0DyRixMIcgBYOifOZ5FnjPbdJwECOiR4F0gmn2TTT72+/iXwHQkCJxAzkekFeTI/j8UZS+r7HsUErIsWJZJ6Wo9+37f3jow/985//9Msvv/RjAElE7vfHBpv2pWt8/vwZE/rjQyZ2PHMc2yzNG0dHCGUurQmx1IWknO3BzFRaRqQNQAImGz6jig7IRS7L0vtBSMPt7eODWFoRIMrEzGDidV0B4ITRIoCb9Qe4YuOkSMQ++vj+fb293kpd1rUjSwGQIq1sG4xIHTuE2thJChIgFSlQF6vrBWbjrJRS5FJrEyDCYW6BzIKIwkJTEzRDqYH09eu37e3rb7/+7f1js8DWVkCS1oQYmCdQAMJDkIkhk4Qn0McTTdV6jzAui0AyC87ZOhIxk5SJMBHmaVKZq2/mUzCppSQTZOhQLpKI5J7EzAKQHgkZIkIIETRpO+4nawaRPAIAC7PwnF7CXJKf3dcAghju7jHxGXOnynPU0YctjVkyAZCEMRKYOQAYSXWkOzHNvOdMCxFkQgBIAhAXA2NAqjK9Q5k58zOTUG7j1GkJCURm2QrMRiedvEUgYneTUjCTRM5QLQDAzINQIs4LSJ6IEiJEd58Uv7lBI57eqMDZQ5nP/c9ctUMiM0QgJGFa+LYd+3EwSQC2UkrhOn8czf3d2eoFgJ4ppQJkuBOAFGSiGcQjXM39RBfPK1YtZ+NaBqkN0z5GKRURUbgwqXl3zYQeOvsT01DWpdAK43BXMyemxHA0Bm61eiMAUPdt2+/b9vn19Xa7THmr1SJSbld+fb3dH9f7fXvsm+nsdEuWRpwWliBVWDExZlx7roFS90ByEgp3N5hXrZjE1MjMMHBLDUB3G1sMhs+vn5b1Upg/Hve3j+/u4eaYIFRqa/3YM12WwoKB4B4E5OYExK24uZunBzFwYSJAhgSXIpypYyBOh9qkSQFMJc4s0AlKIS5VGBwEMimAMyE85imFhKlhbhgYGgQkIsJyBgMRZx98EplqZDCRlMIJHoFPB8NJr8nJOkkGiMj0SEEkjLnfno3X53eFe2TqlP6nHWOWnWUmIPjo2o+2rGfArU51gjGz1iqJ7uJTtwkHYFXd983dkWjSu/Jp0CilZAQzzb75qZ4UnvSbH6vgicGGx3Yg0tJqqY1LYeH0jIypOOsYRJIY0+VBRBk5219/uF48wBMSKAEnNgefmZhp6KEpjFDmj1DPmcADAMAAwNkqjD8UgZnZmWIWEwqRMEnBpeDLwn/6VLX73967WRAjBiDigmSzkxaxAKqnZx5dLQBRp4+IiURmSGiqTshCC4gQqZ/onASY/mJEijTnHMP2Q/tY6U/LawVCGAD+DP4MgGOD0mBl+L1j7BQ1IJ/fNt8UQkg5XTQISAVawnr+1+/2oh/WskqeHlNeVHOeId+IzCTMtXATzJgm0KdWAzC7mN3DPH5Af2L61DOf7XLToTaj6xFPuA8CEk9S2fkRwKnQIRFGwkQs+R99Q3HmyZ7+oz8Cp3+kyk6PDQEwniypfF53p1xGmPTMCz6HEBAABIl55jVP1ND59zAy5ogXIDPTPDPTAiywEDPTJBNOC9PzzP1dW4STRJWJ5+ErhMIgP8jrE1gHIExMwIgBOWFG6hE+s2nPRktIEUxLSOa50TT1MXTv+vLlTwsB5mSFzV/dZX0YfGkRRZoiX0pU7EN5uSILoUNkICeX3z7Gnz4VUEUMLC11zPv0P3y5pY7vd71d5Ha9Leva9+3b9/dSCAgyQocTcRVWNT66mSUiC2smcNn243OrDKxbVx0B/O6DEupC69JMu5b29b79IoSILBUhhickXvHIHHj9GYi8H1LbY+/s2IRbkXmTRQN3inFPbutSf/31XXyk+25xW7mJRDgTEuTY3vi4U7tSu+yPj5/W2oQ3xaQa1hnNLFLi20Mb44uECKxLSR/6eJPltS4NarkNhUQNtDHu96P6PUkY3TwdxLAUYXQ/hkbisq6HJUCUkqPrGCoVRhSQ6f6UxmgOfWgRyciIJCqWeXRP34Sw78MNa6Ex/PAEKq1dhCAyCDDDa+MezlIjlAtdlurw8vZxT6Rh/v3bB5XSCgOxR4Z6H3e3URksvBG1pZ4iObEUyvBuDmHELGeJchbhxJqQwxVDZGmX67Xvx61SozoCE+Dbx47b2NWlkLTGIlwLeqX0tnKg9+Nu/RE2zF0EGfByWe8K+zd9jA6BBCuxELO7WaRg5lOjJh/kAyAxAsExddv6OEZtjQuOoXUp4EkAe1cdphYsDQRrbfXS9m3PSHM7+nAPD5cigmVSfIDSLHwkJQuyp6sqC5dazW3bt3BfWhvnUBPcHQCSECkICRCYKTKHWXpIkcxEwjMshpAJnDHvCpkx+oAErxmZ//qXv61rW9syV8wsE8OsjopEzOEeaixMJQDJAgFrFUTmqenhrDZDhgoZkFgKEZV1TYAxhrC0y4VZjj4gb4jU+6FjHIep7WnpQ9fba1va+/t3KF5vRC25UM02WwRd97SwMYdbYGmCbMMIiQr7yAhYCrUibiOCpVT3ACJwxPCJWBt9X5Y1sfz69dvlsny6XsTTx7ZUkSKTgeiqfQxElEmOAJ8nwyyOyQxCsZyBHsRAABQhmqPUDIQAwGVZZzy4j4mlCyKutahbhNGESjARce/d1F5fbnpZ3z92HWqqUgoTXYke2/b162/Hvn355Wcq6xjqPkFRqeHcGdJbKwUvFPX6gjo03XvfRQSJhWV2FePSgBIxqSAWMLfaGltCoNlwt35QbVWYbRxmylJTfLPvxzYKNkCE9DBFZgRYlotnAh6Ao778ZHK1lAFHpjdGLjWAJZNePyGz3V4YaWlShD/uj4/3N3YjpH10cyMUYj6OA7WzFGZmkbpcA4FdC5dxqFwYtrg/9nqTUnn0nDdGz6y1kGBtVbsT8TnbgJOMgwCZxEiWvixLaZfeu6odakupagGRQlhKJcR0S4BxHL9tG7BMIIKZlbqwCCCX5VNAcbVMvLx8djuOx9ZunxVmJTu2cmUICP/0+okywNehI92k1HBHgNIWafDp0xeEYADPPOuEUFhKWy+sXx/9y9X8GCZc5pSPy/K//w//u//L//X/ZuoszIjhkOGu9vLT5wJevC+lFiIdR9J6WVaqNZE4oZtF4rpep2y09SMB3dQtgEQtuVQREIhjaAI8HruOESxuDplUqjCFFPdxbBulIwkhijCEug2c7dMAAFlqLbWEOkT23rtBqbQIM1ECRWBmglu6E3MAQCBm1NJqbQGQOsAcEGcX4VyfIYAw4Wyx4ZIIwyIQ13UpQkD89tt/BwCpLRMho6w3JIrIIty3j2krW5bCsjBhYNjQ4/H4/v3b2/tdE//dP/7D//hP/9Qq9UKfXtb749DI/dDH46GBhNQEJv1UhCwxEokoQt2CiIP3Iky1AVEAzKYBQAQmCwUIJFIbESqEQEzEFyIrmhCc4MRIuY39cTgC1rIgk7sjUl0vXFotNWMGpcL77prr2jLQLNy7tKF+YUYWRKmW8P39fry/bXt/bPvHx7tqQO/IhUuVyq18ijDrB7KQSG1LW5YiPI4dMiujLAsTIVFlngh7df/tr3/p2317+3XsPUCuL7d5+yBmkYKIgBwACTk7pd1mG8nMD1C4ax+Z7GN8mNbaLtcLCkMEYgCRA0L+gUo2KcseGQciMyMgtVLm9JtZEvnc082ud+B5OTj3Xpl0To8zM6dNxiOEJcNnYkWkIDGE/whmzMbbU3GEFOYisu8as2MoglhmjXUC8nMO7B4QjiCYnoCqhkgeKeLEfC60EZCYApDIzADAzGjuzBEgwcwJU6QGIueMtcK0qk3e7fTp2OgQ0zcEmIk4u8MQIi09Ms/xLcx8UHqmqQkjIprN1nacCPrMQAQkPANvmWfxMJEOP3q/bz0Bl6V677WQexCjEAJgZSSSHyCMRN7Dn4pSTpMdIrGIlLKcLyFtqFFPKOf4KkLE4MjtGJZjHkdAwBcpEsCQAgfqRPnL2q54vb/n/t4hkwsSo7tFJoYIkw6LCGaxxH3o6AoAeF2WVmdYiRmJrkTEQvt+/PB8RSJCWdsLolPgoVu6/xjbR/rYaLkyyGwZJc/AcAkEYDd3SAebMQs17T2riIisbU3P+/d3MytYpJSEdDcqRJWAEinDwt3TIwmZqTJrhKlPNPE8BxMxIVk4M9znGYdcipqHRc6NWiYTMQGkE0ARdASAnLJFZIa7iExOpQ9zDfDwdDfPljQzlQnBwMyYUWr5fcoPeUq1c4Ma8SNXkx7qOV1OzMIsp9oDieZIsxQbZ0PZdAUgIYvMXe+PTWm67fd3IBZh14FERGUOMk19TpvOhF7E/tiPffuR32E6kQOz/QGZMZCJ1ayIzCSWuwcAMROiarAwJvUxjj5KKYLYh0IfrVVIGENVR3pkhqn9iDlJ4akKmntEnExIwMwcQ+Ep+vyugiScW+mnSQSfP+pMeuH5HX/Y+59KChMSoRC2grXQpcnLKn//U8PLpa36MmwbCIjbYY+jXxdZK1VGJgSEffgxwHMqAjOumohBjjPdhwBEyIZDnQnHDILlqdghIOA8ZhQAMRwf0SuVv6sAsAJ4woGQCAUA19PRA/C7iIM/omEnQnkmwp6pqABCEMT6Q0j733whQNIsLgxQn8caAhABeAIkMXJS0lyRnwRtj0QMcJjM45n6gqmVzhRVpp/Sc06hMp5uoKllPAWW06rzI/YViXCa1+B8ZyOnrT4y7EetmJ8XjhM19Hx9509BiDOTNf9PIpzKID0r5PIUbebRA4jIFHT6dejHMQPP+xzA04EDOck+GBAYMA07T0PefE156lx/PECnCnkeuRkQAKeJLBMAhJApEdEThqXO831Sk86rwPmsxZIcAxNPEjlgRF7WVSCYEIF1gg3dLYAz91wV8Ca4LC0Sre8sLesKSGGjLELgj7ev6+Xy/ggCz0TIDpHh/npbkdt6vQKQO3x8vPdjf1lLFRrHcblcjIkyWdp6+4L37+tlvRC/vX23Y0OS1irX1oc5eCGyBALjBE/c9nsCv7y8EPLw+PXr+23h5XoTZgD4eP/AS3OAio8eQGU9NBIrZER/1MsN0QNLpQyp4a+tcg8SKcdxF8S0Q8fC9l6IuZTgzMSCQDnW9aLlJ6LO0lbOXZ2F9w2ut1smDfNtG+nj9edauW6HfT3eXy9HbYsrNw4L3LbdPd7v97LdlyJw/RTUCo2sBQL2JMCVBQ0II0TIhhHVyNyN6vWKoWcpVaKlFxFCcgzIPHon4ZRMyKVWD4DUVi7rdYWtF3C3MDUWKYU/3h9DVUq1zF0hAUpFLrwuy8djMwjKhH60z69c2Y9hNpCgtQbhMEajZLSyrLVW9zRXc89IM8x0Y0AXSIxMtRQORiyFAqE1ebmWhddH16EakQHTb6vH4/6ov718/gWFkmkcHTDDzHvP8IRE5n6MJixrq0Uhs63Nwx+HMikLN2FkSeSjb+RKmNiWVkoL6xnmmFTHY9zf7i+fkViOx8GECTmGI4FZpLrsu1QJCy7cWgWA0XXbdilCQt0V952YUSI09XBGRj5XfswIgG6ursexuwULz6C/qUU6EUoR0IQyDZgw5wzBOAVp93BIetp/AMnczLECCIPaCPes1RDNdBpeIuJyIQAgJEQw00xgRDXfM2oxERkA5lGXhQMrpRAJMwQESWKGO3NBQJbSjz3cH/uebuuycrsUmDR32enIiK8f72/3+/fvH3MuCgy8gKX2AwETE9u6MOPxsRGykHhaPx6QcLu+IKGlZyZaigAyq/v98QggZjaPzHx5eWEEHTtVIYK6NDK6vdLH+7d0b4Koo6H1ACORZYHIiDBT93pZKhCVUqYTgc9LZmDmHGBHGGQKExMZYQQBZITPFcDSaivSxziGdR1rlSICxACMLE04ANTC+j76UYRbFcwgWkqp7tpaQ+Jff/0rlUrVqRBZRfRE0LQCF3RAEjBG4WM/UECYzYlYuCwcurQ2eS7CEimUCQQuSolCQgkR4OGPx0OY6PGxtAUAAhCwf2xdY08q1+uNkOYsjrIwcallkQIAzPjrr98uR0i7dlWwcW3c1hgGNGmUzlg/Uy0jffpRPv28mMfHY3P3T6//sCxL3+/hf+tms7ujRDBx5aZuSFiqCDKQ365LNMiIdOBCOoKRS5VIZ6YUYhFPnbMRzwAKApgVRf3ove91uZZSMDPUqAgjqTQlfCnsiNPPTYk6o5Kcps4i27799Od/v35Zjq9/41KYuLQGPt73/fvbt0WdWAiitrquF3Lrx+Ox7a0UyADMAFwu12PfgUTWZXqTKDHd3H0ajtuyhMfoGul+//ZYylLkYKqCJASZt08//5//T//H//t//I+lLv/D//BPbvqv/+2f375/n/72hGaJay1AeGLmY7IPICO3/SiMj6+/fn9/I5JSm00Rkds4fOFLsHQdmEmMDmAAYUalZDgCYiQx77tJbYlUSpEiEAGl5Lapncn5pa0onInMNHVPFNm2gZdWMNUdACCCizCLFEYkCJe6UKlI5OYewVM1Fj6JjpFMTMwWGUJM2FqrpQ4dIrwu9egWQyPDtEMCEfrxVliWWshj2CGzVSMozQ7d3ENV+7FDqFC+vLz+H/7DP/393/1sOnotU9L9ft9rK8taIXH0+/19qPakBHB1WJcbFwzwSheisr9/CDMShe5UFio1qSRiuCIBMA473AcJApKnIyVKuDovhYBf1hbuqsMTIJQQMXmo/emXf7euV0QsbYlILgyJ/fEBUgrLsGNGNPteWltGTNE5MyN06/uhfR99mzNtxqytldYwTQjVmLNSadLWZVmoLEBIKIWPSnOrk5GeAGEWY//4eGyPTcdBKGW5ViIpdbZAzbTyUhdgOcaAzKmYh5yT/rlQ5FlcTMiEpqrHtgPwZUVmN5V05ApcJu9GZ7MeYEYgQCknaKHOLEmEzUpKxIhMCMaJ/smAmJ3qXGu4EZECzG8+fe5EBJigZySJaNazzDpgngg8dyAkQs6oQioFSyvLJWM+KEH6tJCwiLTFEo/9XtxFiEtBaYAkk/8HScRq4W4z3k6QES4iMz4W7gDo4Wd7A5xdXtOLQbXOzcaEQJgqAM4NPyJB5gQGRQARI8QEz0M+AT149mqdCH6IafYJTCKZ02p8upaYzmkxZLqpWa7rSsSMcdAEADOeAQhkTgaeEJQJk353J5yzZJyD+QmUMJ/d8IxIxIYuv1NiAKSUajbYhmdSuAJQ0lqWtRACC2a4u3NjKgSALEx4VnIRoVm4eo6spY3MWuu6LFKkqw0d4fZ48HUp+NzVQMbZyRk+HbvaFQUQWdWs7zkDQhAOIaUIiw3HQFDkAtAAXShp1lTl2SydwIDV0iPBdfhf/7J///q1tkrE67Jgp9vLa6lNR+/jcPJEMwu3mVRJNa2tZKJbQGRlEZmeXSpF5o7N08KBeR7dicyxHXO7BQhMXIVbLabdNAkJSfKsAidICM/AIJq2W6c59UeYR2CEo7NzlNOhcqKBIs8NK4TPjFgC0EzJn76JDPe56ZtAXIsZn5xrxhmqi/TgIkQEExHASIQJ9fRHJGSk6YiMcOjHFj4p6QiAE75aW5PSpFTIHKMLS1CoWkYYQBNBIiEmpoxM8tP0gmcxO/h0TExRGN1dpLRlkVKBJDzMve874u3ZiHdqr4A+BxWZ0ySLImJqYyixiRSADDeP4NPpEs8OKfj91x+6z1SCZuL+acSAnEmxH9oH0lQDhYRprXy91OtSPl3l9qlFCiCYx3YMIpottNsxFQSqjEUIMj8OVQ8LeNZEzSA5TqFk2j+eZeWAiHEKAvP0hrNb8HxCGBFfv76tdP2Hn9e5u1gANFEQAn9/ifH8zY9EWACMBDNgzn7A/jAmEMJSKAtKhcu/9Q39Gw3ofG8YSixAOctqAQecIuQPdg8TVpkBr5zU53jqJAD0HApMa9H5r4zkhAQ+5ZRIn6b1H58BzqNgPsSMu4PPbZRPX8SJFbJzhZJP+09G5lM+zh96y0kU+uMLBEAExvnZJQAindrZ9KgiJBMI80SzT3l9tvzk0ymWz5fG+FSEpiY/5Z7pjcsApFOweR6OT5vPPNt/vNsZ5xNFBCQCIsxAhfQAizQ/O9TgVJ7g5GABzB5H1ExASoxEKEWuLxdECDMiSuvumkAAEu5uSixvnhcp14XDvb9/EFQqayAnELOslV9vl0xM13Z7QXfh7ej6t4+Pz59vt08/a3fITFdN21BrFVM2h1oW1TuBI4QjPe6P9XoptRQhJEnTujQGZAJLiOTH431ZWmHZukol3R8vr6/3+/bp2gLo6GNd2NwC6H1gu67C3GiAewirujn0Y/f9DvUagJfPX8ItSEr2HpLhbVko3PGyHwolW8VCKUttS0PkW0WBnp9++djrZkcBI1eBPPgCVCvClytvXB8j+OO91cpUjoBH16MPSaXK94O+3juz1OvlCG44MMABKoYLeYp1v7EnlYkOYhRAJMbXaw1uRmIRbhHok+gW4VI5E4mREUJDM1Rt25VZWiULXzDXIhnEoBiZafumb49hkGijlpUoh1tsPW24ZyKGw/2+C+XtateqS+WAhTIw4dB0x93sVqjggnYIADFyJApeChFX8/y4dymU7jp0FRCqGeDplyb0+uU3/9Y3dQuLvN2WlMJU1PHj0XnZW60AwJUZ0txc0yMpMcOS0ABdjREznSGSYAQKMCATc0TUpdW63N+76R6BYZwApa0gnsxm8XjfpBYWyggdlpGqyjyD8N57L4vYGNJaKXwcamaIEJlrXQjALSKcndKp1YWJ5+qZGD19HGPKu3G6NAERi0gRGaOf0n5hpHkG42kLSkj/YRwMi0Qkm1J5JgD0MbwIIzkFIKCwWrrHXKGyFBGaYL/eO+IQW4jFfEKsF2EJGB6JzB3xmlgLMWaFABKpyzBTc7AMszCHhPv9wUStrURE1BgJuBRITPhP/8t/eTweKPXoHUtQzXDvD06Ny4ssa7N+JOP66VLbgkDI2KQtl4ZIUCiDERNZzTK8W/aMrHVhppfr9bLUImVPD2Ik0mHEVYq05fJ+f8ewtTFq6vGhVHvXy3UtjOlgbnuHWhtSEkKGn5REhGWpkeBmLCVP4z2dwx5CQoIYkd57n/aHUmtk6jiaCCKrGSWMdABQ9Ujso/cxVB0zbktxQDMmESL66aefP+5v7r599H4c3sf1+tJoDfS+b+YutZSXZXm92jgEa7BC5Dgey7qyVKI5xJ63QfJwUi5RCtWgiKJp8frp5XK5uNlDH8yMLT07DM7OpDSOARTMgCQV0h3N9bJeaqGA8vbrv4Abt+5IprofvCgUETu2BDYsxNm3QZjuEAYshRBKgyWZy4JcpF4//Szbdj+2D0hIFkQqtUXmOLalNVOHJV8gHrlrDCEGRJJkLiwn7Jm5uRtBJnJGqDo6YomEOI4NEvcvv1yvr7PYkIBZSl2YMhjSESgjCYZHeCSQhUP4MPv2/e2f/8v/+3L71NZPpSxItKxXd/2X/+Wf//Kv/6pqblFaEykksh19YVDP/ePORIzpbiSlSqkrhoeOUWs1s2Psx9A5w4KIIqczT5LW+Pp2f61FCJOxpOA0990+ffmf/qf/+b7tcyTy7/7pf/yHf/j7r1+/Pt7fiAsLL1fEPo6hbb0Ailu3jOPx9rf//t/+quo6lnX9/PqStgMSUVHvljAOWC+3ZVkLwf3jw80wIZPU3YaupSaAlGpqzEJItVUp4jpsUIal59nXi7gfw3ySywJzwgnBE2HaZogRcVkviBjWM1NKpVIgwz0R6fbyypMyq6oeQIzpkWmJSVILtyoiXKTWdQl3DF0aiHAfeq65EIWpFKpVwO16WSbpVghH34mYIACcC6/Xl23En3758vNPX+pSRfAY4y9/++0vv/16WCKhx/h0fR3d/vbtWz96W1upaA6bjfW6tLJWEmIBgJkTR65EBFyQOcMhAAsmJJiJJFMFEQqNNFUAwSLiBujJhZBBLI99632U0hApAUtdzOPx8VFqKa0RoI+diA3II0bfk/Djfgeg6+1WixC4676/fT0+vlnf0py5LLcbsayXCyG6mhShUkUK1wWJSWopkpnJ6Ey1lr5v5kZIo+NQ/fj+2/2xpYcw1ypEbHE21MZZ0JaRhgHMk6SCU2cQEUSIACaAWViQAABVSD32PtSkMieKAtEsPAamSTuYyMrTTG8ymbtErSxzJnSOH0/qJNKcy0YCBRERIpUKmaXSdLtExAT5E9OEQGeYaiIkIRBSICTGbJiejwWZTMhMMCNBAVx59A4wd/DOwsK8ro0gTbsDhWMpjMwixd0Jo5TGUiKy92PO3susbiZOyFmVxSJ4Zr7G6YmgM4iXM/oIp8J1TnHxdFfM3TMhZwaSzHuPZxJjehIzYEYCMZZSTMdcsEdEpgGAqQoC4vkmRIR51MIJxCKFJveHrGMTsZjMI4AMYkZITDQzjxRhM2M+czeIlBSIpJkwVDHNbFZMSCnz0yCicM9MFhaREUPDkKeTg2srrcnaWh/92B9z02OmkMHCqj66lloQMRPNswm+vL4QEjO7eYSb2yygOPpaKyOxepwlOxm1lERUHaaanskR8fA+JsJwdCOGUnC6vzMMAupaqCBRFKoY6OZjdBZqwgMiAJixViHPMZJoiitRayGW2+snkbJtZK7AoGrpMUOvHsBzDFOJCBlLamakICOi1EnyjojQUETETKkFErjQ3Hme/VDM87Trwxu1QPcIVSMnpDPe5eYI0FrDAPegUxCA6RB31XB3ET4zU5hTC4eMiOMYES4sUmThSsLT4ofC6bN3MlR1ttfPpem55cVQU0CY9fYkkhGACD6TNsQ0qbMzKEQRkXxGd+ZmU/UI19oMIEm41TpNeCIKgDNDPavFmQkZIxAAkzNjSiuIzBERHpaeGQjIzNdlud6utS3Hvh/bw1RNaxGZ22diKrUuS1M1SD9J7pmIUFsVETc7bfeTWHIGzudFDJ45OXzu/v+wzY7nJh1OoYLOHfcpfMw8zqXJZZGX6/LT51sAfH17/O3rr3//830c8X1zjUCgyBTChPQAT/cMHNAt+jC19KcEgaeo9zSEIGBgzARaBCDOaTIC5vOJPaNSM0GfW8Q//9Xvj/3vvyzLUgBxTv4CQZ8yl/9R2gAAAEYoCECAgIzAmD5GqVJLY05whPL/U/95/isTBApDSQBorpORZz7FiIBMYWTkqYvF6U9BmBXmT0UGZpxqjm0jM6YWjicX59wz/VCKploSETljX5Pt4x7qPt09p9YTZ9HYOWWP381Bp9ryB0fY6QKbMjtOMXBeLZ+GMADEZESYuisCI1ZB9+lRmnLOyfnOk+sMiRiYU2593mAxpx6XAHBiL/MpQs6Xev4lOh2jM7aZCJFAE0yOAAARac+UnPtJkD7duYDnexeQCDI14KceBoSYCNt+rOtt9C44b1TpZuHKxKmpCLW2beS15e3S/vavf2G5NTYhFKL15eWyXt3M9ChFYgxAciw//fTF+/Zf//nX//n2p/Vy84RjPK5M+75hgOoIG8dBpbR925ZWb5d1jLFvDyAhqo2zp7RSuS3bx3uYqnWu7VD/dHmNPra9X4QahK+Lq76+rFrL+8dHq3JAMlOOztcvQBQHt4jl8rrd3z66r7WiRRU6tnthud/v0doCH5i4H/76+aUehwUQDEssUrCs5n57ubVi9u2vUC99OzC6ImnvlH5ZrqrKzLWty5Lv93H0jj5AVqJCxO7x6DE+tsfg9/f31tbrpSBXgyCaBdVuUARTGgW4GyytRcXCOGcrXFCIIhV8mHkgh+t5XWbDBIgomRqOSObSxwg/bpfK46j85bbexr4N94mwCveAWbQMHnthbIWOrm4WQLOycLkSpQ/3xazVpRCEx1BvTOX1uvfuiOo6E4kNMnneHgpXwRHrUjLyCPNMkEUKAmY6JsvyclnN96H3I3rYTeplaZfXz9fPn81ze2yF5osOhDh2lSIFKRIUqDscbkvCUvGXnz/14aVIAMJ0wTEgoAOy8KdrG4pDTYe1SlS4tspMYWHqfevrbZFaMnzeOjMmLBjNzPQIRWnVIVXVIzJTOClRihD47C+dEACqNDP2kanDM6AWMQdHFxZmAgBmWZZGTDo6/K6aZ5GiT5kaAaYZe6ZVz/i9hbkjMzD7XL6jh7vUSsKHKruXUuzjvYgQAc7KTEj3jaSeDligkPAINRdMEXnsR2P8XHBZV64VSVoph3lXvb99y9G/fPkMLETQagPIVjhUCd47vjrxL3/6u+H/+v39bd8/uKYUimTKFkZFSkD27ih8u92YhQCXRgWYkmhFxmbmnt3dYxBUJWrCuK5Lq2VtlQmYsq4XdTczpiSmOUyupYYDt3VLVN/tOMJNCr1cb9SgDzdzZCciIKAnWS0giCd0JiFB3SNj+FybR/i53wgHD+9gCAxEy+U2jsdjP5Z1nTqdeaQ7cpkRBlM/+uFqkMtMYyVAFVqXNRHG6JY2ur+/vevQz5+/IAhCQ/BS1vX6GdDChmF38Hk3QQQRzMgixFJI8/7AhDNUkJAggJiXstYomBhMx7ZLEakYNkIZepEiaprUKZKxuQ0kDMV+HKUWLFVH78dBVBJo+mKBOSPdEmsBAGEobe19f+yHj2NtvF5vNxKi0o/9Y9sRshRu6w3SXQdJRS5SF6qXeP9NtD3u7wCwQKhZWAA7llk7GciAAEzomnoMWhIZwiAjrBtEL9eVWsWErT88HMGZkFkCkAvbrkCAGajdgSc4kFjmyLKkqOmvv/62/Jf/15/+7h+lrPeP70T4/bd/+fq3f3396c/EvR8bM9fL5fryRcd4//iOBMysqj2MSW5tFSlM5Kr73p34oY/RD49cimSGmR6Px+XlE5OoDdu33v/re/0Pc25KYCIsBETy+ulzZLy/v69LvSxLbZ8//fwPwrhtu47dTcd+//rrr1XwUA/Effj+/S/7+2867PV2+/Lli6w3cyfEy+Vq7u+P3UyL8JdPL27We4/MVtuxH8dxIIuPTixUIMKFGYsQi6ljgmv/0XIREb0f+7ZjbcxcpOBca0MA4HBYhGOOjU2JeSo+PrE3RMJSWS6Xa21VR3//Pn50d+RMX1RZri+Xtbn2iCSgWsv26JCASJe1uZnFRH0TsSCgBUxclzDPxXqptR/b0B0IRypV/PTpUx/69Z+/vd3f7vu2b+Nw94DNjn1sf/34OswgkZ0bLo6YGcgcsx/Htda1lBKACUlSc7bJ5OmnCPPE5CalSK23QFDrYxzIBDyR0AkckAiOHpaI6mG2XW63l8+f6/UaAeqOhitwLaLLdRb7qkdE9KMDHWGaBC+XlZOO+9v2/u24f083QH79/EplASIphWYzlRmK1LURUego6EKxfXwcvT/e3tQMYoRZLWIB3Xwce2WideFn0SSBZyQTiTAksFAi5xwpY878WxIFJItQAKZ72IQSICJJRXNPGh6MSDQd3pMi5IlJmIhT8cRdNTShVoFMYIyQungtppY5EcgTMolEAMjztz45d4iYQUwZwCITaYfEgBzpghjhHv4sF8sZWmNhzEBIEWFzQiPCTFDVCIeI2Zv03Cc4AtbWZDZxI8ysCSGgcAaY6RzPtFpP3nNOhSsIkXlmQOfCfNa9zv3Bjw3CzBhjRszuMASY8ZNz25EJxAgQ4ZGJE2BEbDnMstRKk+yDwMSexswRGGY4TTRDibAUmWpAIhBhKWWJwIwqlGGEyEzJhMQA6TYReIQWTIQYhDDGYPIZZ8YZN0agc2OmESMSiKcPbNboIIvkbAmZ91TCUoWFbQxiCOZyKfVSGCHSJjezAi2ff1bVx/YhzKbThwvDDH1+mE5M67oWKYhYlnZYahhiiHBr9VYK19aPkRFddfTeVadbGQAjE04PEI3dIDkzzWym+OtFRMIpKpbMUBtNym25oLoRO7sULsC3y/Xzl59ba2/fv+/7XiqmWzfbHh+j71gwLcBzppqWIpdPr1KLgTs5AZelVBZmVjegBMzJqG5LVTUClMJu3mohpL53s1BVynSByY0tzGpBs483IjwZkJDTgqoQIjoy8RzsuXuemsB01ltE/HDwiAgxEYOkAHBE9j5UVVgQkZggwc3dHUAitBRZlmurVYQ9wlTnfjciLAPdSDLcMoOI3AMAYgapziqrjPAIJyRiYqRSQIQzghAwtLJIW+KMRl4n6HSeBlM8ZMIJUsicFMtz2wvP2qUphHARFhHiVmV/hPXOpbS20Il7nt0qAAm1FEgJmTyacDdASj5bz07AQjpTMkM4IGD+yPLMh/5hk3lGvjATaDaE4Qkg/oM7BAFb4S8vy8ulfLq118/r/dEf+wjP//5bJ0A/1RkHRBHKDA1wT7UYpzIyS5rw9BedUbW5Q5g0YqQzdDRloCQkQII458Wn2YQoI5kBITIAggWiVAKQM0AEWJ9qTf+D4en8CQkIUBkQ4HKBy1LMqhC8StKphcC/AQCdX78bZ56AIDxTSlSua7q7ms/dDEESYEYYPuvYTg/TpPxMS99p/8EfVKoTXpM/VJr8NwLNqXdMMLZPB2ake+jp8zkHEE8N6FyjZMCTrfY0xswj4NyXnVawU2GCTAB3zERiOI+2BDqVqsyEpLNrHafhc2b3EDxhFqR6wnyS8906TVgz5Td/B4BPr9mT/HP+BjEnjepMdUKCIxEEnXAxwB+Un5NzNJ91/nj6M3aGiQBCAOo6CXZESEh5wDhGV+WxD0jCJJjZEAozbIVmuyTA951uS/v8y999PA6l5Fo/ffnzy3pdP/38+PjO4bWuQ/3+9p0QW0Vkwr59+/b1y5efa12uy8JoFLWPTaREBFOO8Wi1zbg1ISXXy+1WSqupL68LMazrLT2+ffvW1iumq8XWD+TifRsYe99v16svV9deKZrQ3q2tqxCthXF7b69fPoYXSRH69PmLHY8IADAp0lXVFImO0UuBTy/NIdS9LAs97kfvt1cRCI0oEIJKl58IRNXIDs+Zl3cIxWIJGJpcS0Qst3Y87sDgY3OqKtcw3RQi2HVApuneeyQLEiNmhnmA6bBULpUxNVxENMIe2+22mpCgkG5MAq6IeCYrIpnZgwskpFVBYUzm9bJsWzl6f/u4K8eXn3/yY3/cN6CcEWKLHAnIgkg2DtCoyIy0Xi/DYYxRWxHhhLCICFAbhOCARRKJuLSFMPQ4hhYh1bwUIcTIPA6tEWP4cXSCIOTbWgNhHwEM7shh4naryJ9WRHzbx2M/qNQvl2ut9Vrr29fvX79+J0gRJKCIJA9mlKXtezd3QrgstZZCsj5Gp8xwT/fGOMzPwOdcCAQCYoZrFEEid2QAoAwYx7i8rMttGfdjbZzmidhdEen/w9u/9UiSZFua2L6KqKq5e0RkZlWdOhd2TxMgSAz5wF/Pn0CAGBAgCGIG3SRPs/vULTMjI9zdzFRFZF/4IGqRedgzGBAYtFVVVIR7hNtNTVVk7bW+lT4ipbeUakAICXPQHRH7fpSUOVecXwcEt4nLCjCISJnBaQAVJaLw6WTO23230Vg45nIQgkmWWpiotT6vUnMbFSdTDRCptdkqOli11AURc9jIXjJKVhImIo8YY+z3GzPXpULmpZZa1AL6rKL2Ye4IBwCuhZm2NmC33oR/KOvKi7We6cCSvd2+/HJZirAAYhv+jIAkY/R+vysEUUoR+v7T2+vr69efqHbeADLYar+7bOmAYwAgPn98enrZwqxWgQPICUoqCSI6pzUTK8khgEuRtdZ1kUUFCdMHliKFxu7hlmZ94HG/5mgJUErVst6by0Ki2vf7dW9MvK1VFK2PtNHDpBR0qMLzum1jBHAmCnHRZCYLPGmFE4iA891EjxweYA6QLAKR4M6igBAOQIEQHkEInz6+0Cs0PMxHhSJCrRsSP728rPh8u+5fv3xuYxx79zFUl+eXJ1wWnw4+dy0iyxpuiZ10xiiSEIFRuC7rNkZ18y9vX5CYSGfAwEuSQJqFYVLoKungw9MKgtTLggZhvdvBlXgJTaFQ5BJIQHr0vnz39Ha/KdC6rDypkjaCOXRBJEVU0XMc4wPCA0S0YmEQa0dz63NzSiLCav3IDCYUpvL0oirWj/C439+WeunQWuskpIUzENSRkoJYeDRzswmty/QAsOGQ4QB+JAv1NovGUYjCbfReimhRn2mj0ZPkXB5qqYAA2VrXoj7G5x//hu51ufzlL3/KjDFa0bKu29VG7/uyLKN3O25leR7LNo59WQsRuUvRish9GGWYmYj2flgbAZEJ+34Qc0b2wCdWs77v+2i791/o8vvKWCirLpxo5sQJANvl6diP9fKyXJ6lLIkcAc/Lhz4MEBHo9/923L/+7W//8s/H3bfCQvjHv/s7WbalLC/ffW+BHj7M6uXluRTHn2+3XVVVpJuzFDL30T3Szo0KItH9/RUBkYiYH0s8IZGY8zT3YX7sh2cuopagzHkuQhIyiXl4EmEpixSdYkBGWiRFKjPXRXyM/d7vtx7eI5GQklkEADwirU/6MiFFjKO3sOH9YEJzeHp+2rbaWpvRMMTT5EzMzNPHkQhgEW9t//H29fOXn3vbn58+/se//Olf/vq3zDjQIJGRE9DQRg4EdHNowCokCAK1LoMbiBV+KrIAsYWfNjqYqVzKk80Y4d2joaBoKXVjVgdvY5+zS6AM9LnvmSAAzIREVs5J6ybK8D5aBKg+AYKIrMty9GZjANLLpx+O/bbfr8d+o1ey4/pc5P76+evPP4qqcCl11brQzGkSeDdioUVnPS2kZXiM43a0WcTeR7u9v83LRRUJgPAUEVWZ1bJzZT1hE2XiSWk2QOX06BPx3HPM5IkoZyY4QAypJZIgz9IrlbTIo5tWwQTxQcQT4YkIFZKZmaXUxXrv4TkCPInIY0cEIkCAeUGJCDNLQGFg4QiIyIlrnTvJIGbiR2QskTltot5gtnu5jaliRkL0IXKGqQAS0iFsUSTQfhzTSUSQZSbdIqflgeTkrPlkQiAycwD7HOBSAsJcJjmkeUACMmWie5wNwJmTBBY5mTByRgGmiCoY7uAGkMxzNwPM7M5nss0jICYENwHmpwYymGhiUonRHdwdIYmREIXE3KdRa3aPMlPvg5CWWgGAwc2SkNZleduPGVtD4swgVBLEJMpkhN67iHAwoE8D7PR7zPj2fFJuhgCExgjhhkRAaO6WgUJSmEQ8YrTeR7fSwGxdFkRQqeGeZkJcyrKu64fnj0z804+f97evAORmwzw8EHJ7uqyXp2WpiFCKlFLqLKCAk/YKOHUquXhExPv1OreGw8fwcey7e9RamDkztUhYeET4aPeERVmz4XQCxH60kWNTkTnLFyysHy6fnl9ehEmE2n68Xa/HsXfvJL5QMTfzkEmTSpBVl6qiZfc2d2eKIqQBwcqAGejMFOYEGIGkfG7wGHGEKiMiEyCin5tabH30aS9HYiZhykhCigRMPMmeMI8amptgfziS5o47EywCMjyCCc/YCOJDzQEDJ6Lpg3C3iJiKCJ9Xixm08YkhV1U6e4s9rE/jBkS4z96OWWGGcX58bOY1H6YJLEUzQVhUpRb2iIgotRQts/rN3MBzBp+HGU/Y8VQtZ5J1cpSAk+ZnPIVYVWaXH0DibPqarwig+5jSWHjMv0bAhJg4qfPgbhEECD4ZScKEKIh+dnrlLIQ/uSzfBI3Hr+cI8VyOP5SCPFnWiBkZzVw62msE0v2w8BDCpRShhEzzybMEQByW3bxb9BEP6A8w0FxdJAJA4nklDnioEQ8nO5679WmOmbPnCZ1AYEQWnEGkWvh5lXVTSPnVoPObm8DjbPVNAEKQ3/ylDU/Lzzezzf/vj/hXCtK338zYJiBQIoMsz09hdtpy+Dz45/wP4kGmwbn8zoBMxvm6BiRiJp7AG4j4JmjMO5+DBJhYn5Pr/MA5n/Cgx1emJvJNA4LT9fMQlU6nzONHP6Sfhyh0+r0e/qyzhGs+gtm6VeRsOpx1HOf78sCHJ4Q5DJ/a03lay3MqAYQAM+sImGfMLxCn/fWU/06BCWIeGgnz0jM/6OcLhHmWb2SCP8hHD+dRPtTNU0GTBMwkyCBIQrJMICTWsF6XmuHpltMZu9+AOCKToOQAlN7He8LRLKx/+PihXp4Qs2yrCgovRx6396/t2MOHRyKtwAXp/v76y4enlZXSTZdqYIQogqPn0awIWW/meRz7cRzLWtNq2VaiS1Vcnp98xLLUj8/rvY1l2WqNz1/fCXLdah9xO/oYfXv5HgAZvAgeI+Z8qXBiu+bbYFwIuFAi5HK5OOrb1y/DDJA8AOOIJNDKAz491bdb692JsFN5v7eRhOMWCsdXY0SuF9jfV2z3LOjjWQISe2+mGolHM8hAGC9rwRyZ8WXfdyrW7kFFRUMdtnXazhPRpcYIFUkCzKN7WpqgjxDmQxC7+W7p5n6/rQWHE2lJAIfIMJ6WUkgGG+7eHTCAaBF5+m758vpuhetE/1hL5hydVAIo0D48rccISHSk/bjnkc+rqoilrVUJQhYFpDADyki/7f7L6/6y4rouCBhm/bBIp7VaZEEExr213vbR0YLSo3sc1i+XmqhGWUkscR8mlCLK6/Pvlsu291++3o+j/ad//o+/+/0Pz0/rVliZ3Xyf9dtITBQBNvqq9LyVqYJ2N+JchdzMIUE0mAIdzJ4WdFt3ZBHyPMOTykzpKkS/ntZhWWu2DpkIOcZgBMHkwm7Wu9N+CAsSwggkhIDWejxOxyrKxMMHPCr3ZjE3PhaC7o4IKjQ8WtsRKTPpG+s9oBQVFkZal8XNWh+3+36y7BEJcphlTlNPtPtuY5Rl0VLC+TiOiNBSMzI5xhgIwMKjd6FZ56UChMPc04YlQEYQQX36yCwrkw3ysJ+/vj+TYiKk1WV52rYP/5v/rbdbLTy9qV8/f0ZiH0chnIXLZf2w/vCHt6Cfv/xlCexhMWoMgvRtE2UkgOeXTbVOVIJmhAkJkoyk8wS4lg/JnYIJUBCEIUYb0ZftCYCOPpAEUCOPfhz7/p7nLjQCsXUjxsLCnDjwfnu7QaQb1QUiPA4gsjBkFSZBxgw3cwjIOIfNQIAQESI1fGQ4AZIqYEoitLH3g1iFxdPMB0WQKj26LzNjLuYua1Gdse2c/WFjGBIBMgJGQpgBYiTf25DjKCJtv9f1Au4+3DPSEZAS51g0+zCI3LalllKL7vf7ohsgmHU3B8ZUQ8loDMmiSsw2RjcjZr1gQiBRbz3QtChCAlEGkYhWYSFOfH75MD7/vEAXgxiHI+t6qSjAbIAsNQDDxuiNVUTEM6+7aeUE5PVScM61wtylXBbEcVwhOqWu61oX7Xe5vW+t75WoWhU4Yo5CLHQjd2BlYkwLLsoIAETiOc7thx3WriMjv+KX+LexLitHpo1235GfY/YpsLguPrEmTJRR64LMkDnMBDVsfPn5J67vBAHMvQMiu1kCCfH++llUbvf63fYsogObA9a6SdF+7Fo0E0Y7IkGlJIC3RuHHsMx4fn5JlW7xfrtlxn670gS0v/55X/5dVVwLEyYRqDszr1XXbd3WjaT87XW8740wzxJqQmFipJGf/s3/4Z/+w//l/5TmtS4fPn6i5WnGQiJdVZR5mIXqdnlKpNHH1/fr8ARmFunHTM1AAKIUFupvHVkADCERqa4bICn6188/27DMvB/t6N0S4biXzFK0lIJIFblU9SCbTfAAATRNqMw0XTLDjn0/KkGpBYmPPiKTiIpqEek2YHRkztH6HWot4eGjjTEKM47dR1pcVq1PqtNmnMj6IPYiwnBvrd2s3dJ+/PlvbfQRxqVwKfd9F9Jg7OgbVyQc4Xc7mGRVvR02fHBREVxEi6inm4U+1aoLzAi69ZBwtszEpJnUdevH7collZQFZ2AR0qVI6xHumR45EoCIPSLYQiEzx9XXujDQcdz3/QqA23aZoXgPjxgijBlAGmOUpwsh3Pc9bQTBl/ev759/SojLy1ZVuVTRSswIATZs9gGrQsbr558yM5GO3oFYmCFjXTeZy00WtzFtKJPe4+5T2el9sDIRJ9Kp/iAgC7SWSFzKxAFMlk4msFRUYMLpkTna8H4wcvD0uvt+35kwwFQUWUYipQeWGelYijqTjT4iKCMA0yzDI6OU6o8wET18BBHfFt1nrOKxx6HIBARCYpHAiUHIOQvPIAABzEib21xPmAtfNz/24+myFgoUHKlu5gBpzuqYCMSACLOiG4kFIxyQIoFF5n4uMyFtLsIxAYl8Dn8BAXEMm4ZEPB8KJoSHZZzwHg+DwMwgRCQGgJkhOtfq35IdeW47Z9F0RJhFrTUxEXDGc9wMwpk5eQLsINxmOxpjErFlIiGjMCKA22g09yhJ3fxEh9DJdZ76lxAxkTK7+7BBRMJqCOvColxUCTEhiwgRtqO9vb2ada3VI/bW9bIK5/AIwHBHJBvj2vrteltq/fjxudRKxOEZmO3Yl2XrvfdjhEcGEZK5997d/PK0/eEPf/jw6ZMgejhgChMAeBghRXqYA2QpjEAjDQCen5+KaiDcx/3e7okBAVNBnkgyhKybYkAOVCB0SAGgIELzfD3224BaNCWBQKWsl5WFIVMJaSmqH3756j6GRYAhJpRFRRgAEFGUPA0DMXzuvpwjowcGeJIQUiICSaaDVAGEMKdHMxAxUYCbRSJMAOT8kCAXmcotM+I46auTGYQWjizTmPNtA4xwluLNdGFETh1movAy49vOfGpACYkQszxqmlqA0N16S3dX6QkQ7gBQieqyYMawARHk6G7hkWcp7cOhkTNzRhEx950Tvj73zfOLnbH30YcRC4lihogsWlgIgdxGO47ZXjpX1AA0cswG+on5LbUiMauqSKmamcT0/Pzi4eHOpSBR70HnthzcjJCRcW77AYCFFl1UpR3N3G3Y/X7/dX09/Y+PDz0kxG9Fjkcq56EJzBf+Yd14CCjuft/bGIYIFkmzcwHgsuhaYC0Ugcewo/nwQMjuiSMQgOBRJ4Y5NY9TG6DzHJHwKGtIzHREdD/jYPN0SYhzxE6YSiCMRXkpsq368XlJqadR5pFa+va0ftsH/03L+Ve3/8Lqg//FV/7HbghwdhGcMqSWj09xu6eZK+OsaMnM4XggdkiCHA/rDTEQAiH4xGckzH3ZIxH1m4N/BsIelHOIgEe8y7+1ekU8vEOQj5ginOSczPjV2gO/0cLOu4gTE/WQBE+tFWbDwHltmBN6FAZICs4I8DgVmUlYO72ikIyzxR3mJ+d8YIABM019Bv7okf8LAkzEB+cLTjfYI/R1vm0PaWea5qbCO31Ij2DbbzSuR6osUyIxkBIww5MJEhjJzO04BszKuqRS3R2BIV0oQSQAlFLRlDDK9uWw9pe//NO/+Xfd9fMvXz88tbTQom/392HWhoGPj9//3h1e367i+PX9iqKFod1eRVcmXiVUVrG8X98As9SNHNQGZo52szvJ8vT1dt+O2+XlU2Gwuq0CRDhGE637vq/rskrs7+3oBvCZpLjIdnn2eO1tD9Hr2/u6bsMBYHcq6YIi7uPaO02JYb/pujJoIr7twehLUarb9fXNR1FpCXC0Tsm3m8HzSuW6QM6kCSuGgUh0J0ZuKclyXK8FOjGbfEBULC8Xsj72axusSIJCmUykPFoygopwpcy0nvXDDwp4fX/zHFoK6OrjoMuHLCrM/n7n+kEAHSEd4hhMhAmEiAnpjgCM47pHQQE7+oAPFyYoRQjCLMGGM9L1fW/u379sVwNK9ARnzlgIrJazDIAwMrEWzszuiRBT2FqUAGi/7+sShXgghpk1FKXerSxLVfRcRNlbT0DQEvv4eh2eXVWKZwIpc3Pch2NmhEXCd9998LA//+mvXz8Djkv9/gPxYhE+/NocIixXFWYBYSbIFnbvBwCoSgImoCcIRXhg4vNFLaCsF14vaBYZkKaUZpGZOouxcWIfAZASsJmFGSMQgIenJQr31pe1ci1EBAqQMwodCERILIyIFnbmdjOZRFUiU1gScowRswOQUISJMDwQGRLMIzMIWWVyl0VYBmLrlglMxMieYeaZSYRMYu5m7mbH/Z4A6+U5oo7jbnbXWpgIEopKZgZkH3677ywiQuuyeORx3zOjRxCgKr98+kgo/bgf+90Cr6+vmanLwlqut+vzZds+fNevb19/+QVKQW4oIohlWweJbuv2/OHtftxut259DHcH766My8dyuRSFsESSwgqZNpplgGhFcqgBoYGH0CUtEJhIiKj1W2S/1IUTjta5CEHmaMNx73m7tplnmVbXbkFpRRkiYOxFxXO93u+tNaCbiNRSVJBhbi6hijJGIgYS+ADhaRwASGYW1QHQ+iBESmcEZBLlEjJao4qMaKNnGrovteTpwgVAnJS5jJRawB8Fj4CjHYmcbt5a0bJum0jJ9NEaRizLSoxHu3HIgGHH4CSi9OHCOrqz4H601q0ot9YjY+Texs6uECDMMIScRSUZEmDPt2Gj5hrX0ZEW2YBClNKAqEjdgDggR28QoSKfvv9d77tEwLjNGWK/vRHisoaSBnIpi7UhEMiqWo7b7fr6S11XZmbCziKzNDoDiZeyWNutdxNJX5FEai3Lkl/cbeBIRuF089BKTIBJpOgjM6GuqsJnFH8AQiKAtxHuHvHl69u///f/wx9+/4dPzx+UmYoScTt6jKM+XZI26h0yoh3EnIKlPM25pJSaoDksR5+Z+cFiHsd+r3Xb376kj/v9VtZnG52Fl3Ul4nq52HGd49kIB+al1jSrZYljd0TyUK1EhCyQ1vZDhNd1G62nCNn70Vor0E2rzoEtmAdCErOHff7p53/+D/+PSL7Cy/Lx77eq67qsVZUCbP/v/s//V3r9EZC2pw/b84eUkgE2OmSOYe7WAq2PJGbi0ftxfdday3phXcgzh5EoAojIsd8TGSCYSJlKXUqt3aEIP3/47vrnP+2jR8Cyblzqdnkqda2lAEx6I9daEKiPYW2Pdjgi11JUiqqH3e7HGIOZLtuT1OrmAKMyAXFRKRMnAVBmVwAAZBIEZQqRqupS1YyYkbBofXn6OEbvBsx0e//69XY/er/d3ltGFLnbaDZYVeBpLctWn/LoJBToCWno977v1pnpwluCIbBQipIIikpwegvuVKjM2m8EFGIURIaMMD8IxTMyDRitBSthQsCwYTkgwUXIvWU4YTiEpTXvfkY9SBepUsL99v7OyABgx1Mtdb8vVcDGIJmofQbK1nYtdWOxdhDA/foqRWW5rE8fLtsKSDaGsmC6kyHTGF1Eai0vl+3r62tPUBAlQu/Yj+gDiaeLSUqZlpkIN4+cZkVEZi6lziH79PucYSuViCREJiK3Hh4RiTSHwHVdhan3ARnMaJmQMMM/xOyZPSUCCoMQuEMiJ0ikQwZl0EyTEemyuscYfex76wMQi8rZ5k4MD/gdAGAmMRFynmttDPMzEss8N6uENLtiuBQwSw+aD4wwPBORRKdBxoYTJmYIpFQxx9Z63PZ1KcSKIpNbRAiBIDQbNRAAmDlpxq7n+BaIGCCIdGYFRJggkYhFZ83QowIswn1ZFgCcQKS5PYaEnCv8mBz5M7Yw95tMFBlEcykeCJARqmpjRHi4uw8+9ykAATwreeZcGpCZCCUiQAph4OQc1SX3Y7hhAgkTsijPHeV5/5D/7t/80xhjjC4sImIR9/t9Xde11mUpqjqhMgkQPi6L/PXHn2/Xm7mbOy5SanUYk6vCKrJweI8IIGzDzENJEMDNAyP6Prpf32+j2clhPnExsW3r09NG4J4AEDTDI+ExJTTAgFM3mVVfolq0sMgvr1/u7TrCWKnUEuluPjP4iAQjiahuCwG03iIgBGYsPsJaJBAK4kzGWziOJkT56JDWWtLvEUkT/sTEzLOVZ4TFbA9KSIdMGNAzExh9eMGZXU3AnMP+GblChIQkAj/blTABmhkjCMns1uD5yzwUxxiA4THGEOGlKBB7hM9ZIBELh59ZLThtmzClIGZk5j76aZaYfJ6ci10ESCJOoIyYfi6EZKB45BMzwmxoFCYkxElRgcyZ/UIEZgCgulQ4m//S3CdcZVpPc0ZRhplZt0GI5t56L3UJJiBmUcQUZhEWFYzwcDPLSHPPB0psjDF9Wog0a+Uhggi3dbGS3Qad2Upa1wVmu3ikm+3HHYBmZYG74ZhkpJzGJZEJPntgfOb/EL85RE5T0K8iyKPJCQASHz1Mk5UD+DCStG5jOBEqU1FFgMxggpfvtuQCALU3+3wdPsWXnHzwSGSAs/P3kUACggn5mnv+M8szv4m/gQk/oFCEwBBMJAyL8lrlstXtUutafxtV+5+Vbf7//9b/6HfwoS99+4PQurys8zQmD4tQlvCnPsbdrw1uPdpIhEQCJQDIkWkAfpqJACEJJul6+i8BE+JBNs/M03Y0I7fz23l+1M4cLkRAMkZABiR9c319cxSd7/KvZqfpswScbst5UOAsNcLIGcEb0wscMyUCkTAzaIgYCS0C4deWLkJEPl+32Xk2lauEx4M8sSAApytt+sEQadbK52kTgpx0tMz5pL/1y4NPl9Pjj/ntCf56ICQCiLkLs8EgVRHhxPf32zGG8sVtLIsWLegGyJ4hSIxpoyWLIQPVy7KAxN6fBuH/+5//X99///rxhz9m/h59j9E8PRLd/bJdbDSIJCKDBJRhEZGFSMOKSlCuSxXDtcj7+xsSr0+XGNcPz5uul4Vskf4e+svr9TiO55eLarWM2/0G6etaIoNgICrq4tHue0PodV0TcF1X4eMwyPrxngzgRCDEx75rLUvRwnnvVtEiwsdAzKKFiJ+eVvYQDFg0OjnKJnA32z246OsReG0fAa3b655repL8eDtheVyiJ13frpfS1iK3o/buH7eSsrKNjfzaDkrCSUQfkAnt2DnDS63b07I9I3LrXVQ55eXjiyzr+9s7Y6IdVVb+8Gk6niCMzVQkMimcYWogXAQD1mwHY6YbALhzIVcqPXg/7kx47/7Wx3DEW6+C6QFJxBI51iIIaWYChswAGP2IBKUcvdtw91wXQhIMJEoRWpQ4BcBFalFI7yq0BrgdGVGXiydB8n3f3cOSMIkTDKL1ydWxiJFuNkPp2e3+5afj2o795eXj5cOHy9Ml8IbMvFRGYLeI6GZ9GIQHYO/OIkloYxyHEwshvDkQsyKAQyJQOLEGEYBzDCZ4vqzmhgjWBxImwohwD0bsR0fMRUseQUgZ6REAKcTzIsEsKpwJM3OL305Kc8hz1sCCkoQ7sDCTCOOj44MJ51yBWb4ptIg8OWd+JoZzhLkbKacDIMxLI00nPYCN1nbSsnBdo7fR+myRcofIYEQmHm6EUIqqVvOIPuYEHiBut9v6NJZ1JeZ122bZ4dHaFMwj8v311c3H8JZ0/fJet80iaylf3++laFH+wePt1l6/fjmO3dwBWRTLmsxQtu1+j/WlAKT5sDHGgVWLiPQ4yMqgK4BoAliCI3CCBDHZ6C09ysIYSsaZt9v9fow+LBwIwRPcOrMCxbz2WcI9FcwdUpgjPBIDuaCQKhCN+723ZssiTIkEiDKXwJQ0+ztFiMjdVCTcp+3WzJjosq37jma9qBLSceyiupuhaFFh5AywWR6GBICXbQ33Yb4umlVutx0zny9bABHzvu8iResKBMG4H3scV11qWbTdd2XVs0HAEyOTjv3o5pBxHEdQkJAk7+NAJMwKiFIQNAPy6G3sac1ZggsDxr3dgVKVqzzVclEpEdCtDWsMYdjXWi6Xp34cAZSRQuzm5uDjqGUwrqpc9LluCwQgSSnl6+ef01qkkCiTTDXTkZiES1mePh2313Y01V20mo0cg1jQnFGExAOlWAgROisFpLcQRVFSYkgWYrg5LoiEPYHQE2CM8ac//Wm/3/bf/+Hjx+8+lLXt+xi9H8e2lCRk1VmaxUIU3tu+36+iSgjIGqwZ/mj7Zge4vb9dwhADRW2M3vvt/ev2/LStm3v+8vknhLhsS29HJGzrsl2e2u062p5ISFCXhbWWZRmjeUKmV1RkATJiTcDj/cdDf9cXsYKZVHWaZmCp5fXtdnv9ooyttxf5qkcb8I9epA94v7/f3z5f374cb/tlWy/PHzuINfPhQDwyWvMMF1EI8zHGxOdqCZJj+Gi9jYl6t0gP7zY6sSCwKovWOof7nuny/N3v/vSXv+rytK4rs2gpSEwsHjnhkg+yiSuFCoQHgzMCJrTeRYWZ8QEH6b1nRlVhCA+LngYZEbP4R0XNhtvIMMgooqqqosuKAaxaSJi1lrpUG/f77ceff/p8v7Ww99evsS4Cm9tAJBFdRBatCJEErHRYG+FImIJF6kq1kjS3DOdCKKFStQizepgNQ0+MFJEATx+0MMxhQSKSE2QKKMgg8AR3IEWHYWE+PBMIGDPR3WP0YQERCYjCoMQoKk/b88uHT0Dy9v5uHsvl66ICVcztefkAmX3vozXzXusCSUB4//ozIW6fflcuz0tVqQuG34/m00hpjsQMfhy7CFGtkJkeUmRylzODMRCZWWZqWFUi3EYiAJCEGRMDK2LOZr30oSyzM4S1ciZBRDpCaJE0CvewzkQkNSKPPhCCaXbTzUkTA1EAds8+GkQs64IZox28LAGYmWaWvTETS8HeRJRKxcw2xtHdPHQCZjmRaJaan/PuWYAcQQQZKUIzwzL3YLPNKJIei2aaScYZsJq1Uwokqog4hs2GaYRgKSxIzjbcPCg7+mBRRMmA0+tFp1s/AeFsgec8eyExp71CxN3TkiZNaeKlkCCBmTJguiFODBDBxIUAnL9xD+akc/8yWZ0O05862QyECTw9FN+KC+TEfmJGAOPcLQICBBImISShexIBoAAkSy0FEOhE4xCqiCp/ywrMzcV3n17SYxquIiIB/eMLIYrIuYY5Y2hEUJgw3N/e5Mv1Fpn7dW+tDzcbxoJaS62VSICQkDNp9GHeKgsJk3IQYKHypFRhydrv4349iGgp5fnpMtOf04kB4UTEwpl0tFaWAhBmY27dUBgIPMxGHK313oAREEkBnSaJGRCKKBOLyNO2HcehCUFpGAZGhADSjuYcxJQA7/fbPvpzvVzqJiyAEO4GTsziyjJNxMBMp8NouLlBwXSCwMkqBkQCmhJDOCDnaRtxR0SgOeunBIxwQmShGb8hFik6RdVTzUk4rQVEEXG0tuCyrppI4zim+jNv6T4zehY+CTwZmRNNgihzbQkZ9CsDZapjmZnujiioAGiRaJZEYwxEFOW2g89SdsI0t/BZ4hZ+RoMBcNb/MTMpo43R091LqZN9DgGDbJgN89mLtB8HsjwhllpnAouJYC5oMySzaJgNNsdHmIUle+/DXJEy8WjHvt8BUlUB2TOXCfVkREsgZCQEdD3TL/PYFuETFAUB5z2yqj5Saw9by7RqnEb7uad+bJkfgk+ccaQZVv4WAjqrAB1n9gdvezMLIiBEQUveECih77d+Pywy/aEfAgKcPOApCU5NKU+ZAR+ZMwR4+IDgzAglPaQfZVRlFWYCEb48r5dtWVcpE4/9m/TW/6xy87/c7V95qKYGBMBwiiTzOToiQW2ytE/N1uv45T26JyMSAc/TXwYEEMBEdtjEMgAAnH43zMdnblp+HlunqQEhpmMKQNBpjWGa2xsImJ57CP/2Xv/GS/OrMggP5HMCzCq+6SSa5qAIOjciZ8AETpLR6RB72Ie+2fZOKvMZs4f57kyeOp/AIPT598/nMXeKQDFVylMfSjgtf/hNBZoBNDjv/aEATY/RN/VnykWIkJIREzRoo0ckipAQjgyP1IokyBykpJU8PMlRtNR5XRTmIohy+YDl/Z2GwZfXt1++fPm7P/zy+3/4B3Nvo1kfvffnWnyMYftaaFhn4adLUdEMQEjVzHCWApLjPn744ffunViLN7f9aa2I2/V+n4ZhQzkOCwQgScxxNGyxMJHUDBeRZVkwPH0wYR+dErfnjxsL9BHM9/sd3LUuh7W2t0LAGaLy+vW90KyNS4AjYMnIp8v2vren5Rg7mPWO66LQekNaSEWZvHckFNYkZqZBGo4ZxjGchZdtABf0J0kzun75cfv0dyPoZePjzcKJIAK5lEqRfhiXKqUwkZTajnF//8r9NoK80fPCvizHsH0/ivRtrYTso4V3wFoFqKjvnYVFSCVZ6v16bEWut7YK1aJhkeKWxaNZJDNej57Ihvh+72/hdV2FML1zJnhLZyYBJMa8XQ9zF7IiqCI99db6JlyVzIGUhRGKzqzdhMdDprVmSUhSShKDOwinMCWiKBcMEkrE3hMgWu+99X7sQlmUnlb57uVpe3qxlCTRdc3El6fNR2v7jVWO7u0YmUMAdClrraON4R7uOGsUACiTMSJhIg+YYFhkOMC06mEP/Lf/9A9/+stfZ8tAOIiqW/RmI8wjZ4NqOCLy7I2KiDFj2ogwWWURaHPiw5FxEvIyJsrH3YlYhLZtAQBhKbW0oyE2mKkuTEJMQI/gyAQYrUfm3g5Ph0Azk6LAyEIk2O59YoZmOw8CuPVwJxaZg+kMJu7uPD/5GHvm9XpDVgtUllILIECaNT/24y9/+Uvdbh8ulZGqVhK6bFsb3voAwGX7aJnbhw+WWNcL10VLcc/92O/7/f16Pyy0bu5uYQDMAhEDWJbLx+t7J1kJ0WxkOxKQ5ZmUAoJZDjcKrlgpxIZ5DuCBQdkpmgXjCqJ4RObtsGHD3MKTmSMxzCKB0BAQIMJwTGMzBBJ/WFYm3JuNhD6aFGEEKWtvh42OKUHCRChIxKiTDJTpfoz3sbc5JhURc8dMyHDLqoIQo3dhfl4XJBweFGNdLxm5Hx0BlLGU9fnpSURaOyzChrFwrGCjl7p0m6Ew3p6fiDAx8FK0YICbj/bLfuz7h6cPA3D0RsLEJMQ2jJnNzE4oFczVowqDEgrxswzvbR9vn9+P+y7EhxwKKlZUWFauXAutaeFgY4w+ekY7tGfkSNF6mQ1Q6QlpBlQUjDctF8wc7UBiQGBi0dqGEyukz/1Irdr2d895YUpDRr3o4u14u912VstjB49SN4+biEqnIKeKBILExHR9PXxEWWuGUWIpmgF1pUPt7b1BTsQQIEB6fL2+39vx3dv7//75hcv2VC6vHq2P9fkSIzITtPL21Npxf/8iIkWLRbrdARlJUMWOAyFqXZGUpW5Pn0bfSUtvxziufX8vdV23Z0K83/d1WVhK9M7EkHl5fr4TjYj77V2JCYlYKNKO+zxiHBC4oIhHZLuZf58Z4amCD1ZhElI/7j3gdtu7jVpRcP/99ufj7cdffvzz57f7X3/88eWyfPfhpSfeXo8ivXcbEeuy2BitdWbWCPC+d2/DRRXSrY/WDo8gJGEyM2SEICJaiyJg66MyTgPAUgRT4uN3P/zxH4bnUku4z3gLfFtJhCOCWRQhxIfbmQkhfTJOiD48X8yttU7MHqnMhcg9JuvAWkvkWqvqIkzdRoYjABGL8GR81Fo8QHUhwQQws/v99p///C///X/4D9f0D3/8wUqp2zZ6Tw+MJMCqKipmA9hG0gAAJqckxI3qs2zhDgmYSAJEiAuRwoKMqp/fbhhWMJICwhkLCCDzHC27DVGp24V6gxYQ2Udr1nVTLJgOGMRUfdr+nCOahQMQpAvWv/vDH7ftQrKs2yUAZ4HUcb/t61ZkW9fl2O/T9xfeIbzd36eTExJkfdZlWbcnZgLAAN+eXqz3SJOyCBH4iHYHO9yMVcObeyJnzq5wViIkRk+ZusKYYGQkABSRIgosMcHEo0dYpKsUfLA/MnO2tkGEMg23jCAGAM8AQgxkIMRwpbPoJ4NF+FwIE5MUUe37re9XJDEPYRqefXQpoAlt+FQQaBb4BtssHskhIpAIBBmJSB5JfPoaIpJprr5RRHwOQODs1p0j1rmvnRwOFs7E0TsTjWFInWWamYjaYEJEshiBlYgTonXTCBahnK3nmInhs8osHkhZCIuEyADCnFl7YRmjR0CmJz7W5z4QiJgywc1EhJk9EmIqRMlEMxVABCJ62vKnyEI5HfynCJUZbhlORCgUIAApIjAL1BAAgBFQMGHGzQAh0VqSEIIQKnNRmXVQGQEQjIw0hbNId8BcSjGzzARAZhbhSDiOdppJTpioAyQwa1k+ff/D0/Pzp3b89PMvt/2ITEqK9OjJhTChaEFGc8sAKcXHAKa61oB0D2bcnpaMZXQn5LBQ4g/Pzy9P62yVnZAjSJLTbgOhAQks2r25O4OycOs9wm3YPvaEcAtEVFVSYrLvXj6udRVVONG5tG2XYdZHP6zf+t2jZSJNrrZDpo8xYNzdhocvuhQtFjF8zOhrAqoWmKsE8+me4+C0HH0gEM/WPBFMLKJEaN4AAhASGBCQgBIAyAFnowciCXMyMJJWVSlzsDfDY+Y2hbl8UEsScLgTo2oJ8t47Mc2oR54dIQmAVOvc3CI+WCL42H0yMABMCTgi4XEYZc4sWOvjjHAlYIdaq5aL1oWZ3Ua2NrUGOgOkhIiT7yEAAGBmE97qZpGAOHloLAzELCJwupPI3N0sVFgUCSHRLRAwItzcPQFRS8k8JVhzH70Tk4CM4ft+tzFKUUACkn0/zPyyrUJcWGops8bhxAyd+1+ECFQSOFN46QaxIAThb/fFp3JBM5ETgI801pQD5jpnSkPwAOXNEyg8RIEgBMhhgIAqVKsshQAGpB9f77+8tW5unv1Rzp3ncv5fpZCms48IhZkZ2zD0b6nR05ZCOHlcIEJLlW1d6qIZUWr99P3zxg/P0q//DB5P5b/+bWopDucx+O152Oy3xUQosjxDPWy+4gRABDL9QgE0HZoEw+LWoFt4pHvOKNdsOvfIOaWfEurj6c5+gyRIhHmaBQCIuf2mjADH8xwZOf2dv75KDwzTr2mrxx9zQqMQAAKn7W2qjZAQGRl4FkHC6RrKk053HoGzHmz+2Me3cELGHb+ZQ2mGER8pxd8cAedDSoBfIVGACPAQevNfu34eh/epaxEAoKiwJ0S4lpoANgZ4PD9dbHjYgMIEcUpTup7CmA/gkkBJMkB/+LC83QByc7PeKcL/8ref9j7++Mc/RJBZE5Z3g0/8lH5bFH/3+x8+fPg42gDH7fkikEz59v7uY5AUyAQ7trps2/Jy+cdfvnz58aevf/fpsik1LQtCmHWLyMGForcc1yjPEDFev2YE1sUta60zZ6zETnq7HS+XNZhy9KXy0QEQVHhhVyXJGIEpdXgXiMi49/y0rhZ8b53cD9ellK89Ru97QO+m2NdtY0IQCfeAZAAVUmHMCNKlMJeSkBFVcF85Ry2/3MpGgEQDOMeb6MtwqkUSUYtUqkVoeX5h4kgfo/fbewHDsvTW+/X948dPwJeff4n7fhUpVAgQQFdySoa04KUoIkQHAHCrMGhbD4scTSohoHWvW4pKlDE8Fsb3EdmNJAOwRNuW+vnm77cdVwlAURfIGEmUDAnugloE23ChcOuoSyUY+1G2ChkYHh53gJIrkyCOwmSZmWBmo7sP60eTIhRpSZKqa1lWNLtGxBi928ClBnKQ4vY9Pn0Ks+Ld3q6GDIwZoxB46+1oU0QfiZ0TFh05AKJgRpEAsgglAFImHGOAe581Ulql0HE/EKJQ/rf/7f/u+Wn7j3/602Q6LmvdrzsS4uTrCwFIBmame+j58YeIOWrDPAmFiXEOD0+1d/aO5JwATuE5CHHdVhWttW7DWjvGsNZb750ISZREx7DWWh/Wx5jrcmaSggnJKqPbQ/ydJl5EojC3GCIKRQkAmTxihgGn3VmFPOx2v5cKjUxF6rqMfUeyBGrdetwA+FJLMlYqnr6u5UnrMCcpDnxYekIgpTuYtT4sAEhBIFBUuC6KgKqSFIxa9IN7IGqty/Dut73fx8v3v9Mi27oM79Z7BgguAnVEb71l3QESbgWM0TIwSrHsZj27RYRnOCEgso2RGQg5IosqUnFvMF8IAGJxyFKWSkpjBEDbr1pXIkFWAJvzn8zIoMiIYaSCAEqIJLrhnD+bpxIi0UxrI9GyrGYmhBCWCZfCbj36AazCGEiAgAjWu4p+eH6Rst+u12M/MpKn5WffRQuGl1pU5X672b3zwoyQ3lNzwVXK4sNYi3tcr1dwuFye3GKMpkzD/LrfubKuwpUUWVHTY/Rx/3K/v96vt+v2UleonFW5sLCCkHPzfdLw2hgAvryUSE8bRw+u29NzXN/fDjObG33zgpTE7bjm/QqkyKWbb0uNyAyPGBmj1nVdLhBjv70zIFHhRKpL3Rb6ku+//BSiBXGptfUDEYBiWUqk5wx/laBQ32+JQMB9DMuslRlwRPYx+jHMzMOJ6KzGo4n8bCiyvny/LqslHq+fay0TRsBlyYj9fgcAUQVCCo8I8wGsl23pGW10iry8fEKpxMIZ0yu679be3iFeWX4uy4ZAnigkCb1HHl+/1lK4Fl226pGjz5MBcRn26pC7qHkAkB1Ni5Z6joKHuzgjOCkjMgl++vTxP/3pf+hOgWqADvi3rzcleL0f3W3dtm7x83UgQLr1IhEJxMd9b72ZJ6ve2wDrlmA2em8x+vTeMzMLIyELMwsxVQZB6J5aimiZBB8An5u97fLUep94YM+Y06zMhEAVzknZIkHABgzE6RBgCaRF3QNFl6qzFjHcEzAikhiIE5CEZwQTETwNCbVUxIzIWpdaVZiZuVRNwDH62/39dnv769/+9p9+/OubHTOkUFf1PtyMRCEGEAI4soKHY9ztQNZnXRDQIRYuBGBgHo4VUZGVPtb6CSXCRwzCOPp92wRisElZ6m2/b+sGFJABgokeFHxZUsxHH809MvsQLqgCQBSdQdx8ui58DBsAnp9ePr08Pz+/fBfAKDKGi6qoQMb9uK+FirAHtPudwlQoZuOEKJeqWghnZ3moFHBHZMawDOFSlkWF0t0ExPbhIzPXUoY7mImo1mW0Y3I0FZGY7/d7P0YSqQoTlcmfJRRR0YLL2to+uyzTnTG51Mx0C9U65QBmHK0nQboNR4QonBaQiCLiHhgjAREYIZlJFxUCZlkLh2UgRZ7XvwByj4wGRMwCGX10ESVAO0ekoJoiMieeTEEggDSH8AngkcyUETYaAMzlFiDFr9qTeKhnQHr0BICMmLlsj8hhSEQie3MRYmZk2Y9jq1VrAYiY9wEnMHRqcHPwiufodNZrgIc5ZMBgFiJSLZDpGXNOHxAI6OHTihUJ+36osGoBwsycmFsBhAzEOJnQGZ4R7ogzdZKQ09iPRAzggjSMk3KqtwlJMyuSCUCqBZAhA8lnG7fZKEqRkT5Y5bJtCdB7U9UxrBSZZNTMSA8WBcAJUEMAZiHIZV19huQnQCICkQiQWNZNlmV5yqdPHz7c97vZnEblMLv3dlhnommLCxszgWgR7WhSJD0xaVkWQv66v7v5tqx//8ffvWxbQkY6ZJqHoioLI6ZZIKho94hhw3DYEEFMOlrr1j3c0+YLJURrWSMzLFglgVrrw92nBYx4mI0xCAAcbQQSEkm4ZzIRd7eIKOwecW23NaOPfmKSIc0GBiLAozE9ovs06aRBps9cJURQCrEI0fB9IuOnqYCJCQlSSBnDKAjxrAQhkiJl3VYiFikZ4RnH/d7bERkMoFqWNUV4dOeCKkKImcnK4+hmNt8sQkqAMaZNZ2KRH9mpR6oozlATnoUAABFh7qdYM/HSj8Gmu/cxyqOYj4TDHZgKsUXMresws2ERnnCa6AEIEDHcPc0tI0lE5GyTX+qyLAsziwhmenQkBchwn1pn/kaHQUSew4y56J3kavNwT8jWOokykwFeb4d5PG1rqRWQ3B0gPDwjzQwgZ8HOzL8WFYBM58IAmdNlM3fGCZN+npmEMxmaj5PAFAWm6+LBgP7WBYaQCJQnkRlxcg7RCLkb/O3r8Q/l/dj9l1vfm802dPMwS/s1dPcbseQhCxDRukqtxV9vc1Qw38ypCBChEKpKrbpty8vLtj1tEX6pqpDffkz+a/Xn2+t7Iqbhv+aNfvNApp6mAA2gQ1hGxN0yggkygwAJkQlKmXxkYAQimkfZrdnekzDdH6XxJ1f516qwMy133t0Eh57S2vzTVDIDk+cKM78lMR6vFQBMaeWERNFDGTq1kMfhmpNhh/Cr0PMIXZ0v8G8e0eNfzRzh48FNXWZSnX4jQMV0gf76tXwEgb8ZlDJyHsiPh3t+4B+K4uPZTHvSryIjAIp7TNLzCEcUANi2DYlGv83qbaNaECmMmCKGAqZhIsc0EBbeh6PUutDLBziO437fm+cvX16R9O//+IfET+9ff3xC2K8/HYDL8kHLWlbR+nzc7l+/vj+t9dPL+nJZ3m73uN+HOYlU3pdyGUHPz8/H9fV29D/88e/1uO/DwTojs0okCObtfnsBj/UTb+vt/Z2OK29bb8nEESgiyGTD3u5tKdp6D0D3uEN7opE+YLAyK9LLZemDMcK9E09MWrw1gH4Drk5lvSDccxxjcuDCvC4vTPj5608Qwds6LD5clHzUZa0iwKwZn1/vo71n/Siicnlh0WctX98zE8R2LpeM4IJBPAYvZavb8+g92kGEumzWDgXuUF47jvdd1S+l9FBzP/oQ4tivVJ+PfefowoTr5diPBNs9lRkFIqyuSylsZsPJh1V0giFpCXi0UQsro9tws/vB9x5PT08iMMYwGxSNMwYqI7DUwLy30ZsxJCNjOqv0I2KECFWQ1gPMfH9lXQLAbYQuBDnCxxj73iAGu4lsLQEBwswjfQzru1mXUuvluTA9beuyvciyins0aK2/HcPMEV2YcgSJsiqIZkCOcX/74hYRwVKWRRFHbzutSy3LsG6RlSMRiMXDoQNBMoADfnh5/nf/zb8lwv/8019ab5F2LpYRWUiIEBhOJhmFT082IQMzn5lwotFHZHpGUZXMMWxeR+duKDPnZCOZw8MpAICFF1xZBjFlZobPSopudrSxH0dGcplkJyRCIPBxohDnf5mJmGY3RJh1s3QrtTKdYD/AOXmCWkqZldXhkDDcZxWmkwthuFmP251IPoS5tw7hy/Z0+fDh+fJ03ff363G9vr/d23BPABElVilVSHv7MsWRSPMYSY6J6/pR69qtl1odPfoA5+VlUxUCaK1329NcuUqKxchA11tgz6PGDgxWlQXxy+s7cAcu0/svDEQceSQEIrIoQkzC/gnQHR6Rnngf2cZNtWzb5h7dho1DpITH3q0ICWZRBa7DPHPY6Iuw1CrMxJyICTmvzKpCST4aZEKiqFBmJA0biUikR+senbVMP3aE9TH8foPMGAOBEMnG4ZmYSCiQwIj7/Q5LYaLupgnWbiSxPVUe6+vrm7s9P78kgA8rWjI807WqjX6/3bDkbIPmFAT0SGveOyShFimuy4XXWsgVEfveowfRpF/lDA+zYA4PR1jAzZEJpRBLxD0dWHGrvJBh9qJqRz/2g6QyirX0CAKfg3SEbLcv4/4mPqTWshYiMiDiWtZnlC8+umUypYZFGglIEXgDFeUqgQMclYoULsJ+yDhsr5Ye1+vo3v2cKOZUGAAoM2WR1trtdr+89Los2+V5v74fR1+2JUUsIM0csBSNAGtNCDE8RoeIjBAiZw2k2+3GWqoWB5jGGURse2/tcA8t12W9rJcXgsT0o42Xy0Iiw7z3lgndzFrfu2XC9f093X758rrf73O8QwSlrv/HH/5NwqxkcWB5zHuoaPnw8vzT51cmDIjWj8yspQQrwChliUzSkmPf231vLCJ1WWfwQxDbcZi3GD5NiCdEjIBlxsxSmUg1gaSwZEQCKxXVwni77xkOkEy87wcACNNc8IJHIBCBw4OZCEnMSEzEWiHSgcTDAJJRIzMRtZQyevrADExq4QQAJIwgWta1EvI0YdaVw8ZxtExYRbTUDG99tNu993Ec+/Xt9aefP//lbz/e+l4+rGUpQMxa29fPASgAyHSatYGISGRJAC0qiD184WUBDmseIzBoUVSSIhTRj+bu3vrleZOVQnLhReqqutmwjg0B/XBhSWIsd0aFKijG2se1HwdqHYjVbc5dkwWpU6Wlm/XbsZXnbbk8ffh+ffnUWx/mCaEiiQEA6ZbEkaksvSzj/h7D0p1LpVIIgAEQwNwpowoHkoeDNy1CJCo448yQi3vv5gkoIkjY+0ggVUXitEFIWnTfdwAoRRJ5WWokJDizhDsTLEW6udaF3TPdxgBiAcx0QiIpnGjeGcFYhqfP+/PukcBFSmFEknQXNzNzQMwI66OIIqEDJVAphRLNhxuAjQnxDLPZA60iiNNbMyelOUbPTJqlCUgIOU0EIjOfEWP4MAeYoE2abqEESKCMGcUqs6/KzEpRIMdMrcqqkIk41adHTocxDMwNB7IWSJj5XcIHbIJOnz0TzbowIkI/vTkRj4EESyISoA/LR+k7MQ3rwpqsmTB8sKoSQU530lzFzyFEEhIRBiQKQ6aHubkIQZAwZZoQA2JR2s0QEpDCAzFnTAlx9oJLhBOAZVg0Qp4I1MRUERJhERujHfecBqKwiGBRRIxMosmziABM9/ljJ5h/NrvNOM+kfYkIiwCwqj4/XRDT3dvwyYn3hOt+NBuA+Xa7fn17GzbuPq45Xj49sWg43q7HuhT0WJC+//7jWkt3L3N26jnCmcQz3TwhESnQWx99dM8MxBgOGMNH7wN5vpDg5g5m4WN4jrRffqGgaXKZdWmqdYyx77cxui46bEgts4OVQCDBLcLzSFPqhtZjuLkNx8SMsIy0wMTRBxCmR78NiBRhVmZkTEiDyDDoHkFCgcHTJDCZOBTpjMRFa6GaGkjYjpYJIlJKfbq8lFqJsLV+v93oTDymZRLhUqtPz07msGFtzATuQIQMEY5ImJgCsyAmDJo1S5GzO+3XzSzCrOg9d6JIkWHuc5eJ01BY+JxejHG7Xnmic9yRgElABRBQdG6iHzIDzG4ypBmorwloZq13FVlrBcxwBwiEhAwbI9xYZmiGtDChunkbY5IWwsYwAwBEKqo8F9xEpSAiRHgE4AnxhGE+bndzR+YAYATIMAs62aBnimqYufUIUVERcXCa0ZtvG+44gz8TXJyAlPltKw8AJ8TlVzfItzwOwOyjmrUvAAARngMAIL+8HW1E5MwSxwT0eqRFeICfGJiH4nBijc+XlolYTksgzbwTnKcoQlDljx+355enp+dtUVZIAslvXHn49mB+vSXkLTETLvxf2oP+K9wSwB9KEP16MuyezfbmwlCE+JsPEqY6kvCNoYZZBTKpMEame7YB3XwYmIMH+MNJNaWe0wx0emTOyq1pAnuE0RhP0ef8iM3JBiJCnsshD3TIDPATG42YcMI6IgEyZhfoIzGI07wGkIF5qja/xgnPxxIPshEAzLXCr7dHEcIMABJO32fMH/ogRedMIcKDSn1GwQDg1JN+62TC3x5iD2lIrB3EhHMdybQsCwCE2ao8PxbhmcrgPd2CtBE+VR7jjsuHyNyPY91qIVx5lFUKrwRESPf99tc//6lo/uM//q+Yfnj/+sv77bNHwsvLbb0szSH7lOuO3q53xNPhZHHc3xkzt3J9Wy8v27r24U8vawIBqaQdFgZRiOqyeLysH6JZ3zBJNbenjNGPQ4RH0tNWhVPZO2ICuTkAprvbaPc7rvpBxvBqEd1Ga02WWhA4ONEVh+D+PhR5DesOIgxSKhwGJBAO3imCRNan5/7+VdHrsm3x5mlsAYGdlkACkitc6mAWWpT66A4UyLQ8N++Eigyi1XqA1JA6+hhnVaVf1gWKJKujkLJlYrdlVV1KH+H7+/V+vOAV7VYTZLkIa7t9ZTekZK5cqEc8FeSESEhALWTD3GdfBjnk01IcwhKImKQQ48dNa+Hex+zums1VNYGIlsKI8PXahwMzQ0Y77pCVhZzSW4tMhjzGSEhAI+YAJlJDHNF3J0MVQiAcAYnYW+/Xe6Tfbzfwsa7Lti0fnp9mBw0AtGMIpSg/o9xv19u+791U61YLmwWAliqKSXT0McMpRSsQG1iiWCAcOyBh+WS4AAEAAElEQVQIeKSQcIEcfaTbmetKaUdDxO+++3Td71/vbx5jrn/mIISIM2c1JT7kfgICyLNTb364WBgBiUEuiCG0w+TVtT4iYrYbGABljjHmaYCFYf4YQCJkrSIaACwqxcUdGREnmTMR8Nh7mFtzt8gEopnSh2EednYBeLh5p5g+9rllBmFSkaJlBBBLJPZuABjWw3v6CMAEOtrR+7FuTzThoATv99vTdinL1kdTZRHe+4BEViQmiBHWR7/f3sP9uB9v3Zunr7pulydHgNBurfJS6hOvHOlHu1sGsxRhAcGhpgHUQIMyrSt0rYVVWCbWf9hx7ICNdC4PAVFERQpDEBIyFcgAnCMAAxwBGCEOqASLYCIFAjNRgo/DLNPCgUVo9t0gzuafdMJmEYDzi4DENC/myAQoPAIy3EYWIUJULdOjq6rj6JihumAmJXdzswAIN8sIRSRKzADMCWIItEy733qp27rU55f1eJfW21ou1zgMx9Pz6m7EzIKywbleDx7NgLGuRZfKXgDS2RzHiBGehFhKWTbVFb0pJAVF0QLTf2cdEZiwFAXKEUaAsSemjx4AWOpysXYce2HnNB9HrcWAk5iwWd9LvQwb4bEuCwKSEECMfscYCEGQFAYBiFwvL4TfP4+9H7u13XojZmBk1TxcsSAHacSR4Pn0dBmRjLlQaQRt7wHZWpsBOnfLx1WMC89V+Ovt+n//v/13/+vb17//x/+mlKUn9NaXRYk1GdORRSIABTDCHBAJMk7WC3HAnDTifr/BGqPb9f0dICORiZA4Jy2m31+//KRFny4bjPHT53f4jO4GMQBltNZ7n7wwCCPIREEC8zkfOtcZbgOxZDgARwQjAgQz/d3vvv/v//0/87LOih/ICPeiBVaMiYGMTLT9ihZjv13fXl+FksbtONowTxIiFGJRTWQEBFIgJmJm1LLOZWkRsjEcsDIL5Ojd3G2SOVqz0QlBhc0ckFRkGvsF0cynn33yVhBQi7aehEClzJCMyHTThxCZg6qI6mlTBmZZpSiQAgGSm/vttv/y+afhqcx99PJ3v8+IL2/vP3/+8na9vb29997H6G14OxowlmV7//zl4+9+iGHMjK3NAuZEb3bDJOAiiIuUzFhJn3nB8DsYcsqmkTz6aL/c+or1soLZfYxPn374w6ffMyTzAlwJABgDjIlTwt0SA1ok2MwqAJKs1A5r7WAxM4jmikxAQqpIRnFYEvHzy/fb5WlGL9w9Y4SbZxBRHwNZuCxrUVW5gYUP0Yt5JIESZ0Y/dvNQmqcNBwgUqqAikuFj7jo93q9H70ZCBEBEqWI+e52JuAChmWeCFl2YgVTr2nu33lgLK/AkMQ0HSAJIpAScV41ZGaJsRSkcARgwIzLNANEsIVzIwykRWVhJaWpbAciSCYQJYRhugBK2rJsZOlNombNrd3MbTJxImQHhLEzACQOZIhwhQeREUwMA5Gh9XvDMIyf1lhkAMpMRkOixa8tpddBSiSUiWFVKAQDzFC3pAxKVyRHNAwF6H4QqksyMyMdxb/d9HsNz2i+i83rPiNMNQZjMgsRjNAJwd0JIZCJmYg/PBKDJigYknOGWcCRAIiYiGwZnUoAi8Qx5zSV8BmQwE9O37TQQ4Kycj0wtGm61VicESGYhQkIgRiIk4vRAiPQI99HNfGpriUiqpai6m1sf7T5jDaKhovf7UZTwVARgVn0jIeEES6O5PWqSHjuHc0uGMRFHhEyACsNGZD49bS/EFr4u28fLhz//7a+3vmNqb2MhJUIkPu5dkZ4/Xr77+CKiPQYB9HBCjez76NjME6ahctpwhncgIJG5jXEPIDI3AJiEozE80lszP2KwZaIPz8myB5wXQS4CEN7juB3PTMw0N0+ZGBZtN1h4760UIWDLEJI+ug1zTCby4daNVcABE93DcorbNEN8HpA+FBOYpp0MEMETCfqIdCAEZi1apAoAqBZIUC2qVUtJwN7Hvt/2Yw83gCyqmTl1EGaOCEJwdwsHR/ZAhJk3nG4yIOw2MDzPMApOqzMznA3hczOdszPpm9IBETGGybRXPT5OzJwRx9EAshYtzKJCLG4mwlMlFdEZeiHmcLdZwBYhWpiFmdzdbPTRRKSPkYBFNQJoTu1AzS0iC4mKsHBVvbuleUROeBxin0c48dRPZ6BLE9IT++hmBkTucRxtjPHy/HzZtqJKgghJSPNInu31R8S+H1EhEXobs6b3RAWd8Z25gT89GnS6LB6bePrmYfnNXn3aTM4EEJwLx1nalOke92Mc3fEhQMzcwLeeppP18qux5NQnINIM3q/79Xb0MaMUE2x8PiBhenla/+kffrgUPTNoj63+/5SqM7/aWvdu+rxV/K8t/zwexTdhIiEJQHABFHpa5kyXQCQh0R3CYDiMDIvuMbMXBbFOH0amWXbDNqhbmIXNV/Wblwd+RV9NyYwQpmeGKBlBCJhQCQrPQno4LMyhMq4KhNgt7j3uI9rI7tkd3DMSI+evUz3CAAjPmAJnZOCvIgt8Q66d/znf6H+Vz/rVmzWtOZmJNGUkmFLRGedM/PVAi4dMBN9+/Vdy36kE4sOv9DiMIenhAEpE6x2JkTnx4YNCYi3pDkTMCO6AHMLp4WPckBRz7FeuF/O4v78v332SiAx72hZmwhxpAq5/+dNfi8qnj7/r66V5tuO6dB+978M+fPwOrUsn62O3kHQpta6XRBntTsosFHaMkZfnly8//ZXBHQuCV8HjcKBAd2H6+N0P4b0I7/uRaExMUkfmpTCF94EZhJgYHblQmKevKsbUAr7asvjuXJs7M9mwWpegCIsgHF//9vLy3ZstxTtdvgPmbp9Zhw+LyL3b569fXhbuIR3EYty/vgV2gT7Mbq6932h7AZT1chnjtrcDkYJAdCESWTf31UgLZx9uDszk/d7QAYin5EeEpLUux8hMJBHGTKTE5TjePEf0W8io23OVQrpMTbxuG7IUD8J0DBGIDIsUYtbF+k4IosqAq5tydieGTNTIdEvRTOthHcMMCQH6vmOCqgysc/Ui27pg3K/3+xjvLQmgiCDmh408oyo3QwTkumTAPiCZSqnfPUN4y1gCuTtYOzC6jXHcdxF8+v0fHUsiNRRMKEwGRJNzuywZ5Xvm57293+7DIxyOEQuD9Y6FmYU5OMJsHLcbbAsALrVgDG/t3iNJ100upYxhl41nJ1RwEWa/vYrop4+fkOh3+/3nzz/G8dX9yDil/nlpICZhsuE5Dd5xCuvzLBMRIlRWLVXRKQNnf+3F/f22ExMkmPuctBDzbDybqy48xecEAoJz1gGI99sNBQCSVdrtsDYyQphZsHsgomdAwCyjkCIAEAkWoZBcKlqkBxAxTaNAAgkgKsssFSGEAPawiBl9jbu7WYOIddv+9tdOLADw9PxJS1HhyCQSYoLE0Tum2WijD0B4/+ntX/72z90OKpCAI61390itFVDNonvPNGCeLQwQgCzB0bFBBgcJLAtyFmQkIrgs9fuP3113+/Pf/vbL11dAWpYNMg6Cl48fOEkKunu6MUsiIDgCBU+6EIosBG5p0a4eiIRFlImWVXq3uZ62RDAnIsDIcCzKhAEwekMk0WWWlYc7E+mMJwBOuHdkioowUXjrti2VhFjIzRCpVBnHHuEAWJgM5IIbYPMAuTy/mP/843/etkXrCkAUcLz3IAyCo7SIWJ+VbS4JgjdHJd8zLYASWRZaiyi5RHhwZ2IClJDMJCr0vEbm6A7uAYHEAChKgIFwwko9YA61LdMtpNR2u5IQsSy1et/3++2wXJPXC4lWIA736K8QQqRE4KNxWZGFtRzvjRFk2TL9uH7RUg3Zx4WFl/U5I5iwJ4BAxeZ9IFBhMRqRkeZpKVplNCdKSSDKjDHMhlvMLdJ54URi88jeqSgL32P/5z//P6/36x//7p+Ylx50jHgumCw5ArP6MCEiKp7gmYkoZVmeP/XeBI80C49j3wGh1o1YzC3MiEhKwQQVZATGUSDjsHs3txi9ZaQK9cTRh4/u7qJyuSzWex8dPAWms4EgfZ4feh9C4mbCZcbZAHDbtt//8H1zCGuQOaNSkTbDGre3t74fAGHuvR2jN8wM8LBGgJjW911USdTCWTWR3KCK4KzHxmQmJbdhwwMR3BMDeuvdvI+BhMAsoMKISMgeOZUgm+4SYifCdJ+zR0QOTyJS1bIs6e7jEEQmst4QYFk3ZpW6AEB4zG4kYmZCSGvdXu/vnz9//vzTL+v2BOm3+/VozSO/vF3v9yMRPQmQmFm08EExrB+7ruJppS523NMjVNIQCiRCJGU4Ce3WhPS7si6Aw5uRd0ZHkCx5RIDmUrMWVKpcL08fLpdn60YsAKgiyOJhnhHhEMhBGegJXLQuHyExKXXj6O5uSCSKMDAM+hHMjFyfP8nTelkvKwnPCpqTEEkEiYnQ930/2rZeRFVEvK1Ey7JuzfzYd2E67ld3j4QvX79+IorAhCAmIukW+/1uYzDksd/duhSdygdEFk5CTDOks+E7ZkouUwmMiIQEpK4LQo7WSKgdQ3GaQBwChCBpnj0QIMIaIAgDkA43ZMzAEbNeVDLRzQAgbGhdABEAhSCFMpIQMyGJMAOINhxWCq9LH6P3FgHm6NP1ExERh3WPqHUFCAVY1qdpq+nj3E313kfvAOgJc47CxIjgjpPkJ6etIc8Srhl8AUJIs0RGJgLw0QYzRQ5mZiEkgmEs0scgBJGhi6zrdk882lEiWZiYIeDkIyFN77xHMs7ez9mhhrPmCYmTmYIhwSPOEO3octpCEQAjEomAyCe8mtDdMwOJMBNx5oN8XiFn/iaSmBEmbCVTVX1WVheFjEnfF8bT3JGzP2P00Ue3+ZMj0s1FeVuXox1bWawf3XpEIpOZhbssm0cIzxrv+fBTmIg5IxFThZHlTBFknOxpnGzsGDFmbg4AAEgZAvAYwyHWpWqRf9K///r2+vntKxJlJCnk8MtSK8taFlYBArO43+8tRgQGekZyaDj0boAY6bMzfdhgZmRIyDGst6a1JAGAExESuod1sxY9hi7SR+99iAohmRkRL2UJCO+GmeHQji7M7ehERMTpzcZoHS0YKKuuEHTcGycBRSn1elxtOAIKyaLVZxcIpkeUotvlhVT2cXUYlsHCs9BycqvHCIQRAJCNkIRYuNS6CuljX4c2xr7vx9FmOowQVQQAtnVBot77cBtmmZkZxEgEIpIZo3tAEHDCjCBFJg40OpOE6JEcwcTwjWR7yngEExKeOUvNRL5ZbVCZiQXRI7z3MWCoiRZFQJpl1iyQyUqtNWUkFsp0894HAGhdZqAyIo6jEfXMJMSpY8LsJVTpYWM0lpwHuQhfts1tTJSviMQtPfLp+VlL6a3ZmFEAAETwEOYxbPTuFoB4v7cprGyXCxMSoEqy8tRJAwIBzIPdxHke+QOm2AIP3eXcjs8e0t8qMw+aywOvAN/kk/PhnNh3Oqvlp9PKzP1k2MPsdc9EwEdQKR6ZpBk2/WbTOCG+eYKIJrIJcrLOiJAQVfnlZVuL/pf7//zXSsCvkgAAAHxaiy8q570+VK9HoOh/4p/+L3KbP58evx8ADhCADMAgCjK/LgAVIYE60AAdkI5miyd4PN4cAA8f0SyKUdEY5sPCYmKxZifYabOKczeXhKeCNp2PQsAEyrAw6mTcJQD5sFSColgYl0JIHoCzyRAhA8DzlJkiYL6PU3J6FNZDPHxj31w/+Y0w/Wss61fV5zc63OPZnSaihMSzAWEeQzQJRL8Sqh9y0Le38OE5Oo8s+Pb/E1T3uKtEAGkjMFIAStUkCQu3iAxCBBbIIACtSwKmGaAlcCIls7cBcIdccFuVQC4veb+3Y8cMVS7rOjx7P/70p78VXdZSd7rxtq5bXZZVkswNAV6eLn2/3Q8LTAxrbQSRLE/L05a4tH6E94/PF7f+n//lLy/PF+JShS7KHbP34+lyAUBGHcdeiDvTsn0qvXs6+l2kJDCwrmt9f3vL46pSWHiYb4qha7RmUu7XmxBKWUoph3XOGJHIWtbvFWgykGTcmi0ium3reLsDpXl8ebu7r8OagpMN88uPDtJDN8EYX49Ue5cilQgBu7VuoEqQtD4Vc9qbrUsyADEhI0SidzBIpBSGDDMXIYKgdEigzHksZOb1y+eXJTdFeflDQyVAzWCWp20LjBxOqshU3Xkpc/1CwjYGErt3TVIGwXCEVQGAJ4X/ftu7uYgiMQgXgpnhNfMRbmMH5o5SOc1jkGYp7k4ihwF4I0AWDsFmgroEyaScIcQcjfWugZxATuFE+9WO21theH7+brsUR713PIZ3yyJc61iZu02Is2i5lLLpunprGfH6vgdTICXVy4eXut/k/n7P7unH/VZKmQdwcwf0IlwYhrkIMwN4hA8357pOjyURfHh6qiqL8PP68uPPv/z8y2trfY5QvkVpMU+bHzMnQKQLyekdjPQRMKAQ81rcHRCTaY3ofZRaKkI72nHczfqyrMwSkXPwNqE25r6ui4fHGFoKHfuwQUK+HzksbYgqCyCKNwPGdAh3OJs3E5VFNXLs7XrRilJydCYMH29vr3Z5Xi/PBMhMqhwZkEiETERxLkXd7LgHE0aCMJOoiLr9XJeVRcZw0hUQwg0RcEZtIdzaX3/6T7f9NSlj+Ch2v98imUo1y9FukLMfZEWMjBRRQkzsmR3CKYVQC1dUMnUzv73fNZ/Gc/zxH/9RypL5/7m+X2M0Fu3H+PzjL5fLVteF9HHVhoQMT2IhKkIUQCMDh5kQJdE0fRQtwkVEh0UGuh1tdEgQZZlT5PBjvzPRupZa1IYlYj92UDGUuQNRFXDPTBuDQboFT07z2f4GZp1EZw1ZEloiM6/MWur96ImyXbZtvSy1sNYxRtv3AHfuo0dtNdySPElYJThIEXEC5TASdSkFMgHG6JaDkHx3TIiEfrdLXYRluNs4juO43Y+6FAT48OGFmffepRByGDgOYJyVrw4xSVIMRiSVdYHWj6NpWfbjqKu69QTQUhCilIq6pFuSCCFRMgCqlqr77T7a/WmTdb1EtHa9+vWVIgBBVt3bHYE4CImEqLtRR5pXmXBACMIEJ0AMyAgzR6a5s5vNzECZNCyIu63Pa6T1HH97/ZMU+cMf/o0uazfr3bSSqNS6TApgZoK7tYNYuejx/gVKYQDH6bHx0dtS16eXF2Ru+7FuF8L0flQV5rNgs5tB2gy+kYiqghllBkM3S4+jjfS57zspyyRaao2zmmKEgxOaUSmKgEjAqr//3af/+OefAIAQInw/Rt/v+35t+/76+rW3ziJI7NZ8NEj3iNH2okrEpZCbpcxQH0AGjJ5CmUJcMy3NjPDoY7gTgAGqcO+j9d7MZqYMsBJiZgSMdE9kKTK3DAwzF0IiHBGIxBmMuBRVZSqai4JHKVrKE6uySCYGpPUBcJ7Xemtu42j39/369fql9Y4Fw3ZCjOSffv6ZWRKYWNydGcMBiWW+8gh9v2LZ7u/Xdd1wQEKYHwtS0uKJEJPF5oT0UhdOeH17a9mPmpaowToonX2BIx3a8cPLhwv4x6cXZR1ojJjgRYCiECgEJPbIGO6ASJFpxG4MBRiT3WFA9+ENMhDAQkHKTHUuVWqlRGRVa60IMtUdwDMBsh3t6P12vf3uh99DJmbUZYlMrQuyU4bZmBWNljDMv7xen5+fa6m9d8s4rm+jHWM0IfLREacxFEacrTEQSczpIyxC5GHdMRvocASj1jWTh/UJNV1r8THSHQISQokdwM1VCZjSx/+Xtn97cixJtzux7+q+N4CIzKxbX845FGkijcaRUZKJI83F9KAHPclMf6keZKZX/QUjGR84wyGHOkMOT58+p7u6qyozAsDe292/ix4ckZVNamSj4QiVlpWRgQASwAa2+/rW+q0kAqCIQFYmMhtkgekzZvXwiLhneAKkeyLMJC6DBxI+dox5jFBqiIXAq8iIJCYj9N6RZsl037Zj9A7EwmwBzIKEaNZGd093Z6JHigExJir1cJfZiIUzhopIAA9UzVvnCSA+ajQJgcF8JJUymzOTMZNrkT6ge8K2XxC0rnVZkHD03o/OROtaI2mYCws84jgJkQ8wERI9CLsgQgkUyQAoSKMdCTCbw+cGchI7JrwkEzwj+oh0QmSWTIdwFIFpzyAkYu/p7gjTvABEmAmkAhHtuLMUrpw5N9EcZu3Yej+O/RhjjGFIhO59uI1xNFtrZUJ3AwhWwUgESkR393A3w1oeAK8IQIoEnwCbSADgDHwE1TMzi6oqE0IfNkZgIhKHO7Mggs5+OOYeHpCn8ykJRfS63TxDmJjo3ekiKpAw3MbwfbTNmqVDYsDE4rAbmNus/dbCxDiGHccuhUlouuRH7xM4k5SJgEhhkZkqwkDLuiQCCZWi1DABSZCYSRAQ5FEDTi8/fSqLEpFWTQgzc3dVXsu56LKJeh/KikAQxMTRQ0+6Pi1jDDcDBvPQWstak5CA3CH94QF4aGMJ6Z4OBBTc0nOgX84SYLqUmbvqre/7tu8HPI6oYCJRLaWstUDGDUCTPdTCz3maNV4QI0U8YvSHykBEADTVwEmFQ0BWcSMinvPAh8luHr4PFBFMA4k/QPAxa+iZAZmKcIS7+XDPlsQ8VyHM7umQ6eEzYO5m5kbE4d6PbSaoiGiyR5hoXZdS65yiDTMahIwjgsYwsGEmzFJKEW7tyETRItr3o11v97o8vrtkjomoGJYJoppIFj3cc0BkDLPb7S6itdZSy/AswlWFWFl9QQTAPmyYr0quFDH38LPda+7UISf35cvkzGcR4y2b87bphkcB1FR/pn985rUS3AEmEuxR8v7ZwPFoK4e3QfKDLPQZUvN5djuzZQ8n9JzE8GnR5+fz5Wmhf+ef9qd/+P8gwCBOiWWqW20ci8jMQ71JM/9TaUBfPm3/3g1mS7SZpXhkwR75NkwITAOgmfwGYEADEZD84jYdujGGYsAUZgBmyXtEhsNPB/z2kx/d/uHXuSh5pAcMT8QH8sk9PZIQh8MgmOQMTBg+DRN4WDJBBhwj9pHd0yIfNWwZmbPq6y3b9Rbx+gL08/j7eAud/fvSz9uD+UzmebxED1cZ5htH+mHcA0T02fr1dkzAQ098qD6PFrvPN/Y5IjbvEZHy7chFRBD3gciJlB4E02o4085oEUmUSMiSiZFdID+spZlHyul8AqLR7dPr7cNZvn1a0zUi89gZc2GyWiOsm/31b//m19+cOHGywjx5d9D7sRbtBOfLaT3Tfdt722ohALVhdoyOvJ4uytja+IblfFr/9vffH9uPVeu6VFxOSoziZTk3o0QJMNXqo899ZgYT8Spl23enYJGtsR3tfD6B1Oa+cOhpJUA443Z7uUAvLLWsL9ebe948L6swlSLUgK9haYcdTQufT+t+tKSBic2zOR5m3zZ/rss9opdlH6gRkHDb2hmhTIWV2KNFw0i5PDy/jiPltM4kIQEgEsQgPREJQE8fyGW0tlS14ZiOzIhk/fCw262Vd08tqNmoyukx9lebJVQeAHZ+fl5KCVRH5Bx+7EgluAjr2G8JQ8boeTqSEwCzjxGRYZ6aJgSVSRgOSybOIuEjtXiiDesjuFR9fioofTuau9HALK+eixRG4QU9cjhYohGMfaQPiLAAYmAJRGx7f72+KsYiRQnJeuE8r/JK2YP3bo7saEUozFnY08PdzSOCtHz9zalZ/vR63XLkp1elIFYld0vP8DGCiLRUXSB2G60zeRxMtFTBmBWuiDBwtn8BqAi4lqen03rWUhPw48dPAOjxKPZCQiIqKo9+zswkmeMWBBjdCHERoJWn8yI9meDd5XK93RNDy9Jbv903FjC38+lCJKNbpEUONxtyrPW0wEnEMMjKSNt6PyJCEMOdPxQSwZ1IAhIccnY9Y05jYOqq2+1gCeuml7PbsD4sZ8cHqZayXFQLEZnH8EQMQkpCTnBWnjWw4TFsAHKODG82zExLAWSChJAIV+FMnyVrf/Pbf/v9j79t4wjHDChIQAROfoxuG+lS1wUBRx+JCGCQwzGQegIoVUFJphFHrVUBuWobfAXj642X21fffB0Zf/2b32z3Lc2LcCSEhw8nUiCaVNowg4G6VmUODKIIgOQEJkZBBGTISXEEhDl3BTxaJwBAlSKz4ZwshHFZlnk1rZWIvO2WHSA9hcnBGiMnYuuDM5gVSNLdI0gLkIx2MGESq1YYZqMhpAI9ndc2zJTPl+eiYjY8LBdKbcgHDLYxMhpF8cREUiVMzy2PvSGXp9PKCyMBMMYeStT7YZZAwC5u3nAAUu9jzorWU43MvTe8Xd8/v6/L4tmaHsNNcymo7JOfFIScnp4Bgcv5KTP3j59eX18cqI5BAOu6JKGP1vZXDCjLShmZDg7MyZTp3a0zI7OAB8BeGPh0GqO/tsPTGbgiD3QSnN5oDiIuTGzDZt5gEI+A9LnmwnAnBXZAxGAAepw/c/rqkwCoD/vN7/5y+P53/uwfFRZvBzElc/gAJCJMFCa2bZNlRVqAhQB5NsUmpVGYt2Mr62Upkqqn05qj7x2JqNRFIJoDJxJsKMKiiIDIMAZiMIskACUROWRmlqKREUla9M9//UuF0VsoShSG9HnOJoQAYJZvv/7qn/1X/3zu4by3flzb/bodHd26eSbYaICUaTAdGIjLcioyjfc8xpi0h4d9nbkdOwtPxgcjJoBF+hjTvzAGRVokIEk3l4SilSDNLNFYCsxlOn4xuZr7eQggyTQSXdf1dHkCwNG2IjIL3omVWM3D9u36+tLdh3tEmhkSRsRx79EAE5Z1ZUSMVC6ttdaO5XRxxrAUrcyzHQaXWno/RFfwHPuBbkQZDForPy2kCwzkgEBwBI/2h9c/2GZtH+vXZxKNkQBoGLgABBz7waTnDytJv356WZcSbhaOmVQXs/359C4BfeTejogEXDJ9nmyACianB869OuPwBsoP9IUnIqFwkvQIYbk8F4jovTMjC+1HMzYmdhulLiTsY5O6ECZA7ts2YwVaagEwt6P10VvAUwJmxLZv0RtCFFXMiDk9RsIMBhqZ4R6RLFTqMvqIhww9ZmczoIwDE5m1CqEzRVgkIfHE6wJwEAphth42eXEcAQQBSExUi+5hSQlBxBxpGekJTATIY78DQiZnePcgasilqK5VD4trM8l20qbrmYvGSAybqom5AaCynNZVVC1ydPPbnZlLKUXZe+/mpS5CRDxXTwyAvfe5P0dEEZ5KAXHOuWaGA8ADZz6XyAAAJCqMFBFuIQIIjNPGI5oA3f1631cPljLxuubRx+jd6lox0Twn45YAgsFj4pyDCIgVABCRRc1hgjwnakhrnU32GSEPJCsgoocTsmVAYGba6GYDISsRZQamA/hsiI5wR1VZKiPELLUuqm3P15fr+w/vMmKMXoQh/HZ9dbMxRgKyCCGYefgggtvtTkjnp4vg47PX3adZyszmtmyYowcjJmCE2ZheY5kzbU+joKm/+dGGjVOhdRFlimB3mzYCQoyMfT8irNS61uVU6947rkCIxNz64e68cEDct715t2EBABTIDEEAGcOJkwQlqL3hlo59kEBv3cM9vKw6cTc+khhZBZJ8jNkcBuIsrCwGVhflIqyMQumROGuA8N27d0ULIrXWMHDsg4WlSMAEotpSF4gEBtVisZdSjzaWuhyWozfILLUS0ZHJTFqgrAsQtLHZtER5ZnopGhARDskE6mYBQ1ICImuOaD1TTQkpIs3GGCMyhRkJdYbdSym1kghEiAgDR7qkIlMA+BiEycmRGZ4+mxyHEzGJwDB8bBonD9kRnZiYuBR9hJwYKGnu+h8eiZw7aKCJBUfR2QXMyKwZBm/Kq3sgDhElot6b26RsD4AUFsRUUhF+A44HTbhXhEcOG2MMd8c7JqZTVmBGKlpEhC1KkQQGgoDQWqjJth3dxrIs67qup3OJOFqz6220hsxvrU+P5fxhvu8HM2upquVe9bSuz0/nWpTlwfyKBCC5LJJOHhifc0NvT8XntA48wDFfZHXeVJ/5Nb4F7qZkQwD45jSBBGXERIu3EnDEzKlbTmfHo8gNP1tw3lw4BED0+Yw8Fw9IRKJyOdevvnp6//6ylvowBf0Plmwe18NJWeg//PA68WprkW8+rFIu/2GhsPziTvLt12cE1aMYHbJlNmgenhmJhEiAkCAIiPOEC0KA/ID+o+MsN5+3GokWaWCTOkDEjJEWEGz4+xu95uX3P37c79eXj3/8/g/lf/8PvzlXnp6YB7zjUbL+lsoCfBTjffFCw1wFxeSsTjDiBOjD/DR+4KF+pjPPWcV0ks3jJz5zlxEeQ4TH0x8Pme/fVdsez9xn7888i2FmTDlwtp08rhIAhAABQfkQtt6CXg/l8hEXfHjVKBEeE9UpWYqWGmPgfDg2rBsiENFwaL2LSsawfiSpQCLhyOTlgh7T4Bq2QVrvB0Z7d16SqB8bEnORNSVsqPDR/b/9qx/enVVrGe1wO57rs6QLV9bazQl8Wc/D8+hDMEhXKCKL9j6o8PPKGyrA0zff0e9/97fX21WrMkBiWj+ytw6AVAFICPY2VPnd0/rHPx7U/UkQWF53I6LTaXn59Alv1+evvmutGwAFiJIWBpae8UGziYxlve17mN934OwiFRGZtIUhaxXFhWvRl9sWaZFUBbpRi5T7DyjPCDR68whmVgJKQBbvTViBYvTuaK11JCWmALBIIBoOBICRirCsKwIYU5tzJhZPmpMEQUpAYEJZjsO25tePNx+9FEGE4xhNTkVk35sS/7hfL1VUaKCQtacC5STPp0ywILxtYbfNq2A5WTgAOkLr6Zm97wBZRJE43Qw4uTAKc3JEk2IGZqCJWrRTU1mJi1kPBFAJov1+qGg4uQ9kCbBIFBbljLBjG/th+7EBopai5yden01Ki6AeSlxrOS/FkhAhex+Q137MWghCQEEg7BkB8dVled279SNVFfF8OXMb+95ACxKt6woxBPqeDj4I0FrrEAjg7uEAiWMMJiJm9yAmRl7Wsp4uX73/8Ps/fN9bj4RPLy/X+z7fIkQcGTYMErhwAjyC2WY9kp4FSDwTkYAzIAjwcjl17+4ZmYmJQsPtertBpLsnBS5AhUL7iFblVHTJivgEcA+HEbvdb10WlrUMC4TEDATyCcoBirRwWp6rtUaSaRwwMiwhJ3jQbVg/xrH5eqZlEdUN9jkZioxIASagIsSAAGbIBPTmctciupAUplQtANCs3a6vSChEP/3wh9/+7V/d+0cpnImsXJZSSWPg9dixakS07TbAgLgoI9nwcCIRKXpWKaLFh217u73eCxZiYaE+7Fob/PiH43g6Xy7f/eK73/32t/vekIhFw80NSy3MMk+/XNm6oRM4IYPFQCRHj4AqrCyJ4Tl8QKmVqkbSAFwj+nGHhEh6vR9bh7UuSXB0I2YgKipEPHpjTEKiUjPh0T4TDh6GyVnCDBGYWVWzMiH46MhCWtZlsVHTLfpIAGYppary73///ba/gDCvQdRGA989JdZlSRcIplPHVL/n0c0jL+eSmJExrdeFxTEICicIIwauNRHnUMuY+en5AgB9WHgg0AgjyYENgSIixEAFBsQRAWRzBe8JKKfTExBfzK/X2/31E2c8v3tfVTqgEB77fbtft2PH9NPpclqKe/Tt5pExBqX3Y9OVemsRGGFAwAzgxFRpvXxqP0WCahGkNBqjH4ctSsioQKtU44HuAUaVMjIguWIiUWDiyJyF5GGtI1PMKlmyP/z4u9HiV9/8+v35iTzNuqogghkApgiXWiGTYxAQelA6EkqR6fi1YZEDsYTbcX/BjGVdCcNmJzqSEGmpk+oV0yk/RmbUpcbbgo2IGcdSShvjw4dv/jf/8X/y9Xe/KkLb64/X60vbb4Tnouo2QAoTJsDlciFvf/j+D5HOAITg1jIgwtG7mXczRKLZIgSgjEUrI1AGiyjzy+3OzKIyhj2KRAwj9nBT5kQcs5kCkQH6aBkpdVEk8QFmIcqiLKQ4y18AMjADSIgFMolIWAEpgDnC+pEkdTkRgjKqFkQy75Bgvd3u9x9/+rhtGytN7xIRxdQo3NI8h9HKWqoISy3A5BmAwIzIyYqMRWOkI/iTNtbTGQsFhh0bEBBjvayZSayZZH0jJoYc7vdxBDO9L0MAd6tUELn3Y7/frRl43kZcqALRx4+/uW/3usplPQtTLdT3+6hS61O6ZuyjDQCXXKRQOzbGLqJuHpGsKKUIVctwTEgH5lrOo48RiYARyWUZ+81toBuGgZuqQFRCtNGhLhEJOQiht8GUWpZ9T85QZQlx9/1oH//4h3dffQ3WCYDqktYZMcIfM2aCTGekHOZJKjQN7siEkYQotR5u5k5KjNx6h9Yg47zUSDSfMazkjGR+IE8n/BQxH3zSiWgOt04AQuiQmK6EIeq9T22wLKfWGiGkcFgc3UuF6V5cFRNab5EeSx8lU6V4CAAHEYXQMMiMva+1AqHVMLc+vB0tDQSR6wKfYUAPvwIRQQH2THezDPeosysaEpMAZt/mbOFNwDdBczYpZ1o/AjDGmE4b4gRgZnaz29ZFjAjXWmpRIgaIaRpJwD5miSG5B1i8MXEow0UrEgPNqCRkJJeSvT9IKwmAGO6jj2m+mL5UYQ7EzDTrhIQIozeCJFAbCZDX232McTqt89FX5cx4+fhyOp+KKtPx+vpCSMe+TefGsd1FFRFJBBF9RiCQ++it9RvdWURV+r6NMSDfzlYApUwHSjBRZrIQeM6+HJ/bMEAA9EgEMLMeyUxurCLIDOgyZXAWgOx9ZDZiyYSjdRGuIowACaKy7XK9XVtrPtx7JMYwdw8ErOdCJICYw0cfRQtyjbAx+hgGmJzMSmAQGf0YemJRcg9iJAkb0famizJRQpo5MUI8jK7EUkTCPCwn1xkVRFRZj9suInOQHp7CnBkQONoYZkymqp6CmAKMhHLim+d23wDpfDohUbdRVJgxc2Q6zgxsJibNRBA8WIO06mmpRRBb70DZoylVd0eCSDA3jwAAc8/PxeSECekZ7mMKFIGPHScRsWpR9XwgZUc3y2DmuVJVlc/GhFm1jrMeGyBTASHnCHBGGfONaACQ+UiZeAT0kZEiXGtBnBRBnO0nGZnpNItQsB77LsJuRiyEGAFIWItGQmv9aB0yWRgPCsQMiPmv8vBwI289GYnoECYRXddVa1GVgOw+O77zGMMij25F9Xw61Vrn0KUP8xjC4uhzg00EHmnDIiLMMhd4YB1JhAkKuGPG8PjuvQrqGG6RM2r65uD4LPHk3DzPOX5ETNxvvI1J5ofn2+cofOZlzSoRQFAmYRruZm83jw+EMxJEgMPD5vH5Aw/pQSimN8PWdBBNv+G6lg/vLx++flq4fplS+//xkohQRL9+V9yjlKLMJPynCs7/tx//4s+f5Z6pdUxTTwD69GYCMIACAIADAEBAHO21d4t8IJYTYMaQJ2EnhPBSubyrSAjg0GwGKCEhAzLn2Pwh2iGAx8O/+LfH+cX848c//PT9785w+9Wl/Jvf/+H/8S/v/8d/8j9PoBEBmRHgMTkcOXW5hEeTGPz838PL89Bsvvife3rEF94feBOC3v7w9uOQABn48OE8lMMHXooeeJ63gCH+yXMJX4a64AuVcWpMiUBvSg8AThzQn9Kp8E10mvCgx00hIYgQALpnREhlPsYIGyJUS63Lad/3QCBGBhw2wtSogSACqI1gZe7yht9jwnQf3XyOZT0K+qr2492KKKwSuMC2b2P88ePt6emM4rfbRvyy/PIXSEKZrCyQp8v5tNbX22a9zxKjtS7ltFzv15+ur+fnZ2F6fv5glt/bsMx3ld1tu+0jjFlBumgR1ud3T59e7zXom+++eX29gy5VKhx3IRGib355uV8/Hb0Hy3H0y9MpqGT0CzbE8nKknsLCMYOUC0ADHcdxWutC0JvVQutaatRPt9u61nEECZu51PJqNkbm6JY+uz0RoTAKwCpknhEWo6uke3u53srlIiSg1Fpf1lUJDXn0HspVOEl1SXVCRdt3OT2FUqoACwudVnz31VftWFEIIgG1pUPC+u6sySrKcxfdxmvbovVjf31eSzgtHESNWVU4lfBdPa3no/XRAQK6gZHMCXsEBFUACC7T7kYOw/zogwpGMowRbQtvl8uF1uex7cexH/vdjg2QBVAwwgeme+8ZqSoJ5KO5ByAGxBiDRHA5R32S9SLMw+3YO0cgHOE5EpnIPSOcmBFRBSBdCEUDURAUmC4nHMNf9ibMa2VWeWZ83boxd/MqCEkikoDmYb1HhKgwEUlaQkR4RO9dhCeeIzPOp/X5+fmbb76+3+/HsW/bV68vL9fr/Xc/fHJ3iBijIwkz92YZebTDI1LwaJ0YuVApFQDa1hwNMdzz9nprvS8XjsB+H61tLCiFyqnoop7e+uH3n2it59NTqYp8Gmj9PsJTaiLk/WOz5ouWpS4BsH+6IyAzJhAQRUaEQSZyQaW+X9FipBtSAg3P1rru+3J6gnmWYkoWTgjmBIxEUgXEYGHmDCepKmzDSAQg4qEoxxhttxFMOfqnduW1sjERsmcpsqKeYP1jf0kYvnt6sGCpxBSCLqKAstSTqhLouqyiRd+V26ebuR+v19XpxHIdtt1uo7Q+ulu8e36Wv/jz3/71b/fWez8SYHgp64mCkYiTmKk+L5CMCGkBjCQEAu5x+M5yFmaIPsxsh9N6qnWlNgiAyd2P/cA+HHF/9/z0/Pzs5pPtKaqAoMuFCCB87jNANGxEHwxpCHu3mZj3dOFAQGJJgIwk5qKFWN2GJSAkZYpH1LIsPJCDiSTBy1LW9QzHscNYwh1zxyGJud07C5+fVl0kIJGxjwbpWZ281HomIswMjeWriw1rbTfvyswiASlJ63qptUSOo2+4JhEtS80IgMCU6LEuSztuow/zUK0jmev5/Yccw/aje7hbzyhCxFIsfLUgoT7CrHuy1NXd+/XVx6GsRxtSk6QisLXr3o7IjCSmouos1XuTgmLSfFhPygIAkcCBiiTEB1CpuDMmAydkIjilxBiBKTQ5XFur5wXmFo/yOPaf4PekjKLr+6/AYzs6E4rI6N1Mni5P1naMEMjh4W5ggZAUQcQZObb7DjDGAG/EFCDEhDCccDk95YP2Ae1+N7MxZiausupClDjJbNj2LZB0Of2Df/yfXwf93/8v/7fLu2//s//sf/v3/t4v/+av/lXb76oyk3SIApDE/Itf/fq3v/krZkqiMVrMMhC31tux75awFCGqaS3CWQRFEZJVmTgAiAgyZv8EAghPMgBCgs8dAmMmdnOpvKz1uN9n3K8USSTWSqzeDwQoqo+ca6KWMldCzAiJSZyAbuPI2PajXK/np/N6ftYiGZ4HbNv2+nq7H8cImP3zABBjaF3NAzJmNKYsK0F667osBKwsy6JtNFCiSM+hVFgX5MhnNCsgSMKRfngn5XpepFBGzhDOzTZNhMSI9B6idFpqIoFnUXELsxHm6GHd7/f2L/7y3/a2j94+3l7Wy/LdN99BuO+7kGS6+wBEIu37vd1Nl2AlJiyV4bSko3t6Tz0pq6o7qYNjOgAQZGtt226fbtcXwYywNqz13nuD9HBnptPpxEy9NQhPG0bkHqpFmFTw9fVmpSCziIjYtu0//fH7k8pSChIFAHEBHBGhCMzcAyAdMUVkzjSJOBMQnInAgKQGDmBNESFux0aI3WNS5IgwqaJUFUxSH03YfHQiSZpWAwk3REySxGTOyMCcTXkhTJCBbsgsTIjpI5aiR+tRAjNn9k21mPtwB4NEUHTIIBYgAgCkIEzVeSJiLqQpy0IeHmZMKFoBwWxMpqpbzwCIAEJ5G4H66C0ciQEnuEoS5jkwcZrimTMRM0iERZm59Q4kkAke07EDiMyCij6G2ciIqlqWpXWLzCqEKGOYjVaLIknrvfWRoFqKjw5oRSoBEKOoeuQYY74TW++coVrcDAHcTFQBsW/3FEaYLw6BEBCmGwLOpk4zs2H3beutq0pdtIqEj/u2f3r5+NXzue3HbW/E1Ns42sGIjCgj+hgJIKoT18U4fSUdIIVJSwGARM709AByYmGiFE5/9IJPAMwkPRHRA24akeFv83dw94Fw3RrSyITTWuYOhojOp/V8ObuZmxMTZHhGJi+qFetSalH56fVjjxYYfTdkhMSAbK3X9dGvas08BxETe+992GBhRlKWjHTLbgNFpVDSI7WEhFMOQEYWsG5vJWIYPYlNVIEAINMfWm26d4fWBiKu56W3YWZIjMi1MCZGmNkxhklhSDAbkawiT5fLvu/7ttW6LOvpen25H0cIqvCyFDFGh+7j0RQXEAHK5VyfTqenp1OtSp9ePr7cXwFBF0bE6fV4xI1Hz/QF1cw+c4szYvRmbhGRBJEJ4VxESDCBEJ+en9bldLvft233WawbIaoTXj4fMgvNnSC9AdeZOSMt/C04BvCWOIoEfsApH7V37o5IzEzCCBj+xhjPBIA3QjPVBR+2I0hCBkAiUpUIM3dzy3a4O2thZkzJtzdhYpgZESTA8DYySgx1XbSMNtw8wif6rPc2xphm/KXWpZZt29197ofnjhwRhCUwE9LCxT0ijv1QkZUWRKLpC7dYf/HuVxWPY/QRw2JGDvMzPQWBEYUnEJAEwTO7pWV65PD0zOk9SoAMcMiIN9rLw02SU89RQmJyjIcLiPCREmOMfMg9EzdG+OBIE1EpfF5LKZwPjhiyyLrW8/ksNHk5/6NbvB5psPX0/iEx/Om3/r0rwxdX+3fu0d/UH8s0AH8Y7c0nNCzFAce0u2JEmh/b2FrMwEpM8jwAA/J86IiQGAbYDVaZXTkJCPEQeh5SXQAiCKEyEMj3t/wXP/FPn15fXj6+fPzDP/m77/7sl38BSKP9l3/nz75pI4a5eZjnfJE/c7gfBzI8Xq1H0dvP3qDHg54Zvnyrm/e3HqDPdrGHGPSlAPRF6ivf3D9fBLQ+x70APnfTT3DgI/qcOK1Ac1X3WdCByfl5090e8lI+0l9/KiElPJQmfFOf3CIhZuxRHDERzFwjZ2EgaX0A6iB96mU+GJFIgoiIrXdkAQxFDqTMMRKGcyDE2BlzPZ+/wtv1cK7FEmFRN00fGQbZy1pPz8+9D0hYT+/CDxRs+yEMBT0JI4nSfTSt60n5R0dqfjqftsNKLSxFokcEmZ1qvjS97XZ5KsdhAP3ivTD8+HItKqfLJRlXxLFDJXOs9+2wFEFM6xjDjs3G0Q+LIdVGggFt4SCMfXhQlpRuyTEsdZW0wPcLHFFuRwmzWniLYMqlnra9dRTf76KgqkKkhCkVlTGxKG89aVZFRB6tt/HxdPnKhvvoYfb0/LQHeNJh0Y5DTwJSlnfraBufhMuS6EQkRaogVdVlHRHWGoXfXu+ZziqYo3ouiwg4SVEE13PL1HrqfRDpaHGp+vT+Xe4v5/dfBeDtfmfIit5kxXS0BMJhx6x2BeREMHcCGIEtEGUZkcpE4GFm6bx4haE0PI5OgLJkZhw75FLWk/UjE4TD3QGBRAPIrcUYCAmsgFyY3mkuJ7nu2Ea2Pqb/jZHCB0QgMpAAk4dhUor0wPRI25CJVZGlsCGCWyctKXRawSxfj05Y5fFZnAHhgKN1ty5SPLwuTBmjHXP2NTtlJz1MRdb1tK6n0bbRx/XpHMNOT3/84ceP9/vWuiFibz08wyedAEpRc9uOvJQTIFgPpEltSyY5nVeonhRxB49AJTmJFBbl6Ujtr33cDjuT+1jqiYiXZd2Oe0bDZEjoVwMCrKSqfRghkeAYxkyolGHj6NadJZnOs6oXw5gVmbvF9X5HprosZVmZ0qZgzMKAAYQZAPNMTkxMqiQMYbN4JdwQwHpHIq2V0lqO5tthhxQspfS90QILVbVytZfuV8xZCQ6CWEAxY9/bk8i6rtt2P+7EyP12MPHzVx9OtWbh8+XcXm5aSs18uR+jtVF2JiR8dzqd/+Iv/vxvf/f7j59eXm93FhEp7z58JbPDM1CIgCncIRINeG6taGRCj05UJ3gxPPe2A6kIZy3JS+yEswQHYxx7U5XLRUpZ12U9rfveCyCneTsSAEQyeesdHmGejLAEUMhM7+lSSiSWuozerTUnyog0H8PChzIJSym61Ho7CA3FmfHESCl5Wd95ZtObmJBjRJ5OqxSupRDmCO+jmQ/W5GROItAAz4zT5XlZzz7acWytKjJ792FucCCDMFsYeyXPDBOuhHSmSzBkpdOyXom7HapFSjG3ySReTufbvt/vd2IGpGU9EfO6LNfbvbdjWtZttIwQUTk/5w5udvRBrZNoYiRDKTWau2KMDpmFqc3hx2DEuJzfSZbhh6UTcKQJghAZkhQaHjN7FGgZHiMEH+uH7FYvUZYlMccxiBgof7z9OMaxFFnXd90S087MiNSHHcdBPgjSHJMo/c0EDIgJTDS2+2gNWXQtmRSZRYr1Pq0DSIDENkat6uEkOkmxGTG8s0pkIqDUxT04/V//8//C6fTM7fJ8+qf/7L8+/Sf/61/+xd/fXv5oo4/e6uUpEljVPH796z/7p97Do0eCWUAmoEfct90jvvnq/aIU7maRhELEYayCSJHxEHiQAAIBJDM9kxGRZu2wIJHoCMywvYeNdrvvH2R5ulSVQiJAAsgVCwQzARMb0BTV5k4AWTJTVAgwlQVzx9zbbtb1u18tIpk0btvL9f5yvXukKhdepFazPqIT1yIIiUCElydCguz319fMbP0eMQiRAX2kHYOA9fnCIhGulMSRGKBSg5ulAvluuIoHmjmiZHhPm+QZG16WJQA0AFm8jXYc1jqMbLv1NjIRiJMpFXffwfKvf/83OUxsLM8nDPYOMO0vwzE5G/fNCB1XUSyWGBZIGHHUBRMCojORWSBJOZ0GHqoLZIaPMfrorR19WnXb0YGYIIVAhVm0hQVkt5EIWpdaT6encb/dsI9EQGQinmUnAUmQRBQQEL6oMLEuhcfY9gMxa5EienRPYvfwsRXEQQkIwlLWBUjcnRHcrfeZHwUDBgRWWU4Xj7j17m5MCUgYxoiiJWbeNzIBPREA3cxEKFMwHAAACRKJkYnB3IOEM9PDzUCIihaEpR13QAzAAETkboFIUwXLSW1mREjAZEBgFpScrWGQGTEJP28j0iSCCV7mgATQogHgZsPchWtd4VGXC5BAwhSRkx6NKCLhWUu1SVgOIwKkibgCQCQWQDBPwOREJBrDihgXLUU9bN9bXUCFIri1ke7MFMed9n45n0QEkVofw4aKrqclE9yGqBSRTmCYw+x0WjlMVQCx7RthZjoCWyTSbMq2bmZufduGKh6IVyAmzGi9ufmPP36kWSRMlBG9NwCU2Y83AUIRmajcSxEzQ8hhFuGZMQPg4Q7pqmUu+QU43yqX85HXSch5zIxEFJHMzIjPW9rIbMMBPDMhTYUTWVR5Mn5w+gcxAtMfNWSAyMHliZdSf7j9dN1fY4sKjAvtt95GSCEkZablfALKcEMBZBCUxHSzI9w8MoNFPBOmJCGMAKPZsXVVFhUR9uFmgZgq6m6j+UxfhAfCPBJ8349+jOPYl6VEJAExsVlkQq1l5rACDGIQYzosy3Lszc3Sg5CEebvf3r3/sJ7Ou2+t92H4XMqyLIwE93trDR6xFWRmreuynkrVtbC53badE4WECWCCmyES/NjvLOQpZk5INgwBLDNsRDhMADfBXKQGOGQiIyKUWp9ZlmXtfZjZDEv21h8GAZrcjwf20cysdxEVkYh4uGOIpu9kblmnb2nSfjJhDCMigORJg4IHYs89PfokkRMREUHCcJv9an2MDM8EZmLVMYZ7eDi4EfOjzjoxIZk4GWh6Egl2P/rmJ0tZOCN8eNsbEiGNiGRmyFzXpZY66Y0zM56AE0Q1d+GI+ebgSGbSWj3yOBrzw7fkEQBEorUSSxSPh/wDCQCKoIpEQJM2jzBbo7A5TPZvzDcMZEBGDo8RMCy2Hs3nUnRagxASZtGHJ8Ujyz7fsDMy9gCrT0T0VIKIaan6fKmXc61VEAmYiARAIPlPU0f/oy8PzeGLPNuXl/++G58en7cwF7wFmdIhRhwDpg8uwmJa1XDSFMNzpiUIoDDKQo9VdAYishIUmUDEx5MGn/uyAOaPRUSA+QPADJnMuAim0n2n/+dv7t//8Gm//nj7+P3Hn/7wf/3L45e/+O7/9H/4T/+X/9E/HMO2Zu6zI2xeHpGuyJh+tHyIPz+LKj8/A2+azefQWD4O/7f6+C9VnqnDvClBn7+Z8OUVPwtsP8fAcuozgUCRSbMr4CHdZD6ekMSZI8O3n883dxF+jp/96U3DPFnkZNkmPD61HxfhWjUzoQ2Lvh3CDJlh5pnhpoQQnpZIDJD4iFKbkBDGCBxjIHIA3bcdgCQHFLFMXi+asTDcbq/NG6dpUSDOxOxdIJaleORPP31/WrT3JIgMa9uGSOvluRZNiNa9LKfvflmbwXU7VORyOX34+usfv//brzDL+6/vry+luKESl8rRPRuIQIDbAJslkO4mRXPsWhTTkbD3vhZu4bfrx6fLpRQxurj7Zji2XjkGkjK5jUpumD6OZUkUou6fXu8fzv2ylD/e4yyeokfDVfUYkZ7LukYCAX54/84i0juXxd37gLulAwSW5pbgSNJfP7VuBHBaZBEU0rSeqB+vd9jHaF1EBKEuBTFlrWFjKpC1FI60zKjn8C51bbdbEm2ftmUpAcHCpQohOKgENOyX09q6R8ZrhwsW0nWBwbJSx08D67qU8iwjP728bntDTC3FzVSJVcc+RZGQUll07zZr1IEluHi37p/MnIjPiwJLOxqxApLtN0QwGwnkiemDCMcYkI6EUwMpAqsCILZuvQ9OIwWBZF0swUxUBYWPbqM193FSOtUyHHr0pId1D4lOa2mtwVwPAgCRLkr7cewbM7OUCS0mRMQQhBw7EdtoxJTuIkKZNuYMWwExAUQE50mNDyS8b9svvvnmcjo1Gz/+8OnT63Vrt9f7Pnviq5Z1rR5eRIBwDANLEcoH8SBJU4GOmwOknmURliqIac3S7Bitj/Th+8v3ZvH09G5ZTlLkcn6+fTpUaa3laFtSnJ9OEIERkDjcI1OLyIn6MdwjIWL0/TWX04kBhXlEEgQXsbCX272cbgsEIXE5OUIMI2YhcjOPLDJHUkhz2sMktQAJIqhWRMjw3tq93wba9eUlMt3BO5Z1ATJK7X702CUzAgigkmZA20YwLOfKBa+v134fqktSZjam0uFY3j/3/SjPZ3g6lXONVT6+vnqLdoCN5mP86rtffveLb0Vk27fxqQ9rt+vHUvR0eZr7B0ihabcHzwywwowsxdITYJATiqIQ+TgOafd1PYuQ6ElJd6Q+NrRu9093H5iu8LQTdvPMFBZOylJn360NU5VA8HBA4LDIsFRhRiQRJUhm4nXZ3bw30soiqvrpfgPlkCBSZswMAinJHiPQOYuUMqCPDunYR5ZCJIzIm+0JJlyQkxjS00ZkH4oQ7iKaPtp2CzeIXM9n5DywX7dbhq9lAcowX5dFhOd0TkUYpePoPiKTiaSUJFnWNWcscexPlye3cb1e7/c7AKgySH16Or97/3y9759++mm0xrK28L6PWktZzt72iDzawe4OgxAFNIpgRFhHIi2F+hFJ63qBtlWqQloC2+gZQZGEngA2AsggHR57Uk8HIV3XtTULMGKQklrJnUdwRLhnjO0Q+tf/9v/19//uP1pO745t5OhSliRqrdEk6RQqNA3VgAAgOpfEYMcYbb/fES6X55VYIoNUEqK1XYUTsff9aV24VBs+jh1ZDF2kesSc3rFoCgoF+w3HDcjDrb1++qf/5b/6T//JP/7w4Vfb9Ydj37QsIuIeTPT1N99mOKT7GK3bvu99jPPl8vU331ye3y/rKgSUAYnI6L2N+zVYzYYQ8vR5EqQ5pCfgAwHK4hEZLXgBwEBCYgAiSFXdtn2pta5nkTdrJ2HKAiQBiBkZ0Xs3j1JXZJ0kWyIkQBDyWodRG/vr9TXCt217vW23vQFiKVJURGR2eSEKEbXWy3JahRFytEP4tJ7O99unyBCsKKfr7b7dbuflVNYn1kqY7g1Y0nBAehsdnFUZkarO5bENI0Eua0ZDEmA8Lcy1kGhGRo/cBw3ATjFIWMulAiKrrF66t7oyEUUHBNKqGU5Ysqc7HPcjMxcRVDEi7xtyIguTDt84oWDNHr3fwwehINWwDoTKikhz6x72CA8iUbgTcbLU81lLEZzZXB/uiOQe/dhIipRyupz7vkcAMEpRYmaR5XwS5rDhPopWIQxA1kpSal16H0VRRKmNYzjCEFy8HyxSqNSic+Fs4SRixCoUSUE4XTvg0I67m6ObuxugwBh9cF3BPd+alTMzAzJB64m0zFF8PgioyAzDbIoGRMQiCOnuNjq7K/GyntxsOtNYmBI9wsy6eyASI2SaD0BGRPcOiCo8MTqRCQiEBADCPI0S7h7h0wZPzIqQqiWiHa3td9IaGYyIiN6GiJgHIwTgsxbiguCiNFHfFoHIOTUPDwAglgxz96MPEeoB2KNSAlItBQGQyCOEWUS37T7dGb4dt9vttNR6uhBTRghNi0R282yjqkBE+Li93lvbFXMmTD3TzYiAkCKztWFjWD8cyMzczfpgnu8mDY9IcgzLOZh1iEmFwATPJC2FRebrkhGEAekJyUQjQLWqFhEhYgMQEhZxs4dfzw3mBuHhSkh3z/BIZ67LsvTW7XNGAuYUP2ZgZQzvbbBKJDBxZvbetv3zUA1hqgsAs9b+VJdv8WsRVrrxIKwBCC8/3dvRkRFophoHoAEHSqInQSJC7yMQyiLMqKyAMHMIARkjAaB3OzbLeGNhIFKyhaVBTHxrZJkIGIvwvt03CwMsRJSUEIiEjMhMEZ7pSCKFgCAtlqUg0evLPcwnNdLN7rdrOa+L1vu270cPf3n3/p1oKdUgkgCFNRki3UYLdxtolEXq0+XZzYQ5ADJsmJmPBE8IFsWc0SUzt4xwN0IAenhEEggxgSDm7CswIJhStKiWZQ0bNsZwnxOH2T9PnhHd5rGR4ZBpNh57XMT0xNm7/thD4s8730xmRkImCo/jOGY6eJKkmXhOEqf9AWluYrP5g9W11CL6wE+x0DBrR4+IcGcRLQWIABIIGYWZLd3TMAmTMqAdB4THzA1Ehg0knKuU4zhO5zPj5DkEvlVlsQgTAYCNYT4fqW3b5m6qKiyIWGpR4TFGbqO1KWjjw9L4JoYUQTwxIKQwZMIwQAKhDAIPoARGKISA2A1aiMUamZHvPI8RzSc0fVK0YFgMyxFpng8z3Qx+JSC+bd8/R4UQGHEpcj7pUoWYgClTAASAv4gG/YeoPw+V4L/nJj5LPJ81hLdLfinN4M86AwaEE01/ChCSTDVF3xDgkIACSEk05wcAAkAA9nY/BQCAZzUYAeRbZAxBA9Kixex693wIlB4IATr8n/4mvv/Dj9frTz/85l/Y6P/kf/EPPzxfvvrq69ZHRFqEWcxwWURaznqO6Z+eKcmfs2DwhuqZis7jyf4iDvYQdwCmuxnys2z02Qz0NmGcX8TjVr70/jwe8iOy+PZ1PLw/bwCpxJ+Pxz/5yfwTl1a+OQjhS+3q8WDw89U/y7s/X6ZNwBmyu3fL5ycFHzojiVoyxui9FsUYPWrlWLPHsqaeWHQSCDG9t53g8nReLJZPL68ZdrTWmiFSJidQAoRbRrTeb/dtfXlRAk86P51ZWZls28JtWVcVDswEJKk98fVlrwJSz88nvF2v1m09nX7xZ/+ze7ufhL/99V98+vSJtoNU08bTpWSgm4m4+RBZpOg4brWsSViWupjdtw2BILKIbkdrx13retJSLqf9GN0MIBb0rnQf0MZ49C8gJEDvzZPdDNayFrQstZRlIQS5nBgAMxUih9lhvmgBgnD7uNtta+5BkKpCAm27vn8uAzUj3OwY3j5d0f1yXvbj8K3tbfTemelp1afTcn66ECtEtCiyLoBZ5qg8B4hEpJR6tFaWlZgIYV0WhGSOextTog+QU1XApOivP/3xXBeLyPa9eWu+PJ2f6nJO2EvVTGcqiSiqjDAbpsKHIiirWXAi1yWNu4NkDm+8arcEIlTtzcwckCxGggiTxzDvy1rMyCy6xe129N7d7cT5dKrLsjhqWED4gt5RejfO3SMCeHk6IRL2gYjO3DyKDQSGgCROKRnOkcyA6UTigBGmmFLrh+fzfvTrfasLlFqzLpBhDtt9JyItzOlaF+8tEmKM2aqBk+1uw/vhmR5OgCp6Xk/nuvR3z/vRfv3dLy3zN7/97b/8b/7yejvqoojhYZEZpO7u3QnBwJMNk1mAENCIKhcVTBw+GOO4Gzn1Hq33SWnmFbf26hlrG6eni1vOIdG6Lhbdchyt9WP4Mcwm+gGS08fwfUCmN/MEEXYdAABLsXAGzMwkSoDbcXc0dKyn0PO5LmUMzwhV5sSJLyRmwKRAz2AhQJJSGQEARvSfXn/c+itr9W14prVArErF8+jmbTQVju5cJDJv7SAVi6j1sl6Wvvf9U39ank7l9O7d8/PzB0J+fv6gWno7kPBo922/r+f64c/ef/rh1Ua8/nTn8cdff/ftX/z5ny213m6fjn3/9Ho99nZ//WSjl7os6+qDRASZmYaDJRgOxcRHVj3SxAkSAC1y2NDojrnqqZJiQO82xj4i3cyvV+9d10ZSddGny4W1ICcSphkLsQwPdA9kYgJ6Wy9F5BidiRKG1tXqcuy7H3u6p9uplvvRbG/hTqRPp/f7sdkIT3fD9B54yCrZ044RAYiCiZzQsHe4P/G7kjUp02DczcYWWhFAqiTkaEdkACUiEPHT83nf9/v1ti7i6UtZJ7EXmTwNkMz8ul+v9um4X8tyAuThoYxaS2u9HSbIT5fn0dpx7LEsjzoWQGZ99yyQeLvdu3ldqw1jIWIGawEAac0cM4iWEIwMRAoUlCrqzNJaq3Wp4dA9HAIBicgDESmM0wAD0ZnIM9OThdKJzzJH0FqpnDjDfYx+DDssEZC5rKJVrp+uf/zj7379FysRtDFOy2lVhfAM248hQAFEyEVzmDnCQz1EDEhEuN3u3fP9+w9wuhQV6zbaPZZaiyDiMTwirR0WAxwBYFmWNkZkVGUfnXShTNH12G7nr//O6cTHaxv3n/6rf/VX/+Dv/uos6+lS2rHDel4UR9DpdMqw+/V1az0y3r3/+vL87vz0LDPqJULEGIOkMBMC2vaaEe6xikQYwCTDAM1F4dyWMxEiQ2bm6N3MkVhVAzCqugUgIynilL4zWYAVkRJm0TVlYgKpChMjRIRnQre+77t5tGERdLRmHq01VXl6uhz7EZFaT6o6x1Us2tvw0da1rqczpDNiwthvu5RSWBGoDUAgLafTqUqpvfc5CWfiej71vkEfCcjIXIkrM6qNzBhxHAkmywkhwJNFiRkiRzNsgT7zOITIScpMAMAqgLrvKUXIIQVAQQpwcx8GzS3BDu9tIMJKtdTFGIAh0kRqXQiTWSn6yBHerPlRFiy6jDaY5Hw+EYD37jbSLcwBJ6OEaW6AElRFhdwdeg989NQiJrKwAnpC74RYVGejXK3LUmvGGH2npLCGQOE+IaNPl1UpA+jerLcjbGgpy+Wyt6Zzatj7xANFAgKcKxmoOYQPFAp32wdCEkJycRsUVi+XSBq9AyJnliIWGe7MjDOeQRnIhGlu6Tk34EKECYCohMjiABHRjq6YKgRcMgATCnogmY8+jggjrsSMMCnLGERhZma1yLqsKIpOTDh3UcgMkIVpQFoGIiRkujmRKjErhLvZNBwNc4jwCBIO0iRZPNe1LuuTuQEEIZaieXRPn/BlG8YsiUgiMfpoLVwSaWtmfl+WCkgRju61VNDHRHaMAREdTCiP/UjEy9MTIEI4poE1H12Y9vvuY8/wpfAPP/xACKe1AGIAL1Ueb17vYX0/+rEfCGG9EWStSizWx3HdiTncIYOJUTkdIp0mtxmJmVWQhEmFEN2GICCJJohyPwwQihYUnrv3OdgKomEW7piJsyMNZlsTE0IEDYvZhiiCbg/jCUK6w6TMMJHbmGpm9oEEqnL01kbbjrFULaIkCSnJCISI4AGEtEAdOlCAAPBECGzmMCKFAifQzJFQKoQnJTESZQYgE3/9/P7d6dnTzR4dF0f0Gxz3bQ/ziKQ30HXzPnEfHTtRMjEEqMOiRURGVRgBGCIISY8DjZAJiRQRHBwiBDERIkKEVeUwM7O5de79KBfOZBF1C7d8+fjpfDotp1Mb1vu4nFZA3NtoY2/9EF7MgYmen5/v92sgug/zYWaAWRZ5en8mfDQiTZiRozPNHTX6ZMgQ5sS5IiUEIFDwdKEQMhGzABGrKhG5udlAJCYYo3/6+HHbj0doPSLTp3Fn0vpjgnkQIDOQeGouGRNGU4oSoVl4eGaa+9SAKNkzHsrj3EsDhOc+Oma6+7JUnnAZRCpUsLTbPlpDRNHCS0kNQIFAIAj0yIThCNDcDneA6L27BxK5m6BaGAYRUW/TUvy464hgVHi0mNHUQyN89DGp/ipDhM1jWZZS9Nh3nJWjU9CmKTI/5IBtOB+DEVgoAx5VMIgZj2cfMImRhdLTR3SfogJEpjl45GPLjQkA86xMkATTs/vo+J6vNc7M6rw8MoH5aJghTP5cXfVwJ+G/rwn8T3n57P0JmDLjdP087vlndA0A/OxFAQAmUAXARwoM8O3Hv4AEPcw8BMBvcGgDCMCpByXAeLs5etwCBIDjsDas9xhvAtC80pbwOuSnT6/u46ny/+4//19dnp+Y65h2wXmUWz4YQQ+e82NTEA/xZypaCY/mgMcjwil2vWk4+QZtni0rD0kI5soRHhGxx/OXBJ9v6Q0BBG846M8XfES8Hl9N29NjtjKfti9f5cTPQhS+/dO+iOZ9kVv7+VV8POmP+82fX7C3K4n1zhOMDUgkhHiYS4yVqTlapAVwEiUi5m4BTKeKjtnblgGtNwpjWFsb5+fKwsLboFKodr/11hNRtSwnBjp6P7b7jVjL9fXpcrpcLlX0ft8lRy1S6iKigKlEulRhxKTG/cdPn06nfqrLL375q+v1+v0ffwiMd8/v9mY/ffydFFmKdnfI5O0OXMDHytECrG0ZZa21Hwelx3Grqnck8A5BS6lPp/O+b3vbn5ZjLV+fVsk9c+yl1t2xrAsSCubL5re+sS5XF/b4cGYaYzldbt2VqKqQVt7begIzH6MlsPXuSi+3gyLvbSALQjIEYixFYOiILGxYSgotS00gj3TIY9+RQZmdIGO83v2Hj69rfXk+16fCVFa3s9IzEykkldL2e9/G+f37ZbT7Ta1tJ5aBaNstSEYAIo3RxnEsH95PClo/dlW93kfbbIA8P59Eqxal0ZdahSjcELNZHm1gPtzCAHi/3z2xLgskAMvRRmVzyHbzTCgq2BwCWDjCM1lqgQSpS7ZmQUmS7AkjMrpDt/SXjdwvIkWrJ+3dGFOLGNn9votwPS9I1I9DCKgqBTGYINisKkkCM0ZAiggO1ADKRwwCMbouhctSS9m3u++bZ1LCclqlaLqzMAHIes6ivffeR0YQktm4316j1t6PiFSVolIJgqXWZZhtewOmZqnyd1X1t7/92z/88GMbbZhz5ZXW0SxHogJoh3RkDCRhYiWdrT2B0OnYzXosq0ZmWRatSshucWzjuL3uteNCtk83eLPRSTEzRrPLcvp0XJEDA5Eh0o6XhoCjeVoCYKDbMFX2jOHm4ahZS82Ebgd2j04DciU4l6e6rGaDCJWp9z6aIQAtJ/eeEUAHIlkkxujeP7X7H378va6FyZnJRx7XnbKsl6+Qcu8fj82adUTsYyzvl0ULEVqHy/MTZW4/bSetl/Xpl9/++vK8IiIqk9KAhgWJ8cInD/Mjvvrqq/W09tH2152NSPB62959+PqXv/x1mv/bv/6b19v2+nLTbb88P9elhof1lMpIyECWw3JQKgZJYiQG5MCGpCRyjJFjr2WFxFKqIA0bdxtmI5D70T+OKC7EVhsT4uXpyfpAwrRGJMEFFeBh25bMEC2IEDba4UvRWk8ABCRSynF9tdFm0QETvd5utS6X86XU9Y8/fP/jj9/XE9VytsC+3XgHv7tnmgEpVhILAwFJNdjFGRwgIFqwEGgY2K2NGqugJgRJBpKqCMl33377whUItu3uYZBYy4JAHBKYIxtXPPHS93sAIvNkAIpw7xTlBBAq8v7DePTL9NFY8rqdzqDMROLuGSlF2tESshaOSPc2UoDLWtaMtGGEFJi6LOEq3lWVTJlIVd3AW7MM4ORASFiYhnALMhUIC3cVZRSnIAQG1iKJkZB22NDebzZsTFN7Ivb9eH25/XX/zfp0Ea5CfILUumC62VBgADy6wWi4lrKehrn1HtmQhVjFbYy+XQcTkhSZdOIcvbWMYNFEJjD3kQFUWFWLCGDeblesF9aS0cFb28frT3/86Q+///P/+P/8i7/7j5+fLtsx/pt/89t/+KvT8uHJImpYZJlcvm9/9Rc/6feLRy31/Pz+dD6zFHdjBC0FId0UKW0MFhUtx96LEBPue8uAgGRREiJEBJj40HVdmRhEycb99z8gkj49h4/z+ckseu+tHVAqKzJRACMLEmcGJgHGUk+lArMSI2ccx61HtD56H0CEAGbNo8Toc8xUuNAJr6/XyBRhCANEkXUMX8/n07JiDItEyjHscnpPLDGaBZCbapVyOq2FCDOztcPCWYhFznLe8AZmuhQqiIgYiMgJOcZGTELo1mP2eQW4uXfjJD4JJLCSUCHEjGQCKdLb4EZoSSRYkThpITh6RoI7Iy9P6+gt3JFCK2o9QTiGMgnWJawjRaIDJBCnQRJ1d3JE4nE0T2gNItw8iDiRWDn8wYuchMvIFBXPMHNS9ggfPd3CQ5lAZbTho0fG8/m9EvRjL4UEcD82zBStghFuR3dOTpVuPhU7rRWAEvBU6xgWkU7qEEyUbhkGVBYRM+gQEB6QBJAR3YMgEcKDwA0TkDARmZEJgdgypzHA3NJMhNPM3afaKKV2i4wkBsbkiNlFBYCtHbaPQEYAXrivSwDvexujYxJmUFKCP6aS4bOG5WhDtayn6kYIQSQR5ok+BhBCpjDG3JpiTqY1CwiRCFFgAASRGUjvbpFgBjxwbcdgaZkB3WnGNkXQnZkm+WB6kgATWCIDc1Jaads3G20pRYpEwrZvp2VRUcSylPL6en26nMZxSBFr7YBgllvbrL/LyH4c/dgoBhO4ORI8n8tP1y3vJpSO4rEoGrP0NvpoYc4xhg1Cruv5LZASTDjabu6EqKVEBGaITGk8kQgBMFM4ZS2c6DPdiiTBTIzoAAiEs1N+lhUhIXGOMXyMuRaa5PjMNDd3m7pSQh5Hm5skJKB4zLFxog0hMh5HMlD0PpgyrPejxXBQpRnQjUggShBmFIrMstT3qrfjNlrLxFKUWRGg2Q7IzNpbR8Ki0rATAhmoMCABEKVA4qkser6w0GjjqP39xcx9mIdHG2Pf9tZHREQKJHTr6QmzlItNl9PlfELF682QIDMhMsKLatFSqiYGI37eYxGCWTeDsqi7mT0KtsqJtCCTnE8rfLjs+3G93l9frxH5/O759dNrZJ5KPcYY3nrftJA4PNUTJby8+PDDKTwtM1XocjmXVbfb0Y5ODIwU+XCJkND0+0TCxHRmZCImJARBOCTCLOZ8vDokoloKApgZITATQn64nF7v+8vr63H0vR0zbfIQKh77yImUzlk7RxERyMRlrVObIEIE/sw/GeYJBo885+Svu7sjkzJmhLnv+y5MiMAijBo8rS45G/2EvGgJN7eRgGbWri1tVh8CMfnDnccQ0fvoYx6ZslR2D2autWZC7x2JZQKqpwOdsOjnXFfOgmTzIMIxzN1v2wFVSnuLZT12+m80F4AAhIy0BEifLVNvknrCNHbkxCflI1s0fWYRk1WM+ZBNvrSNAEyAyxeb+Ecx90P+ISRCYVRBZUSmh1PmP6yd63/wJb/4HQAC0h/jJQDweNhJYOYKYebgAKaAAQgMP+s7AGCAU6mRt+zY/Ba+eXzii9+n92e8XW0qKAZhuZsdPoYPi4kED4fImLD7nzpvzT3zq8v69OECmfZgNMekOyMEZiIkQhJmUs4W0YmrevwCgoz5ufnZC5QAkJgYDPMdhplJM1uIMKWfnI8jCfCB5EbC+fPzy4cjcd7WW1PXlMfwzevzxnh+ozU/aFxvL8kXslEC0J8odPhzugzhiyv+HC576FDzL/GLHBqgKEEfkIljOMsYR6JHhncbQLIIlaUgCURS7kGl73td19NaIiojXF/t5eXmY/y0Luf3idA9I30w+HPFTnTfe4AVhlhqAI/Rbq8/qfIPS13OT/vwth3hY1X46t1qvaMs6XFaCgF3c8j0yO3TD/p06YWeC7ZzMTwJk5mRysePn2pd1loBsm1bgZT1chx7xpUxi1COg8G3bVCFY5g5zNIbhk1YTmvp5g3k3vupLqXUw00RFlXKBC3hsRTvA7a9MWvB/Ok6Plzom/fPUvG6NwSognfAw1wRBQIw2tHNbd+PYwAiVBIiFFIVTEA6rayFmXI44oLpa5WRPDyWJXvvlbksmoFAsgv2bp9e7QezutT3+46jMWuty/phNRBd2PbX3gcAFpFt9NetE8LpsggYWxMIxxAazDoCW0JpDcupLhd7ee19ZObRdmSMSPewYaokgjYIwVUUSLqDs0Zms7EK92EZMSKLCBNHencjYOu+rsWBzNx7q6UmU6gQcSC527ARHgihqqzlQGmeZ8DzWlovNgYglLrcbrtEMtLYj3Dz1lQ00z0jtAACQKANAl8KR7ClMbqPBhnMlMI+0tKCtJzqel4wA+3ols1ybziQmADSlqf3MQ6SHWlPd0eOHsMsE3I/mKka71ueqy6CaMiIp6qewATPp6+fFl2KlBV/9/3v7q9tff/s4d6PcJcahAEeAOBBACdgQA4MsJ2IGMmn8F8vpSwCGdnw1g4wAE8A7727GSHXoqXIei4e49hab93dhJkrdbfRLCwzgIBBBBLMBnbc+nF0RZV6UkdvZsJq7ujettjTkZSDL0+lLuusoM1IQNRaEMLdM7O3hoitH9v95Ra9YVyv9w+1cim61J/+8Lv9ejw/n86X5/W0uD9/+ukjoVyvn/b9VqlKZeUFz7SeluN6p1p7uud0/HJmYtBoe1BDmXcP+CTFxdPxBGe9fPNL7Fv76z/+TSR999U3l+f33/5yRPp/95u/eXndhlFVse21hyNcIBWVkRgxLbq7MwokZjiSIxZHQkYA6jlgw4BWv/6Wmb/++pui5TiO7WgW4zF3sJ4OH8363pThtFRC7H3fh4UZYwqRpVehda1Ulu31NdwNZ5u1e0J4sJY2RjdHwkQuKsJ0Xk9Mx7osRYUSGdjRn+rCjHDijx+bB2iEUfO0NIcEx+xk0TxGegRqeg6oIwwyijMCODSMBG99R4uRdV0CLEe4uWjJTAZwokSns1RH6ZzArR/JgpAYHnFikbos29EQ9en915n5et/v95t51CVYxUm6jXTjhL5vkAFAWtf67Xe31x/6sAxAoMSMSGZclwWQe2ugy7TMEKKylAK7DXd3920fgllLcRhHlz0EMxlpLRdhMhhhRsEFqLsdt0YVvLsPwwKQEGaZ+vLj9fbp2n38y7/650oVd/j7f+/vf/frvyPMw7xoYZaw5pCBhCREAURgbmYoxKWiKJq3fdtePjKkainn57692hi11HI+tX0r67ksazNTYQA09+FBotmPsAPHdry+bq+fgFAwfRy//euPW2vHtv+DX/wj91GELUDcRbSlvf/m2yQZYxBmXc6z0TYC6qLMzITM6ek5nHk6mfz89G6MIwCY6EGADAB59BqJiGoB1kSsXJ7effXj978Na23E5T1u+97a8WGMp9Ma51MpJdIznKRgRqZDBqoKcKRZO4a31hoQIyGXwkQe4e4QIIU9DSKTjBDSLcYhWJIgElS5Fo3gYa0UybG7e9jgZZWyOnI/DkBSpQSeYBciYlGEhgzLeuJ+jKXkkaISMNIwOK0dhslCpIWpEGVQF1lItNk10lhLUHIiF2IkMEDFyoQRw4YAEjEXRgQA40QfO4ZmxAhH4qdv3yGGVi4VGGsMExL0YCYuCknhMxQmqNnNYpjv7f07UeRZBZSRrIrEAYnEiWTD7vd92w9ULoqsFVoP9znvI0QgSe8sjJkt9tF7AGhdtVS/X19fdmZKANZal4IZ16Mn0gjMFACohWw1YsGy9uNwa8SkRdOCEjKCCSE5kK9Hl4z0IGF0n8NMhJl50VkN4G7ElJFJGAmZTkhzX5gAyZwAyQIJEe5ukGSRiczMSdLb5n3MApjjOMZxR5TIuHFqKQF07O353RMzYwRKggcjAFKGJ6Ywe2LrvpxodrxBmgopUgPwiKKCGW14IhGS5+gGFQmJPBiZOYOQimoW9YThgMNy9GHj6A6Z6cYz2zbRG5CMiCKIk1SIypwTJhQ527624zj27bTU8+WpJX389GldqrIgIRPe71sVsXCPvN+PyBHDtvv9+fmdsIR3Brc+brcbIqYNGDmY22gkZdub0txGBEQSTYgJeeRwgIwZxWIIy2AEJsJM1lKY5ivAaawKKAAJUohUIVEow3MmC2bFVaR7EKUoyazjjnBzBkiijAR883QQMROBDDfIDHdE9AgEYOJaxKbTASDMmvkEQiZAa20tmgbggZBLUWXGmQzJTHMi8nAgZmQkch9FtPXWewcijwRHBAwbXERQh42ZHATEEeGRBFCoZPDeopuVgkUhLJVVTyUiPeItSAOt9du2v234R++99z6DQixMRLXoUVSUCTEZVUSEVXn05hBKhYUjgTIZc4SPEWWprKwqCaGVTk91Pa2IisBa9cOHd21vv//hx9v97pnP79/ZtgdEWAizh7W9gcHUvAnpxx9+4JVRuZaKLPu+70fb9yM8KCkAGMAzMoEBhQWJISMgEGecZbotE5MzBz7kGyBiFVYhgiAkEk6A2caGhM+IzDwstn0bY4xhgPRz+VVOJxBkzoNvMmKSEIgoZy05wcPPA4gPQrb5tIrmG/clExOJEREj3Nwn78hsOBAySWICMMt6OvFC7b4bOAIdr9vYByTY6Bk5zUqIs+Ukp/lowoympE5EIjLGgFmYKapFI+Lo3WNOhIGlIALTbIOZYpCbxbbdwWHYQ9P5d1wU8yuERAiARwX4bAGfdpA3qK89nBlv2tHb/+GNFPPYuH+WlhCA3nTUuefPN2lAGFXpvJYP79dyWpILJEN+jn19Yb35/9dl3j69hbM+Q4oJAEDiC40hP6sKby4hhGyAClAAEKAD+Bcd8PR27S/EnUfIy79InMXbr4R08IDuaAETtgQBb+ad+Tk0kl7uMwQNQuCeCZnx4ATFG90HHjDlaWOFRADOjLl6mhGtzAdV5OH9edR1IWQS4EO/S6TPQt7jGMjHn/FR1j6FvUncyUlTfBP+8O2Jm1/NgBf8XNX+dp3Zw/gZIfSA9/ws5OBD+oHPka+fv/HlFwhvfe+fr4k/fw+RJDPczDzMfYZvI6IURRsQHUIIcqS7JREnomh5ed1GyocPH4pwntZu2bdXSR/HhuCEsW03Gx0RBazUBYjZA1pPCUwZI18/fUTktS7P7z8EoJTy6XYD0ndnVQzlujf76v3a7jd3Oz8/t1vcB+LhvtR3755uhw9Lzzx2a3uLYfr8/P7DB/jw1cunj8NM69ojby8/fYUfpBbmcM3euxmmDyHC9BQ19yKUgKpkAa/blkCEsUfVtJVyWOwDs3UBi76Ryik6ytOP22hxe3dZnld5vbbr/b61AUB7a++/+/XTV98Rwo+/+6t9/x1TDnNrpiLAJKKICJRcKiEUDENp+4CEUhCNGWr6YIJaKjgDgTAdxAmYhID06Xq01i7renn+Ck4GyWN/2W7X2YrNdd2u0bs9n1QVx0jLLILdsLcWe+PlaX3+EMLUDh+jKhfJ49gG6mE2jn0pAknb1mbxEyMZQIYfbdzvR8Q4X9ZQBgSFWBYVZmRFXkWVCcdws2itZaQQWri5MU+H+Fx05DBHhFq0FP32Ur55Xp6fdXjOOK34KOnoto3hiMvpIqWwyqkuirhv1/04HIgAWRaEGDHmAiXdOI7m7IyFgZiHpffD00glPDBBdSnqJ4nXzY6emdH3mwiLVkCJcZh1wDTIcBPRjNybEUICDaeanaUQKwGclDPpF9999/T1N99+9+0/+6//2V/l3yxPpd8PIgIxnx9VwChOY01wIM8G7fAww9S66PksSLD3zObRIxAv57VJ7824CmG23qsUqRUpAsI9e4+MXGqtRZ6eniPh93/44d7vnz9bUMCPsNZRAFVZpJxORBQGyWTg6L63LhEmZyg+a9nnwghZCklG9rGHddEaEdv95Q/f//6H68f1m/e6iA0Dxsy4fnoFB5XSjs3dSq1MdSknd1eVHz46EpHT5fJVOWm3oyzn9d2HcF/KcuBWkpAZMBFNGSGTBrCgAGot7nHdhz6vLMKO13z5b//Nv8ren57efXj/gRC7u+fvX1/vR9uvn+DpAweAlEWjimq+lXYbBDqQJDo/aoEZkjuaHsfY9zu1/f1X31Bd3334umxbXfv1ek03BmPmiPB+3Nq9lpLjdH7/YT3X/vISEJAwMjPBIvoYkNSSemtg0YfHGEiUKIiEUvv+Mk8PCinp7dhEylqXUhSQMlOj6SIkTlrbSAuC4kGdK0TMAg2we4DR6eksEYBISWhcUqgCUMum7piZ7X7LhHVZtcgYTSvXekJASgTExEghBnKD/bbBbL+apZitdYcqOJLCgiAS5Pz0YXhc75vH/bHuH4YEbsN7A8C6nKgIQWbE0/P710+3NrwNF1UUYsbwRIYEcCCSMl3Ns6BXa0XHdrTh5gjKKAQnKUdQ+CZFFjlFHODOAjQIMilATkyKMQIk6lluP/T6YbHm+94io923m8D7X76/vuz/+i//Ve/96fndsiwUC68XEQkfrXcIY3fWAqzYD3MTEZqfzpnt/kqET199y7MeVjiI+9ES+OnrX9Ra//i7396uryByfb2NMWyYElCOsH3fXtvYy9N3z8+XovLh+bTv7fV2SwAmYsKj9zdWDj6/+6Yb7Ns93VhkkiFZGHGmMBIIOFCLMgwpom2OTmN+Ck1662fvfhKKKiAlkHtq0fX5q/Nx/91v/+q69eX1ehy9jfHTx5evv3r/zTffnC/PCIFEAPyGZsu6nNbTEpE+OiDoekEEM8vhtSoyuTmQsCwAB2YyM5CcTifWUmrNiDEsI0pRM+/d3JHkhLChobvB6AnAzMFhBgARnp7uHoSkBMl0Wc+f2g4eWhUA0gxZfIy+H1gZC6uoWw+zZX2numR0V/acTCOSooQBI0ipFJLIcQAGPsIO7kIJ6Kw1LVExC76dYqVUVWKRUnSFAja6uVsLEMASJJqoGYYZ/diIVM8LM2UYZJFay0kMaLRDCFlkjpC32/XY21qeSHTO2NMtEaUoi4J7uvd+DBuIkBnt/83bv/ZKsuzpfdj/FhGZVbVW3/ZlhjPkzMASRdCibME2bAsG7C/hz+nP4Dc2BMOCDV/ooURSw7mds8/e3etSlZkR/5tfRK3efc6QhgBDqkZ3L9SqyqzMrMrKeOJ5fs+w/Tg+fnhPpY7rDS0rIzOamroDcYbtIyuaIJbCtdQAnCn76+1gtI/vKwe5h8ds7AmmEBRItUhOkloiEnRgxKRMpTsRB4Z7TJhHZPr0VhNPbkVjZkpPFMytO6AAUeoIwIklCtXJj1FPTJfSkIt59LC0KIKXh4dhXgEJKRMmDAtZdCRgYoRwBebrdpwKAmQgAXBhWpBMDZLMPbMHCiFVKRYRkUsrgAhEEJ7hAElSCJkAyxLH0XN2uEAS4cxSiVQUAaBERHcCcLeIBMwiJSEjMSJqkVK47/1177vG0pZEeb1tlFlqNY/b7erLQkyQLsIJTT2O4/bzsV/Op8p47ePYt2kq5LI8VExAOK0e4JHurqYyB6fEzBye0Y8INdNww3BiXtclA1Ck1DZBvO5KzJxCLMTigFBKIs8uwSmqzowCImS66QAA9wBMTHA3AFxaNfeh5u5E7GHCAgClcAKY9Uiopcz4TimytuqRox8enoCZDCSROXHeZrNlPpGImDRNLSZ9mCckS9MzEGkOhg2CGREp5zhEEzOAHViXsmr3MA9MZERGgDTPWigSZ8TGw1SDmSaYj6VIk4wECERYuSzrCYlhHlk3yLhu2+16Y6Rt33bdiUC4MDGEMtL8NlRzwEAzsFCzNCnTa8keYSxZlwSidirM7JoJjhgASEillk8f3v2sfn2+1lofHk7aBwMtpWZkBJjH9XYUkYeHh/gbH4c9tAdiMjdXPfZj9l66e8bUBiIzlechZYRAvDOgIwOA6O6kmEPRhGlFIVEdRELERJAZqnf7AyJdLmcpzcxU++i9Dx1j3PoIC48ZKQRInmaUKVocfSBRq6WIEEIkYCYxM9F0r7wBwxAAZvlJwHTrRjhkoqkTEjJHRrihRUSuD5fltGp2ROSG5FypYAFCkiJwd81gxGQTzt2SCUlIsQQzZriObh4I6G5DBzIJMwGqeRIicmuViJnQ5gkxItx09Nvrq3a97sNndAvgjYT1ayboa6hmKjuzRvw+gP812XSX0u++ofxmWA53HWHqPwjA9KvZA7/p/MpEZvz0uFw+LLScEhqkzAH8t0kf+B/0Jm/eHABAQPp9w868BcA9lHR/2AQVzWAXIEB5s/bMrXAAf6P/wJsS9K2qNQ0uEwXNwAwnAjLJFEd2dMxvnC55pOz9mKXmlekNqD6luvk5ibdqn9knNjdgHo2pDf36GvBNm7mLMPltgm1Oa8LUXN8sQm8pv7sMdMf5YE6HE75pi/CW6Po2vXd/I9zzYr+/E+9LvlPX7u/H+8f8Ww1uqkP4D/bk1KHo27V9+8P9ZQggAOb8VgAi9WSie3dbKVIKQ2DCNQgTCoXNEwTEuq6tLUdXFB/B2zgiLEHqUi4Q1xfoZkDLsp6Ytn3vFCoZluradUQr/OXL5XQ+icjovtSWmbd9nIBhzVOtt+3WTovvGJnr+4/MJZA950AeiqCwHAxboTBl8uvT5/V8brV+eX1ZltYYrkmfn1+EuBYiiujDUSKCRRLZdQDKbRut8n7Ep3flULrt3Y/rH388RX3XIfbD+7Ev60mYX3dvPq5YKsBS5HqM7dgL4rU7IhYhAfhH/+n/+j/7X/xvMvP55Wl9/yP+f/4vT7/8xt0yoAkP02QCAghzD4VADxTICIQgTAZAodNSuTZGCkvGZCZmIeYAqMt52/anL7+8buNd9y9PT+d3D+jmFtzKHDrUpZ3DPc0tz2v7ogZS1uXsQMup1Noi3Lbd3QFyFjxth+56EJPUAoTb3gEygCJBaoGM0VVVpfDsxiIplIOXk1CAa6ZDUoxBImkWAbUKIEOG2shEtdBjI0ZTAwhmIOJSS2US4uBmw9L8jIbkox9rXd8/Pvz8sqtqceWgiNx9w3WBumIQp4tway0tjo5dFTMsxWFJSo/cjuGpU24fdqQKcaW64rT4yrvzo75cb18+f9ZjpyKQTkAiUhkPADadX2p7754gzOqZAOqKHEXidDqVUrf9aK1K4g/f/fAv/vm/ePxw/qU/X/nqwx0swCCYBNyhMEToyi1tpDkCkWRb66Wdere+92E+48qukR7MzMLHvpuOCFtauzwsxExgtmS4pfrlfPn08SNwOZ0uv/3pp9txdD0gXXV4ZBFEwsIECXVZbJiaYhEPSk9gUbXPX35CdDNd1vP5tALkUou7RYT127btjx8+7tvt3/zbf3vrm5qVcUQKFY7wYzsQ6/kkkmI6+rFlfiKWUgCir8vy4cOnI1+7mprlbjm8pRBhBhUGd32Ka6llrdJaoYBg5DqrYwNQGYMw+pdrWZp3E85ftp/+5f/z9s//xX9+ulw+ffww+q4Znr/R3oeWox+SWTOIgQWY2BjTPJGY2MIKIEIEKPDgkdnDNSjj9Xodye001vNDKaUta63t9vIFmNOjCOG0EQFYpvdDeGUiB9AIAmi15Bj7yxWKddPb7TYshJkxqwixIKFHVgKY5mjE6368P52ryFqX03Lpep8nCUegjICylGUpkTZyJKXHgIjcJSPXy1qWwiAZkOEchILonk6ukUAuI9hKNgKYJotKCyFmOBAQU0JIYxumfSDE+eHxdmwR4RFYGiB284Bk4lLa6XSCXCB9WOzXqx3HuF2RSDDdFakVEcyATO07M9Ry4mKgh3uQIDNGgvWeOML63vux7ZSBCchl6IYAjcXiKCLzu7sKv681qSdAMAuVSXYHBnT07gRRG05CaTtJJoZ5Xbkf0c6VCwCkh7/+cnWHv/389+r2H/3H/+y0LsSsOpiQy9J7x/BKMJuciLiIzELAMGURrKfrMez55fG8IgBxjSDXXs/ndjr76KZD3c7rqjbMbehBgm7eR9z6cfTxw3/yH02PGDCGeyuSkT6D/xmzwYeITpcLfflCE0wkPJPYgDg99mY2eZZMgA6ltsq33ocBAWEtUkUMoA9lIkRUs5u9lhqRW++Hj/7TTz+9vDxtew/I67axlEjc9+OXL8/HsA/v93MrrYqaZSQSO+B225i/L3UhqelGhMxsOhDSI5tQFZrlwaU0N+dS51VsqXVZ1/QgHhEZnliQeZ1zcOSspjCJRGXhUgFu6RIZkGOoDfXKIJhSK4T161XHUR9XgICAyDhe+7HpQidaJcbAJK4LEPvoHF5RqElX98yhFocJYG0UGgZomVIFC3lmmkHOHEm6I1UOhAClMIFaozRZz8vFEcys79f92MMMBLhCaQsQmIUUOl3W1y8vWNbSKhE5kg07X5bGlM6tNTVLN7eeKMMTuABJ6pj1J1/d52YW4ziOPRNU1cwz4vXl6fVh9a5jKBNPU/sEe0iV4whEwDRLCpdENlPLVFOEMLNpxItZeBeZGWYmTCSFgS0TzJnRAHlayxCW5eSAjVhVLc0DhWV2hrhbJtZaa5HQgaGAwFISUkSKh+nYti0zGRCFOLG14mZqilKBJDwQvBUqtXqij8OmzYE4M9IdkOY0OBPMKfKrxpJaamWkRA5wZCRkR0qvlMEs5n53a87L9UxETERMyAxCqKUCNSlF1RCg1ILJYRaZUhdicQ9EcMTROyFaGLBEOCEyMxGiA5ZSpPYx+rHt+7aeTqVUMzOP0Ttk3ratMpciwJnJ4QYAt9u+74cIZSRiEloC1uUsBHfTtDqhY4aU+fElN2eRyX6BUMpAcGpF6grukSbtDIiRiJhVeAxldBZGLhkz+xYZnh5MRMzMjIy1FGFKyNGP6duwob33APizP/mxoCDitu8RiIiekR7ASARMDBERQYhImJnDjACYado7M3Iytmb6xSH7UBEiJkSghDQHQOJ7sIUQGBkQzbKAAKRRpeLbtgEAQph6ARo9qKYQ27QYlpnHgXAUrpDoEYREjJFYuK71xCIIQMwzKOc2AFNdCVBKWWsTAsBQ99ttQ8TCcjvudg1ACsg5f6lDSxEiRkz3xDKbYdlt7LueHqhUIEaSwlR6T9c9PImotHocBRCA89N375mfb9fb6VSkyOm0EnHhRiSIeIxx2451kcvlcotDajF1AtCu/ehUGZMigZgmfYYIkSlpliBFQiRGokVMDHbcMcwRd40zcxaLiUzoUuCMBAJEZgAUYqbU0LXI42lRjz70tG/X677tu7kmodw7x/metwEwM2FGdAR4s+FEeDITEyUkutsshk9EAiFGhrxb4CPdI4NzfrslI8hSqLKOcfiBlASEmsJMC9daW6uQk+Bj6g6A4qE2/9jRd/9irdZaaymFWIjo7ssIR6ZWiKl5ADHWWginAvQVxCvEHplpHn4HHN5/82bNuY+vvxqDvmX7fhPP+fX2++PyOSqf+JW34f9sf78P+hGxFX4416UJCVFhZMK6ZDaAikC/h9f5w0H8f9+3r1pEA4Q3nw68IajjVyUI8RtxZ7rW6M3dM9Wfr6aeb/bpr1RpvK/rvq0O6JABGjlr3hEgAjxhYpoImTCZEhOQAPJlp32Eh5nHpVXCOzbuTv3J/OZfgMmomm/S6eiZ/319CV+dNl/lIXh71b/Seu5/7tQfzPwmnpdvEa7J/pkFA/d1vLl8vg1q4a933//Huynsm6jWrwvHuHO58D6b/RbJuwOE7nE2mG16byGwr0al+1sR3vQvQWIWgeEJEBnmhiiIxCIcJgg0KYUiHu4RFaQWRq7b7cXckCXdxhj/9r/9vCztw4dPT3t4qKMgJhL243q8PIdbqkEQSSXs1vvr60tbP395enh4fETwNK/SuJXzuUTS4Vhl2T//5v25DlpU47rtSFLOC0C66b7vrdZyOn0EP0zNonH2feuuBIHjuKx1QUluIRXCn59emFtlKoAIINJAzHRwkettX6qMPi6tAZQNztduNTcsBYswnE6P76NfpbRueV5PXKonfXw8P//8W0XQY6/LurQC9eF//D/7L1qhRPj44YOU5d/8P/7LdCvMZtEtInO3IPDwLOgO4CNqWhGCCBuOkIxSW8VS0pOkCQN6SuUEtPRKGILvLufex35sNnDfrsy8tBqZS2sEyZintd5e9eXl+viw1iK0fLhcLmslPbruW+rAgMzJTuXl8qCqmJvptncBSEQkJvIcMcCApSxVuDyYKmSge62FqjhkANblBJk6LCB63yyAWEiEkLm0OCjMhcILqrpqpOVpbUgMgEBEZaF20dIsDmcww0MPAKtFHh9OScylDnNTR8xIJxZiHJp69IxAriilMrs5oWYauoe6Ave+FwIpxZkpLJExQzPTEIWXc3snSGG/u5m7lYwAB2ImWGodUjMTXJdacjYaukU4EqGFB3pcxyg6+ugHlrWW+md/+o+p2uu/+a8S95QgMo8A5kyHkOGKTlhG1hCC+ZV5WttpfViXXNb6/OW1D923w9XXpSRiFjYzIrCuA0GVVrkslcc4bscg4PV05romcjvFw+N5RE/i46ZI9O77d8tpvby7EHHvetxu/XpgqW7kqutpkVbCNYiej80ytuMX1XNrlfnUkiLQbA8YX3756cvnz9t2xVrj6GZapC5rQc5j2ylJagGfkMLZXFmDEhFmd8nxRQf1trzwwOblcl5FSHXY3vdQeIEfv/v+XEt0yEaEBEKKsPO9fS9WsZBuEU4ajcvJh33+5TcPj5dWy7uHhx9jGPnTl+faChXEmtQy8cDCQSND0SHcEYmgoEO6Qt3JgUeFTCAeHpvG5q/t6Mfr6+V8Wk7reb0IfQjIbdvTXNrSmFBEagMI64OQEAl8FCqNWdty7M9ue21VEEwP6BFSXAcyZVullLqcIt10JDM5fHl6OS3jOPZIR4JMjqAxsr9EWRFKRlik50QPHApbQUBZUBokehonxLyUQ6A5VaweZWEwL9mWugCmhxMCJrkZQJYqSFBJEsEzeWERef/p08vrl+vrFUiIKCOl1KUIEbspiRSuYXa+bf12tWNLoyKFhJkLCgeAzdk/TOZy7Eep7QS077v1g0oxyKGu7gCmNsJtXdfwEaPb6IkopbVlESZA1NFrqVJLEivSAcFQBYTcEtPFMREIe1q4SxOpPI4oTYiprm1hcqu3p63fhnU/vT+fPp6eXp9/+fl3y7oicWGR5VTXBVj261UZzw0JoGBCqaPvGQbpSQuXyg6hfdtmLGVngFIlE1+fnvbr8+3pMyD3cjBxUmjvdhv9+rxvN0959/H7P/nzf1qFpXCYAoQwW6SpFa6Y4aZUmnkUKfux4RS7EDW8kuAcyYb76EFCs0YVITMDMJAzkglLrVxLASLEdDez4/rytPX1tGVG6Ajt18+/dSAmrFKQqLYFSZAEEnrvT89PTz6++/CeWcwMEKUu5/MlM7RviIw4WVeAmZhm+xGDERLTwTUREzACuJCUcjmdltbCHRDMMwMngNjMzXxp6zE2dV0iiYgymOh0PhGBm9rLaw/lisIc1n/39NPT9Wcb3ve+fvdITK4x8bN20yyMVUpbBMXHMAiAYBDUgKs5giWkZxaOkYZJzATQTtXNwGMk2tRDM3E2QzIWqMtyeljft7pcX19778Q8xi1zbC/PHilL5o6nB5LWIKMfGzEv52b7cDOqiyynMOv9eLic37//MEbftg0QicgzbkfvDjXTtY9+qJkwpcMIM400JQjgIszLsqDa6GNsW6nL+eExMxnJbEDmaT0/PT1FxMf3l9fXm2lPGDYtLaUw5lKLBQ1V7UfKSnSv3xKm9EjGsiwwukCKkDu6qrmV0mphkqJuCQEa89BPlAYkNYHzIsmlA0BkplUGC+eMQggyGb9UuGbMifZExoqSU9toq5laBmcSAEkFYg9nwEgiAmScxckBSQgIyMQaCWZExESIlDjjZgAkMDmvxOiBqbMWnZkgYfLjMRwBIJGZRaRIjO0qj48iJUszj3k9nXeXE2BmmmKEZ5Z1nbIGMaMIEAe6FD4v5XrbPAIQhBlCmcEViEh1WIRFAXRzP/Zj32+eMKWd2hqYEYzbti9VkIgJImKWmCHiBJMeqgaBgADOgsSCWIkhkYYqJWB6YLUMBhQillQFiiwlE9BUw8OJcVbuIAESItXKy7IgMSC6WR/ax9iOvu09wz1SiE7L2s0yJr4UzYMwS2EONlPPFBIAMLUpNND0RTMjAbwZKMIDAKpQRQy4R3QyIf3uZSQizHQPypQkxAIMKJArqOphe0KmBgFpDtTgJFCFRE/A4CJtPb8jRDOL6diYo1KmaUUhIklMxFIlESnMhvY+sogJuqm6ixRAUPfpAmh1qXXtxwYoM/ZEjMSMQBlzHhMywRzwnv6gvmNdJIl09L6rGyAC7UqMiXm+LI8fHt99uLw+38K8LPXhsgJhkdUV3QEit/1ArA/vLhjF3W1YK1W4pW+pmZAUWNdWKrk63E9Sd5uB5/RQhEcAMgYQCiREEgJ55BRCEJMImdgCI/xXwHAmCbvp9Xo9L41n8k0KEQmxMOEtr8duCEUo7uZBJkYAUPehCpnMPHOpmABVRKgIO9yVEY851xHEgkwwMhOAwT2iK3MlYRakVkYf3QxaUEE2gTnUJGitllLdjFBoIfJEQHengbOALDMjfO+9j9FqfXh8rK0CAOOsR4v7JwyS7rFGzEwiOp1ORLgfh5tJafdYTybdHUBw13m+9d3c5QK8A5L+UCD6piEL3rwcX3+an8IkfBukIyITFqHS5OP7lU9LMgMwJCEwQEH8JuDzP5zi8w9vXzWgr+Gsr7pEfhNG8zehJ97iXXkv9gJ68xABgLwFl+yeLIOvOtlXaSIhIi0hE31mvgBgxlVTLdQj3xw6BBkAA5fboccYM5P37lznYCThrVHLZwn6XEPeM4q/anl3jQXfInvwrXnr62v8uvXTV/N27Bl/PdrfmnfeMlcwdeuke8ZsvvJvF/4VCUR3MxAgEmLCPHm+/eLt73wi59f44JtG5W+xtHt4M+ZBit97t846Mvy6XZkAEhH7obs6JNpb5BLSiZFZoJ2VlgAANUxIt6MHLxdhfr4eZ7Xr9XZ7eQXb9+32L//yL3/88U8ul/OplZmbdfXQQ/vmauaeiWnTYRwZ/uXnnzCh0p+eHx6B2dKZ1gQ+ndbeVdX2XMZLX1eMpAC6vnzxOH/38VOxuN2uT89PgXLs47IWM0ukiBy3W+jwWtWzDwfuC6EHnh/eRRglNGJhzID9NogS3RMIQlXLa466nC6AjBxJZknsXEqMWwI+PF76DT98eD+gjNv1uF3LckrdL+8eJrK+vvth325g1KpA5C+//ZvPv/l3tTISiZCaIyCCl1r34YFUmNKzmy9MI7Iw1LZCcmBWYYfhmSOCqCAACdlw1w5ha0EMGl0rIhfyTAB09+229e16Pi1HHyglIrbbzlIAQ49jXHsVKoRPm3pGKZwJkcAahBzu6b6y1OV0BGigqQogYtjomYnplUCQANLH7gmqmlwIUjAq+aFhnok0Z2AEsxQBgD6Gjq6mOjTGIWGnUg1xUCkiy9Ii/egHhCJYK0iPD9uuYNTW1SM0PMJKq4CsYAUBgMyBsAxHTivCCJGYBDlpggktE4RR3YHZzBmJ2VP3oUrraj5uh6bp9x/qX/30shaSVmoptcwSdBrJ16MDSWtZEIqwedz2w9wJKdL34UNVmNLivNCc2PyzH//82G7/sv+/no+nrlGoAXg4YQAjLw/NYbRSazYwXMrp3eNHwVZP/Mfrj/6n8Fd//dd/+9d/04rUWh08C4UBIEFJqmAR+74DpZmr5uOlEUk3ixx9bLttKFi4LY+X8+W8nFcpIiLb9RUpi1XerJwWWSo3RsvDzVWhiHp6MiH+/PS72tZ11Us5n2p7eFjjGNfX10M75IQjsdDKWFhw7KPfFDqyNCIsVZgx3JAJQ4DAM8McOAlR7UhiGK5tTZbb6Cw1eWlr5YcTXFZhNrc0j92TQACjiJtnUCamenqmZqH1Zi/PT1+ef/nt44cPJNjO8kft+/oongFJLPNCpFKDiMDOCMk0eQ6YEMGBmJRnLmdPiqGAQjh86B6g6n3fzmtdTrflww+1lLqcxraB7iwFWALp9O49E9cI/d1vhUiINFFVAyDGngzrupJruhMhAwCC6IbymHWJfjiwACy13Pbj6elZGAtXM3XviKjmx+hbHFKrkHhYiCMgjSWAoUZZEdFB2fMuQpkOBHTPJJCVGIWC6tKI2VxFMDy69nArIhkQkdyIk5qswpVdiCDdZ9bDRq/Lejlf1rUw4tPL6/Z65VIwYFnP58txhRz7Bu6cPNtqMxwGZUSWEn63kzIkpaMNSEuWSHc7COF8ugzCOF6Zuev0hrmrCoMUAbqXsDLRubWrQR+HFG6liYNpj9WtBCSMoVJJCudg8JDGEdnWVqro4P15QAxu1E6SDtsvt9/99NPpfEaAd48PCUFpVTDX5ej91vVUKzOPBPVMLlzXwAJAlYAgvB/AbP3wyLauGkgYx+0KZSWicGcmgBJAiBzEDnj58MPjx+/PD++5CMwMOkBmCHMSe2QppR8bIiJyqQXciKlImV/KS52ITcRwsK4YApUJGANCqVRgORUmRiJhJAiH0PQcY9z2I92O2wsxCcvpcsbSYlhpZV3XzGzLSlzn1Q8iCsLz9dq7tlpLkSJSEi/hpsokIjDDAJHZ1vOCEZE6OkSIYK0c7hDhwxBbKaI6z7iFKDCcmMwjLL7als/r+cvLZ7WDvU7WSKurFDq2l4RhuXkU7fvr9bVfd+ehY/Rrp1M9f1jdN6DkKm7mR7RC6RBokjAjb1KFCOwMdt1DA4WO2wERXKgIr0vLORvumYkBUJJKKRHGhHKqnLLIUlsx78jZ+xFunoOZf/zxx33vt/1qbtq9627Wudj19Zmyvr98V+paTg+tNoVdRyeupbZwJaJUm9U9+349hgoDBo2IocOdTUcCeGSYgTkI1lpJRP1qZjqOy+OD1MXcKnM/6Oj7l6enMYwZj73bdkSpmGnHBiSQQZhDByIP7xrAGegJCR5ehQ3AzDgDM5k8HQAoImpduZRwTcgEZGGERCQzQwhBYMZWmCDTDRNbK6ZwqM452VIAMOhOpSUizoDDlAkQKRJFGNOFaRr1wwMyy1KEhSHCLRNKkYzoIyASBcOMiBLpCAgHggDIx3XpFjk6M8UkqSYSYRqEGRDFhO1HYCay3G0rplhqqRUA0i24QGb0A5gyMcP7cdRaGbLVgkOHe0ZwbeCeQCSFpQw1CF3WM2a8bgcIqweYhZu7AQJKSYDb7ZrhETGGkrQMzwwRSRJAUo88uupg5sioIq0VNSdC9RjHYe48GMKJiZACckJzSqGM6u4gJYJM1SEgqTJQQTOD0YFZWBBpHgJi9jSPdI+7AwdBzY7j6F3VtA8daoTYdSRTawsS78ceEVJKjhGJwjg5GQjo4TgVltmKnRkZk5PtkcQoHgqZieHJxPe56F9VmpzlXpEQ7nMsBhGUSEngpCPcCBFcDRMzafaGoIJpeCQmnt+dal0SAEkyfM519z7CvdRWRHAWziMQCwIkCBGXKBGp2l9fn92ttBIeRz/6MVDg9foivI1jBCUhiohZcE3zIIJMKAA6NBCkERcBwOVUpBYPCL3DhjOhH0PVpBARSd2WtVwui6qpQl0lYmbuGBEcQs2utx6C2XO/7hhZuTxc3i31vB/7se+eighMYuDhDkTMghDm4OFJMZviicAziTq4QGA6QBIxuxspptj8fOREQdNU9NPGOPat77tQSqlU6lRUqvDH9+9Kle03u4eBZhDTFMMQIxLUJoDFI0rKjNZYeClBhPPwxtvA2tXdHAuzMEZE0jQeZDgKRzqA6WaAQA0wKIYjIAvNqxHhREBkLDypn0hIRz+u19uclYhAc1e12XRp5q01FIIETeMiUgqgufsxhvD08xETuqn1YzpYW6XKaABwT9zc9b7fS+rM6Y/MSMx803t+He7/YVM35t2QCPgW8kEgQkYgImZqlda1SJU8LQD1Dk5GevPLJIADJID8utBfrSD/fUtC38SIAP/BK8nff+T892s07M3Oc5eE4JttCfjGkQLpgHF3w2jADBjP2STPiDSPNy/jrzGu2RPgdwYQZObnA69bd/OIwNRaODwQgBAnRisJCDAgyWFSnuG+KgAMTMwEugOaAWGWruVb3uq+CwDeet/ga47rq6hy3/5vLDz4Jt1lJNjktX919Pz+/n17E+WvIa772qfFBwgAp9Z+5/hkvjF97mtByJxpM8i4N49N/NAbo2iuKe9PCXiDXAMASEISowhP+m8yL5WZAqc30gauKwC3cPNxJKl5Hccal1ZFMHXsoTvl+PhubUtdRf24DsPzWrmU5bzqke8vlaWNbp9fXp5eJ667CPhpLQEOROfLIwI0HJW8ldJqicjoXhjU8zg0Q4MX5qp9bNcrEkptqtbaInXdnj/3/UaCD6cGYUwpwskVmqT2MYyQICzDEWN0pdYmJRHBuRSD0S0bQ1nOBLYUDFygNOByfXlmGuiQyCjy8Yfv1WJZC+bpdn2GDKNyPp1N3dKW9ePzy8uo/HhZEOIv/6//x1IrCoWne29lXnbnUDUNYl7KQms7tv1Qb1XYImqERzBLZKYRxfREH+PI0QmmpuksOLzAsFJmjjQR3LpbeC3kOwqREIdNKj4Sxhg7uF5O7xnLdx8ls2vgprGrhzkzqyzMFRHLskr47XbMM3sQOaAQWEpGDggibMuC7mau5pFeGUstLEXRVd0jwEZtJVTN3CZjLXGou8FlPXErhaginZbWlqW2RkDaA7gSQ/e+OezjOKktTZa6HN1iKEkgozuGDSmVmRAhfTYJOBMWFigBUlmE0vFINz1RRiuWbFmWUsJDbcDhIgWRszTC3zFhH6PVVtvCMHmurmMUImmrBSJCrfB4OVvCsR9cikc+P79EQiG0vo++JxCkP9TzP/1H//S3L18+f/7lsGvPwUyMQgzGOwQUXDhZI1Y+r+29jV6El1qpnb7/foT5ly+/mPn6sDiDkycBVpSFdAwXix7HNgBBXV+314XNUrseWOnd40cALOvKRFJkv91efvksAOelSn1ojz/sJRmyb7fnn573fUeGc10Yab++jKV5ZDCUFEUxKoJUxc+PtG9jjM6nZXgtwrbvvMhxjKXWY/SEWlpt66lvqmPkLArhitDnKRoyxtFpWbDVPY/CQkuVdpa1iPBIDw3pIUNhdHMHBCxkeaQOAAiNif7PvevtuL4c++04nR+Wy7tzu/zRp8duXun01z/91fbyemy21vrw/iIr80kiKAHBHFEAgRGSmIAoahIRinAAT8z3ogHmCh52RCcb1+vl3celLO8e+fXJggvXZaju3ZlSdczotloShZkHUrDsfSAxlcVxBCK2k25XS8/bi++HmnmiEJrD6OoQjFRItrDeY125VMQBdnhYx5WcjBIKLFiatx5ihpoRkiRQGSvi/ISlu6PQcloFhJim3ZaYM8AzkFFYqlQi8Ugfs9MgCCg0Xl+uw6bHXYmAmJZlrbVEeGvNxnWMIUTEZV1Wcx+qhyolghlTYEZ0B28MkW5iRyJnZKoBArKYh40eQFLW5XRJ80EbuEeCJsQ0iSQQJhYMz3SrmUCyluVmWFhEahHsCBnd0jKMGVqtaTwyIXO5tDBgDi5hDoDJBSEAM4/b0ENf8ennn34rIrUWYikZxFIKRZQIHwkEZVhyWQw5iOaUKKcn4pxEYa5ScF1PVUh1kAiz7Nt22zoXRhZNXGtr+IHqeT2fT+9/ZCkAhATgkGbh7jEndpAYfQRCDtXL5aEt64S+ZcRS691eHl5KLUVsOOTsjjUALHVxwFbrsi7CLBjb7QoR2759fnoeZswsjLXWh3fva+H15y+kOlEQfQymidTkOR3MBEtrpTaSkoCHukP/5fNn+vK5lXI+naQ1QGKpbVmZmKWu50ZE2g9isVShwa1apHBBxH3b5sUHIYnQxB64qZqbDULAgNt+c591w8iE6vH68vT09Ltbv7qWrkcaChXb/Hg+1HV/fTl/PEsT7QZoSYhAhcTDQ7kKC7GZi+a6tOK+nM/BdOzHYYHCrtqPwZa4K2Zmgns6Oyd5NxCAEGHCpHDf91cPNwsmocBjpAjWKqvH6GJdde9JdIzO6GDlfH6HTuB5eXhfS9HRl9OZmAmjiAgLoSJghscY1+tLeCsIyc1jd+0ijERSSiAGIQsDoGtnREfat/207ed3HyQEAVqE2zg0QDgBLAmkWh/n80keHq/7ftu3ZT0l1WO7VSH1cD+IoUgjokgotZoOiAik2+FCDlyprkk0mWUBZKoA+VaWG0yAXA8LFhSSTADbkqAxdkUHgDCWkoAcoZ6mPQlLKWxO0yICSEQAObHTGUCIiFCYSQpkCPM4Zq6RlnUZo0NEmCEz1QWQHIgyC4EHIFFmontmhhMTJFIQA0DOVoVwN0dExpxZ1Ql8ICQRIeQ0dbPJjvXpS1lPzNNjAcuSvR/bcRAhc5mlMOGOYZ45EpIYbAxNiJzgPGLWSAJwU7jbX8tpOYGNdB99Y+YIB0omTCEpBZEYAhD7MERqVXQoINVCam6qgi3cjn0vtTRsELkUuo7DlB0cY0CCJTBgLezIQITMVJicItLV+hiQsd9uR1eS3PYDMvsY4TnM1LQPG2pEhAimJjIVOouJ841g5giEBCRyc7DMtCqCXDI9ISHiTqVGQMhgTJhIHyZCN/V5Bo0MAIy3wAhCxozDgru5B2ZSYmpiMCBlhu0DNAJQ1MGh9xEJIrQspwRwcyJMpMikRCAMQNWR6bOzNTJzGqkwUdiDLFztToads+wegUweNkY3UgIMt9JqJuRwIooIBJ46l6pCISrskLUIryWR9i+bm0+68Hy8e6TD9Wlzt/efLm0pY+zes5zr0bUfW5MlMscYhKkEdvj1+TaOoxSZLfKn08PSznYa19cXEZkgXFVPyjoH0+6mBuITSusejJkkc9wdnoSZmTq6mwJkqyYijBJvZoUwdxvbdpujYXMTJh12e30e6q0t4c7EpqoRwcEchPegic/B+9zSOWqOjNhnZpwQZx6QRe5JHAByjsaAERb3FxAOhFTC1cwiCUqSaWaPIolUwyEQVBUBSqmlNMiIzCIF0jtTBgdmEDFLKaX33nsHgHBzkVLLsq4EUJiKNFWfzV2QRMKmQ0cnotpKkQGP64fY3YIKEVN62DDwJAQSnF4zCMzMsOwWFuEB8dVt8Y1N5Ncoz93KAStTE0KCCfvJe5KKhImIABHCgRXAc5o9wN+8M181lAnT+VqtRf8+vebr7f8fbeirQEHf3APfIJz/4e2rR4nf3D3f2oL8TQz6ulH4rQySMAnMmepomRHh4Jn+jfTjmeHhCW9Q7Xt6a/7bs365HttxeDhBrOWrV2vCqO6wbcGcPMt7UnjGrPLePP91WxHv4LTEP1T05uHFb+75qrPMtOPUcO48J/xKEIJIAIv82gWXvz73vtIp3twpz/jmskqAe8ry7k5CgJiIKoB7vuztmN3nF+HN3DRvvxqc3vKLf7A595u4g3u4Z0YKYy3EzNNypIAa0HQXbkmQUigMM4/bc47tfD7NhtEidFkfT6fl4XJel+IBZu5Atawi/PD+UotsHZP0u2Wt8jnz5XXb16WeCgWE9xfBH2pZ7LYdge8ARu9qPnR4QAAnZSsNAMYer3vvvT+cT4T4+PiAJKW2rZanzz/3vhu1soL1IRGt4G07jn00QSmltcoabsbZtbtIPS2MWFQjTvz6bPvt0K6tysHyeHlYlxW5Pp5Or9dXsAMj+tHzvGJiZhA6EvVuHpH9qMuZsUltf/fz64dLFeHzUn/48Qd9+W1d2nUzblwFWLiWcttHmKJhZF1aEVzMgpjTdPQOCeDUgSKcCrdaACAOg4hESGIhQIBGAKtopABEgEAAUR9DsdrMqKi1ImHeTTORmAHisKwVj9FFgIvotkUEYynMzkLea61FZGgSWGOXBbm126ZCs5cKmETHSFNmqq3tXRNIx0gPlIKAIgI+L4zALdL8rqrHnel1JHkURj4XLstKZe0j0A8YO/ng9XI5rbsFEIIbp0U6QCBxhoFZaSfLkeaRBWMACZDcsfwR6dnTeByCgUiFMCFFopZ2GB5DiTnUwpxOSNJeewDirCvyTHdDRAIwj7asnK7DE2mo3yDPKa2V95++q7WNcZzWdYxhZuBjjBEeRcr783vmReTy/fnTz6+/+btf/r6bplgWC5Ac5Rj9xOd1XaUs222H6Es5O/B2uz2cTv7d9y/PLxobEDCTAGlakgFhEiGFmSMRRqiOzV/Ah2oOVUz225EJt5ebm7FwWypEnD9cCjNhocupqDLi/vJ63K5IUJaVSkUhLlmmK3qeJ6Qo0L5vUdrlu/evr3rxCBK7bpReELwrCysmpNcTl1r6tdd2CoAx9spFpEgRRPJuWRMZeeHaaj01kkJYIUKv172rJ73/+P1yOct6wnXdbrdMd8hQhcPTPfq4j5wt0bOJmNnf/fZLUvuzf/IXiC0CLnT6o9N3f7v15+srLvbphw/Jub2+IDZARkrJhWIgr0mZWdQg0IRRSqOH95mUZuCekIgZXPo4/MU9UgsvheGOL0BC6sfR9z0zIbqqDtupm5oXIQAwD0+GCBvat2vic0bMUtI5XSntPLjOrzTTzqUkSxMOKRnJjEUK5JmFCdBzVDhXunR6ctoRApLJGoV4QFIHDHMnISKspVGUyBw+3gwXGeGliKAwISTdSzQwZ2VHZKiaTl4FCRFwkQRAcMCSAOd375GLmr2+3saw1haPjIj9dg0AD8cwJnZ3iAOIvIAgEWYFO51O6mYJu3lQYylYl+HE7US6R2gCsNTQHvdij+Q7PTHdzQMVSuHKRZCRQAAg3FECRpRCjNx7YGZbuJzFehaGdE/zUhlSrr+Mn16/RCQJYc3PX35XSiWEzGyL1dronicvHng1AAgpzG0RllIKhWOAASRSInJdRHB//VIeLrfrTaRQAU/onoWyFAZgkCJlkTWJgNo6s9wTLwBEHuaT8ITCXJjt2Depy+XUlnWdTgFmJC4AyUSTYLKczurXQlgZxuEpCwNCgpSytgok3m/PX748H9rnNKiwEM9Q8A/ffxpmrVYk4jtwUk6nFWYwhFBYMD3Op+V0nsTESbe8vr6Ge2vl9bYBorCc1qW2phbI5XI+n85LuGdMp3JiJFELignjL0VojozNtG/Xl5fX66uZWqTG/vnll9HHu+U9SWEG0zDtYV2hg6RlosTKKxITUD9Ub1c99uNle/i4WLMwHH32+SJhlIoIQoCVCRAEsTAvhAh8RbPs4SFJmYRO7jlrnpzC3P1QEKylpR4OEo4jIgGsW0Yy0On0wEzX/WXfmTSt6xgmAEOdkIjk/fv367p4jscPP5wfPxbGvl8JUQhTB7iuS7OwPkZq7LfnLz9DvPu4tCYisizohCQIUFrNwn1z92QhYm5LI411XWVZkVhEdAwHRCrLwsNt3zcAAKR6PpVlQYDr3gGpqyOAA6Y7jq7ATnxaZa2VZlXCnBlMZ6EAwpm8RaAiARx2b3APDIwkFkgHpNPltG17UlA6+BgK7dxIJNQDohIlklpADGbMBE0QlnQDxAxXy3vXeoKbY5oQETiAJIKUUgCsjwQg4oeHh75vaqqmnIA4Fe2kwp5GLEJ5BAgxIDgAY5ZaIdM8mCADQRqkpwcVxEADqCLIRElMSEQYiIQiUgCHahFMd2YgpGCqhZn5dtv3uLX1lOxvhv7s2zXDSykxhhQBvEfH4tgzctLxpVSSQpmhe4BRhpubBTIjEgGICJeWNtI9AdrSam1tOVmEm8bRt3133yKyqxFBB2QRREwbI2xZ1iKgFvlWpoOtEJFZmiWY7tvRjxGZ6bYfx3aMUuDl9UpE7u4eanZ07WMEwCQmAaLqMDVXVQvXQcIRXkSYGQDWKp4zAWRI9DagwIhAhHl+EWSiSABAygThMrR/He24eU4Eyr2DniOCiEI1IRiBglwVEDAJPUc/ghAtCHHfOjC39SKlElFSToRlultiawURI6IPBTyEpRYmpjciRrhZRMDUcTAJKdw9vdQCDhGRnois5iLMwoAFIIsIIExsc2IS0owVRkmmlKClNHzg9AjPyKxVZg+6me2vnQuJXKQSGSJiYmZaQA/IBAUhKTwOzd4ZCQFN7Xq7AVCrbVlX1R6ZAE5CMBIRhnYiiEkU0bjzaCOQBQEzEBJLlckdMQ9C3zMzWilFSkwdIhwybPRhZiKMyJHppse+jTEskCOOo0+KfzjAHHXPerhvboSgOn+ZmWlmAErzdIJQRGbfFkKSuyVJ4wiHhJkvQSAsKcHQOIWIMwd4aI6MQCIxc7cgzPvkByTkHf1biiDSXX+KRMKlVnMHADWLcA2PzFYbQkqpIqQaGenhto9wQ8RSm3mEK8AjvXcEABBMBIxyzyjd5Qz+NQYVDe5D/V9tHBEAcBeEfh1ev8kciHl/HyZEwhF1xDAwj7Fr7tqESmNABHOIhEqgCZCABA8CVGEOpYAAGQAgC2B5a9GaZyX6/VX/d9eA8lst4h8sCv4Di8JvnvitUejri/kqAOVbt1feHUDp36S9IkekJXqGudrXhrWMnJYfiHvV1zQb3qWNN44PZOZnldt2U/MMM9U/+djMLGdmPeMt3QU4+78I6KtXiab9CAEi3jrd305p32S+/mBP4N3u9asB5+0HnA3wv39n5rw0Ak7AwFkqed/vc43fSkHfCD/3tOBsisM3StFUkO5OILxLRABfeUYRvypB9x/ehJ+vS883x9DbhqKwiAeYJxHUVpdaiCipBChDJhfHItk9eVhgRhFcTpe1lf3oe1cieDif27LWWtqyPDycx7FbK8CFmXGpVP3CvcBIkNets5TTafny/MILPpyKkvz273+qsnz3/Y8VkJGv1/3hcS00SzeWpLPp8bDWz58/q+6uuo+oIg+LlAQRlqUCycvzl8n30YiRaAb8dMWIxgDIYyhDMDPKIlQ94hhdCB8KLaeH6kFhoQN9tIQD1tfdNHYUfzif1/Vsvtjoj02rbnK5bK/by9MTsCDYsKCBJpW5lPPH7XqYxd6tFv6f/C//d+fT6e/+7b9cHc/ndbZLpI7L+SQYSy0icKqFW3GUoV6p9dH3o5MrcDUAiTTVU5OH06o6zDzcUQABWkWhdXTLzMIE7q67EBJShrtFuu+mPQMAUWoVIqJffv4ZIpa1NVzIlMOpH+pDHh4RwIGHObupuwI5xLv3H60roSEhZ+pQWhotDQkgQwrVJEyjOfdgTlSABdPdHRMifH6YxxijDx3GtZoHeYgUZGltOZ9bq5WZU4/jy28AdAyTTHRX9Q6A2Wf82TSakCfknEH0QeOG7eyJIhOPjIYkmXeIvB7JZe8H7jfggYhQVzOCyKWybhuKS61EZMM8s/e9YOLSbKgnMpOrHWOwlHBLyNt+HL27x/lMAZiJpTWW4kZn5nSfdTdF6o8fvkuI01JN43evv1GwSMGE5PG67XrSP17+BAF7v1UKwIejj1q4tPVTbe7+r//1f61pOHDsPSDkZBG4nqp1ZgCuCAvXlc+X1cK169hGqlPkoRGRFlZF2qd3vDAAIAst9bDDjyOEX19e0jMBPTMhGdjDfHdZpJxLbaUUGZ4jcT217Xrw+vEEbdteGDjU3Px23ejUauF1bWPfXz4/F2rlYTHVY9+jWeHCwsyAEu1ULx/PH9//kcfhGj4U1XK467CIDIh3H85LkbpMEWL0XW0kgEaqAQUDMQtySS51WdqXl+vz89PRD+T6x3/yjxslRPzw/gchCY3NNy1zviaQbE4DhA4QdHJKLrkikKlBAApSOWVELUtmxNhNLTLMfN814rkXwcSF87Su59YQ8eg9Ac2MiGlZSPUY6h6mHTO7B2K6du/bvBgHYoswcyJqtcJs/7GO6QSoHg8ll6WF28hwDx26tFNb1q7bko/s7bX/Em0npMIFo8SQJEJKA2XB9VSl1DSASJDous+aDCCgJEyAQGTSoZl+B0lKwIg0YGZOvr6+IgoXBhtc2/nx/aGq7q1V8FiWJibH8GPbErEu64WIGUc/MkEjApghwJ0yHdmkSa0IYXsPQDUr6zkBJ4Zy9EMYWUp0FuZSCLH0Piy8MLl7IgkzC0FiASr1Tlsi4KWclDwt0ywgKIUrmTssCQL9On7+25fLh4u0slyMGPotXR08iBMLbK+3v/+7vzE7Rt8/fvzucnksRUgkINRyqCPi4mU5X5BICCLSEyKjWyBiqXrsg5lvL8+9a3lc+tDZm+ABElBa4boykbkCAFJNpDlEAwBEJpKMGGq1cmNaT+v2+gquRPD4cNmut0xNoARkojnwCIDaTo8ROgYmgLRWyKdYmeHux3Fcn7789PPvNDJlIeYiFRFaKT98/93l8d3nz18QgQAiQkTa5VxrZWZPqlWWZT2269j3VssYioSeicRICBmTRIiICD7GoWN7ed2kLOHv+1HMzJxqKetSTEcplpDJBZP3se/HAekRfuzby8tzPw4z3Y/bAc+H3Xq32+dfWMppXUKJiE9Lq1xQKN0eyrsy6YlOs7oYzI8vT+fLD7UthNTWOF72l6fX09KKFC7IyYzTTjaoEoFgwKnV7ejhQYwgFSHDQtWQhQqTg7s7YcGa4bqbp2dYBqRCGiSzV4scruPWFRUEZ3ObNMAM+PDx0/l8IQIPzDQupdQKXHT02x5kB4SZWSEuBAamw2/PYWO8//Dp8vjI64P4TNeqqhJCqc1ME3E9P1A/An199349P3KpDuTHGGOglFqruEN6H8PVPJAZGVkKm9HE0xCiZRThTLKhz8cunz44ALLUWnReW2O+ucEEISejKhKYZ8CHkWMt4kkGDK4Z+uVpW1qrVCKse75bpWsc3ZiwtqWrIQkhzzGqCMu6AuT1eg338JBamSQwI8gt9n1r632GDwGROCM8tI9A5NNat23YsVOZMwpVBBZGFmJgJxxjcGEqbZZlM6LPOnsIAJpSpkcIIQMOHRWAmSe9iJkTwHUIy9qKqwIzQKiO2S5fC9tSYnMfg2smQgaka2SSVKmtnU6jdwSI8Ht/limmYco9/BuGhBBAiJ6ITFIbALpZRgozYHXokZnIScKM5D6G6hjuDswBKCIJ6GahQzEjIxzMVN5mJMJdqwCXNO9jbOp9Vzv6dvSYwQkP9ei2W8Qk9UZAhE+gZwSaOQAQYUYQwXmtZj5UERLDY4yMQCRurdbWoOxHd7M5xJjcipkhB4DE/DoQzgyPCTNCeivGgcmXJJqyYGSomboNGzgpZn30MWqrgjx0TJQUIwVkIap1eUsj+Tw5TQSqmSEWAGRiJAnkrZsQEQERuvvQHunbduvjYCGA8OFmWtcqBQGwcLFD9+3YIJdTK0VIGBEscl5RBRFmRoSwqCf3WEpxzK0f5l5rOa0NEHu3fnToaJq+m44hjZLjtm8IwAzDFAhIQCphZmU4XaprmoOrQsiLPRNRYRrj8LDL4wMClFqIMTyIJWEQoVvmHYsLQAgJEEg5dSACxCl0utkBMMaYZA8Raa2Fh5vh/KQTR6b1Y17SCHMk7L27OgAgzyRJRFBmlFKmX2yylogJcl74GzGScBEhIvcYQ7ejEwIzCzMnYYlkyJ4RQQUSjRKZuK5FIwgwOblEjFBVoknEIw2LcDOdszUeQUxLa9kwI3zODWYWkcjUMfoYqo59HPteaj2tp2VZWIqHRyQijuNgRkRWtUzIUAAAuOCUe+4mj3jD1vyeEeTrWxu+jvohgQKAgL5CjqcRxr/RgAKnIMIOJ82EiuFBGWkBx7B92LTjMgF5ZmYVgjIXZvd1ukEAeEIpIPUtXfVVBvr/bQv6PQ3jP3DPV0PJHzzmP7S0fNtL9ra9/JaFwjf7T9xb3qd6gZ4ZYPdaLLR8vtI28rF6lTDPaSmLjMnowUwEwMwZG3sLaQFkzGTTEeXnp+22d3eLAHf9dFmn/jHlwvshyDfOTyYkIOS8IkqcUggifAPo+UOrDLz5ugDgD3Wfb3biHcbzbRfXtw8ggLvuDG/GnLcFfLvmb/buVzQQwBv16Nd3ZGK+7Y2votib7+cr4/zNhYS/btS0JuWvR5gSQICYhMmSCFstIkLECZBABtAQAPxQNOu3va/rUte1tBO2k+izkDnQbhkDLg8XxEhq7378o2O77upmylFk/cFxW+Knh7SlXexS370KhP39T19Op/7x02Npp8+//LSuhc6PFHEcr6XCw3pSSmFGKaPvScyI59PaTqc+bLd+/c1vv/v04V2RHIOw8nI6zEgH8Xo6czKghes+7YozjozhmDhGX9cFgJDIMlf0enmop8enz1/Uhxc6teXoOsZmrz8/PS2ny+VSua3nbQxBLQintVyf/HVTNXWLXfd1KbF80qA+Qx7EAZJU/pP/6X9xeff+X/3f/0+FktoyxhgJJe3SitSGxCJgu15Vn59ffvx4ltTw9AwIRRJId4WRWttFVUlKrbAUURvh8bi2g4ky3f3VgmqrJJnpgKVUn4OE3om4kPeuGVmK1FIj8jh2IuLa1lKS0DzTPExn4QcgIQmTPD/vqQMw3AC5tNPZPNzMXU+NhQXJ0yNrmR9MBJ/G6GEWb6pjuLtNfYoBfFlO6+VSSslEqKcACFW/Ph991x4jfevZPfow8NEda0ipRZ3UIsyJDEUQg30cMdN+nHb40ZGlUAkk00g9bLja0KHDQ21/J8EX4OVcCzlyBIknmhdh1YD0XR3ISgKXBYgAuLQFJDLJMdNdCIWQwrbtNk2JiMQECXR0m/SDcBOmfhxE9E9+/MePp/f/6t/9N//27/9br0FWR7/REqWBoR7DSxIgeUAceygA8rIu3336sO9//Hn7+ennl9G9XhIgSlnUyEaWRWTlKWCHMiQUIcMIN44U4BQRkKWJehSY02tkzNvtGdO4Aw4/vzuNCGLZX/cXvdZlXZalQA3lXN3SPGHO2Pzmr/76eLX3P/ywrg9LbXb0n375+/22n5fiA27Xmw/XYVIHEU3IsY16ujwGIorXc+HCBLRfbxZjbCrGEoLEKIW0I0FXQ6TKCMiQdc7sQbFBmETOWIXLKsOzDAXA8xJq1+v19nd/+9eA8OMPPwiQOTw+fPzh0/h3P/+VRUTcuh6luBCAL26O5+qRoGCRjQWEPBI8YVyhrLVVItRwTAL3yGHj+NzH2ipleJV9aPdsrVmADh1jnC9nEqksDtR7H71PG4LZ4ToQILkikaebOUnl0oIp5/UZF3QXzoToFu/O7eSrbhskL2WppRWubqbWv2w/ZT3Oy0mwQCewSkQk0FYOChKs1DDZIXMNrLbEhJtmqIeGIEOQmo+uBIlEXAsGYnAiQgIHHfuhrhSO6d6340bqqe4f3r07n1aS0vdjbK+RYYEQKCKn8wMTj75LW+ZwIjDDYbaDm8Xo3VzrsnISIM05GVNFAEAu9eT7lRBLqVybRR6b9aGIIMLOWOq6lprZ+qEJicHEzAvhMSCiNDJMDgJBw1AJtb4sy26KQLUszBK6UxmPP5xvn3ezHTmT0cG+vP7u8G07Xj99+GFZTq3Wo/fffvmdRvyjH/6c4hTu54d3UFnNac69IbPw+XzuW1L6dn3Z1fZxQHJdTiyc4UMdybwlQDCRmyEJ4KTbIjMAGhLPht03AZtZBBCF+YfvPv2b1ysmIXMCwmTZIiKAKWCpMI7AcloqgD8fu44jiIfq9bq9vj4NMzdjIFlPxMII7x4u7z5+wgyLgEwiAkAptUpptdTaUBqzZDhmUAZELLUhASJZRBEJ9whn5nnZw4SEsjQRQcGYvoBx22+33bSUUlo9SqlEXY88jqOPEe4RdvSjH7uH9+MwtaAsDVkwKoLBTPG2gufTomYsrH4EKvECGQBm2s1NBqb1n//dby7ff6qnsx0jUp+edvnwoTJRLaUKDrcIG1Abc4W0DM71tCAgQfbd0i0wpFQuhI3ESkgTkXBEICBL13n5LlSAKSCHHlCCVmDLMbwfelrXy2ld17NrSKvpruYI1E6PHhDIta0vr083MyHIMDuOyLBIaSdIDMBt2+u6t8u5UGVqmJEQo/dC2FohloBAmr2foElYmkVEONWWvbhpjj6vBoXZdRxHTxvCLMR1WfdjmGlhJkBh1OMgAtd8efpyOZ+W5YRSs3dkSvOIrJW5NFWbReAe3gSFEAqDOcahIRqZpuDKTMIpLBNpUQhL2g54DONiSxVPjERwgwiEmPROJpqXoOmWLCzTxAaOEBaBaEOJ7vyCCPA0RgCgurYIJBFkSaQeWbhJq4BaY3anTsA0giMQMSVnWiAgpNRwh3RA9gDCGVtxRpJSEnFmnQz1fD5zKa6Wb7OrwwwxWm1F6jBlJJ/ZVABE9gwmykxhUjUATCDIcDdEMOvZMcjQ+uRLhBlJ4brMhuBIjUzXsdRSePGIiVM0hfARPtKHYCBJBErlgpAZ4ZoIUiQSVBVrQaLIGEOhFt16//wEACNye93cLKerOQEJJypuoALAHLdP/A4CRtgwNw8IR4QiXISz8lBSdXBFmHUEiRAi3ErLWsyj9yMzRYRoop8AESJhmkbuM4IetdY5RocEpjuFd3pDHLLMthli2MPMCCAstJur1yrI7H1A5u6OSEhsbogYGczCDLO4EgBEmJiJqC0rS81wzfCI+Z3CBNP9oXoAZorP4qxSiZkikoQhgAq30wIepZa2Vghwm+GITM9k8EgGdArQPAIWBGFptfaX6+Gp6iy0LOX06bLvffTSqiCGhYcbH8zEaqHuXKh3tShgkJBEBByu5oDCehxd+2BGKVxrmXJDqeyqSaEamYGR+ebcIiAIsOEQ5u4zXCUiE4nNNBHPBSY9//p6u12FyNyQEedALzPccZbeoZj76Jo5hTsMiK9l0hEBAEjIRMzERdLd06UwAhOTlFJqZSZzP/auqhBpEaEhgA+XS5xyv/UpFQIIMqfBneMFhAumZDikRYQh06RFzcBmKVUEEJAZiTgCR3dkQppcIyyF13UZQ4/jGDp0DO39aEttdYaGmNnHUZeVGDDRI316nH4FGM9hNf86tP9mIP/vt9b83gD+6xL8bcAeOEUQJJgMmQeCSAIAD+lelMLnqS/nPHdmmjlHgAcKgyAwgSUkQCSMMWedABGSABjw21zYtzrOV0HhK3zn6wO+vug/eOLXx+M3vV3yxm/+uoEBMADG1218Uzno7R6/Sz9zIbNKXQHcERIC/+p3y1/+7Ldt7EOP4d+t8b/6czrVqZ7gtGknAiUEUURmAuO0umAgzWTTXz/j0/U2O4szndM/PbT7mS0gKCdiCAnuBW+YcXfevL3kNwX1bWfltPJ83SG/aj/3u3798w/eAm/k6bc7ZuaFCGWq65N4Bhnxe2SeX989+e3ivnXq3HVEBnhrk3u78y5s/epPyjd30X1z8E3bejMNvR2huyqGADJNV0RYa62tUThAAHE6MjomZCKlp/bCVEqVukhtjAD3tyWqAZAPh0/f/UD15CjUznr7+bTy47ulUK8ERo3KehIp5/P70/L+3WMp7dajB7RWbpa/+bvfxnf6J3/6Jwnwy+dfxrovl0d3HdutLevWtTueLpf9eu2353B199v1tixnzLH3mzBcLg8kov0oiKWuBCm5bq8v19vVM0pZCBHcEOD588+tshnY+nBzaWOc1vV4d8nbzrW0xw857Mtf/eUfnY+FPj/vn27wbkl8t8DN6mFw++XFj81GWPAxxsNlidGzji/Xfmy3eHhUT3WoCSjtz/7j/+zpl58+/81/HbEFcCRYxLvzSkR79971dr0lIoS/vjwX5kgB4IxsBTOTmNOOsuZ5XbZ9rK0hYr9tCcDDjkMpLUnW0zltDB2mwbWNPiJcmM/nBwizwExAplaFEFUtCBFAIogwNAICiOaJiAAKBqgPz5lCJOSwWJow86t2H0f6uEZl8lpEEcKDwqiUUpcApH3n+0fAVXW7bWZ9WZbCnAiYvWleZKmX9+eCp8KH+rU7lVWzvL7ezAYQLefTccjQnsOAWBNtdE8vhSovkGTUgHkay5GZqTECMA7L4YBYeUHMoAU40V+erFJttZYpUUtphSfezg3cAxI9uoWBY4wJKJ2uzNaWKEgRBFnAAWA/9ryD37gVJuR6ujDP2JvfbjcM7Uf/ze36+OHjP/vzf3Y+Pfzl3/2rl+1qR75fHylpO644pLUTBWD4vt9aa0tbwJiJ371/97I/h0FbizQLRDdEw/O7pZy4b2N/PmLksmCkYVUp5NjckDQBwN2v+zitcqqSanJ5t902v20jjv6crbRI6KPHfuzXLTzXS1RpZg6WO/TEnUrFSi8vry8/PR+3fb/dLu8uQng6n77/oz8qX56EindlqCiOwGr2+vKUmHTAfpNhISK3lwEqqvbcn5FeuTF0XPOEHAhAnojITB7uOgIjgaS2tpyOHZhtaY3QlSIzhNhchYWIllZWa57x8vwc2m0cHz+8B5FSSztfPsJ3t/HsbpGMkZiIaoCJwRSSh7KYY5noSgiFGZ4ncDNXvWv5SG1Zh1ofgyGpVEqOrS+edVnDFPR4enaqNQOP7RVpNlMwsExjWEbgxFL0AwmpNCBOkrABEJBpCURUIsz9eigRt9bw2KmtyDyOK2BSwdNDBaCaSxp7B8KgUpPjiL3JwtHMATKooTThIh6TdG+FBTjISygBATGqDQyODkWEmJFIVd1jaTVCAWAYHBYl0kfPyEwwT9djuAMJsQGxATJKa4uUCs8wdCQSEi21qIb3w8Ddk9t6KguXWklIpPduYwcAIamtUfLxypkhTMAlWqWIl1sfY+QwQvSgTx9qRiJQpmNSAFXCpArsilipcmJiqKRoCNXvvvtxPX14fv7rAK3LD+S325ebFGJJQCQGEogcDtQdnjbdxw5WCOCqr7gikcjvWP74zxfEvt8Qsw97OJ9WjtAgIWlLreXp7/96O26/+fLTto1a1u9+/NOHd++ZSwL2fiDlspw8XFX7sQcIIFqAOSQU5tLV1JxZkJkokUuGFinff//93//087HtOYdrXJAwDRIymcd12247cZdSpVaplZg94np9fbpuANxOp+O2qXYRIcJW6vv3DwQ+1J4+/0JEUqTUJqVKKa014sJFwj1chVGEALLOGAVAqkMMcws3jIn8BMIkpFbq+XJZ1pWZPKIJvmx9jKO1tR9Za3GzKSwmwpyBiICMULV92/oYRseyBHNQ8Qj1A5dTO58KcyJykbI2BghG6dq77rloAw5312HbnqyXfB9BUmUUfrleF0buxQmBID2P3UHj3QWT4PBsy1JEMIDFfAzYO0OCIDMCcERIVrPBhYmoYMHAo++WwyyW9YSC6oMkygMCk1Ka23RnZYYPjXAijHICJB3a2lpKQ6529AAPHe5OpZZakDmHLrXt2/7zb/6OmfmTlPOZ0RNSiMzG7DFnYEJwJkbA9LCuDh6ZEaUugTj2zcbNgTMC0zPCzOZsPyBiOrgjERDqUPDZm5l738+Xd5D38VtXnW3QENmPHYgj0szCjRILG4GD2dN+BC9ItTAAFwxGxJw4WACp9fECftuJ2IMBsvfhkcRSpEKYRxBxkRLHNs85jAAsc9qEEQEzdJhnrTJ9u0z30pZJ5GSe1+kZ6YDUPRk4CUYol1JSwUaWmuCqDohLZSHqZoygAJYUziOc00+NMzOQIiJUk5BZPNMSVEeY6ugJJCLTtlyEmalg0aEAEJHuecfq7zulZ4S7S10iPQB6P/rRE8Bjr4xTnJqYoVqKQWIGEcFyAqGjD3TltqinHpu6qykTNZ6QMME7ToVY0odlUq0NCHsfxLwfth/X/ei41OVy3p63689P3AqXoub3ambEyUkMTGZW9yIyd2Up8vBwIebeR5hnxOzr8khJKFKYmbG7WhiiMAHN2BcCnE/16BouY2i4QwLxGwIVIBPcPSmmMCdMRWg/uicIcc4mcvfJvUIADiei8GWLvRZmQsg0DVNrVWop5g6mgFRrXZZlJu5YhIjMgAgBkIkQQESIxE3H6O5ea6vLHfEOZH0b5p4AnukQqnYcgzxU9XRetGvh0pYCCCyMjKpuZpFhw8EDK8+Bp6Vj5NiN/VpLYaJlqUSYiKPbnhAZdSmZQMKEZNkDIgEzWNWmQ6I2TgMdzpV0RFoA0tLasrZ42SAZIGuRZWkEmQQWbhSZGcMTIjPCEiccljEDESHDxshxWGbO7ythkSJggZxTfkDE0cfIDMhaqnmgGSEAwoQpeUQfvY8B8747yRgpAQgjZikgmlmEVADAyAz3ICJz2/fJ1mnL2tbz0rJlpJsS4lLrelrV9XrdMbHg7JcmDQdGJgzP+RqZM4AgkhhZyIe7BznOk66UUphlEpruXeo5GWOEHJQIybQ2r2YOGW666chMoImznhlRBoDM0H78+xQQ+nXc/d81UTUf7G9PyW8UJQJggAAsADHZhAgB4iBJOPMK+etT7rNEcR/TI8H0A3vCbAnDADBIhEggBpD7C36zdsx00e8pNn/Yuf5VBvr9/rJffT3w9gO9qTnfKkfxe/rOr2tCAH1byFfbCsLssy+BwuD4X/3r8rvn43Ub+1BzD4vfvvj/4f8W//v/fH1cORPfokw0rz1mFiwJPTBhcrjTnF427UNNDSEh7IcHrkIREQhEGYFBGQ4+0T+IERjTJYwQd49RwhsVKO9HKn/fTvWtm2fGvOhrVOtNLaKvb5HZSjD3ZNJ9oUxwJ4hHBuCdRvUm5bw5ed5qwO5Pxq/HI/P3juJXTWi6m/DNQ5R4R5jfdag3XegbsWn6MWF2JX19oXK9bkc3KdP+R9IE3JA4icLSsRQwYLBa3LCeLtKWTPTwWphIgGsCDrXX7fiRl7KcQ/voOzMx87qsEHEdGXAa/el65T/9J/9YTtC+/O4v/ujjX/2yC0lGrE2G2l//7W+/PL/+yR9/n1xv+/Wy2w/ffSytFpGX15eX68vLDU6n9svzUwH78PHjcnnnwH5spoPLaWklPAwZIGxs4Ybhp6W5DpZcLyciOXYdEWrVgAALDP/l59+eYFyawOV9q8LEkrnW8pty+elp+76Oc/1dod0vfxG8Nujbbq8jPu/RKktpYrbd9hOlXP82ftdqRNd/vnUrJUpFInfC//R//r/9P//8G+83YbpagB0PS6m1kAaXxty79mUtOkZ3QPH3j++GOYSHDd9vpXBqb20xDER0s2VZetfbMUy1MLbaMtPdOFUKmWt4EECrgsgDAiDXpcy5mggzpDRg6wkJSIDYx+QEiYBDWbuhuoM7ZgAXLBU5NcK0oxtEqBOGVvFyXuIY5hHIJUCPo1ukKyF65vDQMXz03o/sB53a5Xxirg8CD6eKZLE9vXY+FAOJnMj1TDY4thEicjm1hHWo7v2oSxU69WNYV8hRWp1JZMDEDKyrjpFxUAZhKa0hIQAewzBHJa7LqduAfdSl1VKRJDPNba3is7OMSM3NPYlAOzFJqSRCkOP23CqXttg4dvVxXCNSpLQqlrn3qK2s61qZzBXci3uh+P5cEunztm2HLW358d1HDL3KbpooFBHcRw+s6xoxAICIXMeWwKWdT+8+Pv6438yppwQYp/Pp/YkL3p5ur7/sE492l/kqnVdp53Wo626IWAKZ8nSpll3Keei4Pr2GaXDNkkqk18O7MSODRDoGzTNi3w/VbmCXT+/GZtvT9fz+XWbu19ft5WVZ6nWp7z9++OH77xi4lcoi+7H/9Ltf+qtCxu24Tlre7jtmRtciBAoGwQ1DQ1ySwjLIA5OFiUU0ciSfS6t1kXaCfgBgFGHhMUbvoTbCnRP70DmSflgbMRmgFPr89FPX19KkrOc50KdYuREwCnEaeY7wkYNIpQQnqAGxlFKWsp5LKWOou4/R9/0ISEojV6rL0hoYzhLPCO8ZZVnV3CE10mMESWRyXTI8LBgZkKflLbkCEqYJpkG4DWkrEgIX21/maRqIDgPVYYks3NZWi2Tm05fP+35LwfW0lHLByEwKjOAhS6mFoQTAmaJYGFDc24ABNZISktxdKQoMxmTChJbARokBmjq/XANS5lZ//8P3L0989G5bJyREQRxVaJijmns4hCWUttTS9mNDSKRcGublos+/9OMASErvR/eEoWVd1rVKLZS6hwfzRSNm+IJLOZ8fqiTarn33fhPMpTBF6cPUCTKLECJGQCJmAiLPmcgEKe2MSG4bBQEBF56TRI4RoRG9teKJp/bwxb8sD8vYR6TVRaRRjJQqCMYVQezleHr9pSNBe5QznyLtef+lPi8fH7+DsH3fPQFCPy1SQRxqRuzbyy/Pn3/75e/+9pe/gVhg8PV2+7M///Pvvv8Tkdozxt4JZT1fsK4TK+FJTMAC5pEkEenuJAJAmc7MNpuAltP/6C/+4v/9l//N2yUAxmx0MB3bi/edRPZu4qMCQKKb34795XYQk6sVKWVZciikevf1LE3Ij+3zy37bellObVkAqZYizMwSGa6arh4+jgOJpNQZ/BmqqiPDwzV0JAKXivP6iKnW+nC5IPG27XvvqtbHIKQooe7CICLI1SNMx7z4Nh3DYtv2L8/P277RZaCSCAC6CHrLAbYUQsr2/+Xr32Jl2/LzPux/G5dZVWutvffZ55w+3aTYTEuUSAkSKdFUGDJRTMtBFFiQY/vBVmDACIwACZDkyUCCAEHyECAIggB+yIMR5CEJEMBBEMS5WUESWnAcO5ZlyBZNgRTZ7G6SzXPdl7VW1ZxzjPG/5GHU2md3i8gGzsHatatqzVlz1pxjfOP7fh8dEtKyFPcYQ9fe3qxvBu5yK/0+Wh8iGNo9nJKg0/HuZF0V4nJZbe1SCxHrrp0Bw58dBNQTsQBzIiZqhIHg5s6BgcQcONshk0wHhys41nSTFhkTiBLmFDANsQVCEQaq9qEaATmVZ7e3OaVIB2Yeo+voQIkkl1z69ogRh9ONOTggziwSUspyOY/PfvDdlHKpFYWdCgLXxDo0kIgYMRhZRMC6tdU0uoV7DAsCb0PVkNDCAzmlBABhDoCgrRNhzQm8azfTa5a51Ly6vX08Y0oiRIxk5A4a4EPnOlMWEiQ3Ee/nZtp2Rzzv4GR3NyhMRIhBAYg2iMgd1EJyossmPOHanlLigHAjsKFzfTDAZy2gMwkJB7IHhHkAMBKlnNk9AgGFKRBpziltTJoJEICbOaCgR7RtQxZk3NbhOErOEMjC2ptTCtOSM8x2CFfkxMJiEO4BTw1WgE7Y1cQjEN+8frNtF4QouUjKbo4sql2tTRteGyMxARHo2NYLgq+XFcNIspv6tgHC6GNbN3f3iKlNRGjKhTzyUt1s29eac755hoB930J1v6yBZ0q5r+c+NMJTKnBYaq6BiggeE7Zi5VAcUN0fH7Zt2wPxsvWhrmpg9mLo9ngeww8vjkiga3fyOdsPAAQC9JRTzqWWzES3p9PNzREBwi2XohGEYObuykyEGIAp8c3t7eh9Wy99b7PrbdJ0CEMIc2J84r/AbJAMn4whN0MgREECUy0lHw7LvjcAmLhUNxcGJmJmMkLAiOLuPdu8QnmYm+9tzMmQAzIiIrjatp5rXQKCmcEdEQHBw9Fx6GitDzNwz7kQ0bIsMwgx+t77LpyHDfPhYI5u7pwopwyJBAUciImELBzMATECLKK1zkjUAQRdnD25e9uadT8eqiRO9WrkFOI2tKtT9ZjknF09m4iU5VRS9XjT+wAIEWTOhN57i3CAIOK7Zy9SZgvt6wDAm9ONh85CKVObIQ8b6uEkswQdMMgCAwEZTcPUJ9G1+b7uXYRyEkDIKZWcc0qESMxDVdUDRjcXbkstKUsgOHgf7bJezByR8Hr/nZoCvkviYIBH6NA537xGCSOIKOesbqrWuyYUScyZUIqNvm+tlKSha9uxRUUMSkxiozMzBI5mNCuykDlDhFsbOKZ9Izxi2D4GiYgQ5lyEZfLgYToHEd1tyiaJSSRFBQiY2EPV4e5mNhNqHop0FRreEzuexJMfSfDMn9+hbd6JIE82i6uM8k71eD+v8/7T4AnkPBUcB5A5PX9PMIqnf6WvWTngEA4yq54QZpxS7eoReRowPEWc4qoK4XQsPdmOvv7zvgD0zhb0/jbYe097FzGz9ySed89PT16n9w1H739c7ytNARCA8Q++21/fPz6e96Y+q/2u8Fb3v/X37/8rf+UlRIB9zeMJdw8MowmEtikGBbxVeLisqmbWA7CP/p2fuiVwJCAAD5y8ZwfgACcwD0f0CCeMCH+SSyK+BvHMfNiPHfh3elAA0DvvD9LTp/AeGTogcLZ+zKMYOENt81IybdTzkPPTWfTkO7racq77feUcXd91tnHF1wfg69P2negX73YA3u0Q/ugxeycOwrvvNAAECAtL4rk8SEKIBJKJZXrvPALK4QAm4h3z4XgCQEQXhG6sakJGyB4u5PvlETwEiJA++vDFzaGI0H5Zrbdtb9tASmm0JmiWD7Y8X46UmSPVCMs5NaFtX7/3gz98+dE3DncfOpWHy5pzPd6dDoCff/Xq1ZefV+zi5sx70xcvS8750nprg8ltXOgJVte3C4Ka2tu9g4Mqx3klU0wiqRyOPDPQnXI+pvPl8eHSpb09Ho8JV23rCLg91jN94/NEtq556PPxw+VbP5tK8cvn59EiFVVNJY43N5fL5fVlnAzYv1cPx61b7paHwtp+8Or18xcvnx3oL/3Vf+7+yz/83m/+h3nr2+XNvnJJbOZ9byBExoAYwmqwlMVM0X0MjXZGG1aeGXKKYa7t/k0uBUHMNdwIgYXHaI4SwX1EIg+I29NBwi2guaV8YOKUwMbo+xaUTAMRhFnN+xgAaO6ATozHmjlXBxxupuraBcEGdnVGCBsRTgwFkTkhsavWwrWmeefpjhCuFt08GMMNXIXtWJCJR8jbRsfKFBSDErMARTAJEyC41szDbAwjZDdFBGaU6CQE4QR4ONShZR/j8tiEcVkqQAwmCiMkT0eLyIwZFViQIAnsjdT8cFi2NS7nxyw8FqwHEUmmY90NwVIqATFUdYyZUZ+uQiEGj5n/Gn24+da6qUE4uQ3Iw4FTAfe2785k7kM9gg6n22eVTpWfd/jhF2/aV6Py3YtbH28+905kWU0pwGx4VHeHCB1j51ITB2BQKstpOdSLXsI4UcJbCrT1YWxvGxMiUVD0rn2o9b7QMXImgnJ3QIfwYOzAqiN2MEo9Mj0+9FoKSyr1MNpY0FvzAJyu3bqUsiwg1GIDiaDYHs7b5Z5A7p6dwPrD/WXdukqqKIudlrrc3hyJOJekZqoaAm5m5oDeu2pT6IGH7BSqCoh8TNZd3WouqI5AuRQR6cMUmetRDjeIkjCphdmQLMiUFtrXNnRAVyJMzEGATFugd1VjdHi1rx7KdH+6u9vHOqiVmjgxLos7Sl18QxwZyQPBoMcY4FkkqSoyzxxQ9EvrzcNTOIMhO0nCVObdgphNdVvPIpmYMBdBQk5934jFwtEVPdx1710VglpiZkEHdDdGJxccFr1PoJ1gwBy9Ee+t8SwtFZFEba9vH94AaG7CaWmjc26UgkRTSgwSLkG+xQOCcAg6ggf5GKEIwUAxdF879YRkjs4JJGVmVdhRtD8GUyIKEAiE0+kAoYvG6Znb6Nu6A2fH2NYVrCPLMI9w89h9n4Q5syhVDssy2mk7fwEQq469dZFEhCIUY/MxQrsFuocZC6dSiqTlxYtnNcuhVh36xac/UNUkZIo1E3Od48jjUsty9GDvWyAiOQUyp8PhxmzkfkmYhu4WjUYEtUAZ65v18uXp5s7BPvuj7wf35ZTXx5EL54VFBF2JESBSYULn5JzRwTiBmbmbWnz25vcCO918dMhHTnXf2muP5ZBqKft2+d7v/vaXD5++evhUQ5eccjkIy6c//OHrV29LzsuyINLSt0C4vXsuiYa5MLrPpVqRVPoYCMDE08EK4WFqhCmn083tT3zrk69e32vfXUfvre+reB9tX2opJCgdAghw2y+XrVk4MTEhOJNQgpQPlCiib+CjX96q87p5LksmImJ3czX1Ocokmiv+7m52ur3jVIg4wpmQS46AUsrYN4TgnN0hIEqpL5/dUc5b07cPj4FYUr65uZ1F3kychAzQ3Ey7m0LEaG3d1svlfH58ePvm7d62QlD2XBZM4kEE1CNw170IEAgLIIqO/uX968/uvzz7mRBrYjlQuENiFPDRwChMiAiKnFUfHhoCyCNHRJZ8c6rN437VppHFKUwQJgKUkDFh2CBgJrQIa3vNh1Dd2yUcainf/OTbuR62/eG8PlzWSzPqfQcPCJRMgPCwrjnXQz22Ps7btjicjgtx0tHMNOVSavGxDiKSKrl46zYUhRMzIJSUaynrtr159dVyvKObIxIjmKmrGUsBQhJmAFAN97GtZmNvDvnIkoUBEKgn7c2tqXkEpCQ460REhPEgsF38su1EBAiEkJmjlq52Pq+ZKGUhBGFiSW1fQzVMM0vYviptOjwg33yQcj54PJwvEFCKAAoBYPgYcSrch1m4CKecAGJ4ELIIhrvCXMmftdCAiEgSCDNyMtvEgXioQqCkxKXa6O6KbkziAAZBJEQUgTqLzBGnAjG0l1zIjQmdCtVTH2NoRKlJirqBORKJhYJJOSFztMCUKBUmTEz7viPR87vD1hSIiUZY030Nl33fOBd2V7WhExOKozcVJiJ329ZL21Y3S6UwmqlFuJu30YgFwMKMEANAh6WC5hNN0vre+OYIxAbUtkvfVoTglMnc1MCGB5hEG6MkzEkwTCOIhUmYw5pue29d35734ZOXEe5RmMMDHXLJkhO4zXjpJLUAABIellMtdSn5dFyOy5KSCD5JZDNWAaBPF3k1EAnuejpSqUvK+f7Nm94VhoIbuOlAYklMTMl0zhAQEQH5ylpGZBFmNlUNywVyTmY+1IkQYbplabKgmTjYSypRIYJ6t6Gx7nuffFNzAESa/iNUHefHh3VdEXGpNeUkkhDRTCdv6LqmncSce989jJmTZMn15u5FQIz7rj48ghJyEiCUktwNhErObjFDZe5KyGrWdQSRO5pa61ZqImIbqqYAsG6ePeclI2Mg5ppFpIfO63oMQwl3t8AIF5G6LHsfDBHOAcSMGC7EmGioXc6Pzz/8IFdxCBix93VEN/Xw8AkuIbq2Yvtcwyf3mRyiCBrdQqPWchVnVVV1aADEGG3feym55CTMqdRUICKA0HScL+sSCycx08u2rus+Mc8A76eewh2I6WvDAsLsNwgHJIiAZanH42ld123fbei+Ukq03CzQYWgHiMu6BUE4jKGpoDeM7KqDI8ZFx+qUpByz1ASA1ocFfs2NnhNsj97bbsF7LzmnnGnGmxFppqciAMAChIElB1K4hAQxuV0Lg1WVyIkZkdym3mHvhbbwR2k+DsBP2k08CTf23hT7nXnn3cvffWrvnEQ/pgq9+/nH+rYCruY9+BEX0iQYzxI4DLCYpI2rGIQGCGABPUxdPTITMEJmSAJT1PhaJ/r/Y/+BH9W/4kkDin/khe/+H/+IWyr+2DcMAI949fn584f18dJ1mKlq9wD0cHN3ty92/YPPLt/8iRPPPQ0HQnAiD7DgCPQA8+mK+e5r71199oOZFhg/9fGNW7i7IrqHI8zO1Rk/NofhOJHS0xx0VX/iqoV4/PjWPxlvEPBr9PK7Z3ztC7pGwt57AAEAmJkwJttoeuw84Cp4fR0VmwoRQLzPZr7SiTIiEjSN7uBXcS98rgZHeMR74hNedyW+Pnhfb+SPJc6uf73unOSUIoBSJia8GqHQ1N2nDEzdEAlbN6qIgMzJrEdadBDSGZFSzkhS6qkcTrkIuz3cnzP7ksUDXA6DKdgDNCyGmYN9/tlnn335OqWcn31QaqLWyvGmlczez5ftyy+++ERS34rd3jzP2PY93IHqpcfr8+X5ws9fHOvpluqx5MySlts7TmVvY7+8RfAI3NXYx8vbpe+b08EA1ja2y7ZQA+EOggS5VpG0LIdHMG0IXMzcXN/cfya53twtgiQIy/O78+tXcfcxohGmgzAhARFwdiBmOd3cjL45J0HUffX18czJPH7/1RfnbfsHv/P9Dz/+5k9+88MPX3z75371m1/+we989r3fOn/5+4+PF0fa92ZAiTCQiSyFet+2FnxlJ48sRLVc2mjnvVsA0d5VMqeUevfDkpwEAUdXQ1iWxYYKsUiygPPWET0XIBj7auvlTGFAHTnZ0I1Z3dUiZeEs6CNngbKAyJLT6APFUxZhEKL84Us1772t92/Oa48As3FzWxCvnc+zrw0Qci2UcrTRdZB1JpTlJjPdVD6QrS2sZDndGTMhJcFUFkAmdO/b6N2iEg8JH8gImHxPOAbisFBHSSBCSrRz1TH6GDkslcySWVjAEcjckUSnmsMsJacAbk2bjHpohhTkDm6qY4BAuKkbIUyX5qQhRgRhojBmEc6MbhA2jBHLsrR9taFhtnZF2W2pkrInYaZaslkqS6bsPUY3zzndno4W+AKfxRZnaW3DmXI3tdYH8cAIQEFiNbPANrTU5fb2bn/7moFixjnC9seRcxZGVScA1VUItcf9ZTswjzEoZ7TBKR2eLxgAkQiw90FMESiciPjFhx+8fPnsh//we61dAImF5FSpJGLJCVGj95HWjgYUAbpFUO8DEegg5bZczk09lVzNHQiZcVmWu2d3HYY281DMNrrZGoCxm3JCzpxPy9hWNgkOCBBJSVLKJSVmoofL+dndSUZnRgRwQINAzEgDkTmZhw/ylASFACIFPA6zzZhldhuBsap98emXLnq4yxZj3S6P2711XZa7JS8JqbcunAE5gMI6V4iIPvZMxj7S2A5kexCiuIX1RrkQMbgBIU73HEAQIaeUS3jovnrfIsLMEgaNAXmRsmz97MMisSg+XbEBgvC6sigZNYgtwOaynikz1+Mp5cRS4v5SlsoA4TiGdrywBTa+Od5SSFNz3kxW5oQQ4C4ggTFiKDQy1B6jDWSRhJlEW+sPo9QCyCUtgKBLiQFU2Ju6e8m5pZIqocfQROD7225jCIBaUxJKuZba9s21BSCYM1M45rzc3Fjv27aurTUCqDWnlM3DIUy72G582AYCY0mcS5FcchJATOX0/OVHr1991vYBziC1LpgDcl2Ot8+tN5G0njeBCHTwmTsrKS9gXJlLPkAMN9MxLu3tGGOHS0QgefThY0s3KUDSIolSWbK7GQdJEEnOHIgCVk8cIYihfQARAqrpFw/fO29vPn7xUy/uvilJLHzvfTy+vn/46h9+/7ctb0gklGdhECEhgmoH8NEbIPbRetustw+/+VNhNsyFGREVPJD2ppxS2y8YJkIYqKMTIUQw8wcvPnj16k30Tcd+eTybjpqJUuK8AHHGbKOFaR/DwoAYCCCcmUm4JCSSpUiiWxqX0dvqBbik7Pu2AoskCSIdI9AlEWIQ4rCRS1mWAzIDYrhfxx4OAS5MAchMU2I43dyIJDU3sz5GqVVSIhqEEAilVnfzoRGOgCxz6mPr+eHVV68fHh/2fUMJJkYAyRgBfVfyA9MRgCDgMh67Fo193/R+e3tezxpWKgO6FIlOTCzMug1EESIzY578okDA4YoAikNVtk4N0QwkW+/e9qbqXX2YOhojIXq3Bm7CnCU3NcaScnr+/MObm2cAqFFZL2LYVwRDh0CKlFKnFqhta+gYiF1tOWZisb6NXfxwCO88fXREDiAi07wvKdMEfEs5mKvH29dfnu4+yHXJHAEYnBiIOSGhCIZRmL/Zdr/Bmjnl5Mwl0aQaB7giHg7Hx/NZLWBoJiFCzvlYs/d9VS/LKUzdRrgDc0o5YIzeP/3qzYu7I0umJEQISMdDEdtte+hqTb0PP97eHQ41pYQkBLBul/OuqfCxLGGt97Y3KIkwIhEUwTZCCM18NJ12EmARTuZthFk4CQcSsgCAjcbMpZRwDyJ3F0SWTAYADm6Bgiw6VETUAsNmW5aHMyEhuHYYHQEcafQR0zDow5AtYoRn7Tr2rfWalWa5DERf9yQEtbh5cwciSYUAGDjVDBKXfbx9+zCA6vFmsnI4lTALiMu2IYT2tl7OEMEsNhvOcRpYlK+ATW9tbNtIOYfDtjVzB48+hlnopaVuIslHE2EmnvZ+SYWEDDA4hce+jyRIEE2N2IE43C6X9bzthBRIajbMwoyZhGk6OhGRCCOIhCAQAFOa18y8LMuh1kPNNSdhIkQERyAkcvPRN0P0iMnbJ2Yz68MBwVRLLYebG1h33Tdz9TEA4Iq1AEKczdXxBCUNZmaiJAKIXCpCEDFc5wg25UBCivk4AEIQIgqXyCKJiFpTAGQWVVXQuAYWAAl1DFUTkYjY1svxeMw5z3lOzmUux88G50mzwtGEU5JRagUIdTcIc58mCSnM9MQbQWxDhWmYE7hEcnADACYhbOd9dCNyJuTr0n2M3vetVTUQ4uAgyHmpuZD2pm0GS5gSALpH21riRizHw+1f/k//tV/6pb/68qNvJqYvP//Bv/3r/5e//bf/z3nJBuPx8tasudtUlCZAyA2ZCJFsaDhikHW/mqkgKElJpUwyvPtSaqkLEZvZtrcxdKhGREqZhXOSknPOycxa2/toyOyu4REQrbd93ybHGwFyzggw1Mx9Sg8iMh1eANOIcT3oYVGX5XRzR4hM4mrDlImZclt3dZdMkqUP5USH46G3DjHAUFWBw828xehOrlxUXGAgi9CB+qW5XmHXCAQYwhQEETHMtLUs6VqpDkFIROzhcnU5GxBMdxIiEnFKxOLh7u4iaVrQAQCgA+h7Nh9/Itq8k4H0PZPOJATRezoIfK2K/cif91/1Y7II/Khc8r5I9DXt9+rrmT5KfPorTjpOgCoEgTlMCpcDBnC4qgswGCLrFfx7fcP3paU/1tD0Yx6feKpyhx95yXXz8WvfUBggPH0yT7GvKxPZr64X1N/6wf1lbW0ba1O1cIAAjlkyN9RtnC99kozfoYwR45qGAwAMYAyDS8fvv9Gu1w/KTf/Ux8eayNkjyDzc6Z0ayBgQMTy6xjBUn43PV/Xn6pr60QMT11jbVSKJ9/b9fSUlnp5K9O7jncXzyIxZKDHa7K1HmOTmd16ed9YfCIjr+QZqs44QhVEIF0b12IZvwzcNc0APCgqKpy1/F0UDRJzIH4u4FqBdLU7x7tx6X7R691cpOYc7J5m1AhEAGIQBs34bgMEgqFlUQCHPEs0x2lm387RMsUg53B1v7+6evTiebr76/FMH/uz15av79fZQSpJdw90v57NIfmC6O6QPTuWLP7oUvzzLH6abZ366aY9vqzA++0DyZeu9my8lr/tur50RWdKz25v2jW9++ofaQAOQJW3rPva2lNT2Ab0fTzeZn++Xx5wgbPn8i8f1vL54djwt9PahyWgH8WPyx4FuSkxBysAe/uLutF3UA7cRjnI4LsMAsdwe4M1le/3Vl7cluRrmSqBEVETU3E2lFGbe1h0DSVu5vTUb/vZ7a7l5vH/z/d/9TeACsqR6un98/OiDlwfav/HBN/7sr/x0TfRbf+/fe/WD31SDQAzEVPLl3GyokBNBazsyE5PkCmY+bFMNqRGRmAMp5yqgIhIoqkqEBEyghqTIwyEAamIIbPvuZh7g4RaRAsLVIcy95JRgFoGADdcRzTekXXNixpTz3vpBZITH5aEcDyZJ6nIInL7Evu3ADMsS7gYeRLPpxrVt2/74+Gh9rYlubo7LYTnd3i6MMmILTCVRqhDECyNYgi6cIt/ycDx53ffz5XzemrmZyGR5BbKrbpsJOOYsnCKkj37MxJw9yNrwnHIqjAijRTjl6m7eN0RaigCeaOWURLIE4LBwlDDYe0eDwsgR8uQ2n3RDkuRjvPzgg3B78/AQ4ZwzItVa0a1tqyAOs7f3D8uy4PEYkXKVvbfLtrtL29u27mOoeYjwvrUP7p7deXxp902AEQSZOPXWkxBCEHPvPaIBylxHI5KuuzdESeDAyLPMeQ5ccklEwImcwcDN/f7zN8zx/KM7Jsq50DEHAYmY6ulnbgWYgUTQOm5NAyjXcvvy7nA6pZIDQntzBYPgwOenm4Xwsq2vvnhz7Xsm1G7jrMG4H5eumnjem7DWfCyn7by5NCB73DtTUAIswIeQJbV986FMMof+JS8UwSKSWRgdXVFUzceZJCWek1RWl6EjiINzULC4UApEDmDeJGkfjUjmKM7MZJHlsORK9+2RgLd1Wx8vjVv+xscXU4FES2UsZiFlQZLp/HCCDEDLccmWgANg2/bAQE7sA/WCQIoUAZRrLgsjmJvtK7jlXAgCTCEV0BacYBizECVkRhEmBh/h6oA0V14x3DkQRm+tNXCHcGIOD3ccfVAqHzx/eX9/P8yZY6GFkdOh5JQtwvhe6QxoEDVCOYSB3MiHA8DoFj3kVJkFBX2fRS2uNnhIRCZLwgCIoeDdVDtLWmrto7exj9629dK2M4ZnBOPsrmMM3HZgIgCMGDoApCliOIHUw62q720vSwGk4eFjkCT1dBTIOZfltLdOROGeUuq9u3ZzrMvx+bNn9/feW5NyoLSkJHcvXhxOzx9ef3HZ2uOqiIAOEQ6k5/u32+WMCYQyeEdxRgGGXE45E1Hy8Xb0BopLKZBIhzMGVTnUpY3mMRAw5cRMwRgUh+Bwt6C2tnSosxMUCPe+vb7/lAhvbl5s69nMh/a35889jAA5IWAmFteugTWXXIupD1MhHL3r6KNttx98EuEBc8BhggzoxHlvuue0ZEbmMN9bIwIAtohaMunWzvc6hoeXWhExiLfgyhnDtvXiow0HRLZpLGJihpKzWgCABy7L4fj8duzrw6N7uOkIt0AYXecwRLgwUbgiuZnW020q2TxmwYqAmAWgA3BdZHLuibmWkktpXc/nSxtaamVixLnMhSllFlm3YaoAMTExLAIY6+W8rpfLtjr0m8MhFzKzvocPHx0SWch2KhVKC209zhYpJB9O9U6Pj+dNkhAyJubEnChjtp1CY1ItoBsTRSAz5yS9D+umoiaiwKam5mbgbnMewESZszBCgBNC2JITnttSjy+eHQ7LqSyHoR7hfRuj6/AxfHd2VELlZq3Tru5g0AyRKUqlcBsb0YGEAQKJEwEiqDsiWu9JhFONIDOTVFlSqUveztrb/avPD6eTnI4IECDAQhRJmDCY5bjUQ+J1bwSFGLPQVOaIaKmFiLd9TSIAkEsRRATIS62J7tdNRDCAJbuRug1zyYVZTPq6bW8v7dmzGgFjb8vxUBiKxTou2lYzuH320eFwqiVr193VdJha1/G85GaKjkwJkDgJATBYZW9NEdEtLCInkTnoxpg5IRb2cESiUBFx4Tkjq8uipj7GaPtsW57qRZgTIBDZ0ABQUzQrOeG8BLHAdeAb7u4QRMIp4xjAHKpA6CkjBAXZJGVEhBsh2Ri7myIxp6ERMAQgXHNKTAEshvTZ51+eVfOyMBG35oh9+lJcw50Rt23DNNtSGAhUx2i7mwPNAlUj5gjIKXuEpOJmRZ6Kq83MglmS8ITgBAkgUBQUfgpEqJqGex+jW1cLN70/X/owSQkRkTGnBCg+zH1WrsFs9ZLEUgoBL6XkkksutZRasxAlBmEkQgCaWAkECoTprioigXBdSQafKt7e+hi9lnJ7c+wl9b310T0Aws2JmMzM/MkU4uFmkjMLM5N5mKkwE9P0CDHzdRkdEQBSkqu04IgAzCxCxPxi3dVDUhpDd27aRwAQghAiwt5bxFycxn3bTMdQzbkkkVQKIEYEITGzqrnprDsz00Bc923r+7AxaT4+1UZFRIRAMzUNBNrbWIiJSLJEjzGs7VN4otEtIeZaoeK67m3fI0KKiNBSFgIgwpREVVNKidnBkVO33sdo0n7qp//iX/9n/uuSKgJfBknw3cd/8m/+V/+Vv/HP/kv/6v/sv/e73/0NswGARVKSnDjdsYBTH8Pce++77xEKAIRo5kNVkhDQUg93tzcztCU5EQoRkoipbXvfWncPSZJSqSWVUkQYw03HGH3d11lttvfN4uHrCAxCySmJrNu+tz6TJdPv9m4mfLVFBJJwKWXSbVmSSILww7F89M0PkqRXr99qKGIwialFQC0ZiZnBVEVYSCyhgJEYJzaN8biXY5UiklnNA5/ajtzezcjDPdTCA1JijkB0DKKYLjOfw6kZZDNDRE7i7mhgEUO1PT7MUwgAnhw972DJ8eQJiids7rtJNP6obSf+GH3kRyQVe0/TeX8O/u6ZTx1V11c/qUXvP+hX28uMHAEDTDy3BoADAySePhu0YCUMBzTwAKMrKigcmGaBOTACICD/qEHpfZDze9v2JC88PdPfcz+9e3KHiK9Z1OHvyWJ41YkiYGuP6/l83temrZv5tcVusuoDwLX/27/98LN/5gUkAn8iKAUCIaiDBzjOuN9/+Ck9ri0QkThU3fo/9p1vEMTV14xhc0kgrimwaZlCBGZARKdIcCUAxRSDnixHAOABQU+Q5CdtaEqdU4h8OoYBeBXB44kDNJ1oiDCpZAhAfIW1z+b5AIT4Wn958gJFAEL4UHQKQmDCxJgY0WJitNXt+iyACAyMmRd7p+5cAeLzDKZ3mbDriRNXMONVEnqyM0EECEIk4Xe3VESeBs1ddQxLbESoKLPXk1myCJrufd/Xs5lzKUBltLZvj+fzg5oF58Px1t++8uGcD3kpOEZg6m1PaAH+sGum8p3vfOfVZ39YqZE+PGy9tb3cHMXj7tkLOp/ffP4H63KfSlbHbb989MEH7kCmdzfH3rbmpKaAMDzW+4skGQbbV18di5RDdYe7nHJJX3z55dtLmxUGW2sfPDs1RRgXYeKca2ZKCUfbzmcCHL1RRK0HSke7f8vtzar49qvXQnj86GVdivX97d7tslkYEx9rDXDwwaGH0yknBtBAgMtn+ubZJY6f/PTPPj8tl8e3m3s4fPXmzcc39LilkrMK/9lf/M/+3uH4e//Jf5BYAizcwCFJAkRJpIDgQ5AXIfQ+dcSFoxv14Xp+eyzpeMy9qaEPg8QCbDaAAKQUj4jRMgRwEilRaV9XRUagIArEw7G4B4cBhZQaSA97Bxvd91pTyolzhdG4h/ocltH57f1jU9AOEcvhsByP2jtJ3tbNHS0IAAqjS0J3AG+9t12BCjvDPg6LblRbxLo1bHo4QT0soUrkjNYf76HcAuYApnJcUjG6b/sOSJLTaDsBsrDu1pHEiTMDAFBGEmTKAhLgGISuY4zRJzNA1SwwAq13dy2JuBROS4TrGExIDCwFER0IGDHMDCiVUrO7j/VcGSkfL62bPWaEXXuHSVEIYvKhIlQOFQDUrB4ODjALRLem2g1CCaEkEcZjTn5cLCBxWnu7f7gnJkaMcEYKhNZWNRDmAHdHoSRR97YrBLtRJwRKWVAQDSMMG4owIHDihElyucBOQbaOcRrAUlNMLbfWQ6qSRcARObnYx9/65PK4Hk6HdKgevm/ndlmR0/HuRq2PbSdnAmHKuSx9t95NN3cb/aJY8bKfb26OmbP3CHRkrvWIBAreHvDmmDe8AICzpYUvl4u2HgapADHNYlCwTgRAMdQf1u2r168PL56XxEA0O1O8N4BIIiASYgkQBuS67Pvmjnd3t6kso/e9D1UDoHyQUlMGweFLLOtl3b5YEf3u45vXn71NqX744YeIMIYGkk9IrbuZgsNOWHOWhIUFAWrO570xS0CQjgCU0AEJU9a2gUiEp1pp3gQQex/hFkSzmJkhOAunikizvHS0YdrBmo7h7pKKhbf14mbukYSIESHAVMdA3bftzMVBA4FzXpgpZxjaEV0IgHKPPcIpEoYgYlwT0kxCfEMsiYC9hak5DqCh0GykBDlPNwOJWqcMKefLtmrfx7CumOutpMZwD9bBjU6VkEpYEA7EMBfvahrgD61pyczM6ZgXLftlfqck0xjDfC0lE9Rn5UC+EeNFx3ltLz7+iVLL/evHbdsPSzk9e7n3bmosOaVcSr25uZO6SCrbm0dgRIVpQpG5lOS7qZtuDR6RGEkm17GU4+Eo3sB1D3dNZoxDAGsFModBEgkZgUQIEYODHVNlM2qKgZEyM8uE4yNBt/W8vQahN2++1LiEAZHknF1AmMKZgpAhEU3brM0qKZnlrNDW87peiCjckJmI1B2QAGntfgdIkggpaIjIUEsMYeqYjjc32+URUinMGOP+4XEE52AWGKOdz5ewoWr0jpQLKJwkpWE6l4EOx7vjzfH+9RfqD23fxlBEmgO/6+iccfYVmg4SKbXOHnABQIQeOhM6QowEDFhKklSIeYyxruu+dzPPSQJwFgMRMzOrDlMj8EAmhAACAEG00fd9cxzlmFIlYNLRcU8YDkNA2NhGDA7kYqP7UAUdpdSXH53UzAmFaiYxcA6hnhFpqLZ9IyFGQcHEXEstOVcZalZLZkrdzM32raWcEVBSoggimbx2RDBVBE6ZSzrUejicjsvxtG/nva0AoMPGakN1CtzWw7qttjq4YKp1WR83chYiM9Ux8sKIjIAQGMDCfDgeWxujN3YTIZ8lbCUzJ0bTfbEx2n5ZL4+HwwHnqQIBzIA0tGP47CbKUIJzWhZisdHBQ3XQrHFHBoTj8TbXTBEMBizoejoWAGi99dEFHcIgSIgMIpiS5OV0yvmQSoEYCaMI7g26E6dy9+LlzbPnJWc3ByBtu1t3U2IeQ2eigJlJxAJrYnO7OdZNWx+KEDqUiI/HZdJzdDcW9CA0nWNOJlpqVgtJon0IYHcDCE6EgQZsYCwMgIXIzX00gog5seeEEabmEN1gWKQiwAwQHuDMk+wapsNNx5ge1ll7hTw9FK5jYMoA4W5hYAiV4piktTHXOXLJ5/OjuxIJIpgZsUhK5iAlx4DBuK3nQbPWnQOjr7sjqJoQiQgiiSRmmgviMfWwGS03IyKMyGRSKjFZAAAkSYhgOiC8d+vN3Kx1G+ZtOCKUerBoxIxCy7FaH2ZqMEx19KZu7m5Da81yODLKUmvOOYmkxIzECNPu5R7X5XUPd3MPgDCAlBIRu7vbrE4AQBxqTfu+bze3d/VwymUZY4zergyZp2nHdaqBAIBPPGCfzqhwFyJHUnN4mj5dERTuZgbTuxDXYFhCeHZ3s/dx2boIJ5GV9t7aNBGICI3hM7JrOkYnnItK3PbmESLCzBBOiIRoBoDgbq2rA+xt19HNnfnKTNWI6E5MPu1c4FPZcpuWXfJhY22j60yCuzkiLqUeK7tG34eZ6VDmnFg8omkn5lqLCvsYzDjMTB0BPv7Gn/mr/6V/eesIoyMxdSMiYd6HHdLtf+e//z//X/8v/if/1t/+N1gSixxkybmWXIhZ1fbWm+yJ0952VTOzsAEECOQefWjrJgIeMRwADAlZjImRJBe6zlyR+nD1Rog+dgBnhoiQlE+Hk/S0rut2aTZ8xs1UFQDsCbQUAWaKc7n4mhADDycGJlI1bE2SsHCphSg+/tZHz5/dPDw8LkvpRg4uzBlTYBAgTw3KDVRBIzxSkVRzTml/7L03FACumLnkHOajNR1KQQhXc8dMwYDq7i4i02lL5DKzN4FmGvMMmLRQvyYnWWRh6aNv67Ze1vcMPvie1hNPqs27RrD3k1PvR6LeuSv8j3skngSgdz6gH8tMGcRVjQR/elCuIaDrg/auyByBMZAm3gcQwR2EYMr/DkAI5OAEBJD5mhG7ylhP2x/vNtLe6TTvsZzfz4W97xgygPfMOAAQBlcXWgBNKUKvTqW5wQLvEmQR0XpzbaO33voYruYeHjD9gBAQqv6wrr/7e2+//bMvhOjJhzM3nyMcLULju1/w5/fbXFB1a4Dxi9++WWqKAPcgCJ4OKQCzKVACIwBhAJBDYMyx9hRTkJAD3KeTB+IpXXeVQwLoSXmb6ku8028mDRpmadn105qSige4+bDYdV5HERAIg2at7PWtrsLPUyP8TMkBAM6Rnfo1zYWEQlGFhFydwsPnr/ArQQrgCpkGvEqY1zjbNZkWT1f8azvY1IGmmhgIAoBE6G7aA3OaTQE2BpAEWYCDmyOkVEiKIwXh8eaQF3n19l4kpVTcvet4vI/j8qrv2960q2nXYy3DRmvhqjEuoHo/4BSaC2Fd6vH25NKJttePW28pp3VtrY9U7FCkPL+9XC6X+wcA+P03ry4P548/+cZyOkoiihsW6Q59KBN5qGoE4KxvQMCcU+tNWG6Od+3yKnqryxK3zzqV4Zd0uMWIMfrrtxcmZJy5X/RATjkLT1x+23coh0Hp1dsHrq9Ot7cH4cu2PZz3NiwAA0OYRRbkZH29efExIH3+xRe9t/GD/+/x27/65euHz/6o3d7euZ1/4ls/eWnxuO4k2bHfKBxq+omf+fk/8TN//nu/8e//we/8hnogI4AgwQTZQMSuMURvjgedQ4K+c1psDOvbQN3Glkr2IARmDpLctm2Y47alxMRZaZbNxIT/xRn3fYuIhDjJ6haQCZfDoQ9FktBOV2ewkw4IP9bsEbKUMXzTQCQulZjK8QgWMYY6BpKDog8PaKZAEn0g0WEpNhq4jqEb8mXbn+Vyc3PIS0brgJa8L0vJSLbtlz3ItpJMUm2UjIhSYfPrHZ04s6zns6cAmrwgDQgkUkqZJFAwZbE+9rN7ZGaj7EjMGB5DbWwN3Jw5hebYOaUtMFGYw8fPT0MtUh2t7etaDzXVgkzgDuuKh5vP3z4Aipye4VjxchagcEfCXFIfQ8MxPAI9vKsBJybOmX00NvzgVM38zaXv3YIZ6jLrmO8fH1tb+xgpCQQSk6lBoJlBZEd3J8C0lOeXx0vft3ygVAqkoMyjqerQ1tbLxpXrTdbd725u1/Ml54QQTTWro3o3pWBsOrDblvl0MIR6zOlQj7fH5VgCw8awrXtXb354UZig733ruDZnoHqsN7en1vakczoUJLS3bd3yeTvXWgFAfSjrgBHcdLWJVb45HjjhjufuDhamhk4Q4GB97CkxgPZhwQdCNrPXbx8Wwm+9fM5hBECcsbD3ncNmmTZAmDATEiEMyykRMRzqtjczH6OjYJEisyOy4T5W8HF7e3r79rJeWj3YRx9+lHMxNw/v+8acphw+TCFcRxfinFPJCVO6FUFkHdDrHfYd52oFACAGBhOZDotAwCCJSbsgdu/CM0ZoRA4Yqs1s6Nj7vjOGeyCiEQ1VwXnbD0mFAnRboR5Vd/O39QROeb9AmACiFAsM9UHAqjAIkHLCCoMwYERPkjFIEge5AHEkCho+AJ1FWrPePKeUiePq8N/d3QPUPEnq+w5ESGFI9XC6u3mIDqbKSbDeLIe6nh/G3rsONBNE8yGUu7o4sMjt7XMhePPVp8yUkyC4Iw91tahFb3KQpIuTat8e3wic2r6NppFSZq6lbpczjBVESISYiUQD167uAB4oKadrvQOQZQ4SAnNzNxsawJa6X4KBUOrhhSy875cd1As7gsYaMQgoSAGm0IpIyIkwGIgKYZfGQqUIm4cjKIHAdlndX43WKWNKiTARJ+CKBAHkasKYRcDDTRmBWJgFwuft9dUXf/Qn/9yEmFzXhwIAidd9DAM1ZEZEPhwOr199hUsJQNN9OZzUfOjEilzu7x80YundRu37OnqLCFXNlIkxPBBJUjK/3s5Pp1NeDmpx3n3ddh0dkeZ0XUSIEzMyCxFDxNp3FkFiQCAEhBkDAUJIIsgiwiVJStMrAa31bV1VfRI8RFgQhTGYnwaRAQDXfr0AgMg5lVIsBkmkCiDOmJGQIUGklKWmA2ZHMAvwnqdPpFsX3FPi400yp1pqlbztLTqBgbsiAiMlEkAMA0rkHkxQj0trg1gCCMGlVE4pApgZAeby1fQDhKurAoD2Vpa7UmupRx26b/u2bapNh0GANxi7B7mb997RiENYkoYaxvObWwgwM0R0G25GkpgCw3LKxAwAbVPtfSiWJYmk0IGScl2ePbtFgm3vD199djoc64sX7XLPLJQWsyYAQgCEwyGQUFLKNeUEtfR9b2HaDZFTwpQhpZyEU+JCPjQQU0QsFd1MTYc5OrgNB0gpmY1Sa65FhHJOmQt6s8tbszEgnZ6/PNw+E+GYjVcpV0kGMPTtPPGYOQCYAhHNo7s/W4o5PLtJb8/brIJV9/Putwd5+Y2f+vaf+5WPPvnmUhKEfvVH3/93f/3/up7vGTBCMRAJzZ0lMc9+dCdAu9IQDIkEAgzd3USc5u6RJJoswiAGgLk2ZmPnlCICtQ8dAMDEWbIjASGiTKoSsKtHBifAtq1A1EfvpW62p5x68Bg9wsw9rhZsFikzJmOmEGaqE1SLzNNaQszIQggyF7tpZruu3vu5JgxPVBXiCfURYRBJbiqEBkgiYQphre373s6X5hBmPp0z5mEeyDw9jOVYTNL59dsw8HCcEwEkYhbOaZE0r5lMROgOGs6ISDCr4mbZ03THIDMAzvlDAMZkZrhFxOg9Igg5WPYR0MZS05JSrrltbbucLXwabwEAkYg4CQSAuzORIyBhRJg7ECCEheMcCTBBRP/aS+JPpmYwt6XmTz58/urN43lrJpKE95x6G8O0W0NkgMCn1W8DRYfeewSojlKrMLPIdTY2OdU4IQWj77sPBQ4PZGZGUgsdShpE4AHMdLpZSi7hsV1206FDwwwDmCTMHRCIkkhK5ZOP6vF4vGwXyen29mY5HMJc+wCmlFKE71tPnPa9m5uk9Kv/+N9sGgHDPZDk6SQid+sMXeVf+Jf+27ke/u//t389EibOJRURYZ4XWhThUmttddta7y1JiYjeGwCKJGKeWS00ByAPAOxE8k6aY5bgQCR0J3B3C1fsOsJBtdYl5/Ls+YvR9CHOvTUAMPMAjaux4qniOgAwECcsPIQ4AtxdVZmAC5FQPdTDbVmO9byualaXWiANV3Bqexfhu7uTu22XbewrD0PmPmy4Z0WvR9XBFaCE9oZBs+RXUkJADQ1znAnmmCIeBkDrvQOIiDCFBwgTMwCFu5oy84yGRXhcZQdk4lJKTvm9m1c8iSA/Fs6C9x55n91D7z3yTuJ5JwzBe3LS079ecTxPKlI4hEFzUP86XEQIPp07Dh5PCbAnq9EA2KeMg9dJigUMe7KgwHVlaApCfwz95+uaKviRP+/nwuK957//CeCPvsSv7WDvSDT4JGXQPF/o6S0DwJm876uZ29C2b0OVkAKBSCIgEN++fby7PX75+dtv/9yLq/gVT2m4GUoHuH/rf/+P7LL3iSwDd7HLf+7n/mRghM/fTFOQ0SluA3iEOZjHsFCb0uHczJje0AiIpyKvSQuyJ0zPtAW9c3/5e8yggKf//Gp5wqcH3r0WnsSd69UIcW7PPLDXz/S9j/lqrEIwRHIYBNcoHGJOwEHZn157/S76FHhmTtYiwsMC53MmN96fNuHrOvh5SJ5CZOIAxCKJJIKZmTmlBFFjX0f4ujc+HQ/H0zElg7R2RGEAHeeHgJBSkTMJZ4ZcypL47vZw//Dw+ovP2xjl44/fvH77jY8/ZOY+tC4LSKBQU+AAVcslDfV8e4u9a9sBsRwO7o7gJUutL9d1/+r1azf/9PNP83Jzcyynm7taat83AF23zhQ15ZKSJCbCzFwSBUQbaqPXpQDcIaESH5J4V6inGFsSQev1UBDd1VRjG04pq1qDdrpdXj4/nfes3Z6dTmD6xZevmPju9i27t/Ux5yQpj9ad0MQQoKu+fvXVs2fPD8dbpsujB3/1n3yTE337L97d3Z13//zLNz/4/u988o2PkCtQC8AAGCI58U///K9+8jN/4bv/4D/6/m/9xqEwRjAEhkFZCNwQLqu6WUqiTq5WaGAGtzFEJBUCLBHiGgacy9h7HyoUkrKUDCT73swjzHV0nG7pnJATIbTHM4KO/TK6HgpDXerMFSC49mkVHOb9fCYIMQMAAXQ1bT1JMpShGsAixcF9uAVqb611HaZdEdEpg0dBz7nI6XlJLKOtq46uc7qwt52jiWBrW9/XcjxhKjmC2DGLBQIylQMRLIcD4TrMJecgMTNGPSbIQkgYM0ozr7URAjocmBhzjm5ZvY0xdJhqlHZQAUXLx3y6xfFwu0jHtCG2PlrbPUxSRndxg3QY6sgeAUyplEXbpUfoGEgsufiw3roDMpDH5sAIcFkvmVEA12YF9FnBx8B1bxqEDDnnF8+ee/irV1/NINJ0EiJOjyAg0hygseRDuTGAAN+3zdRhhf0yyL2Nng/l2cd327YlYTDvbRwOC0B0772b5FjvL7MhLsAR43wPnESQg8hphPnj/f1Sj4LCNVFK9bjs+wVZ9oddux6yBDIX5Jw4DXVGwlQlNKQIZuitA9sGlzZ2o409BcSIFgRBzEugoq4aAUxMhIwsJKbDbZNMgRQAwEBBbtptDO3ho+8dUyESINQgYSA1qlklae9pqZQgmkIfiMg+SYjVA5goTRcoQK+7ncbrNxcAyMKJ2cDmepcZQMR6vpdU57oWTScqo7bR1Si8lEySUi3EYuWo7TGHU8pEFB4O7qPPjA8ITLZA610DCZEJzS20MYZr7OqBzLm6WV6qe2g4YGjgFSQBFCS7Gu67hlMixOQjEQwQR+g6fw8u7pDpyFDDHANNPSCYWCQj4ggD80CKiKBgxqbW1v3N6zNJwkMSMChiDpJzAhzdzLYxbN4Wwce+2fF4SvFSR1/XS7tsjDQIhmq4FSaR6mreLiw8goLRhypTLsd6OOnobpZLAWAbllMagedd81Lvbu8SU1/fnvWyPpyX598op9uU0972y/lxtA1mf0mAmb19eBhjREQwE1IQE7HjLpyEkAABLYMPdQDEIHN1MGYp+biUExWJfSVGJdt1EEiEBltAMEEYGAShcE5dgYLqIQkTAZac3QgAhQQU+74TAqEUyYSVIM/MADPMBXUiNhsBIFKIrvGKidK5/+qPzJRFwmFW3M4vdut62UbJkgSFKOWSUrpcziUXQGz7+e3lourho+3b1ppFuPn58kA0YZ+OJECzljeAkFjMdBJAciLAeDhvb+/PHkCciZA4ESdOiYXBg1iIyHXse8s5uft12oqAiCklQMpJmDnNMFJgQPTWz+vahxFTyZKSMDGnEm5qpm6hVnJyxZm2IIAI5ySlZjkCAc2FsiLHXIXEXJEp3SzPg9XxzGAgwUDoDJl66+6aFySvd89O631PUQI4lVxydrd1a6Zg7jBT76juSZg9BRIjYUaZ3iuEiHC1GH2gDLoWFw9Tc1cITzcfsnDbW9vOgAiGbetqPVwn9LT3xizpIH7WvlnzwcIvX7x8/uwDTuJqgGA6tO+qlmvJpRIC2QiIlPO2bvBk9iZJBIBI+XA4DHXzvY91fVwOS8qLR/ShmSnnnDyAs/W0JHJANfe9C4W7EREJYSAQeURiLkIpMQc03SkvRGxh5gqAjpISkfcwDZmMjImZpiRU67JvNoL2Ni77iKS7vknC4WoBIgk4jeEsqSQIYGLBCHU3DQDzQPC4W5KFIcRsVPMggLj9E3/pz/7yr52WdKyJERj5J7/9J//Zf/G/9rf+D//bz//oDyJgtuCZGkzcgNmMogDStWZ+qAhxEgyBQB2DhABxVo8DiUQAoKnxrOgKZ4xuo7ftdLohSkBIQIkoiNOyqNpqelwqo6F1B3u8nK21G/ztmQABAABJREFU7fGhHI6VJGJ4eMk5p3x+uE8141xxCgdAj7BuEe5uUzm1AAZgplIKEo2rmZGfmBvEBISTFsZXXoM7QRCT5ILgSbKbaR9tM7dh2s6P67p3jfki7uoRrjNqZQaMuMNoOdUSTH3d86ESsuScUmTJRCSchYgJEdHNzEyYXAQA3VV1ICAJO8JQTcQiDABDjadSEgYQU1fKKaVaiAQJiNDMEIFZlqMg03a5jAlPRIqACCfmGfUNcAyes6B17zLhoogOc80kZskGBABiEhFhj3DVMCOA46EiIj9czpc9MeeS7OBDbV03d0ciUpvwX4DIORMxhJMIEQeSR5hpSmkeLXcDkvCwMdxBisylfmaGoTYcKDgLRLj6el43bpOrCwhSRNWZnUVUNRw8sLWRpKTEn3z8ofmLwRAeD1/dZxFiREIQ3veVBPZ9670z8/Pn35J6HMMsBpG4NZpC4kDTUTOb6fmx/ak//Rf+rf/nv8HME0E1kUZEkgCQKAUkSSKptWTmEXA5o9qgKzLeLDzUJpcKEB0tgBARENWDjWZdes7TBRp96DAP9K9evxLhLPKNT75R8uvPPvvCzDyCAIS5m+KT72R6ta6zVQiIOW4lQA90KZ4qLLJISt3Gtm8lF2Ze972NNjYduz17frscDq+/+grCwdyGcmIksO4OZGEhwUnCwNSJwNXQLJWcOOM0YQFOJYemzjdlPgCIGGpmPpSZkFNimnVpk6MdT2Ps+TdAJBZ+ijLZe6pHvJeE8idZ5f0g2PuiyTt9552Agtfe93j3TwjoT2/rMOk3CIAOFoABArMg/urLUY+vETVXWwri13EkROA5W5gChhASACEwgtDVQ0RTA7pei54UCQJ8apz62sr0Tr7AHxF0flwFe6fmPEWPzAEB8An9816F1pP6M3eWECEdcwq9PDxeupqH61BTICFkZOp9fPEHv337c7/w+rzT1bcDEHhN4DmiBxr8+u/6ZR9DTXWaH9d/6s99EAkJ8J1/ajbIAlHMEq4n3ZIIEwZACGFCAAD1MAN/ShTP500zvT+5sswhIq4/AEz9cLp1Aq+yCr4nCV1/4TxeT2rRXA2YatxkiT6tD7x3Nr37jN9pRdO4RV+faoA42Y8EmAim02nCuN79fxo7zMMs7L06+QkDJwICmHfY8AhAKTnNr8800NrobA0jvKs6Pm67I0lZlnIgKMg01MywW1KNVDxitN0oJcMUnCXfHm/S85f9809/+Nkf/ODlyw9UNQvXQ9kv1vbz8eaOwULH8XCkfLPuzQBLraW83M/rw/19ALqAGgAqQByPh/vzBRx0bCUfmGiMloowZSE81JSYAXGY71u7uN4cD7eHhchTkkCIQakuiISSITv3s3X2XGtN0Vb30TilQyIFtV4Siw1wVUfr2ltjlGfPnt3enHISM9t7AyIfDUspNYvQm1cPz1/c9l7W1vzNV4JUSslYNkVyu2z6xes//N7v/nYt+RsffFAEz+sFmc3cbakljkch5nx48Qu/8l/4i7/yT/zd/9f/8csffm/vQxgh0E1beDDVzCMIwsINhU5L7UOdpG+rUVqWg5R62ZrqQCYGaMPLgdQUHJMkJAobOafe57AXBQNMUxVD2vaeE4OC5NL7DjoyZhEBuhLEXEFVMXGoj8CEoWPMah8f0cZARDOHsLmQTIxmI8APx4PUhTi5MCDt66Oma40JCwyD8bimUEkyNJqOMQanTI4OzkzHIsOgmTEFRODsbvF9yekyNMKJCSTFzJYbAtC07A1DI/IxHI0jwDFlAaI2pPWhzb2c8ikzM6UkpXRaLABkTwSX83l/bMvhlAgOtx8MSm4e1hRBiMwRPJjIIQETWpgNM48IZJGU4OnL27qCwIOiDWfwJXEph1A7ljSALs0Sy7Ob263ras0CQY0pA5IH6BijqzsE0HK8MRj354f9oaeDkHNhoYRBePP8WGrZLlvOycPuXpyWnDHw0y+/CEwsqa3DYCg6EfdusmC49dYkF2tGwXU5SRFzH81lyYEhkgGgwZ4zL8/EqLcWpSJQ8fvuGEkoJKRQ2xvI23qSVCFjmXM/hZaLHOVm13Hu56E2VCOcSXz4xx998+d//pc++uhjR1Tt/96/+2/GXHjDFOAPl7Xf3X7nz//ih3/iZ5598BGy7Nv66otPP/3+b//h7/0mmeWUGlNrSBQVyC0CkSuDK8lcyXQhyiLC7A4AvHdv+353ewOEZt56S8gpFQJsvdnYkJggADhwLjdH104EFk7YUx6CJJJSusmSkAWIhUB7U8LwAMK96+i7OwWKZA4AM3WcRhBHmkMOR3BAUDN11z50bNq72qj14BDu1pGg764bQvXAiEYJkNWGhwoJRAztLimDUzgMHdMcC0CmQQLz6+9g0xCBANrNR7jS8J3QJQkG1ZtKzn3tBJQ5bb2vlyZCktL2eLaa5Xhn+x4d0qksx4PqcLMxtCKgCKEzsXJmKZCLWqCPTOnm7uXjw+u9dY1OLOHWu3u4e9wwHLhFxLpurr1kSoxSDpjTqbfH87l1BWBCcI/1/PjweA6Yfh2ZeignJgQOQPeJc0TEoBEageToRJikllxLqRqLuSWmjTRIw4eBi8k7t+1EoDKKj2HW6yERphjILGGeUxLOGMkCODMlF0kYiZDDnICQXFCYOCCIiefyNWISnq5bIgbA7/6Dv/un/8Kv0jxPnoy3ZrZ3U4tuMYf3t3fPPv2jx5QhSfrWN7/5/R/84fd+8AMmRHDzkJTnKAJhRlmQaDIBgogIyIHmgvay1FpqmN7f36+tIwQiBREyIREgxuyWdw83jCu59RpNC3fElNJkBiWpteQ5EFRzHb3te3iUkkvJy1Jn06oFeMx3cyRCBBCmuewfNkbf9rXBvjyro+8IKFI4SZGC4sjsHhaaQBhPjMoUagOBJcWObrZnKWXGfleovESikmsp4moesK49bCKuggABCcJKFkAm4RnxGWMAYIRBRM4izGNo7821hxsAlYRDDdGnXwYAMIKBxgCN0GEEIMTarfuAStasbe3D209ON8/LsiARZiz1lEqdo7G8HINjMFHf1dQ9lqVaILO4KYQKoQUDiuTKvFk/r+fHWurN3fNZHpQlzWIXl0oRhQgl6dA2hjO5gyNbDDQtuXiohwWwDgUMVU3JEXFbz4DENFcEiYUxHIKQBCD6GICQSmlt3dbV2t4e3r55c//6zSuga/xgqHGSVI8Ta1DLbJJGmbUKYWYQxAMCEEqMKmHNOBwBX3zyp372L/3jOedDzcKIYEyMgOHp1/7aP/1/+t/9r0C7A3qE9nEN9LgTACBxzhEAziyAIqTD3WeIxSOEEZHCIdA8EJkYiYhCNVQ31aFecgFkqYubae+tN2QJuJY0tbaxNfHGiBljdTXgfVvxOqRHhKAwCNc+iHxSS3zyIhyYkSBYEgCY2qzTmwZVJuIUJHTFM8xRN10rsRDCLQIjpVRKoSRuBuE2uo/eNcyttX3b294tkJKQDu9qpqZmZooRzNj2fe/9w5/8+NnHL7/aP53GonpcCqec8gwpeIT5tV0nAhwdPHofGE5EY2gKI8BaKyC6quTaW7dQZk4pmxqGAhgzMoQwIPPMP7jpXHGoy0HV93Y/ZyuOEFfY7nSHzCrVAEIPmE1WPME6jAAQHuE22wkRhIXRbDbNA0RJJYC6upr1bgwMgrXEUmvrfQyzpPOCSsRIZGYi8sEHL29vbnIp8ytPzOfzed02n51ueyckYYFAcHMHR+9N0R1RbPiVqaEuGRlJh2GEFJ5TRyZEEUQYwx4va8n5sNwSoTOPdbs8nEfrKoIIt4c7B3Xy0bRtOwAG+vH4XFWREBBH3xHJEckJAHUEeNYO3s+yvPgf/I/+tX/1f/yvAISb0pOUyJIm9FlmVw9gbx2Z3f3hcVy2i5q6OQRaOCFLSoAIAbNVE5kDYQxgxggIlAC1NrS1rTfOsm97qcVLyZJYhAgd0MysqUiaWeMppmAEIbq7hiMAIV1tOO6ttYe3XhZdTgiAl8sZEIIwuq8PD8ihHkEQBPcP92O0RCJAikTIQsjiOVdAcHRU9C1m4T0LE4QOzTlJEXAAJAwID7OJSHGbZz2gu5sbmiGiuCcRJJpBfyQk5CD37nOeHD5vEE+ixo/bf/A95M07oSeetJ6n6fv7ihDOiTYBjut7+pMwpA40jZ1TLQkwByYQAkZQh+FgER4YAX7dhiu+bKpAVzUhrt43QtIJ4IJsjvN9DIECEEDhaoJ7imoC4o8oXYzvfEgA8FQoBtfmeHj6AJ7CSl+rV18LFfFkG3pCFL17Nwh48tQ8WZ/CHX7yjn7rd788bxaIgRRuRDJNiNu2vfn09/p3fhatPqkgT+/GABHA8Lf/43bZbejkeju4HsX+9E99AHBlkl+J/IbqoQ7m8I4EFE8Bq+v7IgLExCI97SPOLGpTBweMCESCkOmDmGk8vx706RJSx/ArAt+fnDj+TiSLeZmDmGC1J8sQALz7+R2tGd/t7BzrXeWhSf2Zw5uJeZ6OsCuUVf6RzBrCdSBGGExX8/mkAyECAkxVGSLsSfcSRCCk+QwmHq2tQ81hV9/2JswesO07EkmNgscA8QhVAMB9eGEn4lDbt8vb+3xzPPdhACSSCaIu1S0sF2Y4noAoaDnVJOf7N320myq3i0A+9rb33gjjcKgBUJe67/u6NbMQ4kLkNgh0WWr0vasxZJAEQNvajh8+H62XnAhj3+z+8fF8WX2MedKlshxPN8tS2t4f3rw9r9siVqJjXeT29nK+jG0XSQ7DdEAEoRMY5pwW7x7gwYHH00kkmbkHTgyhjxZAifjlh7eteVqW/WFse3fVFxiXy16WsnfMl9/f+eWv/dqvEdi+Xi7rivqw3q9w9w0N5LU9D3LgmhAZD3X55b/2z//d/8f//ge/85vqPM1r5jAQ0FEDOOVE3NvQ7bIs5bEbunHhGYgdaqN3ZGIRc98uZ2FWTAGQJEUgpZIoDR2uzZ09nAiEpdQKEY6GACKsI7auFYGxoBulowhoa0xg0EfvBi7UOQkDurYU3ob1fUA4YWwWfaj2bq4FscJghLuaci5LrokJAowFABx8u387nu4lNsZobeSUpaR6ZEIfI8AYw/s+i2ys01A7P1529SBmKGGqc7Y7x1ocDiCUUhKooaPvbSBCEpaUSWyM0ce4Cc2UUIgItmae8dJ624c5mHZyTb4v9RnVw2PrQw0JGbEBhDtzFWHUQeDIVLKYelN1M9WRUkqpmKLaoLKknIjwclmbBTEDhgOEW0K7OSzgse6PZkbIsww+AHprNglubmFKEMfjcv/wNheuJW/nwYCOmA9yuL0BHYdaD6ncLIVIdBtE9M2PP3nb9izFY98vmyxZ9xYJiKAuOZSAow3dHx5u7m7r4eDQKZQPCzHw7XF/c8+Zh+57+Pq6IdLpeR5fumSK8LQgIuYjtfN6OBxLkUKZMaGihWrUU74TyK8f3277ul3aGF23+Kv/+f/i3/wX/+U/8dM/E4EOoOqB8pd/5Z/6X/5r/8PRhoG7jl/4hV/86//Mv5DrSQ2RWAOWcvetu09++s/+0uj69/4/f+uHv/MfTEiBRST1mmUEIBBixlAIx8AkKMJABQmTMDM/PNzXkg53d/lQhZL2UeuNJEERNwNwVw0f4aDhAEDEEDxpi6O3nPhQD5BSILgNgvAgKRWJZztpG/eIjOg473YRAD5Nq0QCyDTcAHrvZoakpmOM0fpmo0VAkjxaC92RGNyPNQ/XrqtU55KZkTkT8mgt0LE6JRxn9+EIRCLCQiScUh+77hcXKaWKSC1VfYRFBB5Oy67TTc8MgBYQ5kOtB0Eg8b5dwMfx7i4v1SzWfV/XS1/PLKUgn06Fc+6ffq5jdzMqFeSWUJCTB7irewTw4fD8DpEe7y+XMwCaWUpIAMCJwh/u3zigaZQsh1pGO6+XhSRHOkkqgBRIRHTZt9//9IfdBxBjTCGYmVCSMAsqaN9zriIlIMgGq5mHg+Wac16QWZiP5VSlbn1rfg/DLdRIiRgxAAjIQefdHYg4LywA3Vw4odFVxiMGI6EiWQx2J00Q6CEiAGSwTxiBEAPPpIUgQq1lDJsuYgj/4Xf/4299++dunn0wrdgegcSE+HDZnt3UkjiEJGeEuLm5s7ELM5X6K7/8lz//8svem6lxmtXO4W4RCIAEaBHqTnzNsbu7uhfhZzennNPl8WHbNjcT4TkbAyScq5wTfgOACD76GB2ZIRwwuXVidncKW4qk5Wju4EYiNtR0IMTt7YmIS85EOEbXrtOlNauD8IkmC9NzM3Tf9y9fffkwHqVwRGLMpRyEGRCYJFGNCRviIrwQQURL4qTFeWeOdXPtaUny8Gbdz5xvKKVUamVmiM5IteZ52U/XP4KSCQIAbaiqqVm4EzNPKkDEGKP30fYeYYlxqel0KF80r1yTJGF+fLjf912kHA6yt63vbc7ho7it6jsC+nI81WWptUhKvTXJVXLOKUmp7oqIeTmBjzF2SdkDTBXcfDS9Rg8okN0xPNrewlR7e3jzFYuUeiRkc9z3DuzuY93tsFQGSKVwzug6zHrvZs4AW9sZHQIeWstJTqWwe9838lFyGh4exh6zpo0ICEEDiGWYj7UNfZ0ZMcbo7dz2tl+QNThH+Oh72zunlOrGqZh7KrXUpU7sF2JKnJgv7bImCJWjwMsT9hGrhyP81C/8k4GEV2PIbNiEPsb8Iv9j/5m/8u//v38dwdGcIIAo8DrWiRhMZGZIHEiEBCLW27R6uVnM6MkcY7tzzFaHAm4Qpns7HQ+t93q6o1RH23C7wCx/Ht3WME6u+ng5gzZmUQ0LQII+xmgrErIkQDo9e8bMl213twlYA3e16zopisyV7zlrkJyZKTycPAwwAoncgRAtIGBekwivNVYUgK037Lu7h3vv++WyD4/5EalBN1cb5uHue9sJqI8uIilJmB0Oh5vTKQ2QU/r4Jz/pl40CUy2JWEgmdBUBr3SfCJp4kAgPIiBATFkmMjoizEEAMaLkNFRNdRakcJJQYISwoW55OQBcm8ABYrYWHI6nfW/btgsGMatNFkOwiEznRTgTa4CahkcQ5DwDuMg56QjXK4bPlQCChGstvXVwrzntQjWneX2/GmESzsRrb30KTmMoQgjjzXH54Nnti5cfiiRJyVQB4cXzF0P1fD6/evV6PZ/Bgonb1gKdRZCRLQilW9jQyT6dXtiuQ5IAgo0gZESLAEkJwm14s/F4WZEIEwfAaD08kCkt+XBaTs9OD2/uXXXsu/bhhORyPr+x0YDnHJT9OrrwycZ26/df/sHh9uXP/Kf+REr8V/6Jf/rv/51fR4iwYQORY55FMGkmkWEBMwOkZTm03oaqhxORq/c+RFIlFJbZDaU6mNQxzJxycvW1gcWwbfRtVzVR1mFq1byvhjrUJmv5SelgJne/YgoArhzoCJvGG7yKJh6zTwy5WNd1v2zAuK9b3xphpEU4izCY2+PjI4wRHJJSAHa1gKDZAOsOhsy5ayOaZwhwBhhmACwJIHzoNHfAk5HC3aaVhYmmn9nc1by1jkQiIjyJSAYB7qbqahYRfSjA+OPqut794O8pPk8PTnl3QmquqhFe5+IBAPokOTxN8QmvBhJ60mKmAHRF8wQEgE0ewNVA8rRz1/emQEBHoMmgIbp6eiIg3BHoayQMfi1gxTtlgd5ljWK2z0Bck6MQk9ozTSYI+A4M9M4M9RRqIvqR3f9646/qCMTTEhvE9TfOew8EWBDAz//id/6dv/P3fvjV66BEIix5WvYQ8XK+Pz178fmnP/jl//LPXHs9n44wAoLF3/mP1t9/gL2r6fAwM3Xtv/wzd2ZXRQwCEgIwIkEYeMxQWFxFu8BrYAqmHn09xIhwlVeun9hMwT5Rgt5twDzT3hlqAjxCfYbLwAN9enAAr3rTVfChJ8fQ1a3l188m/OkYf13R7u/EM3/yYGGAY+CcVPCkv0+hPWC4K10PYDxZwZ72C987eYJxOv+uezX3mwnm1oqpIs+PLVTVIdRx3VsfmhPf3Lzow8bobSdACG2YFko1QlnIdGx744R1OTBS7/38+KgWhfnFTX18aPePl3J8zqYhApKkHLdtN5Xl5rmCbYaFwLczQxBJqul4Ouyt73sj5JzLqj0iyrK0oa9fffnJJ59844MPhLn3/fFyNhvLchSpN8fj5fy4bwqALNn6uFweb043mMu67/DmtbVjb6P3djrkt+doHidGRjk+f8nlsu1bliWQYaySKkFs7UKAKRXpm9pgKrWm0Eg+uoICmhvCuDxsOWcuB8CgLIXFHN6sjfNhH50ltbZ9+2d/oiS2YQBgOsJGTT4ur/dxKxB3xyXCLVDd1YGk/Pm/8te//91/KAwp8RiLeXTtnFFyLYcTE1K86cbNg5mGe5ogBm2MY1kEkAewm5uPeWVMQhDq5sjiSNqHsFPmcjgA0LbtHj3CGIITYlgIje6jtWPC5bg4wMM6kGDY1ChwQCASBrY2zMkdAFxS8nCNgBjI6BHuqA6Z6dmppJxGxGXdCQJxNoOCI5Ik7U3bAIgiAM5hLmBJkDgrMtpKUoHYR4cIFqJc1m10i0ATHmIj060hYQAzOy5sTjQDtJowsNTuNr8hGF5K7r0RYikFKUXEq/N+e5NVbfhUeOm4HOpyuvn4Jy7N9r4RgJtjyjF3FXDdW2IxNwZcaul7s2BH97FHkh7uajmXw/FUBLZz4LZPL/Ltsbqa28iMfCwMcV5XapiE9+amZgFupjrHD5uNncmpeE0CAiWxV2+OaRFJiOCIeFsPh0Ne0sLAA3YdqoiCdCzLrvfolJAtgQiO3rX3mjV75JoOdCucCstI4QVZCDPlmoeQR3fuw4SS1MJLLJfQlEw7ipAs6KFcRy1A7IwsRMBRZRE8ZaoGcQfPtO1t3f70d/7Mf/O/9d/9qe/8mfM27i+dMdQRAAx8Od39jX/uv/Gv/2/+pwj4l/7iL/21v/HPG5Z1t0AOUHWMcAOOvavFT/6FX9u2S//ub3hC0p4OB+ROwwABKIX2sT5UoYUABANQllKS5JxuT6c+ejnecE2CyRMSI+eKnFQ7ugWymqoO7c1MUy7MjMQeAe5jYACwSus8eg/3JFLqwky51H3f236ZSxLXazDSHCQRC6cagE5NPcZQt4E4WmtqRsQkCSEi1IZlrokJGUmgEiVKknOz3oZxYmDcHtroxoyRY7TAOaohzqUikmp3HSkvH3zw4u7u2c3Ns3n7e3N8vu/b/du39w+JGIUoyMPCu+k+zOKyrh9/4xttb1/94ffXrUPYDI1iWAAJpa52XDIG2JwuWANTyQtlGTocANzN3FR92CK5LjXA+7ZRRJJS66IRuS5dh7ZGnNbLWpO461ef/b5xJRJHRk6CgT5eP2z3l/NovfCSUgKbCh9MPzwzptMNkwAREwFVZnGk3jdmZhbV/x9ff/orW5aed2LvtNbaOyLOcO/NzMpkVbE4VJEUJYoaqIHUQIlSSyJabhktCd2yDTTshuUBNuDhgz8Y/R/YaH81DBgCDAMNW9YHd8NGqy3JEpqtpkZSokQWySJZxRoy807nnIjYe6+13sEfVpxzs6iGbwInz40bEWfH3vtE7PW8z/N7WmgPde3a1rqct9pPwDrAN6MMwT0whqFemY05kaIwJMphKEIEBBEjP0QYiII4uAeOxAyCkMiJkIUTEzETMZt6V/PwodeklJnll//J3/7xP/mXZbgex3WDR611ababwAxMHUmur2+//c3fNLNc5lLKz/zpP/V3/u7fBUAaMJ2BLb5gOgAu3h8AYgQL6+Ex5XTYT+FxOi+D4nzJChFDUAzAqggMmQYi3K3X1ePq+pYjAJCFGUHSTGUGZAPywNi6a0OIKUsqcyAygvWmrZkqEyHJqHEdI/1HqrrWuq3L6eH8EO55IsEJfS4pEyOTcFCihFwCg5AEp8yZ2AK33e6292Xp2rDe3fn9t0+9eU6TB+ZSypStu3qUaS5ITbZwJRYWQQBT7e5jXR0Rl25sQHBUc8dIKeVSANHVkGLeH66vd69eBjGDaWvNVUsp025PzKeH+3CPDYFQvae92BYCMuWr9z74aJ6KewBia209nzCCWMyid+V0md6XnBmxATQEXVeECM7aO1BsW9Ve1TyXOcx627Zty9MVs7CkiKi29lbXdeGUgodxC6K3wYtPOTFzXTc1IwAL43nW3tr54dhMyuRBBZsiOwFBTJlJJE+TcH04bXnKXaO11iMSKqgGCadCLCglrOuqgkBShBMzE4DVdWlb7PaUMiDRRkQohCfCc7XbiW5yvL+LZbX9B18myV19JC/GWsFMCaH1Hh7vf/g9ksvx4Q7cfSQUEZKktVZXIwBmBsLeuwImBiYwiCzDajOWAwGIDlCbsqScRasLp5ya1RP3VpckM9XzWWtHcBC0Xg1QClC00Fq7Q1cNcIcxQFP1nDN55EmAEl1ds+SuLSLUITy6qqqaeWudiBD88dcSIJwIQMMAwYEghjNIKEYcKWI4gGxwW8xi4ITUrdV2Xtat6UBfEwJAlJz3u13d6vVhD+5uVub54m8tmZjdwzfNc7mgWXDMvgaV1wZY2iBGn8tUEjON8ZKbMxOlFGTD0MSuACDMRDRgOgP5i0RjfG3usdVSxBEpHpGlpsJ8ddghUattMHhHmWD40PLC3c0cmcMBAHtXc7vES4VFUjcfIU1THTKtpAQBqppFmGkqCQPWpsP/gsySRNVwYIMYvWvOvJ/KYb/PAro8YEpzvuEsZi5ESUj4mpkh9PUr2+paCHLJS11qbaHhrQdjPCYuiNnUTI0Th4c2c3NmRnoCWCMAbLUFnfeHHSNm4Xy1QyFkKFMhZnMDDEqchTxQu716+c26HqUcYkyYAExt4OQgeDm9Wattdw9f/fqnP/SlD//oT/+Ff/JzfzsLAVGYjlcODOPkTykhoE3m7kC80935fIrxB0eUMkQSPB5EFkKOQDfog8fUmj6GRaLVCpx7b7E6C/RNW+vazcIxgIgCgpGA6BG7HGY0onURARRwGb7SI80XHMy6opCb9/Omrc1XEwKBARHVVsGjjHC0CDObKaoKgXWDUWqS8/y53bace1frFi0AybyH2qBQa+9dHTwQkYUhBntv4J4JwsHG1ATQLdxDGCQwKIbGFACAqr13A+gA/d+AH3+37hOPESp4jEFdbDEOBo/Ql0ehBJ6e7NFPZI+eEH1yCcElIPYONvNdnqILsBcDkZ6iZkGBRKMNHR7tH2h42Qa/CDMXuQaBiC4M6+EqGqKNjIRaXBQfePoKFzyQP8pOj1IHjDcUjjHdAQ8gAH5UFIbLKT6DH3q3HXGRoIYQVNL/9K//pf/d//5v/MKv/Vae98zCqVDKbr67ev6Fr3zvv/+Tn7/63g8xAvpFVvEADPj//JPj148UADE85dZDG/n2Y9//RQ9Qv7xmsuCng/ME4okh4lxUmMuhfTqYj4LV432eImNPEtCT72a8psdDDECITjGqDcmHvHSRioaRCzDM8ZHZHA4XWHYE4rtT6MJkuhz73+EUemTsY4DBBf/8JMvBZ8hR46TFi/fU/RH1BIEKgRfIPcKlqH5EQwEApPVOaqkURLCu2ttIZbBBSXg1yYn4+LAiAoD11iTl+eqZBxmK9iWRtG0hgLzbobbj3WsmFqLdbpbE66bb8Y3AIcV8/fz5Rq3ZuTet50/LPCvig/YIB8RU5nmevK5gGEG9VXcvKW+61d7VQY8Prz/+7c892+/m2Q1NvfV+dYXznAipTDOf16pel3Oz3i3uHu6nUq6urxhA+6YWdVvF6fnt1aYqrKhninRTaMfpkzf3+928bTsHY0bbmjCLaK+aybCvoEzAKQll2ar2upYkabfT1h/evJ13M0awwdW+PCQ5ntZMQKG7w64kIXB1V3PkEkEGMYvfn19/+PkvenhrHYAcDCgcHHH64d//J77xi38ncSHKFpHKTaJAgkyAtpXDVEveWgenwE7E4xp8StLJu2Ni8lDmsF63tZ3DCZGJME1T2e0Pe7N+qj2rlZITEyC5h7oqYiJGTkC61M3uTvt1I6EeZBptNJgSIiUWhuCUiAVqrUQEAq5q26Y62HldzRxyd4pycJYp597NAlJKW62tNbNQc2YuOWNY1U2Dwt3P59p1miZOUyAJe3DqKG3bglgkzVPE1qth77Y2yqBC6A7h0L1TkvBI6Ew9vElOFCWAzMwCxJ0IWl17SynPRpTDwrpbuPZ6Pn/v578kIm/Pqy29GZiTefcwc6dwBHRCj6jaI5xGCbnkBB1HCpbI3AIglZlT2pajBaaUtnXdTUnNWVKStB3vzW3K9H2f/+D+dDiv9ePaWm8Qoebruhzv327LWnZxuNq5ozsygxrwVFI4ohGK9RbNd1eZgd0gQIUFAs7HYzCUnCTJ+bzJHLtnO3RCozEDzzvY7+eSwC3QnJFYJBhSISZ0R7OGFBZORDmSRN6XnbpRsRG0V21JvMJqpomygwbSLg4l7RwcnYTT82cf/Xt/7a//5B//ma3jp28XD2DC4WUg5iTgQB989KXv+4Hfe3z18Z/9839xq6q1siR1d4BuAIAWZB5dDRFf/OAf/vQ3fnGXsFFCFk7pvFZVjXADmxJNBOh9W8MDc87TfiqJr3ZTa7p5VA+gEEkQaOaEmCQN8gwwM2BAoFGMSXMEEQU4BG7bysxIYmZ1XUQobQsiE7OpjjdyQh6zzT6CJDi4D3b/9s26nrX30L4rU4A7gelloCCSiLgkcetBIVN27FnoeveMUzpuy0onmrNWW7beT32e5rZUMy9llxjMeq+Xchkhmqbp+nB1tb8quazLeVvX6FpE3nvxXJgiHIUMekKpoRaw1qamdw9nC1Qnq6cw66ZIIvNud7iSPHXty7apR552ZM0JMRek3MYiDAJwdIpTD0oQxDmXaNsKHmqmDmb28HCP4ZnBddm2dStJUl5PD56BJBfJyLxs9fXbu7vTw6pNtcmB53kmYnBlJhHOxHi5wpMA4JSIKFAwHIFMtbfm5qut29ZO54fzel5sS9MIwDAiuYZHaHcALJQdORfs1bMUIkqePXAkmJhAEo8Lb0JCJ+E8rgaICCEHWkJmGd5DGjmRYQU27cQsIizZtf7aL/y9H/mD/xYSABCGIlHfTstS65SIQjgP4PL++ja0ufXl3HdFvvSlL33ta78xGBDuAQiIHOEQwJJMFQYjAhKAC9P11SExvTkdl62LJBaHCEkMyERIiEDU1RACEYgpTbtnL947ntatdWJKKTOJMOQyAaWmWmvtvYU2oWCmXAoLeyCEDc2PEInpUlXhPjL5atbHpKXVZT0j0S7dBiuQU+ScEhIIp8QinCRl9yASQmbikoq5THkWhN5KGOjW16NS5gB0NUJqtQ0wAhIhIYsMAkUAqHZTIBq2J8QA4gRxoUPkzDnnnHMApDF23tZByA7bwrRt23o+7fZ7SbK/vjEzFhIBOsFaUbdmsSBDJN/td6VkInarAMAsqv38cNfq6kDXt88DeNofcsnbtgFg701CnNkjmC4DP0nJI1Lu4Kbm2nU93u32h93hmpMwkFuydler4rKyiJofT2cmvL065DKZ9pxKzvn0cI+AFGBdWUARJacy78wNlFKY5JKEp5wtAiXNmaLX87YAAEsWAg5v7hAWps1gLoyEpeyRLc07JBrtSxI83ltJu6TCpYSbIxPI1uyl4dsFcuiUMV+90N4ximpfazAyUgiTtjp8cE39y7/rx//lP/uvtdUheHgEp7RPk1qPrlfPP/f+F7785d/z+6520/n49ltf//Vvff23Pvntr6XE3cHNWusjamEIy1pFhMEBxbVv61kDA5atNjaF8O5B5ACo7uSmrYIbRHS1IAZAN88lccpMJEyIEKZInKcJqkMgqBoGGTJzRNhF4ZWckzn23sNRmHHcUWRkZMw0JWGK0G6gozEAw0db4rLVpupqW2utdzcjYyY+HA4fvP8+swiPPmu0rm7DSwQAaB4BBORhYVWlZO06zvoACFONGDFR1w4pTTmRyPALhhkAqAUjIBIJIiJWiIhat4iQJEQEIzgG4IDgAIhqSgqlFPfoYcIBEOieU8rJzGx04hBaSmJAakpExJxzRuLWm6sNlrAPzFBASRw5aR/FUhjjczdAcgYi82BCRogwIUSiUfXgMQQxu7qa51LCbEq8m8tuniOV8IB67A+qaf/m7i7crq9uAoDBbm6uEeLTly8JfH/YH3R3//DwZnmr3ciJhGRw1wFb7RHRm4Y5IuQ5eXcwoKckBaKkVEoRFgJgISBgoYAIggEoaa0DoZDU1s1cdP2Nr/6j7/+hnyCZbICpw4koAnrbAOm9D79Ym67L8Ze+ev6xr3zhB3/kx3/rq7/g7hQw7E8XL4MbEzNRTtK7ckrzNNVtbb0ZBDPPu8nNl/MJiaZpTqVQIgdDiABtaomSuyIhQGzLqq2nIkj0eI5FOCABOyHT4wo6AsLc/MItCYC4HLLx2RQYHIREQlIuUpGbt6WC6uGwoySqRjwIUCApaTcMaMu69cZZdqWQo2nQYPRgO9zsc6bjw8mECZCCXM1MBdOor3O1iEAitGErI2JydybwGBMXdHeAUBsjKk0pMXMEjrSVmqs+1bT/DpvP73ADPWocAGCPsk483etRALoIAwTyGK9ChMCLM+iSDH0UeZ6ovHj5pwsmaPzS+aMghf5k6kG6+EAA4eImYwB9Mh/hOEkQkAmACShAEABAH1k44+gNh9ejXRBixLiGfvG4eU+yztBxBib94lAKABrjrItk8vSV8IILv9h3HqWJxxYynqb/zf/2f/QP//bP/Y3/5z+4P90j8f7mvZv3v5CnfSq73/f7fhBWuzzcIxzOD/Vv/rOT8TSifu5q1kxbhP3UD952Cx+zSQ8IUAfqgTjCXzGwOE/q3DhS776/CHmXOvghvIz/PYos8U70eRRknnQ6vqB5UCEgggn5cdepI44ur6BH+w4AAQ7W/jDkBozfhd+RI3z8URen9kWeirFP8UmJfNzad2fio0j1tJGPr/jxpB5a1jhbR60fExCARAQQMAIRUckI7m20tJl6WjWIeLffa+/L1lMSYr5//UnrujUbEJWEbPVY2fbTLSKiVXDvxiXB1fMrpYwAzKi1hfXrw9wtHt428o6SEBG5ELH2dupNCA+HedqV4wlPp1O4pZJnRDNblv727etPP/243n6wbW2r1Xrb1vXlqzdZiNCT8IsXN3UnVWNr7XQ8rVufSktXV9c5eu+m5c3r1+vLOyJ872Z67733UuioBry+uVmarcvdnmo67A9Tuj+uQalCIVUI2/pxLgkgCDzLhDAjYbNIpZT1bKcGUl7Vvqvbs2cvYk/aO0a/+vCHCFENDVimQ4baWvVQC/zo/WellJSFeVy/xlK1qzHFsy/88De/+vPjMM3zbO7M2FtbW9tPPGdWyGyRU0TOYKAAwuQO85RZXT3cum3H89oeltXNKbQI55R13mGeOZVcpgCo3ZmJQXNilr0kcW/umBK4pq3rqnqYE4HlnKZ5F8Sq2ltLwoFoHncPp+PDWYRLThCeBAnFdZABoiSZ533Ke2LW3tBUkDhcAFqAa4/WO4S1NO0KkUhCJmQAcF+rcV9Z2FtXdwfKmWtjkkSmiSIAm8FqXM6naTpgSh6aU4q+MDNKqXq1+cpNORFgEIak7OaJeDmeQNuUJZD2u12XEnXZTvcTxXx1+7B1yNAc1R0gkBC6aWuSeHArEcncCMnVOodIFkkYjhgUHUmCkpk/vHnb6wrE7uBIVaMhZCZy7yAikigOUyk5MVgR+No3P926n5fl/v64rkuYCpc4EGWar6dl6eABrlZr2U9SsrXOgBDYG2g0IpymdHc+v3x4c/Xsuq0rEDoYkHav0JiD0p5Ng4QkC7oRYZgRkexSFMw5eQfgKFOqlXTVBIm5JMy7HKfTSd3NgDCQnEo03MKcAAjnmQ4Zc4uWcQqkn/kz/9Yf+qM/3T3eHvvDUrt6YgSCLFJyRiAfRl2zP/RTP3v+5FfvjitPCTn0XBUEkMwdScwigHSMm6B8+af+6vLqG9/56j+EnJHMAbazmSkCzMIcvXcDyYhAzMwiEkWkpV5a/eS0nPvqjuVwO1HCLK7aanW3AUkRyU4E4Tg6aYncOkCIJOQElIA1uYoIkkSERYwVJ8CYEKK2ZuYRziwQBr315X49HZOkLJkYezMPJ8baG4anlHtXa01Gl3GygBogUBGdudDzw/tJ5gVazbrNa86TR0cgQvJQRgLwlMqmBgHm9vr1m23ZWmtq6mrENM87SflzH3z48HBn5oer93aHfd1qfd6//a1vq+k3fvvrZtECvCu6jpdeJOWcppyOvauGI6acFK5vrm8kSe3RH86pnRDAecKSWrdAMsDdfMXMy8ObwTE++VszRaAyleura+Yc9vG6bkk7WGeClDMDtFq/9hu/tW6rg6OAq2bKh8O1EAIlycIkOeUkKWIoEA4A67Ktta7raqHuvi3L6byEQYRr1Na3/XOZ8h7ZgYAAO7jbBcmKFOHm2JAFx0y6pwhiInXNjIIFmQwcyQWLUB4THGTCwB4X/Ef404UjjFouYhkYPxEOd13vf+tf/dz3/54/jiMnDoHE9w/Hm8OcE6s5M7HIzc2zt68/JZIs3LV93xc++sY3vv7YwDu4mwgBl2ZppJRG4Ajc4vp6f/v8WV2XV6/vbNSmpUAEERlYhAh303DnQSlClJQOh0Prrhrrpu7AnFgyBLRtWWvbtk1bzQJQdiJMiITAQtqqqiETE3mgm6pqWKtbBbfe2rad70+n07oawDztYwxABYmQiSO6uxHlq90NsTRtAI/Ig4Ap77IIGvfFl6P2apxEREK7ao+IATRFxgDQrmYGCDympeGAwCjEFGYo5IG1NQ8QoansUkoBwCzM7AGMwQStNUTS1s/nh3m3P9w+c9Peaowha2JCV1NwIZ36WkvaXd28sF7Py5mZAAgRe9vWVrOWPF9bb5GnoVK5WWvNLRAAmaH3VtdcJiYMFDd1YiBAFtWmvdV13XYby4GIPYLTfLh9vm3L/d1bIjFzDESkaTelJK5NVZGl14VZiGRZFkfO005VgRFIkIE5TbmwMAMs68YMu8zQ62lbwzsz9d5qV93OaC3C23LKKeWpCCVADkRivphckIi0m4E2SoLE2pVSYiJ1b+6LYdH4ANBde29bdQhjSHMhjDAzAocIkvm97/nS7Td+++Pf/ppbTTkTAEp+/sEXbz/3xQ+/9CPvv/9iFkyC4f36MH3w3vM/8BN/yCx+9Zd/6Rd+/h+s2yaOxGTBvddezyeMHHrWBta6WgSGbciJhShxbJu3SiIW8ObuoW0LhLupGkgpLCnlLJwQvHWzMHC0rkCPwgs+rgEQADGVIgEAkFMCDBuuHhseO5qnqfcWTqNh3czr1gJCu3oAMQthb+28ba32ddvMzczVTFgOV+WD996/2h9yyUNmDlcAhJTUbAQaIyDQAUcPXoQGUKQB8aTACOsEqOGCY+ZnNjqxh63HwwAhsahZhA9fY0JSNXMbjp2ShQhH3i3cgBg83BwjUs6IFB7BcFm8MJaSWtfWNeLCGEmMSGkgqN19eEMclIbYd1lAgghP86yio248AC4aFgARta4eYdp56LyItXntqjaQ2EPaDU6Jc87Tbr7acZrAtS9Akrdtff3q01bbcj7vdvuUJCG4NnDPJSdOIiNRxW/v3jZT67Y7HLqpNtOqIzyFhNFU9tK7UgBJYqLAcQ1Tcko0Bu7jHWlYDiOsd1eDkYkBcwtJIgn/+X/9n773wfcdbl6Y+QjwBGeSnOerPO1ZhA16W3pb7o7bT/zRP/Wv/8U/zrlgBIcC+lbbULZzTjCsEOHoVlKechmoqOHRQWLJqdV2PB5Lq1dpnyauVSPcO7gQQLiZNwMAIBxtPNY7INDIM7M4xmNcOICQA83H6hXxEZkyVp0X+juPwhVOibS1Vrt2a+dK4WVPod7XmnZFcs45menD/QM4FqFws+YgCYEwHIkxTL0Swc2zW3U73p0iCIUlkYMDYoLEwoDtIqlcgs0QAEiEMaDQMVBU7hdrirlH72Q26D/q3ntXfQp/PTmAnhbOT1mqd4YcgAB+5A3Ho4nm3VL78c70mUdHXB7+5Kl5t2p/zEnBoy/Fh58qwN4luS5reXwq/QYIgO6/k9aMgR4IwzVCiKOQ5lFUQIdhCBoRWnzndXknXY0i+Uf94en1XPKujxEjQAT1R/DM48aPbXgEIVzu//RwfOeoAYI/8tM/9Vbnf/Kvfm1pkfYv0nwNSIIAwNAsAIaU9WvfuPsvfs0lD5+jW6+mPay5thzb7/2Bz7vD5Y3KAR8d+ADvvnvURsa2+2UnPlqELvd8UoOG/nOp6oUL+f/JJYWXrzxYPO8OZ0QEjnISeEeLwycLzuOdES76zVDzI4b75xGp/plfq7H3H/P0o95r7MGLHekCiUKAeDxxn+rdHrNz45gPz9A7vWsoiYGICAaOIEiccsZwV40IYXaJrfZBAtuqJtbQXrcaEMQ7KocXt+8tD2/bq9e1tjzNVzfXo4P+7u3r7YRFOKPPV9dGNCUq+8PS/eG0tN6Yy7re921lBEUmyjlnycnMASiG5ck8Ic0lQey3da11IwAmvr55Vg43n749LdV3++uUJ23tzetXx/MiuVztpptZXLsgsgRBit0MSPP17eHqcD6+rafl/uWr09bVbant5Wv/fvXveXEjwqfTen9cMAIcGmJfq0YAkWufJZpRuBrSuYEIEVKCEGKPEE5dNfLk20IiCaQhn3vc7GfEfaO9zNeBEqjBBU1RIgGCN4DQEIQoKTMLEgFAr7UPr7fF849+4O7Tb4HWuljtDaYMCBBea2RG7V0NMMBDKdAtqOyhu6r22rfeTPta7fX9sm3rPMvVYfdsKteHw6m3l3d3walNc87zVApCAEkA165duwgnYWYS5t609n5cNgKfWhPZUFIqU4T2NtAPcJgYYe5mkgVMe+vhnkuSMnUNdNslKBzAFHnOWeqyta3W1glBhCJQDWtXPUNoA4QyTYer3VSmQDLT1nsABXBXQ6iAYkjdwVAgJWi9WRgVLHNQUtusKWytZEmSulpr6m7cI6XEwjmLCKvpusgWaM7CxLZ4bMf7N6c3rz780g+cGrTetDVMjIQInohYpDkwJ0JwDHMbfcl+ifcaJUGgcOt1o1ScgNyYYtm21vT65uARDsyIbTlb7+tWp90uTQdHlES7TD/2w88PV7e/8uu/waHWy7Yt5u7I69oTcM6pzF6PzdQQfb7eh1sElZRDo4chQiI5ntdPjm/ys2KmrdbEzIQe2hdLvEeO1s/e4KF72ZcyJTIwgDCXgnmXbXVACnXqqT5sMidmYWQLmEt57/b24/uXHqbN0qwAaNpKKgmKRHH35n2K9P7nPvrLf/U/oFROm563ftrszdv7In59dS0ojGNMiWiBBEzw3vPb6/yltSr55uSANIz55qMSygLY4zIAu7uv3hMhWq9qEe55mrRtOfPEWZc10DCCUmYm18YR4MEQc0of3N78xm9/3AN5toCwvtXl7G6AGK40ZqKpeBiOpSaxm4UpUFB0AGUWYkESJB7DBSIAZIcRMI4AdCQAcLe6VquLtrW3SoDu7mH393duxqlo7/M8T9OkFq03ShwEbuGGC1Fzpaw3dDtPN8tpsarEdDhcMZN7VutqnRy5pOvr6/1udy6ldS0lXx12hJjL5fJ0PZ+klAB69uLF4XClps+fvyAkVV23Lad8ePXpd7719TzfQt3IOgA6T0hg2s9v364IBtJ6Vo++nud5V+ZJOK99NVdxL944Ubp6cXdaTuum3TcLljIdnp3vXgqFWR0Nnr1T63Z7tRf5wtv7u3VTddpjlESt2tvT+c3pjIypJHWrNei0PH/P9ru9YYjked4zyfl86m2jNHePZTn13tfT+c3rl2tbtPkAHDILC5WCu3k6lMyMQT2QEEApWCJhBlJkMwWByQKIWCgxjc4h5lAgAyMESsRIkWUC4BG/R8SAjggOwRFEdClGwUsqnyWVkpgEEBxBmLaHj7/5a//8ox/8cQjECCI6Hd+s7dk8JQ0Qx0CSlHdXt1rPxFR49+GH5d/52b/wcz//j1++fnOZh7mNC103F+EYXG6g3Vzee34jwm+WlZlTmdRAUhCOyACpNjcHECLiEWyE0ZNLFLbWFWm/S/lw2DFz287LstbWVVWiC4pgSMoAGGA0DPUjpAMAZtZ7a3XUcoS2up3W88PpvHIuJRcidI+AggLIBoFdu/kGMDNSSllYHNTUCSDMpCQE661+8sn9Jx+fEaXsJdw5CBHMI7q6h2ljZjMHN4BwwCFIMRMzeQQgmg2+A3ESBBSRUor5QKJEbQ0hhNnURCZiurl5tj9cAcDarK4nYQAcwDYGoCTJNRjo5vDBnPcitPX7bauc5iwoKSNiwMizJe09dA1dhSlPk4fXdXNVQiQIbRulCRFYUkopAh3I2obE63IKeknMkXN4BKXd1XMLrMsRoQYxc6ZREYQILNuyRIAHoceyrQS4u3l+Pi+n4zEg3nvxDInXteWUIcLNWLh7BU5AcrObX93fNZDWO7bFurJkyXvMEwQIEZB4RCByEuIEAESI4a01dA9rEBLa+waQM5C01sDNne7ffvpea1VIMGGEkENwJ0dr8zyzKNfTtz5+9dEXv/TyO183s/n281/6od/7xS//6OiAF+YIZElIjoE2TvS6Esn3f/nLX/q+7/+Xv/gL/+IX/2nrihDe2vJw76ZYsq6L9VWDMZWUeZ6ziLR1iRFPbe28tTZAzxat1lwmRJCUx9yp134+PyAihCdJxMN5NwxlLMiAlyqvcRaNlRAhJObRJSSJzD2CVXVdVzXvvQ8rRO09AN1MmFqrXXU4Xwa+nUgA8Pb65vmLFymN5X1kDoisZjACNszQVc1EZAgl3ru6oxJikGAgYNgYCiONTlLnJOGgZswEHmpOCB7dR0oMARCGf3xAVar2iMg5DQoqIWGAmwNEU+XaSykIqGqjNhEDhFGYWo/xK6BuAEDMOCQoIsKLZPXZNe+QSyBgGIW0d0KUJADQex+l3arqZkkSsQQAIUFgN0tl6l1rrcx54hScQjLleZqmiMjT3iJsebmfZwT85re+XUrZzXPO6eXLV/cPxw/efy8ACDmnst8FIt4fH7r1sSTWc4MI9PDmnAWJtCsRRA93D6ShOPHA/l8cqUjIpurumCO6ClJm6Wq1qrm7Rc7sgf+vv/V/+gt/6b+PMnOakxCgUiQkMm2unRH2+yvt5de/9us/8eO/e3/zbD2f63Ym4pRLrVtOiYW1dxgpE/PmBiQppWLZFkXEQLDekWi0ttVa5QSBudUaDghk0Ot2ZhBJWRKbOTN5+DgqSEhEIsNFgvM8pcTqsW5ba33wVC4o3IjHJTESYbgBIwmZaV27u/dqvSshbK2jO6pp72nK7q69ae9t6+XmIJxMW+895RwciZOHt6r3d6cPP7qZ5t3Dy4fe3cUwESZKxGkqEBRBZj6W2oOPezHaXIy6fFmdg4ETIriDqiH6IGS11rWruwHou2auJz3luxSQz1opAGA0zYw8z+Ni/UkSAgB38EfE8sVBMx7nn5GFHr8hBLsszb9Li8F3ugS4X+QBDHC8yDoDR+HxGG+66Cx82RIFA0C+uIdG6usyKcHHR8E7W9DlVT+qNE8dYYiXzR6dWE/UYviMUAaPis/jpj8JGo83XHyv71Q0xzNdv/c9P1CbN0jAxZzQNuijJxA84ONXp//8Xx3T/nYwi7V3d3PrEa5a/9zvfm+QFi85pgvi5nJYHsUZcEB1d7+8mLhohJdjFeGPJW0X5WjsBAaIUYpFAAFEyEiE4BEIkAmbx6aXEORlg931QkOK8RUvrxiHTBwwKDuXHRIXHsFFGIPHo/QOwH3pS4TxPvm0de928eMN79KJlye5gKgvh2REvd498PI3HGaxAIkA7Q2ik2kgO+UgFmHvgQBu1sy0bqpKnDygtR6UQQ6czqxnAPdA4ikI5zkfZskUbtqtKeTiWWjOBerWWtMycZnmPBUCyDmzpNa3tm6SkpTJupr147Ls55nBhSmVCTmJuwKdlyVQ9jcf5My915LS+x987uHNJy4JINZ1Yc+HLJGn81ZZYs7ZATNBW84P9w/b8Y5LFnVGRqLa7NM3p8KEqZxP52Vt1cG0Q18fEhuymUtKjEGSA2BKlOdD71a3s2GXnEldhBNDLtfbfDj1XtflMLMH9O7v3cj9/Hkg1kCHFGGBRJLD3Z2CYjSJOoB5MIGZ9aYOEdbQ9cs/8TPf+ZV//PFv/JKqJcZA30+TatS29Ht1yQ+nlQl2hTF0f9hNYgy4rN56602Xtb69Ox2XFdG1VhAoz64jT7fXN4fD9cPx4eF437Zj5N3+cCsiAWEWag0N0LM7tmb76x33VBnd1YCCJQK9ezgyhTn0Hszp2YHXdevaiIVzJoja+pQ7wBRM96dj69u8u9pf37IItD4sJ+EmYIcMlaa1hZkSs49cX21NJIsEwEBxmCNf0J7N3ZETaWy1tm6Jycy1d0ku5BjY8lwhvHYDzll6c1ONiARJMrm2eZrKNLupIALzt77+a1Hm092d1srTbOCqGu6uKilDRO8a4aUUJlRTEUGA0B4YgsSS3CNMHYWI1+M9ldhfzdM8YzunJEEcAQS4nE6CYaacEnAqZSplNuvd6mZsIjc3z3/vj5a3Dw9f/+a3t1o3QYDofUWZ1C0MUmJJNN1cIQcgB4WpdwsmSzm5+6s3b5Z+nvteq7nY/rBft7XaljBxoKO13vu5M/mynFPa7SljQhNOBTNAl7yozrLv3K72phZtVZ+gtVpdl1rNnEhZPAyb9Un2mSeB7OgZUuHpz/+Fv/wjv/sPnFatW1ubntd63vT12zfvH1inyV0hhDWxGOHwuAP7dloVqKISCsQYVUg2CwcfjJwYPQ9hHhCf/HNzUGsQQIiS0px2JZEg1FxkXcEaTTsjdodet/PxwdTKbt7vrj/8/PTy9ZskCTHqtqoZMSMguA3tHoloOGkDQl17X04PzLLf7fO8i3DiPPqcEMd7OwWAtQ7g4eqXpC2djnd3rz623nvXgKi946iQdBuXZiI8TTMR7yTmUkrG++U+DBm5uwZQDnmop/PbFYdEOE373c7da9Pec0C4mQiZu6o+u70+nRZAaK2nJPM8l1wgLKXbAdcw1d28CwxXe/biViSdzst+t78+HJaH12Eq4eO1OCJyUlNk1mD1rlsNBDBr0nVdXFq45ZQQCge5mS4nCshgRNyAEqb58LytZ9DVzEsuhDBNMuit89XNogbLOdC1bw/3/W1d4Obqe37o+7w37VrXut8fEOK8nue5mMfdx9/5zje/xZTc+93bNy/e/+jF5z4qZbauyAjMAFByYh7jGSxZktDuMKUMDt2CiGcHYDRkJxg0akcAhhTkLJmCEDmlzJjANo9ADkEmEs6UOLkTCCCQuqETP569SCQsI9sCDBHAzFOZxsRpmNIB4P7jX12Or7/0u/8YQfS2WV1fvz2VJFPJDsgoTHQ4XJ/c6nqWnHOZUtn/mZ/5mb/79/7eJy9fmZupgxAGmTlJ0t7ULCW+ub7eX92cz8tSldNEzGNOx8OfdKExIDMzRspphEsSQW1niDgv56A0q3cFD9+adUeE2E95N+/aVgmdQgEpHLtq7x3ckCWsW9t6V7eIcFPdltNyfHveTlz2u93BMYSSmwMhEAQqgLU6CEzg7vM0E3Hta40NwxE0+mbA6+nUamdiEmZE5vT82fMyTQDRmtatQngpKSLADSGCRQhTYmEeM2oihABrloVTzjkXKZmIzToiIqCZM0FXp8zz/iqXhNogzNwzQg9rrXl4qz0A3GBdq6rt9oer29ub58+W+7sxrd1fXU+7Q6urIjKnnMvp/rXNk673haFMJRF2RIIB8Q4HsNY5j7ikI6EpQvSy25f9Td229XyS/ADXz5IwS+Zcpr0BaF3OjAjM6m6Abq5184CUmFxq6+724sUzQsY4CXizYIDNXM22VmeaJQkhlTS39bQsy/Fcw93Cp5xMg4gPuz1ICclmgNZRBIjikciDyMyIEULoZpdrWmByhe4IQOYAHp3efvtr+uNdNbWO1rdPv/3qeDp//nPPP/roo5myx+IRn//oo9/+jV8uh9s/+Gd/9urmWrttW43AQS5vvW3khcN1q3Xp63mrKxExCzH/gZ/4iZ/4yT/+X/6Dv/vz//Dn9lOuZzo+HGOXhWDr3dysdenKaDJnNV16r60tW+2qPHiw7o5yWlvx0KBkHqatbWYhQkQpiEaTLhEDOBOpBxINpeRx8OoBcaG4uBHD6bRGBDO56bpt52W9LIPc3WMbJQCAqm24RsBcUh5wrtZbyWmeCiCZBxEy4yiOdPcwCEBiTkQIoO7ae5hjACKFOgAoek4ZmiFCziIoPdTNWqtbeGJGDGI2gHZeAAAJheX25tnp5XeCONzHp8mytQBMJcOwJgQkuZwAbt5bSzkhoKoj2AjelJK21m2AphEfZ+oxlh5mFmEIo3/4HV/EffxTPJFJI4JFTK33vpzPEDDvdtNun1IJgHVZHYDUnj27Jca3b+/f3D/Mu8+VUlgSIBMzAKrb25evX7/8tOSUhLdte/P27W7eSUoP90ePuFiDk0QAm01TbL2BgpsLckoyYk1m5s2kECeSnbSzeo/EmCSLJGahIfwkQR6opwCgsPCujJQlC/twogYgE7Rurd7/Z3/r//jn/9Jfz8R1q/O807rCEHaJkZlZet12h+vXx/pDv/sP/sov/cJ/69/7n3zld/3Yfp7OD29++V/9iwj/h3//P3/5nd/OOSGCa5jXrVazkZDt4xPH9TFHg9B794cGhACo0a1aXTXN4eaYIEsiEteOxGO1mITSNBr/KE8lCVs4PYw1qZra6GpDxAsSc5jLwNEhnLyHm5m51h4OmNncrfXCEOF12yAciYAwleQBkpNatwhhSnNCZzRFoG1t67oRiaS8bGsLJ0dxDg73YMndDRwA0NUBgJguhL9LLPkxeTPqOXCkcsZF3sgH+WMZu180oHe6zO9YcD/VvQ+SzmfoMk8iyPj6JAP9jjzZ0/3hnXHjUWN6fMhnDDfv7jG+Z3z3QHx8YfFZl83Fi4QAgxP+dNd3VpVHBwgMH8xT+uiiejxuJz62uT89+WeMUBefyWdfVDyKSvFkYrnEVR+1r0tTp3v0wI/v291Zv/5yXVSubt/nrSeDZoTAbVHVi53lq99481/88nHeHRDMPdR6WDfT8O7aPpjhh7/4HADMAzDoEU896tLGJbgP4cThMYYHhDj+zgPcNmrafUQ74bJ38LF5L4ZIcjHNRIRe8mEwkpCEMLDlw2Oj/qjeBSAAAfrjzoNh4IbLoRjLB7hYjB7PCv9M/C4cL/Fbv+zRIV1drGQAgYgQ6PgkFz0dvbj8IyCgj8+nx5PrHQH68fQKCATZzVO0lay6duOdMxGGkFfrBojEiBySM8l+V1rv5+OddE1Ebp6nstsdpmmuPdxUcUf5KiUO670tGP18Puf5sN/vr26erefT8fjAozUhkao21bpuvW97hmm/D8rqcNgfdnOK3s1rG9imgAjvtWnbQhcLIRjM6m132N3dHc3x9uZmSiXCQ23OGVmC2racWz17285vPq2t5WlC8qvMdDg8LB3Cj8fzen7phGV/s2Pazr42PHbYzYm8Wa+pFBQeQ0UBlcTWMQBb62iGGIcpb8uplKIgSy5vT8sNYmK8f+jbvJtDRjmmX45uH8cwl51IZpEh5dfaHmcawuSMqApf/NE/srt+9hv//O9nSTkLOCCGEE5lCky+Bwpo2lVB+gXGVbtqBCBstW1VUyngDqGS5uqZeGIq816EeT+VbVv7tnqXRj7vD+i+1H6qOhcnSSxIrvs5Z8HTw5EwhmOymR7mBEFocDUlnmbXYE619946MpBwRzp4CAsQbu73dwvdnT/o/f0PPoCchCgh1tqPW0N3TBaAYxCac8lZUk6HqyshVlVVNwhoDTE0UIhQJKW8AU7gZmbmrffUauscAGoGYYDQNAykaw8HZHag2p3IRZgZzB2Ip2lqFr211qOvaxJ2ZjdzD0q5m7spAagbIrnpYFwHAAMGEXgwc6t1ID9GcyAAEGGEu3fQlcK162ldGay2RjkBEgBlwdp6TlUQXL1DC8ot6Orm9nB1zVJ667/97W+PGlRIqosRUEqy2+2meartXJuuDzUaHfa7nIu7L+vy+s09EG9LL+Uysg6PRIk1GamxhwMaqXfVunakHOSoidwSDc4BmFMYhG1akqjZp2/uCDzMmioX0q75sDPt20PHKSoGczDk7/2B3/XX/rv/w63jq7t1qbZstan1blttx7u3z+eb2mqS5GbMxiklYQ8Kt7evXtetORpJSA7iAhjd6phl+uDau7qZu2Wm07qam2qXlIgTswjiPBcqE9emcre9+rbXc95fISc79r4sEBAlM9Htiw/y7uZ0fNO2tXVHoAg0M8IgEWR5HGOgu/dtWY53EDFPu7w7jCskRvJwCAw3AFPr5+Vc1/O8241oXO+tbufT3X04OHAuMoi97hEA1vuwMu33+7lIbVsQMPvSNKghIPE0JUZysz5N5ebmptcGzotuar4tSy4lmNSU6dJA9XA8MXHJaVk37dp7b01FVkQ47PeCNJV5vCIiPJ4emCnn0mpz7d/7+c//5jd+ZT33JPspz4GCJEysqmJG6NCVwnsgA8C23L+sJomn3W6eLCcPj+XYtzWVCRO3poDS1KZ5/94Hn3/9yW9bPY9e6vFZez4v96f1uGzhrt7Wu/tPXn1qg9BsMBi9ImJqCL6286evdVm7dR3sZApjkbU37X2aSik5CaYk63pgZG3V1IgwCxG40PgkJsJCvDc3444R3heUMA81ZzJGBiQCSSzCggCJCmIJR+EkLMQEiEzDEeZuxkQBSTiPNSKG0+BAIF4a4QndPCcZIFXt6u71zbf/5d//T77y43+KCHLOH3/jVxB/eDdPpWRgBvSU0v4q6rYSEZOQ5DTt/vSf/jP/t7/5f3d3Gm7hgMDRgRuENJW8P8zH03I8bw6M6BGRS2IjhDCLXrsHO0gADStHALiHujkQT7v+9jQAIrU1Zqq1gvWSeZqnLGlQzVrrLNmsu4ebDpwtuKk27xpAYbotp+98/En3h30pOU2cEkEIioGTCKCrR+trGEqamCjcIJxIGAncdWCxGK3p/fHEzLe3t2a9axdOQuiq3frg5RCLmxMGhBLTlChlcbNuWso8lRwArZnHBojgvssoFK46LkOBcAQ8WNjCbp+90L5pqPduddXeCCzU1q0udd3a1rWZhZmnkm5ubsE9rLNwILp721ZAIKL94cBEbTvq8RUywZQRgZBEZNrNyLzWyjRaWZEw1AzcmBm5hDtxElF1r9s6zQdGFpFAllTm+WpYCJllbVomQHM1IGRJqKZd9Wp/SIS9b/PVdcnpeP+wdM8lM+HxvKzdnt3czFO+Pz2srz+p29rMUOYpTxjWFhDJCrwTYkanWJ1yTpTSsPkTBotAAIa7AyZGInaNLBBhEWYdwBiQGCLam2/+qj7/4I317//Sl272+bTa1bPP5Wnv7r21cBNO3/z2d37vH/vZm6tDSnLqfVuXQJ4iA4RbA0uaINrS63I+PazLiTgRMROeU37x3vs//af+7A/8wA/+zf/k/+IR0evrVw/haqqSJmLp27YupyS0Nq0WvZtH7EqeS84pmcdpWdZtqdsK8JBLhoB5noiTOWBCcxBhRu6te1hOiQntYsQHc43htRmTX7fW9bRsvWsglpxNba2bW1wszAG996465eIAAxqP7jGwhRGPaSyKizTJxCPh5UkEw1pEIBDQQJxDBCEZWmJhpghS7R5uZCklRB2pBEBo23JaV2K0cCKc5gLo1jQivPvN4XqS9Ko1YmFCD2QSZCCiGHQPJguHAOFEzB5hHhzAIqPUAsPDnImu9rvzsumFbgoYFs6IEObqFqOv/TECIczIRADuFhFmhgge0bpyRGvtfF44l6urgzCXaSYiVZ2maT4c3ry5y5csJ/fW67b6fsejSBzBzEydiFj4/v5hq1vJElFGbAqJppSIUut68d9BmCkSCI/RbJQyqZmrAQMicJBIYmEiR4IsqZTMLP5otQJECup1Y6KgcPXwIEBJSVhSMHhEkiS+bZqmUtflO9/89R/40Z9aNxNDsI2JnTWARJISiSR3ePvm7SeffPyz//7/Yr+bzPG49o6HH/2Df+I733n5P/hf/om/8X/4j1598i2AaL2v29Zb58SqNv4AXHojEVGEy0zagpkcXbu6h0yI4gFEhRIKOQdzBCCQJGbJiYUHQE54uLfmubRuphfYipkNG+K44hVmDwQYU7pwM+/hDkQ4qN5JGDDMTELm3c7Crp7fuJogJZGuohC7nIRTEGrvWbJrLNuWRVhEI/rWiag3Y0DJIsncAcwJcdTnohsx4YVdExCXnPhFvvAYRR0eAXApLkVCZgZQqPaOuQOP4snTkvopHRbvVI3vVnY+swSHp0zO033iv+Fu7xSfR3UmHoUmeLL/BNhnbhkreP+MWPP46M+gjJ9KpZ74MfguqvbOl+OP3VaPT/TU3jW8P/EZ+9KQKuAz+wSe8k+PatST5PNZI1DEounY6e3GHx99bf24VDNrta3VCJMwShZ0kIBmCHj71W+evve98nNfvf/aW5/nHQC6DQ9ddzO3bm7e61/8yS9dIvHDiIY+BOfLy4jLMaCLzgVE6OEWOF7HaIiAR4ErLuVgTyLdpS9s3DIc04+UoXgni13qw+IpUXcpHXtEDj2qLe92SDyKho8qzvjpwzv57sjRU5br8nW8uMcXCxD0mCLDy+HFJ3WIIh5BQeOrAyCC42d/6mOuDQEAJTGEkFXrwciy25X9nLPcLJvd398tVQOYwDHJ7XsfEuKbVy8/+fRbDoLEh90ukLs7MwOItaZuFhIeHqzbube7UqbdlKdM9dQvMhlR7xqtAadAnKZJMiGRQBjh6bxZbd0NWfLuirSfjyfhtD/sEPR0PE5TYSSz3ip6WJkLcZKcnYgRERyZEOMmOXGsp4dt2zYDkpyYMlKSlIW8CCIwoYerOVizHmFtoiBybxuR5N0eEEsCImZEAzQAQsLQ1o3zRJKNp3Io53WZpt2V0727mYHrUhG4dDNEslHdBkBEc+H3Pvfe+8+uWRISnTevXc2s1Wrm2hsRXh92BtSd3v/Sj959/I27j3/r4e40H2YEJE4iCVAOc2xrC/fdXFjIVAF8Wdf7u4fjeVlazyXnaTIHCsPrZ5AmCKBwpxwlmwnjRLwyeN3W07LkkrLk1WVrbSYAwPOpT6kRU8mC4ZwyLOtm+rBUEcmJra6H5IuRMEMI+GjmipuZVpr3+wws56WSR05ICC8/+djUnt/ezlMB8pZFIZkHMwFFRCh4bZaxTd0iM6WcC6GHctKx/Bi/I9qmxNo55wxhfTuvELs5McmldiTQzMK3aXdA5N762hoREuWUSkSgWTgEgtdzN+MshCGSU9+alCBRVzXVto1agSSivYU7EoUZCxGxCI4qHEcEZAhXayxCYdprFh8J/JwkCTajiROB1a5JBANarXdmwpIkIQCE50RlKoL0PZ+DnNKzZ89++atfrUvd1q6LhsPV7T6VoaLg2gCcgnHV3tRGCWeS5OaEkCT3btuy7abD1lYkRjJVTYUxo1M4xGYdN0wzoyB1XKKxyPl4Xk/NIpwogLPAZgYizHxz2J2ODyxcj62eta3Y18pyVZv/xT/353/mz/07b4562vq29XFKq1k3PZ8e7l/+dnx4O6p5fHh6zD1l8/Bwc76/fyt5J9nUQTIg8dBiPHCsNs1M+5rKrr35zbiMIaB1s15TAioZpTBnmtBO0Wrrx/NsnnOhvhVCZBJCIt7t9jJdBeCbNy9HIjgAHSACwZERFAwA2raup9Pp4dX11c3u6mba7ZEu1SjjTdTc2rbW9bScT8eHV9e3t9Giad36Q6CCAdFkRjmnnBM99nN6hOWspkgMQOfzEuBYZnfuGkAlOIWnhPOynZH95voqSD3bIV2be103ZHL3iI4AgOgaVFiYT+fzbt6Nt/ZW+7Y1QGYid8zdBXFcW4SrqZlblhSAN1c3U5m33iW8GXSHUvYzImgLt+Yh6GgOSAkQwqn3ptjzrohfXaX6cNdqCwAWGtALhCDvLKl77KbD7QdfqN/+xlKbEPWoVOR+bart4eG+u1OxVRfYCxN7d1227c3mHhaY50mSYJA17VvVrkTCROtp0X66Ojwz7RhZiALT7SEVAjVTYXdnAA4za+EdnQORISElADTcmp4gVnZEAsKw6EzUNt3tDwXnCAB3ZkZkZBKRQSRTb0ITAQZiTlnD+LFSFJGYLwUoPMo0kQBQmFISM6+tQgAAEpMkefXtX//we39ozoWY2vKw1A9KtQAsgiIyzfvDzYv7N5/m6UCcAnl39ez6+vbt21fD6G5uCGDaAWkq6frm2lVPy7lbRCAjSBZ3gIjW6tZ02xqnKZBr895XpA3chWLKgph5wlyOKWdCdG04DiBlSoWZuxmn7O7Wq/qw8gwtD1Sb9q7qpr01rW09PbytfTFMnaQwAjgDCQtSIHGEDr/1PB9EUiLige0ktN7d3Q0oCSK9vXtzOp2nkgHJlJezJnar50AKtyQoAGABHAjkPpo9HEFHGGcqkouoBbiVxGs3C6jbRlMuJQdQM1i36uaOVHv3vn74PVPf7O2xat/6ej6fH8yUiFx7rXWr1UADnShdX78gxrqcEJBTsWjbcpRUpnne7a9SKqatzNdlN+t2NvNqwegIKHlGKUFkXTW81WWa98KujqMgKU27PO/TNC3nc2/rcr4jek4Ebl2EU5lZknt3j2VZP/305dVhV8o8ETBYBy+lNO3H8yopTVfX07MXaXr99v7ICZE4CT88HF863hzm5fXHx4dTgLGUeX/Fks53nypkTFRyciAwd2uJ2dzzYGUhMg6XZBCBUIZwbRUI8jQxcat10Y6mPVCIUplf/sY/RflJYrlf2u//oS89+8DVYqsaZhEYgG8//tr3fP+PXu/KXPKlwap2M9UROQKgUGtB3rT3+7dvl3VRM+a0riunCTm/ePH881/80v/4f/6//pv/17/xtV/9FTXvbom4t9qizbsDGCzrNuYGgHR9OHzh85/73LOr/ZSP5/Xt/fFhWV+/eXM6nq1VkWSPjFiAQV7w3qqqM/O2VWEIc+vaVJfzMpYGqqa9I9G6NQsf0t66rkMcUbVaa1MduYMpZ2K+sEbdAZAkEXFrbd3i+Xsvcpm31l095ZTCnC7rLSJmCeqjxedSxeThRDyVgoSAKE4WoV0P0wxA63q2zcIaU4zGJw/PIkI7oVyuBBAioqQcYRfAsAOoM/PwCDqQags3ZHYAdScwIAz1Fm1UHFiENnPvwszMc5ENo9ZqgIlBOBBlGCbcnRMR8ZC6Rq8R0iivVEQgkTA/by0iWq29W19bV3/27LYgMbO5C9JM8rkPp22rx/O6bp1ZUio55QgrSTC61rbVvq2LEJXErfp7t9dAkkvpXUdUgUXCY13O824nKVmEmg09OAkGABtHwYEzcTN2Zuc5TYaWch6fCMIMRIEIjqZ99MH5UPQchKXkJJzG6KCBqy1ECYmn6fDjf+hnkqSr/b7V5dUn3yFkYiEWZRmnx34qt+9d//CP/8nT8U1J792dm7ZtO75ZFN57dvN3/s7/97/9H/yv/uP/6K+LcFfr7YKsvsiCbkjIyKYjVUfIY1jFuST1DqDgDsGUiJATZOFEjGaGGCIS6gGIhGYO7uBABCmlq8Ou12O/WCccPIhpJF1wvEUQ04VVhxEwzwUQJAsRqOq2rdMuPX/vRZnK27d3IuKIKUlKBdYVCRFJOLXee+vTNMkkrrqYvX04no7LOOVwfIwayGBy24VJNBbS0fsISOJQNxDDL6v7sTIfK/+42GJQEAcMG9TBPuMAevK8xGdX4p+5Jb7b3fOkrow7IAH8N0WlnqSAd3+N73ry8TxP7N9/8yv8jrt/t9bz2due3EPj7/YZUendkzxuDz6KPvhoGnp6aU8Rsyeh6h3J6PHmd9rWY/YI0av/84cX90sn9FqrmtfWzPqyjio6cbMODq6JmYlYuOT0D37L4zfOSaacRyjFe+vmGm6mFSPC+k987/759TyMWDQkH8fAAHCMi6smhlQDl4MJEAjIAPToEoJLas0fQdj4dCKNsrTBhrYIALdLV9vwFEV85ki+2xPxiHgEeGQJxSjlGrm9z0g/iEPGi3EVP/Jh8ahoXf4QPJ4eT9v12TPmUf16d6DgUUMaCbzHNN9F7AkMHDHfdxLl2DMS7mpenRXoVuhqylIO3Y1ovZozYxw38/BE7Ibz1e1HX9jPU/n1r/1mmuZ5N0/zgVNxADDLKRcRcDXVAANEd22tnx7uJ0FCmMsOEHdzDqPamplFoHpcFTR3wtgxNYBza0lSXVaIc54Kc3jobrcTSa1HbUtKvJ+yTBmBz+e1SLueSqK0HI91O4swcCF0NTttWpvP+30RQOu4n7fuCni4vkWkrdUUEOvaW+uAxFR2NxAA1nISFIlAoUGEQhIuJOZwevNyYk2cCLYkk2og8fl8igCCiLZCQuMCARYEcKEyBcT7N/lzLz7IZSo5pUSE9OKZ91Y/frMy6lpHlTkRs5ojgpp9+CN/9NW3vqbEy9YZqTBqq2pLIBFFTogITZEA+7KdH+7vHh4ezisg5im7WRLZT/vdPEseY1hz5Wp+3mrvWyKamDDCiBcnNkCMXUpuGojMNIr4WjeEAO9qjhSERIzEjCSer0I3aN261qoeerVLHz3bnZqdN6+1EvXbZ2U+HFqzu7u72tqRsbbZkacpnTdrTRGdRVJKwuzaJUndKgkjsncfzoVwztPsbtoWd0vzvmj1vtXetw4IyAxpLsgUpuamGkgxoaWckHLt3cytVcVAIiRIgtGWbXno2q4yX+9KALLESHebR/Ru7kzERMNqxIRJ2LWbxjyJmZlbACbCnLh3I2Rm974BsXZEoHXdOKeUcls7gUnapSkEL/MGJFaPTDhyokK4rb1MKaV0fXP1JfkiYXz161979fbeA3OW29sb3mGz7XzfMqZynZetu8YY+5AwROScmLDX2luLcE7psL/OOZ3XY/RaF01CIIFkWwtnn0OSU4xFo9b7u4e+ISJwKeg471JsmwbmXYGuiUU9eu/hnCdxjR/78u/7kz/9Z7/0Qz/2ydv1tNRu0XtvvZlq79t2Pv3av/6Fz3/+8zKsVXxBD4Rr62ooCA5Spt3Nw/3Lya8FyANYMpghjgtTd+1dG3Hajm+T3R9efKRthWpNYz2+zSL7/VwyMwWZQyn1cKP3D94dSAXiej9N+0k5tehIAJKn/SGfT6o9IH74K1/5o3/0J7/4fV+eph2xIICbdu3M8vZh/Wf/5B/+0i/+/PH+raozo5m6+7YuW93uXr/clqPalnI6r3fWT4sfMY5Z5mRXdatuUVLOc2EwZp7mCZHc4dXbt93aulSIAApETrmAM4Q0NUPr2xlzkozHekrCjvDm9NabSUa13rsKMzMhSgD22pIQIvZe1Ub0PNwMwCjl+4cjn84e/vzFC3fdtqWkcn1dDrv9vDskEQSgwJRyBBawBB29Xzq0I9ycwwCBCCyiYuKUaNphKgpSnSwuF85zSgiBAWRezdCQpl3a8fXz7dXLj1/fve2q+epwXk+nh/NW1cLmvdTaa7d5P+32+7IrOee2WV3Xdl5awLY29yaSGMmberh3JYCUEiLYgN2bM0SSxEQs4B6MgWZRjTLiGPllAXRHBTAENEBCg5HP6g4AtW7nWMr1IWE4E3OCQEK6+KQDci5C2dSJ0CMEyDEYkllPxDnnkYNmorALRoEQ1Ky3DvCIcAaI8LadRERS4pR2h5uu2rozRxJ2YBHaHW7WdVMLBvJgD0ISDw6A3nuYEUOYJyn7/TRlOZ9Oy/lMKTmktXdcq7u7+7actfemsTtgYkSkrgHgEHpaztdXO5Tp/rhdP//cOLENLE2pzJMFdIdskXgAcxyZHBDC3A2R0VRbr61pW+/evN22FWI7LSfiyPmQygwJgwyNRNLAKDqQmzOlkqaURYZ3BSHMkCinydmToOlaty0PNpwHENxcHwIA0AlHrIIEca09DDsEYhAKABFJKikJMwWGogeFzoXVWm969E4Ibl5KQodWN/eIIAi/Kul0fw+6aaut1q3WbVvHYTf3ktJaN23WtnWSG0GhQEdEpjnvHJbe+zTv5t2hzPsAB/O6nHHeU5qjr27uiARBDoDCSM1Dg5sp1EY4fBxBxMgJiZjLBGU7vT4/vDHVw9VtSqI99lOGy8qCc5K29bd39/NUd0VIKyLlaa7HU+2KtW/OL57dTrvDTvV4OgEEEgHT+eG+Ht9wdCOCkJwnFgHriIRSSpkI9NKyi+zIFAFwMb5BxEX9DpCx6mNRQFCjKUnKc+hYOohkJF7Pr9Xs2fOP1qpJ8s3eXt9vbl1DGZEgrm+ff8/han9945hP5w0hmKj31jswRTdj4CBndHT/rd/82suXrwCxtnZq8PzFB0DJ3K4Pe4D4K/+d/94//9ff+PTt+v61/D/+z/+xQV9rRc5X14fD4QA0IIfpvRe3Hzy/fXE1l0zXV/vrwz4gjqcPvvGtb3/86k1r3d20N3dXVUTsrQ2O7Gru7m5GhMfTcl63MBvOv0EvvpikmMYs10x9FCCaqXk82gHcLzFAJoZwZmHJQCiAGTFJqr3r2ztzv7o60P5AxGOhHTSGvZc5LoSPcaKISM5j4ZIwA2LVWvuKDmqrNgu1588OBdnCi0gp09Vul3IRRIrYzKz3rSsOlPKlLBAG1qYIscx13RJiBKgaczCImqkrXADzYObm1roKYWIUjApjzgDCDK5I4u4ebmbh4aaEiOOt2Uy7hquMxjPBuWTV3hqmUkD14Xi6ezi+eP78xfNnRJzLJCSZKE0W9HA+L/vDYdrN5t5637Y6kXqvx4fz29dvTfs0z8g0T/NhvydhU7u53qsFAG3bmkUcqWlo72GGxBFuQ8xAmEomwAhnZklCgJ4u40cmAgQevlAk92AmAgj3JyYOkwzHk7DsdujreWtGUkzbH/njf2WsTg+zvKm+OzxvdavrsdfVemWm3/N7ft9XftePffuTN8WO3rc3rz+9Mf/1X/3X3/vl3/Od3/xHL97/8+gbpKvb5+8/PLwZJGxi9nEFSAjAxDhGwkiAHKaOSNNU0iTuvq2jHX1YEYmRGdAfO09HCm/kl5/sDto68kDjAmAMJtRY6CJiuLsFMRGCj8GqR845ZUGEVpsRtq1FwOHmenc4vPrk1UgumlnOeUC9SRIQ9d7vX70ZKvSUpXZ1RDePAFOLMGaS4PAAAGJ2cyaCCBqmyvDWVYQZOOAycITLAnpkf8EfRSBE8nBzAzDYHgWg/386S7z79rtvG9LHZwwy+tjw9G/c+TOhq88gnB9vCXjs/Po3/ryTgfC7brwoC/jOPfRdP/Lf+CkXHed3CE/4O00n33X3gO/++7vNxcfHjskoXfQOAPiF++u789LVIbTW3nofgrgPbP74ONMgJLcuqdAoNCHWHgFOFK6DFbWNgHm4ReiM+tO/+8vh/m73D1HDL/AdeBJaLnG3eHLxwKX+HEbfGg6B5t0Li0eU1KNkeBFpkBF8QJBGDWA88qU/u2Me9/QAQzlAID6BiehRe8OLhkaXfRngFzIRxqi8H4kvioGSgCfNbSycLuyfi6Lj4/r0IjY9iZfweOPvPCHM4dEed9lgApCxIOOcpyQmk3okb4hsFg1KUDDVpp4Q5/1+3u+2Ze1GUyl+2UWOGIkgCaVcSHIWlpRqXYSAAKbdPk87D1XdEmMqstYWHiyJOXRrgHHuiIhJGFxb2wJIXVJOrffatTUV4lLK1dX1trbaKzztDauuupnf399/9AKePTscT7ytq3tv5pt6JwGObVvSfj5c34ZDnCsTUrSrBAVJ+PAQ1PQ0pUwARUYp9qG35hABqlvbFUaku/t6fX2TMXaHq2ibNTXcvblfe29ZSK13dbCOCNO+yHT94EN5Hi4s3IkdDs+DEqAYkICQECGVOX3xg/Sb3zhOWZATABKimod7EsG8WzqG9nk3z/MkRNZb00iFRGhrGrZJ6gb89rye1poLP+MpiImAbL2Z5tvrZyDsqkGiFglaolRKQQoY9Q2E4Zp2VzkV7VXdkJKbR++YYrw1m4O7I3hOKeWSc4KI02mt9wsxY1CzMFcWPG/2zbfb7mp3+/6e3frbt74tmPBkob3V3tO2MIGUA1CmZFC7eQezlJAkq3u1IO1CUDL27onRY7BOws0QJedo23E7n7dlaRqQZw7hZkCVWRAA3YK5bYp6RDo1x27RFLwuV1d5XxL16uZLa+uqfVs7xeHquuxmkITWmLH3cFXEwYzUoeCKJBomugDraqaICITM4qYYQYgkEn3FvkKidV231p5fHZIgN2vaCkHOE4cutZuDa5/3swNUc0YXNhTcxjiRZH84fPTRR69OL4/bkYP2+32wbtYm2F3NpW2NEh8oqRoCmoa5SkqSeJ+LeuQpE0E47efdpttxObW2AaGXAKWwRpykZEMgjN42clrQ1MgRyCzPkhvMcwGC6pBEuvq0m7tL72DavvLlH/wP/8P/2Yff88X7c3/5dlmb1dZ7771t63K6e/Pp137pH7/+5Nvf+5Uf/fDD78llQkLtOhK6ZgaIgG7mRJB3V+/l9OrTb4lpypUkE+cB1u21umsAnu5e9rtv7ed8+/wDoQzqp+OpBa/r29aNoTJ4Jk7EV1c3ZAEIBJYkDtN088GHZ6WzoZbiIKmUaco/9Yd++if/2E9P++uqURXaFgBKF1cwLpvTdLj54Pt++me/8qu//Itf/cX/clvP63J+8/rleTmeHu7UlDGub65IQnXbejPqRB4OtpmpAsBWO4aWnHdTuejxiJxI0bw7MaU8l1IiQm1LUphYOPXeEqBgcYUAKLJ7aCcIbbC4G2Axl+HLm6fdMJ8joFo31dZtWLOJsCQmYjW3gNPpFK6l5Hm3G/p/a1uSg0NMInOeuhmYRl+ba0oFOYFZmDoAcyB4xmBwJwHJkvO6rtU85VkIpOSt9RqY5zlxEioQft762upud3t921qtn/z2N6wtvfXTm3sISDuimtbjti4N1s3fnsEVEaHsR3DCdCxGzYJSQrtM8pBFhlRnOgpx2cyYRcDZ3FQRPBAFp6AOakTEaecILJZBSXoomYdqJ8gUQijgbTttCy+319eMRkRM6RJ3QkZmcwf33tqFIRKBIUKEIZIYAYgTA5g7MgGAeZCgaQRceuVJGGJcFBCiAEliSSmHe4CbmSqZBBNxynnaO6AFqfla2+vXL9UUw8JCTQVgdHJNObW2rdvWLYQIGQFR1UTQ1S6Igxgmk0ACZu7atTUSMaJ1WYhk3h/CLcA6xD7vENh7czeixIlCFcB99JqEAoBq63Vdt348refT/batoZtIB+4RTHQpCDLTBAkubEpUtQgoebef9ghOEKPag0zRg0bFrNn5fO6tuZs5eTgO8gwREYlQIsqJ3CN1XXsDTpILSQ5idaSI9IiAUIsISEzXu3Q8rQEQ7urutfau2nqEF5kBGYl6XYViv5tb2wLA/DJQ9gjt3aovp6pmgV5yCfe2rnmaAJFZyjQN9YeYR/OXbttZLTCYKFtMu4NaB/eI3nvbzg/dqexvJU/aV93O7iYJiDDcFQIRUznU5WFbToixP1yPkJwgE2MECO/n/V5bP5/ueltB1dz3O0PEq9sbYiHk8/lEEO7GoAmxajftEu7aAD2xADITa+9WV+9byTtJguOEDy4lO7IHsgxzG0MEJ+mtDR2cEN25dzN3a9XNiGjaHcaKkAgd4uGbv/LeRz+gDlvrd68/SYf3EC+y8rLVAArAui2cAQmE0zwhAHTtXaEkQUIPKDmbbdv5Yfn0616X47I650/UmHCt24fvPb86zKVMP/ZDX/j6b339e3/4D3ztD//UP/3HP58h5d3uvfc/nOdCnMKdc77ez89urwkUiKXk2RNEn3eHeS67eff1b337dF5ra6pGxIhcpkKMvfe3bx9aq621MZAbq3dEBEN3Mw9VJWLUy1Jp8JXN3C9GilEZ4xHgZvO82+1227bkPOUyE9K6nltrEbEsS3hM0yypEMkIFhhCb8O2GW7eR4dRAAAwMzMBQGAIi6l6VyTdTzuI5MWv5t2o6BJJu6mYeSpZRNzcwxnAzFSdmHJKxGSqqsYXQ5Azci6ZiNxsLLNMFRDAR+7NAAkJCUS11d4gM402YRYzj8AsoCMsYuDhQE7D9RdjRI2SkqkjBIQnYWFiyvOU12Zqnlu/fzh/++NP3t6fnj17/uy55MKZOaK3Wt2dJa3rtp6XAFjW+vzmkDm2bb27u0OArdZUJiRigqmkdH112M9aa6818pynOSSdzqvXQ0bfutZLIT25eWYppUyl5JxSLrXV5fjAIq31CODhR2UmYoIQFggwaxCBBAFGSO7mquMynBwimISswff/8O+3XrPw1j1oomTROnJKBRHp5nr/Qz/yo9/89O60bADhYX3bjA//4r/6T7/0I3/gO9/42ld+v4WeP/7kkz/2M//2//tv/Y1hZyEEJDQHRpSElECYeiVkJqEw71XPd8u0L2GRaYoSan2sdNUNEUXEw4bFnhACo/Ue5pkhdIAYe68e4SNWJiBD6AwIH85ADAcn4wCSlInY1LQ3xPFWFIdnh/3V9fm8nM8bC43pnnkTzrvrnZtr79a7q1vYclxYBAhN3Udn2ejAg3APIvcIZg7zGoEAIszCiGHew8PImRkQPJAGd8ovokPECOMHAg4SEDSH5o8jWXi3VL8IOk9miu/WQT67+n8sTP+Mseay/r5EIt+twZ/Egs8+w2flGPyMlvSZONW7u8Vnb7p89xQW+ze1o6EfPP2Ed5LHZ5/nIvx+1494Epvw8cb4LrfP4z0HBMpHn/rYzl95c3uucV4q4YBtNzXvauZh471sGEEJERkA3fuUxIHcDSDCvXV1a7131z7a38PMw3/2Jz56t9djBJsQ4J3EM5wwl6zWZ/4DfMy8DYUlgEd+C5/u8bTz4rMH6rEVLYKQh0R6GeY92oIefT1DOfKLhv50Ozwil+Lp9HhiYj8JMZcTDp824uL3waez6TMH7dHedHn6p/xafNfZcYmL4WdeFtF3g4MQEECEEHOemNXBAVd13SpHiG3gjoidiYlESpY0panhpr1znkoaw0/SbsTMKfXtvIQ1JmHA0F7Xad5BGE9zzjnVra2LuXUzHvVjhJTI3FMi5FTr5l2ZJbMgQRZxrcTiwrVCqDFAyuhYhua+bo1H6Z/78XiS0NurHSJzFvJOmHgu/vCQD8U117rI6ZhSkSTa6nTYEamu9XzatGlOmVLxsGq9L8uU01zyVpu6lsQOAVajV60nIBY03s9IZAZSUspJtyWJWBjnqdb66vXx8+8LRTfPxEIAripzqRbiRA6ugAQsPM4UkukL3/PhN771nf3uqvbeuiFgMHnv40CVaZfz1GpXCkTMmRlsq9Z6C3Nezlvv9w/reVmy4PNnV1MuhkyUmHN1Rg2SbMNXRiKEOeXaetUuTJMQdut1hRFHHCCQzNovn9hoJoQUsAX0bkkcSSJgf81EkphHx3DvvXVHxHbc7k/bbr8lgKgtEM/fuX84Ho/rRiLznGW6Odw+AyBetzBta2c9y7LWCMAkTAFY18oewoIi5L2FJfQsqE7WMdzO6/pwPCPnfUFE6A64LQYBxCCFEWWfrbXeuxr0oKbWrEc9RiHZXVGZj6d2robhV1N5/vwmOLu2cDNjUx1J0jQlBIjwqeRwCxi2UXNXoVAPGCxDgJKz904E5tpaTTlvy5rKruR0OMzruh5bZ6LWFbybB6AA4rIshIwY1OqYGpWyQ0QW9sDnz26/9wuff/nm1epm0SFRIsqQKA/eCvWmueScBALDYyp5v5v30w6Zt219/ebNtlaSMFAgJIZUpC4tWN0bESEZIQMgOW0IbenzYW5ra6e23x0Ot3vGMKSoPULDbdpPYSLd/+q//e/+u3/lr709bh+/Pq7Ne0hrrbWtrue7N5/+0j/9r77xa/9qmnfvf/DBl77vy6UUjwt4zcclg4e7EkUgmTsRl93+81/4vo8//uZ6bpJLANRaj6d2dX1V776jvfZtcQ+CKz5VKrzVbTndqwOl3bk5IAFSkR1D62ap5F4ruuVcrm6uyuFKbj6vx3pePRH+8T/8E1/5oR9etnaq+vp0tzRXBxHazdOU8/A9NIvzsnrgB5/7HOaf/Jf/6O98/K2vH49v7x7eYIKUSMRDEZnmq2sAI9+29Z585p4A4PBih0j11Hv3vtZmtrSGxKrqHoh5nmUAahmMhJmyeldFAEcKJgR179TNo63QPZcJSaqto86JMEzP2gGBrvZ7ET6dlwjMGdbaTLsDLMtydX2Tmdet9lolMwGeT6cVzp+8/PTq+ub6Zru9vk1MwoKctbbeNSFCMFh4qIIJICJlQPIeQGHuvQ8iT13O6eoQyG/evN6akpRnVy9yKbxWbU2tuet5M6b87Nnz3vvrfn798StTLbMkCY+m1jnc1ao2axtiSgaJBQKYUbWVXJBYfdgALxxYEcIAFEo5aW0pJQAkEXa33qPXqh2Ic85ORixpug0KtXXDBwfNJbOCh5CRNgRnb2lTff3mTSnp5uoagZIkDTAlJkYcBupIOaVcABC0GpK7EzMijQ94jwAHd0VmYR4YBqQxWAqmMbe0JAWIxi84QCCiqgqzeQSSoyCg5HJeO1g09V/+1//KzVwVAEeNNISLIEoSycu6WhBwdiC0noRLyQjQa0Xh3TTvWQDJHFwNggCQieapEFFvqyEQQpp3zKS9OooHd2tMLDkTgoF6oI3ZmLtpW6sej8e74/nt/cP5eL69OiBz9erk6lGgk/gA00Yy8w5IxKLWhVL5/9H1Z72yNGt6GPZOEZGZVbWGPXzDmU93HzaHHkiKFCQ2JVEiKQMSLN0YJgz40vAkwL4wfGP/A/8AXxnwhWADFmzIlGFLMG1TECVKougmm+xmD6f7nD7zN+xhrVVVmRkR7+CLrLX23qfpBey9VmVmZUZlZGXG+8QzcE5CCEKEJSdmcrUtrgvB1vV4Oh49gDgBBiN5ALPwVsjwlmftACBJqCsyb/O+wsyMBAFhrSsid/Xt2VoYfZBl1bXVBBG+wWGqamvF3W7yAKQopdBYEOxVbzpOm1tk7+qATAuqR8MXX305jmNdF5I8TAe1OFyPCEEi29xymPkmAEfs2t09iyzrWoYpvMPFeilYUhkGkeLWHTGAIiDMe+sOisgBIKloX093bwR9uLrCKDlnt76uPZCFJWXa7a+X9by20+FwI3lgivPxfjfJMEprvpzn3toup7YuTHRze5OYs68/+dnPels4j4qAYevxiAiIbr3lJAzROAHnAKhNCwAzb/KgMIvwJIyIjL6lXoN7awpmLFxKCkpL6711Qoz589PrH+f987/79//Rr//KL6PraV72o6i2h7vXeTyclzpFpC0kjkCEx7EkFYBgJhEZEjBhlsO/+m/8jf/oP/j8bj4DhPdWf/Bb33vzs7dvvvn645fPbm5fvHjx4vnt177x9QHX3X6Xy5AHunn2Yn/zbDcNquoBHD5k2U1lPlZzNHeQYTk1QAPir3z60bjb/aN/+rt3b9+y5N2u7A/XLJstDuz218syH4/HV6++rE0JgAjs4qFBquabxIkZtiwYtc0IebN+2557LEK0KRZBe1/XmnPJOW3shgg/n87ufn11XYYhgLpHIfAAbd2tubkFBOCG/iBRIkopEVGE996aVnLIRNN0PY3DlhpUJEHYJmGoTYW5d11quxiJRgBSxHZr2rQ0cAnpdHN35tiC9QhhIxWCO13sVqGruSsxIqAINY3eekoc4V3DzZgwmMyNEFHYzDY3T4gws3AXkSRc0ujW3Q2ImIglHXKieTmvXcaBiB5O89v7u3mp98fTzfXVOE3CtK7Lq9ev52Uh4pQSs9w/HO/vp5urnaqVzAB0fzqn7qreuj7nNO4z9I5gEQpJ8lBMbZ9x99VPlvXmizdv706LA7JI185ICKGtmfZ1WQGxNSVzZoaIlIRl80WnxOJm7kqIxAzguDlQeCgYIoZFSjl36wDXzz6RlNf5jMRLg963mQVHFMmcRb7xzV/8/k/frr1r7xCubbV23pVhPR9/9N1/cnj21bvXn73+2Q+vP/6lm6985+VXvvXjH/4hEW5lJ2yBdIlpdGtOhOY9AtwRAura3Tww9te7VGRtVc1Bw2rjgSLc3MwNehgab5SigATSmpmpY2urbU5TLAKAbgjgFsGIm5SeaZOD0WYWvj3+AkJVy5h3V3sHXM5LXap7HK5HFgSPME05Wbd1WdrSrHWPmG1OWcpuMN/MexwRN10qQLh7b93ZzEJ726YJJEkakqmGbOnXiZAA3AI2CaRv+e/umwGOg2/8IFAHdXCHd2BNXLLSn14+Fu7vF+OPIM+lhn9v3Z9UZH1Ixnha8nMbPtX/T6X9B9jQe/t5n6/z/s8/HwB6H6y6AAL4AaXogmk8UU0eG/MeWvT+qn/uZ9mIOAFzTT95sIfT2U1Ne28NEFSfDJj4AllsPutuQZDCjdCA1MAc1A0Ce6tuptrDO0Sw8Dd2/EtffbZRb55MjCI+aOYG5GzYCT7FZz3+iwuscoFQ8PHjb8ve0TUfO+3RLAgeT9PGKH1CBWMLxNvQnU2ARo9OTXBh419EXk+nL7YMxKcefgfhPL7+uXP6PhD4c3jQ+/38GNf2c/3ynkoM8P0ksscfacBEZBCrwTSm3VjM/X5uYEXa3brMzUnyJDl3bQ/3X6r2w9XevHIa99e3IlnNtxz36foZISCQeQtd1bS29tGQM/NyXpbjQ1iDMEms3VezaUhMMJ/XPExtbWY6ZMlDIWZC8oic20aUMNUog2RGZ22LQAwpQ+g6n12bJDHgu/M6DENOYt03zmo9a1uW88OKnCiUtQ/sN2XyJNHm+3X1NHBC8WDGQFP3nMtuvw8DtUCKTDTkkhhD56sdqDtgioj9NKj6ot3WBQCHYQzJ8XCMrnlICePcVqmvNO9g8z0BdyxrCxZHdAkKdADLibIwIkgevvm1T+6Oa0OCMA1nACecj/elEDu4qSTB0F5bVcsMAZAQPSUTWdeHujZ3740ck5V9AJNkZnLvpo3BwJCnAQPm5QwQmaCHe9cgwVAwrF6RCAn7qoKYMwtBmCFKrdVdiThlYcK94DDIXPvpdA7hIYkUFueleWvVIRDxdHffu4Kruy/rel4755zHMYiXWmU5ogyBcHuz8305nZbjeYGmecySM0Cca/WI6x2z8LI0keQkrspQQ5g5FcljTkESEevxYRzySoIiIiTuWQDczLUuy8PdXVXrgZJ3WrICj9B9bk2h7A6fvrz99Pl13g1Lt24dXL2zm0KE8OYG4JJSErFudVk4UWba9PwMaBARLpKYCSCh61KbOeTe1XFgVvVWe1sqAq5rFZEt8gw5ANCaEfumIGdWkZxLrq1pXbq6MCbO4zjUdtxdZRclzd0bGDRfzl/2RKnV+vGnLw/7PQR5GAASyliSu7t57/VutmHI18+vXIe61AX0cIuIlnNGRgLsGlRG9CUUKMNhP8zh034HBqfzDMElkSl4QmdgpP/5/+x/+Wd/5S/cnet57bVHM2jaelvv37z6g9/6+z/83u+32lyV0b/1nT93dXUTAO4GwQ4GwHpJXg/3DoREKcAcyIL21x9t1tG9LWbx7KNP11ffg3qfOVFO3eP+eO4OlApGkGsRKvmwG0u4eXgHOgPXAEaW3Q4R8jjI7Qvb3XQen3388te/9pWb25dL7Z+9Pp6Xfp7XLZxF2yIplzLu97v9bix5eP1QIfTFs+u/+//8v/7Sr/0ru9tPH37nH65WEVGCp93uYoqO4MSbRzBHoxZIJIWRMJcSHn2Neu5RoXVn4m2WIKUU3cMUvROjUNnv9vO6zNEazYfxZizDcl5gMUdySWo+DjnLrq9koczUaw+I3ubEqeRMykxyczMAUJ4X1e4R67Iu6yJEpoZEEECcCAAYM42IPJ/Pprbpn3MqANyihrtriwCSnPKA4QrA4UHZ0wAQru389su2LnW+7/MbSmVpjiQpwMNsXbIu2FdOOQ95OZ2gR8r5q1/56rNW5y8f7uvx6sUOzYGCQd6c7+4fTte3jBQBmECJM1jPOZWyM4cAas0lMSKmIBRU6+59ylclJWt9g4WQhTjLVXbTdn47z/d53CMxswCl7uqg3p0wI1EqwsSYAAr1c6zHjond1of7+6vpan99HW5kppsLpgchEwkCsYiZb98yC0uStkfuZvWakgQCscTm1+KRctFNEqLGCOExHq4RGZGIOYuUIu5bigTV5sjAQT0kQNeqa7M/+Ge/ySymG3WOCHDL49mNZb/fL00t2ibWC9eRhTkjIrKgOrLkXMyRAIjIItCg5OmCbgS29Xx64P3hACmH2/F4b5FM2zSkcFOI1tQBkTm0L3Wdj8c39w8/+PFPT61Wa9jkan8QTmZsgcHAgilx4mEbMHkoc1FtYCaIaKqt5TIyCwCvVVvXrmbaw/vpdDbbxk2Y0kZKZ5KMyDkhbxmRbrmkYaRAgVQQaSg8ZgkAU52rbu78AMgs4RpumcES1lrNnRCFKTEi0Gbq5REllzwMDN4kEcY45M3vNiXfcqCY8Gq/yzlpq6UMCOCBEAaxzeQiIIW5EwGw7CbVFq2Bu7qbwvL2S3ocaFo4otflqDxDmKQBEllYtEpsDkickXDzebFeX/30j6F/DN7TsNO6IkJwJpHWuqmdTwsCsaRxGgDAPD7/4rPDmPfTOM9zKUMaJPJE5iMhRe+rXt28cNW7N1+aKeFlGE1hASmCAYKJLjWW2brWoeS6qjokQo+AxDlRreYemQnQTZ1TZgSCWOqCKJISASDL2z/6L29+6TckDf/4n/z2d779tY9ffhTelnU+nU4DlG5gqkSLTM+34kuEtwIbAJJs2ARlGQSv//Jf/Wt/+//4v0cS9dbM/M1Pjq9+9NM/2D//6i987Vu/9M1vfP3ly+e7uda1btS66epWpqsajuDXuyEJsvDD6Xh+uF+XZsRLuyQ6EMLAdnWY/sx3fuHHP/lpAKQ8MEtEBFJOyRzKMBwOh+vD1as3r06nc62t6wpERIAXNAjMjJHcwX0T9tI2ykdAJg4g7S6Jp2m3uT0eTyckMtV5XplxHHfTuNtCwYgA3cyw917nc0S4m0jaXMCICBDcoffmbvM8h9vHHz/fT7vaOjKTJA50V0R0xyfLk4BNPbY9iwMiRGQYhvaAEZ4kIYhH+Gbxi0AMBGHamBm3AgbR42ImsZktmiKCI23DxogANa/dTdXMAAZkRoDHwORLdcKEsdH8CJFpkAEguhoAECIT7YZCiEvVw27MOQvJm7v7Lz4/vX3zehjG/X5qtS7LDIGqWmsl4ofjw9u3fLw+fPT85tOPX9ba5rU+HI/NPBBvnyEha++b/BMIzYKF3SgxF9kxxlCGt6eZWHKScRzd/Kc/+Yluuj1ENyulXB12KUlKQsyAwIjC3N2ECQk8bOMZMLKDMWf1AHSRlIrVZf3GL/y6aWcGB6ltVQc1jyCIEObdfsTx2bp9u9y0LdbX093nztO3/9xv/H//0//Lv/bv/g+/+NEftNb/43//f5OG8fWXPzO3MmRJsi41LCAJCqh5PdVwT2NiYfToABBQaydCCMwpEXHtrYc64wbyalcgVzNhdgtzB4Da6um4GJikmOcOvuVisnkQk7ohANDGXdi8bLGurc0dLxPV2bSTcBkHJNaup/vTfFp3+yGl5F6ZtlsNiEhd2sZCEk5jGaB5FE/Mh92o596bIRJCbJEFgODupmbmRORhDh7kSKhuBOi9E9BW3W/kO1VDhPBA4m0FEjETmMNFVflBaXzhszxaDD1V6BfZ07sa+1ElhU8GzRfEIH6uUo8Pt4f3Nt0yw99Hex7/johHaSHABxSgd5DU45vwkcH04c4/gJU2jO7RquhxLxc4Ch+JMPjeDt/xgN77+Tmk6RHvwIA/Oo53D8f7+7vdmGttzGQXCuGF0w0bAuKBsFFl3AN6a4Fkl44E2yiP1jbSfKCr2n/7L/9iXCy+4RKmFQDwzr/78fV7jCV/4us8kageO/apQy6UnEcC04XdE5dGX9Rgj0DRE4r0yP15AmneI+W8w9wukcGPAXFPDX3s8svlgO+urPfAvSfXoPd7/P0EeNyAX7pkiBG+g3vi53rovd7/kMglQ0luvRsiRgDVSMJwKP3u2Krn1Zq7TyldXV0fDleS6HS8t76GmzDTBfcVxGDJtcfhsKfo0bWqdEdd1r7FVbqJIOVxnY9qvkFl2ipoZ/RWVwsw82NbpLaxZCLZpqG6qqkNiQH87d0xzIkJgHtfU0qSS7UG4FPOBhQkgFYyA5WmahFmjQC1tWEaUIaKFF21mzM3GNbjjCzMQyBYIAJTgPfugQCQMkJId3cA4pzKuBdaW2092jrvpl3KSVV7t27GsM2HKBEHkAVtrpxMpGCh0LoDGazdAqdRgIAwOLF6MAGiIA/Prjnu51o9PDQAut796HdNIRDIDCHUoUw7nc/n+ZRKASROmQDUoHv3CCqpRbLVwvpQnHZjygNk4DyUlMeSwbsRW2s5K6fDUrsBErUCbkggCQC1q7kNknZX+/N5qd0gHLb5zY7s3ItMvH7zeqKPPjl3vz+ezssyd0dkR/NtvljbfDrfnxdCm8by8uVtdyYWSTkAtdY6V+0+jrkIlyzqw+IICNpbEiHkZW3rWq92Y1fNmVmSYSzdEhMzXN3epJzmZengEGqRmSmllJMwYXhzh2VeHu7fHhcN9+YuBsQkUMACiREDIw6HAcugQG49gEw7eMKILEgQ3ntAAKGFQTiiU4AFhgWyIIPWqrUNw7ClaKNbKrshsaQ8jogAZtZ7rK211nPO5rGxZBEhp7xCRwj1QMAkWXLuqsJiAOf5tLoNPO7H3aJLg9VXq7pqRSK0htaMCfKYap9TJZFsHowl58RIRCiSUTDCFSp1YsnB7fqZ5AGsEV3hANI4LLD3M84uIanFVIimaVlX6KuEsEAZd/NCNLKMw//0f/C/yNPt528eTnNbqjpga6219rM//p27z37w/OZ69yt/QZ3+8Hd/86//G3+twZRK9oCuCuhb0AlAbJYKm80acYQ5BAExSoEABI1ux89///UPfmcYCnqX5MyiEAix1mUM2O136frmdP/a+oL7vfPogceHt23uKe1PVoUTojy//uir3/7OV77x7avrm6X68bx8/nae1zavtXZ17bWtf///8x/909/6+7fPXv75v/gvf/Ubv3x7+6JM+93h2d/7f/+HH33y9a/84p///u/9QxTGscDSp92+lEzowEJMZTcwbRFHnpiIgskBwnqr0njkCOqLXzR66K01dy/DkJhEGDFFOGbGFubUHZgKcVEKI6jnNYmkBBBxPh4XprquknM4kKApmSMRHM/rYTeO42hmyHS136116aoQQ4TV1mqtxNi7mIUQ7fa7Z89vAVF7X+d5yoKARLTfH2wYtiAkvGiVUoRZW1d3ogxIyIlTjvVIthBByolTDsHrw2G/G3cTIxK0cclCww6YwQIToVWwPu12f/pP/+kff/GjyPFwfxyHLMEWITmub6/XhwWNhEnDOUkqoDXMAhlICJDcjRIgcdfuERutW1JGiJTEAyQl4sxlJHTVKnkaD7dZeD49gKMG5iTEA0REWG/uc5CMlBoCuilnev3mTaJxf/vxOA6EHkBdu7barTPxZhQY4czp0TqQIdwdAnAzdQvYuCDb8CXILQLokg0Wbj7tnwHxpu9AJmZmTh64th6IFmBm59PCwlXtN//B31vXygQ5s5tTwtAApFTGTz75qiQ+He/XZSYuzAIkXQ1JmUXyAJhwi6pGDPfWqmsvCRFoXufWNSJM6xc/+/F82pUyAnir1SBE0jnl+ZQTUybIibrFMp9evX719v7u/v74gx995gLPP7r14LlqCpcygvZUXMqQ81TS3kxda7gjhGlLwgJbzYhbCHNEsCRvvbVmbQldTbu6E1IukpgYwUEMJYAdIrFYoAcGsCPmkoHEIhgJYCMGIUlCiEBJOaecwXVdwywiNAIYkZMk4ZwIAS2QOZk1JGptDdW6ngEcw6O7A7RmptZbd4dh3E3jrmwRdVvEDqC7ShJiDjckzuN+bTUC27IAGIajG6dBOLV6dO2tNRaOWl27qyIxp1HyiCQWPQyYU1j3TXvu3XX1Vr/42Y+P93dcJqCUSxnHEQBCdV5mJhqyLPM5CYkwhouUn/70s91Yxt2Up4lL9nkmVAk9L+t5rlfXtwlBOD777AuAcDVHYTAOjEBmImIhFCJ3DvfT8QQIZhs1H1Kk2THCODH0Hu7MEu4apkEORExZGAGApGt/8/v/2fM/89eG/dVq7ABg/Sc/+j4Re/ja+nw6Xt08o4CtqLuEsyAKcyAQo4cHMMnwrV/4zkdf/frx7ohcrd8ZAoq4dgxq+eVv/fbvfvubX7+93v3oxz8GpHF/GMbJVJuarmvOiVM6PRx7Xd1D1968d4v+WBucw25Nb28OZh8fH+6BUwS6dY/QjojgaoA47aZP8qet9fvj8c3r1+fz2dQ2axF3v8w3hzMRIhBzhG/pH44OAe6WKZnqvJwlcZjd3d2bmZtfHXbDOA7DuAFA4B7EvVt4pJzNVFA8Nv37pjtzRGy1M8FuGDiN47jb1Eq1KQYCOD0WqSWnDTd+dG81M5ONbsNUygDhQAkCU0kR0XWzTrlUEu6um0WOGSGmVHpXfdSCkWwiXBeRLBwQ2C5pVB6B2KZxAIQtDS2lxDkRkpsjU0C0rm5AJacshTds3RkIAMdxSKLNgpjp9ur29ur+4fTTz798++Z8PKacUk6pq27Upd6ah0PO87LcH1MRJMTDNJzOs6uXYaceba3rUk2BUwlA7V0kM2+a/ig5ffSsrGrzUpk5C5ex9GeHV28fzmtj4lJKKRs8R8wswlv5SoiJaYseQw+H2OyBNlPkUDML83DAULu6un14ePPyxSddvfduvcUWFpnGscjtR19b18U3D39X0xpuQvBf/53/w3j45NXPfvif/u3/3f2rnxKiuy/reesaVucUJNSt116NyUxb68Q8HRIgLq15+FYui2TrXpcWjm6eUMr1AUDrOsOGrTAws7ttZbSpzfOKbMTJzBkZgLrphjTgxvdxFybYBslN13ONCHRkoYgwj/00IKKHr+c6H5fDfnr50Yv9bhDm8/LQzKxGLoVvhfwqQQaL3TSS0KK1g+bdDm/xzZuH2jozbzSNMN+yLAPA3YlJ1ZEhlWSmGpsQnOBRbIiw8fY3oltAABEhhqS0BYSZfUCtiEc2yc/X4P8cMMSf5Dvv8XPevXofKnqChy7YwSOasG39lKX+iNfE09ufoKgnI5knqOeJqYOP8AC+w4TiPf7PY5MQLmlY9ug3/f7/T6AEvfdBEOBRQ3XZ289bDl0O0YxfnfpxXt+8edsGSGUyBWZxv3gybd5M22nFy9mNALRwVdWuDnQJZnEH5AADCAT89a9fTUN6D3O5iLzesVweEY73Om+jV14+VjwufO8fvPf74qm8fUC77Bh8i2jc+uPxQJeO89iweNxUSJuwzx+RnJ/n7fwcOvf+advO76XX3uu6R4jv3dUQ8HQZPWFzHojvbfS4s/cPfgGLLljY+40CWc9nd0dOm/WDGpgZB+13w7LEWsVcPZAIkzDQ4HYyVUIq444kc5nQXbsy07QvLNKqZkkTDrqee1u+/PJ1a5YSs2xz5bysq6TMOTdtXQM4o6owjdME6JlwEGS0plgB61oZIpVMwoK+CdiZsJQiZSBp2pt7b7174Js3b25vrhDcW5UAkcyHKzPtvRMGIp5m3aW4vtnNMPWHh7r2/WDE0h0RSEpGxNqqqgZASTmJuNbeWkmMgG+WjqaHqbRlcQ7gEQDLOLB6X9eMZok1wNzMHIdnm5f+Bq11c1QHtAAF6t3CBrK5D5mZghHcMAxubm6Op7lu5FBtcfe9FzcDMbXz2cHLMECwJCnT3hyDAQK6upurETLvr66BOaeEOSLCtDNhOJQSh6mIcK1GiA5oGmoabggOxBmDEzhFtwACBFpbLx7jtKdl7nWpbVV3RkyYTmf02KWr/QCiPiP4NBUUOp9XZgo1BCsUKvAQMTdLU6Y8jJxU3SxyZsiT6OaR7Q4oebgZptL89es7HVJKQsIe7KpLU1MnBHdUx5QG8JqJMHNdYp7nufZnV7uUWHKWJMgc1sKDIRg8Sbq9LoHUDdwDw601zhMzOZgI3z8sND1nQwtsdeldiRxDAMDczQ0hmhtDIJIQEiIiqXl4D4SN7LpGqHopuRDs95MIX988u7u7W1qPALNOYUwcgOqRkyCLMFFKI+dwp7puN1eL6K3lnBlxN5aHh+PD8UGj5pHPdXHsbQ0SbAvpmYi4uQrC+XxEwqFEojEnIYh5WcxMBi4walRAdLfzw/24ozyMECjALKBgq/a2OAOUKJRwmdfEkHbDUuchs88+jsKFpjSm6fa//7f+J6vx2zfH2swcam+9tzef/+iLH/xOb/X66uWwO+yuyrn2v/43/sa4f4bq7rGZYjIhCgPE5qofFxAYwo1om0EiJOnWW+vL8a3X47quAC6pmDr2xQECOFNS62aGbZGcADRkhMDQroEKnFMeuDz/6JNf/fW/+Mmn39gyen/0xcNadW29Nmu6NcvevPrsP/nb//4Pf/Tdti7H4/3ruy8Pt7cj52dXL//Sb/ybf/lf+Xf+g//t//rf/O/+e8eHt4fb57tnL2gevFVU6+FIIBGIDABMJDJAYsM1WSGQVVezxiJckJkRmFgCsLXeewcIniaSUnvDUiywBypyylMgQEhflYlNkuSSh+Kmqr7WBREhYFlXxDCNxJmJp3GMgNZ7AAzsvTWM2I3jOKB5vL27i2V1iN5W633zN00pCRMSLnXZjTuI2BwZmNmIHnWpGVk8CEjVarc1ZjVzGQ7TUHZXt73NKDnvrq9Tfn49am9NbbefLIX7uS0zpSLDRHytdRGfU/RvfnPiMf/hD/5gndckmAD2V+P++SQsWVaWHCCJEyScpny3zts4LwKAACgYQThBBCFpN9wqR0BmYeScEyAGIZRR8gju5hEoxMwIYomYhwGHkjzgLtqbn95j7qBIG4UH0Br84fe+V4bpa9/6hXHaM/NQJi9a69lNXdVMN8UWbpcxdkkZgIQJEM00IMB8K58QQVUREJm3iacA2N+88Ms4Y9PQhCQARECqTdfaa13ANQXcvX37ve/+tjDHln6CwETD4XD97OXzFy9urg5vv/wZAY7TjiV5hHfrdSEM8xTAvkWgQbR6ZsQkjAi5pHV+WOZZI8LhdLx79eWrnCTl1FrNE1EidAmgMgoFJAZdrfeo6/Ll29dQoN43ijidl3IsV9O1hd+9efONr318c/VyieM4HJIMwsndXbdveGMmRuJw4IFZBkksCRDc9SIjWmfva28NiMpUdvuDbBbRAPNqTSMAWjf3ABBkQYBSclxCfdiA1XtiIgAK75wkFRZZFl2bmTqglIGHoUhKzLjZ5INHVw/HLz//DN1Mm2k7n5epSIS1ta+1Pzyc7h9O++vbF598cvvsmUgOYvDAIAAP6yQZiQKIJEdAb7W3RduCYVssEwBSyimPzgqbQUy4ObgHIQin2Ea6wB5O0JATIDKQozJnTO5u6zpj7wFpzeV8Ph2Px6urwzhNQsRMbmrBDATE4zjo7a3WutQWb17R7S1a7/ODhVcFyeU0L+Q6jbtPXtx88fkXc23ARQAN2EA5RNBQcEgcQB6xUTUYwgNV1a0ZUs4iTO4QJCkxEmkwIW43dwDQAG+rmksa6/EOkOv1zasvv/zsh7//+Wc/e/HRx0FrbU1SPvCg5iyyOYKoGyE7AiG7R87i4UkyluFv/rv/vR98sYK1Xpf7L3/8w+/9/rL29Pybv/tP/iGjv339xcB2PJ0Qtr6J3qppL0MJkGW1u4eF0MBNHdRsC4YHTrrZi2q9PZTDblzXZT7PkjJLZmL3qK27qQMCIHHihPv9VUr5/u7t6zdvVJWIsiRJyczM3T0eM6ECwDwMEDfh1LQbWUS7IQMF1NYRMInsr673uwNLJkoBZA7WOoRtysCAMPO11iRSckrC+2EX7inJ1W4cx1E9AkXBTBXCu5rAo/l4hLBIztu1B5v9FrMwl5KSJEIggiRMzLqli213J4/wMPCIMHN4DMEApNhgw232XiNoK1+ICIEopyTNVVXVV+xEOJTChMJysdVHcHdyvNRTjp5hXaqIAJGrbnHsSJjyQG6kxsQWME3TzdX+y1dv5rVGxG44AOJa28N5ZqWrq+vnLz4SprvXX7SuQjAUefnspgEjy3luh6EyM5Vhu1sG+AYLBBgGEAIzFUkPeoqIda2F4dn1zgP663sPEBEW2Wqvra7c0lo2/3K9MKoYgxLR5v8EzORA5NY83CHi+vbjq90hl2m5eyu+IliQpzTsd2MeBttyNF3DXfsa1seSf+Vf+tf/k7/9f1L/IQT87Id/lJIkESKii+oLl3XtptN+ygTa+5awFoB5YMmoLRAxDQIQ1HG62pWhWK+uMT+cmaWtXgbaCkkiTFk2SmNiDogIHobctG7haRs7TVW3JxYLuzsYmFvKDA69O13iExAgeldAZBELNbPlYXl2ffPJpx9/8vHHu7G4+f3927vzQ3k27Kf9/fKw1vlmvM6cw733tmojJEn4/PYmS/7i1ZuudmkrYoCHOQBSkguIggAYSI+1t4OZuQYgJGZiJnxH3UFCjC18Zbvo/ak43jKZHtU/CI/uKtuLuCBI8EGJ/T7p5hFO2Kr59wr+p0L9CVuC7aDxAcsIPvx9AQXe4UEf4jV4oaFezgrGz6EzT6jC+yyfd1DEk0HQhYSCjxjTxRPpwkfZ7JDfUYJ0a8CH+iuAn5yHdW3m4Vz++Hv/7Ktf+/o47QDINgv1AHe/tNgi6LK7uIB0cGElRSASsgD0sE3hSP/iL75QD3wHyz0Jqd4ppOKi5XqH7DziQBdk50Pt1aWzn87HU5c/oUWX6+hyNT32T7y3+7govC5Z7gGPAONFUXhRm13kau+uvtgS2x/xRAfAAETw+AAFencVvOdDFY+XxNM18cRm+jnz8XcbBwA+Jr3F42URAAASyMhEly8PA4Ib9B4UTbwyqBEwExIH4vn+bn54CAcpYxADl7W6m2IYhLdzOM8kooDaDZhZBhZpGoYwIBB2N+eUScSRIE2IxXUNwMPV9bjfrWsF11ykMNA6T4bzyVlyShkCTF2Fx5RYEieBCIJIwn1pwaTmQr3XVU21tyGXUsSAumq4keDaehb2iDevj4rLOi95LBEtE0oqDmDWzSDLlnwZ81pHXoUgSTHkpoEolPD+tPYaYe1we/DW1/NDEAEJZckAOWKtvSqNaYzA7UQjYe8NgCzQAwCpSfTutaSmLuQQngUe7h6ePXv+4tnhD3/4ikVe/dFv2elMjZDF23pSizgNpaTEBhBE4Ga9gockzEVKGcZpbwHz0sbM45CJtlxT0LrUow/PbjpuEVnIQ26zrmsXoSHzdH3r9fxwXqpFymWahgyeAFpbzDozSynskVJKKVMmZD4e1zdmbo1CwW0kdwLMYhhtWU7Lel91NQBkwjQdrpHT+Tz35QzdoyEYJC6rwsM8M9hUJOfhaje08KW2XcplGM6nU3MgZifOpSSSutbWOKUi1g+JThn/8Puf1fU23R2vb6+v9rsh51JyQqvdu4UFMlFKpRRGosv3gRAAhIVTrooemCQLkvYGIgbSm4dHuKfNYvfxhoDbnWozP/cIwJSTdYhAh1AzQQJXTkQEWVCNLOz+7f1priwJHOdlleubLSAmgCQljwg36xWBwtwATc0hJOVPPnp+teOfnb93f1yJgjBthgkw4tqdBKzB5qh2/3AHe5puJkJrva69AwGL6KrGVnZJ507cLFLXcaIyDgTJm3YKSgNCDSwosJEGPKKngn0NV53bmtPwrV/8xf/W3/xbr+6Xea1Vw91qrfdvPv/JH/3W+fh2I2Kc5zvM49X17q/+6i99+fru1JBBHx9wqKaJOSAhYdjmDukAABYpMyIBEBKJwFrb9e3z1z8OgGBCEalq1jXCWbjQiETH030ZJ4CAIOBMwN47EknOh6v9n//z/8Lh+Sfzoj/54n6trXu01rtt+fPuptrrT//4d//xP/zPf/KDPzy9fQ0ASVK5fbkvuyGPbvFf/7/+w93V85cff/0f/b3/23e/+3uWgkX21zfzw11djlVXLEzdDoNLSUMZZUrg1vvq3qZpTDWt3pMX7R7hEG7ePIAwGN1N12VJKV9fXyPgsiyVSBKrOjLPep6Ggigl4TgOwzAgwHltHht1H4QYGCF6ypwTq7YIBxBzbLWqak5p2uVchvcnOczDtAM4Ynz5+WfbM4tT+ejZtZqlCAQgFiRCJu0NactE6+5KLNvbTS3WI+72Mu2Ay7Dfc0rDOAy74YtX9/PalnaM4PM8EwD2YBFJYGGtWqGQkm6unu3Hm1keznfz9WF8/slt3g3t+IBMFiGlUGZCqs0BCHFLRnCCkCSmwMRtXQFCe9feS85A2LfWNmJJhIiUOE3eFwIKFJYcrYoU7DklKJOUMj68vhuGcX3Q1tTNTRVcUs51WX//93//zetXz19+/Oz5i5tnLxzAfPvqs7syERCAAzMxJQDYZn/MXdV4e1ZeQpMitltNuJoLccqjSDJzVeNdYiJCcgfm6L33phZK4SXLUpvW07Q75FxEJKW0n8aUh2GYhsNNZuraa12JMIC0awCENgjtrRo0NWitD4mSsPbuhOB9TLzOD7rOjNR7ndv66tUXD/M9AWROq84TiwB7p6ZrVkHllFNb/Hy05byQQEmyzvNhnDqHeXTryC5jOZ5PX/n0YzYPC3BXrZvjQinDMA3mQeChaoCJcb+fat9E4wgRWs+6nlEopVTGcX91VcpgQZtvA2EQhQOqW2ImEZaEyBi6G1MSmZdVAy6MhugM2FpVcKLdXLU5pjJixJBlm7onItXoboIECLv91R/89g9zToigpq211pDA17rOS3319j4P5eb25uXLj1gkwtwhMAGEXzzIxQ0oMSCvy9lNl+Wht9nDCqSEpOfGZUy5kKQ8cG/zNoH/OONshGxuvn1LkcDa9jRAAGbkIAvbJPAkig7WaNFu2ve7/f5wpQ7a1iQKntU9AHLOgj7Px9f3r15//tNh2qUkoBU4A0tfZ4ioLOT87PkzvHvoFuqqPRgSJwEA9ViaiUhCSGi1owX11jCcAz02L+RASZfqwkMYmSJMNcIt0v4TmZ5B3iFCbXr+7IcPrz9jltYaRm5f3o/3p+vr6zLd3p/XHVBSJaYIDA9DR0cAIxK1KDkFdMnj7WHcT+Pa1YPol772l/7Fv/RwPC8d5j/9rc9+/McCNQn1tr59/VpSDuseRMilJKZQVWRa1ypgXT2IAX2bJ3cPV1sBj7PuRnr27NYslmUZJgFCvvjjBvQagcwchJETErIIAL1+/WXJOaWExLW1rfi6ZFNjIBFRSEoRkEVyyq2uRBxmHsYEAChJWFJsdlbgqn6sS4SZmWnfjcXNUkrXVwd3/8onH+2mKZA2TXq4IRIgNI3eu7YOEBi+EQuJKIQBUYSTpFrXXpURAyIJD2Vgpt57IOOG+SNu/s4ASIRb5B9cmAcgwpvP40Yn8Qgijoi6dmFm4QYxTsPh6ipwNtOu6gDdQkyHoSRxBwTw3jQAEm3p4AZErSshjDkD0qKm/UIhYu4p53EckrmaMctQrq6upuNxPi+rqQVATgmJ3OH5y49evHgJ7ufj3du7h9uriZDGoTAkD6itv727f3G9BwfOHEGqjZOYm3Xdgp8dKAi2A6lqb5CF9lO5P+balVPKOQszb/DLJf1STHsgIiJvyl5EQLpEvCIxM6kHkmkgUERcP/uoqx1uXlwjE2MRTEnM4u7hrbu6GmC4NdduvX76jT9Vxr2ksS8nFvaN+NJ7EjGz1jsJb4Zl67Lsr/ddNQJYWPLWqxBbHMQgiODF04Dd2vJwco0w6NZMLUBSSVv17B4eRgBqgUxMsN+NtSICyCXHYDM+efQ+A4AAcwVgtwgHD0iMm3cPEuYhOwQy9HXdlfErn3zlxcuPcp4AcRiQiJHFw6ZpSiW/vn/VrJcyCWJTVdMyFIBghN1U9tN4fzxdbDiZEHGbkSEmJMxjSmXDo9HUl2O11iCAiHwTxwFemFCALMTEG0a3MVM3C/8nCCje1fn+iB08wUM/z6F4H7j5+dCtD6tx+IAaFI9V/GXDd6X7B0KgD47y5Of8BPJsJeYjAASwcT3iEaz5sB2b/uepkfheg9/BCO+tfcIc8GmTJ4jhwimMzflpe++rmtf2EO7C1HE4Hx/KMAoCgm8SMARAoAgHYgIPQEZEptiINKhhtoE7QATIQcAon+zoMCV/jLD6EKN5B5jFu8X4wXaX3nxEjN7b+IOX77r/iRb0tDQeuVTbhYCA73GQ8IMtL4ZJTw3b3E8Dn8LXHQL8Udq3WZJvSJtvoNq7Vv78lfY+Ie09MOjpU7wDKuHdZ393euLiFPQIBgIAyNpMmIShkGRJTrRaNItMsjbr5iwpsZhGXy20QxgSBSbHZO5bUgwRIxNESHgCZhEa9j7lh9ef5yQQKjx64LnN424/SZrPM6AMJVmr1eDq6jBm2Y2jMM3n5VRtRQAcKKcyaLipuiMHMnQ/6XkoY29NwE2b9oqMTtJt0W5mNuR0fXN9ddh3g/lYWXLTzhQ7jNrWk4eIsMS0n5bl3BxIMDFlFjc2D84iTdXUYDOxaklWYgGUBuJqzsUSvpmX7q/GYdz4PKPEQJTHEZDH0heYNlhz+3YgMoRZuPdmZhYobC2lpNaESiYKnd1/+JNXQWU3yrOr8eG89jd/VAPvj1qyD8O+udv8AHayUrpRdxViAG5t8SBwyEKJIBEvHqsDKgyEPUBVIeB0PJsZ59EDnYBRWGQcUusxjuN+f90kL0rzedZ5Te5pGmvtjAYIwVKQEuM4DJJTr71Qp/BwXNbW11koxpwAo6A/tHa/VEe6uhqHjHODaSzDkFMuInxmPi3rOivlNKGTUKIR3I0cEPdX+1W9qy7zsi7LpmNH5rV6BKbsEC7k0BWllB3etv7Vj56nYaxL/ekPfvIF4/Pb3e1+BADj0pw4ZSKSnImTmm8TNcTMLOGBzF/5+BaIGo1DitGtNp3XwLAgTCRJWLVtLo8BoR5JhJhFktWK4EwUj74Jpr1qhKkC0emcck4aAfT67V2tdZ8SEY27CTGGabLekzCzWKAlF4htQsndAFk4BYIj7vZXH199+vZ436mBsmABCI4CRZ2UiCWnnEBDm89rG1yym2tXTpyYxoN4QuKMY8OeXdkw0iTOFuicsuom1kDKKacSGcfh0LSFg3Q7oWu0f+03/u1f/uV/4cdfHNeuy7J21YfXP1vufvzw9vOHt3eUxQAZ+Pr6+pe+862vfPVrp9N5VpQyDiwQhgCqyszuIVn8gn7FRspDMERGIg5ixi0zY57P3/7Or/3Ob/5nQ4JxfwjkRTsAYoS1GVPuGvXheHN98+nXPv3q17998+zZWAphmPm8tjcPy8Pn97U7QKhHAG4BLtobhK/nt8v9K3R9+fLT+Xwi8GWep/1BOIkkIux11rb+9n/5HzPEj7/7T+c3bxfT8fa27MbD/jrm3ntd387gOI2Ao3BOwoUSpjTgqCUJS+baa+1tVVWDsABMkpIMRFjrssznXHJrpS1LuKuZ5IyIwzDmkjY/ty3khQlV1XrttXmEsk/jKCSSJWfxCNUOEcTIyO6ASICoptTbJk0aSlprK0MZy3Uuybqez+f7hwdwH3ZCSB4amzEEEoIxy8UYJBwASMoWWkGStLdwPT+8ruuSp8OYhiRYkkQASF7W8wI95dGADWCQlIQoemivXfOYx3GnDlf7w3Ec17rSlKfdLrQpoSI5OXMjz1r17n4FDAKgQcZhCvXoxphSyeFmpgEYqiWJGqpqSpFTQnBEIEAmql2Lm5sSCXEXzPvyMeu83r+t6Xz6svZF67G21lW796hai2EuaVnqz37y07vXr+4++ujr3/zFXIZNczGOYy6j9gYUjAKh7ptf4fb0xoBwByKCcAQiAmTe5F8QmHNOeSBECwOgi2kowjbh3LrWWkuicTfWpuNQTojXty+JcxIZp3F/2AuxhyNh7/V4/+Wb119a2CaYt7Zq7xHmUQPANNRdIrPz5oS5ttbXaNpdu1Acj8e357uH+Q0JQqB744IgEWpIkEdBBGIMBMfmSFKS5GhrR/cAL5l79xitWr16fqO63p2OQ+HaO4IB1CI8DEMZxlIGRFLtCrMt67C73gpp672rLqf7Nj8wBTGnaUxlRE7mbBvrC1mEPXpTB2BgCUodpIgIMHBRyVQwBRAJE7iuhbzrufZuMZv2zX4FCYPYPLwqhAMypxSpDEMpJT17dh3hak2M1fA4n4mw9n5/PNXebneHZ89eMHO4tlpRBi5pyyHechwCzNzUew8zsABrunhoNRh42JW9qSJRkkypZGIM1d4gee/a28qSAMJMmQWZt9Q2t+5aASJMta3m7oECQDkDumlv1u/bvJwfiBkiiCiVnJjAel1O1vtaa5i7+/z6dRkGYW62EBEhJiIFQh7H8fqj26/0+Xx/93ZdVw2iIAo0IA1Y5zkxD+xmjqkMQ6m1OhAQKzKxADq9C9dpIQJAnPP1t/4lHnbr+V7bgkGMQcLal2F4Nk47AGeCm6urTz5+WUpWR1Uj3DxHLhPCZsqUzIxJzFxSclsBORfKiYM4p+IRN9cHswjkP//nfgkhJMm/9e8MP/3Jj/+L/+Lvvb17YEYAdIvVFutbiAwphLmB21YFbcYl5mY1rEOtcXM1vXh+88UrXJYqySQXTpKJNLy2akEQykgoCRHHaZzmkZiY+KnsINkiqB3hwgUMD2YpJY3DMI67nMv5fF6XRcKCIKW0WYm5aa3tfLpHCHMfxuHq6urly5e3N1cl5YAYSsk5b1WXbXi9CBJ2c1vnts5mRgA5JWYKIAtzMyZyNXv0EVHtsAn0tQOlrSRT0whnBgAkZkQAxwgnBLhYDvk2O01E0R8lHBEIwMRbRhlA0Iq7Q76+PgDE27d37qABda1XuyFIHLCbelePQNSNJmKq4MGSWutJmAnCKdAhoPceiKmU7QYKCMJMOU3juKztfJ7X2kSEmJe2cTN7Ftzvdz/4/pdmdn3YnZa1Gl/dDkF0Xtt+qEPOEBTgLAkRU86bbIPYASnMtiQNSSlgS4EEYiTD/W6XkhAiYRAhQYAbBDKRuyMxALiFRQSEbQojDbXoarrFxTlsCessw5ZvSIjNtGrdXLFNGwDoukaY9pURhnF3Pp/O5/Na15QT84VqquG1t9YbOe9upjLIfFw9fNxP2hfJJGlr4sZbu7ArpEi3upy7ezCRCIkgAgKhqRoYGIlgTkm7GXR0IIgh8WG6XvqK0U29NWfZYEFAAEIEJkB2D+09Agg3YyOPiMwiQ3JXiCgstzfPWMq81JTHBBxIwzBeB5yWc2ttnKbbw8398a5pZeTNwjIlGfKwnk9jSdeH3bLW87IgIiMjURLZamQWKmMuYzJXJtJusCkwAwCAiV09HrlDLJxSYuKAICTYdJpP5jJP0M87jsn2Bz5RQt4tf1ryYaH+/s/7qM4Hyx9Bhvd/LkAK/klPmA/eigD2IcLzpAd67PV4P+r9ce1G5HmEdh7tYN5hQI9YznvNjff2/cRgeVIYXXZEEBFwbnBqWrv13iEsD8Nnn3+2v7pBwgAx1U3s6xv6g7QZ6gsjE22mqwzoGwQSQQCBhEwA8Wc/nXq/hLa/B/g8oTvvMLin/no88/EBXeh9oOe9jnun/Qp4MvD5E93t8S4z7Em89nQ0fPeGn/sFAAH+Dti5oC9P6MzmQRQBcBGcvWvfe21+Qgg/RIY+PFC8v/6D5LFLZ73fpO1PYcLEVErOw9ADtVtEF4pw6+aAUMqwOxyurg9pdwARM+29atcLD00Ym4V1g0y7oWzcxM3NZLEAhghC9z6ncSrlqvfmtZJ3cF7XYMLrZy+YxSQd575WbS0AwsjdoK7L2lrKg0hyczNjwjELcZg2EWKCZt61ZcBciqqax93DuWsPV85TkMiUoTfTRQNCSgqgCET2sOlwbR7ee+vqABiO0Ek957HwSNfXd2/easUAi4DNFgMTUwQQBuHcsHsDQgb3vswrcxoMqYxDIZ09ujmzbIZqxNLrwmmIgHVdRHIyN2Zl6B2FQNv8nW9/yixL1XEod1/+jHT1dV3XqLO2PGMe8jS5KVI+nhdwmwpvSlx3U2DkEgAYnhhRMgtnkf00Vm21NZfd3CFTM9VaGzIhkZsxwf39m6uRUhoJkQAwSQMU9c1HkwWFyCDMtC5n9zwvzU91mDJJzmDqVpfVGiLLqnh3Wt7czWkcXh6urq+ultPZw+zu7c3t7nraPaTbt2lpy6xqFaBEIKATIUIHR+1d4Xxe1vMRtV7tx1IGSNklr9VcYSqJhqm7ORpxmfaHj1+cV6PdNIy78XyeX71dvny75mE4XKVhyKWklJKbj+MIgKrdwwiQmShxEoLhsPAOHTwlzhNRYD+nFB5Bge4W5tuzLgBMjVPZvurugQhEhEShKiyZqG7j9drcj5NQSgy9C7ht/OEIQjLT0/GBARMjT4kJiLFXCHAmBEAzN6siHDQY4fX+xSC7VZt7ab3q2gpK3nHvUHYpqDsBdGmr3fX7wnkcJ2YGdBDgiURkmJ4XkTeffd7NGTzEGxjVnkoCqlG1V+9DULhgBsaUkyhrW3nM/97/6H+lOPzk1cOy1vP59ObLn/XjT0pCQsi7tI9pv7/9U7/8K9/85neC0vG03J3avHgpO0xFLjkgm/cehXt4lzwCInp3c4RgBCHcqqkEURILdBRpjt/59b9GGGCNU1JVwtC2piSHq+vnLz568dEn+/21b5R+h/lhMdWlrudz6w7mBhf2Jl7yxMO9nW25d3MmLCV/+pWvune3VudjIAWjaofwMM3Cb378PQ4rwkMufdZYV2XM4zjsprasToaCaACqva4eWlLeZCgGyHkolI+nL9oWbQcU4U37kAsRpzS407K0Wl+lxODKRGUotGkMibeBFAKp4bx0s7bM67qu4S4pM4tDhIepb7bAEd67jsNwfX2VUloeAQUA3AhiLHRzfX24uiYmU3OPppZzcQ9kCsyOAu4AuhFmhXOgmXYkEUIEF+LWVUTAzM1A117lfC6xv8o0AYRQTQTVwNyQyMy1N+hu1q23cRq5FCq7bJFFMPHVJ89kyBvEHMieKQ+ckAbjt3rGZGksJIBOCOgOEJhyKonjoiPXxJRyNvOwCNeIIGIKDw8MRW/eFxZBImGB4JFuz/d6PBpP7fxmPR+Xbj0iau9dHRG12VBSLhwWHvHTH/+UJD179oKTIAqzjNMAuOUiAwCGAzP2rps7KxOHu5kR4ZAzI3AeWBITpZSRBZHcLVydUlXnpcUQpWAioARDHpMwhDO6EL5+/cofxRaicXw4Q2hrCyMg+vn+7ng6b04IEKGPzxhXEyGAQA8m8FBXP81zXU6q7f7uuPRlGIQLV2/D1RCtRaBQysUpGUeO4OBuqpISEduQaDHvERGEWIbkECzcezi4ZLJex6tdC23nU1ec1xiHkpNQzjkPu2mKiGWJqiZRRwkMJZRuvpzP7XxHaKmM436PJCgDSUrCDNGb9tZqrWZGEJJHkRSw4cWCyM3CdWWinLOwIMSx9qmUkuvx7UmSCTiSqEd3CN/MWZgkiwiwdAvqnYnG3VD7GsbskRR80bm1uvYeShyHm6uUc4SbagRxKkQCYNpXSmnzHwEWSokl9TprbVabo3ZqtZ2bng/jM+iASCgJ3BCBiFGKB5hqq+vmIqOuzMyEyBTW3Wwz6w1gACdit97WmVkAADj1tdb5hOE5ZyCKI6W0ZcS5ag8gKROadYeH41EIIwJFRJKmYZeFWYKHDoi76/rmrYaPBSPCA63r5rXZzDRnwaBgyTJwMnckAQxE5ACKzYEVVE21DVcvvvJrfx1MwZQLQxrV+kF2TKRmkovkHafEzEPJCrSTjO4QZh4IgURmwUxIpOYBlALNo6lSQOt9krFam8rAKYMrQhqGhEicB8IgRCL65re+9bVvfOv3fvef/bPf+/03r18JaFtn4FzKkDKY9Yf6BgKRmcLMFEOJ2VSbulrQ8bwf8/Ob3cMJW1fv3TkhAIpAaxv/IgAlDx6YUxYRMzNwVQMPFA4HQCRE3SxPzQIhQg/7cYsrSjnnrog4n48Do1nT3ixJU83CL57dJJFnz59LSkNOH798KZJ6q8iEEWbbzdsBoPceHqXk3nu4CaMrBCAxQYB7NzM3tYgwC0tqDghElERIWNUsYDMLZOKI6KrbsxIgmDncuykgbRFmzGgAAMFCj7EmFhvXSLZ4Quzdemu5DFeHnbvdH+feOlCs8zyMAyELgjO17qYaBMKScy6JPdDNnDCJMAU2AOHezU3n0ymXATYHauaIQKQhZ2EqtS9rFZHzF6+X+fwgsptG4kQpv3pz383muXaP/fUtoajD24fz9d6HAkQoIuhOEDkJIiFRazXCAeLl8+fTNN7d362n+6qqrW9Z5hCxKYwxAJnNLNzKMCGSuLe2+mWQs2HMuJ3SzfzR+kXuaqacs5lRhGNsCWLhHgBbDQzgbj1MX3z6tXVdfvaj7799+6arMfM0DfvDDhmDEEU2d0ViIiHJvM7LzctnMSuAoVyM5GETD190TuDqapaEyQkxcikpZ/A4zyfAaK1P04GZaj05OCOzsK0dHceSh5xD4TzX2tU97BKqFUggiVvr4ShMIGJq7hgQJIQE1vpuN+yHXUpJ1aR3dwvgLRcu57yL6G7usZsO4LG2BVFIJCURpLGM4BGpXwOqdgCYl7XWJkIs7OFMLIkhQJuqaffeFt2Uwwi0KTHVjIhEZJPNMgtCmG1wsKv5Jk36OTTnqWB+RBAuqMcTESPegwngPeTovTd+YMb73p7xkZPx3gp8r+iHR37NB5X+zzGMniREcAnZvYA1j1QQRAjYgswD4RESfN8zaPvjYkJz2RDfychiQ8l//vA/j0lt3Jb7mNa1tdbNVE0J/Hh8aLWSpE0B725EzJIJORCFhQkv2YmbXm+z1YIAIoiI2GBZ/faLyT3eMyF6hE7eISLw/pr4gIAD4U+QzXvverfRn3xjvNfv8N7LRxzp5xGipxa8a9z7q57gwg+2eLfw/Qvp8cWfQJHi/aUfnIIP+Ebv9v3/ny4Ej/giAIgIp5RSLt2tbqmWFqY9YQBSKVMZJsqDS3l4uHfttasCAReSLIjIKTisNetLXXz38pOUBsl5GGTaj/P5AUjKdFXGIhhqHcKR0JFBW0QAsYogpW7QddVeTS3nvJ/G8+lI4Ff7iYjMw9TAlWRQ91g7Mx2XyhE5CzJ0i11GcCKKRJOhPMwOy3np7uHgxpwc2SLITRDYQcro2jJCD+BUCNFtxUDVysgo05h5ennd1lK7GWDXALNaOzFzKIgAYDWN2tn1ZJYHtPV8GDImEnEzA6ItupMQEEmYtZ2dC3JSNZVERFmwEwjhMs/f+PT5mPC8Qm+W0MahKKBitw5MMIqjwNXtTa11H/n+tBxrL4mQcChpymxuqp5yyomEAZnMbZ3POYmjQJLeahHY+JxbMFBQqcscrq8//+L58xdCnhMHEjOBcM655GJtPS+rOyXklCCnXI3v53g4a2Fnd4xwKcfaWj0tLc61piyu7eHuQZ49o7xHVzN7mF20GXpi7Mzotq7N0IfEAhIuQlKXpdcO5pySMy/OqoCu2JSYIlHCJlZda5hHhOpWqwwBOI5DztnMNjvL/WFHIhcfH0nqFuHhxgA5AaEBArq+qRTJBTSsEwBKltw9vNV+4ey5I6GZqQcz9dqQnZiRoqTMjAko8oCS6rISbPzstIX7ADKBffLy2cO81A7mBmGB2JoWYRyTtpWZwS45rIBIzJJLa61ZSKHe2vXh9k99/c9+90d/eF9PHY/EEeUUZRymBOGqcHy7nF43oZRTOhwOyBkZVLVH5yQsqUiaDlcBsaxzKYSgzFTSXoZxKPnUFh90PAygQsgR3cExT3/lX/2b//Jv/NsPi3/2wx8dl/r21Zc//KPf7McvPv7kU0qDRf/K829/+vG383joBm9O5r5NDjJwITAk4jySdVMF9I1/a72KpMQSGIwA0be71DY7zYyZ4fnLj/t6rvMRkNRUUpY8pZQIcZpGYUopRcSx0tzPmx+wdjPrta6qrmbb7XRzKHT3CFuPb853X4L3cdwBCyEQRMnpo5cfr8vDF5/H8XxfT+f9fsdJsBQ0hNAwY6KSeE1FgMRhXZZWV1Oddoec0jjtVJv6Qp6sj0Mu7kGdiAgI8pQ93M/WegeA3mpbV2FBTtPuutZlqXVpRGDPrg85ZSACoohAgmEcCGkznwgPJKituVn2KDmBMJGstSEChG/GW0kkCWcmLFkD13VtvfXWVTXl3Hqf13Wa9tNuOh1PaVl2+715KAgwekBrHUm3tF5yY2IP2Jj2JFxbrcsylgmA11ZrPQa8ff3mizJe7Q7X+90kWZQY3bV3YpaUAnFpq3XLRBdxGXFXB4A0DkIRXcnDOUJ4d71HRgyODvkgYkU3WpJBbQ0ixrFwJpCOKr1WYpJh0t6FibJE4MWkfl2GjFdTsoXdupAzC3Ayb9rqw5u780n1Tuelz7WZB1OIpM0WbeOBMwoPWIQl6avPv6CIw/VNGXfu5psZrgdsZWsgIyPgNjkgIhCOiCUP0zRRQBpHQvQwRuraPMC0bYPx3rsKhlOmSEWES++tKZi7pDzP84++94eqa10XKdN8Gtw6WHdtQEySAMApI2/MexWELeXdxVzbFnOyrGvvdVW9e/u698VM53WZ53UnQ0mlTPsylfX+WJdKCVNJCECSEai7IjKn5BZEhNS76mEq86pUhJJg4mnk4TCmLNirLjTcTKv2Vo+9u/MNWhobEMPgaL23dYm27oa8G/Ns6ojutpzuzOpuOqBkQAbYeJnS+uqm4dha76qIOA554/mHe5KcUjEPs04ELEmEBMPdiWU15FQgHrYUJAobU6KUzTxws6nBtSmRD5kRxSMM1LxelFa9mdoyr/M8W9eb6xfjsKvLHJpZRIZ9yiMSQ3NA3IgQJOwEobYJ/21ZoyoypzxWOZ/0fj7eHcrLvd+mXHCbZeVMwuys5h4R2gAAOav2IHKt2ltEEEtYRwxOmZDcerS1EyGiJEWgUAUw70aSAKhrvbjPqJobRIKI6O18OqaUSk7QDK0PQkOaqul8uu+9L+djb71WVV9vrlIecq/VwgLQtiJfxAG7BwOVkrcBtW1TlIhEYV0h4Kvf+Ysff+cvYqg36N13eeq953zYyhIRARIpI3LyACFCwHldhHhzyPHwWhszRxjhFj6Oa2tDSRiu2npvM5L2xtwGSkgEgUDELElkG80SwiaQ/ZVf/dVf/bVfe3g4fv9737356JsvX3yUchICRHy4e/OD73/3D//g9378w++fz0cEiI21B26Gp0Vr67tM+4Essakv2qpvlhTc5wW30lEbkRBTRLTWfbOA2KayPMJBhAECiLb8GhBZ1wUA9vuDdl3XRXvf7/YYNk7jflcQ4+vf/Prt1bUw3t5eA6I6CGFd6+l83uS6hIiEy7IikbtBgAitqzERE0JwKUXNwsHCcJv6oC28zVur5rGxQRxQWIgo5XQJ7wpHAIQwj41sY10BkYgiwruJEIFQko3ZFEgQbhvzkbZUIUAhRupqKCpJnj+/FZG390frWteaBYTTJd/HjYhcobm6uylt3lymFoQpCQ9iBszcu27ohaqmJBio3VQNIFjSOJTtgi85vbk/AcCyVkBKZXjz5u366u1W2mirhoqE7hCw3CDnJOZNiSh0Y88RM3HKuVxf3yChIA65PDje3Z9q62Uo2qsQICci2bLqem9u7sAA0LW7IRFioLk1NSRnAlPtql211Y4A5tbaKpvWBS/xReqGphtNRvvqvbrrNIwvX370+tUXf+f/8X9m5o1TY+p3bx/cI5V0uDncHJ67GxIQwe4qL8cG4KmU3mcUDIvYKBQZVE3DBNjUPTwQDaOkYRh3wujmzKJuAVFbS3l0cN+2Ipj2Y4QjgpunIYvIeannZV2Xbh5EwCywsZ5gc9IhZiJCFJQMCWDa78fdTjgj0ibRclVVCtq+vyQpE8C6ztqdmUseEFhYPLoQ55QBqbV1yNPGWPnS/bys7iGCRKRu3txMN13YFvS+mbPDxXoYEdHMIIKZ4SKJCHOrtYFBsw3SBHe3CNoQ3Ec/nK3u9vfr9feq98eqHp9WPhJDsKt1dY8ghJzk4kC06YE+QAk+FO487f5R/3XZ9YfpTU/0oEtD3y/039kDBWzozEYbBIBHBtDWgu299Ljbxx19oBF7b4f4PvXncdU7ftDbLuf53Lp5hLZ6Pt6dHu7WukrKyBwBQGLaQ3XDjbtRMLnqNqO3RQf5htYEuCsRufevHZCY1N+D1x4NbD4k1byDQeLJLOjngKGnHtpO+fvvvvTLhxjPO6znovh6Hxz6EOiJ9za7HONP6MxgE8w9XT4fAEZwqVoC/L0tHq+OdwjOe0dHeKIuPcGXT8d9XPIhQvRE5YqLyZMklpzYAbT3CNqGVuDQw4Zh4lRSKURMgevprrelta6qRqy9KaMghnbsCwN5hEUMw7gbp92YhCbWr//kJz8kSchUXd0VEQRgNyVTA4QAOs/Ljljd3LZvH4Rb631tWhVMG0CkVMZpl4M9PKfwrhCWBYSxMHiPu3OvdSUMcBxTTqUY8LouEQBuGoHEQ+YE5B7MQRGJ4tx6SnjYZUlJPTqkiPDeJ1KLXueW2AmDwKwrNI3epjLmIeN+H8zrutTzA2i47DkoJ+nLAkmWDqg96tHxGoWQ2DYANOCQ8e3pAaQQiXViSb0BI9y/fW1A93P7lT/1C1cDNvU87okhs8ygEBCBaw9Y3pb1wVNBp0LoQKqw5S+KMCA6ceumbWGCccg8DjWwLg1JBLSkRCLYutYFJadxd5NTK6juXIpK9mYQoaYejNQsbJ7PQ5bMEBHLam2x/UEEpeSMQQ7WicMhM0xXV599qfNyDCRAyBD7RFcFUy6taTOMXHDcE1Kq9QCwrlUBwc2BkCgg2nkm0MQb8AwgzKl4ADNCBLZFu5+0jAOQWzXAiK46V4N2HseBAUkolxE5I5F6oG4W8A7aiMwciRPnjEwEYev5vJy67DEAelfrzOQavTXzCGJmCu3miigEwczjUEAbggXCyHSYyvX14bzW2q2Zq0WBSENBCHBjt2e3t6s5hU3z8tmXb5d5MVNJgpSnsTzGzJuHllLKMKj2MHPTxKTm67p4XYYhX++uJs7H1CY52FgpE6GD2fmhn+/XvvhuGnMe3H1eFguF1LhYcN6XCUmEvC/HJChXu1QYwAMcAQOTJEzTypaKctQoA6suv/idv/Ibf+W/U2H4gx+9ra2r03xev/97f//Ln/32Jx99u4z59vmLqdykcr0Ya2MgYpDLzY2YAJB9GycFcqC5OzkhAyBonYdp1wMQKYAhWu9GoEGw5UyRaSmDkKvBQIJSaBuwigCLgrtCAIB2QgRENXO3zVjDzALcuwY4EtX5PN9/sZzfuoOqmvt57VmoDEU4IcRuGr/yyVd/8sM/Xs+nzcgj55I5EwWCYEhE34zZwp08zE1by7nklBDRem997VBTScras4owEidJOUsZSoSHhblrVwLs1lmYEZKQu3jA2tZNZ75pDAOCCXLixJxSbua5lMFEmLbnQW9tG6kQAQubam+15ExM87K+vbvPzA7oQCwMSMN0IPDT+Xx/d388nq9v2jrtdocrRJCUhjL+9Mc/mvYHZnbtES6pEEvvLczgElR87uFcxLpGMyRS9VbrWlcQzrsJgoVp3A/7m2dFJpEyTFeFJ/eNhIaRBVOZ51MuAyIerm52/X6dT10ViDAlSWJ9C0tUQ5vGEp2NoHVbVbmQJBoOAwDM92c0A3srIm2prbdpHMdhYEkEgRHjmDPBVmOYR2KRnEwjtL76/Kc//enPIqKrqRkiCSOE4Va7AITHxkVLTJIkZ7Ze796+jogXOdV1GaeRiIMsgi5cDABkRqSck0hC9zJOQ04RKCyMWwBtMyQAIE6hjVgMYl1buIb1RDaU62mQhtp662plSP/53/2//97v/IO6VCTa7a8PVwciQiSglEpJsQnICFnQGqhuFtSbd4a2Wmt9OB7fvHm7tFXGobsyQEK4vbr+6Nl1pY4lS2ZXkqGsXdVt4MSJAQkCBLLky7iBiRLjOOaUMiclpnE/IIYjj/uDWkvCba32AHkYpFRDnteH+XzaDdqv0REZHNR2Q3754iaP++Oprb09HB+O59MwZEwZWRxQCEuiEF6rMYKaMvSSyJEBaKtiidk8lnVxJAJIwsLMABBG6PsxO7Cal2EACJIkeUg5I7GaESIAqjkgCtOUJAA9cF3u1Ly3Frp5eIf2sB5CeTddDcMwTruAYE4siSS5qXkPd06MQr3X1jTCIqKtS8NO+3FjjA4gjVbV5a593rzt7VkiERLKHSgRoTcF7TlnU3U3cjKw8FAHQnCPMIttcpcQWSIg3JAwzJARKUxdaytAkgiZcfOX6oqEvZqqLqd7MFXEJIJgveuCgEgOVGttrS7nJTgh8dI8jsu1w363w2BJuWvXrkaIGIl5GHfDOB32+5TLZz/643V5AJYyHT766Fvf+jN/YTdNhL4sS4W1I7jhOOyIUwCKEHEGYuIEAMRs7k8VFiGBm1lARO+eMm123+AmInVdDMHaaZ6XCWmZz3mYAMm2y702HBPo5oiIBiAivmXfQex345/9lV+HcGYnVARiptvbq6v9r//qr/16uH/++Wf/9J/843/w3/w367p67x6h7jWidbwasxBxwgmVazsb8WYzhYhE3jtjMJNFqCnSRu4RU+1dAcJcN9mICKua9g4whtk8n/e7Sej6+csXh2kM9+vDVSo5j7vdfl8IJaWIrdqLrjqvizC7m6rlnMMDEN2stpZEEJi2qfKtEHucZmdm5ACLQHJwIkaIrp2FUs69dwMYh0G7pURNOwULc7gjAG/G5BibR7JvU1YGhsZMzLwZ0EQEA6jaVvwGEgAFUQCpOQumxM9ur4X57ds7IO9ro+KELBiOqGoezszhZI6xWUclYRYmE+YQAEOQICRkSqkgAhP55qCw+S2aIXISHopg6PF4HMYtOQjKMLjp82fPmKjXBTkhsol4GOC8H3JOAkKbU4qZBxgg7g+H7ohIAS5MJad5bbh5h13wNwJEj2i1autq3v1yn0QEQA6EIPaw0B4sttmuArXa9odr7dX6eqnM8LEGB1Ct1ldrq7aFEH75T//K8+cvT6eH3/vt3/zu7/72ZisOAYiQRSzCzebjqa1rynl3sy9DQlTh5G4pJe0E4JIJAHFLCIZgRjXv2gHA0Jll2u+GaefeutWUUl3WgDifjznTllwmTK015EgChXN1R8CUZEeYc0mSHx5OHsaC3j3nFADa1UyZGdnHsVztrxLxMO04Z/dg3EiYaNZVCUUcQQDcLJUxH0q4umvvbV1nwJjGsbXqakMq4RZmh/0eAZpqd9dtaoowAkN9WXWzcstjlkF0tXWu4ZtBEwCAqYHAJUQsPALUjIn+4AdfvLl7UFNzV4sttCclyiLCvGFa4dFNVR0JhbbJSgQA2oassbl9XCCRDf6ygNf3p/vT4h4p8Yur3WE/AsBSm3uUTae5hUbBBWqKzaAHLq5bHwi1AAixu7WmvWtTc3cmEuZpzENOTAS40cYRN6dSfDKHvhwiArakRb8ELj4teVIgfcid2ZCHJy3aRfe37R+ILhPWj8CFzAmXphbeW9W63n35k7qcl/mcyyAhyCnccFO/Q7gpBHQFAPBwiIjYYh/RbYuKd3PUXr/69Zsv7tbLaXjPBnlzhwyHi+Dw8bMAgEWcV0XErh7hF0DvEUl5REICCTcL+3CPQKQP7I8QoSROTBfyV0AAdLtw37adbCoQBEIA3xCdCN1y6d9DeuDJQDueuvXy/3uo3jv8DxE266mLh8zjiicqFuJ7ei6EjYu3+QrCI0/L34E/l269dPSGSj1SwSTnRAQeJkLhvD26AABJzJ2QJJVSxnHcx3wfpspBatYtwtfziRDLsCuHW97mA8JTaBbIJQ95TPzV+fTmeH7rppKLquWcjDJRUE4QEWZjkWEoiWJZzYBSyWH9/uEegdw6QATlMh2mcVrqEkDTOGqvdVkCgNEkNMAElFEIaVeYRbpDUJSc81jO5zMHMgNDMEUIp1zQPQ1lCkTfNKVO6DLmZVbrR4MoV1ydwsmDlg6n08IAEC5uuhzLuBMZMDGM+9aEtBsYk8g0IIkGWl95/szKAcPBAnATDruT7Kbpi1d3TXUac0qZJLnZdLgx81bnf/p7390N6fqw20UICVMfizijhTuiYTmaJ/K5udoWn4S91Y2/6r1pXaWMZRoJUZLUqkxYsggTBKrZIe2YiDHOVevaseShjJJI1cKdwN171xCIMAAHVZ21j0MZSmJJ3dyEMgtQ9FV5M76petIAWFbV8XBFvHlGhrEcq08MmRDTNExjN1Nt4WGmKaFrr3Xtq0kZUh4QgTERew7fopYjWmiEgTmER3dL7QSmTBCqTJAYyzi8/vJ1AO6GknIJyQDb5BcEIngQAIZZcyojCWKfzw9rBDbV+/uH64/34dbcrVcID0wQvhG5IYCJDKEwvvjo4+Fw5e7neWl11W6SyJG/fFjMsXskydP1HsMgQntlEVN1KdOUI2LcXw/T/sc/+vHxdE4pIXMSMiAMnKYxqzlimGlrWldkDuTWuxBeD8kjpnH6xW/8Uvwk3q5vDIqbt1nbbHX2Ke/yXkRknqubc0KjeZwEJRMPEEKGElTXdbW5DIOQgDBaVOtBLbTbqoVEAjHn5y8++df/rf/x4uP3P79bly9qXfe7AwD05eGv/qW/8LVv/q087s7H06s3dxbEZZdTQWLitImSPIKJInxzwgTiMAUg9/DoHCHCwNjWpQyTWzcFd9BQRgUMYkGkJAyAhENCDhKghIBICEQWG0Ju2z3NLQLczAjRNq93olbX5XR3Pt5/9sPfhzCRVMrgiKZmgb31lUCW+bDbmXbTiuC73e7Lt58nQK0NLYABWS7QMRIQiSRKyQEYUAJlGt3CVas1C1tbNzPIiEQgmcjAABulNNCACTISH49Hc2eWUopbAFjJ2yH4wrNAyJws3FVbBHHqasQyDcWUe2s5ZWbi/YSIZl7rqqpIuD9cuUeEk/B57Sdf3WwYxxQFSESS9RaA3VzXuas/e05yNU3jyCy55M9/8oMtEjinFBGtXYa85t7WJTZnaEGZRswZmka3da1ztdN5TpnzUkIwT2WlsuhDSXvJ6dCe5eGmpD0TIrOaLW9eCQbSs3Garq6u/ctophbWMTgcwoFJ10oJEaEHYGJmHgpg7lhYstTzah3v3y4ItOQ+lJJzX2tdx3HaTVdXh2EYmUm1C3rt/XiaQ0yG3RS+nO5/+Mff/9GPfnQ6zzllczd1NWMRJDGFzf4WMbahXS4553S+v9/vBnV/8+atB3z0yadlmFT7puIhItMGHsOYEHEapyRi6oAUiMy4XUKbTY9rQ6DEKecEgASgYXWt0ZebnWRyQXPo1tacxi8/+9k//K/+DjMIUVe8f/vK2jmlAgDunsdJRAJxGIdURgSLXk11no+9r+H2cJzfvH6Y11q1aat5Gq+e31ptJQkJU6HNvojCSZiHYQgI6ywsWQzMe4iQgW4ePAgwTkMikizXaQTyVIQwPCBJstDluGSRtjQzSOMImY9v745vT1+cPv/4o6/Ul58cDruxjDfTLo2HFqKgx9Pd8XhHIlwGjSAHBCs5kYghWLi2jh5ZJBANLjY3TmIRGIEYiQVpo9OQxqZyAKII6xbBaRzGnEtGYgtQjc0RhgiEicgR0RABnJF664ika+uuhqQUSJCyDHn4/1H1Z0+2bOt1H/Z1c87MXGtV1d6nP/dedLwASdOA2QqCZIsERYqWKTEYlB8sW/ajwy8Oh5/87Af/D3p1OMIh6oEO22FbQdA2RYkAGQIbGSDBIEES9+Lce9rdVK21MnPO+TV+mKv2uYhz4jS1q1krMytzzvGN8Rsp8cj4pDxJngDAe3M3a01KpizX/alZc/PAMGs9dprx1qRk4ebEJYl0uK529YYznDJL7zBNM7F4mO3bIJ/h8EIEuBkzQoBrC3ciGivaCCQiDI8AN0dQRGJO5u6qSEiYSAQQCJ8zpEEoEweKJBrEKTBr+47MeWJiFuGcHTkJj/byy9YePv7Zf/cv/4/ff3EP3ly7hwPi4XDEYTQJc/NwXbcduaQ8IVKEt7Zrb+gMjUwdKYgiIIKEJJecHJl5wP6xIDzX5g4YKCJHoFgEAPbemdgQ9ronQrf9+vqLu7vTvu+mBkB7a+Dee2PiQCFSGIAYZu37OJY3LhcihDs0BAai9Vw9wEzdPGe5Px3+3J/71f/Bn/3zv/Ebv/63/z9/83p+CvdlXohx7TpJRIA5dVUEFslEGGEBgghmDcKZMNxFMjOP1T8xjf0lI0H4NE2q9uGHH3zn009evnj56aff2/bteDqFa982td7V3fU4JeutEnWz1vrxdABA71qEVS08hm3Bw2+2VlMj3HtgA0JIKSEhATG5A7oZUiBTmEWEuat6RIQaYmeWiNi3veSMhCmXERUCghGjc3diHhuEUdoTiK11FkopSUq9dwgAQh5PyQgk8ghXzbkAoOkw3fPd3QHC237NmUe1WGKyALVAHChpDx8jHI+InLFF4IRmMeooDC3MylSSpEHOZqIxY2+tIlJO6eF4WNf9fL2u50cUSZJf3B/nnO7vTol53+vrp6uhZJiIynnvbvrew72rI4EzU+D4+fM0vXr92LTPIcw4T9M0zR6Rc4rwrjqOTERY74AUzw1BCOAB5kokgOiAvTbAfrx/UU4v3i+H/+A//ve/81Pf//qrz61d3QyJiQiQIKx1xTDre2/b8Xj3s9//oyXnsfb4L/6vf52IRBgMwqOrznN5cVwsfNsqErj19XwmOZYiuZTeFQgGF0NScgfzbu4ISMytNrxVmADz8K9B732vW++qHuqmTZ+eSE1TLgC41wbJAzhJEhFGHBcjMqWUpilb6NAREDHMIBwhInQq08PpRck5zDmNAR5AeK27eyJmFhGWG9XFvbeaUhJJzCMUKLXVrhUAzByhC4kDYsa74wE+ipzkmzfnba9u7mZmHhHDUpAQSIjYEUHdmQgA/dY9Hq7WSYUpANxjKulv/eN/fb1em6lZ6PCLA8xZDiXlJBBg7uqxd21qo08zCRMCARIjM4EPpB9CAAGMljYz/+LN5fV5jYAs/NHD4cXdgoCXbe/qhymLjG7Q2xV00yeARt/6c4kY4bNThwhb17212qx1HW8tMZ8OZZnKuH8jEt3Un+f/fpYfRrrTHcYbj2e/VsS7/wV452R5llki4rmX6iaKIN4kKsJva8EA4cWHH3veW1fT3trW+v69D9/T7aKq2hsSYzTmBMRhFkQ4PJyIt+5ENw9AQB9JMeYwCwiw/uOvzp9/cxnyDz3/1Fs4bbzIW2HPTQYaEu26KyAOj+1NdXqW6N6F5Z4Fstu7vol6MKAKQIQlUWKM5/hfhHcbJcZDtLrpiYTj3YC7m4O9azob4YbnH4zfKjYQt1c1ZLR3H31W2UaBmD/vQse5BSAC9wCImxh9OyPoEaqjdvUmz41pwLCm4k3pg1FG8069QgAkFEAYL5pEJlQEVVMgIknkzizERaR01ZAJxcBcobVWaatCwCl3s9ibA2eB01LuFknQfPcek6mlNIOvEH46PRyOR0BQi/BubdPWnKYg2WpPpwNCbdczsORSiIq7iqRABGQDsHAhijDvmgh5nnsXsOoQ1p56aw48LTMiWddqwZKa9a4Ko6rSwBl5BG6JWLitKycBLcSCnNxbIjy77t2j107Fpag2BgekPE1aa+Fxnq23fZrKfDpyadtKvW5Wu/YuCARBji3I3vx+zJ9AOQASseiwNhn33jG8bft6fpyK3D+8l+aD9upuBBG67VsrHFnabhAsp0NSa+amtRmGB257r7Wr+VjjBpJ1C8CUc8qJQEMhlSnnydkIbOzuKQJaA2vhaA4ivO37m8tjYVzmnHIKYZ6WuzC87jXCIEomgpIS5il1HQBm0G7ksQjbRHXVp+v17XW/7F0dpjlNBb1jxpiOx+XuIYtY266tMTy17Skobc32vSJYLsXDKVFK8zLPklJXYwxAqVURbgvEZYLnhCsz+Cx+mApK3q7b9enVdd0ALOdEEZK4TBIRvfY0LQpM1oQMkQ1EgWxbCaHM0/37H5Ckdj17eDiEu5s+/9qGAXBKvVWAMK0J9Od/6mfmj3+6Bb56/QZSqBOl2OpedwtEcwf3sRQeRbAoU9MGDq9evwbiUiZCR7OXLx+ASW20bTiYgzdrlBPnxNfLtp6fppxq7UFBhJlRSfa9rtuWuHz/e9//wZc/+OrNj/dLwyhzSadFmImBwyNladaBukghpFZ99zM5Hg/3F7C1vTX3mV8GRX16DGZDQGZoXvJEOTWliPoX/0f/y7//m7+5vPfTYyecOJ3m/LRWtu3i9599dWZemVCmY5HMaQrk0XeBHk7OOHhmFnGLX3kQELsZgjuiO0Z0Yod9I5EA7A4RalFZspqJMCGHKxIHMpLAuCHGaP0cq+u4JYTHDc1VI+p2fv3FZ09vv17Pb7XtQBRubkbMre7jCUEsLImZg3kF37YNQlvdtfe746mkpdXm5khEOVEQMZm2cvpgfm9ZTg/79c316Y3qGckQQE27diTAwP1c+Y4pE4KRTR7mVg/pOE3HzL2rres+zWm7Xnq3nMs8H5CpvX6TRYxQVSMcQoXEAAGwN0UiAepqU84jtQ7ueSrEYqNlG5FFiIQYIIIIzYNlBt+3bd/3JjmH6dgzIOA0Leb6+PbN9fL04v5wPN3lXIrgNC0E6lojfGIgwgAVguPdgZnMAxG55MhFl8W7pb21b94uReZlisR4TMDYtg3NW6+ivF3Pkr465g+OxxOVOYuoamDsrfe2vnp6Oq/npo0Ycp7M9rGQdohlXjwUgMCxVycRkVLXfT9vCOyhyIpezGKvLQJq7Zfrmt++0f4BS3r96nWr25w4AL959abWpv/8X5BQqD4+vq2tc8pIxIhmRkTgEIySGAmZRYgRnRHnaYIIkrRXXY7L4/nt5XJdnt7WfT/d3bvNzERE2jcEPhwWVwPilHKtNcIZw1W7GjOFKoSnnNwhlTnlCVlq6xlROHEo6KZtNXYmzGyr2t/4P/+nEIO9Gr2rSPZAd933dV0r0mtEra0eTsfD6S6X7ObW+3l91FbBtbZ2bYZJpnner7Bfr9Ocl/tDN391uRaj6VBYGNy2yxaSpnnBUBGLgBh2j5TAANBr7ZwwTXkq0po7OjERkQByZgsjQcwchK23MH04vCwZ37zq+3aFqq+/+cysqX4CL9+7lDx1FIHa2tPTo5qWUjgl4MRSUsqSuBn0erXeWospJ+OECASIYcgMHswyuOaAuO/Nk6SEYYEQQhHghJyTtJQjLcA8HFWqXnLOiYUgCU0OezMkROCMgWnqe93VmrUOaAPXzTRPh+V4cncWlJQGSkGta6uBOM2Hve217uDMyOAOZhJZe4VwZjEazvYNkNAFwBhJ9z1IRAgjyrww4N5WYkrTfFuIety8mWNUGSO4gO4x6LzIcpvBjvUwI7rTuy8GBBJCR4Bxu5OySJkSEyNGrw4e1nV/Qq+Sl0wQ0+RAZspEeTn+9/+9/+hP/qk/MwkIRd+9+o6mEGTtypwM8aY/ueXEqeSBwFMNJ3Aw0+ahibEHmvYe1q3WlnU5MkfOyIwAgSxjTj5WuiQiAMi+19brrmaDSR9u1vd9fXvIBAB12w6n+zEwgzBw3y0yKREAhKq5W7ptq8zUktBQZAgx5wwRb19/g5xqrTF8B0lEhGX6lV/5t/6NP/Nnni773Yv37u/v1emHP/i9/+L/8n/6we/85nI4EIuQGEqZZ2sbIjVJ6+Vst52nxy0aCkjIDkD08nhY5uWjjz9hoZSnu9Px5YuXn3z3p07LJCnvrdX1Utertm1v/bpXVRuN8YSBEevliszkZmoQpl1JGBG0KYysGkCYmhOzOIC5h3liAQgmDIhARggaMV73EXo2tbHTTJJNOxFaV2ZGknDHMERUH3EwQELJJQBVu/Wu2rlTjL2amaoyp5TzDVEE6OHC/HxSo3fraknodJxXgtDGNKrokRGESe1GdR13OQTo6uaRs6Qe5uCB7zBKZpZzEqZhnUHAAEqpRDgi3t0fhp8ImVut4T6Xw/3xkCRBQCYmoi/fPKkKcYLAi9Z5rsdEFKAdIfAmIUS03uLsS0mMkFOaS/7m7VsRXjdVvRLRPM9EOAYAHjGayGMgVgDALdw9Ii13v/KX/qePb17ff/Cdh5fvPT6+/vqbb3LO1fbeNkIac8pwC21du7X94YPv3j+8rE2Hf42Je6uj8bj33pqa2eWy1tbnOR+OMyCoW1fVvhNmACTGuE01EAbjSo0okES7RigRDxv8nAp4XM5vzbu69+EedXeP63UPDEDMmVPOZtZaR6LCiQrmnKmbWphp1mRB66W6ORIMXwkzksgyH1JKw1JHrQ+LQZiP9lgAYCQESDJ7BDNpq9XMUy5TzilnSbnV1mu4TmUyDzdvvbW6Aadpnl/cm5t/467b2NEGApoaMXq3Dtpqh4AIUwtAZCIRISJzj9ZchGiwYeLHb69t355nlrfNeOvtaWu3QNTwwHwbO3r2TnybE3r3v+9MFiNTFkPCqWo//Obph18/PUsJ8c7v8e4bwnMgC/7A93z3WUPp8G8tHHirEXsut0QEulGc8dvvRsNl8vxqb1rEsyAxiDvDxUPPfxA0VtzwE7m2WxTp+X3+pLslIsDMfuXTn7tszTxUu7b29tWXd/NB8tRb7arEDYHftQqOpaxBwIB1ug3jlbnBmPWGB4RrN/V/+tmrcTtCRIhReziGEc9WF7+divjW3/LuA98ewnc+nng2EsHNJhPP7/LmdbpJKDTe6Uh1OQKa+7MPBwMi3IdX9Z3bKvx23vFZbnq+HeINA307deAQGIPYRu/8WQGO4xwRwrNd66ZpERAiM/fezQyJhJiFhYUIx1Xnz+MiAPCbqevbSwvxORr2/DLGHwm4I1NTpYicEjEWhgpMkgkCiTmVvNy1fW29u3Y0JXAZHDVCSllyYQRV7ZAUOedymMRM6/bYmgJiziUoNcc5nImsX8E0bFREe9u3dDi2dXOPlBMiWlVAVjWQg47X3BERzH3OJc8lMVrvROCGGCnM7PLq5SKn4+KAu/oyZxSJjdq+CgExI7IhmkHd19SqCAtAZoiAMJsSsVB3PsxTKaWrKkAgGkLXTmBLTjyl0A6ACnnsbRk9We22A0I6zB6BDtraGLbs3edv/lF88CdCJgiHAQENQMopS8LquppDo/7e4dOHFy/nZSYiBLQI1f72sx8ML1lweih03juC+L5ra1XtvYdTu57X/a05NiMHzFMR5iWhAV6ve6zXWXA+nCKg1wqjTYugrW+Bs6kRyf3psCVet+1c9cilSMkUQQd1sL2HsxnOBRFxXVsA0I33Bx7R0EzVAVFyj54XPkrybgUhlYx5wXBb1/zyIZ8+uK5bhIV1kqJVa1xDuwFNh0MgU4A7mQUTM2Eb1gazxIwivQeSZApzNQxTMHPvV9suT5dtrV0gHiYgUtGdY5LDy+nFgYQB8PHNm2Y2TSURkZkCJqaUCwAxEfY9hymjdcPB3nUHCDcP6Nq7aeO+/eGf+/iDTz+5BDye19a0qWJ4AA16lnUlEdPWa3NTIE5M5h7WCWFdVwfUrhFurhE4lYkJVev5sh1mXuY8KlDGRTqVpA6IMImnlJmgmTEheax1z5k/On0UHcC+DgwIHiH60VWirtR8r3VfW6BhQqIASmu9wmqPb8/L8QhHul53rWqkmDCzpJZZiCCqr0LlsjWYXpr2vBzMTGDP0/R7v/1P2OWnP/xYGIeJlyUjC1Dqjkii5kwD1QsRBkHhCgjgjhjuVqbZ++4RZjZsjeGdIsDdA8yc0bzvRFL7zpIDh7fdkTwCkOjmUbU+7tXuOhDmdbu+/fqzz3//d9fLGQBLKcyMiL3V2/03XM0gIhCttzB1xAoR01ymoo5L4p/5uZ/9we/9bqIJD3dq6tAdkbEAZlxeHPJBysQAIi973Ymw7muZ5oAgJmYhpJSSSI4etiMtBsg22qmEI3BZlnXde+/zsuz7JqzEJJIOh7lVNLPe9enpPJe8HA5A3HU8EYHaPi8zM8+HxUx77111KhN7lLI0agPXejwcPEJbU+tCiEnq3pHATc04p7TMBdw5Txbw9PjYqjI6pzIVPR4WRCicoCQaT6sADx8RJ2K+8XGQgcVK8VkuaT8QncZmQ6KC1cc15VR48WTA3LWdHx8f9fH+gw9AISGV4wyAn7/5Yd3f1t72ugd0yUI52dZQPJSIywgf7LtG17p1rQ09iCRISmGiWE45NoJAJGytIbGpXkxfvXn7ox9/3mtTUwLoTuMheKuH6d1U87RMKUcEEpZSxrildfOAImnKExEAeBLWbqOkNBXJOatD7fb61Zu7hy9fvnhvunt5m/bTkQJLKdpbrVtrza0DYHfzrg6OUCxi3AH2tkGerJ4TtIdEqi2aa8DbCmybPbxMKZdEf+vXfu2Lz/41SzHDUNVuxPl0/5617Xq5btsOEMKgtb26ftOujWfBjIBefTNwLlQWOaayXRuAHw7zaS5IarqjpLbWPM8kkorYXtXdW58mmVIO7ut5z6cMhBDIIqNqjUfRDvC2VzKYp7nMc5jvujs7I5S7qe1aH2u5f+C0CNfDkvZDApAidL2+BnAEQ38AtCnx5bL22lKeOCfilMsxSRYR61utl2oj74LqwKCAmERI8m2XRYRAzIxuJWEuAuEOTsPmLTkA1RSRetd1qxgxRmxMMJU0JUSS2nRCVkcPINXWrbdWt3reV2SZpsOyHMLMGtwasVncPay2WgNQtd3dv+fgag2DmLO7qTUPJ+ScD9Z7RFizsXg03t1h5ul+ugPBfd+11fGChxO+rhckyjkHQACaWrgiAASGAxAhIDESj/FfRASDByJYEInwaG4IiDAzGNmwMAhzN04JAXJicFfwiABEGHBgbSxZCKr5/Xsf/ZFf/OU//St/7u44zYUTWqvr119+9qMf/3iel8PhkPOUcpYk4d/2Z6VUDBADtNe6r21fW9163ffWIbx2DZSnTZHSdevzcpjmKSd5tnKMGToJ0VjlIgR6N637tvdetfe+X/t+fvFwV6bT5XohgGmaxl6st75vm6R537Zb/AmACWsNAjDtgFABRj8cM9XWtnV9fPPa4bZ1GEg1NUdOy3J4/+XDw/1pykChSaaf/qmf/o/+k//Vf/Nf/drf+7X/bJ6PiF5djakFZkFBLvPh+urrVvfbKTEbk+f7u/uHFy8+eP/973zy6XvvvUQgnvJ2XY/zpL09XXpvu1nU2vbeUoQFskjdaxICQCG+nC8sykwQAKYYgQC9NUlptEkJc8kFcBg7GCHCVD16KCGYOwKIsKTUWzV3GU0BhPM8q+pIv5rauZ0lpdt2gxCCAW5xiMEv1G7vdjjMhEhmAajjA2OX5OFqzhFD0wNANwcMRMDA1nSZp8MB376pDkCSe+0RwUwewEyjOTwiAMlMa3WE0UEzShXH31Z3dbOcU8pCEGOKbB4A4aqS0osX98i8tYjDIbkuRYjkVssVnokPOb06P5l7TkKhbx8fNcssIrlVwDHE6u6mWms9HZbjXET47nS8bvvpdKeqr16/VrOcSwAFhJqa6VjMANxSJhExfjX6fv2Hf/tvTKeXj09v8/Sn7uZ5OZ5Ue92ZpVjb3Td3DVNtDRCO9x864LbvERFeMIABWBg8JPO8lPWybXs1M9t2IiCiw90y5dJ6B3CPtl9sPs5IQBQiODQIbb0sgoFmCuhAGG5TWYoUdABz6961Ne29aWDQMH4Fafe6tZF2AsauTRx3iFK45Bx7lSRIYdVugR0PZnRHQCzTBEzNlBDNvWvHTsPHMJfSWq/7PoqfhCBSNtMhaFZzM1uWZZpyRmLmWtdhCQ92kZTTVOsmKREAIar5XpshDbmckMJdq7lGbwoO7oA0zKEkKY3KNgBQVbrddkbyy56NOPCsqwB8W0uI6PAcdcKbYODPW+nnPbWbP4Ox/dljgqO4jQnfffJzkdRz6uqmQuC4eN4pKzH0Cx+qDQxszbfd5u8UCwBAR4XhL8E/YDK5/fsnRCR69kU+y0ODf84jzDX++fwZMPQkRBxiTACNY/lcaPUuSeWBCPM8f3O5qJp21d5MW618WuZ935Z9Y+ac2d0IEJnMhnEmIhDMHJGIeq8AYG4IyJIjHIn3/am3GjcA9G1CMsSgEfGI58rFb09HwM1X9awB3VxDQ6r323l4dzqfdZbnAw+3NfCzkjZEPbhBsm9v/VmF+4m03pB1/HY3u3187JjeKVJ009sQ4OZaAoBvk2hxm/t4fPt2bhMGB0SccnoWaoGElqnMOQ/Rx93c41ZHGDHu8/CcIGMW4tthoGdj2bhWBYiqQ+3uzZsBQZgpeu1uaVoySwTUbigZ04StkmvSbVODcHdoewWUw+GA3pj41ZtLkmSxMGiJ+ni99H2d55yPd2U5cMoEwJy2bVNtwnwokiUbhHJB5PDdATlja3WaC2KYY+se0c0w3FSbdgIndJuEKQkQvDXFdD3vlmbI8zxlz9N0fjxb3cRaKotMMzOrwt4bgktaUi4YptYIAjHWbS/kmJY8L2xB2txhD9B23S7bhA3nubqD+1RSQuREy1SEI4HOoJCJ5vnpvJ23jRBFqAAgSQqTV/+gvf9LDY5gHYmAhNDQNQlbEiZ8uDuVRCUnRHAPNVezdb3C2x+qs8S2t74T3iXkkhOhhT9e1q+6/qHvvfez+eG81TeXftlt67TVfsz9dDolyU/X7c1aPz0sy2lJ98deqwE0VTVlpJS6UmoarTsRlalwTrX3Znq30GHKgFwt9tq3PUqinKgbBkIuclhSSdKbPe11D11b27uS0XsPyzLPl0t1xDmlxLlkRCQ3L6lU70ig2/ko6f7Dh2Zx3bv2DowWAaGCUoqYWxEJi92hB2TEZS4IuHcLNwRsSNiCCYzFIyhCWDxNAJFLIk55nue7OwgD7Xh3GF47d8t5wuSUDyiJwojI0ySzqe5EY+gFxEm1e4Q3ddftev6Zh9MnP/2HXm/ti9dv9j6M5QiBEd7VmvaxFxUic22rlZICc5gxYCA4sFnf9t0hGCFQljITaBGc8kzM6r53ywGru5pPiZu5+XCLaetBnADisMzFM7HMU3HA5vp4eeNhyCQiQFatg0nd6vVxbVElYZmm3gPBwRsAIIhqN4PWOhgQpYBqfdC+EYko5fv7T/b1ul/ePhw/2dfrvl+Pol9+vTy9+erf+bd/peQBoiGAkZBiC0wk3Z2IPYIYb/dfH+V3PRAZQXIOt0E9NO1g6m5IITSobxQwmCyoquEWdSeRAReEZ/Pj2LZAOBHv2/XVVz96+80X57ffaNvVwsNGPj+l2zxEmBGQRQDAhjnUw8yIicDDrZGxDO8ulLmcTve2K0tKEMBqpgg0etGY0U2BiCmVaZEkQ+ifpkkjwm5PTB70b+IiWSKjCCHue923rZTy8uWLN28e1TgAhIKFkeh4d9/3dL1cVHXbKzNL70zezSIciQhwW1cCTIlTznBLGgNKJgMOcNOAMI95mvcIgNC2E1POefiLe6vhyizhrvsmKWWhtsNe29dffX29rIVBmFOSxDyerG7m7pwyMY9TECTmEEiOsqsdynSYZzWtYB3M374SgSxTzotKNTAqE/Uwa0/b59EQQaVD21okQHTT8UTsIgWCxoGlxPu1q2uhVK9rvfauVW1LOR/KA5OQYDCRizYPdfDwAA5EIu2oGu31GdwCHADneUos276bmTBFiDBPU8kpmRkilFJSzqZa1bRbKaXkZKZq8XRZT8uk6mqBLVpTtai1ta7zF59/8OHHZT5qEOHgO+HlfO11RQwHMAuz1urmt73EN73teVrylJfl8P3vfedwyCktMhpWhDECwl9989X18vTBpz8zlfLb//hvEycE8u6qBoDa+/nxTa/79XJ111rrPE2H07GZAQYqCOHlutHisrAkThlAMB0SgDAWxAgwZiaW5TSxcJ4IEcwBGdEdCYLBLQZ0DcDDjYCBSLCBkyNq6xIsmUVSQPS9ceFcGAE9LC14xIfp7qVph95O90dG8bO6Q+sqErW+fnxqtZ0PUyagMk9AhIQA4KaOsPWVXK3tzcE8ILB2PUzpsCySSyCvl+uYP9zc4qYWsW87gE+lBJE7RnUP67UPF/ig05Ysd8d5mSZCIHII1NvaPtjNWtVavXUchVbgSHj/4uX58fF6uRwDuqqYIkCrdd/W5Xi3HO5SmYkpHJr2JBKD/waBiMKZUfbLkzcNBKAEUIXgxXI/pxIMiUI7dzNt+2ikqa3i9ZzohCyt61gHDpHiZvUe7DQYhF4Mb+o6YNDaOyEgiUPQbQ0ZQIJEjFAYAsGDxnJ4OHcQCZhNVRUE0YH/0n/8v/mp733vOMvdkghBUN3Me/sH/+i/9eDTXTus9Xg8pFRKSWNPKIRlXlpvItD6drmct+vT+XLd1rXW3Uc/A5BHt+7Vautaez/o8bAsloIJJGVCzIkUfCS20B28YbjVa69b3a6u9f7F+6mUbd/Q2/F0F0iqioit9ZF9Y+K9NfewAERgAPfhPPAkfNvYINW6ffXF55wnBHSAfVu3TlQOZq79nPjNV9+8evlw/+knHz08eJk9MAXAn/iVP//Pf/s39/OXECTeAlNMpa1XmQ8AUaZ5nucIIKKX770XZu9/9NF7L9978fL9Dz/6+O5QTofSFHaFZTnlLNpG6/d+d5xdHYC193kqqnw6HCjMwrJIjva0tXAIgNpaxtsWYWSck0gqZfCbIUx7JyZzJIxbXgTgxsVy8+EfYxrPPgQQZlPd1wsAMKG1QFMfMAsAIAYAU3PCRKRmQOgaiCiSR78YEbKIqpuZeyDY+Hi+aUkBQGNLT8zhse97yVKm+Xq+nFJeZtyrCSFzqKowGYyKbXR1c2+tM1PO2T2e9+YOPuh+wswlgbmHR+vVwyKodT0c5pLy1jsRo7AIWjfthmNtx3R3PF62bT0/9sRZ2HutQi/vTi/zxGgspbqPWYFFnK/XIiyM96cDCwPi9apM1Hq/rtfRJfW873q34RtRiwhwU/3l/+H/4psf//C6XXm93i3ztBzcHckRiZghFzdFN9UuKefpCERuuu/78+Y90FopiSAkSVN9+f79VvvTmyftHWAcDxWneS7Nu2SF0La3NGeKKFl6uPaeiiCydnPVoexkSVOaTa21bm6qvZt27ao6fBGmSoHG1LcmQvNhEkndHLwFyDyCZeGEBBDaLCJGBIYIc86BQJkMrFoHAAqGXpGQkVlSzvl4WCDCAVrdH7XlMjHzPE1EaA4B1NVkdKIgMacIEGF3dFcAQGJJOU/TIfx03J+ua0S8Y6YAgJmHOUR0tRi8eUJEDHcgIpGbeXwsLRlNn8/hkJDgJ2jDAYhAyEAI46Z8Qw+M1raboDBcgHZDjz2LRhGAYLdCknfWm5vE9E41GDt8vCF13qkQt1jTTZIYES2/OVe+1XOGhHGTM/DZ1vGTFp93tOMIAALn56iaRyCEEwH67Vt+Kzrc9JBvRZFvf95PGG0ChmmKCD/84P2q3s3cx/5Vtelq17lM+3bd90VSYpbECYmeiT/ezYiQWEC7D3o3hJshImgbePo3r1/Bu/OBP6F+4R94ST9xPJ4P4LMhCyCQKBHJLT8G4O88Q+DDa/QTgsuQdX7igMA4iuNQ3nxsfovFMVEg8LjxjW80EnODlQ9IRILIQy1HIAqEsX0M8/BnJ9JzpMEH1MIDvzWRIRBhGgZk1eGgBARTXa+97ny7wJ9tPhbh5l37AH6Faa0VmVgYR5d1ODMiMSC4ugDRxFxEmkZHNjPEeqTWfDdNnmeSLCW3bQ9T09bUanBzlQgmGTW3+3YlYnCLiDfn7brWknlmNY3qCNXKwYUtjS1Xz3k5FmBiRvTkRNrrviFjXo6u6mZlPpqrIJSMJXk1qLUy4pQIw61pKekwS2KGcHQ7v34bvSUGHjyzdffeRQQSSSo5TQ6QxIJJS2nbFmbH48Jl2S6rdgskoASt+97MtDkEJkdyQOe8B3ptBIpg1moPmlLuzcKUmVgI0wwkj5d93drLF8dZoJtYt7rvOOcX9vtrP13ohfGEgr3uph2ASykDLZyELRwdWmt7a9veLv/y1ydeS06B08kuTzXeNHox0+G998pSAunx6fL6aZODfPpwOhzk7ebXatetGYKpWvcsSVW/evX6U8a7lxmCZ06A1LRdr2trVlJ0oGUu6JBSMvddNczsWpfjNE3ZtwboQBDEDkzevO1cjkfmDPvT+nZ7fLU5tNbDNefJzLe9BnggN+25lDzPqRR1CLCF895JZqnXp/b0VYeEaeJSVG8zBLO1K5Wc3Az6ngIpTSwJAgy8pGQipjrYtxiIoYy2zCmlApSY5Hp5kqC2bQiRc/EASQlDhQl5rs00iqSEIu7spu36NB/vzq+e6J3kK0IBZFW1a6vUtxcvf/brFb549djUPCLlAnDbhnczBCglhZmqBjGJmJpRV3MAGF0pg92IgBGGNxQ/IdLd3UxEb87Xrma1X3obtKbxGEQM167dykGS5G5GhuGeU/n0w+8kyT/48l9367XvHt66WrW2b73adVVktIZQI4KmRVAImLkgUxBAAq7Qp0zAs3CSnCUlB1f3t09fXTX98h//I59/8cW5xZsf/tbP/+pf/bv/9d/5N3/53zgeDwQxSkUQCZADOYzMg4gsECN8FIM4IFJEpJSsdwIPQB+NKaGI1L2TG9KwSg7TOAEiIru1odOotT6a+1xbbfu+7tu6Xc91u9R9rXWPQAB078NMamYgiAj7tiMAEY71mWoTSUO0H03w4eEI4aAW+36VxMwkSQ7HY8Xdeuc0dmlh7ezEgAWho0Ag+lgGiJApI6Scl5T3utcayEDEWdLheMhzKakw58v5er1eL9frum73D3fTPPfekQijtba37lOZCMfcFcyjm69bTcLEXGuFiJRLbS3ce+85lwhPuagGgXMuUubedqubWlfLkhIR7r723qdlGebSy/npnVc1ERHkaZpvdlYANXs5T8NRm3MORGFC4oAINaBhPvNmEYjEHCzswJSIufluSHtdkR0Ze20R55gAAsphmg9Lw2vrPbqmI+tuHk6jY4ZIJJBTyot2Q0cw6qHu4A7NtJtVa86dC+eUZRI0GK3Z3jHGg5AII7o2dxBiB+/awj0nBqR5mhCx9g7uucwsRkTLlAExZUmclsOBmfe9smqXPry0pSxqOqR7gJBkdW/a1d1qc5H8+HT5nX/yT374wx++/8GHD/cP4FamSZtu27n2/ubN273tImpuo55l7FyYHss0/Zlf+dVyOOapzFNOKYswEzJB7VrO58PLTxVzmo+HaT7TW4AYiwggRIjt+mTmGJAl5zx/8NFHOdH18tR7c+0RRinUPRO67SOCRI6mrh4iIlkAORxSEmbME+vqREyMecnj7Jo7OMhgDxNRAAIxJVRPHCklmqUH7U2paSokUwKhvba+tzLnfJ9r29frWoQPx+V0KpqaVjsAJWYi0uhP12o+L9MMTGPNgxQO2lyfB1UiMK5VCgfAFCjdovVWLQQBABnRIrZqEc7M85RJBAJ7dwd3s24mxImolERMk9AhCVwvzikygzs51Ovae2fCvYcUiECONGUIAtP96fFrVS/TbKa9ARPTzCkl0yy5TMtdnma1buYMFGaBIFLIDTwAsevm5hYeTIFolufEwpwIDWI+HBDh6fG81WrmIjIaybf1UsrEJBFhEeo+aqvCHORG9w2Aob+HBzgAGWHScNDq7oQBAUiB4UgSKZOwtR2JNSjcYjzOOWEEjFFsmv6D/9n/9v33HhKDSGLovW6Kya2/+uqLf/pPfvv08MH79une/Fr7XMo8T0SUhKZpAmxdw31d1+vXX35xOZ+3WkdSxXut29rbDtoAEWRJdx8sLz5WczWfp5JTSh4559YaCwlLRES4EFI09K51ZYLji/eYpdXdtCfy1nqtvUwcYft2JRJAfbqc99rNYXh8EUF7N1PEwUUNd1+v16+++gI5IUCv+9s332z7Ph/uvvvzf1IECeN6vZwfX5+v69N1/+D960/91HenaYGI63qBgRYhCQ7SnkhW62xtKvP96XQ4HGttH3788bIcDofl/u6O8zQvx5KTgEmemI2mMvZ9qcze9tPpaKYnwIjoBlrXLGYk2i0A1nU/LDkleXutXY2Ym3ZCIBKAQMJUyjQVFiHECBJmCN/MhSggDAbAwsHDCW5F4ACqPQC2fU/MRMAI6sEkoxvPzc1ucPFxid2MADGWIkPZAPdI466FSFnMuGtHQ5YU4K21KQuhuFu4A4I7RICuG8JUprLvVU3nZVJv7pATMlN4xFgTARDdHkl77cRcUqrhrTUAH3AQVe/dRAjciAIxwMFNze1t1+5Rm0vKwNSDCE2EPICIilBK+PEH7//wx5/v6wolGZObnLd9LjJTaL+ATGCuqs388enCAYepcEklp/DI98eS05unKyHmkt098cjV0fmyPl3XgAgLDxeW493LAOJUPv7ge3/sF3/pcDiqRwAiMSFaIElBAOuVJUmaANHNicDReu8AqNafXn2ObAScBMs0GbgIvfzwhXWr6y5CXauZntIxp+To+cCXVxsllgKB7hYpA2JioqY7uhAiOB2mBQO7KoxF6chPIQKAVkNC6w7AEebdrAhJCzYholRMvfUOpEPvW3JpYtZ1RFkCwEzToZCQg5s2ACxEABSmwdTVni7Xw1xySoyA4KZ+7RdEIsRlOTADYqharZ2FKZClRHgAsQgARTQ2NjdCYqRlnu9PxwjYa1M1NWVKN8axw83hwgRxW/0hkSACYgASAgt50DvFA4cygDeLy5BmAIAohhL0nOsJAPAIV1dzvzF0bjoEEWRm4tuK9tvx5R9UKb7VVhAIgAi+TTQNOYKQA7+Vb94Bbp5FDXi2qDyrRPFMtPn2J40X4B7DnCTCJaWb0wdgGEFwtDD+RFgobulLD4B34shP6BQQEPbsdHGAADoelnWrZqGqprZenwgg3PdOLx5ORsJpkryICImoO6Dp3gACMAEAcgp3TsW0RXQI9LDocL6c99bAg5neCWg/Ae4Zr/d2iN5xW2Nc1c+vFwDJo7Nb3Iw25u42wDrPZ8NHivN2xCKC6faNCQAQmAZnEANQ7fYbQ4R5mLtuEa5xxT2rObffqkCIoZbebFn4rDBS8C11BhHgZmu/butmHjlnAOzebh1uFIiDiUI3RxhQADii0g38DYEYGEOSdgu0gQAy09qqg/MzzB4CxpB8OP1lgEtaM0cmQkPuQDmfvDdmLmWSnMMZA1rXzbHJslWz2Nu+SS4RwQiIUQ6nPC0pJ2IC5L37ttqLhUuSppHnE6C0tmvvBp7ynFMOALD9crmw5Gmew4Ylspr5psqEOM2S5lLQLmcbiHiFxJxyWqYyFwazYFoO04uXD49v3+5N72dliOvlYgFEjEG9tba3VAoJAwYBijCju7a+KWiXnMGxN3VTj6CUBryCZ/QAAQAASURBVIw3ACXl+TA3TU/r1ZqJW0FFhHYs++PTaWHnCagkoqo2TXleZgrnnCHgur5BJkDcn54SXd7DH5+b6Cd/CodoxN16COPIj7vp43VvFpe33zz98B/6/pbulnkSQlCYi6y12zeXnrbtdDq89/KlGhJopOlVT4fD8tHLQ3R9/bSe1+5Wk1fX2FV9vXzjta5bKfN8PB1PJ9Sp7c0oautbrb3qPIsQAXFmzlPZKj5tOh2mMk0py17VLYKRUoEIW88taevb4+P1ovBUVa0LGUEX8LZVNT893C3L8bgchWHKqTld1q32lhg1Yj6eIBD2amauDB4lSUqp9d0igHOamCWrAdBojqYxWh/6K4aLZJmOrlUNMjj0R2D25UXbVwjLiRPKkqQ7g8F22YOxTIAetD8FqW5udcNwcEXT3lvJZZBltus1whFCVVutB6J8OH39tBsQCVnrvVUAdFWE8Ihlmaec+rZWg4jorRGGWWNmtYAIlmQBxJzCUMpzWXBAxNo03Jlonvh6vlivhuQRCeGQpVrsWj1cugqTu0UEEiNCTvSdDz9Z5vmynbV7rfv96eGHP/z91/7mcb9OeWqmAEaJj8shpaS9b9qBC7N3xHQ8sVueExASMaN4YOtPP/3pz//Vf/8/+d3PHin86wvewTef/pk/98/++b/44IMPTscjM918OAERGEgWOOyYwxMV7ogEESTphrLQzkwIZO7oFoABhJzYve1XJJMAlrCgm3HRDZnRAUh6XV9988Xjq6/39Wqmbjru/OEeEExo5qZ9PLcIA4WJyc0drfeKiIToHm5qNpKxePMmGUYEpwQO3qNZR/b5cPzwww+/+uKLqzeagFPGQBfX3oGcSJFyeHgYsiBKEiHmcEOinHKgI1JJpcxzng9SiqSUJOG6Pp2frpcrInbtOWVinkq+XqvuuxmEGbM4UAD23reNmuhhMHclad/3ffv662+mlO4fTkRohh4R7tpaKXNKKdxBOyO5GxOKyDQt27b1pkY0zdPDi5fMg6QIRLQcTqY25XzdNkRWi/k0qwOFkXDQYMXKcBWYD5vbzXc7qHeIXPduugX0Th7eGbH2Xi9rWg7LdBLn5CkyuVvsEFMQYnOnTJLQ6nCZdyYW8fVxj2pUCqQod4mA3J1ZOAMS5DwxJ2AzDesdU2BIhFPiphatgRqQcEIAR6TASMyS87pVYpZUiLOknAoQYsqMiNM83zJH7mONNpWhuVHKKWoMnhUCj4C4Wkw5t24Ase/t7du3r9+8fnp88/LFSyEwh23fW6tdddt2g0pshNm7T2U6HO8Q4Ho9b+v68PIDyUuZpjKVeZ6Ih8E6Uob8vfLl66vAeo79D3//F7760ecAljIjgZojkbkj0unuVJZjCB1OM4ZQmev6tF/fBlZKkYSFDBMShFnUt5s2CEppKtwZg3KWJcu8ZAIO1ZyYeUGmfa8RSAmBg4PdHRnRiTyEEVGICZLszfuualYKBcLjq+v0kIcZPnaNDByckK5v9iyJGDlxStnU900RghmIGIkMHTAgXJiE8xiHZhFTQ6IsHAFGXESYpXcj9t7VzAi9Whv+NFUnZikTSxJJEWC6A2AQMomb5rnMy5JymoWKm+5v9v7keWYEABDTfVsVwMshpRwW0dqY2pEQUpRSDClM07JM05xycbNcYD7cpTIDYFuvoA7uxI6UEcACHAwImTkE3QMwAhwNNdBNMPOU+XiYTXXf61ZbV+3mWTjA3Knta0pZcqHEboCAA6gfNzIChQcSCyenGJUvwycITEg+mvsYgxHCqkKg0nVdzXXKUwAAp0C6gSQcGOEP/fE/+8mH73t9+9Xr/kd/7uN/+tu/9XjZfv4P/2Ki9vd/4+9ar1989ruvPv/X9+99PB1Ox7uHZVmmnKepTNNUkqQk6/Xyo89+/82rr89Pb9fLWXtLBMs8TVOJgJwSE1t91C++fPrqn+n8Uf/uH+3Hu3lZ5pjcPOfk7pACEcK11327PK7Xx5RKmSZECjdVDevVccEEJK0263vdd5K87ft13WvrROwe5mq3v9TdXfvler4+PT6+fWPaRYgkDc+/m53ffPXbv/7/6IG97q1WsB4Idw/v/9wf/RM//vL7p8NS6/7qqy/evPoaQlEYAUkytGaO03J3Ot198sl3gQmA7h7uI2BeliTCklptYyiytRAiJg8gJtZAx2y6qcW67ozQnLbrzgBOzVQBvHftw8sDYKZjLKWmFDHNZTkcAhCQYFji3QNDkIRQ1QEgCT9PuAMBk8jYsI0BdYxMSQAxE1gABsK8zG6+brvDt7ugCIiwYdIjJkDa9urdVZkQUk7PCYIIGPcocMAiDGaIQBgsEkBu1s2xNSKe56ntGyAh0brumSllocQiydwinJCQaIQwzNxSmCoiRIw/IVVdN8yZCdHMkySRMPN13bu2vel162Wec5kqU0YmcgIQDJIESET08z/93bePT59//Q1hbt3O140Q76aUCDLYtCzE/OrLr4T5/PT44u704uF+nopMkllePLz49FMWkQi3VgmCmCml12/Pv/eD33+6ru7mFknE+va7/+DXju999733Xtzd3du4FbiHh+Rcny5IjDRyZwkAPZwQIxDctDdwbWv/+7/+/zzcLdBMmAID2NkgpUJHmQ6ze4fYu8a+b9NhDgAWiPBe+zzlCGJyJHbnQMhJzISFIBCBTBXG/cMCkVh4qK99V/AgoIhwDbdAD3M3C0RpquYOQEWEhUzjOC+uQIR7a8gADmlJksl8RBWBQSATIQdQeCCjA+/NPWxiKDkdpvx02fbaTJtZFklMQ+nrEYGESRgD1YwihvVMwhHCiDiX4xEgouR0vm7ny3pZLSKYb9RnCvbnjfiYLwyVU4iYcJD3McjcfBDHnlk5CO9ifc9izRBdnjFA8BzFomF5I3xHj0EC+tZRc6P94PM2f3zSLUXL9G2MCsbv000iuDlsIsJuQsdQhwb+ZnwJPasV76wwAwL0LO48q0kIpt56qAMjJA7+CZXotnh+1rVu7204TpmeVa1vhaVbr7yTPcNu3AEQ5nlat23gHZBQ9zUldHcPffny40tnkSwpccqIeHMbAxIRMwMxBRKHuyMxSQnrEW7av/ziy6F3iDzXFOC7UNs4YbeImpqi34LJABCEcYvh0fOhwFtQOGAM3m42n9tBQCaS4RQLIwSmd2cHbnfE5zkqU4SHju4x5mfJyAMhAIe7+PnfN3Ogud5wZmoW3lV1bF4IEH1oRu46QORB0K0FPMtrAGhERKp9XJmExMiFsLjvDfYAez5DgjABAngL6xiOYR4kgeCIDuSAFAEGOnBGACFJ+HJduxmQQISp924X5N5sFjsQE3Hr3d0YY8IIpiTcEKytkgiAettyKTmV43KY5jnlEbNtrUHJISHdai4JSYBYtUPXqr5er7o+sZADiQOTjAS7I5v1CG8ter/0bstxPtwdkeL69KQKODOClcxEhISqTVsnEkl5vT7l2I73LwDmqrc9cxIBU6ZY264GYIYQrVprvZTEkpv51neKzpSSyLb11hpglGkSAQdgFD4c4nivbW/rlTEKYt2uJT8Ahho6Qu3ae3WHu7sDBtTrFgCHKREThAImzjOtb9SNZSoLI2fXRtFFEiI9na/r6y/a69/bL6/NQ4N27VSvD/cfUNtMFlwv7PD6qW5VX94fTqfFrJ+rZ+tpoXrewvx4mCxQNQGyXi8Ph7yn06Z+MCf0fbsKo8hEPAGuxwlP83HtnnISjCDZuwem43G6XM7Xyxk5YyrAJGyA7q5V2/nx8urVNwaoAJfddw0InEXmPImUcpxZSkkyTdN8utuva9urTEti0u4USITd0ZGCCaBDkGSZSklMOTFKIiJtrXVLSTSgu4UZ3e6aNMosW3eiHto9XJaZjHuz6HFcjuu2AbNu62V75OVlTiXKzDkBke3nvff988+3vZv7MqX5eAIiU1Puba8A0LoOg2TdNqv7yxenxnK9nAEwlSKMvfWhwJo7iyBSV+3uBJ5S6ui9KyAhOCCFOzIHIqMLJy4TqWrr4/nlHvtemSUxzYLAM4q0prU3Ip6nPM+lqcGtjIkRAhkDJQKE8eXd/XE5JRHzOBwXomTwLyFTqlJbD7NZUkkFgUi49phPh/l0yPPYyWRgjKZMHLHLdPif/7X/9R/6/h9rtf2x7x//we/86NN7fP0mXaqub7/8/i/80QjXriwcAAEUABEYQIG3B9XoHAA3ZHIfwHFnEYhbpyNAOPKY9UmePEDrZXSv4WgEEAaPdbteHr/++svfe/36syQl8R06Ag87T5i22+McLcAQYgw3ACAcTHVMSHpr4M4ibkrMB8ksjIDmgApdm6mbmyHmxMAoLBDISeb7Y88KwAKTlGykzN2tAStad5QA8gjJKdADkVlu9I3h3EyIRBpBgGrutre2m3UkCI9t23qrOWfJhZOMeuAw3/c951ymsNW3bRMRRJyBEFwtVK3VWk5HaxMvB2ZWc0ALwN5qygmRkLOZmu/MnIVY+Hg8mJuphdvx/h5gPHKj97qul5KnnDMxqfneLE9TGk/jUZlk7q2XqXBatG6qewQQCTKPRntTu15WM5sKt7pTdgxGyA4oOZU0TZTm+eiFAVXIA6Wr50w4dTAEZAhNRTgJuem62wZlKhCBQoly1ZbmrCCIDME42gwgOFOAq5u6i2Tb6yGnRmwGxJyQOLCbOcJUiqSsagE8+laSkJkO3faiztKWZdbee+tEMJVESCKSS6q1g4NjMAcRJRFiQQTfmrsbUFUrjOt1W6+fud3czAMZV6ZERJkPzLz1q6q3fe+9aa8P73+cyjItxzJPqWROSRiJOTGGOzJ98lEJN+3tL/ylv+wBv/n3/26WBHsz7xHh5sLIklJK+XCguQHtGSzfl0mXtjnuXV3zkXv1JIQtF4I8sQ18vgYVSoV5EeO0rd1qn+7nwlN0wxzCPKrrC6bIspNbQNfGgciEIEBS5rC+TyJlmeq6r48bJVgeFiOr7nZp02Ga5zIB983mFxl2KwtVCgRhTDknQieWYABUBJSSicTdI9wcSFhSAhi4fGcJhK6m5ATu4D0U3C0LLoXLw6kaqWNvve97a30pWQNaa/u+udn96cCAhSV7xwA+3ud67a1KgBMLIzI7gqQkLJCpqDbXADdrKZX7+/fPr9+Ew7CsuzkRn14+5LIQs1lDCMJANyShG/whkFhyUm8hQMDuDmggypiQYJ6nUvKUy75viXEumSQP8hy4R/hNnrAuOQMjkriNMpTb9JcZ4Lb0RoBBqQwAR4/ASEmcCCOIcWzAkCwRYjCEI4D3HjenK7l5b9Vpruvjb/z63/0rf+Wv/pd/6//+d/+/v3Z4+fEf+6U/+eN/9S/+yW///3rvtdZyd/J2vbT1zee/BxGSy/H+ZS4zYuzr5fz2Vd0uYIrEHuBuCgwISRKAuVY0DFcIb7U+ff7f/Oi//duf/tKvfvKH/3RrbZ6mpjaXZKaM4bqfz29fv/qa85znhQhNu7ZqpoTx8PKTshx77wT+9PQEENDqZ5991gzDXftu2tZt73WrrV0eHzEMicwDkCKcADzG5AYGpsN69xhNE8gs3RTcHl99/o//qx/9i98so8wLAd2Ux4SC0uHuLtV+ePlJKvPxcHw4HtS6A5ZS1COl3Lt26zwI3Ihm3Q11rynlFuDhprrv2/l8HubBropS3FoMmrSZmTcibV2ffQUImEvh8bghQqR1Xb/tOANgZiFihts8xowQx9Y3l7KtKxESkoNFhKoh4hB11IwlretlEp4KX6sBAInEiFl2R/JAQiYinErealNz86jdI3z4ktRdVUV4msraTNgzExB1CwQDBGYZa7eUsHd987i23rua9QDwlFOSlHNRNSW/7ceILHxbq7ullMfbJGIPRwQ3ByIRGcWjxJHN27pte93WratKbTuTMGRJd4dJmFlIUk6Cc6G5pMNhWbft6XzdW4fr3swPOR/IqO7LMk3T9HR+Mrci/HCa7w53uWQiBhRMhUXcDOep1z3ChPmj91/2VtvvfbY2Rwwi0q4g0+nFB/+9X/5zt9KdeNYTkJHItcazTyoAGGnkUcIsrNd1/+3f/Dtvvv7hVEqk22OLC3br5k1IDvcHN3UT2jczN2tAAQiSyXqPICAkpFAEx97qMhd1IaIRi8uSxqXlODIsBME2qvjcEwsgttocQJt2RhHRsEAMQzCAuRRMEKAELFym7ATGRsjhYRrmZuqEzIxjoQhA8SxIWKAF7GoLU0CURAgiBKGNUqLbbnpM4jMAioiqqbYkCRFzyhoRZWYZbjYQwZxugOd9bxEowklSxOhuHxoiEBOEI+p8ElOyHqYREb1r73qjvPyEfebZJfOtwvJtYdMfDGJ5DBzVLUYAEKNNbwgCw/Ix+ME3GwvGIB3DMw8Gnim/Q4pxd7PoZgCQmEeFJUBgADyrtIGAQPHMph4aUrxTam5xsptXJgndWgxut5TbVz3bjOFWrIW3TwGA8UgbXn4kYOSx6ncLJEjMwOMtg7u/995719YjMCLqvs2sQaQKXT2VnIBI5HmrQIAEyFxmdBWRQDEffePISAzhnsLsejkTDWcTmSvoEMMcIwYASJjHKWEGedeIBd++S3cbOYBhhIJ37qEbr9lg4PNHmiCGQIdjNaL2rdI3Tqu5t97GbHso6QCx7QgwyPgOESQ0CKQ3IW7woGIAejxG2DlQ3QIs4CYZPRuabgbfgLAbre92RmlgYjE8HBAcPEEUoBkRwtatj0sFAIIoM4e7c5hAMAANZgcgBNxmb8+KJiAgyL6uNwecD2bQaJogImHJeVoAQIRrC3e3ccgcGLFkENC2+Xw4TYd7zqWZk8dcypQ4p2Vfz/t22bZe97aeV4RrVxsyaWhDr8zmkQCFAISMMSKsdw1T1+4RSNJNt23fr817I2Z+Fm+bmZrV1q01Ne8B85yv5wok3QKRhUDNmYiJrmvvvQWAMGOevTcRSMNnZWYerSloE/KrXUUolymVGUmIULezIGJ41caAOE0itG5rCuvaAKDV3hX2WgNpr1v7qhH4cpynnErKgA4o0+HoDpKSrV/iiz8kRZAkrDGoiFvf7fPfPjLt3HGZ4rr3VjcqRcCto4j1jfKUzV8+5KdzPV8boSVBN9vNvnl1PhyXpuqbumrvCoBNA/r24n52miJlYybAbW1Ibm7zvGC0CCOIMKUkHkGAZgoQU0q19dZbBCKzB94ts/Z2vV7PHdxgngjdEkftGsB5ORyOh3I4cp7NnFjmZUlEnpP1ZroieDNVNUmFCTzQmjo4IVKSCGi1evhRYJkXW04XSb1VAehqHmHhhCBMtTsB5XnOKTUEdlsVkix0wCwyldnf4PrNl/jigfMCl8tp3g7LQwvopk39R1+9Ybf7h4cyFyacMzuK9hbWTDu4I0mrjdHDGlorp7trs67GzHXbRlY6IIb9mnNu+86M7k5uEE5ISSQCzZwSkdyynkbgAVx3REyMiBkQWuvDcOnuImSBgHQoSZbSDN57OJWp1Fr3da89Xbat1ZZE3O18rVPO85wXEQCMbt717rRMc6qezbXtHSxyFjMnCpmnu/uJmMP1et4Pxzsyb+sO4TyXP/Wn/uK/++f/clN/+3Rxi73uH72ctg2W7r1tH33yXWZWVRglsTBQzxSBBh6BXW1UwA5Hqpsjkg2ghhkABRgSY4wgNlqvvVdiLocHa7v2/avP/9Vatzdvv7xevg7TTBkzUCKiKXyA7RnBEIGIujXz5tGjY6/u5gC3+eB4cOrgEEKMM8XsLTUk5NGCzGTNmzYKMkA18rACUwASx9UuESSQGIhYaJ4ShNkeqm6mQBaYSwbkda9lKmkAE0DdzG/9OhbWyZkiBURXq7VBAI28DXhrzcM5CYlMpeyX1X1UnORad3c2932viMhMda8IkIR7q3utpe65TIyec3YSDwTEaZ4vqq3tA8NvyiKSUyq58CLbtqnqVKagIKZSyrZdIdwA7+4fUsrrugM9IiJzRuEwJ6/AGCRKDMRcZkSGCLOgNObYIYmnqRRhxGje0nTAzBNvepTEpdcOj2c8JlBPzN0QHagwJ9AOnMI7ATmSacOccoAA+mDWRirmkHKKmGrdARyQiaQUbtZ6AwcDDmAFb7siIiILE89zaV2LGTE7jI0fl1ymaWLGiFjXdd1VtUuaxOHqGh4lSZlLySkCp1KaqruNDSFRpCxjFMd065oWpogwJ3TrXfe9OmBiAsTDcSJh1zidXhDjfr3s61Xb3roh+Kd3L4gzYAIuyCmIgZlFgBBAJQNgD7eUUm/pr/y1/8nrb7757Ic/aKoEoNrNzCyIq+Q88z0CIFXMFdkJOs1IbWq1TiVtEODCk8wvGIAgsG8di+TDPB8LpdjOOwDRaYYpW4/MEjlIkJmNvEZYt5SpgfVwDkySpCQiYQFI0TeLPtYOvj5eeRYp0jYrx8nUOUE+TuKRiPHATd0TTbkQsjAzBiMDIoYkYsSpKhCkdFvkMuHgy3CEEaIQ7B3Wvd3gmuElUS4FWfYetbUBxE0pI3Hdt9paU1UzIRzkpKz1bC6JpExA0FvFkkOKmE21Pl5r4rb2vWs30lRkW/u+7eFk+iNflWm2xQCAhVJaJE1EcjMWIDGnroYQ5mpugCJZ1HvV7XkVatADAjB7eDxdrgcPkgSAImlamM0QGZAR0d3DFEIpnNwCKayB+8jV8li9ekcCJMJUzBxGL3xvgQYRarfa12ccBWFoSpIyArLabSs2sijEwO6H0/0//e1/+MnP/Hd/6x/9+t/5f/+/3OFX/+Jfrpc3/7e/8ddr68xcSnEHNfferTVGIKHt6Zsd0cPDHdHDHAFD+8BrasDjedvWNQurKhO6KqPV2uu+kfDX//w3zt989r1f+rN2/zInqRsLI4Ot51fnp7dSDsRp2/Zw1VYBopT84v2PT/f3ddurtb5f6r6Vkv/m3/ybv/u7/+K4zB999MHpeAzThsnM0T2JuHpOpAGqYUEebk1hjLvBEQCJRoWCqbfeAJCJpiREiCxEpOZgasEsaZqXh/c+EElqRkQewCk3j6ksjkgiye3y9GQR8+EIROAKScKwWUeP7luA73trXe3WcA6tddPm5qM4HkWESPvatENEEs4iapbKJMLa6uBLmPvQAM09CUcERwQzhod7NxsZbADQsYkZKJ/noMsoqCYiBFJXAqy1qXKEG2AAwpijADgEEQOSqiNYFs4pqTm6j8gYMBMCEoiIuplBZw9gIMLuI2KcckZm8I4YHsiS+94v6y7MSLCt+8DQAhKLBJqbufl137VWwDgej5wkAN1CAxBJRMK1qxIREEWE6Y1wFRE559r7tq5E1Hojok8//ujF6TAFEBGJBBMR5ZTrnIXos69eXd3VTG0sUBVFvvOdT/JX/HCYv/PJhy/ujodlJpZu3s3ouTgppSQI4QpEqv7x++9p7z/40Re1dTfbe3/7L3/rF//0v9O7EsuQXIeMiyQsk5siBgvfWkdu/zTtVQj/5W/9etLzpx98VLV2666qVjetxKHW9tWlt7LMeTkEWWvdwb1rKoQMz4QSQkQmqq3WrU95ksSmPlqrBwUmbmXcrM3QRwgJh0mTiInULQbrxNQ9gARdfbcGiFlKEmm9RwQR5ikpkDZ1hVZ7AFgzFkjTyKQMtjQNrxMDhhsybnt105I4MV8vF5HsgDnPqSQ331vP4UKTIzMhMD/HpoKY0zRR7xGR3Ufb3fj77dP5uq6t9ecVFyKiqRExCpLQdIDpoPtK14uDg7m7q5vFt5vwdzzod3rNsJO8K+P+ViCiZ6/Qjd0Cw90zSthuGJ8AMI/R6cFMPNQLcAOAW10UICI5+LMpJeDWMh4ArWs0AHhO/uBYTI5EUhDe8pPPr+tGF3qWOQCeQUD+nJZ6lojGLw1EhOmtAy8nJmJVa927qXuMkADhcECC9n2v2zRNx/lAt8YQSJJOdw/72xVGBlvb+XIxd7UwH8nDuPVUITIiEJo7S2YU5nFHlQADYHC7uRcJ2n5BX8Etpxxm2sPMtKuHE48RKhLG0PUCPTxGPd9tngIEAIwEBOFu7hDD8X2zY5kPAfnW5w4wQN/Dm/QuYAYQGLfKrzC3Z+kPx2eM9SEMd2UAKg61/V06b0QWhuYCt4fvDUT0fKX9QTXxpju9S48F4FCD3p258U1CKKdxc67dWgeEkca4EKKHFwrmYUmLb4vrnrlSNytVAIKYGQCJcCCrxSCGOpKUucwHyZNaoKmbVnULCbewOipzwRQd3L1vq6WUc7LWHr/+Wo8Li0zTVA7S961brNczA0YoMeaUWLx3dQVKVObEzN62xOwRaj1hkEgQqbpb1+5gNhTQutcyL3vdXr15K8KHKZckoQ0g1vNlmSbOc6BQ4oTqgGrmpswIkALscJgAk5LP86Esd3Vbz49vEBCJNZgQJZec03J3qrW7NyEuWXrdvLWJJZixZEKaMEdwJletQmTgT09Pd3eH01y2a02CYTothyBSDWGMcCBKOenj79mLnxuUPhQS6CIBsaMkTjyBp87Lsrx5Q9u6XrdU6PEwz11h3duUcRbG+3lv6kHr2ogCGXSvqRRhgf1yP5fXBr31eU6RDwZStz0HzdO89m59Z+YAyoyF8fp0CdfleFwOB5Til/Xt26ecp8Mhz8vEtW6u267kPR3x4X62ftj3dt143a2QZ6LvfPBS3dXJgVCtHLinrNq261u5u5+W+Xo2NUPAnMu21fAoJd3fHVrm9fzoroyRcsrlSMNN3Fvre92ta5ckToNf6GCKrQayA55ffRNzAkAm6Nq7G3EG7zn0/rS8dtifntLUqSxmlJlhXy+vXm+Xpw8K0HSPpQxqXaUJ3HPOFHZcFjVrql3dvEFYIpTji2sPYQYi7drVCYEDaNgSzAGx104ICcnM920DolzmXGZiBtfemplzFkYw7TTiQ0nco3ZFJLWm1VJYKnl4Ih3CtAdSBDDRfJilK2E8ue/bzlnCommPNco0MZOrNsYP3nvf7Bd+53d/53J9MtfDMYNwENJUaJkg3HpLkuZyJARt7YP793/1V//DX/rjv2wBj0+X2k177+Zq2hW6IaVJAphFe+sdMdjMhQVQDAHJ3DGIR4B4GDU9AImGsTEikMjdRgd8IBKwC2EEuSPYN1///tOrH66PX+6ul32zuodVgNbDxAWthGGAmTUPScIR0HqrugJ3cqq799bLIgDhHcBu3ckEwcTCDBHqrhHuZr07GiKoad232nspmbM4uDM4+KoX3bfrm+vhxUtOgo7AgBFBKDJzRtMOXUeM/HA6nZ9er/tFPZdSwCEALLSZeq8LJEICDA/rvaWUMDBnmecJEZ+enoZOFSgpF8+p76211qp3VSQG89YNYc8lmTsjmMUGAPs+1YVIWDiXhJyQkgGadkToXZ0Cw0zBYxImAE5J3Kd1XXMqnFi7EeE0LSLkHimX0+lUpsXOV5TkAQTMKSGSdq0OsG0IEOnYuoY15qTu2rp5CJIwlZLUhAJLmlXBZ3QwQYFC18sZlEIA0CIcVWUhEEY2SDsMqxaouQiltJTdzumO1sdejji/PHlvMDTTACBIKZNjdO1WqdAs7O7lpWAgOlBwoTR41TIVD2jd3CDnhIgppeUwM3HJmRCezhc3dQLtkVIqS6HArtbV1WLfN1UVQqaw4bVw36oyYx5KlXBtjYSYyJmQMLMQoSQqU3YDwADEsTYBgPBISQhRZApKjsmADDhRQuKxUXNK6CFCAA4IAFR7/7P/3l/5P/zv/3fpMKdm7rA1lQTAfJ8zEUVP4BSI5ivRRFEkbQFBIncP0TezhgAcFo4EkilzEkoZHQLC+2aHF0dmUdPztm2P9e7lYgFOptpqbX7WEEkZgZCIArz3WvdQj3VtR2EipFSabft5v3//3jtFBzf0wuDExESJJghXaMEo5CjGzGNmV4BRCM0iLEimVJap5FFGC6bCYG0P05KQOK5bq62L4DxPy2GpiruaMLEAB03TNOWEhL6k9bp+8+apJHlxd0xM1Gt9ewVmozA9OLOXJZ8ODqh1X07Hrbnv21ZrgHXtpgqKmZLWvW8bdTkclpQKErsDIBILsQBQa+feGwAiUu8ViBWsTLOI1PV824OZxQirWe8BLVUKThOoGhPOxzusFfcaSAHInMa8sNe9WwMP4WACuy0YI8L5W3hDEAGhGNy4ZoiYUk6IdoNSaLgR+qiBHNUTzIMnMK5KIEAhtHr+8Y9/79/+7/ybv/af/+eA9G/9hf/wF37h+3/9//ifPj4+IqLDuJIpAGSa3c177a0OBcTdwrqqmWlEMAZx8kAW1lqvZr0kIgRMQdyado1IMxAAp3b95l/+1//Z3Yc/c/roZ9J0jNBUFjdjmdq2u55xNP0ST9OcyqwGr1+9jnDrtW2XnOXv/b3f+Ef/8DcB+eV7H3aNp6cLIlg0D++tIUJOor2rWQAF8HMUxM0H4zyQyMwAwBGRGFyJBQkQnIhYiqMCC5KkaZnvHqQsIxozT9Pdw0thORRpra1Vg0S7aavzvIgkBFMHcXAzrXVsBrTX67q7GwEwMXNqvQWQ9trDEYIknnMHIcI5Z3XPIkkEEWDkpAAJYSolkAIAwhMhEmhXsKFtBbGAWRB37a01hFF0IO7R1UaklACDEAD32iZJhoggdOvBvoXGItzMx0jY3FuHZzMQaDhnASAiZEyA6FtVd3YGCu3dzMwDEJuDgGWBYZ0GhNPd6Xq5upkBRpi2KimJ0I2ES4AAWTjJDAHMiZFq1967eiCKpjBTUyNCSQkBt31Xtb1WBGDCktNcckBw5W3ffvDZjx7v7j75+MND+ICRAZEgCC0a9KOvX7169Xqe53ZYrkym/f7u7oMP3v/uh+/dL6WUQmFIgAhM6M85RdcWGjRmXoDglgi++8nHEfCDH30+DrKk6ad//heJBBDAwjEIoAMgMbJwmqzv1ncA9F5hsG8Bpnn+7Hd/y3VdDhMxcsXuQkiquz2+NhZj012hE/hGiZ2dJIZgYB6MQSkHkLlhELj3WsMG2kYRgBEcb/tORCRgpDDmHpAkJVE3SykhkuccrUbA6f4E6NtWHcEtjHHbGsH6cDzcPGoQ0b221vYGAaqOyEzsFjYI3nF7d4iEbkEAjqUkCO5di3ApydQgXFtFwJwlSQoz69VTsnEBI8WNLBAsCW2sYSYRqUzMo6xy2Gnium6D8ztUmxhhWXBiSiU4GYrkkrZrVes5SRjfdv63Tfa3vwVwa4l6TkPh0EZvf24QIz1EyPH8Nd/ur508fGBr+BbfQhZkehaSYpD7n/WkIWOORcTI9DncfCN+UwBunIWhSJiOBB8MLif47avdERHCB+pl8GkGWnOoVYMjPijLptp6V1VVyyUJSziM7L+7s/BUpiTcESC8tr22fa/rvl1FiAgB4Ps/9ws2eH6mpv31lz988/gFOIUjEuUkWRGZiRhuTGMkFohgJCAkYA8gRFf1sNEWAwhvv/lx288QoVrBw4eLZgSjzM1JZLTXx7PCMrQ6eNbvKJ69QnFrdh4grjEsvpGg4Wa9i2EGHZIO3c5KIOAoDbhJRXiDfL+rJLulvN4JNwG36y5uksvN5gPPBVz4nKN7JzC9k3WetZ/nnzC++BYk/FYAGsVngBChboCIHtA1iEPQI6y1cMcB6wS+uZFu4cJblvFbW1uAEAszW2D3MRuSVJau5h6X3fYff/by5YdTLpCSleRROXOvic2ZUFWRU3j3sJLT6XgAoF53Dr1bjsTy9Hi5PL49nE7C7A5IkjgENDOvq69VcxAjA3mYWkoORAQK3c1Noasf745EpKGmgUg5yb5vNyISJ8iH7r1v18vrt8HJWa7ObHAS4nkBh33det85wl0BabvugHWeJ6Dca0PkPB+eHh+7KidOOWVEJpAwSKCG7pZKMmD0LSUEiEKm7RIeirztXWQqSZgR339AFgkHi027a0S389POBEtJgJEoe2+CRk//up9+TkQYhUFyphTidx+1tz9m7xkji9SSBWGr9s0TSDIkMPO6aS4pBa1qGMo5QUBYn6bYLlcus4Dw5fGD5fiFw/pUS04vH06Sp1p7SXI6nbZ1XbeV0AFQWz9MvNamve7rhbOZeSpFBJGkAiizWm99b12/er3+3OHwve99l6flR59/tW+Vcrp/uGP0ralXdbe1dz1fAsEU8sJt38gpTRMx7JerZDmk1GvvuzEhlSkDrJdzAJhZXbdpnnJe6r6vfTcAYPYxEBZUCLMeboiQpkkIAIxAs+QArAqlZE4U5KWkUhrO7w2Awgr89gf/aj1f1DyVMj+8F1JIxIY0r93Upnl2tREFUgsm6uqm/dMPPrY8gwPGwF0aC5MDIeQkvfdAoCS9dxYKRLTOEOoWbkSIbkTUAFISIda23yymOZmqqtMA1RC31t+uW9FYTiksEiMRff36PGVe5jnlMh2XeZ5LKVttbx4viNj23VNGSYWoLFPd++V8vb+7/8M/9wsd2+4tHxfkLIncou+VmGmQH7b2U9/72b/wF/7aL/yRX3y8bE9rP69b3VtE1LoDoWn0bk2NSMAtGM10vWpPKeVsAoCOlB0cKYXbrWYTh76POIJvI27rjkQjKgEB7oqALBkAfud3/ssvv/hniXkkVKJdvCmIm6NqFwUyitxFEIl7a63avm89diyWEH1P+97mWUiibd06CQsCuJlqR1TE0VRiklIE1FpH3+2+7dfLRXtPfNq9B9Ph/TvMYHvvV+v73vd9OhzQ2NWcOkbiyMOKiBKcwvZBOAAzr9qH5hXCMpXWOzIDxrZvhRMLlCWVPZt6nkou07pePQIBH+5OMmVJaSZhiPP50tqtyZJFrHV1Z9MwB2FAaqq41+u2lqmA07rV41GSMLmDR1hHCOZbrrkkOR4PIuxqQuDCe91mPiFzAKAbIZU5I7ibSZKrUmYEZE4TIPz/qfqzX9u69LwPe7sxxpxzrd2dr62OVUWyZIV2RFJyaEWSYyuyEsgwINi5MgIEBvIH5B/JTS6C5CbJRRTESILYAQxLESQ7tmJKckzREUVRKoosllSsr77mNHs1c84xxtvkYqx9vsq5OOdgN2utvddsxnje5/k97mBMRJlYrtfL6d3liy9f97p/4+MPVfv5urbaXj3dHw4zBLTant89s0jO07Qsvvd37VnPW54yQGhvcsjMFAYis3XFpEDEHMgRQOg4zTOHPJ/07tWcCMB0rLeI8+E+hbr3zoymruaBLiWhYD83AChTzizhGRpt6xZAe+vuOE95nmZivF5X1YbweLy7Yx6rsTHecSRS7efnZwQgFvVgTqY9CbOgqjbv67WOFYe5R/DxeEzMx+MxZ6l196iP98cBNx8m3eFF+/ynP0EMiGDmACTCiHh+/pkFdQsPDiD3sZ0gQGSMSDlc931PktLyaOvl29/9pe/+8g9+/5/+cAK4Ww7IyXHYX296QDhHnR0TsJG7pGNgdTOibTp215Y1IPC6EWMh4ag2ioDyNKciy91s1p4/f27Xdr3Y8eOjgyu6WneMZjbnknPhBNu2788759RbT8tUKdBaEuIpJcMw6LuWu2l7N8bIkogRct9tQSgzXi411GHQBPNBUhnSGiEZ6DwlpESyAIubmSlFuGlYJCIinChK5m0PV9/2VmsPxCTC+Y4lCWNmYqGSxBlqJUCcksxFIAxEFAZiD7G7G87LgmlmMERmLo8gp3fndV/RHAPCVASIE+7cWsNIZVpoLO7j1iULTNrNA90NiVMq1c3BRKRwVutg4AHeWlh3NdVu3hVJzSBDOESQEw54NOfppsfgzdWfS3HPgOi299ZcGwSaGYC78Ch2cPfkN4A+9tZb9YCUPaXR5xsewTRmtmgBEYBumSXIAdABgQRIRunI9bJe3315evuaSH7wK7/2H/2f//d/8MPfG28QIPQGJBKAx/u7EekxVW8VB38ozNTMFJkDCKwigPdqvTkyGqOTeSOEQE4TAwIGiKAHSJb9+bN+/WqvNRB/+V//n+Uk7fIaACWXlEtKGUkIoXtc182ta91631KS1199/l/853+7lLIs9zln4vTuzRfMgpJGJAEh3AzcDNBcEWwIsreASUAzC1dAsAA3N9MRVCNkAbdoEVCmWfJ0uH8q81z3HkCciDjfPTweDkMFdds2sE5EXXXv/fEOSuKtBRG5e2t1bLoC0M0TYyCqObgxYbhpUxt0P7csGAOCQQkQu0UA5pySSAAgM6jexkIyLOkOQ80hRAEn8ACy0ZREA5Q76LUvs+tgkQgwM0NnZCbGCCIa+wwKHIXVI9GgGuA2IrRMrNoFBBkxYDh/EEndGQEBShZHsoC2VQwnwqaOiMIGiaB7mcaxHYF0OB7WyzkcAmlvGrSllA+HuUTstbshYLRmnHh0ZSIEASQC9b5e9xHTSClt295bV+1MRISHpThQIIqkQd01tdP59NXb5+fT+eH+7sMPnqaURGSappRZujJzKXldr+YuTBE+L4eS0sP9UXKRJNG2cAX3xEKEkSSAGwSzMAEQUwD2pr2h+y9861NE/OzLN9te7z/8BicZZhsHw2C/BX4ilSXc3Hqajt4bSYIIAozQ568+++c//C3kVOZlmiegCEADP8x3re8kJIxdbJIDMjr4u/M1uLEQAoQGIuacwKObYpA2NYPlmJEhhiULARC79uG5CohwICZ2CEARBuHlcCBk5g0BOHHJk0GnrZsOVmkA4rZXYRYhJAIH9+CgkWAbPNxBDSWEcA0jDXJ3CCACB6N5AeBpYhEBBGK5uz+qKiAQhpoKUc55/JYgDGSo30PkGFo8i7En9JAUTmMFelhuO3zmdd3NzG/sniChWz+7Ue8AHqoaEI72kpqCl23/sEniewvN18kvgBc8UPio5h4OmrBhQHrZaQ9tIHg8yIjfDAuJGg4+zLDzvchAL39ur/dFdYqXT7l73OR/QrNQM1VtbQ/AlDLepI/xCIEAQqLWCYmE3FwHTcx9gHTHbwtxVC9GjEmF2b4zM7v7QN5EgIiE7pWZmZFwzBUgem3aNBDB1L/5jW91NVXv2kzbm6/++HpdhWTcN5fD3YYAPMHovxuFg0gBTiIAQIJhjkGSGTpBoFvXul9Ob83Mw5GUmd1tTMgQHTACVA0jRrIwbpnoF/nuJQg2Umv08juGQRGlGIjqkZJ+EUdulpiAeN8ohy+yCbx4IjHwxgZ/EVK+zgzevnYIQO8/HuEI+PKd77/wvb448mLxwn8aUzCAGCrgTZF6OfbG0YUBEbBr35tnSYERowtuCFkAgbcanPeRt5+3DsH7wxQBEaWbWeuBZEhmDkCJ5VDmCN+37fL8PGUU6NOypKdX65n0fGZC4JxS2tc3aSlZJEsiZEGCMBTIUwEmIrw/zJ/X/fjwFAg5k7B0s7XXfbuCakFSUwe33pOMfnqycHArU2ndmBndCRTUiSgnHmTFAEg5CyPqXi+Xde/GApI2l2LADJxLq109JMmyPKLb+XSCMCAqUymlIEu42V4TwsPjvUfUde174xzMU/dQ9fX8boKd5ntT4pSrW07SrcvyqhTZ1q3XyomXeQr3yYwIVLE7MAshRUQRVjVv9dqbOzI5Eh5OP9T8BPMHQEyEnGTK+eHh7rO6Xr74w6OQa8+MeU4IsW3b62d8ejiUOdcmp70vE0wZz+92hg1SoZyaE7rV0zMzWU71dFpSuQrXZtetf3y8n+7uvRuzy91C0CPQSLSxBRSkWpu5J04iplt1M2ZOKQWSRGRLELEbnKt/fDc/PX5g3d6+/orByXrKqUVcz5fT9VpKurs7zsshCRvktVm0S8plmZfl8fH87qS9qVtiQiZ0AClVL/b27cOnaT7eVYvtspKM4zRyKQCkvTMYi3jniHDkbd0bIyRjd04pai3Hx2VZEDCs7vueKZKEMDeP07q9/tkX95Mc7p7K8Y7z1LqveyWmKU+IsW2XXEokiwAPB7qdnGjw6tUHV1V1DFcAIKJE1A1s5H0hRNgBc0puamARHoNhaN3qRpKI09i0DfER3JC51lZrW5ZZCAE6IOVSAIAByLV7dEVwJ8QdUrXtcGS2mHJ2LlOGD18dt3WlJQemec7mKizT/aH3frleS56+/+kvY+c366nXFtGjA4d/+Ol3fu3P/Llf/dXf+PYv/GIu5XLdX5/qZavbVs1sa01b84BxHfEYIDjCsY426631Xqc4ogYRc0KghGHDzYgEAz8XL6L47Z6HiDhgqIzoGBJhEfDf/rd/44s3vwfhgTnFBF3UgkQUzJsF+k5m533HfTkciQsxXdbLpZ2mg6Daupo5Pd0/TSm3rZ7enZGJkRnILFrbNQwQCZhYcsqtbUn44ekxCFwiJOZlNrT1+bI8HiEDAIJRG1lQN3dPpai1CAdj8xZEyBBC0fcwT5xLnmq3QQuWnCSlet0IPBXs1nr13UD7Xu4z5eiuPToqEQunJELALFnmVABj3Na3dY0o69YAkKfS2t47IuCtUAqxqa3XbSqlTFOrVZhSngggiZRc6raWaZqm2XpjRustYR6D37EhdO2cxu029d6TJBZuXVOW0/PzcveADN22MaYDKFIOrbfPv3zz05/88fm6SiqMr5mx9y4ikjJArOu6bS0oPTx9OJXsprRv0et8LDlPHmpNvSNPEwBho2hd7kQdhByREFvfXCbbag/icMkThgGEcxIWoiR9r+AQFq2bk8qo0zQMJXBYpgOye5PruTqyWyDyYSlTTiw4Kpbu7x9yKev1su/bvu1mOqXiEdu2CRMX8QAb5XStjc2POaiauQL6y8mQmHiel4eHx2lemGm9ns/Pb6ZpIgQL22u7nje17uZuPafRt0DDwBrgn/34D16/eSPpk2nyZBjgLIIBATQ88gAsqdRanVM1UsNvf+97P/rxD9vFRdJcytravEzCjOGJc4zREy1ujqBkSGjNt7qBZQTsknFJ3IJCMvPs2QLMe4R7mRML1lVTKunVMd1pmlLv3TsSSS405YIpK3jdr+ulr8/Ph1dHVUUXmTImQibODg0IURssj2wHtp2gEy4pg+yXfXN4SOWQy+4eSCSJc0Jg895aS5KREpBILg6wrnvvDSEouhAUQRr+F49RyBdISPNUJp6m4zJbgAcJA4N7bxaBFHOWnKQUkVwCUVG4hLWGhMwyzhQkNg8g5AyHmMB83U+go1MQwYQkITAo8q3NBdU084QkiGRmXbubjjEx3TwAkKV4qPa619X2i7bVencL6xaA03zPkpGwTAmZ3H3dthHMIRHEgDCzIHAmlpSQKZwbMqCYdsIX1CQSIJh3r81US8nuGt7NCTrVupvDGLS69cwwHEBNXYRSzqbW1QyxTIskYOJ/9tt/GxH/i//0/1TmRQL/73/tf7Od37KkwRAiQDdr2odtBiEY0Sw0IsxEJAyJhJCACQPLcoBw1b57CAvfut7QzSXxGJXH4DS7q5JQIPGoDv7jf/L3fvHX/+J8/7Fb5VDmsXt0VQWAqhVuMrcIwfe+991f+M53Xr999/j0+PRwD2G6LKfztTC7xUBmtKZ445vyCGIDgEWMIEBXBwAmsK5m0VqHUERszPdLmbOU+XB3/zgdX03LvG1bLolY5mle5oUprF6rY1MD194qdO2tMbNRwnABq60hgpuZRe9NmCHG/SU43JFcm/fWekd3xEiMCcKJMUsAeAACihAzxyhudiRmYhnAWo9R3R7oBjBCXu93ksBMrjY2Bb33Yf1HGAEMAEB1RwCzwQpQCJeUiflGMUEKcAhHkqE3D0nIURMlQIphmCCkQA8joLHNiUD30csF2hUAsJRO2Dy4KksQkUccDkvbN1MNwO5u64pEy+FQ5sK47jUAuIGZBYIO0F5KRIhdTQgjwAxEKJpB+Fwysbg7i3S1QMq5AOCox5mKHJb5dLn2rl9+9TqldHd3d962xDLEguOyCIu61dbdraufrlsp+Si5qwZQyoWQ3AxJmAmlEIskDo8IFxHORVTNlbf1u9/5VlV9/ebdYTmAO+ILrAvRAwE5wgFIyiHcXBsQ0RjLaEtMWlfA1Gpv7aLO8zxTisv2VhDncjSA43K31Xq/PJyuz6/fvm5r48kAjUlcB2g/1M26gTs4uIaHa+9M0k3dgJFDQXvkbCmlIMBAZECHnHMqKUlBpGma9mlGgpRzgYQLqVlv/YVy4Gtt1LAUQSRmCuASeUgut0IqwpHEdTVOwizhLoxFJgC0AGFGJCIGYkRgwK691Uoso52WmHy0pgKEOzExi6oNAAsSeHcIIE6QPQMA6XC2DSXnet3CzCIQ0U2JKIxbD+nUdjcNSaCDdzWqx2/ZuEGMvgXBXgSZ9+oCQISOC6m7e3iEWeQkJQvzLf9j4aoOMUJJKDeKjwW4d+2mpg0CWOQWLhpyhOuYBowTfmRF4VbLORrMkAjdXbtGeO/qbioysnuBA9yjfKsQMURAItPex8lIYGoellK+KWU48moICMwQ4RYOdItKERCyOb6Y/R1poD79hgDDIHf/4MOPLz26djOr+3Z5fhceDbpIHJaD4sQCwBmJ40VN84ChwgyePXOiCEdkZCAily8/+5GFOahjCINjADlgIN6GJcPSBTgqtfDm1hn5Lo/An/PUvFi4EPBlg2MAEOBx6+6KF0cP4Lip3773PRLKb66suNUR/hx16X26aoQgvraAvYdwD6Xnvc44nJsAiDdTasR7T9B7q07cfjOA+KLivKhMHgMcsmu0Wu+RfES7Idx0XGOAyBHcHY3i/cv4edvPi8MpwiXCkfDlWI5ArPuOM+ecysxA8ParL73XR/lm69FNIng8wjwv1noDdABkCYTtepnmPC8zMrVWu3doq1BcTufjw9NcynHiXq+XbcU8HY8HCl+rXi9vtfdpXnKJcO+9mjuoCpK6Qbiq1bpKmUUmZnZTB0yS9ssJM2/dW2AqM0gCx4hITNtW1Q3MEhEYCocU7h28NQsDkaAUaknGuIJ7gGRnIu29O3rzZvG8eUWiXo/3d44QNsLXjn45zHeK2hEYESla6+HWegPinGW5O6r23i3NCdD79drN9rVOs+SpXNdtfv1b66d/AfEATB5BnHORP/Frf+F3/u71zVd/zODzYXKg47Iss1w2W9d2WDKRu6d9XRH08enh7fOJYdRMBBMyCXhYQKPSt56yTFO+e3oCyb3WsLied+IAFjQlNwzURmbospx2bX7JZSbA82XV3h6f7ubD0Tzq/iwIS8re7XxZVTXl8tEnn4CHW2t1t655nrLZZ1+8ff28fvzhq4e7w7wsRZIGbVtd95aYhSlLLjJq/ziRZNO+bX/4+3/ctus3Pvlovrun6RjA04K4beEqKYHjtuk4B5IQMHcl1b5f1ilDSpSUkTCnDBE9Yq1mtV2vn3/w8WO7tvZ8ejwu5e4xKF12j7oJo5vW6tq7EJspkAzMOcAIhEKt9dVUcDnWy6bIZp5TSjl5b3BbxCoAekAScpDqGupOwCI5J2+tt5rCLVSQVTsjDA+/B7TaAMBVu/acZTR75ZRDm0VobywJSFB429s08+mycS7XvfdWXXVKnOa7KXPJKeeiZufTutd+nGc6zr0H+F3/9FvwOX72+jO29N//s//G/+iv/Lvf+u73PUi7GcC7S7uufa+99t6aae+tmlmY2wi13a6XYyt8u+bEvq2AlMsSAq4d0JkFWQgAg283TYAb+nqI1chD+UJ0N0IO6/bu7Wc/+/IfsqBg4Zp0r+aXlKZMAmFb4Hm76kW3a2PkvV5bdWJabS2PZYKlrfru7fN8XGqq8/TB+fn09vlME/mlCxIStV6hBGe2zadlAZkoHdIslSsKBfndfI8I2uKQOS9s5wtGsha993RY3Hy/bD5DeBDe1jLAbkwBuq8XtMSMD0/36w7j7ukQiCj3c1gvx6LN9utW131ecri4A1A4GaSYD4tMvNedCgVj64ERBhRAXU2SzHPpTT0gpeSuAWhmCDHPi5QpWE7XVroL4TxPTJTnuashAguZmQxEZe/renXtZZo5l+E2AXBX5ZSnw13fVzX13VHMAa6XazdIOU0lIaf5cMd5joB9XV9/9br1zsThttX6yccfhvvlclbr6069airTR9/65HA8YMCbN296j1ePrzhhB60N2tqzCTCgkZ02XIYLlgKFBCIwZZjK0vWSMSGyaRdJ1+fr8jinlMgi5wIpg5HC2XpFdDe3BiI5DBiTwqZe1WA4ipGYCMztct4hDCLevtXTibU3AG+9e3jrPaVUchox3JQEED1AtZlH677v1c1QAoCFhRmJggWvlxMgMPN0f//4+AihDFCmlHLutf9Mv3g+nd10LAV8uKt1tNsgS/4v/+Z/+Ff//f/FtRqLFspVg1kGIBPQCSGAtl636yYCz6fLD3/vdzKlnuyy7w85f/rJR2WapRxuLFggYAgWdwhnt44sQjM4gfYWXyk3xJizNT3tF6dCYSnMrHYoqB3qbpwnbYHamGazYAeZy7AhrNetm5aMgbBeVeZKgt4N0AOMKBG6OnDJFAmD0hRoEBXbxVzcXS1h9YoSWJgwkyRkIWdiSDIyuJTLtCyH1m2rtTYliDljAF72JmGDTo4kKWUDWY739/f303I4Ho/P533bzkkYoodhqysQAuKHHzymVIJliLnMnOYlkAkMAAdhEIgJ3EC81xlUozOjR7StoyWqRkFJWJgk3+rJR4EqQvSuY8sR7uo2AqacS2DUdq3rqnVT2926qrph6w0QWtua5JKm1ixA4catdzNDVSFEHvEFZJFxOrsBTbOnFG4YQbdBp2eE1Pu+XUlw22uYEUsqZZqm1va27e5GCETYuhKFRQ+PHtRac/Ompg7bunHK03TIUym5mPYgjkAkcRKLDkgUDuAEw8QUjfDu4RWEjUJFCo9wTBQBRCQpEXNOiYXdLeU8dgimZhEGaOZ6i9CYuyIxoqlHoKrHuu71D/+/j5/+4qtPvk1IHgTm5p2Q1DoBMGKeZyKYcr4/TiLyP/xLf/mv/42/8fT0mBNrdyAhAjDzwF57FkYcfb2GdCNxAsRo2mLm4YQKteELSiUTlpz4sCyHwzKJzIfj4eljTuX6/BYg7o53LKmU3OvWeu1uo+9+zG4JAzxyEnW/rrugsZkCmztCgNuQeet6BaQiiIxb7a3urXYRngTzvEiZWm1wE2ACEIh5eHIQEQgYGQEDHSCidQ+HcDVnxlY7Mw2KNAAgZQCIQDfV3hGAc3bz0Bt+KLo5EgC01o/pZahsNobG4cEQA9tFzMO2MPIequaDPD22ukIx2m3MAYydGdERw7xM2dQRQbsS87vT6oF3xwWQiIWIe3QMR8QA2rZ922uaZs4laUfk1nHkh0w7IiIJE47KhdaVgJgRhMNlqKOJhVjMb7xVQGCSCMgplcf8eH/Ese0kUrXf/8Mfc8r3d8eSExGp2bu3Jzcv0wQs786re1SLqUyEOGMqFIFIxK7K1Ee+hgjdAABTToHATowoHv/SL//S51+9fr52QBwV5jCAIwADD4MOiJimo7YV+u7aIVwI7+4ff/e3f9LRQxjc6r5ahKRskb46vb2f7kyxxpVZ3p5fP5/frdcVEdwj1IMBnJNw0G3r2pvmzHliV+8RkMHBVC2Iw8EcI5K7AwOKMyIETyWzyDCIuIeILMt0vFvmnFrTbd9Op/O6rhEhIsSMGE1NJEgYPVJJcnO1oFuoursBgg11TDITYRYz670hQVUiAGbqvQPCVEoqZSx4Ruxp5KEy88s2HhBBBEehNwQhQNcGEUSMeUKqA2E02qkiYF03sMDh3oIYNODeVW2kpoJ4EJcdAJjR8SW582K6eLFxjDL1cDfVUDO7uW0iHBzArPWuN+wQIdPXFx2ESEKA7mp7bb3t4R1ecku9V1VHpgHUAgxkYKGhcrznBKsHjd1Ev4GykEASMuW4WV7G3sUQw9zQAAmYBAApJeHUTSOMMkVkGMXzQ5IfDCIHRHQ3wMAhvseAQo0XMNwt4U4QbN0CQoIDgEPKvLzbthEKrnUPt2FaCqLvf+/7160FTxGReIDsCBHIIyCEySPChyeKMIAoY2LTejm/AVQgJwwk8Bu+50WEwyGhxIt9BgBe2DoxslNfm7Vubpqbj8aHFfRFRYJbKOrm67o99lCPR8Xhi77z4tr5WokBvEXJgt5bat4LP7fAVhBRvLDFh8UshvKEgxR+q9G5vYrbiwh3oHCgoTa9/7GAXkxGFtEhTPgMajPLQrfnHDIYAeKQ+/FGDn+xNL3//xj0I6AIU+vqDswpIDgVLoVEiIVAqSdHevPuXQO5Oz4N4EUgrdfLtm+SUpqO5lFrBcDr9aKahEmYW9sRgoMenj5AKinPyIlTYe84FUVM8/HheEiX7V73rn29XOrzF+ZBeVazXndJOZD61gYlbhKCsESAGHVvkKQclvVydrv5acOAMJUkOC4D3vdWN22cp+OUiRNUS8LzMnULgorhPQABEoKaY0QzDaTWLSVCkcP9Q5hOJU1FWt3NTT2YiUC3WjumnBCiX1Y9X6sQoTskmkvS2lS1914WdnVk3rc6COqX6w4e1/p2sd/s3/ofEGZmskDixIK//hf+ym/+jf/Lup71Ug/HghiFEx0QKZmDK8xzWhsFzKkcPvxgXuuVgdWcyadlcqcwzUU6cLtczSHBa/nwQ+F0bbv2fkAgSaujR4gAMT0/W9Sd52O3IN0XcS28bXu0bZlPtNwTwL5tBwp7eFg91GAqZbvsvXYCyGXOhyOvXbsfju3tm3c5X7DMcVqZANLMKY0uaeI55cyS3B2BNKzvGyMclvnNeeVpe+KcHffmrorhrTUHA2IDmaaJpaApYGBhYrDdns+tHO8OD0cjchbojTCQqJp//sXbn37++ljScpjK8QgvaU6mIAhGCggM90DJ+Xy+EpPqaJUy67t4/fCT7+69u6vHSOyL28h4QKCbj/g3SJIePhZEzJRyKSLdLbqBKgl5GBECUE4S7pMAIXSH3tXDtXbEyMIxKg9YUiYkDuJuWkoSSV1d900JzMJaa9UlCSKJ0Nbsuu7rWkdp/d1xebifIfTjV69E5C/+pb/6r/35fzOluXY7X5t61Gbqse1au6l2Hbfi3s3celfVG7jE7AagR9Tex/yvq+rzm/mgaTogK3FyDzITSYgBKDehOWDURcVtXC3uDsPg7E7Mf/Sjv3OYi2l4C41KE+aYiIjRvbt3sI16ZZbCBNu2nd5cUJAXhrO206obudtaV332t59f37153dXwjNY7M5YpSxFJOC1zeszITEJOft3X0/m5tbadr6E6L/Pj3RGZ9td9Od5vvlU1I5vz43V/3kKzWXHKOSU2yBwEBno9nffzKlxSToTELFIkz9ndem0IBDAlSeBdCrmJWSAz51S3joIkEgmmMvHETn5d1349Z5Eyl601BzvcJ2tZRLR3Fm6ttdbAYbT+jKlOSkKSaqvX9Xo+vfvw44kwAGJZDm3kMpBQJKJc980RUwQh3W7dQmFdey3TEtYQIglbBBKBdXYAQ84LcqlNt+vlzZu3Zj0JD2/zskytqyS5e7yTnFKZjnevSBiAr+v27vVX5+dTzhkdrfq+t7dvX2/7encvuSRGCdYE7ITh6gFgwJQOd0tOZfe+nRsygxlRattK1PBwQMAwLLmoKjGQSe+rNQ3NU0leYb82SIhOiQbExzjBvtXBPRFmU13XHcCFsZQ0T6WrDcSlRXhAGV2SAF1b26+9KRLXVi/nS5pSThmnZZlnQAyzrbbr5VTXa28fT9O013Z6frccp6UcCWCaynW99u4QUfcaY4dMQgDOgG4//ck/+m/+/t/8V//s/xiJkYQoEN3cc+JwMIC9u0e8OvLnX779j/7a//LDh/u7vPz4Rz92tzxNMHp00EtOKc1q6iMHjaFIHm5gFDLJfYSbrea1dZ84HSeZ02O35/O6Si60lGBvWydkoHDbSmHJ3DfyEZnBnIW7WlNdDul4P51eJ1VLItulTkfRbjjnaSleHQPA0XeQGZ3AyWqDdVXOKIF1i5RmBhDJyIggABwRKQsShRoBsUgK6MyI2NUmEHTrtYWQhOQy3U2H5f6VgqQkUuac8rZtb998Jeg9CYQSWCADoKRU2FPJW7O97kk4UmLJQOSK0au2HZaDp2J162rc6lI3QBQiVR/VyMIUBu4G5KbNfU65AICZg5rHmLQ1d2ujlJA4yyR56ttWt42Co6I1cAcLB4YAO9W3gTZPS+vqAabq1oUpIXKS0I6IzOyDIOUOEAO24ijWDYkIGRCGp8Ddcp4CgEVcVURyLoSIKTNx39dwD6R5WSKia3e4rd6BWAi6ebiCQt/C9usmSVKWlLf12j20a5iWkuZcPKz1FhaBDtrq+lzmu1xKLlkgAEaBjiGJcJScSATCiSAL99bBQ9WI6IZIjXEdMnfnCA8wd1HvZilnFv7n//BvLX/u3yvzMvYk4/4xpSw5CcZUSko8lZSTZMHvff8XP/3k48Nc3H3bN9XezZHGHo+ajlAGdkNT94hhL0ciswBzGHGCG8caj8t0WJZXTx/cHQ+Xy9XCHRMQ9bohAiIDUk4ZI9Z13daLWyd34Px+s1RKljIhco9o3RIYEQhz1woRqk4EOZXW961zJqy9u7sQMHM+3pdpAkDkEAwiDgA3Yx5tE95rJWEA8gFENDXtqj2nhKGtvqRSPHKZWqu9tgEaEWbMqdXWawUgEh4hk5H7uHGUvRPz8DMwIdIYV/kQg9ycCANIhoIG0NXMNElKAkQ86qLx1ng8GrFvvpdpnjzCzJmZJe1NZ4ucCYkQwUxHWdJwLuz7drBjmLlHYppzvu6ViRCAR9U2gghZeEYyNSTkSUhEu466IkCAcCYgMDMIJmE2ByIQEhEmxJTztrckVFutNRESgo3bq6mJyCgMW5vJ1tWZmTRAM2Uh9nDXrt09WCTngoDWAxEwfOB/WeR4lDJNr9+8bnVHSkgAyBEWIwaFBJQgIkJJkpsSWXgsh6XV7fMf/5FqDQROAl7JwQEiYG+6b689jNgJ+fl0bXsPC0lkgQBhphAgwUiUkEw1L8ws27hGDSu9oGmYGQRO88yEzZokBjfzIC5InFIyjN67e5Sc7u+OHzw9PTzcd9Vt2y8Pl+fT89u3bwKAmQPMNMwwCyM4uux7jVAWhuFiG5x6JoBodYuA8GlMXBDg7M4Ykox5oIat6QYBpUziETFSMwMrGRA0pu8UIMKE4yJBCNHaHqMamzglmj18mdWG0dBruzF0EIHwRkaP26YccyEehGMAwvcxnpc/cYMb9G5dB6A8Bjp47KQJKDgoPNxM3dUVAhCFxjmkboYIFaP3npNo19q7qRISQAjzNE3uoaYjwOWuKRMRJsnm1lsLR2YOUwPDMTdhRkbVhsABCODm0bXXtrVeI0hIDsuRaYjFMBxRo8cciRFR+22pzwjABBjEQYwCNBJQDoHoMMxBw9Y/4kHDJuIASNYBwY93d8S56aV3097WyylAiYmEEeGb3/nFoATEIgWQiTDgvRFxJNx8UHxeqMmGTIxl309AjvGSzLh9Ht+nvW6BriF6EMTtLR3RPQSIwSS9qSJDHHqv4Iy/bureiC68f7+HbuMxEl/DLfMS97pJKreXdGuaJ3wP+XkpV3t5lBGuu71owltzGAAR3IKGN6HxBTQ+Xtgt1gahX4OBAhwRfWjg44TAQCaFgHwr2IkXBevnXENDZ3T4OVnq6zq0gAAQghDCsbKBiFxKmWcg4TShOJhGSb2NkjNhoPBZ6oZwra1JmkUmlIwIk/B09yAp3T8+LIdjRKzXre47T2bam5mvFgEIEnKICFTcG9Tux7vHRHx4hZNgW5/fvv4SeQagvXYHRgRi6hoWgGYAnJNA37SvZpFTipxbq829ns4P94cpL6mUtm8c+lCwpqkb1NYKg+eMHlsLySScRVjD0AxEJLbddmJyR0TkIikXAo+Q2vRk1cysa+IgKp6PFTncu0JKhETLUqxb7z2j52neahfCNOXzuqkaITpATsnVDIKI3f30+meF/2H/1q+L8d6sz16olFR+4y/+O3/7P/4/VgfOndQyQZGo4MTp0nSr7ZAAWLZ9y/OU4eC9CvLeIqkGEXHqzTL6lSg81tpeuTr6zP7O+ru3l8fjbIqFIpEjsR/m0wWmRIbcasXQxEGHpfX92g1OZ0LI5Je98us3H8758XgI5OXueLk8a91dg6eJU2/7etrWc8mEweEt+N1OD4Kp5JwObh0Bl8MBgPZ9A3TY68JMx+PHH7362U9/en73JYBP0+6A6rZMxQm6AmstydAonAIjzNyqaVvVSprmUkaM3J7fRduS8PlyeT5dfAT47440TSM/TO4EACAikgQ77cLIHMTy7q327oTkYX1f0WpBmKb8vDeUjAac2LRjGDGNtkG7YeJj3yuYsqRwvfVepYQs6N7VQB1ZIkIYNYCA1r0i0ZTLtm83pDRBH+slntys5DKqs0BSRKiDWndVZAkIdwMIVd+bOnR3Mw9OabTjna9761qm6V/+l371Oz/4UwHQDa/7FoDdonZTh9Zs76pm4eZu2rtpN1PXFh697kMoxpFJcDd37XXf1vX6Zl/fIMN3v/+n58MTYE/ZHQnBmRcIBxR4uVzeLmwR7o4j5hQBGJd3rz/76T/KJNZp70rChQvlIMLo1Lo2bdrdEVkKuHnnDz/6hIT367t6aeGSU5Yyt+6taVufcyop0b6tIgykThrCTrSuG3dDBkQgcO9+fb2dn58x9PF+SfPc9+31l2/3jp9+Gzml0/ka0NdtVdjnw9GVGtBDvkPyDOhhta1t3cxc2MEtpbQ2AiQPl5RMFTzGSEqEl/sJAkNdW7TN0Igil7kwEQtj4db2eqq9KRFG2wFcknRDCBAm5swWMQpKXSNi33eWJCJpmcs0icjlciV4Qyx3948QZt0JYKDlHTzTHO61NgQkEQAceEDiFOZYMKXZ+y4p5ZQjYi5TElDz9fn5+sVrlnS9nF+/eV1rA4jHuzsk0N4P9/eHh4cp81TmvlYUuV4v18u6X0+JJTPU9brvGyA+Pn3w6SffvJ6f122/vruUOeUJiTMFI0sP8w6RWDiHgXoggXXnKWtrKWO/7uAhxDktUft+3ndbDXYnRUJJKUtprZ1O17KkJCnCh0XcrQ/zDSOARU6UEzNhzrmUIoJv3jz3rs2DiBgxiYQPw3pAWAJXoNa6RUBry/2kWp9PLUtOZZqm0jteL6e2r6OaGwVOpzfeg5l4ePkBiSjCAMhs3O0hlxJske23/+v/W9vqv/5v/U8QSYMsyIFGhaerbq3fL0tm/PxHv/2tjz5d961Wu5y3rj1PBYlbbeYNuUyLEKFaM8SAYETkhxwQriMwYnCseCHcXRvn9HjfHA7BFJBqXffzhYhZUnhnBM7FLZCJuABE3/dlfiBhhlCFMqflmJnBidfLVg4zMblHKpm5IwEj6AbTQsJkbN4NSTBYd8dcgCYhKHlxIOtIkkrmMkj2trXtmksmopxZKpli3RtlQkrIvNx/ME9Touh9661xEtO2rXq9Xi7Pr5PITixMd4ecpykxpjyv68XNkmu7JVmAUp7neTufrFpAdO3r5drqLsyv7o/JW9+VOQEAYkEnBOLkYWHQzAyRELi1TtI5T6Pj2bW11syUWTCAWKz16/PbiDD3VnvfzWCAnhyFPOx0fvvhwydMIEyI4oRhPTAIApMMd9Jt8z28ChApS3gounYLiCFqRgSxSAYzkxBIeegFgCBJSBKzqLZQBRh7eA43SSLIDpBMs7Z2W4eMGfRmuteNx94bAE372qocnYUwAnOGAdBsbbUTp5zTIDpRzqJdzQHcGFrUTU27QURY7+PaSwCC0d1UNcwjPIg0mMaMFjGJSEoBgOF/8Nt/61f+/L+LxBQ9lcwIzJyTiLAQlMRJWAQBoZT8a7/6p/7ZD39YW4MwgNFT2IKTu4OH49itgAXEGN4EDXQOCRPziLUp4v3d3dP9oeQ8zxMi5ZLNjHMx1RFHTZJzmaZ5Xi+nbdtqV/DA8DmzCBaRlEsgBVJrzSOiNwVjwrUZMxmQ9Y4xeODmoepK4QCwPDxwnpkZKQFEKtndAmDsiF8QEEPVzzfnjlndNncb83umFNHHkp74PUAiSkoeod1TTuFemzrEsJIFBCGq+6hAdleiUZKJHo4RYQbhNOwrY6pABKMWDUYJhgBEV0U0JIIYcsBwAwUxCUrKmSSZOaGTEI33BZGZzRRZwAN47KYAIXpt+/WCYQHojgPriwDMFGN8FKNam1CQWABp2MtImMYmxz0JSyIA3Jv3pkaamAnQ3ADY3cPV23a3lGIB4N11NAcCII6+Ee1ES0p57PG7mqoiThZYGHIqpk21tX3zqecyOdA4AdWG46OBh7kT5TIfbj1lbkMQAUQa9DunIAFVIgYWTok5/fB3/j9SZncLN2+dI9QjHEPEFLb1EgjESsyt7gAEFHGzjt7khtqsaytlBiC1xizLPDXVGGl2RiJ0QLPABIBBhIEeFtq91xME5ZxTygQMEKXkZV5KlrGKE5HDshCRmT4/n7SNnziCPAm6Q/hg63jd1czG0ZjG1OrGxwkzVTUidffeKaWUgMTQvQNiTsnM9r1KEtXW1VLKIw1686dEBAQDx2hZCCdmIrp1zgEhOgLmUo7mQ+o5X2PfazeTxJQIhgbklAsFhkwEMbjYo1F2UFLeiz/ARAFO4IKO5IxhrpReZpwA4dqtu3XAIRoAYKjzC+jllhdCdPcOGMJAxMMgT4TaWwAyE9KwhvAgjVujW/36UGqAzL1pY+BAdHcAGgdKuO+1tl7dhwILUnBAo0dLoAcQYcrJDIkp/EaMHv1Z7kajmT1u9pWXoCghjtsHYwAjNx8UJXjpuQIifPXqad32WquHtVrPz1+WSYiISXKeuDw4z8wJmRAFEIgo3EYcbER6Y3i9PBCRE5sqAJg1ZA+PGy8bh8oyZJ94j7a5xaduMat4EYZe9iAeN79PvISeRp5hgHZexJcXavSL/+brr0SAQH9RnAAH/dvcb4oM3fxHo2z+9hD4teQ0auB+rjwO8fYy4cVk9vNyI7wcKjerDr38NSQ3/DoLdrMEDVXrfT6M8OvI2niQCAhzcyciuv0q34Opbukwad1QRBA9gAGYOZUJZRLE3vYsLPdPtVXkpKqIyIx3dw+q1s/PaqGqJU2HuweQPB3uD8uSUw5nAJN86C667nW7ALuUvF3WxDylLEKnde8ahazXrfVYW5Rlmcvx8Vv3BNha423d9y4EgA7k667am6vWnDKEoOWSgFAAUSkILPF13ajMj2Vx69tWzdwtAnEqCT3UTDgFkrUGSWoDQCBOoUYQmcXcNq0akEvuo/dem9iOmEF1maeHDz5xbSK0b2tTBWHOiRAkSWft5ntv6/ma0+BqB5gCOLEsU0kUDcG1WR/NFKCvfx+O3+CHTzfG60aHKSXJDx988t1f/pU//P3fef22PtwVPV/S/ZKwrz2266bAUHgpraTp+e0pZ8rzJABzlnW3ZUrBWHhW7X7akIgkXbb6wdN9PhwklfM2XffqrkqgXecMc5ksfN1XTpO7T4kXgb0HRUFCD9yaN42HYiSIrd7fzYkCBQ/l8c2by7auAbDvigivFlFdzqt+QITW14tNOaWZeq/RlXLaapWUg1NrrfVA68fC8yefEqd3r798fv3FtcxpWiQX9bhb8kAemoUDdgcCjO18fn63b3ua5uPTo5pdrhfFRKm4R7ucmgZJXu6nXEqPgObdcZryfJiwKoIP+31yv5yv2uq8lBirovBWu6r2un/r4Q7SJFi6R04MCE3blMUdchFTeMmEs5l614hARm1dmNe9oqvkwilaV1BlInezQItwdwZuvbt2JsLhsHSXlLoZxigoIURotXFKrqraw0PblrIEoIhgAACp6RhEpJQQcZ7mfd8++e6f+MX/zq91jcvWulrXUPPuoAZdvXuojTR/DGHHtLr1cLXeL5fnP/rR77756ifrfiEJyUSA1/Mlti0TToeUc9HCP/7Z733/27/+8YffP96/yvNBhE17ytlMYdwWAsdSKNwCCWLoVoDh/+Qf/+dba93ifjoahTpEZsxZYoGA3fr1zRVSyknAsMjh8NH9tCy1bghglw0TTdMEgWobQPrwbhHifW9uw8Nkde2tmiQmAp51PpaUqCzp+YurhwmTG162qq/fqnntAQDX63r/6jFnOp03854PhSmbqaFtjTNPRm3r2/Zu3U4bEpo5S2zbdjlfcuQCWdQQME8FgtfrzoKScDmWtmqaUramhIe7aVlmDwdEpMAuWXJkAB4QJQJLrYtu+1SkLLNvFQGEqXcID1Wre51yMXPtOuLql+sVP/8ZIUzzotph+FYBrQMiHI936+WkvfMwSCO4GZCYWW81H+8JwdyLyF77PBsAXmq/XPfz5Ros4dZqRUBkXpb54eHYTEPmeXmYpzlUt3ran5/fvn6dkxyWJSEY+/X8fNn7x598ejgeU8pCuG2fP785zXN59dHDdFgMcE6lz37dz+6+x6573bczEgNQMNXz1ZT1qmkKBKEArRoQRDhmuVbTNB0p0MN79TJBBJi7RySicEsiiZlYAKCUPE2TiDCxCIHbiWAzdSAy5VJUjQhIUpHjK5Y//uOftX3tvTLB8jhN96mt9vzlJUu5I4QpjzHLXvdwxETJsZDgwoQkIl2VeYDNnYSsmwG/+vDDCH23vlaKBPxPf+s/Xd/99M//lf/g6dVHtVtOMgmq6fVyfv3D39xObx6+8Yvb5fz4+EDPwFHvj4e1tWk5piSmZm5lmrhMrpoiJyR1cB7D6aFqgbul+PZVQ+MnHrpu3vbVXRzL9fm8nVYUIvblDigxcXak7bKHeuvKIiJEMtzJ3raY5/Twwf359Zkkc7aRC3F1LFAm8QAIQGNUIgwNTJndKICIuMwLc2KheT66U6uKAqWUklOr1QDNotY25UQQ4B1heBEFU3Lkfd8BAueJKQX2fn02ymvrp3dv1aLMOU/z8OoseWJw7zWLGEhKpfo1AG0AMBpprSWc56PMM0l97k3VtrUW97orJyROSBI9DNXNtJoSHg+RUxkb4HBr+xVQwmqrV0SY5gMxS8qA+Pz6M4BIIl63W8UnoqmrKzo4WoY8Okx8rMaQuluvO5qVUgDBzdzaWKm5KkkiRcbAQZYby2UkIGKmWsEdOBES0a0tRkdnG7MAi+Pu1oESAokpmENG5uwRIhKcCLi2JsyJRAPYPQiTiKqykHar+5YSAxIBIgOwEKFZV0R3ddN9daYB+sAIrR7WLfHooDK3Plr0LABfggQxuriZRx2ChweARXjXCAC0df3pFz/5g4++9f3EyQMkpSQMhFmYCFISBEcSs47E3/+lX/4XP/6jvVV38EBJGcLAesQYYMQAPCOObFQAGEC4h2pPTCyJCL/3ze883N8xuowJPESgTHf3eVp678R5Wo4iUnLq9bpfLwRRcuq9W1MknOfDvCyhTd0xvKmqdnRzpq6B4eQWHtqbItW6u1nr/ZClzAXSXZkPEAHgAAaOI4oSESgYMWp6AACGQONuNpjfZsQUpr33XEopPA4tdQ/3JAkQcsmtqUfTvY95TEQQssWNfRoxup8BBT2cUETScPuysBkGIBOOhNFNeQFwd2IKi1Ho5BEcABBEA9d5mzjH0JJMh5eLkHIStehdl3kWljKVNSWMGMNqN2u9Xk7vpmlKeRp2sSknHeuf26YJEFFSYiazgIh9bwExleQergaIqbAQAeIgDQxGLAagARFGICDNy/Lhq4fruu1728xqa611d8PRRlL3tCd3g7DjMhXJqn3faiNsWe44JUnJtaq2WjlNwBQAalG7Yliomdn1fLr79q/4Ld8SL+aEAAAbH0QiImfhcCCi6Kc3X/z+P/6HklKeD9q34VJDcApw932rtZpk9HB0l0TeAxkDgQQtbgxZoFBtGMAs46lJUAK7GhMDQC7JLarbto+iBmBC15BE4Fmbt9pNDYGOh+NxmUtJiKRqiMOZgDnnp4enVtvpdAZENwcGM4eX8BcEjiUmEeecAcLUhkkGIhCotkZE7o2ZA0m9R1hOCbeGSEy4tbq/6SWn2nZEevP2TcppmeckklNiHtAkFxFmhghJqekeYxwZBIjENJVyMB/b5JHVcjVFT0ThGA4eTgKA2Fq9ruvQHQBhkHOHmQIJk1DcmL/B6I4RphRsPjzEA5vT8Sb93DSAmzlkXLUBRoxX1UflOMNY9kNThQAWGqaTm8kp0M33viZJKSV1a60JUTftqsSJkRECkdXUrRNhylKmJJLwhtQhJKi1X1cd8xW1QAxkDwpk5/CR+0IAGE1cQ6i6IfJfAEhDDAtHQmLIJVk4vZcg0Jn4k298crluXb231rW1+roUDoiA/os/+LPdOSVmEWJ5r7I4SrzIMhBjZIbEODyhJAnCZcq1D6FmaD5xAzvBC8r8RVOJr0k9cPMEvZdWxgWAXhQiABghjpef4EV2Gf/ES2P6LTx2s//weA+//ja6Jb3wxTb2oiV97ecZmk28j4ndEnQvBLoBXbrlsV4sPoObdXuUuPEFx5MS0M898tc/6jDzvJeO3n9i5Ozg5ZpJw/s6PkjjLMXbUyMIEAGQmQLx8f5hOt4HoPdG0zTNpaNua3PTlBZACkSkBILT4dGRTNvI9M6HY6Csa3WPeepTyUnKer1erqecU3p82tdLHksTj64BSBFxPp9alhLY1QJiO7895A+JsqqypDxN193NDcxa1whnCg23uiviUrhVLdN8nBMC+Apdve2Xul5WYZIEeUpAgh4kREjhBTAiSimETrn0pqZNMFlrCC8qmYZAtKaAlCUhgCEFYC6ZWNJyAC91vbi6ua+XdWN89XScSwoVltS6QpgGttoEOSfhUGFGJkLyCEI1ptYdaXI3/fF/1X7wlwPuZo64L63hPOV/5V/7N//g9/6BWVxX/WCZiCQADoeFma/NhSkIzPr9nNfe+7bTlLPkpThwWqY0DH8Px/ntaa29K3FVzJlzyU/MdcHtesrQUOY3X31J3ACwCAahcBYhCieKK5jVzsLLYV67vuub9H5eW+Lr49Or1HZrF+h7qDZH0obISoVwN21ffvnVN7/9bZK01XYHvhyP27qNsFFKSkLa27t3pyJAIR5alvmT9MnlXF6/fX5+9zwf5oSmlFiSQ9ZA1D1bVaB9u24tkNLT09Pdq4/X86m9fjstRNDP+3a5biClLAcANOuEOIJeEeQOJKR7M3eRxGWaU9mvz6o78TTQv11VTVH9cPcQaYoeYZZKQoRIiSACwiPUHMlLST5OJsaBWAOCQZsD09pbKZOIMAAiNNVAvpEo0dEhpRQogcBEjKim+7YSIoaV6cBJJsSI6KoIQBiUBZHSJAA0VtXhMQYrSQSRnj7+xi/8iV9thm+fV4uoTT2iqzd1c7CggLBRoujqqr3Xt1/99Hf/wd85PX8BgrteL5cvM5OU2T28VtiQqQgly1yFN9XYd1ZEmf9Z+60//OHf+/N/4X+aSxlKu6oSp4BBGLglVYePfVQWutn5+csf/fg3IxCIDF0IQTjA2BISc8nL4weP1q/n5yJTmg6BuF8v7kZIT08fSbq2WpdlMbfaGrgfDnej2Nsg3ENkVq2uuvW+PM0lMQVul35+u7dL9xbC1AyaeVs3ySKZBTkLYah7FyL0yAZilufJnda3b4mQLF2/Oq+XnUUEJw9fT6fz21PdrzRhgbJfdnCL2Y6Pj2Zi1jVgOhSexDwQ9P6D5fGDO/OwbhGBgG3rAZHSsK5ASVkZAMGoY06Ss3YzvyBCEu7hZtZaXesuex5sPxHCoG2vn//ss0+++R1hSkxE1HsPjGU5jLH55fSsvZO4gAcFEHtkc+hdSy5qq/b2+vnsQGUqKSXJySNO794RUUQQEwTWbhbUmmndDvdwvW5vPv+pbqcw877vlqbEd8cDT7k3TbM+PD4JS637Vvu6bdvawvF4cL4r6KhIW10vz+fpYVppq3EOqd5Ya0ag9V0Hd0rEwozYq/XqDg7JicCDsSUu2HTbr5VJwkHbaA6DcBBJAK4WRSiXvEzz4TBLSkiIbr1uOXG4MjGnlJiIsOSUSiFiJOymZup+A3uXOVmHwRfb913VRBINgZaAGTLnh4cFAVQViVJOU84p51Qm773V7bK3lJN5CAIClZQmzvb8L373b/1v/+Sv/6Xyyb+cUyqZWS8F91effPrZ5c3pyx8jMaVDXghT/6B5+9lnZZqICKIf7h+X5SiSgBiJHYjdPdDDFJVTZmJGSjnlC3zx9iu16/l5rWdPS17uj2/++K3MOYkjERDLXNqG7tb3Guah7k6cEgkRqZsyM2oc5llna4EPH32QMqF1dHP1NIluSMQA0S8WFBgsQpShG6Vc8jQDkIikNEeAdm91FTlgC9WOjEyptZaZcOTy+gquyARCDNHWK4VhRBYcK+D1sn71fA3EUqbADDIRkroCiZAJUABWSN0skHtrJOLm67o5cpqOqUxcJvJwktb2L989K0XigsHuXLe9763MjB2jo7NJLgHu1gl4W3drHYiYyE1FUrgHiwfs6zuzPs0H85qdYZpSys12Vdv2dZBNUdgtTNXdWRKOAXaYOaj20U6FiG7mXYGQgCACw6z3UekRhOYxxqc+lojITJSEzSkIwSHcgFmK7KphgZJxzDvRAtktSAooZBYNJBZzZxEzA7WEhkRmiBCEZO6ogBgoKJI9woIIw10DRD2YHILMb6RSYtz2/WreegNE80DElCdJBAMFguCORGhuZhrAo5uGmQYnxDzM/B//5n/yG//2f0CHO6Jk5oqQkKrRhNTVk1BvHdE9Iuf0Z/57v/G3/9bfjFEDhKRmhM403D0RNhR3GARo9zDTgGDi5Xg3zcvj8fD08JCE3RqEAwlLklKAxE3n5ZjKQsxMsJ7eWNvnKfvmDchZnLRMcyqTaXezQQlhDAXPObGkCK/VJ7JgxB6Xuof2sbMKTjjdIfK+75LycA+q9ZeU3IDwfa1e4WBTttp7096HnoBErVUkzGVyABgwEsRRT0WjhXPoazpqbUbSBE09ADxihGTKUmo3V3W8VYpFABJLEgRA9Nqam7GIeoQHho0vQwEwYxkl2xEBI/vTW7/1iFHHoBGMKjnPTGNrxSLzsuzX675vw1+EEWruwMApWAa7t2QholabhpkHIscLjTXcgehwmMODmNzdEBFJzR0h5yRA5j6ibhCByMzs5oSU5rzU3Vrjkp7XauFqOoxLEd57b3V303BFeFzmbIqqOnDF6gYvxclqNtDarXcz663jCMvX9umf/HMffv/XFNBNh9YGQAO0OhAgEQYQhBjE4Ibuf++//H827a1ryYnzwXQPd/Oo9QpE27p6GDsjkakxIlAQIyD4GJG6MzNCuHsznWYkInNFAIvuHggwwnrDSdx6R3ZXB+CACIPeNAyJ2NyE4OH+cHdcmLB3ZQEepXcebk7MD/cPHn69XN1DErbW4gWzNTajTJRzSilp7xHQ1cZO2cz2fSOilCQA91qFjUXUXNettp6yTCXX2lV3RF+WqXe9nM/btiZJh3k6LAdJebCQAYCZWRYm7q15hLmmUkbh9KSmagGhar03VQdDN0QMyWEGvRuyr5fn9fI8kPxMKIkibtXiN1UrLN7v+GmYhd43QQUg3LBogIDDU+OIwwHkbm7u7oO9NbgseDuMw8fePCIsOo2a+OBeNcbpYK01Vbdwp1IQWIQwYOQAhlWUmMtUCOm92ggQwgIIUxmXDgB2YkcMJBhvYrzElV7iYS++k5te7TezHo1FIwKAhQbAkJZePGfgYPcPT1trHuER1/PJ4wxsiLCUhw8/+b6U6UaXH7PhG40+hHmcPLfAweimCmciD4yIDz7+weX8GdzAQ46EGDSkVIL3hqD3As5NRPH3dpi4mX4CDALed2u9NLrdwENf60ABN81kdBrfEh4vUJ4hN73EGui9gvI+Vfbi77ntNhGBblhUfPn0eKibaei9enWTjOJF8Lm9LYGBt2jc7ccb7qwb7Wi8zpvp6eaDIgQIAggiEuJbixwGswjDjfZ9U64oBuKf0D0kl6n3DhE8HB9bjdhSnt2Zo7NtidFEchFJDMic5rZf5gWQltYlMebE03RISTystzpPkwNrwDQlxCXc29oYo+Q0Hx611vPzl9f1xEnCfVubOY5lHwJ200Lc69p77d3CoauCdyL22jt6yhIBkHi+e+htO97dI6jspwR1PixF0Kzv14uUaSqFc0bA3o0CSpmIoO01IEiSqYVpr817jxjJzQRgU5mBwtT3ugtmVd+bTSWRZIB4fv3VUrJbKFIEvH53mkt+vCuQeJ6kta0GSCmAtK27LDmlBNXMOwShAxNxLhOx9OjatbkD9R/9HfjBXzpd7O1EhAcEm0v6/p/8tZ/+we+a+WlDN03CBPWYYFkmVXi+XEHE1ysmIclt7zRDmFs/oS/LPCFJWuZSVXuvp+ctiQdS9Nb6Mk8PH33yxU/++V3C5fFDbzsic+JaLRwKsZm3oDzn1dzNSl7u749v3vS35/WDD56m4wFtU912TchTOSi3tocXq4dE/XC87PrudJ6+/PLjTz+dp6zdzHRZ5lrFtXmoKyWETz56NJHCSG54uZrwKwEC/OzLt6fLNczazkQk8zEx96C6AbRz3bY8ZZqeoBxNd2Yq8xEj1ndvtTfKGZA8gpkx5GabRwg3NXcPbQ2JASMlYiCriYR4j+Yw5GdTLYn4+FgDPSzlDGG9GwC23ol5IBTNoHUdcLmuPSKIWIQBQhCpFFYjJohRgY7hMeK4o9kkZ2ai83WfD8dScu29VSMiEQHkWhsSOSAiliIeubcGY1E+rOwsDhiq80SAOB0efvm/+6+CLK9PuzrU1lS9dfWIG/MPaPDMANDdeq9tX//+f/b/+Cf/4P/VwpbDYX51BwTYjSEtNL25PNeueSoypZQXDXd0QHQBFJymxBM9lG+GNlcNVzMCQHMgSREQoXCjHt4gym7W9+3//V/975LkMQ42MwQMdQ3YbO/cH+5fLcej6Yd97wQ0HQ6t7vPhCGB394/E0lVLTncPD29fv1btZvF8ekeA123V7tOUk0jtVPfKEkfKxfJ21tOphvkwYUYQkkCYFJmXzI4ZoG+XtCROIk55mhDZAjATaqTDrB767tq2PWVar9e+n6ckT/eHDx8OyyI7ujXXpseng+11v6757rCvGmO5msW3+vDp3bws7uyklMgNzTwA9WXhJiWVkoWg78qJQWgYHyQJgDImYcTwvdnldHL1nFPJcnd3J7m0fVufz5S+/OSTT9I0sQgRklIAekCelsX9en4WERhkuFAIQ4iuKsK5LEJ+ul4lJWTuZq02NaPhMb45jeF0vnTV3lur7fzuHRJr22ehw5y5pOetbRsd55mIiBm6X6/rdV0v51Otba/dAQPg9HxKwnnJ9LQMAiMDUpb1gqevanSYFs7Lsa47oT98MCFE3bvv2KoZ1PQYQABdhFKt+7pu2oGJrLu7g99cs+OGmrMcDsu8LEkk5SzMSMjIaO3usNQ2TNcylTxPU0qZhNXjdD6N22fOOeWUKXOI10pIxBgBvXcfAifRfChhMd0dPvn29xF9v55LnjmXaVpYiFOx1tbLW/3pT7784qd5yiVlFpKU7rAs0+HDp4+PqdfLF32+LyhzxsyTTPzu8aOf/PFPIkCdguZ8vH90/urNWyImhMPh+PTBR5wKEHHKnMQsaq1qwSSEo59tYgSzhirbs2zWT6933fTjVx9bd0Jij35qzg0cZco8l75tBNg6CLO5uSfrNk2LVWAWCJoLt2XWcyulCAAVBmtaLUsWDjDvqqrCKaeUmYHIgwglBRIBsxTiTESzu+3WtstqkZMgDW47BDERliSVCdKM8yERgbUw29Zr73XO6Vjk7v4hz7qp7U2JOYi0e4DPGVkyQUdw5CQO17WGWapbPsyc035dhThS7uZ93Xpvre57rWH2GhmgK7q1rZuicHRgI2AuywII5s7MBGAO6o5A0zRZr2aq6nMqve3bvpbj3eCsU0hGoq6kqKhC0psu+R4ZWYq5JURGMFdiYhkiJKUkAKDaAYYQwBiurfW6BRCSMIMTIYBrl1wISd2IYLBYnUCrB6CZM+BQhgxShBNRvMwAzSEAuMwR4XVnQkIQQh95MQRzA7CB3SVAIgLAAfW0UUU8/PbQ294NnMIIQXvzABZpaqMsKSIA3LW3rjmlQVnwGI/IEBHIvVuttXUd55epNfXaOgL+9f/wf/1v/Xv/84fHV87cFbLIVAKcEofZ4J87IxDJw+PTn/q1P/33fvPv3iwQSCOPFuFjS0EBOnwoQLfiAsJvfePTx8enw+GYkzCFblvriiOMsNU0Ue/r4f7p8PAYkVrd9/Obdj2p1rvjkZjbdbXApw8+zvOy7WuYMjExYXjrzVpr1mcE98CAGgIQQJCiu7dzsySZCE01JwgiZMaI7i4pjd1F3WvrzgwIYFZdTVI26723cPewcJeEo3yt1dpaH+1gasYi7khIre2j2tk9LIKIibG1HgCmNuLkYdFVPdgjKBwC3O0WnHzZoTBjKTlu0Q90Gm6gGJskZH7Z6bwHWAALW+segY5ItzUAE0CAmnp4yVzKdDge9m2DQYgCcAcWIckBiMzWWm9KzLmkDEnNW9cB+uldxzaq7h0wJIQQkggysbkFwGjWIDFVbR0RUso+3ACjGlPScjxcztfWukcQM3Qde6PemuUMAEkEIRiBk+TEA6xKzMKCTpkF6w7hANDUw6O2PsrSpodPP/ilP73vK3IGQAiLcAC71UEHQthNAxqhKbfP/sUfvP7yc0RC5tqRFCNg3/amlSYZVytJ3Paesjiihft4cyOQYRRZQYQ5uDoNwQoHKSS6KrzwU8zczJlY8ihxisCQjPu5jyTLYLc/PT08PtwToZtb2M0Xg0g4GNsmIiXnmqp7Z6Jtr4LkgO7hHjywgcP9HaOCz5FvXgRCUjNmBnS3UNMcJSIioqlOUIjZAlqtOSMACJMRau+999aqWhwPB2bOoxmOGQE4JQBQU9QIQh/etqUABGH0Pql2H61IyICGiCnTdGAHvJyfu9YhCbiB2gjvDJHA3cNUWZiQAYeT7nYoIQ5ZA0GYaBigwjx6s5wYIUy9q3bt3Zq7JylCQcRAN5sHA3iAo40MCiGHY2t97PgdAjGYCAg9AhETy3BUde2It0jhGMECwkhumbmDMSGSEwGAv+DUbpSdcea+N7gMG87IMDHjS+Jy0P0REAM83G9SEbzwigNGT0zJpbWuqm3frpevAnR8/Bd/6Tc45amUkdZ0eHEOvXhyRlgPaETS0IfjEQABHOmbv/DrP/5n/1kEIuLgVA+SxNCab6yf/z/izoBMwC0BFoMSPWS793ab9+4ZZLn9GPESpbr9/XORLHwxcuHL1W04el58PjH8PV+7mSBeLo0/19tFoxg+AF7QPDefz3iK8Z8hut8EKXpRiBBoBNnGcyO+PM24oeJ4T0YDI8C4u45iMbi52GgkDsLxpfGNSCLAYnTfeQSKjalCIHEihLZd3Mytg20CgaCpLJInd+z1WuY5TDBCVYexzqFwOqg6JxKE3uvp+TQfjtO8oEfCVPXSW9/3ivBumpZ5KUwfnC7vet0BgpKAtWkqZVmIk3lczpdlOegVhIKzb5emHcxNhAAQHKdlKNP9OJVFwiyYE2I/zpNNpW/r6fn5WGZJHNoBqQipu2k3FOBMIu4x0HGusW0XREhlylm0WaCCAkRkSeZwOl8OmQ5ZSrba0F3XVZECoR8O8/e+9Ukz6x5VHXwXLrmEJImAsiwgiTOrkpkToltLOSMwhFE4uDIFMve+2Y//m/iFP/P6XKdpSVkA8Af/yp/Zvvqx9773eH1eP/posd4A8yFDLmI7nbtWQK6dEDmld28vy+Ewlam32hlVo/eOBESwtwZfvS6H43I4EPm61wPh/f3x+avPHMktHpZM6RCopLUURCj7ea2bpZTkMGPKTyUvaO/W9vs/+qm17dNPP02yRADzhOERF5Hesui+AoCIANK787kwTF4f776PFkieExqQBThxZHY1cD9d60EgC6oHEAtRETqt+wkJeDpMnNCWeQ5KcX9n7djOb67n5wNdC+Tz27Xuqwd31S/envZtP9wdy7wQBCFwYjAdw6yuagEsHGkKN7fQVhPj4bhs297bVbXXvYVW7e1+PkSaDIglJZFWawCOEFMAjBUVhKkxgitCby2lXEomZu09BugvSWivXYsIERjiVDIxU0TdL4dJPHA01ay1EaGIoMgtpsk0hgVDVNprQ6YxOz4+fJCn4+ndl649EMvh7lvf/5MffPsH707rernUrl2tdx1ql7kDEMBoo7hZEHvd/tE/+M3f+vt/3a7P+16DuVmz67VIiuE+4XT/+GrbNgj3Hia+X7uB5pJbW8f0L0133/7kV8w9XFUbAwEKIITeLlS3+6QrvMSk/+u/+9f69RmRpikHQGgwEattVq3HFEXbXpY5lXx8PNZr3fZzkTIfj2q+bRsSmdbe+vEwDQYEQNStdlMEnDMvy0QkHqGsj3f5ow9evXu+rpctzIVpLjklbq1etvNH33wyV2aQyISUSqbCd/P8xHdq+uaLk0tKajlnYfLWw/p0mPfLvp/X07vnTz/+cMoP8/F+am3tdY8mUBInlNjqiQ+lLEvdVhBGwumJI7w34OQsCYJb07AeEH3f+7XOx0VSKjnva0XG6eEQ4bo3106EKQkIZCjWu9re1S7n52WZCA/mPuY7DHF583oqWUSOqYhQBLqHWQSBSCKWrlZKHjMGCNPeiAiiSE5ZKEk6X/faNeV0OV+FiYS9a7irGZBEeG9tnvKhJLB9X41YGuH13WWUzgDAl6/fqOp1rx54ulzA/fHx4YNPPnpbnt88nz1CzdatLncLaYBHyVkUtUWajixtv+5r31r1aSnEQEh1rdupojEiRgqACEOOjEitdtMIdUVABwQSZkQumYXleFzuDocyFU45ApKQCBMRjGXrlB/v75oaApRpSsLDpHe9nN68fk0IQZRYEiFotJO2tQONaSqM+IqHq5pqB6frurXWH189TWVelkPOc5kPJDxIfevlfq372lahdLybhIzIJ5Cnp1effPotdMzXP9b5AYcTJiMCf+M73/3r/8l/3NQpTZLKw+MrJhRmiJim6f7h6Xh3P1adEUE0igc8QEUyEZZpBoB9X9+++eyf/OPfPq2f0WQQuczTNE/X5y4JF0nIZW/r+nzOh9Q7gwWlJIaIyOzC1PcqCXNJ4axBQZRLmTplSjIl8hYI++bdKilhMAIRpcSZSdwMHAmDHQQYbuoDEyK4t149EDkBSQSEuxATU3hPCQ/L1CFJygl6D4qIudBo6uFSWGQSvjsc1K/uHqqGDCQW7IFc5tBWmwHxbXErfLlcc7doTcCzwPPejGi9XMPcgFSbCwc2dQrUNC0cKVZFTojYm74smxAiUp45LzkXBAfXum8R0dt2OT87mGRx12AkyiwYsL84u52SmDqnxGPYqx0iJKecUmJCd4Qo0wwQYmIOe91UfRgxyD2IINQ7AAZ/3aBibjo0D9Pu5tpqIPbeJU9TlpKkRh/YkYgwh1HAhkSAHG4AGO7MFNYEIryTCAZJlpKTqQUAuCNJINZuHlarQUROJMwe4SRDvbNwBB8kBRJGZHfrrZtZeLR955QkZcRRHh5jvBpua+21aQz7yghyOnTTWNv/9f/wv/rLf/Xf/873fiDD/NJpyiIEQsiEWTALBKKk/L3vf/93/9HvfvXmDcCI+KAHRYBpAyJgQRjSlT08PE4lf+PTT57u78AdWeq+BWE3VwsM7V1BJuexSaKujqhurW5r7xXCWt0VyIFESIT37ZpyTvNB6x4ITeu2roQQDhfz1vpoayCCVrurZYQlCTCbA3RlEUIgHMlNYUbrnQCmKW97M4UkCObh5tq7dm0NIpjFQsHHOFEAfQjTN73elCkjQd37MDUjsb/Mw4mIiFQ1IiAQGY/TnVm9xV6GgmZGLA7hXSFMJLmZhzMLMQ9WYEAwGZC87PANApBpGB5oZHMGDyPA3Vvt296R0MwIESNNU57nJaVkpr0rM8eYV0XQmHATdbVMIwiBiEDEIhRAtbYgwuAA39cqSXLiUrIQBjKaEwYB2Mi04LDJjGgLOlI3B0ILeL7ul3VrtaWUeu/DGtZa22s9JK61np6fH+6OSRgRPRyI8WbkYRHMUTwC3NZ1Xbfaum7rte3rn/uNv1r3TdUEjVjMDBE8AtxHdhsgiMAMIALDmeJHP/wdgGit5jI7eletdb1czsB+SHenNxcUGG1lLOKI2m1oE3jLdaBHoEfYSL1Aa52Ik/AAsbvBtEwIxEJjR8mASCCSw9008pS9N1dzD2J+vL+n0Xbbdhu+OZ9E5LYmAWi1ITIjh7dRegVIYebuY9uMxEOMYJLu3UwBOCVi4nErsGFYA8RBMxjNYkStdURiYTUDxaaGCLlMHN5Ve9e3755713meNOecswckYSIKZkYkJHcDUNbORFMR07SUrPPUer9cLg3rDcspSAyAdN1WIhhylYVbMzdDJJZRuzE8cWFmHgYExAQUgDebDwSED5HPh6XTzJxZ1dysq+6tVqscRCDAwAjkBGDuoaEAN21E3cNbGI63iV6OfBEBHLIaMREgMCPLKDWLMXRDCCQciGV2RnJkGOGDW5btdh5gUAi8d8fcXj5i3Og16MO0ggA+SMi374eX09khXsQRCHNLaaot1Gzb92392dCkjuXh/uGTKY8AL90inIg3WNiLwxGJ4kWwYALVmySDAGVeHp5++fTujyL8Ztq5MbS+1rFebExx87a8zP8ibh3q7h4GCECM+BLhgtGM9eLNoRdA9k2XGUfveFm3qrD3atlNssH3rp7hwhm5Nrj9Dl9CWV9nzGKECF8iX+8/i7dfJADAoO/B+2+OQCRG8ggAi68fNN6bjwAosTDkXVU1iIkT0+i3hAgIQUQi8HGmjSb6G/FNmIlkGPrEzITFb3ayCXxVCLDed4+UshCoApAHSprDMEgppTnfZ5vPr7/Q1ixUI1IgMfO0aNu36xn6HoiUpu1a675rxPVymY4b58y53B3vz24B0GoFCkdqxn3vj/eHeS4sklLe6w6I0+E+2qZWVd0dSpZlmdwNXAF5q9ZrJ54PRdfrs6e59V73/QkjEQ/FYYAc1+u6ty65yJStKxFaV+/dISCQzK/XKzMxccoijLXrdd0jHClMPYQkJyexbbXeBHwqebqbL9e1Nz21i5sTcUkEoSjSFL/86nVv/enpXs2EncABKdysKSGgGyGREDPX7Wf9yz+4yJ94XmspmUg++vjTb373B3Z93Wv9WUqB/OrV46ZwVp0EcuZiDrl4IGFkYZhLtzbznOclRBj3mSe1iEBmJJGMFtpUUrbLvut2PpN2TKUDffZ2e2h6fPUBSzBLNU0p72YB4Wpoa0CY6ofH4o8PP/ry3evX//Q73/qY5/sITlM+3D222rH1+UhwPtUp77UE4rq387qXy/rw4UKBgojMdevGZGhoBq4Q9tlX58fjLJhAfJ7LoaS9wNv1ekYgiCRo7oiOECSS7x5RptMXn799ty+HufVeW6t7yyzpeJCcicXdybtIChZ3c+uhCNA45WlZmIp3Xfd9LLxqN1V17TKmHarTvHDKbO4a+7YBMRKExlgxq1tYIEYRlJRqrYSUhBDChpEYMeLWpSIA4bqpi+QIEBEEjBW7uqqbK5owEgGTSNj/j6p/+7Ft2877sHbrvY8x5px1WWvtvc+Fh4eHlExTN0oiDSkSbFqOZQQOkARx4MAIEOQhQAI4CPy3xPFD4gABkiAxnIcAcSAkSCJZViTLIs3YEqVQFEWQPDxnn73XtWrOOcbovbdLHvqsfeS1H3ahUKtW1byM0dvXvu/3jaZD9BcTkwfUbr03N6UImZZ/7b/zPwTAd+/f/cZ/8h/9iT/9q59/9+e+fvfp97/8tG374DnbAPO5uXu4mXVXQyZt9cO7t7/9W//5b/39v3O5fDqc7peSgpsnd0FoXZszMjm1be9C82HxrQoX6xGbdYDE1K6ICiX7Xfni/vEzFmn7SmlClCDFURmAeCsejBv93sy+/vHvvH37uwBYSNgxhCMBALICd30+P9Fyr0k12X5eL0/n1vU4HeZ5ubu77+oW/vT0nomc4Pn5iSXNOXtCJMSOwnA4HCWl63WLiNNSvvj89eWyvXv/KaV0uj++evV4Op0k8Y9/9CM8AQomoXmZCx9yydMkaKQ9LOxyaWVe0lJIGBB1bVNKaV7MQmaCe2UMShAMzZUJSy4QpHQL6Irk3uq0LFImQKME23YRKHmSQILAXqsDmqq3hm5lKWmSMhcKlCw4Ue+t7dp773tzcwxIUk53J9NO+PGyVtPQ1nfcUsoLkLAQ5Aj7+PYtI4bbtBxvYecICIrAVCbYd4ibo9TdhWOshqwb5ZRTAiS1iGY+sgVMRNF784jRn51Tery/e7g7mvllXbe97rU7kJmWkpHosm2q2roGuml86/PPvv/977lqmLXe33982j3cPGXMbTpfVuv7jtQR5/vj8fE+pwk0iIAAiXFf1/VSrTlTSGZgD8NwRKe21d7VXFWdCZJMJZckMi/T/fEgIqWMT4iDdOuEISkjUbSdhQlpmmfRfisXN0XE6/WyXq97rUw0ZzFzhNjXzXrnm5nb55zW2nftgDgdCkLse21Nf/jDPySix1evJWUkhLBwRGJinE8P949v3r79GhAlTRNBLvx4uH98eNX3y7XvYcbLt3t5E5iAqKS0lPTHf+lP/vp/+rdb/7BtOxIFxGdvPvvszeuHh4dpOUlKwhzEtbZxfCCWJc/msW7n63o5Xz589dXvf3j/9b49H+Zcfcs5C+e+e9squk7p1JuJpIDo582BMCUPEIigCEYRDndtgUytNncJgoQ04mWMhCKt2b6tXY07LvMppWUkC4YLxgNSliJlJE5hBGMdwh0pYwQPLgNA753Qt+v1tCRZZo/YL3u1pjhGCMplKtOcJJXMdbtY2xlDWyMW904hCNwddo154qDUrffaCDFPxRhp2+Dpo/TNTFfr1+5BFO5pmsoxXc4X69GtEiYikoTQAOakDXXbTvePI9I74oEkqeQZINp2aeqAGG71eoYIpkG9lOZb9z08LJwIUylEZL1iOEKARQRoOKIhFSSakpTEYAEUqcyArH1nBh+F3RhuKaV061jEAOsQAMSq3U07BHZGHMYN0LaHGZXJAQkYoIdZuIMbIFoAj1JhcALPQkCJINQ0OCEQJ3EDYmRm88C4Ndu0pnnK7lBrdet7A8LOGEyWUkJhFo6gri1MgQjAfCyE987MSbjWdmSRxOHdw8OJCXGQyQKRxu97w9+4mZqp2v/tP/xf/8I//6d+5S/+1devv1D18Czj1iHiCl2oJC5JiOh73/veV1+/tdZG7mxsgQe8CACSCBF/+zvf/eLb3y4p39+dLp/eeVhdr2trAOBmvbeA0K4yp9DGRMTFLQLMtYpw2wLd9r0GAITO04kAckpJEgBIlsvT063T+mWZD4S9d/fqpqpmqoSQy5yX2akQk5kDRbRepvyCD0WNSJIOM9ft2pqj9bGrHbPBCFAMtusI0JlHuANjuIcZC/dWDdHctKuaIwESe/jLBh1zzq3WQGCWh8cHe/6ahQdoHJkCaGgWLBLOrWu4EWLIDR4Rt+72kTcyJHJ3xFE0EIg4MIuEFBDEkhAlibtZNwAI4hisolIeHh8/ffwAvSNSziknNnPVLkIpZU9e92ZuflOvEBTGgdnMPLq7CYP1DkJDyEDk3hqUiZgGXheJAXwAYiJgHNI84LrVT5fruu0ekDKknEa5tZnttaacWNghRBi/YacGDKki5UQEgUQBqpqJLMm6rpfzM0SkMptphAGAmyIRuKP7YF6NqwBGRBiYIsQ8zev5icAhTHtFo23frtezox/no5u7a6acUuJ5RsF2vd76xyPQA5HN3SyIwHR0S4dpJEFTGGCbiKhbt4EeppG6u3VWIAEIAoQUrKqD1oRE67oTQEk84JjuPk3zTYtDRERhRsSSxc2GtUm7jizRS7QnPIAZfSAwMWKYSVqMVai6IRJGUNBL5ApTkvBbAQmgNO3MLHkSDEcAlFbb+XpV9712kX2aylSyEA6XmSODBoC4CIfnkJglYlLV2ruZ1b6bYkQQh3Z0CCSM8AgdFo1ABKKb78LdwHvryEBEjAQAxAToY6wfkcjQYSvjsRlurZ/PFzfLI5HgLkiSRJKMJB1AeITbAJ8BBohQMPfdA2AqKZcMhHarg0RENDXJI3gZAZQCA328xV48Li8yy2j+xgGIGWjnb4JDMeS5eBGGhqQy4MEDfh03esONGvbiU4EXeeWmUwymFULkcvBmXbVua++fABwRXz1+v5RUShImIDIg8DDHm6B0kzDopRQLX0SbYTl3RDTV7/3gV/7hb/4uAtPtij5wNmOTjQhI/I0l6RZnu/12ARBBgCMDigDA40V/k1BiuBaJhoPvRQqDsTC/JdxuaOiXP4jjVTLMSN/4e/BFCvopOupFqLmFvm4On2/+xqCM3x7+F9skENK4OnzTXAajLB6HRnWzPUEQxsvLNBCBA5wJHR3CPIKQb77d8FGNMq5cL88jEgkGEEogWoShigOGBzGzJHdAFgQ0NQ01wJznQbJnThHBOUeA9xqmWq+DyNV7VWvrCvl0SoQA8Pz0vhLIcpDc93bZ9rMHPN7fAcNet8O8TGWJqJfzM3MgQu/msA11HyDcz8/P59osQg/zxBQjhglISNy6YpgQmENzY/AMDr63j1/Fq+9+/ZOvFnH0Fq6tWVAyB2u999a6Vlfc95ySjJ5rZjANh1p3QmQRSQJEjgQYTXsgqKM5Qlmim+01rAsoBbSmJadw6IBgnhABLCTr1jigMJzmVLMgURrmraBta6ZdKPLIagBY02WSLHn79Lv2+S9c1pqYRY4i8Qt/7td+/9f/2jxNAfy87XW7Pp7uniuAdXVj8vvpcK7e93OC3iNN87Tte0kJJUs6WlsRPCEAkYg4CYfqbnk51v3SLYKTto5SNPD5qrlcD8cTpozQiddD4haIjBgW5vd3d6o9MD579XDd9t/54fs3D/v9/QMxYoLTw70D9MtznpcHrBb+dN03x3Wvbds3Bc18zIVdJ6J1a2GIktw9AqdpWvd2L4DEymk+TG9sBe1fvn1vx7nI62nqiTgRKFCkOct8z3J+92Wte9MISA+v74Wpq3X1gUsAiG4Ow6AGgGhzyRbQ9xo5E4G5ujVmHhZLYFb3YXsWkWXK3mGzjXPWrqqGRAM4Z97HMdVH9aOpMFvvvffb0VPELEbiFzDaXgFQgTxAhJcp6zypRfNAh5R4XFSHxz4BBwRBjH52JJaUAXBUd9q+Pj8/v3nz5jvf+vxf+df/reu6vvvw/PHaq2K3qE37ds5+8bb29az1wt57660rSbrs9fd//w/+4W/+5t52gaVd+xSYiF0QNALCOMIBNC4f1zrLfARilpJQ/Xg6zgKYGCEIQb39ws/8GU4l51y3q7YNOTF1kinciNghiIZ0DRGxr8+/+ev/ZwsjFkc0x4kP62UdmEAWOdxNQVp11/O7S3u6bM+MVBte11ymWdW0aiiS0P39o4fXWk+nI+UJELfrpfV9WnKepq2vD9OUkb9++9Etvv3Fm7u70+l0mqYp54wIve3rxytgZMnonA9FhNyCNJ3Pn6o1a55Sol2bbXwqaKHW81zIIrPMy5v5tOAtBEiQULXta3t69zHPOS85MYR7r1VK1r5t++UwLZwmJ3fTXOZ0KLZ3dUslJREPlyycRhmugbnuYKu2a2t7VVVmwoJ130eGMKe0h7tbb/X5+YlZ5mV2JFervb5//w4QJKVpPqgasQCgsjBnyIHgzOQ3gN0364zRLkDMLIIBdJiXCAMExMRMHuEehJBzJuKmFgFzmZhY9UyJTXvO8ub1KwDf6/58vVwul7vD6fvf/9nH+4fr5bIsbbpcIMy1u8F2Odd13fdqEaPuzQMOr+5P9yVZCLKZXq7rfml9VyYpwilzFwNjVCRIg6dAkA6LTNO0zMs0zcuUi8iUE4sgITITMwKZU5mnMh8RwyR5KNAuxMwcKCSptXbeVkp5WRZhcnOECFdOklCmMg2/T04Zia5bbTfvevSqwqimP/rxj4do1uoyTaVrB4dUJpKcpvl09/rx8XVXOy4P3/rWt1Kh1GoitLoHEwTij//LfvevqgNy4kSM/i/9y//q3/zrf00BWu+cctcd6bPHN5+f7h4AkRh5RKvYxjGbGbu1t29/8vW7H+/reb1++Hj9SfQ4pINjLDL1CAxeP23eTWA0q4ZwZmZTM28BLiyEiOgaKOAK7upRu9u+X/Sy9sOysGfJGYGt23rZ9uvmELW1bv7qYc65EGHbe0QAUElzmQ+AyOg5JzVlcCSmVNzUwkF7QJhpa8M0XmoHtxACSQU4J0lqvTtNyLlMZSo50fZsz5f11sbhMcAB2vv5AnMiwnDAbkFMy2HpKz5vewPatt4Qp8t6YERrNR1SKkvJiNKajSP0MBejJOa0bVftCqaXj++tN0nT/avPBr2hbdfe1rpvbd9KSfNhmcLVTa1Z7wCkvXffWDKAZMrEQoJBu1p03bJlBxBBIeaUmalMiUcUBMnVXOthmQNQu1rH3Zp7N3BZjkxkjQdBlklSmbzX3qoIa93MFCIk5cHxpVIEmXDXVrsbAFISQHQzAKPQJMKpkEgEdnNTtTBCjzBVBeRAkiIYgKIOFAHMrH0HD4QINw/rvTEIRCQhQ99Vu46518IBAVrXrfaU03WrWY0IRRBxVBvz6bAEbOu2X9ediYiodW2tt9YRETE+fvmj//t/8L/69s/94p/7r/0rj68eMTwLNWw5SclsZqqahf7Mn/3l3/j13xi43YE8IgIu0yERiUg5vnrz2fd/8AskKXpbL8+19+vlKmNLP+QMpN5bbXqYHF0lTbdxQluru+5XxNAAdAfO83w6He82dSLYWw0zsIZhTQfwmsys1+rWXfucUldttTdVhJDplKelQxrN00IYAAbM43TOZGYe4yYD0GsP1N7wNrk5AsBQzgIiQlUhbNTMSEpExiLkpmatNmJhYTNzVXcnpJdLPgDANM0Pjw+nh1cfzz9BkFLymBgCwDwggAFQ2A2cRsokHOwlABLuwbeVdySRQHBzN4cB8iUERwhIwsI8MkFuY7h0d48ISenu8ZWa1dYQgYkJgcB2jTBIhwkCPXxYKkYghYiwmyQJQDcNDyZMzEKIAKrOgikJRIw0JQws1o0RJkJg7oBo7pfrernuXS0ieqc8lRZ1wBxNdd3W0+Fw//DAIuC3AL2ZbXtVVUKMsPBAImFBiK79ul6362W+e6V9NzPXnvIEcEvoBLwYKiDGN8TRG8pUSsbh3WBSrea+bzsgzPMsIma6nJZS0vF0VPfr5dnd/cW8QCNR5Q5OZmDqkMbK5oU1FDDyy6aGwEiANuwR0VUDmQkHKSZNGE4C5fH+3hwgXHu1zqWkCNDe9xGdSYmZS8kAUOu+urXamch8MIsAkcJD0RgwCTPxiyEjVA3CSdjMWJiJPdwtBn4pwgGAhTwcHdSMHbs2xDJyOMxMiOGuvbXezT126F1VFSEyAzMxpyEVSCoAsLZGiDnzVPJBJ4igndZtcwjXMIft2sovZNOuqjAQLYFMBIDEQBQQCIyI4ODgw8DiHobkI2AEAWZGFL2ZuZsbM06HQkgEOJw7AQ4IxMECRCP8RYkTIr9kkAAQB75diFMWQBgwmZHBdXAko1G0CwEQNBJ78JIgim8MJDfbStySQD8VbUZxWdwwMy+S0NCIfqpbvCgbN5PON/IPAb7wl2//KBKnlLLqWVurdYWwUdj36vE7wiTMzBgwZB0kAjUfctSYlQgAkG7XE4AxrA1yEkLcP34XgUfx/YvlJ0a+YIhet67zCAAaWKUxcdzyZICchMgR4Yawjxi/KQYOjNo3Lp1vfv0Xos+LH2f0ut00qxcjFLz4CV8+Ed/8B7fP+qhyxhfXDw6nGL78nKO275buomGIw28SeQPLTQDs5hFGxEwS5tYdCCXLjbzmGGBEIAlvUo8H4jdvJgIidws0iAAwIhqjRKCNCB8hChIPr2+elm1voRpuYYYIiQQGBwIsnHr7WDeMQMllSFU5lZQgCx6mtF+vX3/9xEQiot1/9JMfPn16F265TGVa5mm+u39zvVxztnk+ni/X5+eztn1coyKqdTXk6+UMoaaGjIDsDmGahYmYmHqrUfVQ5LDMh2W6dgDram6ERWTvVr/+yYIKgfu+ByXk7KZ7q+DWakdiBAJXDiSgddvNuzAxp0A2c/AQRldlSs4shJCSBm0Osm1gRsTA6AqplAjYtk29DxBKnmcpgiRBwagMeDpMs7mIeMBeuzOhOzGLcN2vAUE8bbVy6LxMp5n35y/XXKacLmsjiKXwq5/7k8+///dTmSc3V7usFwrYLazZ5mi1PRyWrzfZ1otzrgHzoXz89DTPPc3LhBgWe+9inaMnOnbMav3pw3XJMBfuvni3vfXuRimhFPPY1btRV5rEl2laFa/ns+/nacpleTCgKeVScj2Wdx/PP3n/B9/97PHzLz4Hg1TkkY8XhB58ghzAW23P1fK7rxBiOZzOp0OQ9L3yUF73zQEtiHOhJDt48TrnHKfXxvORPj7wer6s6mAOZLB3T9My5eJ936/+6fz8fN4/+9a37u7vD0thlq3Ger2aOzJBxNh/mTkRJEJwX5bZgcy8tq6tk7saApMFgIcFKGCEc+JAZsFpni7n69j/iHBKWXvrzYfebA66beNSzixN1TyI0NT6oHgijlUzEfZuWYhCwUBNe/ehZ6YkA+fMSGYGLODaW++9QoDk7NqBOM8H0N0C/t7f+Zs/+BN/Poswi6qqA7NMIupoX/6jO74C8LXWzI5M58vKCNNUmmOSNOf0rc9evX3/pBatV0Sa56OKh8K+9yb6MAkQbtt2vnSgx5xSJ9pbdbfj6UTMWCuy/NL3//Tp4XUpy434uK8kBYkBG3HyQCZ2G7Hz6G3/9f/P/05QZ5kDGEKEMwGXVPbtSgQghEC96bl+7NaDIE15HIcjtxZ7yhMniNCIDADddJrmV5+/Pt2/9ojz08d/+k/+ASG2ut/P5TDn90+Xz7/4LEuaSpnnOeWUmBCpm85LeW2P53bJSYRT2zpM2bttl/eX9QoYpZRpmvZ9RYS6gfaeMYulTBkFmAmAtusKknzi509PVeu27dtlTVPuffUAQSTi3pqZLsuBU/Yw1SsDB6R2dVQH88wJM0sRYmIY6A33Hr5bVPembd/32kQ4zAMA3bMQMQVY7ygpmfm6rcTjEB4G+PR8AWJi+fxbU55KlhKAW9331ljSCOKZKRGpB/SesnmAOVq4YLrBCMGZxw5hADRDzcKttfrhk83zZGqIqGq1NWaGgNaNmOfpUKaChHXbv/3tLx5ORwwXkRd6seeUHu7vckIhOcwzEpt5rb3t/fpH70To/uF+uV+uV2tbcwviRERADEwppeiCgW5xPJzCPcKZWSSfjoeSJDPlPEmZRkwjopJIPpwOp1PKRVu7Xi+EYd2BhZG69vV62a5bSjSVMk8lM725v3v74eNlXRMhJ7l7uDvc3Yf7p0+frusWA1McIRPyAhqWMUEHCvryy5+8f//+zes3r9+8WZZDyXmaD8vpbt0u2+Up5wKoyHk5Ps45Aj4kJERGD2+7bx/Wr37v/vCLgAjIuZQ3n3/rl//8r/7uP/0nT371CErRet3qfkeSkkQ4Mo0FaXh39a2uX7/96p/83t//+PxH7BzkDj6iBDV6oUMKzrnsbTfXKS1dezigCElGDO97d71VgQChA0GAOTEKQWKyDLVr67UIAxiG26669lKyg3ajj+d3RJLLNJd5jKdlXg53jzJNpspo1huSxHhpOVCEN+V6aWVGJDcF7ZfLs5kj4cP9owbuCobo5q2uK+JyOMyHA2jWfYVRBuwD3todHYDW0L3mKbOIYLeMKBHP62Xrikg7yTQv07KcdNPrtdV13yZf10opkBiJScZBTYgQPGdgpVqv7X2Nd28fP/v2vBzcrNPa61brvm+bmzJjrTsw1r67q0IPRtBgmIDBQbfYx84KOJCgeze3COgtWu7lcJCc7IY+cIowa7nMucxuRmCOgqe7/fwJgIjTVHIj7jq8cIQIjmPJ5wBALOEKZt2r5IkCgBlyZkCLgFAMABoDiYw3F0kSkQAM7ITCTlwozAKiaVd11Ri3JwQFQCYCZotGw44/EELMKXFJ7MaMsW7QLYggJZ6KNIt178+XtRabyiTCrDFYMx7R1Wpt13W/bjsRjfpID2+1skhO0moVlsv7n/yN/+v//vUXP/NLf/YvvHr9hilqw9ZSSgzzlBjnaf43/63//n/wf/oPA9pNgyF8PM2vj/PrV3cxPczH12rO6NZrQJgHMetYDamhmwd0dUAw7R2gzAcLdK3WW86pXsMDJE+td2t7TlMLRAwLBLfhWXI1d++tJfRw0NYY0RzWbWNCELaux+Px+OoVSZaRJhJBAELwAPcIuK2sDNW1t9pabxjQe0NAEXLzIcqHoUfQrdxl1Ec7hpepMFEEY+9D1reXNTa+GIjCI6c0399P8zIvcxbet60sxFIEEUDC1Z3CDawTpZEGgQhT9WH/eZmRkFiI3KNbZxYkAreXrndCAtPorWLOIjQCaBAe4KYaXhCAkzy+fgXhz89nj6iti2OtvYbPcx6RoohABHMPA3f/KZ8ViTiYueSESIPO5h6jcsjMIsJMI4KJU+IYmUliJtRu18u2bjuzqGlvlooHYutNeFwD7Hg8lDJ1HfgbqLVu+35+vlyv195bREgqLJLL5Nr3um+XZwLNKfV9HdBf7ZU431qIwpEo/MaNRvCXgE8iFkA2d0DgxAxCidSMhIbNYZ7n5TCZ2fV6AUDJQkzaVXuHYT5EcjBrHnArQRpssbgNtchCYWM0HaMutr27hWbKWVgIAFAwzSxGvWutnYhUXXtHDCBKxBFobsiMASJiZvM8u5t2BcScWDXttQKi+9ABekSQKkAwiUe4ezVPg8UoNIZYh1BTQmJgwAHaM0I07b0FMTLxzY8TgTjQ4AM0HhDRGLEhYViPqeQIGllFZkairKbmQn5aityaeNg99rb1Ftq1Vc+JO/jwXhAREgzczO0jB2ECiJcaJSRGMxxmE1eDAEJw7x4RgYTEabSCMhDcDI3uSChpGGhvGsoN0oS3VBEAAPCLGmEBcYPNIBBClhE8c4AXlSBeYkPfaBG39pWb3eBFrPipg+emC400EMGLYnJLQOE3BiK4pWlhcKK+ST0NhsCL1IJIOU0BFAGqfb2+Y2YAzDKf7l4t88RMiC8aVYT5uJbcMMkBgBF4uybQwCcPHFh4AAYxz4dX2s//jJ1mBN9ectnjpXyToV/cN4hwW+WDAMRo5HyRdm55OLwt3X+q9PxX1K8XH883mS28/Q8RaKRB/9m/ES/PyT/z9fTCDBqPbli8WJMg0F5+/oBhbITBwQ/wsO7ukSVNZR48GmHMIoS891rbJsLCTJKIpJkycQA4GoIChMPgBiEBxiiWgJEKMx9aOjgAI8BoM8NwgQBkBqLRpNkhvCmEW++exMMIGalkZklZ1RFR6xaBTILCSJJyeX73lZmadgfX1tf1er2ce6sRaASG1trT2y//8Nvf+ZlXj4/3Dw9f7VuajsSibUVt/flTa9a0EwSKUCqUF6QghHAOyoGovYFBV8eZl8OhtR7qDsDTEclCr4fj8vYPv2QhmY61Ks1MQWz1nurmEQOd1oyJgNgFl0NxJYxgppKzBRDDCDnXawNJOSW3MDdt+8dtlSzLMu+rJnQmdTdiljK3y1NtOi8UeweO2lVMO0BXI0K0IJIIv5zXklMpJafU2957Z9Te+9WwdX085vny29f51ZMIIHpMHvn45mc//uSH109f9u6fntfPPru/Pq2td0gT9t4MeNuOizw9F1QrxSbGLeWP58sXc1HzLNFCzKyuu2Ck5TjNB2fc9p28pmlOpzm3wrztl+d6lWiTM14v2+Ms05TRKxHuKbeVp/Ac24cdfL1kSUJyurtb9/y7X3589+H529/5ThBTWpaHGeWMlxUActGG9NT88uMvEX7sDhpjfcXTVO4f746nUwABMhHWdV17O6U45AjP2zbfHfC4HFrXIJGcIsCsQQPdLuePH7T53aFMmZgJVBl8mSZwuW7NLIiBWbr6NM+EgcN/GBDWwr0wlrl0i6YdXAkpmLyH9j7E13VvDVDrpm1nSWMMThmGk98AMKDVCuHLVG6WVyTEMLXRozzwWCxCTG7qqoyTqV3Nw8BGUyOmYdPorbZuRNRVx2zDAMCckjR1N0N3dHNO73/0u8+f3t19/oPj/evjYUk5T9NUFZs3v36wWRzRPQjweDzOmb/66i2qS8og/rPf/XZJeDmfv3z/8cPTGdzdYN9a76YWTDgdUrfeySHQWpecKbzvl7DoGx7uH46nGY1/8Y//OS7zaHcEJABs+wUAOTzcWVI3ZSJ3CNe//df/t58+/XCiQ0mLeRi5Kzp0IZxKDnCNyIyRoG8dDH03bcpTQSHbazrBYcneF9331poHLMsdAN49vJ7mxVR1Lvd39/t+HZ7In3z4mOfMGZiRhh7eKwQFCYZPZXrEe7iGgnkjFsk8UaHtWhPjNM/TYdm3DkD73gCxLIWR9usmB8458cTJBMupuz999eF8eQ5BBz8csjC26uHODFg4p4STMGOE93p1CypsGmFKImkuLJmECJGQASJ6j+ver9VbV+8B5mFmXYQDsNWWUm4aEQbESLi3jkSXyxUAc84vd1U/n885p3k5fOs7P5NyNosJZ+vdtRGEu/GLg1bNazdHM2gwji0IHjDojYNTMA4EzNS0ubuZd1PrRkgDiNm6BmDv7fl8nZflkA/a7XTa7+/uAVHViJmYa2sA+NkXX3z7W19Yr3W99FanUqb7AxGb6rZtImRuYBqm4W5miCSZUYhzAgBz9O4DbTVSDBHx/Px8fn5GpimlaT4sy8RE67pe16tpB5bT3d00LW7a9zVlSUyBWGvVWnNOwpiIy2A+Q7x5OPXW1n2HgLv7+9P9HSFhSq9ePRr4ujZmgrA0kRwIBL11RErGah6hX3391du3XyVJJEmSLMvhdDwIU+u9m9euP/Pdb9+XCVKCMT5zAFFz8x/9f6/f+fnTwWEiIp6n+V/4C7/2oz/8wytXQKCUOm/Pz8+vXzcR7r3t2/ru/dcfn96SY9/b249ffnp+W+0sCUoUoHADEu7aICwxdx228Q7gQImQmu5WfSqLZCYBa6uHYxJVRSaNAEVkkHkCIA1MU06lTNOBiHszC+AykYC3ffMNwD5++EqbvX71BUsikVxmSRnDwT0ImQVZwkeAxQAowk1Y0kQREIyEAUS5pJw4l7rt1jWc67aubV9bu7u/H7zkebkv8jUO76VawsppckIKrM1SKYkhsbZ1bautW7VekWl6eEwp14AzCkC6drPaVoB9vzBLzhO6hDmLUGIMSzNgcD5MddNefduvHz+8K2UCgLEf0rrnUhBBXR0iQN0rAACTJ8Rg4RzQHaTap0AzVAhiFHPlQHWrdS37NJWMzGqKgOjKzKlMkgu4G2GLjR0Od3fr3mU4eVMKYldFVEIxLDDOyymN9gOwnpGYcOQ/xyE35QSUY2SFSJATMiENU4aNwywxAziCcxZOJbW9tdpbb3sde1Z1YBEhYBFEdO0IWEpCAEIOTCywzDHwFb0bY9Teo1lKME3l46fzJzinlNLL/dTMPaL3rma969hbmhsCCLMwv368A0BAciQW/smXf3R+eve9H/xzv/BLfz5nUYfijgBCU87xne9+79/+n/3b//6//795ejpjoqmkV3d33/n8TZoPno/rvgH2ZcpubdsqIIcP5qsN09AovvGAuu+Ne15Os6M7AkLfN7PuZo5kDq3rfEitd0RgxgDodR+RnK7mEbsaEJsZERHx3juZcy6ffXFfciGW7jfDT3i4aYhgGMU3fOuwfW37rtpVjZkIadgThuWHCEkSIL5YYwIGD0YtJehqre5jrhjt4GNfPvjHYS5JJOVpnlMSIUKAlFJOEhHE/AIQHfgouD0oL7oBgSOiuw/jyfjOxDQwrQGI5OiBCLfIFfiL3+XGgY641YRrr9OcMSInefX6VRI2s3CrrbuZu+/rKnK7XX0zi3kAjWsKIDEyCSLoWPQ5ILEI0638GZmAgEdqKdy7GnFyj33bz5fLed26BQuLSEDs207CKSUAECYR7l0v10utfb1ezp8+bvsWw7mDJCmxJItoe9v2vbfm1kM7E90/fmZ901YHW3o6viJJEBA0KqaJAD0MbmRbjAi1uLu7f//2xyNxFgASKc2ZiCCg9mCkfat7rQH+TZ3RLYoSN7Y6xIg10W2UD1QNQOQbERldwR0hTNWTJEmECL0pBIgzMoS5moMRRodaU0oDNfZ0vuScu6IkZxaADgA5Z8Q2xDUmVu0GPBQSRABGD0Cg8KjeB6SFbvV23noPCBIkkbFsUgsPDw9CVAg1YIQBKtrrhg4DP4QETMicArjW3ts+5wQQ7obMHoAkOReWm4GOmcs0ae8dI+dETDoAngjwHJdtUx29vOPKzXBT5vCGrRtBKXQRBgC8+Y+CmcLA7eYEGu4tQGdE4iQsSEBIKcsAsIz1HmJ8g6EZuxYYXSjoSAhIEPBCNkYIDDC4KRn4klF6gXDfXgAjj3mrr8IgQPDAF4vJEIiCvkHG3Cg5ADD6x76x8txEosHAAYoBpGEm/KmkMSrSh+w11Csg5PvjQ20DPNrDNiEJgO99908uy8zC3/BtBjV7XAfG2fLGivpGOImX6kNCcEfwIRTP88NFL7cg2k29+umff+bjcaH7r37NC7cZbxLOwPXAi20RXsBocYuJ3dw6P+2Rf6Fs0y0Lhwgx0EjjeDw63wJeHt4bD2j8gj/V1X4qKNE3HKKRukMWRKJEiMJJtXvEcLAJk4diYGLCcasIYIYpp5RSEmEg9RGljWFtCiDzjhFOPg7o4IBISVIAmjYDCAAzA7REiUjMo7ZdWu+ANB3m1juObYJaVzWLFCApQfRwiFE461aWE0aPgDQtaTrWbTfXQGYhh4C6gffMAFPeAIKIUx4PymW9rvveWj0/PQVg68Gt9uvZ6yURJPbMcLq/D541RCNyLmGWcjKz0SBKEhAwlQJWwXrrYR5zShARxK3Z83W9P8xJOEQUiJydZ8d5upvo/KyqtTUQoXkumffrRdUInMEJCzMRoQuFdZCAvDi4m2nvOaWOAUStuxNhyk01IOYi2C1PZZ7nSQQpUZ4U1nVXAjdzDmxqc2aIQCZKiRHBe0kswhY4T9N5XWszsHYnOf3k7+7pr4Td+Np4KN//5V/b2t949+Pfy0la7ZikrbvZLizCpEHhkYvsNa57Y4qJRQ5F1QhBOGHbp8QgBUK2pri+/+z+8PqL1++fnt3ANTwMOZflDpHKcWkap1eTQVzrNYGnPGWJxmTlwNNyl+JyuYBeEwvKzKdTSvntu/f1D374xbc+n/jIeT68ngw/yjzfA3SLplr3ighBXKtet31dr88//GFo+9a3Pv/ez/+x5XiEcA8r0xTC23qZcY8FA9Jl79Z6aLVYCLHX2nzV6znadjcL58IkZcpFEJEjIKWM1SEsLBAsMUeAAaWSJWUFqK0h+CjMtlZ76x4+LYf9uo59kTCWMrfWqjmYRoS5I8lUUmKZDwcAoLEbBQgAj2BitRiNDAnDtKVcwJwIAkDNEelwOvZaDcAc4kY/oEBvrUsuo6uWhF2dmFNO1rVq37bdA80Mcil5SsNs6PXTj/7B5as8HV+fPv/B8eGzHsm1A4SakwATLpPothHJw6vXvXcEYJBlvv/szavz89Pjl1/+F//oH//oJ+/Dzc1BxFSZ6XK5zqfCQhmIA8JMihyOZd1q6012e7h7/Iu//FeMipSJOAEiceIc5K7aRpHAsI2GYYT9nb/xf/z01T8lSloiYRChA5n16pqzpCSIXIJ6b+pttzrlYqTztBxOJ4hgjOcPH8H5/tW3azU7P4nwXOR4PCVotrXQXqL+3He/tW6b9na+XIJl1/15uwhzDrb3Opfp1d1hLhmZM3HhcpwPTS2QZUo5saFPS3n16t4Bny+Xfd/neWHhw/0M6FqDhBooIXi3QLdqlw/Pl0/PSKF7c4blUByDs07H0zQtIwne63bZmqQEjBHALtYsJZFclPowWEcEkASlMHQFIkyzlMhAAQhlngmT3Owe7hDuo87OAHm89q7XtWvPuaSU0Hu4Xtd13zfVPs2HiM5BZV60Ebk5oWqLCO0d0HuaAjsAMI3Dzjj/j130cMhGuKsHIoMQAYYFIHg4OjKPcwSaxfl8Pp2OME+EfFiOwthbHfsiU42AMs+vXr1+/fqNaavbEUJLmUqZEGnft1JKuNZ9s1YZ8XCYUah3NTcWxPC2edsqBQGiajeI2toYjYho2+u+N7xcPaJ3u03CrohwuVxGcnPKPCUGCIvQbo+Pj68eHocRIedcUjKw+2WBz+jamqnmaSZiDxCklMtS5l51V0PEUQuSZ6El9meoTw4A2n3E5bq6RyWEp09P73POOSGTmZ3Pn372e995KF/ILcvtQWTWtNfQ+vz1D18dfp5OEwIgp1/8pT8zTYclb8DUpg7SzpeP56d324U/ffrQWqvr9Vo/6e611mv7lFOitDj2EpmRDMHQKrToNnLj4ETAnBgRgCRLvu7V1VgIE0MLNJeMPUA4QWA0h3A6ZGKB0JSyAGMzNXVAG4l9A63GSIUELN6+/fHTx/O3v/vdV2++xcyciBBrrYGSmAmxj2pUd3fFlMLJwyCAkVESSCJCIu7d3NS0wRDbMUjEgdbrpm17/vi09ggkCuytAzJlFikUBm2zp92stnXbFNx6FpJlETNcFgXs5p3mldbNq28rEeQw6ZbzERSCkSUhQjhGBJUMKNMpLw/oPa77Rc0IwlqNiNPdfZkXLllDnRyUFdjCQBA4aevWWkDz6OAwMtimfbfnxU4sBQB61/OHt0xwON2NI6+EIxJxRk6ISlgiwiPqWgHA3NkUEIWoI6IIOAUEI4x8CXA2UxAeJ02PQMLEUxIDUGSxgdvtfYQQEIBYMCICrHVi5LwQRlg37Uicc3HzQcAVCHETtpTIXRwIJJBQhN0jiAPJHUVkHnlz132rqDDA1UkYET49XxGRmMd5epBEInxoUeOQnJg8YFqmuWQmujsdPQBRam8QwWnar+ff+s/++i/+yq8d7+6tGaCL9NPdKeV5nub/+b/z7/x7/8t/73q9zPP8+WevaTlaOqgFEi/zHFpN275vgGTA3ncKF4iO4EGpTI7UtjW0wSivAqjr9fr8Ad0A0Ho3td5927acpKRUu1nbwtRbBclMpAp764xqbu5R5mWWJMLHu7uUUm3mQQBoZg6YBZhib71kIVQ3t4he17BupiMohRbMA54NTNjcA7G7M9GYSZDIzYRTAGzbFu7mrmqIoL0P7kVrHSAIMed8/+r1sswQoXULtxh8KHNiAg9D0K6uNmBR2DvgaHcUBBjuHgxC5hcsEQbSyL7fijICrCsLQzDfcOwBERCekoyJJVxb1+taS06MXkpOrx5b7+D+/PTcuxKSAU65JA/3qE0tXEaLvIebERE4IjNAmKq5DetxAJj5SPbBrRGZ3KO1HhHuriBbred1W1sTYRYpuXjE+fmTiGAhDDR3Bvr46ZNkAaDr+bxerzmnaZ5Fkoi82HbIda/b5qEEQYzM8mf/yn/v/OHLtl8R/Ed/8A9/8Of/Kt1G/DH2oYWPudhNGSOQVPvD3fGY+XmttWsgUGJ22tYaEeNhAYJuOupkmcdTQuFgHt6NaBhWcOwvEUHVb+LKTTQIiGEuUG1u4lQBmVzNinBTTihMEF5751J6rwEjLh5ukfKcpxkieKCmRpk3sUjaY0cEYjZzYZ6n0rqSYNdRHUU2wN5ESOQRRKTaCcHUVDtxHvgTM8f4Br4TQ/lQR4zYA5iIEglTMFIiREwp1X13B3OEbmGigH7dm2rOKbFEBLhDRM5plGSl7MsyBaBHxDECcV3rmO8GOtPd3c3DWShJGYIPJwIk9xuy5cW3AQMvLDnRqOgiTjwoeGhm42pmOmJ/HIjDWuTgjEwo7mTdIhAoCIWBLcDNbuwWU2QueSFiM7VBbQcIpAgf0o3dwnPMMuQkGEcQi1vcKAIDkAqROKAzyNA0ejcACh8gyBiWNBkmcbABrIoRyrrpRkEMIyhNA9wz0mEg93efNQ0kDEDrKyEF4OPr7+VcUsqIZMOE56EO4Th0HXAHjFEIZ3YD39wAO4ARA6fsAVGm0/k5Rk3YizMJbl/0IgENKhL4N9pQDG/LrRo2xu+AgOgQP81pIRLQzWt0YzkTAhDwyKwhDmK+jGW2mQ9p0CNuXnlQBKeXyveX2sSbpjW66uOFXB0YgPGNbSkCiASBEBgxCUlKee3XwAZ4c/WpNkBnZAQwCwALwFzyeIMPXV21QTgJZcketNVuoSxDqANCFmZGdg+mDJgtvHoNDGIKM+09SZKxWr979QWL1H1vvWugAytE6x0QQG2k1bhMRKxt9yEmt83VbTjnQOt6Bsqy3GViN9vOHy0+1tbCI2VJed6aPl/W+8slwPdtvVwuWbjcvTlOX+RwC2/X575vgcbzYbl7PBxOrTXTGt1qbcaFWO7mcphLYtjqpV5XKoe6t4Ce2/pwKn/sO6+eKhweX9VqYQ7sAJymgkQ9onblJJyKEPVmjtkZIsKI1GESyIlIpDXyiMDIiHkp5nLZmmsr0zGVeSaytq974+jemnNS88MhLccFSYKTA1zdeu/AYghmvSLmMt8LD+bZXqubTVOapum6tQi7bm236O/PD69Ff++v+w9+zSMwfCpFjH7pL/7Vf/zrf+Mnv/cPrTfVSBJ1aywKTJGmoJQy7C321rJYmdMyLyxp3Zs6LocFXcMMOSXOW/OPz89vEp/m5Xlbw9QUIkxNFXLr6oC2XpbjAac780ZlSYzLvXjY01oTg6SMUHJCBOEAWqY3rx7evftwvqxYFo5apun+zWd539TN9r3uxs7uhoQoBFPKckC38/PTj7786vn5/IMf/ODV558b8rqtU2LgfIFU/dMf/fj3Pjxf7+by+PhqRgIWWJ91fzbHw5zSaaY0oYh4d08OTqHR9hTmyL13uJ1cbqI3MdJoFyDPSdSi6q7uDC5ExATh5HZ3uj999kUFjr3aaF53h+impNA0vKu6e0qshtajdw0iJjksS2sVIRiw5MlMGR3AuxMxEaIkah7mxpzLNGmrnPI4SIUbhLW9AyDncrsnSGq1YQARAURiql2R2HsTEXLbn7/ul7fnx5+dHr6n+5UoLKLVvYDVCtfz+bAccp7SfLS2a93BfSrp+MW3IuL5cu2tf/3+41SSBfagver5stemZSkUoU01Ww+LwNY15zwdjn/5V/+qRxYpzImYgTgCAMnDwByJ4xZcjvXy6e/+J/+H6/NXzBMEQ5PqusxlBvCuFsRCwgIohpDy1NVTKo6RhIh5HGo1PNjVNJDefPv7Kf3RRHG6OwVQ+LBuRc4MZTlOBUjUXT2eL8/N27und7Hgbk016EIcKrmAJE6cpMQaAcYzQHYIzEWQEiFPE4RzAAApkJsiSUKCQG1Ottb17XPfWg873i0ablctgkxEmU6nz5kpwiG4V1+fWpATgRQgSBAUGAG0ndfoBmHMQpzVwazVrT6/fw5TcJjmxbpbijzJqPAgitG8q2GcOYW1br3rGFJUJWcYiXrrtW7b5Xw+P5/LNIsIQoQQQ3Z3joSNets9ACKsV4rYrRNF4B4wiyQhclM19wgmBCQLc4Qk4gGq/RuWnpnCsNaF73v9yU++ev361TKVKZe6V2U1i9rap+dL7b2USVu7np+ZUCSlNC2HwzJNYT6VIiSX9ZxSrq1uW3WPtu2td6AgclcE9xSeCFjERWrtahqYOQ2L8rDYQ2/dAc0UAMAdMfYajIQY5HhcHuZ5WY7HeV6EMBGxpIBAd4YwY5+KA6ZSPj49RYSbqwWzuNvNvOvuAe1pK2XK0zQMDNqDUDw8xhAFQBilJDOvbb+uKzK6x9zx9//wd2aBbz3ejXoOt9br5hEOfP3RP9i++z1tLTIhwN3p9P0f/EJ9+mjkIBAS2/b0/uuv5nlq+9rq7uGAQEScpOCRkJqDOSRIDChMim1Xrk1VHQDBnZEREzGHOQDmxIRha/UTMNMU1CNCiFJxhEiOa48tIqGkhN0Boau23mUuBGHb2s3X9QrRC3MgTubr9fnTx/nx1WdMhBF133rdy/FhkBLQ1QJUewANW2VvTdKUpgkj1BHcm/a113a7P+bDUnI6Skru7cPHj2271u2CxMLceh9in5SOhN5rUw8m7y1/+slxOlzSXLeNcrlrFwOztACJerdaD6C27+Q6J3mYy9/tvaQJAsHUqmIRFuktuqlQQsC0JN26XlWYi+Sc8nI4cs4hCO5M4twQgJ2dQq1q3b170DiWkocDCEIQsLkiTohEyADe9j3lzMwYYVpzLjCKZImRiHsNt0BkST6SGAgemhKHOZJLTu5uruNi6e5MEO4IyJzCDRlYEvEEbghAERTjDD4sPxQITJhSuKlrl5ycyFVH/0liMTFmRkRsO4JTBI6ja8pMBBAW4IAeHogBNFgX1rWrqfnw8/XWI5CZiZgQ1Z0ItOvoTxhL7DEDEEkSmqcy5XT/8OjWk/BeG7gtUzkcjhGxr+d/9Hf/H3/xv/k/EiaPZpA0OABJUiH+n/5P/sf/7v/i372/O5XjvWKuDVnS3avX3rfaVtNBcOvhjkQGYQCtdfNAIgfsqkMsYKLeqvbWW0ewlMQ1emuIZOYdzHolxF4b4JiyNUsSQiFsrcJI9iHeP76aluNtC0024jit7SOcNU/Ftx3cR6QvAoBL63YLsg1PCxMLu1lvjVkAwUbntxlESJIx/g8EbwSMSdbshm4Y8ShmXo73r958Ni0zmvb9OlK+hNi7IjEGDKdguHvcDEoRQYweEaNXnAggAolICMisa++B6DG2CBgBgwqKNMLNt5167xYBqmZmKScA7GrtclmJmPC4TPNcJqKAOEV4nFsffB9IwrUrEIZC7zpmMo8QoptuBUEQSKyO2jXCExJE0PDcgLvhTXAPqNumwF17az0N8j1LLolGGknQzMChde1mpvb+wzskaltrrbMwJUm54OgIdx9iovZKBECUUv7nfvlfJJnUlDmx8Mcf/v+Ob37285/7E4EszA6jTRvMb7mhcFcIM2TwV/fLMufzddu6BpOZ9d5tFIPQeH7YQsO8GyC6JI4YbqgIZGQiD2IalW2E6KNRgcgdkFyErVtgJoq6NwMUQA/o1To4C6VMRAw42mMNwFKSCGRJJImIEKEkMfMAYKJgQSQ3l5TYQ7Hr4H+5jTaAMQAjormHO92IMoNPEuaq2lNmFgFg8z6WXONxCUdkIEMPQ4m1IruIQMl5+CuFSZLsfcvkhYsSqLmpduVUR8yChcDNUxIRbq1CSE7ahZYpy1TKYf7w/lPXLonVOwNwIoQbVpmIbvslQjNFtm8CRhCWZ8jACEwot1RUBHNGEDN3VwDXFqYOt3cNYk6Mgm7hYIFuYQ6EnEnco9vQewGR3K03ywmad4+mqsOoCAEwHFYR5g4BItK0MrOw3EJhQy9nBgAf9W0gyXjUC0NQ1dZ7Z2I3H31/STKzkIyqWZMkCBgOamrq7hoRh2OB4FEPMhheI7L6+vV3gTMgA5J2RY/j3evT3cM0F0I0gJHhHAdKGyagm4oDgSAhARAjMwg38HaMDczYEBBjICDjeO/cImNjqfXPOpi+Ye3cJCJG/mluLHwE7hBgYMUcnBCGoxADKJAwM6QICEfX2PZNGEWYU7KA2nZtjYWnMod7d3XvxCCJbgjtcKAREBu5y1FMBgGMgBAUw3CFAeCMEjF6mT3GmwRMVYkIQ25ZNQ8iMfOBrFe34S4aPzbRWNaOHC4ywVSSO257DTcCGaY5JlHz83UlxJIzkZiFBxZJZm6uLLSUIgPFipwQyLVjeBZuA25CpF2F2LT3rYshYAATBnpvIgTUpSzEZK3leSbOKCVQmiqXQ1nU49J7VcZDOnTEp/M5/+TLu8PsCK3atumUkHzuYSXLfLw7nU7h/Vyh1/ocHIBC4qEEyOCSCcKeL9sUzYDmu1ddSQPmeS53d3D9+MqgX9pwRYbWIEAopr1tzT3mKU9zMUdzC9eSU1gnYnc3CB+toWnChKbaW2XycBVJkd2KICdhFia0FMiXVscSs3WdhfwQ+3rOwof5wHD36fmJIMyVILXaSynLMq/X9ePzyhBZ4DCJkOMiBBORVNVW9fx0vj8t6Sd/a3vzqx/ifl4Oqcx5Kn/mL/839n17+tE/Jg/tkEKR5m3d0uTCkqZ8dzefL/R8Wd+gK0kCO0zzx7Nua0uZT/PBKTXz5TC7cjcH6sK5ab/uOxFizrUb9X7dOmi/OxozN5rLNGHXtsckw6gJKIwoQFTQr3svRJu2Y5FPl43S8+l4QGbIyMTbvq+XFbyjVbTo3ohTTincl5JonqqkAP/Jlz9KiR9fv0Faamt5Xup+ffvx/PXXHy7rRo/3b7/8MrSXqej6FFpTLtPxLh8ezM1MPcybAlF4a/umVbksIBRBFmZNIYAx3ARYJEmYrpcrMueUXLsQ6SDdQgjBd3/mu3k+qLp0teo4VhWOe91dBTAgIgsBMXoVYcmZkFLiGxQBPKccN4cfaLcINSN1z4LLXJisaWirhCQiiGTaTTuCJ+JgihjlngyM00xdzdwTc1PNSQDAgwCga3eHTugff6gf/wC0smQPaL07Qppy1/h0uRxOgoga0NSFcV1rKX463f3Md76ztw4k+15769e1BmBVcwB3n5Y5mvXavYi2vteeTvRrv/JfdyiBJJIGHw+QEIJTjt45gbtTeN22f/yP/tZP/uA3XaNd1ZqVNBGzc1zW9f60IAi4uUIASiL0QKJCE00ikra61W0tEx6X03W93N+9LvOdqecy3d2/wX5NnM07CFuzsI6AeZoi5dFcBUz3Dw9qtrdacZvuyvpUP9W1NT4tlqYcC7mHJKG7pFHVolfb1uqJuWRC1qZACOjbquGSE6D3SFyrfvrxh+vHZxFYDouT79fN6s5Y4pCW04IA4Nh6EHYSOr45Wd84s6QCgQEEQF19PV9t3cs8LY+LK9hag3B/Pmtr7nE6nsIcBwHOhxUXRKjklEQAGBnN7NOnT9bbSBmoVfeUhJkJ3Fz16eP7+8dXx/vTXX4IV4RIKQ0wOSawm2E+wtUMwgjFgZFAUkqJyQx124mRSMwNe4fwUeNNNJRcwgADdw93FxEk2mr79OkTPT4y0dN5RabLZb2cL0GESEH8/sP7ecrTVKZC7rCvG5imlITleDpaeAOAgJx0Pa9131UVGXrVMqXH0918JwRg6uZOiGrePMwjhm3eo7uOtlQ3RSQgSznAvXUoku5fff5zf/yPHQ+T1gpuCN5rDQdJmdy87+iWEKecKMHWlr11GrRvdzNrvY82Fgggi/6xnVedssyRlay/BNOYUM0GTHpYLcBNLQBBHX/49e8c5+VYfuFuyYLU3ZyEp0MEej3v29r6HJHH6ernfvDH/uAf/LpKuKAj1vX81uD145skkoUNxGJSdwU/lTuhfO2w76HNDXASJpKFswhhMGC4KgoRMEIAQXSYlsm1X7adskxTZvMtFCQBU31eCYGX0jXCQ1hIex5AQTYKNdWS+e2Hp62uIsKpMNKhIEV/+vDh6dXH4/EkBGqe5wN9AzgY5S7E4KCtujYfEE0HBMMIYLHeet1NVYTneT4eTvNcSk7u1modPnEkLEnCVXuA6/i2YN5CFZOQ2OG+U0JJddux9Svy4/rO0x0sDyn0IXtd1953CAjIbVraeS2PAsQiZJR6NRJG7h5dLdzJogNIROhOIH483RMJIDo6dHUCz2Hi3rsZ9NZCOwwCBkYgOTgxE00ipNHU25ymlDilKSLatgcEuCF0KfMI+zALuLXW+nZ1Neei4OCUiBGMwIkjgj2AwgwdAMK6O/TW0Xoq8xi3EFFSZmZ3A2LK0FvVviMQEMIwibAwM7ghguuNJDlaSpGxzDMB9LoZIgbR6FRhQiZmZElqvm+bqrprAJQyA+C+b61b7d7UunpT72qjHzNGNdItj2CtBwtP03STGwYXI6CrPT89H5Z5VxMmZppOb6Z5YYgNqff6X/6t/+gv/Gv/pmCRSQySOrJ5EVmO9//df+Pf+Nt/8/+dyhRQ2AUA9m0T1KaqqkLU1Rigm6v53moEAURO0lpHN0JEcIKmfavXJ0ZwIFUPNYRwt+i7wdR6m6YspRCEmjFGhDMCIwiihXfTU5kkZWRGFO1N1VJhFjnIsu6VQ9fdl3nqqj5GRYSUMzLv69XqdsvoRQzfC9IYJgEBRlGXqsktxARVNRCZBZ0AjEUoYkgZOefD8XR3f5cE23pxVfI2Ah51W81DLRg9AmIIhQgYOBw+I2VGPIxdI2rWsfUREfIRQgEACGGBhL3bDamON8/LmNlaa2rm7geAVEqvFZGcqEdoqx73yzIR2DxPHrCuKyFqN5HbfWfYR27L89GajOGmiSkLeaAgDFxu7z0Li4zIDgFgq9VM96aX6zWIEGjd9toaIqlr7z1JzMucS0Ym7VZb71r3bQ/AUhIx2XMYeK37sFaYKjK1Wq11RJimiYg+/94v/dJf+m99+vg+lxlSOk7yl//1/8Fv/ed/+7Pv/yLCQLTeMjGE6N7HEp0D3PHT06etKhHOJRFFi6jhuSS+Hfm8twZh6ER0G6cjgIUgYuC8ELHuHSkAkInxRg+G4KFOABKVWVSNeDytjog8mtqQUkoA3qpCIIVSToRAxHATncNG+wFQhJp6zmXUzDoEIzlHAgkAdKQGrbcbM4fEh+js5o5ENw3DVFsDEqCOsyAJoWLvygw8IjVEwiSJTSMImjX0mkFGTCqzAzEz9IjejcKTuJs3V1Su2Net5iSHpZQsxAxhrD2Es6SedFfrVd0CEFLinMrogA9wVQcKiCBgCDS1DjowkjdxgW65SiLCUas48ukB3rt7v3GgyRGYhlcLKSIoIBQihrTXVDtEEJKruA8qGYkkd6utqmqEIbRRd3rDx9zcOkO5CFMlJu0mSVhkXDZplMClNC7RSUQkD5Ekp3yz2QRCQCppaCVEAhGt7qq6rlckykkQadjNzAwJWndCGBRnVQsbCTT/4jvf3/BAuU+HB8lCEb/0p/7SsswlFzUPcFU1AzczdzUHuPWTWaspT50MgQCHmfEbAs9tBIKA5fDG3ASL3wLMjjYCj+4IjIyAQzoBxPAXok+AIwbwMG0FEAL46MUNREhCcIMkBxCKGZjheINv646ELCwsHuC1jxCQawtIKv1GFkNnoqHWOXqA0Xin4I0KREAEyQ3NQNU9PLGknIcryM3VNCCIKBB6b4Qtp8ySIUJNuykBuyJEtK6tNYAgTq31lEREUuIkIimFu4Get0v4TcM3VwZW00BIIgrRetW9MXEEttYIoWs3t5S49i4iMp/uRl4REVmkdxuvznleVA04mHA33a/Prg1h4NaRJROh9pUMw0Omg4e3/dpaq+tGCN4reBtarORclhMEvD9XA2K0Xmuvu6WUEbv5cqDH6U6miQnx6ckMwkxEck4/+dHv2XaZD0vOxXPhPENKkScLbqoQoYkwBaQpynTKp23run2a5jlLmY53TLiFMZVbTU83cC3CZk0IAaFHbLUtWRxCAwiDISK0w43PNC0HVXMIMEfGUoS21PeGCK1Wd/QlXdZ6+fhxXtLROlASIteWhRs4ITqAAXGZHbbzdZ0zn+ZEhQnluEwADXYK4F0D1vaa4eHjr6/9F98vx1xmlkRz+pV/+b/9O7/5H//hP/yNkvQa2dyA6Lr3ul6+/fndPE02JVRWnkM9rD2egAGMcNsqBpSJDFgjSpoiXIgNtSTp0zxcw5LTvtf1+Uro6z69medata+XTDQLtO7qyBjCrGFr72iWUgaWeZrrVoXi+fl5KpwfH5l5v67QakpgnhKT7VuY1d7MIBFRLrQodQXglNOnd+9STnf3j5NIrxeIhmFvHpbPHg5jV34+P2+rILN3mJmE05QZXFSn7XoB24Rg39Z9r8QZIJCECK2ZBTJR7ZEWwDCIrnUPUyLMKeV0BNePm3Zt49yAAdted/XeFZgThvUawUAQt8JFDEBwJSAggIiU07BeCqE71H0D4t41JW61EgAyDSRnqz1QEBWRzA2USkkGgRhJEiPYDYlvgWLm4SB5ShBLgpJTbS+Tu7u5u3mWTIhCZM4WgabgBqE535e7x/XyVPdtOS7eW+tdjcz6A9+9ef36cJin5eDIT5/O1+t1773WjgDmcTod7u5Oz8+Xel3hsFRVnulP/PyfnpZXGjw85wEOwYiALNrbOOXV9fl3fvtv/+EP/4tMAha1tu3a965TxinTNB+a9fPWT4cj9LVdryZ5mac8LUAcCXNa9m09TMfH+9fzNO+1nY730/zAkonTINcEcAcGrcS3LhEh7LUSM3GKnAglzN69f7e3NTI9fbheni5TyedIl7aXKR/TIYAouWK0rhHU1lamCUYFa22SyCPq3vbVGYVOUy7cWqzP56d37y/na55JsT/Mj5QCiYI5JfFu7k4paWtIOk0TMWEkIu6rASASEFNb234+H093h8cHi2itImI9X9ZPz12dRdbrxcwROaVEhK7WEQApp1xyIhYiua6XeZ67Groigbt1ax7OKMLSTVtrnz68e3z1RmdLIlZ3hAAiIFEE1gnJzG8FBh6eZ3BPg5A4GheEh1SbzMMs+nrprX+TRBijpYCYNWbJNz6X7nv99OmZRC6Xs3ZT1QA4HI/TPF/OZw0/ny+jp3kq1Lu59dPdXckpQVa3um17H/THxoSOCMgpSRgiJclzStJbr9e1BRlAQPSuxJxYHBQZohsxkxBx5JlSRtsBarp/eHzz+bfztPS67ZenLJKEwVrbr05E7iNHQwCJUNVKEnVnJgJExlBX1a5mGkx2mJJqb71Fkvkgr++n87VvNYCIkAkVArT3rspMREEA6kZIJHKt67nqMk8pCUaCVLr7QKJ8ev/Vz3x2r20nQlf9/g9+wTEksQh7YFisl+fD4TCXR0zZwy1MOEAASTioAEPMFqC9dffM/Pr4sG0VDIG9SCgzOk3CAdjDFfvXX7/VhBOV0/ymwnVv7TAfAL1uVwEKJjt3C+Y5lyVnSgiEHVqrYb7avtVqhERYzaJayWmeZd+vH95/XYocj6f711+I5AGpxUFQdAc3DDRgkkIQxAwI5jcgcVUG4rLM8zQd7+4fHh6I0K1bv17Oz+t1BYjjMh9OTJLKbB6EFN06CXJZspBoTzFzWKB5lo6E833HE6iiNwlLCLUcVl64VcgLo1iP+tTmQ3JOOU2lJNU++sUCwD1015xYkpj58e4OET08SQ7CMHMPp4jQFmc3sgiPjgjGo+UnJS7ESbVbKCJu7RldzeaIOB6W0WJW93WkJwwbdAZ9Buuxr9q6I0WMjpBw4DBlckQkSgBkyL0bsiAaEap25DTYt5IKerj28QMTALLMx7JfQnvnlD0cidyDhCRnjABC7QaIQhA8YVdyDzNwQ+sEgKlwSnEDI7j2Vvd9365qTixI3Nu+b9u+792gazT1fe/n6zYKdD2i9R7uAxU0okNENPpQsmTEYOaugUh77/vHtswlLVNKExNGhGoNM7P+7ss/+O2///d+8U//ajes3as64c30+4v//J/46ssfP193KAVFoq09OjIWkQpg2pGgt+aBjmhqEZrLxJLRAGBjQgaAcLVxAAQKMPP+MomZEUpMOQGASEJX7Q2ZVbtpUzUHkOlwdzxOh1MgW++5iIiEdzdrEFPJ88yuFdxUfTgFRl7AVIlomubN1NsN2+KmLJLSBOCmRoiUEoQzYlftvdOg8uBtPAVENyMmBHD1tKR5ngjRe2utrZdLZgSAaZ55+Msi6IYawVu+c/Q5DcuGjdqbiACLMLOUyCLCgYlHGTMRBiIB3ow5xIiUUnK3Me2o2QDzBoD2jkQwtiKMTNxqS6UkZiJYDnMupfeKAHmaJqNuFyJ+WeZDBJjbyBONRM9gMFLQGDZ394XyC3AXXLW19v7D015rnnJJxcJMLRfp2s+XcxI5HA4551KmXGIBVOvXy1rr1cNTTvMpELxba88dwMcDo61jQM5p9FTff/Gzl+vK0RGjtg2Xhz/1y7/69PFt39eUl1vl0XDtmkE4hLsbAvV97euHecrqHhgGBu6IPJjOQOPo6QNOMqZTHzVd7nBz5CIAEJN7YACNdDSTx8ANMUaomaqNgAwxugERIRIzcmJhbrW5de2dvSeZxp0+IixA1YgogFrvTBxorbVxS0wivXXtykzzPKeU5sP89u3bwDEkjnLZUB2WNQcIMwUYzo8gppwklYwMQA5olBGMEUhNyQiZAEAShau77tWa9iRZWBwVKdDZAz1w8I9ULcAQdWgoTEcEhDB3R8CUk1+3dd3P162rhXmZS9dRI4RDgrUwYXl5sRlieBj6DRBDzuhDEQMAB1AADLgxIZiIX56mYawgYPdovWlXs20Ag7Sr9jaiCevu07SMdxEC9N5a37MUD1Pt4yBhbm5OxMJEzOODnMpQhQADMZhFJDFTRLhb18YoImzeRnDy3OuAPotkImQCJmYUD2jaATwJLZwjYsqFiX0AgyMFuLwITA6YSAAQgaZpLnff/fEffQUBX3z++fqz/0I9/9Hjqzcpl+H0GUvH1tXM1cxj5NvATcMVRvcoy7jaIMvNsUN0IyIDHu+/beZAiiGM/OLAgqFaQoQbECQCQiC7OaDA3BDcIYTZ3QJu/ZCAkKRMaWYWD9DuLRohIUMQqqpaLIcZEWvrHmNR6kSACZkF0LtviAikhAAYZhEYBIhIMWQxCEJEJA8Ch94dkSEEwmLAkxzMLdzHS24sRdwdCC0MhyYIUVsDYGHJLMOIFnGDfSEgYyBYt+itEwMHJhImolS6a4QFmDt4sxANDQ/FAKbRbBe1b+4GiB7YdBfmIbGTmt+WmRBm5lprzYdlEiHtzbS37WrakQSIjqf79XIOiDwtkjISa29hSkjLfCTwtj6j1zLNuSzuZqqcijBxOl1qa9sVo6NWytNzRwxKhutay3LfrQWK9g2NoW3vvvya+rY8PESaDSnnUuYiZe4e3p1l3Pmw1R1T7ul+e37anj+CsAMgo+6X6e7Oc3HvWquZYwATO4SpBxIS1fVSsmzbLnxs2y4MoE1bc+spldr07bu39w8PJExJXZ3mg+QuQuv5GYBKKRr0/HzugPXpaqq5zFmKkWeWbj0vS9331iOXcjjOauoe7562+0Ni0vv7h6kESMZrvWz1snvT/Wde43T+bUvpejzmnJIIF/mlX/0r67b90W//xpx5d2aHSSBArkrtst893kEAeTs83O/VqsPnJ/ijM1NAQGyqCA6E3WmtOGnFwB4wpYhISbK3rQEyaIIIFCzHk+jX759zbJSyWnDOYRoRFD5wajSnIOR5OsU9blur9e3XH/S6fv7tb4VpALJICvdmJPL86fndp7NMebl/OLz5bNKH7dPHtp0ZfXp41bf1rHuaZuvWL+fM9vjqjQ+rETtwqhZhdizT4+s3qczuZO4pEczpeq6tNknzIR8xlaautYGqcCJGZgTA6/NZ+BbjIOIskhIRIDh8+eHJ2q69MsZe99i3WjsQDQgfRUAoU3aAMAc3dxAe7XrkvUMESwo3C8s5ScnXrQICEk1ltjDtxsJA0kfrJvPhMLVaa21bb0QkxIhj6cHW1RzU28iugiszI8Bee0BEeJYUgfNUtm1PKfO4FJGoGYUjQB7dYa6Sp1zyvncNWg5HJOyt9taY6HA4fe9nCxD/1m//TgA8dn3/8dO27fOUU87v338sUxGmtW3rdo2Cv/jzv2KQOMltFxEvPDlzIAKP3/6tv/WHf/D3NDoHaPPt3J+fd46gJJfLblPUrvNx7h6X67av6+3xgHDKpcjhcHc+n8N6EJnBp/PW9+3x1YNpRxYkdPP1etm3y737nDmVCQB0194aQDCiTBNhqPne2vuPb/ve9eIRXI4Ji/frpswybatKmmcu2EeOxmyak3eq1zWIzGy7XBEZEazWMiOTr9duTrrueSkTO3J0jI8fnt58/jjNs6MDuvYQyQjDYEHYECFBpwC63d0Co0PmtHzvi1wW4tTWzc3X52t7Omu3LEyEqj4klWWeCVHVLpcrQHBiZgbw3jZhPp5O4b7Vzd2IUZjNfCqEKZuZ9rat108f3onIcZ4YjDBAGCiR0Zhs3NXNkFk4BYQ1A2zjREjMOaUyFS6ld6NtC0AgDHKwceIYDbSMrQkTIyvYSPt/+PgegMx9JKGROSURltGT8+79x0NtI20xjKT7vk9lQhLhFIC9d4RwU0IUEZE8LaV3M4dAIcmMfJJ8esBPT0+fPn4acAE1R4SUEiWq1QKjHCllyhPzlA90fzg+HE4nNSfgPC1kDcOTJHRnt/Buw3KbC3OmWtlQLNLYvgKqmnZVN2ZfTogGtUGrHTzcV5sDAhIBUjjGJBQIppH4xgIMANMuqYiwQbdQDexBVfXdhw+ttpxTA7Yv/2D7+Z8/mY+R63Q6VZCJkZjYCSRBb9frZSmHnFIQ5JzDkQTdotbGlKfMlqhet+h2Oj7MJfX97bbXVGg5FZBse6+1KZgzbNsWbKnMCywUXHvru+niJB28QwjnVI65rQo9EibMCR0okrcGxABAyAbh6Ou1982Pd3Nm2Wrjy+XHf/RH8zxNh7tUZgAwAxQehkFwCyA3x/FiIyYYrBvc1mvrjbiU5Xh3//jq9atlXlT7p4/vzk+Xy2Wt+4aIdzkLYSrT4/0DRFzOz7buiXNXfTzd+w7R28ZZgSvjofDx4dUUHT+82wOv6m5GkjWVpyh5OjqGHJZlPhwSU2ILCWADE0pmDgK17toatJjK4eH+8e7hATwcvEUlTlDI9wqVnUeFk6pZjBWBBZIgCxCrOiKp1uaVAZqtaT3cHR+Ox8NyWGptAeBhvTV1dKDem2uFVsV6Ltkx0J0QXPeB5YowYOd04JySR++UiQBB8gTadH22VkEb050CuI+abeSBQhgnSSIM6GEsmYiRaN+u4WZaS5mBBQHA6oBzkkgKu9GtSzJT7arubd9cKwDMRaoO0gqs637d6uCr1q7n62YBSOS9uxkhYJIkiUXcwwOIiElklOqoIjIxc5rMVfvurt3082/dT8c7hmh7d+tuZh6//Rv/cc7l53/xT7mbmcFp8oApizD/pX/xX/rrf+s/M8y9K2gD3SO9ZKUGOxUZ0N08zCCCCXhwbpDMdF0v6brQ8BKOHBMhIKlpAAEzIzJzuPa2g6trjzAzrbV5xPF4l+ZlOpyQBYnRmvc9kJgFx9oEqX3jEYQYPe4BMFSbcA9XgAjEcB8BSrgpL0KZTUcFEhDfpnxV9QBED0AbAbAA60rEx7vl/uFxOSzh5oDhnqcJ3Hpv1PrhICIDOsFD+gE3AMIXsg8CjA4bVR+RmJxyyolFxmlwfNLMrZvkLAxuHghqNhwH7hYBKWcMCAgHcO2j/tncEGlwYbV1Ltl88DxlSbmpGuXTw9xUqXVVdR8cIgBAMx981xvkGhAQ0iCUDynNbEgYzW3d27ZXNzMzZSOElFOEi8iyTMyJAG34UgYLjCFPyUHCI1ynOQeoNu/dGFESIiAlIUAW9nAm+ce/8f8q03I4Hn/ye3//9PrbAfD//Gv/l69+/x9875c/IymjrdNDwcfzbIMI66bv3/6QEYyIIATFwlDdXdHVwMLMhuWEER0AUBIHx1BzmAkAdbTNIIaFR5AHEDGOqDETUW/d1IZrbMSFAFGEB+JAu5k6BEbwGE0D3MPVlIbZxAwgI6I6JKFSRhkoDCKehwcEiyyHRVjuHx6mMr37+NbcATzPRCrU1TRU1cNeULhh7tq11sqJUiLV8KjuFFaSABKrObrnnFQVycIRgtR6q8qCMpNwGm1c5kY3gVjNPUli5nVvEWdBYAzrNScxoE/n9cPH5+u+m3lAIEbTGqGjWmoEbkbhE96qmhAAGBMgjdUrRgx46ED4mhkTy8Ay+gtV2mncD5hwRHjc3cwEmRBT5pwPAx7Uez0cZgCqrdVePTT9/3n6t17bsjU9E/pOrbXe+xhjHtZaEbFjR2budGZSZRtMZtkYy1DGljiXRIkCJLhChUoqlQRXcMcP4B9Q9/gGEBiqJBclQJQBIUyBLWemM53OSmfmPsbeEbHWmocxRu+9tfYduGhj7cuI0JxrxZxjjN7a973v84jkktTQohMMDCSGGyFJSlnyaJeWMgFgbbuZETNz4hvVPSKk98qCMgA1EO7jqTUQXm4aFojoCDcBqAMC+Cj9IfP4MusB4SwSQTzKTn5rVDHzX/nP/hd//t3zenkRSfeL/Oa/9Du//49eRhjtVlxS166mvatFhN26qQ5hqr1AVjc0RRIA9HBAppTHsBmQEWCaD1M6uCJ8YvVgkFvUroG3bnJYAAAQuPnozArxIA3VXgkACYSEqCAJk4SzB0ZAq6rqVDJC9N7UbZpKHkBhBAcHMOIYWpSgARny8QgZULNP5rER7MMICoMY5BEnBPYYtN8U4B4toNlg8+XMSu4OQBjBxIDYtTZ1j4H5xiSZELpr066mgE7AU85DqKcDrD3mcQ6AbI6/XDT6yF5FD1WIG0TcwhGDJdR11N4AzcHFkZGTOfauTKxm5ooY0zyVqUgqQDeVqKlp12kSdejd5sOSUqrns7U6P3yRpqPWFVwl8am8adPh8vLBHN2VmYUDwA73b6fD/X49P3/b9r2LcC4lSUIghXKu4U8voPv6+iQpY1gkLqd3xGTIECGMZcrl+Ojhvm1uChBTWdz0YqrndYyl+XCEiL7XNCmldDm/IoT2XVvnlDnPfb0QhuQpwnrvyzIFolPqasi+d1dt1vYxJ+KclmWaDwsgAvhWG8Z6PT+DGiE5sSF1UyTmoRppnvr14W0RzIy+DMkiu7pqdQiap8XD1+sVLz1RL7MCcSIuE1rE+48vjekngI/H6cg/NP9tNa9dhZIU+Ut//b/84Wd/fn3+cDpOmsTNeRYzuO57vFxPx+XlrHS5lung4UB0LLHnnJi1Vg/PJNNSeu0gkr0hiAVi36fpGHOJy5pEbN+EMdymLFLS2lDCOOf1us5TNnWScfhpXrdAZhYnSSmnnEy1I193m5fD2h0CUyZH1Ij5kOr7/s0vXt/uNTEfPvsekOQXgr5Sb+XxoRtSSCooxLJM92mpzV9fXp6fP6Cf1711B/zs8R2gnj84JwXqZn1dpyTp7l6mwzi9tctKIuA3Av2YvCZh9xARdHe37lG3hohZSOsaZojoSI6SS+ldDdyaojWkmGUatVSM6OZCg4TA5kZMANi14w3Gz4E8L4tqNzWLSJJyKrfUoDthB3cCy4kZ+bptpn3OaVTGzCJuMPnxPAZkJKQ+PikIPbqpR3jmMk+TlAkBe9vHZTUihFAholdTZeJUMossKXtXwrCStdbvns8DsnN/XN7e312v2+nOI+I7tQD48c++ifA3X57yLE2rI3719jeW0wMwI9JQuZqPbaUi0uvrd//0n/6f1/Vj61u99r5aM3CL1jwlKsQR7XxZU26UaJ7mAARmQN+21jsEllLmANyul+167n7tDr31u9NcEnPKCyIi1bpv1/NShKMJLymllHOD0BGS14421Dj+8el5bysa6VZ7NEhIwadDevh86dYpZ5TUuwKgEIICEbe9aTOawVXNfD5MknJ6KNba0+uL8ERI0zHPj3lpRw//xQ+/1mtblnJ89wCAxGyKEBBuKUlb14xZJgmmvlXOxELhcTqeypQtHIlzEGa7xIXUYgCXISwi53R3dzeVUkoaS5i55NabhZl1CDSLwX8pWSByEjZ3tTB191jmmZjqRvtenz9+IOI2l0RxPBwLCUm4EXMWGr47BMBcJq1gXYF6bze8IicE5lZb7WqmKYm7WzhygNOnOLKNZ5/FOFbb0ItGjB0IRqBHJMkpiUja9su27+f1GhEpp6lkBKy17vu6HN8ocDc7zNO6XsM9pbSkNLoIaeCm3VqrtbZBENy3zd0RoPeqqohU5gLISH06JE4OToLpsNzdL++meSEEU03zPC2Hfv6Arm7uNjodoWpOOR3mqrZ1C6RcchIxU1dX7Wrd3VOB6ZCvL31vPWFMAq/rulZd5mnwVMKdUkKkIGeAof5UcxHkxEjx4fLTP/0J7u1XBfEX3/1se7ncp0nmedwzt/53DGgSNtMkhFzUK6MMWwYjXJ+fSWEuKc9FpiwonBIlRDOHiZDa3sohAaFG+/bD8/nlUtLEMhmmlHJyXy/rpa94YKcume9OD7Msr9u1G0SD7XwGxHQocHWCmOZ0WI7dLNx0b5Sk9x4eA1mPhKgYAOvebFPK6CX3ri/n8/lyIcI3n32xHO+IcgSaB4Df0mPMBAQIzEwAbjrOlHk6TssdIJR5WY53OU+19W1dPfD1uqk6sLj17fVJzXw59XVV97ptc8rAjADrtjugpjlMu0M63vG80PGUou29J8d9A8zv3r377O10/PoX33z8+KzuwrPwjCkRjstqQwIKSimr6R7jzHM4HR8/e/c9CGjWIsK2jSIHhZK7m7aI4IBK5JiyNh0KpF5r32vojUPnEAq9xTaL3/Hdw+N9yTklSTnVbdPWwqF3G+3D4SwRt6mgN9W6zdMkiSCiOrfe0LdMR5YMJLdMQRibZkDIOZgH/mmobyCnXvehI84iiBRugmhtXR1Vfbu+AlERPiwsKVtvyDxwkxQGhAAgwhGB7mHWWut9n0sGACa87G3dFQmqelOvaqq+bnVv3cyJCAEOh+V4OJi7O9zqfEjCZNrNdXRap5KJeN2vSNTMq7Z8eCjHN4k5vIcrM4N7oKvp7/6//k9P77/5nb/xt1V7uN6fZiKI4Fzm3/7P/KX/3x/8yE0Lp4iqvTaH2rsjhltEaGuEyCkJUWIxrQARgQgkkhi5eWv7TgTmRsN5roEYibFkKUnCsLV971W7WQdzD6Q8Hx6/+AIADdHVEnNwNtNUZFi6CREgwhVAMUBNEdHCb70SYgcNIkLs7m4mwiwccVunEyIABQzeCgQAEYePlzwQsaqpeQCcTqe7+wcWihjt1GCmlJLXCgCEJIlHKA8QIQxJZIxjENVDRALp1qhF+OX4ADkQR3oUxhxnxG88wsERQpjG3LxHz7kgCYZj4IDgmDbC4SnHMe9DQLCAWhFh3zcNPhxOcyoQahHztDy+fXd9fVnXTVWRKG5u+4AANQPmWQQQQR1oYIygdzWCFKJm58u21xpxEzepqYfPc0mS53kqJec8eXirrbamzSyuAQZOkrKrjl4VJEZERvnlbCyIaYjDAZkpvP/e/+PvlVJSLh++/lNAZCJhAWIIMzUicTMgDNNwi8BwZ4IPP/kjJlLVwbMVZMDAcApXDwu320cuchLrNlpkrjbWQkTUWgsnt5tZyd3ZGRwpCBkZEQF77R7OTN1Nxk8fqO6tqRKiZCEE7QbAgUPY5Ldk2u0fAYkioPU+lQSMRLkUba313gAwpZxSqfuWSz6eTrXtXXu3hoyAqN1a017b6OzY4JQhe8SIucyHKZlsm+9VwdAN0iTgBBHKwAThFgHeyRUgMDEisERRVcIwRyEyU7UgoojwsLpt+9VCVXsvWU7Hw8u1fvfxed321toou5jZ2ASN91eAIQ4510iijLliRDg6YAAjuZswqcO4ETASAY+BBYEDB4E5aFMTEUJAwUmyu3XFKc+EqK7hHgGgLiJmBmAAHmC5CAI7GHHMS0EsQ48YETE458hmZqEkQIjIuVsnIsQgckIMRyTBkd4yDx3+KkgsKUur9Xq+mPtIStOQ00tCxMxp26+tK0Ej4QFIFhG3KHli5m1fe+uf4P30xa//9tfffAAkRLq8Pt+/+VxDArjrbRfSWu82kAPj2ApmNuBZbl0RkiS4tVmRpLj3gEDisTVDJJJCOCF1pPE/S2Gxtb22xgkAnUkcnQiZRmkrAvvgLjNxOImQsCAiAoWjaWh0RIrwVhtA0C1g60IkKbmHRgcOgiBkxCHz8k+YZ4QIGt63uNWgR8bZYsCLEIzCgUjKVEjK6KJGRNdothHxUo7mZqGt9ggTSXtVgEAxESRCFgYHh46REJEYGJ2IGFOrTZIzFwhQbaPhr65b7RYBBCxIQUxMhBAYo61HCBDqHQJESPATfAgMASXlqZSJmJiyKTb0cKqt51JYclMfdDpiGceJXndO8+iIimQvRd173/N8yMlDNdSBC3OSlDkCglOekqRu2tZrWCClx3efm2775eV6uaYJjsuse4M8ubG2dv/ue3WvgUwilNF6B4gp81IYPXrvuZQyHQBWYcS+b9erTDO4k0jKs6S8XZ8xcQzBUnhXVfOUkkxTON4tU21thLyZMxdqtVJErTXl3Nz32oTEPFKosJwe7ggJo4Mq1cv1pYf2TB0SruYRLowkHICW0rptgshry0RAhjDs4ya5mMNhmopQ9wi1wNh7e912ScncPOD+ODHRZd0JcVe3l+dTeLirqgqaJ8L49b/8n/9P/t9/33o/LMvWVYAqUavUzfd9z9PSzGC7wnKCrqKKAUiYcnHTjBr7JpJez9s0CZK5OoBDKGDK83K4txWQWNRMMN4l/Om1NeaUZD7etfV6OJRQy1Mhouv1CtrLfJhFKFgDADDcr5dXElmWvK36icIcKU93h+V13Z8v6/x6lvmQcumUZDowQz8/M6E8vAvM7lcCRwKRINtLbJJQa7Su7fz69I3mxFsL4MS5pHJIhzkRmXl1b61bbwDAScAcrAlgkLgjyeg6+15jr1qKuGkAcygmCRPX3lT32iQJerSuGqEGKeHYVseQmLipqjAj4sAhex2Lo4wIY1Lea1VzwsjC0zx3ta02JNK+W8BWOyMFoOQyrs8I6ER5mlRbxOh9q5uFkZElERZRc4sI10FolJznLE01kEy7D6qk5Mu2HWZJZXbX6LoU6RCGsdU6IsbuZhHb5fL89LG3JiLHZal7BYhaFcLLIfMMCL5vZsT/1b/zrwdQYgniG+gRYXhz//Cf/oMf/9k/pOnw8vS8fthQBzsSOkB4oMDe29r2sJDTdDxNp9Phum5AUau6RvXaWuvdAtov+ZXhwARg/Xp5ujudKLJufT2fw3pKhSXdiBURIkI49bYTxlb75by+rPWyvwZ4ThLThMCGejospSAGQCQkMQfTntiXfOcUtffmDQsSA07pkCTnvL2u54/PGv3xe+9yJmsmEW0z86oKTOn4+RyAw7ftHqaBhGDAzCQZ8wwN3TzlJAdJ05QgMaUkaWDbHOHAqV5ahTUQgagpjFdLzmk5TJlFhNwjJ1n3dl239XIWEQ9LOeWc5f4OIWptl8sVVbX3XluUknMBgNba6+ViDv20HKfCiERcWJjZnAgzIkWrN2h3JEnUqrZB8x/h56atN9UaAyHggRLAAYqI2Hs3dyIspQBAV2WKgS8ZNxxCdAQ3j3DtOjbG6tab/vwX3zTtn3/22fFw8HBam6f+8flj631JaQMU4Xk5iIiZq6pjhOvlcu5duyoTImJrdQB3MKIIj2BxXigvKU3J1UjQFCiVw/E+pQII03IkpABXx9iqafXeHSDSRMvBAs973bZNW0+J05RHm36QrVStm895SuWg/kIQb97c63YFxHDNCU299w6UaiMkD3cg1O6taUCUMnbUhGLvLz97rT8PFWLs3Vvt970nwpe+P79cvvfuziFNE9Xef/03fuNHP/7DFAkAcNgsev/4/tuS0jyXtJRlOUzTzClnpl4BwsSMkKuqQoSkjeJ6Wf/C23fXy1pr+2zOJfNzUw5y0zxlZnm9vGiKIPC2d9KwdHw4IkYKAjTV3ZrWbWzSaFcFxiBoVQ3CEUCdMvUV3LyHsqCpU2Jifv/+/f2bzx7ffi5pyOyIEobtSELhCAFhtXYiSjnnUiTlZTnmMolIESKIbb9+eP/Nm7fvpjKd21by1DZdJXfv3K21ekg8oZnXzQnDuZ4DGfPE2rRWZMh8mIQsJnr47F0up9MpCWdhc0NJksv69Pz0zXfpEWCeKaUIYIol506s6NFcGrMc705vHx7e5jJt14t6t9Cum7bGuSCSY6hqeITwuD8jULgaKHi4QXQnpGB2BETR0IhV5gklo7v2LhSYpXes1sGdkB0gkHuQq2ttCNj3q/d9ltuOAAO1mTpOy4xIgyLKubgrmWEq07IgU68VCc0sUIhJ6xrawlMpEyDkkq0HqbWITv4p3kdE3FxDu4e7dmvVzZnRatvWFcAhXLsux4UY3fxazRzUfbvWCFePcDTz1ruZmXmECvP96ZBTCQgNYEp769rV3DVC+9DUolkr5QSrr+sVEhzulvvH+8zIGGpmauEO4+5iTS1++Ef/5Nuf/vlf/9v/zf7uXe+q6qfjHIhffvm973/79JOvv1NroWr66fJR9zCtvZuaCM/TnIQIsbbe9hUR8lRSmQJCewdCALOubYjAzDgNumc4gEjKEGYWve/qiHT/9jNK2TxySqEdGRnBET3Yg1nETXu97Fe1IEa3obAZi3uAUVQBwIgQZhN2QkAGdOudEKz3gWDFwY8I6GaqPTGPXIBHQAAzT/N8//BYpmkqpbcapgRhXQGAmWtvRIQkIDnCkZA4jWMHDcczhPb+SwIxIcMog8GY/vstQzAMNejCMs9iquFesnTH1jUCVPtwZg2q8YDlpyRASsFEbBHQu425QG/rtlYTkqSmCJiyNDXkPB9OgdJ7DfPaWgRYOLhbYAQwcUmUMnU1hGBmH6pAolbr+XKp/SYvJyI1dXAiLiUTjiV+uDsRiYg2Va0R3qpLplwyEQ/qrmQmkbBbexoBwRwBSQb61z0gWnOPZZkoACJ63QaXJDxUW7iD3Xi0cTvYt/r6zZirqrsjOSAhCpIxd23uPqZ1HsFEQZ8YvKMrM2RwgxtrQUwpcUQg02gWh1nbHTBSSaaKN853BHhVBaRfmtpat7pVdzdVJmIihYEh5wjv2hGZWNStdyBiQEwpMzPczH4wwlx1b4fT8f7ukQQ/fPiuamXhlFOZfd+IkExtW3fEUbAmYuq1sYBkwp1MAcx6NPIBtjZ3IAIicrVBJhbJMglAmJp1JUAkMmQzG/jmAFuva6s1zLxr67211Lo+nbfz5dp6H4NeJiLklElbADAwAHAEDI1EBAQ6EyKgu0IgAoPDOGgT3USpRNS7uvdh5WMJIEcMYnC3rj5+TYSUSMLDhnFVZFTqCWUMxQA6MwJHhIKONziLCAL23gkZhUXEYSjG2EA9gkUSMREHOIIh8IiVCQkieaBZdzNmTikheFfdW4OAtGQRvr3Bh1BCmIhE6Ia1BmQiouGDdwhUrV37SDH+rX/1v/X68Tszl1Tc/LJvx+P5cLx/er28fbxDBG291d3cW7/FWswdhrOvVbUeblAmMiZJakhjwjj8ZDf9fBBRWU7r63vA8MDoFuHAXqYkQoFKhBSIEeNyhsFq4/3CiCwymOMIQO7RtKt2xEGShto2NwdCInBXR0QHVVXvhH57jI8x9yfWNMDYywcCCnHmUrggijoYeHcDQXPvveUcbk4IhDLmTR7slgl5q01VzQ1FBCk8UkokSAhqbfB1qm4eHUORBjgvPByjOw6rB7qHeQuEsRzWcA+gQPNAJAcZqDhi/FTeHetaQAxg5F860wAkTHvdc5mZYNtboFh0N1e1lEtvN00UBBLn4/3kZgHATO4GgOVwpN5b29r6klH7flUHKYc8Lw/vvuxNre9mPdBFxLQT9zTJVBbv6Grur/vrN+tHRS6P3//1qRzL4aFtFwRgDkYQSgqDSSQsQoAlE5FDToEHAU+GVnfEWLVbV47etNq+CxjEgYiEs1Nr2pA5PBBHjisQIKWkHpfzq1lPRUik9RbEORVHQbBgrl2bB9pKYKZ7eIRk74oeSxFy2pvVrR5OmXNuuq+XuhyXl9cLIiWEw5zNdClipiy5tioIkjiOs/XOSUwhhGtdNWhJ8u7NHRFZeKu7Q7g2xEPvtiMS8VyOd1/9y8z/IRNQnjL07XJZEuW7QzellKzr4XRyoAC/NOgtloMQy95UiLgkDshTykUisHUz33v1BNtyl5v2eSrC923f745TXasIHzn26Owh5cjzRBEGQESTQBNwwMwBUwaIZF6JTDsiCHdO8yzL9bqq+rr3azWeptPp8Pp6fn15mqeCktI0L+WoZtRXCt2v63JEd0DtvX5otXJYyQkhpmxPF30+Xxl8XoojF8mcUsop3NPhwJS0uQCFm9cti/hA3UMgUkQHD3OvQYiQGLy3cFekN28eS0rHZf76F98gBFq/MTaF1QUFJZXeu0EgIjN5xDRxmCMI5wzuyCxCOTN5qDYz7a0DYZJEkta1AlOYDQE0BJzPW04CEVzmUewSKdNyACmtw147EazXTZhVQdCTgKu1ZmO2jRhmPrG0rm7d6rbXGoCcUjcjMEIw17HAUHc1b10DUN0JmcG0te/ev89M3//eF7vq+/fPvbcAnOdpnqacmVav6tN0/Df/R/9OOX1eFcZ2EZAjAMJ77f/P/9vfrfu31+cm91kr7LVPOXkPIsSI5T4bhq7GIkGdMDgHsU9FQg/n7cXcImDdrtM2z3DYqm3VavN5Lnd3R7cO3qbEEs3D5+Qu+eX19bMvTpJyQjBTRDDz2v3lun98fX56ft37Xkpe5kVSIhJUOn3+hWQz3VszomzNalspNAqTKyC9PL3ul0spBSIhAbhtr9ftugnjfFiKBHhggKQDULt+WL/96ftlkjwtnOTmmzTvWqdpNrPglA8LNPNiPDHPkouklMIiwIgTcwZEpERZ5Mulnvd63YjSbhGEAWGq4M4Zs7CaMyUEEpGBAJeUCHkwnwHA3e8fHva6vzy97PsqgiICgCml2vR6XcGa3N8txwMJE6OZMQ3SKgszIHLi6TC369Z6BfMAFFU3AwISBAStHgGEKIXM0BBVe+8GECnlfd+JyMxOSzpv6+NyP/Ywvftem5kT3Ty0w24QYb3ry/OLkJj5YZ4isHs8fXhP4JR5AP4u1/Xh/n5EsMO1q4kkQiCEQWYeTChhvD/Od8vk4ZiJMgPiSBurqQWc7t7ksiBCytOyHM36erns3fq2c57z47tUpqZt3/baat02D89zScwIjmHE3FnLUL2aAzGnPJUUWU4PpxezGRwTHk7zvmvXiSTttW3bjhj3Dw8aO6giACdEdvNISAZWbTOj5Efo9Lxt63V7mAqt1++++fpXvvzsMGUUnqf5d377r/78x39Yq7JDCnF3gHBr57a///Chc3z+/XfvTg+HdAywaNVaA8RAM1Mn2s7b+rwFwE9/8fXhkJlPT40mQp4ygwAfAvn6+mq9Ms9DIjshWwvrcTjNeXPrTWvT5tfr9XJdDXE6zNMyufn1fO21u1oIoAcLck7EJEWIlQAZ4eXjh5/+8M+I+HT32BGGOWREosZL110BUZKU6bAc75hlKiXlAhDaW3AU4XmZ91rTNJe2M7qkQhjLkkQEIgIFSfbzS5uCzLJeE0T0ZXfwywt6J6sIlt+8BZzmeZrmJSdGjOvzi4XnnLd5Ma1bq5ILgypYFmGgJBzXi9eGIO/efX+aZgRsvXZrBg0yBnjosBerg7urd/PWQYiIKCE7aG+Eggjdel97KoIiSzoyLq2v3334+m4+HadJW1uWKSdJIrBBRL9hTUSAyXqv3RkDwHtvbesIgYhA3EPCgFOiG4cXAIHLYQgJ0rx4mIzHE1AzC0AAdkDBcHdiRswBmHA360KACEhYe+dplpT6drZWt71qb72rtooiACiMyzwvx1lEVLsDANPg12x7rV2HKmsQTN2CEBMzi3RzjZYld+3Ve0ppt6atBRAiDuTS3jqm9Xh/zFNq1g55Pi5lEgrvpn08REcYoauaRym4np/+r//e/+q3/vJf++2//rdq16b+eLcIz3/jd/7yy/P/Zz9va1ftXVsN71o3Nx87Ykk5CQuz9kaEKada9XR3ymWOCMYgSQhk3S2idTWzaZ6ZmFy7CwoPtq9Tnpd0OB2n+QgkQDBIDOEQ0QIpp4lYIty075eztsrTQkwaHoEpF8BPJ3XVoRuycGZmSYBEzNu2mfZb2HKsmxERoPXu7iFBI/wSHhHMfDwex6dWV2OCxEnd1KK1Pm53ZqaqKZeUMksyH1IAYAzsFnhD2+apMKcwgzCEAbnnAdGA4ZJDhwCMYGYI6rcKJEwlu1vv6qhmN2GPsBiYB5g6CiETDo4voQR2Dwi/Xl6W44EP0lp1AGZNiZHzcmS32bTby0sEjEslICpRDwBHN0VwJiQmAhydoCGJVx1aIWAm7YZC4eHRa+tdqZtC0PjppSTACSHmaVh4tFvPOQF4BGAaSEciRHQIUB8xEEJEGXe1rv26xlQKmodquCFyRMfw8Qj00OHaYoIPP/1j4sQJWbS13rsaIgJKSh7QCMEiAiRTEml7xQAEHABjM5fBRPr0uyBCyclVISAIIsJsFLjGDCURgZlvax2yJ6DxHE8AAOGSZCi3W21ZyhimMJN7mJqxE0MEqjkHmjdTuxXwYDgi22D5DqCBDQmggfYa6JykzCWJhLuH925jLhIOwKhmSSjlYro7+MjyjzFWgHkQ3ERLrtpVeznOHEmjmzk4MjJwSC5D/NZ6662CB6iqKgRct/rh+bx3ba37iKPQjc+5b5XplxBlCvSc2JHhVi10gJEapBG1DgyzlrOI5DEn8rj1E4HAA3NmJgFow86uaq7q5sKJBEceRwQoCACqVlULCGHOnAOimyIwMQsTAUEEEjq4Q6g2QGJOicQjzBRHqhYJAdxtSK1ULeVDTpOkrNpVGyNFxPW69fA0JWEpubAQDIwURUDvapJIikCwmo6HDKAiQtONgDyUxZEiMP74j/7xZYP/1L/yXydmD//2u2+3p5/ePfzKh/cf5pJFUHvrrZnpMCkEgPbm4eG2X89mncAJnDijKnEyVyRGdr8RBgQwLIxTDrSAwIBRTkTGLIhw07LDLcs+JOvCiG1UzryypAgndxx+FDNCROZwdTcn9bDWryI8bmFoPcCZR1kdhuIWbmgzGIVYIhgD2cx54olJuoU7lFKWGQOwqe47unYQv6wrs3TVkdxMSVQVIRC5q1rowEYSchh0j64dAFjEhyeeQJiFxCN6az6Y+zFeakFkgKHuQTFavBEAESWLmqspUTAyMKo6jktwwABs46cVPkSIu7e6jwK2BszzEVsoi4ioOgmHBXOKHPdTiYi2t9aamVJvyrswkyuFh3VjQpmorcImjExU2+oo7mhuGI6Mp/tpmg9TyTs6SSs5M52u132/vj59/I7K6Xg4ercUnIDn45Egat0jgtD3taZpysjI5M0iiCSsd3P3qrrWeUlEZav7ePiRK2ifliMh8gzNNIDIoyHmUszAANU6kTPxri6EJSc0wyRBEobuCHnG3jDier0SePeIMa9kcQQWmoiQCMHANQkty3w8LNfzeZqyR1y7u0HvdZoELPZ9n+dlSTwfjh+fnwoiSL5ubavmoVumaY6746zhr2Guzd3XqiWl7mbklxrr9fwX/sa/9uf/3/+g9xoGTmJuYJdZchI+ezBEmbKpFox9tV6300nK/fH6erHW0uEQQAeBbpDE15IJyYi0N8aAsJLl/Hr95uufn47HJLwcjtvreX15uT/alOfn5xdom5+O0zQfp/lSe92rqxsnRJg5UUkixMhhxgQCfum1u+7b7mr3p7tc8nq51rbhvonVcvdVxnk7AzAKY6+VkgCf2vPHy3lFgPBgMI84LVnNqRSWfHe6T4dj7+4OhnB5en+YMnpmYhTEHto7MgGidiXtXTsgy43sSmNnknLJHA93nxPQPGeWsjftEHW9EhJRhCpLNjcA0NaJEFMaBy9zk5THtgQR3cyMWnfVToTMFODCIxGj3sAhhsMET6BmAAEAAElEQVRv6AccKZUEAMxpiLQdsEzQVRNh18ilECFDHJdJCLeqjIiSzN3Mmaj2jsTabasNPMzNATPGw7E0gN47AqubKYcIcTJ3IACkwMQCj49v931DwvvT8ac//dmHpxdhOh6W0/EY5ur++Zef/Vv/9v94bVCdJAsg+42Dh3Xb/v3/zb+r9v7u4SR3ORGiOxfq0b05Jw4EFEZ3zkJMkIBnalpVW5YZJkS4f3p6ar3Cjtu6SSoe3hS66pvp9Hh//+233zABhJXMwuXuePCI9/Dy/v13U/mSBC3iw9PL8+vrh49PT9fn83qe83xcDtNS5mWWlNTMVuvtqqaxsynxgQCV0SkLIGz9LJjH7jWNhYl73ZqZT3N69+V9641R2t6ZZL4/rq9XhHS6W+ZDyTkLMgKVVDqDTIUpAqRvRhxyl5iRBREiVK9tE5aS52BAGbOUgpAk8edffH87X9Z1F7dSxHoz7eEe7oiQhbt5SsDCU8nMPB5tTAPZTERMTBG+zMuf/um/WK9XkSQplWkh4XW77rvPpSx7NfcgJpLQRsRgjjMO6H+YiSS3a1hrEZYEEKZ5CnNTZ6YIIBgXDIroqtYtCAKihfBtIsn++NV0sEVQANAcam1THYWFWLd9bw0H05Kgt/bdd99GOOEbHAs06znnodEpOX18vSDG6A5YH7IwdIf+KQzdtLva6bQcl+PD/RLomIhEiBJAXK/7Zd8yiFsMCQ6yDJeqmnaQ6d1XeV7cdav7fln39YJuWYQkj1A9YWhv4EaIKafj3bJ7mEZKqcyZ8VSOh3uz69rTQTjlQvP3Ht/01t5/eGpd1fv5clYwnr1emuQZ0HrdUykezpDcVcFLzqS0bfsr1mPJP/7j3/2Lf/EvNj0kQRH51V//zUMuGXy9rK/rVt3rda/Wztf9eq3zo1yM4qxNdE6Eam5Kkty11V2BKOjheKfaoTlOvqANo3WeF1cqpawvr9cPH4VgKeKEvfeJ5uNxEsJwQGJ0VNPX8/r+41MQzKelTIUIL5frVjfTGwmMGA93CydmppRZ0Rgwp3I6ndz1u5//bF8vZn4+v9a6hfuXv/oXjvdvwsxMRSSV6XD/UPIyll2t7ikXBNjrXnKaS7lcruF+Ot3t25W5l/2lMLkXTPmqSiitHBIYo515zu0iHjNFtw0uFhhtOmg5IJEDbIhr74ahbrX2lJOkxDzUeDr4Zma2YuMiZkHVHx+/ON09mBlgqO61b5GQBAY7xq2Fe6AFg5n2vSfKjoYBJEyeXN3MxtoWjSwsJCZe0OG7Dz875ONv/cZfmlNx64BKlFgYe7dezZ0RGZWA3bSqMo9paDfzCEAWYESEVpuIgCsyI5K7BjOE18sTMaN5QDKkMGuqc8kGqdVKaSYScNVete+990CMQFS9np9b3RJDa7XVrddmEQ6BkiTlXPI8FREipFp3d1ALc2tNR9QHkdSid229IxALJJEknHLygExMTBOX1rsIH+YZ5kUkJRGHwRtCTb03Z8z3Mk+5zKmEqbl11d6btsopj10IhAKguxHKn/6zf/LTP/tnf/1v/2u/9uu/5R5EInfLf+O/8l/6gz/8w9//3d8dRBhwNwtESLmkMjNRYTTTHlDmQyDFdkZKKNm2S7gDOEagSJjZ2EyH1dY64gRcw7W2rdacpzeffYkIvSuBJxZkigBTZc7uRkSSUm+1t972dWFU65gm6IGEbp0lD3SahyNxgBGN2wJEqAPknK+9jTIFE6rBvm8DVwcAvfeSMxFq69M0nx4epmmOwd3dNgi7O8yARBRTyRERXet4aY73YJK9dQA0UweIgKElExGz+NRBGZoy94BPDC8cPdwxanGzQVodsF+8DVx4zH2QkNnHvAAACFGEUxJEbK1jhAjnJCLkH1/XdUuSkMhUTXtKPIjUzElE8r5fL9exlSeksdWOACCGoAilCCCMiN5qrfuoU5oFqDJTOJh6mkS9hwIS3UrLQCPDQkwIIcguLCDbvm3bRkwpkYMmXoAAAlgYhKw3DDC9vSmJCFHc/LquZkoA6/l5Pj3Cp/5IfGJyhHd3++aHf4TRcpmQU8psXgE1AJkEyIg5AXQ3U9Pue22IoGYD9hwet6G6h4fnnDgzjN8TsJuP+RcSu7t2IAm6idsZRsPHgoQg3I0IGEBVrWRWNXcX4SQyz5PI8EzdFjlIw34MHkFMSQRzZk7buo2hRbgLy7atZgYOQuyAvfWxcc9zXmLerjXGkWSc89Q4sZREtRMCi5CQmSGP6aJ5MEIAAgkwh2qPAds18h5OQkimPcLNW4RnkcM0hxkLr9ft5XzZWytMIaQaCg4BQ+kdJmZhbu6GgJTYCeA2/wh3HRM2Ah5y3vHzJ0xZpgEuTGkkumAMvwgzAoP7wMMgoHtzCANDIOGEQNp7qz5eFWbubpAx5RkByGmYXnR8/iAAetNmaFkmpvG3MgBkSmrdw71XovHnMwGBGKDt7TLRbOGIbuC9tyCfl6QGWSSgO9y4FY7gAz53y3KNR0EAEgSo9VvdE4PlpuD72Xc//O//G//Ot++fv7skgrB6+e758lmaz5te14ecyKxrb67dVD3ctJtpmHVt2/klwggxXFkKEVGaEBFJACunDE4sAJQQQKQEaAzmBDri+L1QhEOMTYeMH725I3g4aVfVTgRBNIJ2DBgQwphSRuSmoNFzEUQWFkJysE+qCoLbrBjUnSwAxz0Shp4FgyOCeQLIrQeyIvJa9/P2QmNHfuPlxNarJGp176raVSSlVMJdA8yauTqoW7hjThmJ3BXQAmE8QwGQeJDjg4lcknkbJO6RB2cAIBIiv80uPRBGdn+8PADRwcFw1BsHj5IcRgUf/IaolE9Ea7OA4/HOByuKqMyHm14OhIkCItwIwnsTIjNnamTEmCRnzrMHAifOC6fkfe/7WtG29aKqEV3SYuEs/vry0bVrny7nF0Eop7veDeDV2r4+f3AH+bXfBHUIm+ZsEdd1Nbe5SEAAT5gPhritTR2YECEMGFDQ4/7umHOClFS/U909Ut13BOhzEUkesogYECCyNUJ38MFMRRZtFkScUu8dXDkE0EdFPSCsO/S9pPT08rpu+/Ewh+neg1gxyIlzyt1iljgdllkyRIc5UU7j89mCatXWtyJ7KpMjaW9ZMKWkav26qyklkQiStO61pFzSpBatSe/x9bfPv/K9t++//fhbv/L4H/+j3/tX/+Zf/eBQDbl1AiBCTHPb6uVyvdd+un98XdtDmVvT9fw6SFUkLIkfHh+3dX05b493ByqHBfHD0ytojxhT7uTtBQFIaD7OL691fVmnku4mP8yZGa5tS+4gvFfsLy+CME35/jC/rNxrs7YCyZSJMSVJhC4UFkHEtu3tcq6X875XR16Ox/Jw3y+XhABk7ePXPB/nwx0iqgdZkwDIGUjQ3a15wKV2CPvqzd18OuV5gTwzJw8sHBBu5pKP3YMx+rpW7RHorr1qRLDkcI8w/LQkQQhKrD1aay74OE1IVHKuBkx9SkVkPT8/PT19LHdv0jSBO0JE8C8Jte5ILOBWmw5ciGqoAaXEYCWlfd9zEje9duvaS56EqKv2CPfIWYQJtEsuRGyE2tvz63lSTylLkjKRmwUCkTiQAgYnAguIYQEoOY10T+0WgJIEzJdJHpapOrh2ZuqqSKzuDChCAz0/Zh9pmh9Ljoiu2oNE0vGw7HWv+zbP8zTPp2n6N/+tf3vtWA2AE6DEpzi49vb3/u7/8hc///Mvv//YNueZEuO0ZJzg8nTxFFyCmXrtnCgxK2NQM6xXPR/tPhPkVCRN5v7+5WOt/eX11d1fXy9m5m4/+/oXL88fifzN3V3OOTzynIg4Jy4p/8mf//gXX//s/v7+uu5//uMfv56fdts8YMnT549vv/jie3cPd9O0eFjt/bKdz+uzhzgjlRTFmrfE3LsHR06Zwa2up8Nhyot13+vWmpbj8vZ7d+amVYFjvjvOx0N0SIUfPj/dvz3YrtrNICQRI9Isko9tO5uZZCwlASFiuIcIBAUxOIKCC8jEU5YSgBBEOd29efz+D37t4y9+8fx67a2bxba3o2rW1LvlJISIwgNeDohcUgQmERKOCCKWlFkkJ1kvX/z4xz8p8wxEvm8RBEiS0rUHPJ+d5NSjLI9MSOAwyAsULGLWSj4sh8OIZrAQZQmEtjUkQCEKKpmDTHs3NSAsRXo3dUNzIpRENXbblcEOubAkQqRUSEbV1cbaixA9cGAmW9dvvv12FJGHkGKeptabA9Tetn3fW8spTzmXnAdqsav21jXC3HvtyDDPSzkd81yIwsOJU55mYXF/No9pPgFE3beUstb9Uje3vm/bcroXgt5qr+u+XeteESLfep4gzGMQMJ6ZiKiuALgcJskihee7mY5LWiZyjaTTMWn3w93pOJenur6+nrdtjwiflCdgofVsHtYVmM2dTa2khSh6a0lSNW0aqi2x/Nkf/aPLf+2/u277nGeidP/4ZspzRohq3ff1clmvtba+bjtA3M93j8sDBF32Sw+ZnCnC3C0cEBgpLeVwOLmaRxDonEtBurQOLsv9Xdu2/vq8X9b7+4MgIODjm/vT28dIsL9c9drS6cgpYdPuyoz5OM+HgzDV1vZ1g9CxdBZm9S4TkWDOYruGU6ByJsmSRNza+2++fn7+8PTxvZoCcprmspwYHMKIy+FwN0+LB7q7We+1xvl5PT9h+Nt3n7n7vq3m0UMH7YusH8pMS7E0h0EFyCWjqpvaXl95vgOYVGdBhPBUaq347dcQUIWmu8ecUro75bK8KQfrrXVjZpbY2wYGFFgBoMuRH6bpyPPj8f5RozuYAGz7qtExyA0AyKxZNI9PmjMKLuRB6OBWCVhYWmuhjohlnqMDQRACE860hOvHp2+//fbu3ZvPdFRFqNW9rfuqtbW6S5I5C4sQhtVdWYiG9IWQmCUFoOnedsVUJOeByhKRDuHWA93rBYEcYK0NAAKp7S0xs5BqD23W9u36YkFNrTU17cKSkkAEJTLrAZCniVMys6G8nKZFGM1s2/duEQHd/fV1fTlfBk5LBwV1XNZysiFfF14Ox8PhOD4azT33XKaplDxoGATgoxUDobxdea8bXOt2KBMitF7rXmvvHhCAZgbDYE2ICODetTtgv+if/N4/rJeXl69+/bx++eXn77549/hX/+p/7td+5av/3f/2f22q4TDPMxMYiYis12s6LINWhuFEnJghzNqmdSW0QYAgQkmFNJiCAQ1ia6ZRs1CYttpTOeAnixBCtG5JAsMgHEjKNCNguPfeXXck2iJk4JMlIYyMRhcWNbv1hQICEZDMOgCE6qhF3O4GiEAj1u80qjRE6jbn+c3pJKmUqRCEhgNAKeXyur66lWlOMsx76FNG9Np63bYAcG0EJCkxczPDwASBo/bubqqAQMwOYBaIDkgEtwgSEWlXQsAhGEfyUeUGQGQad69QwjwuETlnCA+IaSp8A4ALRKh2ZM48H5dpW9fDsuRSBl76VmkliEHQS+mKw/rkInzjSZvhLdhPbhpOanrdtm2vFh4YHs7IFrFuW69GAkREN/fQyJoCEhKhapg3BRsF/2kqutV13ZclJ8LaN/LEhJQWZkIRsABCuVnSkUcACYAgI8L56ZvPvvpN4OTWB/0pwsINAb778R9v22qqtNaS85hH5wALqL17BLJQhO1NSl633c1ZeLjaAAkAtNs4GEQEMSPQvu05JSnS9qZdkejmb4rwfsMR96qAGIFJGAna3usWkgWJlyPnKfe9I7GklJIwSwC4OYAB4OjaeKiqAvjpdBSR3rtIUutu3qz1udOnfI1qVwsSpuC2qfZ1PpWUUhygV221EVDKCTBarSmnXLJ1Z6aUs3aN8AjzALyxv4GFJXmvHQoK5N67NnPbe2ulpFzSw/39/elBWD5784Bhl/P5crn84Fe/yqU8P7/86CdfAwYhnK/7davXtbpGgKt1U2WRRGlvbcDORVh4MHpwNIlYsKvmlM10vV4DwDxSYkKK0UJCdLMRyHT34VjDAhE9AADdwxA9CNTVzRHI1IaXIxwcQFWHGi/CAccb3Ik5cUEAcNBwd0ckArxcNhRgBmIgJiI0MICouiLgWtvt6BgBACy3simSMTECRriZg8EAeSF7+IgcIQRiCCE1bwEeaDfP4PDSIf7f/8G/f7r7/rvv/9bPfv7d/f3jGbGUSTK5W+8jX4KtN9eu2qw1B7dWa93Oz98QJmEGV0ldUgJtSIlFiFNEpDKN2hMABTgAeNjoK+FtcgmMPGxgAOJDfeUdwt04woigTDMTq/fbSJQQItw7olm0W+k2wFz9VocKImYm+zTIJkQnHroSRDYPN2cqjEyQTKFbY6fedzUnhCQSgcCUhLu6endXJ5dMkgcqYR/nSTNFDPAYIk4zRWIAExmIaYAhXwjp3lSBmYkYwpCC6OY1coAhVQR3iLBPDw0AHB23odxwN/wULx3P5QDDuGkHAkIg3FVDWNXXdWXiqRQa5P/uLJRTHgzvtm9MlKaplITuqj0tB74tfHaPYJizZE6z19XMiDWXFNZ1u6h1p2LaAXqv+3w4Hg/HaSqttwBD3gLA2nb97sfP85TKEocD7009EGE53QkYYALJ7tAU9t4Zqda6ndtnj3coLJLDep4n7abrCvPZHCmcKaztPHFhrrU7OCGYqWOIiCBEmdU9+ip5csepTNt2td7D9+V4Charu9WVQBExCSD4Za/RFcGTe06IjISeEznA3hq7ngod5/sK0ppu2x5hLtLNn6/b3O3x7TQtU99qSgW5ee9o4OpcMpNYeG37zHw4HMwBo7/82T/6wVf/xstPfi//S/86P/3xVf/mL7798ObXf+fjj35/ySWVqfeWEivMe29+PZ+m5fnjk6tttSUBTDNRzim7drNgmV/P617b6XhaJnmtEK5pyU5gsth+KSy91oOoA5vGa7U5AxKoM2lFR85JgqoqGUkMd2Rn0MhsHpJSSckBkSybb3WLsJzxeLdIllab1SulvMxpmgrnmcqMblBf0/EEe0emvMy9KyJIEsipNUsgU5H7tw9SJkiLk3gghlqEpDIfM0NoYK9NoTU1YqGUJarpnhITJWLqXUepdlw1gBgC1rWu236YszZjiGma99ZSSmWayjRTSkmkt9q6fhJOgHk4YslJVTkJUyIiQhNEYQpIXTuih7lTGiOwGKNjYdWWhXJKhCBEkoRZHNKOSCx133rrWjKGq49NICFhVxvqFhEKDxYhRLhJD/FGCMSYUuq9WnC4kYj4AD0SM5ecMBxL5pQJXJjUvPeeBJfD8e1nb7/7+BQYbuHgSPg3/wt/a63eXIMSs0AQICORm/7D/+jv/9mf/PNlSei8XXZoBrOx2CQ5/IBvotfqncyi16jn6tzSCRnCJPa2zbgwixAmSZnSDv7d+++2fWOWQ07V+2vVD0/b/aHwo4CkqhZbPS5zSgJIn717/NFPvn5+PT8/v7x/eqbkkvJpnj5/fPsrX/3a59//KqeJU/IIwHCLOvKKravZ+5dfvL9ewQMMGQU0at2mSdAINMAxQbJd+T7q1iKAghxo2yoRT8thyYsUqOe67g3ID3ez+t5rXegYwRzCBAEebgjsASQhJSFi7xWJoMPVXwGg6kooKCKpEOHhszvtW3fvWvZ13Wt/fr2SZEOq3YlRbkcB/GQB5bgVASPnwmVKIhixHA53d6frttfLNUm6u7tLZdFW1WFr9u3HFwtYmqZcSikppdswFDHQAlRE1BoKp2Wy3nXTVBIl6NbdNPIEQeBAOFDlw0EAI9Ku3RD2XgF0yzSnRObRLSgl7wpojw/3iHFd6xirECKC9dbOl0vOGSGWeQpEVf/u6fxy3dQCzYQ0nLd9HcsLuz3EEG6nX2ja1Kw5Zgx3AAqSEubCcjreSVpat227EjMA1v0aZofTSdv+cj1r2zkcEKZSboeDcVVVS0nC1VWHsKz3bm7zJMvDKSKm04I9WIiPM06akofAWE9eLmvvHQBQQObggm6+3AsIqDknNO2f6thg3pvqtW1160ie5vD9/C/+5J+9uftrhyUfJ55KOd2/W88f52lpU03rdrmuUyk/+PztcliObx5KORBgpb3qtgeyofYNEs/TIaVMzB5oASM84c7zYdla7xH95cP++kqCecrL/fEwz1BSJAkIa+pmp1RQfUOUku/u7jgVYBLhda+t1dYa0i0LLSWDhZQgQM4pYE0smJELGathuNrlenm6fNhtKBrw65/9uEzL23efC6VcJs4lYnyaWZhCjDeSresFnjjMrTeQFGZhum81SZHHz/Jy3MweUumt1daQkJHKvm2XM1kHyZEzqPZurhcyRSaQHB7w5jNCYeZunnN+9+aNNbccbs16hIKHH6a7nPIhTSyZc3IHRNt162A0SxAADW1D1W5DLOnmNDQlqBHk5g6OIQhAgL26ZJqOcxIZMwuhssD9ur/82Q//k4/vvxGgXBYkDHftPUka7pt1tyTKNMwsEA6IwAiSE0CYNegKsOTlQEzEMiaAOWWcpuhb1GtKudV1v15r7YHEMkTFKDm7ariFuYd2NdeGERHKnAmjtWpq4xIuqdTehZmZylRaa2rm7kjsZrW283U9X/fwUB/7SBhUlKEwIsJt29+8obvTCSFGvmA5jJkwJIYIGOkhN3cIN8kulECDUingIwJRrffeGwQkYgdElNZXUwOEdauIUErp2p+f3j89ffz6Z+/W//Rfu7b4wVdffPa9r/7b/53/3r/3f/h71lsSAk4eIAimfd3W+8OxtrpvmwMFBLEQoPVKSZigD7ACIRIyc0hGoolHjQxba031IWWPABv2m05EpoSEPpTniKmUMOvra9/XNB/IDRESS3g3jwDovY/7zJidDGHOrTEOCICm3dUCsdVGhL01+LQAEKaU0rwspRQmDDXrnbMcpnK5bnXfzFSYzZSIwzpqWO9EmIQGpmSzIMEpoyOVG/LZ1Uy7Mg3EBiGxAMSgRww6hrkwjYcAktCIIZqOsY5ZDGIGEgFghCMAEzORpBxuOcm45gkD4qdocynzslyfrwO5igDuXvfKxFwkCUMEIQjT0I8BIIvc+hmE7jc4S9du5uYWGCxCoZxQErta712tcw9OPIBXHkHAgxdiBuodEEy7uQlkJBKRlK1pp8SAoeoI5B1EWDITIiURkgjqrQcEc2a62W/a+jpOBUxsAO56+4W27ennfzoyfUMs1NRSykEkeXJEDcfawmCel3XbtRkQalOUkcgycPBwD2dhYh6DGDeHBMREQthoaOwVzGNAYYGIIxQgrDsjaosxTq1bS5l5LkMGJ5+4VGMZoqE3YAyih6eUtCshTdNUpvlyPrfWx79sra7rejweiTGl3HofCSURAYy61/Vs06EkEUksQq01GBmH8DAnFq17U0UGIBzJrojwUCb2CMmfDgAYplr3Fk7gAMmOx7svv/z+w/3bnEpKCSEYQljePD7kUojkyy8+/7Vf+XLf67qtrWtEfPz4pERD6udpdJSjW59l4iHDCpjSZAC934jX2lspZQxS3L2bTuUekeu+jRu+MAMkMwtwRiYmAW6mAzjl0YXSVBILtFZNFdFRItCaroDESZJwjA+CcdPHMLSuhhZJkgfse41hHOdgQRjuKQSCIfoDBAMADEHAQTIGQI9wdWY2hWU5pJT3ulu7oGFT5YIZMhBqNwTIqSTJwwBbm0KMC9MQNiATvV4//OpXv/bPf/8/Yi4PX/3mMmUHPhyPtyk4ETgwJ+vdVFWrtna9PJ/P70Pa9lKJ+O4BI8JMJU/EgAiBxCRuhtCFCDzMlAjdKW6QNBhmM8TESK25miMjIPnA3FCIMJEQjK+NVErr1awx0aAQwOhG3Y6vN9fh0D7DONYOEhvdwM8BgBGJkgEIk4eNcGsAmHrOZayOwqO7hSOZjYNqkiRpUlV3dffxR4d1GHNiJA4kvgXNInwEGiEQGdECwhABIMxUrcENcE+DXiVITNK1IaLjCLg7fRr4xu1De0g7AIkYAgnCb+qy8WgBBEGIgbUjkX2rrdfHh8dArPvu0KZp7l2FwHR8oqNIUg1haL0/Pz2XaZqmIszqXvfNPQ7HOyNBD/SNw1PJpCkAcSppmpmotwbWUkIkTEk8IqUyHe88Itp2+fBzygvTr2poEn732TsiUcOUUmIo89RbJaCR5k2pqEMps3r0QFIPh8Qi0127vLZ9ZQaZFgvTve5745QhlDGSJE5ZrTKjeyzzpAaEQBBTOVDm7Xoxtd5XDEeI1pUxchYibr031SxMNG1dC3E4qsdpSoTQa2y1poLTYSZwwlwrAHBVGcT+Dx+e2iZzlrJkkQmp9NdX9ujdqgMzm/aoDRnmZbleXwvHy/lcfP3m4/XN3eGf/fGflvW79z/7s6htnhfv3tTfnjLnJOnkam3fFsJzeABEkGv18N6UQgPcXMNwdlWtqoZoJXP0jpICkTjVWt3AgtA7cwTKVhsQBtFlr1kCHEEotKsfDIiwV+3sPZm3bDFlWxYpmSHw+hHYS0agxDnlebHe960C8yR8yEjz7Ii+rUTYWTCfOGfXXWsNc4sQkXQoh5TLMufj4hYomQDM3ZkFyQHNgxB9u2jXrkoI2vtcikDadd+v5+V4YkJMUkqBAPXm4SNNLSk9Pb2QvIMiIiCMXbF1M0QHWJ9fPGg4Id1jPIEAIQl5gIgQs7CIsPaGQy9LZGpJhMDNrDZlZmTvZuBKcLveANI0H9NUAtncJoh93+fT3X4+h1lKRFy6Gt4sSqnV6kCIZOjhtvfuAcgcYRBuDknEIxCDy7IweOi1XQMCHDijQLhgr8YEeCNHGgRIkmRydzi9e7y/bquauuthPn71g9/cFQKJiOOmo4lw/fDtz//Bf/h/9ABmdrP1ukdx7ZVJ0+GYc+bCzNN+rnWvrx8qBji4aXiYHTAfXvGIjw+fJc7H4/L6+rJDEON5XR8OR4IIAEkyym496OPTBZlKVg/sHjklIrm/O/75j3523XdhRuASdEjT97743pt3X0zTgbhIYggnBEA6HI5IbGZPLy/P5yfxqfY2czbr2+XKmgA9rGFmcEqlvP38LU6wXvY0ZeCs2259RY/peO9adWsRYdqW0xJmSEzA2+tVpCEBQQCjAwgxiScB6GgKLIuuFoCYcNf9yy++DwgkhUTMNEWCtwGc9rqdX/D88XK+rCI5pRQRuaSU060DFYA2JMbgVSPsQHOiAHDkPM3HZZn3Wgkp54TMxEIJurpH94jn89XAD7YkMsdJuAQMtqorNhSWyJ6wU1wv6+Ewl1NBCmim3XHCfrUAnJcldx3ko1EpJqZpnmOetn6N3TEMXLfr9rr1+XDIOZuHJDgdjqq+VydKjAFBZZqmnLbrudW2zXOrbduuzy/n4azp5q11M1W1sfIExKGNYGGEMIt13bZ1E+aNwE0BYN8NCZt3DMEaarGu51YrSzKzeV6eX17X8yujiyCmLEgpZcmJEdXa3jbtVc1d3dTMnYQlp2nONGGZaNvOLPOcSyCkKSfna31de6U9OnUiPCyL7VcuAeHIgA6H+0J8E283DZJQ7e6GEfu+m/e9bbLwq1UJ+cf/8X/wV/7K73QNNQCIt1/8yodf/DRYDAUBl8Ppi8/fffGwFEYsE6QC1pGIaQqJ5ppKoZIRUy6lJOld1aECAHhXl64EblDJayKTh/vl8fG4HJMwCO6mda/EfDrcJaDzvgfDgfPhMHeL6/XauxtSgEtiTpMDaHNOSTJLNo7MlNJcxJNkpsxA0LW74VY3g24UkIgFX68fPnz39eeff1HKxClZ1zWuIwWNwClByUnw7bYs61a3dSXrkEPrppcnqXv+3vfj8CYmgb0OtwMEgANlORxOD/d32/kZOZv268t53etdaOlXFgkil7Q7UOsjki5levf4oF2nUtzcaivTbO62K8ZosVCaJjHpQGrXVDIImtZwM+8WzpLBjBIYhLkOey6EBnqoI5CO1JI7ROSyJEnWN3MlSiVP4Xrdn7/dtyxzyS1JuvViaKhlPMyBSR2YuZSZiFw1QocrV1vrvaJHeXPvwyoCmKdltEMhFTncRdtSVIII8N60VgcEJs7hru7WMMJdvXcf0xeiro4QGA7hqRsiEtdpKswZife9RoCqcypobmq1NlUbhdS67rXWMaBmooHsIimh9u3770rOb9+8yQk9AGJYunGclUfeRK1te3O31itnuj/dz2UhybU2tUAIU6t1ZyIgAkpAsu9rQMyltN4RMU/zuA717fzzn/4ppjlo+o1fefvlVz/47d/5nT/6wz9ACDUF1a2Z9wY5n9d1Xa8kacQVtauZlZwRAxAzoxBf9+ZmIEODgOCR0Lv6eJJSSkMqxIB9hBQDwoJJkNAsYq9hlaOjsIf33qd5DsThcxi3Dm0dxl3NzW8Fh9G3APcBCuSItNva6gAk59PdneQskgDweCg55d5qEsawy7qPB4GpJknDW1x39d4u5gDBIlOZttZqbSiJEcJukGBCxoH8FYCIIb1yt7F+cHcISEyOcTMkWQRaYBodcSAGGgEd8BiloVuskhDMDRQgYNsb8WhvBaCP666ZIcnhcJAkjFFrM/eSc0rpU+4lIIIIzH2M6gYvFsZPHiIIhMDMbBAPmQIiMDgLEnRVJ/fwbesZI7O4u3DXcCJElHHHGpGQ21WQiCmlZPtW9xXyAsDQNjU0algiF5loxCd8WNGha1ckCO8WjmkUus10dIIinMB/+C/+YK3mKMgeAMQ5JTGzfe9IhEiJBBKO8I4gj78TCSNSWA8fzk24xY6ECQkCmRmRfnm6672zEAL1fau1AcQ0l5yzuYUZIqj6iD4hgDZtGwUAOtBpNOGi94bEhIxojoTIZpEFiRAQz5czBJqZWR8/7VJK791Mx8E45zyAIWYKCADhpvsVyhJlyjhnwOjWEYRJAIBoFFZsUCw5MSG5KxJoN2YiAe9IiUJh6MnM7HQ4fv/73/vqe1++eXw7Km/j0ntL8UKknAEQkI/35XjS3mrt3c2//Pyz3//6mTCEBQBbq+aG4DCgMEQ5T9r7tu21VjMDcBHRrj5I2u4Rptan6SApbfultY1TVussFADmzZsSjs6dp5yyZEZm4pwyRBjpOF67u4UOgRMTmBuSf2oASSC01oNiXOKJbZBphBDQIxAiwMHAkICQaUD31JBG8XAMU3/ZqPKmtVurfVfvADhmgxbKgSmRRShU0z6iMaMECkEIhATEI2kSf/An/9hU/4f/g//J68vzT755oTwTMxJHOAYgEktBbsQClLqu1/XKGSOyFARMAUySRRISjTIESULigCC8bVNdGwAwZQ8z72OmxpwgUgQQg1AEaHclJGFGIO3qYRoRpkCgBj7QYAhIYI5uNgDg43NnzBNHSkYtbrwfBAICIHeACJZESEnYTBERWBCQ0CIiUFlCu7GkhNzN1CoBjo4eogOauyICM3oEEQICffoeI9bkA/tn4QFjhgMYEebhAUMceWNQQ4SpOwGTh4N7IIxPVh9ZyFE2xdE0HbnMgf0Zw/pbbXegFAIJBTmRZE5TAGhXItq2NYmknF3tej0j3aZUSajuG4IjiTar+z6+JE+zE+3b5m5uK4KrBhNSysQptgsATRzl7q627r0JRK/XlyfKuSALSyrz3OqMS0v399u+q67P3/1UUnrz5p32BmE5T73uy91pbByYudXG0XOauoPtrWuz3vtOhzlNp0mhn7e1tc7NxdyuW4RTEhbJxG3f97qTBaJ7UKAjEID22pdymo5Ltx4R5iZu05yWdHh+0VZ3JMqZAywcEzMhY5Igbhoc/epWckqMNUgQbV+1tXk+ZSm9NwgzAMppW+sFzdVISkm5LGnuOxLt3betkiRvOhUEgpySv/8XK795/dkfvWqOH//wePf9+vTj0zFRXyFnc0glc/hl09NxRkKjnIm8nt2MiQEiguzyLA+fN8ften3zcKgce92tPwFnIXFwyaU7BBBxQu/Crg0gH7srtL1t+6GIgZBk9yaJARMVCRHJ0yJJA6/rpbVaiJ1hmuR63QkjAx0zv+8dABmZrSNynueqOgbKdTsbFjPSvRd/Odyx1QuEuoPrlqKhZCnHOcVhycgJAFpTBHdAJ5GSE0Dd1k1b3XegBBDem/b+UiuLIKDkecqJiWrXiMiZzWCk3FuYYLyer5yLHg9zyQWNAFpXU58PS1wu2vY8HwCRBV0VkAaffyQXRgjHA1JKACFJtNVUCphGACAzGTIHEKDnXITxel3BYipFGBOhYWit56ePX3/9bZ6mx8dHM+0oAd0dem0rwbwsnDJqHzXz7q4eCGC1AiKnxLfGMnBagKXM2c23tTJiMHN4gNXLeW22HGZV6K2P3U7fGwb+4Fd/9fX88tOf/4KPYm5/62//na12ECGxERINYgAL7X/33/1fmDsA7Vu/XrbaG0lQsAO3lxpQEaPMCws/vn0AeN4vzQ09DDysxjfrkwfmPN3lh5Tl3WdvA8NNj/clSb6ufR/qEDdVeL1sBkSIO9P59ZKEp2kSxlrbMs+AVN4UFt7X85dffvXFF1/ePz4iT2O4LZIC3NSJUMb2UlKmlKMAIDmkKO4IbMB4XS+IUvIsIpZob9t6re9OS2LRCCw5Erp2CPnm5x9ECnHWQES2vVtdS5qmQpRZwwEJ0C3WMCCfR4e0X/rrx1dJ5eGzd63Zdq6nu/vERYgDU5knO1o3VevefHx6X9eNeY8I3PHuzclEE6YMFDZodxxAZna+nAGQCBjxejm7amYyJAK33msASRqL6G2vSBzgre2IPrl7uKQEnHjKI1c6T9mYr+dzmoUX5IwOqrvLMjviZa3WDBQRXIjnaSolC8uQR3SYEkuS+e7uHsLdL09PHy/XayllmidhFuF5Lmo2lSyE+xiKEz+9PK3Xjen5Y0mIkeacM2sHd+sBNrbqhgSIJGpGxGw6rufa+vV6IcacM6JAwN6NJFqrbbvWvanpvtf7hzfz4QhI799/t21XtP5wf0hpyYlEcso5lYxhgYm0AVHz4bpicA6idDgs4pAjzFrrCxdAMHBKiQ1gp0CfmMKhlDJNtSI5ujuGIieQRJQCCSDCEYRBfR+7l9paGGMiQO6NuvYf/+if/OznP78/lKUQOvzqb/7L/5e//79P03LZdjX4/MsvH+7v7o4FbXdJkCSY3b3VqrUGoKQikjMLEVswUzAYCnWgBl61j5YCzHPKR747cc5oGEz99cX2fUBShdL19bXDhkF767Q3b/v1+iLzlKaCCJkFGHsoCQw8hJCWPEEIHxIiO3REDgft2rTXtlkoJ4wgQAyy1+vH1rZcJq/bhuFB83zMpUA4gBNCmRZOeW8fh6WY+s7WJq1TEgJws23Vsa7lJIi4bRunPE0lCU+kXb0ZbXvT2jZMs2Sej77cqyRaz3soSHKSRaa+tnJYhgyLDzlJ3mulzF11jetBRLW5W9M90BHQ1LWPKcTu5h6GA8IpAQDIw5QEhGjoZt3N3Z0ZwDVctWOvSmEQRGkueQGEbo2CW68A4DG+IpKMGxYiMTNzymVeCJAXHoLI1ruqeTN3e33/8wjtkJBLXS8pTylnAROy+vLtrkq0JGZTdVMPMK/79YxhZopECCA0/iAESSwp3EI7IKvHKGgwhmkPcjVAhKYebub6+npet72rEuLQ/w5z0IBNlnlSVW2NU+7Nfvr1z5HwzePj4Meo+3gjhIcFELOqmnZ1dfaukdr+vfTo2roZAHogi8y8EGJVDzNw1VFQijgs82dffHl/91DKpB4QQeEv3/xIynH6MP/gi+O/8tf++u//3u9OU/HWPsWpsNfNPMz81qcxNa3e10SIkm3sLtzDDcPGZRhsMzMMx4i9NsmllHmsysMDCVKazEG1C5O5E7s7WWsAoGqIPi1LmhY3Qxi1EQNEs6AbnNPMjD71hdysmwVQRO+tQgSzHI/H+8fHw+Ew1MWv5zO4ZSYjNNMDRWfsvZkDEeUyuXWCQCJICUCFSD00PKeERMysXR2Ch02MYLCxR93CAWLcMT9BZwCCWBgQEE0VhC0iBiBm1BcACJGZwEB9mMUQAEzV3UWEmNBQHYnQLdw7ISQqpqZmchuokRsO8jUT7h5dtSRWu71qIkJvdCJAxDFh2apmGaUORAxGYqBeOwt1Qo+gTNAGhD5q7GQpEgOpMOdESBgKQQABDt56BYIkM6GEVTP3zCTAgtDMBLZq2j1xMomw0K7IZKq3qx1img7EyV0R3WPQZv36+vzjP/0jluTWIYII9+4OMQpEqsoi486dc6m1JpGSU+1dkrhHWCCQh1MMT0KMIF5AMMm4lEU4MSeEXtUdODE1UlXrjogQyCwBZL0hQmbqrhFR1w4Iwtx7G69e9xDJTsFEEQYx8jhu7nWvETHN0xiLtNYiINx1WIvHbxmxlNw69N6H6p6Z3P16vhJiKqlMiTr0/qnk6A4MYeFmgOHdCIVl/CdDdA4BpIEkB4dpnjDo7Zu33//eVw8PDywCCAho7mBgpl17CJuFMDBTOAWEmTICSEbAdftRkWws4GCuA0E80NFYEBH31l5fX1vbiSiJEBIghMVYBoskD+u9sSSWRKqIQkxmvfbVzXOapjKH+1zmKRW12FoFgJRy6GD+CiEpdHcHhNpXABisn9HmhiChFDJoyj0oUibikY8bL3T+ZAHg8V5wcwACHHaHGA0nZiZGiMQFAT0ARMYN0WGAzSEGEzohj/PKaA+N70DEY8Mx3OceploheDmcrpsejtGdkMkDhsWIUu77ypJNDajjaCUAA8I0ZSlLmg55OhAhS0IWJgakm208AsOIuNXzaFgTEJBEGDiN8vkIwY3k6K1Gam28OJlxCG5vtcGRSoIwtYBgJIAwu3X8AQf1LNwdgBBgKM5HgGJI/Mz1hhvDhOHjZyJCIugeEBzhcYsAmIOOD6iuFmrjksiDnj0GzWOjOQJ2EUPdRUhjGO4B4wPTRoorwDEI0A2AgIYo0sMi1Outuzc44LcpOyDcFHUISERuHiMJFuP73z7RIyAhC4uQpFElkyQsPAht5qMIFwRu5hChpm4moeQ7EhBh27bztqVScpnu7pe6bRE4oqrT6REBw3vO03Ul17U9/cyCqo98Ymz1WssiZZ6nhThPyzTPyYI9Vb++1svr2uskvBRZSmrhhFxrQ2Zm1sGapQU5eXBXDYdENC95KnlX56SFpdqmbm2rkidh5FSmKVvrPB+2ywV6H26JcJAkqpUQJImb7uuWUqYIRkWPfds5GoK2tbt2YZmWCYhRMiMAUm0aQGuEei+JAxBN93VDJkanXMBbmlKrsrettubAgrztHUlRouQkqfDeLtddzSzArlvO5q1KWz97S/n1x3j6nZdvfyQP9/L8z9d+P08FrC+TNNNwb6HriofDDKZb1YXTIfkGhEDmsCuW7XI43vXj/Pp6fneXXz1t+wb7Os3TtByCUiLUtk+FmqK7TgLvXy85cU7kSJfz5e5uro5SpiJsgK+XdZ6sNSNklJzLoZJsXcv5eiaa5mm7NpcgSsdleV4bymzNa72GWlfb3Ntc5iRVrwDQg16+ffrB6Z6AWlPtu/eWIdrlPM3lsNwLE1AAMIB0h3DHCG1NRJip7yrCgODEzljMHbFDAGKeCqcpMQjTEASAaTB7eG9dEZdMve69zEksQUygKmyMEZhTUu/RG5ZpvB0QILHM8+w2DBfAMNqcGu7GbB5qThEInBIh5jGElyQlMbi6e0o5l6zbmcAV4Pzy/MM//1GYkm0baFVnYZK81/54d7g7fAHEgLrvq9GUSkHEYZRAAOKkrQaaA3oASxn5P0I4HQ7EHESuimF711D/8N13y+HAEFvtlDJyBvdpgh987/Pr68tPvv35//R/9j/fGq5V0R0D1AwDKJw4/fRnP728PhERIP7/ifqXX+mydU8Pem9jjDkjYq31XTJzX8+pU8dVhUrYJVEylpGQJYO4WpYt0YE2DTr8RUAPEDJgaBjJkkUD5IKW7cLIKuO616mz98m9d+b3rbUiYs45xnujMSJPZfvLdYuYM+Z439/veQDy69vWFgQl9VBMQCitIEfvWyiul/bpu49f8se+dyZY13Na3t72t9t2Om2XpxWx1Fqen8/Lgh8/n3/7z7+aJRcOC/PYh8V9N4+lsTBQgs7ZRC11WZ8upyLMIstafS2fP39azudaSwKY2egHnc6lLvNDCjJEuNZ2OV2ur3XEYCrP33z3Sej6+rsffv/jOMz8kNISD6hOwYQcarK226uRMBner++1rJenpzlWGF+7731Zamu1LYUKBYWwRLjZBilubDbqSVZCjgKAbz/+fjmvz08fv3x9VYvn58vp/CTEUvj58kFH396ukw9i7sf1joytkdvIrS9+WuvTmB9+hFIqM0KSjTErgeH29vZ6u9+lyIQDAI3jvnFd2nquyxqGZjYMA73seyRFQoko2HKy/5ik1LPUynnvd5A0NMKyPjcddn/f++bPbXl6XrZjv92PoyuLEOX80K5Iiywged+PjNi6AnFX3Y/ejkNYni8LI55qqbXWZaltuW9bQO57NxsjYu/beqmtCUQCU23FhgImUoZCIogQAjCzuwckJrqO9/frfvSny6Utp8nxIYgMmPRQVxWE0OPLDzuLFKGC0dZKhAnTS3IBQIR01XTTo3sEMlGVAAzzYeGQHsEAAUENpJQHIlHYE7CsZ2wXOjmcbtc3YpAF+x7SKCyl5YzMILr7v6gnMHMCIYcDsrAd6aSE5oD/r7/zf/6jX/4vzwufl/LX/8bf+Oc/3s1eT+vy+ZtvP3z4uBThsmRpzOgAAGEepsoil8uLtKW2tQmZu5oFeEIUYeTi4WpRSHhQPnSxZNvI/V6EsnvjFhSAaOEjYxyjlLpeltfrrbT68fPn4OKuVJmIMky4ODoAl9I4WUp1RSaCRABGpxE+IyruAx7rr4kRow7H7374jZRlqZIIauFjlLbUZa21jKFMKCStcC2l73dmWmttTx+4Lfz0HKZI9Hhiw2ytPbeFRZZlhfBjx7AAxKfLydxdvfOKL59wObsNSj80rHcs0U4hl9ZqJRQ5CSaPrm2ttdVShGoxG9m3nBq7SqbD1FTNc4A7aWB4MACAWUSCGxJj2MGQFATIpbIjCVJGqB2FI2YCLDfMLHUpZQlKyYLImZBA5umhfcDSqjDmUCRjT1MtzKd1zfDQgRYU2dqSANf7O9jhiSALJFJppRbxQ2JEv2mkiwVQmsfMLTKLMBEspQAXABQMJvSIoW5uGWGmtVaW0triNoYDAUBGemzH2G63yNiOcezHMDOLiMnKqYkGCeHdLEops+9j/QjkbTt+97vfE/HltEY44OPx1MyOofdtU9NWi4UxB+ECltf3dyZiEa41EbfXN0ivpXKpjqh9AHG693Fk3375qz9uyxqRkO7uoYfvsN++vJ7Ol7X96vM3f/1v/Nf+yT/5J7NekRCtVQLoagjg2s3CzTAsbBhTpRoGR++R6e6Z2Y/eh4GreiSAm6Z7W9J7LxARk3yEEI6Jj1YLpHt3D+273V5pXr/I85zhBkjIyB6zl+0Q8UjMZqabm3rilKl5eli0tnz8/Pl0Pk9c4NLa/b656WbY2tpaRc2+3R8NXHzQmjOQizALcsG9I0yk22AWfISaEAm5CEQstdRaRViPfZgDMIlMXtsA/csNMvEk3hZC1tHnUYmIIoEAMzESpBSSuc4OQpx9nkmGnmgV4oIYiMRCIqSqx3E8f/gkIoyUIpkgwkR0qJkCUwPE3kdty8SNJ2REFsFZc4uMYTl5KHOzT4RFJBHTLDwCQRqNbv3odWlqY/Rsa522ykiI8Aif2nUAPPoegcxcCpuZqRVkIBZGA/NMV9/uUEtjEshEw1kPyUwRnpt15mKZqQMyMOOf/P/+P9u+MTExM1N4eqp5CoMwmWo/+ky9zuhTJNTwnNDT9EwQobGNslQEIMRMMHMWBERXQwL3KKWIiEfoPtyitBIRbjGFQFILxMTNgpkDICJkAibMg94DMRBJxELk4RiUHO7pgUhwvpxNlYmp4NBeS4lMAwfMocrCtVY3SwQkBABiMvfwqIuwFARwdyIoRUTY5rseM3OWR6cEIg0MiQmTkBJMVSGEkKiiadbCl+WpcHl/v55PqzBnhpnPgZEe3Vwz6zGMIWqrTBJAbT31bWNK8yhliVAbI8zdk5hrqZ5uoey0HdsYh8VAhgnPJoalLZMqUGph5ulx77137ZleiM1cTRMnQYl719ra40M5wSFcTeekO91SmHjOHTJ8RgInLX2CqB0sI4kgMH66amZ9f/4DgvnKwU+FUfhLTtQDH0GEhNNq5oRsbplTN5dIkQFFWuGyrA0RPdxssJRKzYZvvXc1QAMJZsYkTWTMhIDEy9MLS0Epy3oCBU+ghLnwzghAiplvMtuOm/p9cmcoC0uR6XEubermABFIYK40AWYFZN/e3cdS16Wdhh1dLdMtuptNag/gQEymB+YmwicompkzAonSMxEela/McGB5CPIIpzbBI52IJlOfUSoJUtEwc53NuUwgEnj4wwHAifFR/vBIT2YOD/Ou3gEDAIEgzP/Svx4Z+Jj8zJ8WHjPx2QHOEJm1S8iMeU9DniSmhMBAAPppIIU/hYbm/C+mBS5n2g1jbmLg8WPPaVrgZABlTsAR0vxVMmXmMwFhjsvm47WUUlgCPMzVBiIzCxC0slKmuat5A6+Ie+/X19fP334TY9Dk1wn7sO32XqqEalsvXE6ujqMzhmQ1jeEupaR5vH/x509PHz4jUVqme2UuLx+70Pb25e3H37VlEflE3USy9/10eSIhc0ujox8R2gRalcaYCOrhRpmETJfP3zhzv9/qepLSAPJ8vlg4VRr7fhx7LSK1sAcV9HCGbLUBElJJg9PTU4xd79sADwSqa3Z1NTMVyFKbtBZAEJoWzHz0jhkHY0Zezksl7trJuC27VKaMWvBybglWiyagRw6z8X5jisvTuiwnzGyEX95ukQBEetx68PNTGz/+GUk89//02umd/9S//LO8r6UxCQqiM0b4cM/sL5eVajmG3narlQG4LJUDqZzupvp+9WEJ6OaVkk4nhHz/+ia1pXAmqeXm4+l83nbSvq8L7LsCVZGisHrkcyuaae5DjQHdw8GFABI8gKjAIrejszBBXBYpy6XHSf/wBhkIme59H1To57/49jh0bLe3r18hfDmf18uHuiy//+33p7VmOoy9YbbLUmkND1ULFGEEknBlAi4tIglj9N3MAdGOPueoS1tCSNUxUSNp9q5FWErf/b73Mfoc1SKxh396ubxvertfI9ZRSBAC6Pn5g/dN6qo6bvejlEJEEZgRIg0g79sGALUWZtbecUpJAEgY3YF41lRKrZxoqkSCSFzLy7lZhG7Xw6NYjH3/3Q9fwO2yVpaipnYc/REEpLw0IizgI7w7QigzHdttH8pclnXNdA9DBFlbpB/7O3FjAoxM92BJT5RiRi+fvjEd1/d3sB7I5gaRs/KQ7p8+ffOv/avP/+6/9DeJ2q4zLQLuD7gj18tQ/X/8R//H5VzHkcQFGdJTFWKoCEml9gGpaDolGDe437/W5enyaeW7chEM6e9jikC6d80DIQKhLLCcz0s91bIB5FC/H1cg8FDXPDIAGZG8u5Ra2rpSnEUu58+3+/V+vWs/vvvu24+fvztdPkg7EWLe3xPBjr3WVVhmvZylPJ3g9vSR5XtISISjv/ottnsHy/XpIqsERSmNqRJn/fjMApgCUt9e39tazlyipDQOYDh8aW3vWiqXVrjWRCDmWut2f08vbvD6/Q9AfP6ocXkWJT320Y/769eXl2+oyLYfpiMT1/UitbZ2Pp1Pba0IOCWviBkBo0ew79vot7jlwIBIXy5LOzcGpqk1KGKj79ttP/YxoVRInlmKJMB2vyMBF6p1VR1gAVx3MzyOiKgRdXly9+V0cor9uJoJszCKjYS2WoYe4/b1dvt6r8zBFhnCDBBvb1+P/Xpa1vP5tJ5OJKXrAIKhuu/9tneL8PkooUaEYxzPl8uMvZBIAizLgojubp5EQBUTU7WPY/TDM6fehQjQMYi51SJC4eAR4RnpHijgp4UqAdjYdIhwYmZkP4apzydXRthu77XU86cPdWnMXBqTUCKV07Md27HdzOYyrlCIg2dAeN5v23ZcIRUopaxUo8TTzMALALNkUikoyFQWhnM7OjJAJDOKoAEiBlKwCJFM5qCbI1LmPDzxAwhEAIBUS3L+/b//d/78N/+Tl/OfLi2XZf3b/+p/8zd/9k/P5/V8eX6kbUpLksREH0SwrCf3KHUtrUYkcgnhsH2MCQjNCGRidKCcgMIaaoA5tisxcQEfHZIez94Zzi6tcl4Y6ehDUzLy/PQcLLfrOxEEEzpzlV0PiJwAzACw8JgsyzBGDIR+7DZ6upHMp7ok4toKMf/49hfPTy+ffvUvPT1/vL/+uO333o/Sj3VpRbDyRVprtVSh+vxcMlZIk0KXJxEGWuT8pPvNj7vZMI9SSgFYIIlZA4h4XVeIVLXr6/W271u+Ls+51Lacns5V3ON9G9r73pWnQK4WBHJIocYECBngDpmOwOzskGF2jMMgEgkL8WzPg6CZDvVxd4KBXIgpONp6iiDLBAM3C4/0jmdJSsfDdabqsZRaqGU6JkymCTFNZsPWtQgzJRlIIqeYmUZWAk73MSKJSx2qDtXDtB8JOqmfSMQQkt1NgQQlqUip7fl04VrnUAYyhCABzcLHbh7mngA6BkEurUkpmamjI6KaCWACDR3b/X693Y8xbnufp3pMYEZ1UDN4yJcdAZwTIyeBoNXau97ux2/+4i8up9NMiJRaI+J2vU8L7bos+3Znpgx8OtfCi3mEu6tngrkBohoM3YkOB4qA8ICMo9vT0/OHT9+s5+d9v0c3Fk7Mfb/x198+ffzF11s/L/Lf+jf+u//wH/2vMtxMTY2ZE9FNfzr5B0Co6rZvRXiybRAwYhL9RW0QoNR2qktEtFZt9NJKhmZyWI7jxgi0Xiare/IbkOW4vb+/fgHX89JKOyPLGINYiMgetKTIB0HO0sYcUSGAA5kNNQ939yi1LG05ny9IaGaZ6UMBcWnt9v5udkZg99xGeAKSQ6b7QASiyR8ndxNCjyRmNhxjIBHXym7hjhksD053OszhAkISITBnZOUlzNxjUiYAMSM9LQGAAJOAuABykQmsYWZhfhwHc2olgVlmbsHNZg2BAMLt2EYf1od7ZN93LxKP/9DnKQwxIkpdImCMo7a1VtFhc1w2q3/CPB1Vqp4Z5j4pORHhCHvXY/SyUl3ZhrkN4pKJER6B5jTJu6ae6UTs4eHupERQFsnDZqhCWJiZAfc+EtPMw4OZhSQDHsyVBFV8+vQtIgExUTgqIklbf/tn/ygz1RTdCOdIlh1DDZZKBDDROcwigkXK4IGMHBSZhD/1hAgzAgnd/ae1HM0jpZBkeITP+AMiMmNGlCLhDxasqc856KwhzpL1jAkAgLk/ICkYo/dZBZqHagcYw5hEmCHzMfJzJC7Mcuz70b0fh+rBxPN/nOW4ObMIy7GbVM4IckRhEUYCokSgBCxF3CwzEBlgmnpcWomEBxYHPFPCIxOblNOywJzGRvhMDMfMK7i6RwC5EUIpVZimEq7WRdWRSCQhHiBhFDydFggkIgEiZuGifgDbci5LXUTKcey1llpbQnJwa5WZR9dueoxdtSPigTkrsVWqlJqZ5goASOyBZsPdSTAjiJMAiWe3PwkRMIk4JniCEKd5DyiTgWxiuOfzAv6EkYmYIZJZsWQiAnCiSZKfva0ZGgHCDPdAd3fAB+nmkZWjBMpMTEhVdY9wHaA2TM08QhhFiCYK5hF1TyT4q3/819QSsLA4R0Q8GPYRP0FmECPD3PbbbwNietAIGDJJhFCAeN6HEQUJHyD5CGTp2w3SiNB86K7zMwsJEwzcgcBTAQ0RPTJ9gm8eLH5CBGZAUM+IwJztpzkEwQwQWphaQiBpgCHAnJExMhAKi2fMDmgpVahCcAS6WWAABrMQCwAjhGUnwVB3V0gnRCKMDI9kAkicIGsGAAriR4QoAn8KL07rfDyMBhP9hJDxL4Z6U1Dmno+XDJMQEinm230GfjJF2KciEHJ+TTsmKR8SAGZebM6eHnQjkIcgmIWRGBkyJhYamrSy9jxSFRFYZFmWynjs98wwHVWY27ogdVUEEOGliurIBG6tnp+kLEOVS1k/fTNuFezOdjvXNZYPfbv1+1X7HVm29y9EsJ4uUhbi+dkCUVaUpsf25esXNX9+upzWJuc1MzMdIawrAAwdmF7ryiKacVovIu12f1+eP9R+xP1NTgsQEmG6H8dIRPZj3K/zNP5oq4b0fltqK7USQt9u69pKKT0iuBThxqRD17XVij+8kTsAQS2iIU5E2VciSj62IwKGJQKOzhy+nOvR9cxaCgoVBFtbwefTUE+fC8WBaWtNloWZm7CqXvcOxDHl2yKBbImue2zH9uNvmAJ1mMXlVM0HUkNicR/Djq6fvnnZDnUxS/h4qSGrj2NtsGsZ+21oPw7d6noqGWlV6seX52FWpO7bbqYeVgiTxagdR+/mpCrCp2UxyMMUY9S2QmFmaMsFqOzHRgiZvh+9VBGS630rRaS2knFZL9/88lfvf+8/396/7Ee4Ra2rIP3Rr3/Zh72/f/3+z//iDz++9T+8P12WdSn3950hG/rpm28Si6mZGmIgRLiD/IRhNsWJHRVV1YxsS9Vh6d41QUoQL7UshABgbn4EZG7bsR1jYu2QABB8KJWyNNCAfd/2PdbWnp6eZVlet+vY3kmEcTJe542Swm3bhrsSiXuq7YQQ09+BmgnmwQSKgIBgGek8JdajY6XT5XkbpvseiNa7RT6d1pdVzN0CkOuJaamV25LJ7XQ69iM9t+NARES4X99f395Pzx+QSM05FcKHO0mf8UuzQ3UUhARYmSwyjABRRJh5phgtCfeDiF37BD8J09/+1/77163/s99+AWJAQhJu53b+6BH/xX/2d/6j/+B/QwKQOJcJ6XMbgG7ganKqEKRdAXM5EwGbxRiv9VTW2o539XEk57e/PKcDLzF8lDU5EQ/78Q/vx/NAgYJMC50/fyJh1SN2314P9AUQpNQishQMgHY6f/j4GUju19u6nD5/+4uXT9/VVhmRkJb17K0x17qeIc13RXCCOF+evvkO9v12/LPNUS1sDH+7vXpYaxUZ6vKUnuixthaUAQpMnr5epFQZ+1GrsBAbXm/7pkElAmsk2jFCYFlOPswHzow8L0zMfduAWYCJcWk1Io779nT56Gr7thMCInEAYLayNl6YJP7ypIwkIr3H8WYQ1hoQADNu2/0YPUakZ6tLW5bM6PuG7qdlmeV/JBo9ZG01wFxVOyEnuKpjAktNg0xEZteeROtyabX1sr9f3wFxoSUxcvjt/fb+5dZHVMZaaYTdj02Haj9Se0BwZVTq7wNKldrCYQztPlCirqSWZJKZmNjV3q63+bF0mA0dTeS0Lh9fLhmBQsexOZuqmo164bErpiAwRsxTBtYutfYbPUQHgCKl8GRVVI+4X68Jaa5DdW50ivDlcmEmcOVWJhqAiFoppXKiH/cv4AEQtdZISMTej27W44j0QGuFwsmnUZSCkcND3ZEpQhG5cGWDBBLGuixcwG8mRcBxPTGAEdJclSf6bLwQMTrriEwO1QicaG139sOT5e/8x//BX/mj/8VpEW7yP/63/u1//9/735ZSRBghS6tYl0lrQa4EWdraAqU2RKIMImTklFZacgAgDI90Z6ZShRMuzMc4AjSiExVm4UiixEpJpF0lotYWK6uPY2jWtZ1WKWV4JxGEQEjhWtZmEU6UMabhrI89glyjb5uPkY/H/WFhIJgAwihUVzlTQ0h//fq7Ty/fnGrDcHRL98PU+/3Txw/Pz09E3PsxmbI6hcXLWpAyoR+7vr+ODCcAYrNA8IgujBjpowOEEvXjgH6UKsMjAceIImAJwyPcIeO+7Qa8LCsAugY15CoBqdpLd8GCxNGBFnbQ8OGpbs5cGACZElE1wNQt/LAccYyghuvlgkzhaMcRqrp3G6bqQJKAAOFqgO5pk4DDzJkx97gzFk6IiZieY3SERyrwkXVVU2ZKS+0sFQwBiaS5GUrSJEAgZURGqEvCYJF2el7XVcrsUmTGiMg+jm2oqXm46UBEZFmXui4153YxPSdEPBOYPQAA7/f79XZ7vV7NHzHUjGBm9zDP0Ye5zekmAjIxIdXlNEZ/fn4upc5+HHFBCHfd9r5td4JkomVZPGJ0XZa2thUdHEyTMMyBgQoRL+uCHB4RZifBrnqYzupCAkA6ZhCiuuHj+VuOfQdE87wd/uH89D/8H/1b/9f/0/8h1COcET3DzBIRiDyCiEoRkurpt+OYw3SEnES2VmtdFpG2Xl6YsbRl33bCMJuaZ5LlAmFjdEQkaYlImAhRKSsmtNqePkpdwj3DUxURw9V9Gr3C3cMtgebcYZ6hZhMBEUmIWc5PT/OMJIyZOengT08XHePt9bXVgpAGCIjC8hAAZSLCcWxMlABL5T6MSgGWHAoA4ObuCGCeHuGhwji5L1Ogk/TASnBCElE+iK0TNRpumUlAXAtmTvskQLaTINEYlowIKCSQOskpzFKEJnvV3SGj905EHrGsayaMMXyOxmJi/UuGEaIZL+f1w6dvvv/tn0XC+XwphTMwMpkgAYgggiNjmJpa7+ruOaVmPCHfjEksgSRpD5mIGST2eZUhQ2akhwFEWj6QqfFYzitgQJBChSZSJY9uORWrSBqWARmPsxskfvz8M5bibgApzMj8+sNvMbXVggAeburmHuzw6AmLCBLiUHfPiGRmj9ShU1WdAOtp7aNLkYSEOa0LDArOiU8Uwsc0ea7253jo2Aczs5B7INCjxPSIKMA86zLzBNuMMTyMkBEw0qfAFgCYKBFBnRd+/HyEmdFqy6RSJvEnZrBCx0FMbm6mM6PyGCJ4uHoGyEIFKBNGH4hQpCQgFG5Q3HxGihCcJNwtE+d3A4BENyMialUu59N5PZ3OFyYaY8xxgIdrH9NdeDkvVZgQCBEJiTiB2rKEBxH2fWeiSGBhCEacmjOfFTwh0dyRkoVYkJg8fB83JGBmoInt8oRBFKUyAjhocjYppRBLztFE5ICgQLO0xIky9ilSQJivas4ZmQjDTzGPOQJyS3rMTB+1pgf1PIioTiDGbLQKFxZ23wMC3T2DmQA4M3AyYQgAYjo0HqMfwMKCjO7aByakeUcAD1C12a8s/EDJYHItPPH+ERnpf/qnf9NjzjEE0CAjgTKdmMw8It3Uddzefz90skMbIjkYo2cGMwkzciFEYpljrEhEknDb7l/MNTyZRURO63NEbPsVMDImJyjyMWoiwuk4Q3jYzabC8SfezU/oY0RCoIggYSbyyMknIcKIkOnb8rQ0cw13ZmIqRdrRHSDVR2Iwo3tkTt90hmmgz74szxsmACGRzHoZzDloBEDOIC0QcswfijAjwiAIPB45nAdI+yFUeMx8iPDRTYWf3iAImOiPaQ8SERHP+dvjD0GMgJCQkXNTgwAkyFQm5iwjZTLuWUpG7roTopmGDTeD85mIT+fzDEPWQunGDG6BrppeWmsrSC3use8HM7X1TCIFIDFJ+LycbBwjHYj6UDdvTWS5JBUD8v1e17Ntb9v1nWT9cC51eTm2Y9/udWmXp6dcF3e/v38tTOu6wlQ8esTop7Vt224JIMWJLWCplaRJKc/PH8IVSyX/2f79n2+3LaoKsWpiDvABQMu6jmMP91IakBRAqlJrA8C6rqU1LO39ektAJLIRboqIpdSVDmNiQAC4LGIBzgGBGM6n1ZHgmP8aiChR7h0SekML6lWQiJdSjmHHGLt6N6WM+/VGSFjOPeH5ciqtvr3d3GI9Vyz1crmMPha9j0Ig5+N+R0ggVk+MpKWeqFzf3/q93/b+pOPD8/l3x9EtRvJJGPjp1KSs5Yd+kN2bhG67Pp1OHImGhREYmSE9LRDBPJGwSKsV+9DbPpZa0vR0asOLGVn20+XcWDK8nS7m5mNMDYGrBqoQf/361dT85eW57C9Pp1ovP/zwQ2bI+vT08lRbu1/vWIobvHz8sK6rjW6RlMStniTL+cXaUxHmfQs6PIBhHicOt8fFPlH5vdswh8g+FAEYoBQJnLEPAUTz0GGEKW1tyxJmrVLvo6ubOxBer3ePRKBuFubCEonhfl5XiqEBy7kB4LDpzkzLRMIJhD5GLyKeGYkiBEABMYuhRChSREro8DDPOMxF+DCPhLIsDTMDSvrT0xPaYQa3fdO+f/fdd+V0cqyqBkjMpBFIDG5ENPpYLs/L0gBJiHzsOLWNiERY12Uc/VB3zKVVxuQqY/jwOWDOALwsy67OLAABQEUKESGVP/9hux4up2cIo3J6e3v9zT/8T/7xP/jP/vzP/r7Zdno6ba/DzREIIIhBKvTdMQGl+hFHGtdczuhKx+4JKpeAEaASGhlRlrI0SEajvRPIWM98YshWcNjr6fny8Ztv+bR8/fH1fuvUq+qe4IRRa3tel0tlEfpxz6fnT3U5refj6fn5Z7/85S/+6K8t5ycKxZy80iIpLJUxIxyLuA7ClMrr5VxbK2s99vvPPv3ifnvrWa/vvS0lk25ffgDm9bTWdgLoYYZI56ey3Tp4NqFjuwd4EX7+cH798r6ezxnQt709sSONrevWwyFFzJQqnZ/OPtL2wc9Pcjlj5NuXVxvp39lpXSjVbdyvb1w6lbos7cPHb75ffiP7rmrICBEJAYgElQWacKsFkA7tdvh22xNg33rCay0ihK3w02W9b7tnAIEQVS6wwlAlzpRBnDkCJXkpoTF80OD7/SpQj/1IVwxspbkIZ+GEMK2WkokV2lqJBQF2U3R7OS+Xzx8QYKlFmIeZhfXNhqcFgKUNQ8xClAUQMQDDwyJm9VlzUAFeJEs0kcwQqoiw6936jghlDaoA7qCou8oZqARUN4igTEJBTldmjIhtP+ZKY9v2vfe5tKq1FZZyOTGxiNQmxDg3YN28iCzrSYQdzDC5lLA8jv3et7f7azvz0/MZtcwjSIYPPQATS+gekEQVsabaRrQ0XgGdAMB6gmYQDKKVwKgAhjASZeZPi9UHzSghIyCDPDEjzKI0Fhzrsj6fno8v//THr28fLsva2t/8r/+tX/3iZ/f73dSWdY2EMTpJISAijDDLRBGUykz8ILYGInJpAsBMK3JkhiuzQKT4YCPVXoCBSaSCIyNpBrZlRUJ3Ie4J3R3Q0D336FtsGVJKeiCBMGOEdnMArlhqGeqH7eCsI9UcMkMVIT0CaD6QABWopTBRxRKZx7b94Xe/aVQuQqAjAAMQeTlfPpZ66vu+b/3Yj7BRSgsAHHpNfz6trQj2LSJ0v8H5pVw+cl1sbGPbTrXg2FsBu/cM+Pjtt9d9KN4BEcCPof040i0yIrPURQPP60JNhrmZIwJwEnNmAjiwPITbgGlMiFItIo/RaZJKhxGjaZghST2dm6cnOCCNPnQ/ClJhJgkEvG/H/Q2W84rIYZhECoOUCJfIBBhEDSdoADLMQic8NXji7kshmstFgjQKg34wldIWqmtZz3VZkSaoV8ItwxAgdCBiXU+1ltRj6LC+H8c2t8ZmYR6trRMEM2cFMA2wkTZg2hLMPZMidzPre79um0cC4jxxzRNkJJjaXDvHRMDI3JFCq6UWupzXl+eXqVOYuY7eu7CBqzBv+6b6OCLM2Mjttnl6K+2yNBBAxgwAkFK8YM2I0CEF27L03hHh83c/X9ZTplM6RJDUKcbRviMiIQzP6xF/9Kd/8/PHj19//CGRACESClMibofOJhshyuSz2gAAHSPdUUppKxdezhdmSQQgSeREGmNMlMYilECIBSFc7Tg2QEwkByOzp1MtUuR8noavcDPTGemfj+Xunj6HAbP+Qek2Q/6TzXxaz88fP53WVZjmqh0g3b2UwoQvL8/vr6/qPoVYkYnuCFSKPEAe5qN3T0wXi6CEWdJ5M+MpQJ7OdjfKnK6qYJ4jPECaDznhNtOXIjK1UwkPfzqXIlzcNMNHDwCsrRbiRA0zhGSet6iY5QUkZJbMFKY+0j24LoIhpTJLhD/kHhB96PpY6iMzZ2Jry+V82fftx71//PjRwx9rckgkFsaALO5j2KZjIkUACVnaac3eASIUkCAoI8wx+83bqUDoslYGmSBwcEAIKoUQI0JVbRilTE6ygWGgAFIAi6Ta2A/mkkimc2wEpS2lrdOwDRgkiBCX8ypMBCAimdJhqNkYGjEjABnBwkS17X0cxwFMXUcfWlsFQGRAhFprRqgrxAwj4CM7QQDA4Y6MUwmk6sykXTPAwkstwjzhZI+pzzxLEs0gAQuH2lDdj2NdzvOO49ozBJHUlJKpQkZObBmGj3GcL5eMyIxSpBRxj6HdVAtVmvUcAERgYaJibm6emWBAleYMjJjNFSZRAaLWWmtTNc3h7hAACEwVwAAywgWwSr1cnj9++NDqUmrNhLkMRpqQoHSPMQ4RRiQWriLL0ooIAPBSVc10uA4k9gex3FmQBDFpphxmmkQYIsw0aYJcAJm5SkGkMQYxtibEkAlE6BmQwUTzVgcETNPY5kiImEgToU0THJPhs32TCYBlhj0yw8OpSC0nJ+/jyPRJdUGAgIDIHh3TALJUJEEEAQSzMfslHpEZTIHIEJSJCSBUchoLMnEeGoAJJcEzXa1P2dacHBLN0TEQ0exACbeIOb5Gdzf1X//qT3YNSEyY0CKCCAAM9wm0ce377fX16x+OQxGJBQckYvrzgEyP4ITJUYmcQDTyCERELq9f/4JAmHldTxHmEaquavNP7SOIABITcgKzE2gS3AkgPGDO13ACgX6iIgNmIgC6KcyKYygSIogQT1pQMOjobprp7n4coTwIhIiJPSEy0z08YEorkYgQsUA4zb+Bz+YdY8BU+AISzmIXIVrM7RhAQpoDEWBMwPPMBdNj+gMZPw3qKBGICDMjIebOYAL752WOjwlRMFEmTUIiwcMMD5CQgBQzRgDoU+8HAILExAKAFr4uS4RCaj92RHAtxMJSzFzH4R0Lg+mUTaztdCbwGJ7u/X4trY6MYZGyYERlagEmw21wItUGpXb3Us9jv41jJ+S6nJk425NF7Md4coDM1vj5+Wfb7cDI5Xw+ttvr1x+/fPki7bQ+RXMIG+qxH/dWS2lF2ooAFkOAM5xDpC5Ii4/j5btffHl9/eHHH+uHT7QuVSCyjAwpXEsd+40ASSQBk3hdzrKcSdh7L9J614LGi5iG64BMR/HjDsQZeajTGBXsclp9eT72Y2KWnIW5DtPZ1s3EJO4OXVXQlrYQAotcSq21cNexD4t421xk4xZUL0jl5Wmxbau82NDLM6G7Ht1QOA8EPp9P5loxkUo4xNC2rLGeetej236MpdDT5fzD6/W2aeVyuSxg2uh4eTn9To29B9C2j4Hw+UWcgtp5DCUkCJWlJqJaFsasRVtz1mGBkLkdpTYpNQhRaiJ55O39LTIT82ldpHA/qAqaGjFs+11Nwy6XVf74F+fr++ltH6dWuSzb7RaQRLQUKbzUdXEN63sSsdSFlVvlRTwS6kQqkTqGDillkq5IiAhCOzMwAmG6lKHKzElSlxUArW9ApOYzzn0c+7Iszy9Prj3cLbwPG2OMtmjv4ZGA+35Ukb7u67IopFuMMbCch9u83HiC/Urjhv3YwDEjHUBEkCjCRQQgkQkyzQM596GNgRBrEfVEG2OM06ld1sUc9NiBsLQLk1w+fBzbNRIs0MK41CKPkqp5JkC4Ya3rcmYCYSZCgurHfbZaBbPYYQT7vr2/vy3L8s2H55fnZ2Hx9L13B7ysa1nWIGV8T6SpfhtqEOPt/a1cvqHQ3L/++d/7f/7Df/xf/eM//DPVpBKX59P+dZhqW0omaA9CMEtkdA20MEICl0LagyjMBkrYTuPwsGDhzCA2F6ZCteGwQaMk6NE7FVheytPz83o+//k//Ysffv9mgzJBMn72+dOn81KIK+FSsHsS8x/+8MNz769ffvfp8ze//PVfLW1lRCk1fUyCqghjag5zGwzIiEKFZen9+Pr++uX1x0Dd+6vUXNZWsNSyEi8gP25670ioX1o7t/XFTK8/7F9+f316Xj5/V/vRE6JJvZyeK9fb9ZqZp3XBU2Hht7f9uO7MtC7Qjz05xjFO6+XDudWy3vHY8L7v27H3fhw//9nPT0tlpj08+QbY7lJO67Kezm+vb5FeuEqRZWlai5sR5mkREj6GukHMJHDEjK4f4RBglQNSiMbQtnApWRgCCbg4aGvEyCCtri1c04MoVen9mkQMzA5JkEyFRkgBEU6hb7/99nJeNz00E1AAogQWOn2oy4e1QeT0MLXKNd307scxPD1pZnnDJ1dv7hUfeeBZ588IGKoOieGgYUeBelmeu0qUO4qJICHo5mGGNfgkKRwRURKC0zKB3A0itoxt2wDRIk1NzXVoJsqJJ4cyEeoq29ZbXVtbmGnYOPZjPZ0SISI19O3t/f32yit++vlTdaI+qzw4LAYCIniqcMxVTjvXwjiGEXmKZRGM3Prt/XgjaaWtjFlKqYWcNdDTMiggCZEyIDk8MGOOkwOJhPDT09PL6VRrqcv64eX5z/7x//eXP/s3z7FcLk//+n/73/wH/8V/+v5+PdQ9MsKFWq2lCLl1CMtAJhLmUpgnmZ6KmIUrJWYa5XSXAzIAYrCwJOJiGVUWxOp9gCtCocIsAZGpJshMzGDaDwszDXk6EwtCVpYxutqIDK4LMgsxZHj0/a5EZT6pMZM04VYC3E0RgBmRgoEB3M1/+P3vY8TnTx+ZxVXdvdY6zPat397fbre3bdvSrbaFAKcR9rhdsSARdLX7MdDfz/XCyyWASmskjFKWhq7KSUvBCDwqumeia7/e3l77cai7Rp5OT7/+4z+plbJSuunUEhUoS6mlFOHWnogrAB5691QPt7DwDMwwIwEUmigbLILJUhnDMlWHhUUIkZxJHXL37KWw92HEbT3XU6nSANJ8RL8v9ZSRpn0qp2NOlwATOcHDFGieG4CEwC0zGEmI0z3GIQmlNo8gxCoFMwgzEaQIFlbzfuzb/RraMRwpe++mBoDLelpPS1sWG0cfQ4c+HhcjLLx3VTWPVDPz9PDjGEPNPJApA5h5MpiHORIFZEbUtkz8AEshLoTw+n5dWxl9MHNhMLURMfP2pVaCuF5vt/vR1vXpcsZMNb0fh7mOPo59d10j/LSeiMUnoxgMpxEloJbae89EEQaWoa7miKD9GPu1tlMmzq7/rD4Ng1/8+tfXt9dMGmaMGRSJBTEzYrJCrXdAGFM35r5vWzs/1YRSGiFmRroFofUgCIcAYPMgEUonyO1+T7Pj2Nw8Cb334+iU/vHlubSDACNtArknq4G5JiYgTrU8QkyShk9HeCYAsMh6vpzPJyJZGulwszGR3rsaMQnC2qpn2hzXTRUUGIAsrUTOmAEi04i5i/ZWZZDY6K0UQixCTOA0+0FjFjMcpkSGCNHUIcHD3WdjAiFihAlTqbUuS2R6WDr03n0eQBOYS8CjEBw+a01MxJFJBJFp/XBV4LosJ3ef34+BZ+1tgodVVUS4FCY0Nx2DSFzHCOjHPntBKT+lHFgmqSNwVulh1vjcQk3dTdWnPNvDARKFAFOHIYCqqpuqxUxmErA7xCTmwNIW4ZmPywyIYUKPmQDX4tYhHCALs3qY27mu9DCxJOCUxPLT8ydzx4nvcEeASXTxCEQw8xm1AEQR6t0yondtbUHGiBTmcAeA+fckYqJJHJiDEUQMYsZAJAx7lIwz5zwIwoOYShMbONMTExkLgCKMOMtqFO6999PpTPNWkkkcRGDmnKkcNXi2k4b1KWqPQPeY8BkPjxkZyiSaJq94jJooEVBYwp2Y3N3TEXESckqd3KQzs6jatl/Tg2R6kxAmhQVwLZfvPv5MqGbS69vt6QlaItF8mT3NkcAjE3JtNSKv94NF1gUCcKkJAMRUa7lczoAEhJTIREw4f6s50Q5QdEQCRmllFRZ3ndPGJgWRzDXSEbBIJWJ383QGRGbITJoRPmSmTIKMR09yHuURPTDi0TTCh+oJ3QAxMj1hzujVTAGcGDI4Iz08MQsX4QIz4TKtd6aZzkLLeqpEt+0t40gUwQpI0+Fdee12Mx/hWaQhUQJ4auSsdfoMB01E8CQoP3BEQISMwDpcNRAgA372s1+Xtr7d39XTPSIxMqbXJSa9/th0HD/8/p9HJDN5hNsxc0jHcctwxHk/RwBgLpGJRILkYQj4/vX7RCrCCGCq6ru5/zTtpZykJEZCzJgj6xmyDmSOmXaCRx9rUkoiIjEAAxE9NMyY5xNNuul8zxBhJiQmC2BgBrhbQmDqDBIRz2ndvKaBmZFwvtnn4Cw8zYMwf3KuI85w35wKT5paPooo82vNtQ/QT3PATMxZ04JHMS/Rw+dT/yONmclEIlNYOhO3MGuwABA/kfj/BfpnfrMpdJ4TQAAglL/sGgpLuGnX++3WaknIoUels+6b9iN8KFEtIiKQGJlpXcfw0Q+3DGD3dNtv328GUuppXdrop+fny+VDbasde6FkucdxZfe6XIAlH9rFOwki0uv1pu4fPnxOKFR0OZ1YpK5neb8etnU9tvuenoXDzKWIJxWus0XclhVFTDsCUW2uPpdp57V8CQ3r2rksJ1BF4koAtiFRrVXHkLawcFkXqSUywvV+fQdmZsEAcK2Fs/F+H0e0HmaqGBq6l5fLmVbIaJwOInWNiKy4pHuiWxDTiHBLAjmGa1iV9BhYVgJvRc6ndtvzGH498kRZeHgtjfnjx+dAOYbtWw9x6tsgMZR0J8oqzCIeEMAL4na7XpaWL8+qbgFqTulrlR7xer2dz4vOI5/fP5zKtuXpVIZF37fb8FqWWiqVE+TbGJWZAVnY967pVopUoeLhCZYhXJI5Eo9NmcFARu9MiETE9cRAaWH+dFmSiluoWz90qbWPXJYVy4nXBZt0lOPrj5R6uaxSG6sBBi2lOwARloV9wACkJcZu2tu6ImQCjdELs3AJn1+8hysTaiCzrERjjEjT99d1BomPg8NYTsg8hvdt88wwDev9UDc1U0/IgFIEkdZW22kZo79eb2oR3AI9bYiIWzTC7TiorpThTsOg1AIZD6TW1OolZAYTu5uaQeapkqoDgiUwYdoARCFkFnclqaadSyMubp1KeRybUYoQE6oZIJpbrQ0wOSndAMk9J1U+SRgJAO5dBbm0k8jelvXHr29p9nbdXp7Pt62rxuXDx4jwvlnXyADAdFsAzwt92Yyvf07jB4Eotfz6F7+ItLIu//C3/4ALH7dIwOUioeCapaE0Cch+09KoFJGKbn68hyxoY3gMqZSWVWq4ZfgY9+W5YRGWxCw5cIANuFpoqbjwcuzjy/d/tt97agKgMK5SPz8/fXMSIUizucI169fXH37/F//0r/zJX/krf/rXn58+MFNGoAjzEtqlYGYe16+YTpmJhDJnmj5Ub/u70X4+r4lHpGDyslYiAmYabQVITMxScEGWfmz1VD7/6tP5srincAVE7QFgOKJIkVOhpWxHZxL0hz03EMPjuG4mY/munp8/NzmZGjden1foMbb7X3z/22+++1myIFjvewSNPjJ933a13pZamjx9egJNPnD0LAiIcD/2TGJCNxAmFAIEBUekQB9mcfPTeQEiB9CjIzIvgoWgOKCOEVLEt93GRmUhzyx0PbZC3Oq5LJJhQ4/xfjBiyMP8sp7ONdYxn+dSu4IgEXNtCyRYDgATQSIkkmVZ1WyoRYJFbMfYhqlPNhcKU3paNyFEAjM3N0sHRsGSOMy51MrntNiOG/gAT5AzAQRLYskM5wauoSMQMCm5AsyHjnwQLJGotCbCSGju6trdXWJA//L2lTAvL5fGAq46jmExwgYEVPr082+292veUSoH52G6977de0pyc4shyVwlg2srk/OaBk7DAML1ur1+/fK13wIFOWU5rdQSkkRCtYNYBiE0hBDJxHT1cAjzSPtwefrZh89ra0hUa1lEfvzNfzn8v2OOgeVv/e1//Z//o7//+vqW6XP32ISfLucqddgOAMTGIsK8rAsRHkdPNRBO28d+06NPEQgxIzMgmmQ0qMgIIsDMGIKEEOYQOQQNXN0FRJCTthGuGdb7EC5rFRYECkhkLsQ4+R8RSATkkQaW+30jImRUG1lqXSoSAmiARZBadzcb7h3f395u+8+fni5P5ydivt+vv/2zf9o/3z1j3/YxtC3147c/cx39+pam6maekmbE+1AemuU9qa4Nl9N59JH1AmttS88+7ttRank6rfdtY2E99gxHSO/Hfd+X5cSICZqJUnPeJfxQYShLbe0kwklg2iHcvLvtARnOEZmz2lPn7RpQCIBLEwnox7i/3gDwdDmdP3xKDX9/Q0smS1LIFMa1LFVqIoRLhM8tNDLp6O5OxAnJIrOx4Do8HE1pKYiEQhGZQAYe7mCDNIqZq03bMUZnQGJMC8JEO/r1tg+btqBaBRLbegIAFoqwfbtlZHpG+P1uanYc3czMo6vHZPr4w3FNRJMiTWVSG2jfj4icsOFaC4sgojAttRKCOg3SYxhet3W9fng+u7sOVdPr/c5SdfSjj3VdiMU93t7fzYxJRACRWq1IdOxHQj+f5Xq9JcRQ9wgmXtdFiKa74+nyXEodw4AEUPb9en1/u1zSI8b2dkiG7p+e6n/1j69/8qd//e/953/X3DFDGILlGGaqANBqPT29mOrt9eswI5JCWEpp66kUJgRmQhL3sH48si+QCFmE8SEFdR19v76ZR2Sax4w4WfAt5CWTENJsxqsyk0QSMt0JUWp1cwKYS14EAkRVPZ/PxIW5EAsTTUiccBlDp70LFLIU91CzzBjq06mXkIhwqBXCSCBmRFI1c1vWBVkqoarOdDDEpKIIsACJh0M+NtMlMgCYKQkpPBwyw00f2aQEIjRTACDkgMccS1UjU0qpRcLd3AnmGGIauxBnJ53o5eOHBLHIMQ5IFxFAQiSgrCSEGOGQlg7bZmY+1Ma2TZLrGL2u5/BpGPPMIAkkCgxzc9O5gkhIh2AhSkL3fihxEGNMJXOZCp80d3CAyRNhQkIMIKEwzwSPDO+AEInCBQBzQtAgVU2Wtra233dXL0xS27JUQvDIB5I3gZnWtlJpY7ub+3H0KSmNiCqSiKOrsUWpxHS7Hz7HbyIJ4OpSxcxLLf12DQ8C4Yf0GwBgHFrX4hYsE2iFrkbIZk7EUghhopQBAGqj0RUmnHtiQ+DBhC7CYzyUZTnFUDJrZAhTL24etZ3aqZS6dxq2IxEz7fuG88XCQABmigTMICL8qUIXiBkuhaUUAFI7HponJPMIC2CqtfZxHMeWPoN69Jfhl7Wsp3J5OX/zzafPheX3f/hxrn/u96MUWVp1Dzetrbp5mhkLU1I4Ou5HH+pHMREipGVBQpdSCYEZ56mKaBLgHBEY2NMZOQHMfZ5zcNZQ8nFUJ8REiPRID7DMSAAhzoDIeHRzZkULiEAIESgyAxIzGSIhkYgn1TcdIgnQJ6ECMj0sMi1CkousSYGhCZEJBpbxCHIRMjwiPdT7BgBhTlApWA3mjKCbLU0yJBwBgZkJWXVE+pzllSIztGv+IAlMcQMgE2A69DFMnRMJwRL+1r/y39iPMfO0s4s1Rz9uluE6dhvHH77/J/txrVUSaYwj5vgm4dA7QUxKYYajCE5oxnxoBwjXbfsCkE5523c3d485is4HbB8jgDGSKHP+jg+c4nxHRcI0NU+23iP3BIGP8QuWUh7yLPgJCWIeAWrOkzQwByb06Ja5PshGj2kPgqfzQ8iGMHM9lAkoOdM6M+44h2iEGDJLiEkw7e08X2WY8x54jNxm4wsoH91bIiIimH1NBiJIfACxiCjnIHeGyObbaloOMnMyzWhOh+ExcnoQ6mc5GAQBdFhtAgBuajZKEWQqXEgkwyIsIYAoALZtl1LW06lM4j1RaTWURBjS3dJU922gqBSO+xWISFbihpiny6fl9LJdf0/hwILl5MmuA08XQHJ3Cxjqt+vr88dv2/qkQ21s4Y4IRbjvx+1+QwyobfThASYJzOR9uSwJJSLVwMHEAxGZKLrnsLROGVL52O6QbuZcGJHPl6dKoUwKCMDSlkTMQJ2V7LGHK7FgKfv1lYq0IiItkZh27RuWdUC9XvcqnZmnVbh3FeIBAsjuwZAlZySeI+FuI4nHsbXItiyuejktrS1f3m8auHVv7FI93U5PZ5KV9k6FTHs7r2i57TdAYBJULaclg4bC/b4Lk0GspwpHIASYQcDz6XSYX+/329GZqnrWsqbt58sSQ5eC6VU9SyNgKVRHqSJsDqenk7uWGIo0btdaSEgQQA2GWqoXph08j6zVT+ez+0Bis8EAC9fAsd82KXXSPtOVhDrUCDiv2F31fi3tLJez3r+aRRZ2ILO9MFVhAghLwxEA5XTmegr32cAm5vBMCCZIwLGPMIsIYD6tS6sN029XC3cqgqGmmp4K5PtehQUTgCFz3za3kaaFSGpbaoNaCWZok0RQHewxSSYdJoxSGy1V+36/3euSiDi1CafTCcLGsIRkKRkBBOhYhAQ53ErhzJTKvR+uFsyZwEQAPFSpLEyeofPOHUnbiMtaNMu8eSCRue97l1qRuY+B4UlkATOUyQQgzFw8kpFtKMX9LIDrUmrdt0O34/Xrl9PTyzfffifEpseuhlwRQd0k45sPH06nBXjrqmlKrQ2Nti5/9Ou/4pEj+m/+8OfEeX6RsIQgG4EFPfLYtF6kFDkt6/m0bvft+r6HQb+bG+wxluUUcATa+UN9/lzK8sCgpEItDXho14DIUSx4/cB9d7rONDIUhqe1vVxOTRJ8pBBDIMP60qpcXj6+/LW/8a98+PQdQmA6Es+MJdWC6X3rqura12XlR9QSRShDmXk91aenZ6YSSYm3gOx77+N29GNZVxbiQp7ddUt0aSytjO5vv/vSGtdawaGcz3JaV6jJedwP676ez2Hu6kiltKrv+URtPT1VxVYaE7Qqy7k4nsQFnb5erwkYwK56fb+aeoSp9v0YUmS51LosrhGHvrw83a9bhiWCdwWI2QosUllY1TMGsUCKe68NpBA4lSalVWIEcq5QioQS1elBoUCoEMA0hr6+ffmrf/THZT1JWyId/RoQFh5LpEUfxilkeS6LCA0dZ2mecex6G8HEyYKIiciVG9DjE4l4ltqLlFqKOxxjWCRkCJEhqCkiIGNgllK4CC+oYf0IcGlUpYXtI5KJIjFjTHsUE7YISO3uzkIpCS19ZCqlAxIJ0WRMoGByDu9HwHADwlqlUbsdh4Z/eHrCBYb7/egoUmsrVNKgctv2LaNgxu24b2PvXdfLSXdzsBrCxFQYmAEcs0CAH77tVySiwnVpqXq+XE6n09CusTNXwkxEc0WwUGIqhICohGA6MGGp6zefPz+fz6XU8/ncqghT+v2H3//u49PZsaxPH/97/87/9D/8v/zv/vC730pd6rIutV3WJVGAcl1tOZVWhZCQKROGJXggJBEFIRKAq5naEWqQBFRJPtRwYakkwYaFmaBEgCECMSB7Dbe+dTuAkiTpcRP2UFPnE6klIba1ZQQhZeG6tNj7bMLWpcz6nPUxzIgu7dTUImAKfg8HV3fChRiP/R45uu3rel5k9fevvr/Xp4/3+1X79vOf/+z5w+d+v0LfPGw3E6ZDFiYO3GCM++19Wes3v/iT55eX3//uD47i1J4uT369vv7w+zPS+em5np8g8n6/T5F7uE3xyna7mik3IsyJ/Y0Rgq3wioQaOzrNLXohiUQGQElQjOQCGK4ROIE5iDiB3ixyfj67QV0ql0jm6ueEdFM35QLMLCxSODMTBUDc3MzU1c0BFRCRqdWVhUhKAtpQS09zCphtGhRErJDobr0fQy3D1Ya6MSS6igiEpWmGDtO9G7GUUiJBCDOz74dnuueUvKr5cXTPhER197nky4dpGIgyHYFEmJAEMRLUh/s8XMC6LOfTSsS11ipcRNa1uufX17f73dx834/r+3th8PDb7X69Xdf1pL1/eX1rpTyd18i8b9u298yoFXSPYb6U/vx8RhJkfn2/vb69mqpHlCKX05kRmdndPrw8AcA4egDNfllm7tvRlrW15R/83f/7r/7qv/zNz35lp/pf/t3/d2y/exBSIQrzcFQbgMjMdVliHIjMIpI5B6ZFhDGrMCK62SqZAI4JHoBeRDyhiCCT7ttxuw61AII0BMAMT0h3ZqyViUu6Tg5nZkw7EkT+ZMjmxwEJUVgcAmhJgGVZlvVMUnRoMpOQqTLiUsueIIiRke4JwFITkqIngJSCAMx8qM+HKMxY1hOy9etVVTNBpBDhow6AiDItKFQbjaHuDpGRNk8pEfM8hIQ/FY6QgHl+gYxgnNGJLCzASFyG2gh35cwgmtgsJWJAqKUQQe9j/uBqNsYwHVIEiSMc57/hB7t237ar+tBh7moR1s/tQfGYX9wzHkUSANWBmOoWCFxqpCcQI6oHArGwuWaCR+B0wwuGRngy0IQNWwQQVqkImACjG0QiOs+aSKSlApfEQAJG2PtA9lKlnZfjuiMiQm7bm+ogFoAMd0J0UxUsZel5249xv9+IcDmdw2xdl7VVL0VV+1ASAnp4vIXYw4nIbeqKYHQlZC5CDMzkHgDAzI+WCyEkhjsSQWJ4AGIpMq8Lt1mWZymcTpMYmwHzoqBEEeKJ9E3nmXpFnDYOBPLwdDuO7byepEjJYnkwkTm4WR+HmSETACbkse8iAphSBBAmjhcA3aM8mraAOM0cICyQgUBH31S7MCGgCBZcEuJc1tZOL0/Pp7KubV2W5uY/+/xi5pG0rg2JMqA1oVM1czc7VE2NiZZa4JEEU1WdvUjzRIChXZgIy0QXE2MtzWhMKxlOEvqka0/YTqZFWHSY0nQkAPB0c5uQQQZmLFRITS2UJoUmEALLUkRKhM/wLCAh8IPNm4wIERQOgIww4x4RHm7pDiBYRWatHBKGqrtGOCIxF0AAMgg0z4QgLBhsHpqGRAnmagB59LtHRwCaJTYUTIjMebebvvLZqYIMzpIETEQi4QMJXc20r6UI8VD4a3/jXz6GjmHD3D3DA5DSNcN9dNXx9uX76/v3JABohCgC5omQgLiPd85Id3dnqYSQGUTi7hEOicexZSgAqvljIIL4mAMKz9kK4BxgTsoVACHgnDHSQ9UOThDuNEH+M+rCRJOJnvO2mT/NRuYbgGg2Kv9FTCdiZrcBETIxcPL6ARMRfUQIEM4e28wCAFd6TKBs3ljxp6YsMjH+NFidaVuY7UucEzwIwIjMmC53eNg3I8JjyoEyICDTAQk07adw0TzpgAdkZsxtBAZkItD0hP30SY6JmXN+BCQeAWhjdMJUHURQ1iUTWcrj88sdkdp6SrcB6W7b7basKxSpVTBQaoVpDImhw8I90SIRCMOGHYevl1KXGBsTLmUJH6WdyuWTqu2H+N4daNK9399vGQvS11aWZV1hKde3dzV17Uj9+v5eGEdXgiyltrYUFmnNIdPy1LitJ546cKTeh153h+TlsnvEvjExS0HiRFkuTwRh/UgMBkIpbtGPgRmE5JlESUnjGICRQJS4ni/d3d2ioJ5WoOIQt6GrO3MWcUJMO6i2c2mWWM5PCQg+bve7WYhgBGwjwgLhEEFIZqHLhxdD7Ntm5uT4fttD9TOsa1vb0t7ut1PFiKVV4F1dN0pgplTl0rjItluEidbzUykF+2G7jsqyFJFlBZR9VykgbR2eQAIUZSmAdSnHfRwMlv0ORQtAq0IMDTJLFYAaJQD369ulRRNxKQ5AmGqxni/hI2MaJJ7UdDbYm6BjwYu8XzfY+1piEL5/30kKIZ9aXRGynJfLR1f9cX8DMMFAyvCD18unT98S19IWHseX3//+/vYjlypoEIyQtWCydLXr7U5IoSYEZT1FQCtcBQCl1eJRwl3d9h7rUghxZoHn9hISVNXMnk6Xy7qenp5fr7fTugBgpjM6ZiIJQARjaqirUJ3ZPOTy9Pw8rYoYkUjHcZQiFlFLAUTPFCAiasIOmcuSAMQFfdRa5+erCE9ftWqKUKQnMiAOcyBZW13Oz9nH6IMJ1d3dpZYMP3QEcCmChDo8CZhgYsvNEykzYgSVcdixt/PHSuVyPqf5dqyX8/l8WhHx1Bhs3w6DyQAkjIgjcP4W/og2A0BpVf7o578AcAL/iy+/RSR1297U0AWn6AzB6fly/ua7FxEOH7cNx93DASGZ2F334ygrAIU0ck+/K1OUSlZu6MwCOZBY7m+dW+GTwCs4uFlW5I/ffPP8zbdl/0LmCKlGzooYdcE//vVff/7wcQo4MR35JwekG7gx+fnpyXaCSCCOBEYcvWcEoiOg9777kZGA9Pvvvx7bAchlrS0xA8DAwsNSux/biIT3L+/jvrXPl1NbIREYZBEB0W5+SwBqrREwQnItSPD8/HIJLKdLXU+ntibkIvVUF1U3UA97frlwGOx3Jlza+uX2AyBCUilSL0tZGwD5MQpiDBOEw22kY0lCSSeEZERC7D4yYxqFcQJploJCswAE6FKJayKzCIejdZ1jwwBWHa6BAJeXj4kEmYS4ljOe4ri+6+ux+9QKZX97F+ZSZVnXp8tJULDR+767eZNyXhdAMKfAIo0oQ8KnA9hxOOzujkRDrQ+z8CL8aI5ESqnlA2Ah7z66ag+1vbYPzGtoGitQhCOoZJBIrbj4yJ13rgGCQEEEWHDsmYCCUBAzgJ/L5dMqhGHZPmBQMhDk8ry8pEMf1tUjjoRM4kbcipRSwq1rHPf9+v6VwHt2xSxtkbXcvuxyZoIiyFwYMxnL0TVL+Ptwi/V84dIu3z7Jz6qUSiS979f9a9ctIsAZIggzNEGQEtGBkRZeTs9yOj89Xy7C3Go7r6fTqQhR9/G7f/SffPerP1lOUFk+fP7u3/mf/c//w3//f//1y+8aI2X4GNJQhGsRrpWpeKab5ySwJmjfkIXaKsxgxXSYxd57N5vJBNyG847PrZogCQEDZiGkSEKW0qwUa47bsPTod3VEkeSohRC97weY05mhMiGqOxGV0toZ7XA6t7EPtZEYGKBqrHh+fjHfwIEY3bNwXZbzUk+lFGQeYxux3YAk2ofTuZsNj+fnp9P5cn/9ur2/hg2eOnm3MYxKK1LTNO14en5az5cIIAB3//LjK+LHul6Wdj3uN8h8/ubnCVj4+zH2bduPMVCamm77bbvb5dTapURP2rGd29IWkSUzAgwCPD3CiKiuq6lCaDpwYGiM6OYUSYyt1HV72/Xo61nWy4LACJnQgQpSEjMsFVNrqVXqvAogIhEjH3vMtJwLQGRC4DBNCEJGQkAYagWRWdxMpBREpEeHhUtFRMxq3m3bwpUnxEI17CBMKUspjQi0jz08zCY+xszNc5jP1obnxGeg//RAysT4E/Ni4kncHBidYIzxCAnWui7t5fn55XIRYS7MD+AkD9UxDsIkZk/f9v3pcjq0I2MpNdzv25Hh6thVL6fTUkoTervtiDjcM5ykRkIROXp/v94m2XKSX6WUBDr6IVKklPPliaWEhRCPBHcPoARiLn7cfvv3/uPf/8PlP1fVvk+YLhJVJncNB8iQ0moThBxqggbhmeGji8jzy8u6rqf1pB4e4AmCwERZZPRBLDo8EzEQENXUtBOkMCXSI8vvmoEwurshUAROZzyRoJTQMcs4AJAA7jM4kEREJMuy1FqJKcL7oc5EtRLRGH024RFRuIRPFRdxqW1dtvvOzEUkMonSPcu0/BAhTa07T6kWEUHMSuo8BgWY46MRhuYOyPOZYPq+kBAJEyATEoGFIZMZpkZoCssmLrMWycjIAEiEQGASyfBwk1KQCZAy9v3YAB/HvNoa82SsMyJ62P3e7/v9OHo/9vB8UFURhFCF2lKQRceADKkNiNNjP47ENNO9d48MM3dXVR26j45ELJMomkhoquaOiAnu6iXyGBaISICKIVlbmUfFzEnkBsqc4xVTRcJGQgCEMPq4J9SlYUF0MPNI//KH33789pfwwHwrILpbbWeAH0y7EBNPG5r3oUur57Xlugx3NSfiPoZDIqKImJqZldPJ1MGTF2FhYphyd2aaDTIRJuYJpQbACCBiQvR58eZDN4eItRTnyAgARAQdllOtDSlVZqMEKKc4LCMD/dE5Sj/GsW9bq+t8YCR8sP50KFAgJOIUxaq5yQPCPMMZUEu1jBmQB4B5VkfMWmpgmA+3AEiW8vHp5byePz5/brWZ6bmtbakQ2CpXJiCZzZfIdM+MNPNhipmEtLYmLO/37b4dAHARIcwMVzPIWltzNzNX7UzNfBDBqbWlLbW2rjjGcfSDGYGglIWQM0NjksnN3QGTmZg4MxMe7WAm/qnbkwAsiAmT/ZtDexxeapnYXSLpfahpZgZnERGWYx+mDoigToLJDxZWK8scf/wkspp5IZruq1mHmnHRgCjM7hFoQLPGlQRALQkh8oiwBMjAcB9pmXhanjxju9+GjlIXN/M0QrAYzAhYx9hraYRUa0lwi/Ckdjo9v3z8w5f3YZozNDTjQ+ERoXr0++vvfvf3CZEF1A6IRCIipGRijLSIwZj40wSQkPOxQsRwu75+n4k/7R2AhWb8LBMQKWKO34AIGTARPAM8/9KlIECBkTHzOcwkUydJBESTw5aIFJNjzo/pSRGCOUcijvCMSeRDACBGQcqMGfKBmLeD8J/oQrPbFZEIM7uJRAnERJSTKh+YnkKcOE9ac+yJU7gQM0D0wHnTY+TukZ5B0z40LfdzDJURQEzpgT/9jI+YEQJAeiQ80ltzihU40ZmIkEGAnuyeASmug6QBOUKkHiLELGOouwmRMD7I6ABtPQOijT7vAYhok3/vFtxGVz86hBPiUDu2++nTix7bPcKjv7x8XNYFwqk1O8JNc9+wrBDK2U3TgPf7FtEzrQ/97rtfMtXb9ThGJ2IDHsfdIojxtJ6XZZ3vJi6FGEYf7SQjgDIY0UOHReh93/tuEohH19ouk0oYHlJFKI/ukMAkdW0eaObqweBFCMYBEEc/9l0LJRFzqfu+BwBmrq1UM1pP173v2+7ktRZPbmSElK60nGog0bzksnLqMUTYsx3bCEchPNQap1uG69P5RGGaAODWfdMOaZ8g1ucP51O73dO3rVVuRTYlH+NyOXlmEpva0iQc9j5Op7UI4NIOcM9IwrVwntvYQXX0/Tg/nTWiAAQiMQW39y9flkKXuuy3nTDXWjxBxN0yjj1dq9Re6u3QykriiJwAa6voBycHhB+3drlwlcg1W8s0dvfhwuQI3WH/+vZ936SIBp+fvz19+LgPBa7rE9y+nLf3H46+a/L56aktq+sY6unjvK4ffvb5dN1+/PIHXMpyuljihG1Bmpt7OkKCR4OyXBZz6F3NPBIhLYhU83xaIn3Og1lQkg61fd8zTEgul/PzN9+dnj50/bMiAphmedsGYEoV0i2TXBUzkCDcEzIyuQiaRaQIZ4T24W4PqqupIGGGMHGpFrAIJoJZCCIx730g8tSUFCK1AFOhpLYeva+nk0WwnB0w3JhpxlhQ1iI8ukbow5IIvDY6xvDISoyIwmhmmHmo7x4xYjmTEKxtQcTS6ul0en5+crO0Y981YK5WGAGGD+vFI4WQiaf0cea8np+f/2r5oyb0sqz3Yf/8+99QOy4rW8+xp/f4/PPz52+fwfmH312/vu3IxGxzyDd2CzcSIgniDKexa4Stp9OyVIgUoUyikmYaqNtWSgkVjWIE9PHzh6cPH8vlI8cQMowEjBq+tPVXv/6Tl5dPTDlvakQy+YLpTrNUXBtkVsh923xKWTETiAlP5ZTO25FEst/37X7d937suj5JWI5+zNAvRvGety+33rcktOFIVEsr5QSA2/HGQks9l7JsoigEWNbSCnHPzdVPci6AYL6uq5QKCacluvYDA6BGbAjsqd2DiLejm5PbIAZsXJeKCdevbxyZrbnfVfU4+r3vdSmtEQM/xAGZ59MiA4lIzROJWZIACQIj0ZOZCyFMbacnUFJGmoiEex8bQmEUYspIJEZgpgINIfH6/V9c3+4JdK7143cfhcgTDNEwLcb1frtfj7D8cD4vtTxfzoXJPIZlAjAhAqhHKT3d77ZNNq2UNPVIKKVkxG3bMIC85Igw9FukjnquIZ4UWh6ADDgQncYbMiVXzIB6ISdESbdk5iIFa7rCpGYg5odvnj/98gnQf/ztO/DUMlB5rq20Cs09iFBH70eXWgCpllqEHaAWroVu+33k4HURqVIrIklZLpdzLUwlqAIOZOKSYGpcuWF9Pn+otQZgLYIsYcHEnkPHZsNDPSxjfmi2CBfOUgnLWqUsp/OlMkK4sJzW5ZsPFwi/HqT3H+/bcV+XWkWSl9Pzv/E/+Hf/b//e/1rHYQBuWlpDkUi37d7OLywlkmaqCMM4QxgDAJeC0MKGqS2tWnh3t0owNFRV+xEuw0VK/pR3EEILzHEULkqeAetyCpZxHDG8rIUyQZ2hMEoUz/BJ715PT41gf9uu729UkRCLFJEqRZAIM0/nD6G9cCl+Pj89X84fhctsiwyT3W9bfz+u+vp1ef747dPzy6dvvvvw8nx9/brf3iK8FCpEYCMAzJ2JeFmdmyUbLrEf2+2uQ9H9/Xovo92PwDHG0e/DLfKHH3/Y9j48yno+P3349O13rVQLG3eXUmqTAhW9cAWWDGOSElM4QoRQWSph94HAw1RzamkBAIDrYgb72y7pBtgK1dOSqdYVyN3UbQjhbsht5SIJiT+5lykxgWrhlOx9mHt4ciEPZ3UnZmHKSPdQIIBSqprqddTWxuj92EopbTmxlFpPEJlume5mfahZCiHXaar0Y4zRFZmFKQBHoEY4UEQk8Fxoezqy0Nxsu+fjOnQmDiQ3I8hS5Onpggltaeuy1FqFSXhm1SkRTT0yv75fPaC2hZLMbB/2h683oYiw222bO0vmsp7OkNCKfHg6HedF+PUPX98SkpmW1pbWeh+3683UErKwfPPNJzNzD3cz9VYbJLk5ADCLIzpkeAjjsizpgwgLSuqBbo99CdLSBDButwFhidSWdV3XVsVMMTPCZ7/p5cOn5XwubZEiUtEC0uzoR2sFE6TUTKxVVAdAog56iKu1MgAiETIWcwfAroa3N0QCRIhgESKGyETyGbWa6Nd+PBDxba21tbYIwSTFMqGqZvhSOJHVbK7EKyEQcyUAYGJmCXcG5FKGDiGe9QGukh7EtCxLzjYQImREhlog2rRQTrvTJMsQShLPtTGMDA6cBmqiWenBpIg0i1rJLOz/T9Tf/MqWpel92Pu11tp7R8T5uPdmZmVVdTWbH2pR3S1KFA0BpAEbMMSBAMMe2B7IMw08M+CJAY/8F3juP8CAB4YhwAZsWrBBixAowKZFUSS7yW4Wu7qrq7uqMivvuedE7I+11vvhwYpbBBIXyMxz40Sc2GfHep/3eX6PaoR3A0kZAErmqoAApjCoTYQDjGratWu/Xm+1tpxzkgTIcS/QcjVrre7bWpt2U+u9t+oB5j449Ms0AaRxlSKRm5mP5Be03iHiaLWrDXJsuJu6mo0C5iQszEhkru4e91TKkLgsESsMHw0zi7A0q6NIfmglHo6Bbu4e4BHJMyEzQod93fbtmE9TQhkgrH/9L/7rv/X+yyEKjFW9u6OkICbm42gMXBIeh+5HA3d+5pTzJJKYujAhbrVGBAK5eTgw077tKIkI1bogISAnCg9EJCACQgBijnBtDgApybEfwxsLAWMPauajfTsQ7/avLAggIq1VSYwIQIEEbj5OCAEeZsgUYRikw1iqjZERxqVOOSfH3pq6eYAT3bXj1hQI3DszI2KAd+3uBhDE9GsaCbgTU8p5ycuXz1+dl8vl/JhzHt1fRESj/pogEJiFhN081HxUoQ9nYtWIyCmdToskybJZDNIK1t4hQtuB7pFzzyklzokREBkD/Kj73nbtrVuDYfsgq30f9VZECAhqPhrEAsMj1BuQA0BOiVCOvRnaaP8ctpREycCJDTmEMKVEJKY2GrLyXErJCFi1revbSJUBQsIEiIhUcpmneQzaqt3DkQDRiZCAxu/LyOATsrsxi0cnuneG3y8MJoAANBIauoNacw+hBBRoFtiRLaIDKWPcE2gQ7h0BVDsIlpJjGKEIfvD1D9VD7+E3DwAduyU37Uev+y9//keEioxuQUPrCBdERAKPCKh6DOSKuzOJmY7g53DH1P06KNTD1mLgTKPQCmEAcvhuoekRFJ/70QfmmBAwwu7KToTRKIVHHH+RIiEPANuQbsazA+Q7F2vkBu55BAT/bDgCGgVsEHRPUSETfA5y6Sj6CkIKQhh9CugUEW7D7RZqFdBxFIPBCG+O5BbiPZoFEaNlAT83vCMOfhDd3Uoe4QgAFgjgQUIA4GAD//X5+dyhCMMZpxqId7VoqGKEHg7Sj42SA0zmfbCKWm0xmCamwiWXAqMpUrswU5kIofdWj4OZRldo3VfojcFLSgaq3RJj3zbTfhz72+un9dPH5XyZzw+IXMoDEB21zt6Kr0kcWLy5e1O1dT084tPrx8fHdw7AZXn8Yjqu167VI45jz2Uyt262H01SAhKS3I629wMDzksWwqa2HzWsc0opzevt6qrp4cIADn3bGzh1s4dFIKjkmThttaGISN7Xm45SEFUDd8fEtG1HAOR5cd2aRkp8LqK1vm67ZwkMczgCWCQBMHCgY93nXFTrlBAyYil+fZslqrMCagtIlhjqvpFMZZp8b90HGtR71de3reR8LrLvsNZKafZ2oGqeJswli2zdHSnMIOK0lJxnEDw+XbV7KhKAFFqSbNt2WaaPL7d9XWVaEBxZtqpLJppLM+RcwFu97fN5iYC9dRZrgLWBRpXEwQgoxNRqBetOZMwTe04pXK+vH6dpenh693o9thZPp+xIXtu67g+Pp/O798UW3fcT08vLd5IT5DN5t229JPjUUFLkOaflnWqrvXYzLkQlzvP51vdcChEwWeBk6qOoVZiBGCO0HvU4pinNOWmzT7dryhPnYl3X9RAZyCpiTsBk2q0dum/o8fB4enj/RZkm0xYYiKjuAMSpNFMO6K2DBwIVplTmYNmPOu4HjlxyGoHRkDu9z1VzSgGhagixHs16nzhq74DMOe+1WtBS5JxJCNq+NeBzyTmVQOSw3psDBmFfV/AQjLq91eOAGU+TMGDK2R1VewI4enP3kKRqWQiQmKj1IKau5NMZmVNKyzK32kourVuvNTHuvaeUgNPiVrut6/Hx1b788iJFBAUC1d01XrejubhTSdMPvvzeb3751ce9/vDLH/yTf/Vfb7pTgatf58v0/OF8VHv59tOhu0yUGaapbNeuzSK5uSNGmkAtdPXQAHLz3nWfZBEsPRomyIkBnNhIGJNLRiB8+fSdZHl9fXla0gl44dAAoPmLpx88P345F0ZrwASYht3Z2u6tAjhhpCQBTKlMZ9F2IEsqhdNy2goRX98qYv3yqx8dN5Uky8MJZNSv+r7XHElwFKaomY5QeFkkomgPcGit1b2nNFGSAC9ZqnvYQFz6+rI+fni/nB9yj229qSqYc87BXDg9nx9uWzPOKYm2ph4pTYvMGqSNPXp3A0h1b6ABRB5RD21HIyJ0brtz2Ievv0Qg1b5vqwiJSOtH61aEwqPWLsqSpUycFyYCA0AD8IBQ3J06HsdRm1FIzucYFlSWJAXATVWcovr147UebZ6nd89PHx5O7ta6dVUpk5pH4/WtHrX+xXZ88/Hj0+X8cF5OyzJNCzFbgKmu29a6mql7MFF1TSmdz6fr9WYxummxNztelIiTpJzEGYC4eidyEEiUIjwacE5cCpirhptTYs6JMsOqYYiLp4X8zQaPLxHMl5mFXfuylCkXA/BQTgwAiWSZ5XQ6IcCf/8XPt6PmUmTcUsKXKXddbvscKOfLO8JgmKH7+WGa54VZubQI9wOxsPXdEZaHyyQPl+miva3rToCF5G5FdmNi9tiPwyJabdNJJhEO5mlxxOhAkqaUpsIlpdOyfP3Vl1+8f1zfPgZ4d9KutfdWU1oSA84PX/yH/73/+B/9g/8rABJDRDBEAJq2dnsRSmrWj722DoAkwjlLEBOZmgGGByKIEQiwEBRUoOimmVjBkQJp7JohACMEqXdlQu4eiUS4R5ABB6MAZenXBkfLc+5NmRBIBEtjdfaAWE6zWgIcVMUQGcf+mOezYGKQOT/M0zyICIAYGAa9Q+u+vb2t+9FOy3lezu+e3/Vtk/kEiOEaveZcwsGBAxKVB0nTbdvXddXeXtaaEhcmd7UOLJLlchzbUfeuenk4dzOsnUguj0/zvKB2yZxyKjIt51O6FOrMWcppDuCuVvXY4G09PoVjtBGWIEkJA8E8gVQ3pDmn+fX1BVVTzlM5SRQ0AmRTC+oyh7uj4rLMSBwA6o3MCXkwIpCFCMMtZ4GOqt5qC/eciX2ke8LNFRBAESkLG6JrEyZn7seGEeV0gR6IgYgQpO7qcDTt2q97Y2JhGvVnhchjRN0B6U5H/vVqOyLcNSVx8646VJXwCAaIeDifSym1NWE5n+bz6ZRylpQABgACm1rrbV3Xo+mx78SJg0w95yIkgHC0QzDmeVJ1h7icz4TECKdlHn4o1S5ITk7EuUyS8lEbp8TuTMRMiDgCSua+b1vJcjotLDSWsBAWpinx+XwSJjDjsADovdfemZgRpAi4WwweJqSSkUCtJ0cC6KokuUgpKc3zfFomIxle/KlkhTCl3jsnImJhUTN373Wv+5oxYKB3ImgwcQmplDEjufYADHMPn+YF6M5ZGZ3PMTy4EBGec87LgpJFBNxzTuEWiEkkILopMo1hHhE9ICVpqtq7dj2fZpHUe4/eMSLnHLUiOHEGwsxExG5NCJvF+XxGZqKEkkb+yxXMjCKS5GAe0AgwYyIZsykSiwgNU0l3C9U+6siHnUiYWuvDxebmKecYQ9nntpp2HIF1P6p5nM+nZTmJJHPQ3iNstF8dx3HUHuNeBGFu6149IieZ81SmXOYFmN2D0JHYzMLUzRipmw6GEUC4eQQABhHlnJl51PG46nEcNpZGMDwr6ObI4BaCaN2IGAB7szFRjfBamCMhC0sAEdfatLoAWdPezLy7xjKXALCm//wf/8Pf+ff/TplOMbIFEL3ptJyv1xuYOYB1RSJ1N7PbuuVSZncRGchkEeHezVxVw32UtYXfkScYoN1GmNTNEUjS3cwgRKoxTBO1D+XrblQYYTE1VbWh2HpYOKQsECBJem+DxBLhiB7jPRht0kAIBghEYTHsHpZTrkd1cE5cINfeBxuKmXNOFl73OuwLxCSJhn0GAhEoMEaHERMK0vuHD7mkucxM5fHhKaU89IJfk1hgXPIQQGQBbqb3O0GMYsFwF5EhMwFSymVasLfqfsftEFESNvfW2r5hSpJLYRIPb72lLPcibQLBnNMEGMNHYW7dmpsHBNFdyAU0QHf3xCmlDE6IFSmQh3EEEEhDAyCXjIHm4EcjspxyzokYJAmAd2tuupzmCHe3lAogqCnAeKaI9+CQBtiQ2wICgT67AAFh1E2FhyLGSEwBDMTvaDOjYWUlAhuKBkCA1XpzcKCBLG4wGNWDpAM0QKOq6qERh6qqBiH+5l/6a9t+qLnZYC9j3P1VXXtbry/79itEsn63zw1TiwXQkK6MWl2Z7pVnbjaMN+MaZeLjeB0+PIcAoFBr6ISjCt2YKQJIcKSlIwYtPmLkmggDA5kRkJnuNkQAIUYiiCAid/vszXH3MPXB5AkARPfhwhyZP4wICDcdIK+4S9/wORMGEYg4glmjDB49iBAIPIZI6Hd51keRSJCPiBneC9oRkdBtZAU/m3wGn+szchoI8Q5du78tQ9YPhDAbxiekMB92PHIMcCAeJqNhsgOkwRH3UZqIiGKmFgcSExOn4trVTXjQM9y1A5FbpJLNwsyYGZEkwbB69t7qUQHiskyG1kY1zQBioJG55NK67tsNiaicyzQ5zyyJaG59l2TUa9LwqBPUCg5Edd/fIgg5AJbTQsgipR7r26ePocf69pITuaemfDSdWFKS7dMrkk0lmXYSHoI/gp8vJ/W+btu6bz94+FFE0HqrFZuZ9rrvMZ9Pkic31Xqkkj0IkXPODUBr5EQGeNQGpjknDLucpr0ZoIe1WZgApmXJklU7mIEwOHy63sKUAHT28ONxyThNTjznRKaE8rY1ZLaOz4UhPLwLJ0nRWlO1MtFg97+83k7n+SLwFvHxl9+WwqOimYhTmQXNa3NMRHh+eDifl8yx3bZ9358mDvfeHNlKzrW2XOR2O753udTqejQgObbb9z6cr3vrx8EgXMjVyjL3rrUOhpQiEAKRpEDglE5ZjnUHUws0SRTRQwx8a5Z7nM6X15f+6doo+pJZGf/kX//0iy+fUym8PMtUiPFtvU1AXOZDATM/vjsrZikzZoaeWfuy5IUBbq9HVasVtaXwaLMTp5xDm5piALi7meRcTV9ePl0eH0kSS9rXW6YHRDifyriCmdncFeLYN20tkJbT/O7pfJoozVM17F0BGSNMDYgLpZH6vDvxpzNPS2sjyD3wddnMB3d5nGZGz19EmBkThkerNQkdXYXYIfbazCElnqdC0RmjS9n32j+9Si4p53PJx769XdfLwyWRlAS315e39Witw/6Nz6fl6VlYam0O0VRNbbAPqpspE3PXDuoIQUmSJAwgouNot9sqIkgjuk7zXFSjqbl2ME9Jbrfrefn0/HCuThDAZABwntPeAcK64ul0ScJdf/X8wx+F+j/+w3/eej0tfrrM5vH2+ua8L0XSBBhhG58vUGu4UXRx8F5Nu88nJiag0B6tdxE/oo1tMYABWu9boKWJVFHRQfyb1z/75lf05dOX7x+e3i1TQ8TlNE1PRAxIUhamsUo19x69BaIF67GLOnFKRcLCUKZpkTK34NaceWHPwN6r7fsa4g4qE4ahVUdPoEyF1XpbKwE+PT8t04TI+34DiGU+Iawfv+vTZF06I/XWOtR9V4mCgE+X9+f5scznlAElew+HyIiUS8mcJHGAZZ7Oj4OD6ihdWz2EIkeIrev2cqvHEeacUiADUColAuaF9n1PTAxwulwCIKV0u74FACKVJELkZoKMGDkHs2uL6Nh7F8yUUCG0a68+p9lav67XnCogltNF6zGAbkhY9/3lm++OW0WEU5neXR4up6JmXHt2Zy57N+FjKbNwuq3bse/f+dt+1NN8XC7N3M09p9S69q4lycM5AUDKmUQYcdv2raq7I6dZkjXFQixEKXVyYmZOIFaYETjcQAATpdOs/QAAB4aeKEiIYUKrYAcikiRi4iknTsQax2sLAGvoCsAEQIJIFsSYyiTCjPjFh+dvvvuEiG6m4EQwLXPTXuTE2B/O7wD8/bsffvPzP4UCESrkGGJq4qkAM5KqMZfzwxNF9OPY6mu3BQBZyLTXdqQ08SKfPl0trFB5zPMpL0HkABagbtNU3r97PM3TZZ6+/uqrh8vZPDhPSzqadrSKAE29qBPDH//R73/vN/76937wT7frJ0CEsWYwl8Jej2O7dQs3Y2IkGkFOiOi1a28QEcjDzEhIQiJzdokcfuTm6oxoGo7N3AlTIkGZzA8CF2IAELKSRMpETIpaHmfHxJLF83Z74yUREgYyQVmK2wkQxek+1lob7cVuPUKYs0AiwgFlDB8pBrPurugGTHxa5jIVpESSOaVSpm6qYw97ehTt3Kyb7/vB6nEc3/7yL8CdyRchjBCWXAqSTGRPT5ettnVb6x4557121a619n3zXr/3vb8snN89P83zKQAm5jQtl8enkkjVjl5/9fGbdX/8dPt4W9eqbuBj+wwETOWJ8/uHLyZZ+vvv/8kf/1gtUirgaN0cTatqVC4oWXhm97puGzvkTBohQjgWkYgOMRCeIoDEVru6t2bC4+jvSEhM5i7uyFxKjjBTk5S0te12XbdtOV2IUHsHhLrtvR2t1dZ6QJvmOYkQYavaFJhJVYkZEMeJ0O/UAXAHjziOJsJJpKScc04EhWl5fH58fPj+119HwFb3fdt6q4jo7kjS1Wvr67rdbremNs+nLz68r8fx6e0K4UyM6KnMz49n6wcREPEvv/2OiKZSSs4k/Hq9vXz8+On1iixJkiSJ8G3bUi5Pko+6uQ87AqQkqgoR81SIMKy3ejw8i3qYqg2UQcqZmcB6NyJ0GAAlnxLfmRWtuTkSlzKPNiTVkQYC034+X7jMimzaKWGth7uV+RyuhEhSiFnNFFG1hR5at3ZsQUFj1SsZwxgiIgzu5+3edRSNjaV6RvhsA8OwGJMJsVDKUqYAFEQMB0IHIKJR+0XEkjISI7mpsaQw3ffdzEYG4Gg1MzrBbd2WeQptbhoQQp2BR2mpQgLwZZK9ZJLi4YkB0QPuanjc+aEUYymPmAqPjm5VM1NCUdXBUo2wkRbEkN6O3g4DIiqZhRiQQEQ+M0gHbgjqsV+v6+XpmTipmUhiBAM7ttt2tKO2iCCkCAs3ROwWzYIQiVhSyimNbTkQqDlCDPPRQBQFhLAwqbrdBxliJtfaHZyIQkHNereUCBDvpNHE3t1UTb03AEJ4hnrU7Xog3z9iypS7hrAgEosc69GrWvfEgy0SXVV7r6PJyb23/g/+3v/5P/of/ycQ5GFjUf/87sO2HcPp8WvyiEd01do6i9ztAkgeLkRD8RERFtGuCOBurToSImOv6uaj5hmGu19dRLS33hQ80FFYzM38Dh4J+EwtGZcfjh4vCw9JXKbc+5AcBq2Gxm2BKFiQE+kgE5uZKxElyW2/devMCcg9QPgeGzREvTfCBTNLToSsqshDwhh5dplK/t4XX53n02k+LctiFr11c9i3g5ksCeFA/0ZKWYQjgo2HXDCkMURys9o6MzLRQKK4u5kTxHSH0wMIm9n9MgzToVXdJ3FTb6g+VsKJc5Kc0lTr1gcgKnzgdAmQRQDDXO+/s0FEomruJjmJIBKpjQsSZACqhrLuNqDp9wpIcEQe5mV3zDmbqQcBOlNiItWq1s0702h/IsQwd/VAgEBMksYSGkJh8LwHqjjG1wLRXQQiJIgBswgcciAhgDet7gZw56DTuEPBKHaPO+Zo8L/jXjZnbr/5l/6tvXbVYYMj/9xY7qam/btv/tU99eg+RAy8t1ANS04gxlH3oQohgIdRSFhHyUPk6HUnIhEZ6ktEGhAbQiYcYC4IGngbdB//DPAPgg1F1x0QDD5735AYKNwD1DoAADrcqYTmGoHhQDCQ3eFDAHIfAbA7JM3UAfzeJR/DGAlDIR1fOV4jCQECEYBF+Nh+URg4IjMgUMDdUIiMI3frZiNkGkj8WQOiQbkYgT8ICOh6/8QIDyAgBGQYtHEEBGewMBh1KKMfLRBiiKHjGXrckVvIiAiivRGHaU3lQiO5CKiqzEypEKGpeZipmoWkNF4jSxbx3ioRj37SVrs1A0JkZsajtSSFGa0erkbCvbVP332TynJ5ej+VM6eiyODZkTv0RMdJQoQ7pqaKiMe+aT+0riLjIFuttVrXVmsp5Xw6qbbej8QkkUvmICTiQNpVKRXS0Nq242h77dovp8XMtXeMmKe0q5/zOczMvdWqxxUjmIoFZBGUfBwVQk/L6bYdZpZGqA/AJdu+MgNxStJ/+PUHSmVvSoKmncMRoNdu3SLiaF3IEoUHp2QlcXQSiv0I9dCgreHDhELkiOfHB3u7HlszJ04MhFWD9ibgktLHt/XdZfrw7pJFUPdaGUDMIifMJXsfJBT78JTdphaWoh8mBSwTeZnZFYnqupcl905Siu3BGJfz+brVlI0dwCov83kp694aEqVUbyvnLHmxCDc1VyBkEkTZ9+ZFwqHMS+Jw70JZUuIp99r7/vb4NFH68tvv3s4oCpANLsukkEu7YiYpU13z6ZR7EJfJtM8l8VIKmgNs+NC1iRnmXPMiaUHA1vodNx8uxKPmcloWdNv2GojTXALuNP0AAqKAaN2IsK5Hr8d8eixA0zylyxOnBMiUct13knI6n+pxcLh2t94g5QKuqpxLQDQDZAkPJLfRqSOAARAuTEEAPo6XQysOVc1pLrkgWG21d2NOhMIsiRnDS9inun533c+Pjw+n8JKnaXb3pzlVi229dQ+CKDm5O2Cw8N7VIsZnJo1KEgRHAuKI4aw2AGKilAsiqDoJlJxZqBu8rnWZxNTebpuruhmFMXKeptfrGlxQJtfm7pKoCE1s03JutSLQsiztOLeuP/jBD+fTZavbr16/O/rxcfs25c4maUaH8EY8hQTvG7TqYW4OUDHIXRtySMb5gXv13TemlIuwgEJlSEQQ2Jglz5Ay7Vutu/qOf759ux3wcVlyzl98cYpoWnfMZx6H1HEOchu8AwwkEQBKjG627YcBpRMHSj/22+327S9+0a4r5PLt8fOtv3GCMmdSadryKVGXucySCLvyaZqnhVNy8Fb3rvX56f0PfvijfV1P56fajuGjnUo26xjIlIkoZ5H5TGlKhcv5Eh4e4k4AmKSEmeVkzlmI8znAe7f11hOBC5vicjr13mDUPrpBOBMRUwSopZzdzI5jn5bTNJ/wgma2b2uYC1EAiqQkhKLHfuBhHUkDw6IUzOCOXpsdW+clTVN++3Td1+3YV6vHfnuDCGJer2/fffft6+srEUI4AjAEAwFDYmMgSglI9pLPl1N4JOY+l9oaINWu9eVlbBhSziXneZ7OcyGko9ZuxsSqPSdWHXQTKDlbCIjDhMBcOLOzj6R4UBh5NQKHRLlIRCKMlLmvRbTbqunMQdhXTwnPl1PmNHyrx6sGG5/FIxAYPMCChCEIiNz0OFyYSdLl8hDhQWwBBCHMueRlmlet7CZLfnv7+XTKDVocnS8ZQcy7UPLuvWurPlrfatu7K2Z+W6/Ne+E8sNUejiRMWRgfTpdzYeFsEmiGErJM7x4uP/j6e5fzeWIUwv32RimjcDo9cLuNzHtt7TSJEXz/66/+2X/7//utv/4f/Pif/kPVTkimimgAIAzBrg6A4NpYEjAy8+XxCwyv61uvexAHhJspBAgmzIigvW/RfMICqVdd11d1xcRSJCIbicVmthPCnKdE3FvbrAJ1ksQlmrtvjadCQUNuL4g5laWce6sahhTtOBzkvjaSnNMsqZAzIKl2tzC11ttR21GPY9+s2dO7Lz588dX58igpv15vrXV30K7qDu5IzORzoUlKbb2bu8M3v/j5h/dPT8ss3jBlTBNQIjq6oynVZkJ8ePhonAHvx/XQHST96Ld+F8FPUy7T0lrzXpfzY3E9S4GyrK9d3n1v3S/P0+Vtevvl6692X4/1gMBleXg8PT/N56eyTKoH58vv/bu3o/3iF78YOR1IwBxewxt2dkQn9Nraq+pccmaRFJLSmFgJAhH88/ksJY5w7dojpiJqAIDa9V7yGoYaEFaPZu5VtfduVm/XNeU0tojjvQ7glMnMRkTazLoZYhcRJpRARDAzM/MB8gCEcIxg5t/9nd/7+uvvPZ3OGJYo5ixAKfJSiqQIy/O6vn3z81/U1iL8ersd+z6MOafT6d00L8tUkvQ2t65dtzG1EljKJ9d+7CtxYuZ1O3IqR62q9un17ePrFYHcI2fKOfWuHiBAbmoWhKx9Z6LpdE6SAKm1XXu/ruvLy8eHpy/yvDRmCDtfLqdlSdBRaAf2Vs0DkRIDuFprTa11BYBpmk/LomYeESQEQURLLoh4LtKCWq+oNvp1+34N5K4mSOZjMvEw7cdejyNUW3gpSZAQwZEhjBEhDEbBT0p131kYAFOhcItA620YhZBJiIkZSaZ5PvY9Rcs8e4zRh8BZ+wHRU8rzuXjrI0dQ5hMc20DqMpObN2CSHLG9fXqZpgzADBDqPe7iHzFRxL0nxpUxwhwASO5xiPDorSOPjTQQQGKmuw0h3KK1nZDmeWIm184ESOIOFBkDzG0guklkLLtHjZyqjiV/Vx3NSoBoFq1Wc6/HvtemaoPsOjyDGlRr25sGQM5pnssomxtEmVC7M4kQMICYR0VTljTa6HvrKEjMHkBCI4/s7l7bPBdVtW6pJLUOhJzEvAGCquZcxhMOQO/m5iwwTUQkrqDaJQeJpDIhaUQMnrWIEJGaj6k7Av/1H/w3v/27f/MHv/lvMXNEGOAPfuO3PnepQU48/CuDKWJ+dxOP1PpAtSJoyQUAKPF+HGaqrXMSAnJ1MwPH8eDdGxGCBxYMcyYO+DydIjF6wAiAfHYaEMTdEOFuwYK9qwgziyQMAHN1J5EU9+HRAAgi3KP3um63XJJq91BVBYCm1c0ROKdUWzWzcYlGxHDv9d57V0SQRMs0PVwuUyof3n2YyjRPs7tDMDOkmZEozEdZb5izkKnt245EOSVJQkTaDdGZmPkOyh0YNQcnYELQsG3ftPeHxwdhIUIEar2b+fDWBXmzilYDHSCaBWIkTkQC4b0fatXHTweCBrsd0cLgs68DHQDJbcguKEKJMwBYuLnnzCWVrn0kE0WEJRGgezh0YjTobqbWA0bn7+c8IoR7WDgyuLs7CFEM+A0CISGBW0SYmiOOY6O7Aw7HG9H91xUAwzwgUAEIAny0peMIH/k9lkg8pMG4/xnDBOTdAAMJwjEokJCZcjk9Pn/x3esOdCfDDzOYmkH468vPj+P1M+AbwoGAx9I+wJmYhVHErY0FOdxjbwFA9340ANc1ySAmQziFf64jwPEcESKsuyEQuDvYnZx8l28AAwjC3cDwnqAK8/szMjcEis/RzwhAAUKE8bcHIvkOgQYYDVzj9QCOlNcQ9B3iLpcBCI9m+jvWaoDV8bOriXh4smDgroUwAPpImQEHwohVBoZbjG0Qjgp7ooFmHTrYsCYRIWECcEIcZHeMkfIbHxN+r0AjHAAvhBhx1XDHe9oVwII/c9fdtbsapUScElIpBSNMFXiMl9DbQUQQPEg6BNB7FRb1SLmwSJgVIu2VzaCpiBBTr9FqXaYkItZr7733I7EnNJR3btFA8vKAx3b0FlmTBwIlnkhk9A5++u6b8+V8efpAxK0d2nY91nXdXt+u8zKbTSlJSoEpX69vrSkhFqbedX17Q0bTTixff+972+31Zz/7WZL07uFkAWp3gKI3M9smkkkACavCfDohIsvr/HCBAFATBEDs5nY0xMZJpvOJhbVWbTUz5URCBCmZhztSSrX31lvraB7d8TylJx7NfjhlOk15rb63tnpnnxz16Xy+nJbweHtdNXgiccq9+0OWY6tqPi9LM2PCaT4Rw+12bC0MyRWyoGK8fXqdSs4izw+nt9sebkGhQdAryahppbwUPSokZvfT45mJnclhhb5x4tfbQeV2mk54Wo5atTYSbuuG4CwSRFp7zllOMwfWg4AgEI59zefCEL0eQpiIp6dpI1jX1+Vy+Xq6dCDtat63fZ8EP20Hffwk05STlKcv68vHzKGRMM/Qm2J4V8wEDs1p614yttoBRxTZhIFTRgDwcG1pKZIWNXVVBAA8qXYmqN4jgpisKyC23iDsYUk8nfNymuY5wiICtBkwM27XawBo73asbop5wczhSphbbfckpnuYAQAymcYI1ULQcOsBABMhooWHWu1qGKYVwzHgcwlMIoVE5rW+/epXt70iwpwFiBLL2VsAArFjArI0nQjB3S7LpEARTgAkBBE5ZYToZswy/IHMAh6mDQx6OxAFMzcNhghzBNz3jWCGGM2RTsxTmsYSrDAyGJNXSWTdzdZ6iEi7rrX358eH7dDmZIHLcn44nd31bf3il59e+Bu+Xv8okiMn7JIKuFm9OZEs5zh29eoRSCQpJ0CYTgzR+g7HayXsXDDNToLTjIg1Q2aiCKhV109a32p0eNPt48dPaaa/8pf/6kWL5MdpmSRPVg9hcI+xsDPtaonzAkRMhAR137rHNM+UZgP+9rvXn/7sZ3/6pz9hpNv17aDj8nwmIMY0HApMaZ7n02kKAymdMjfFfV+3fdvX7XK+IIupPb/78PThSzVtx6F9f6gPmFLOFwAyVbPerAEiTydmqa221t17SoQpJzJ3PGrtxw4EKRdO7AKP5/l26HXdGSkvs1m0Nj4IbSoJPEgysuxHqvumZq6dCZ05pbS6IZGZujsAuYce2nx36JyTuXHC5BZeILjvva7N2tvptJScBeG8vHv99hetHh5uZuvtdn17dTNmFC6mehzHlBggvJuaY6ADLSVbTbX3x8eH3tu6rnvrBhA+ejS9qk0l58RdLSVuvffWm8W27a3VO6ffg0WY3bz2tSInXASU8pTQEI04M6YANpsAxSeZUFyxO6KkjCTIhpDpJJxgmc9znrIki9h7O3Az2dMkkrmu1muYAGQwt1YDckLkspwBRXvnPKmZWvOjMctUUg3o9Rp4KsuCSHg4Zslz2V+bdzfX/VbXdfcO/ahHevNuuht07Edt+5FzkSRq1lvd314h/P377015YmsiE4CqHULyg6+//xs//MH750d3XYZDI8k4YYXZdiV3eFv3y/n0trV5Kqfn7/P2//z5T34evTISQpAIIBz7hhGZsbaKgApBzJKn0+m8LAt4cJilgkgyzSHJXMMamQG4dn0gglS6uqqmXPbtDSQFkwVxmQVCwEM7uRq7gkphD+1vRuBuoI40pztE0ZGkMHPKwCLuSgQl5dqrWhVJOU/EQsKh0Xuvrfow1qvekRCBj4/vfuu3fvvx3QdhccB1PW5r3be9uQKSSEHtU1tzKr4syM2uN9VWpjIvJynFNvVu7gf4iqEADojX26atHtve1YSgLCfhNCd2gC9/8MNeD7CGiMv5zPRQckngFRwczDwjwHwSgJPk948fNmvbfoRjKflUSu51gsAy5en8bppX8y8+fLXd3m77dvR9ff0Is56mc1Nd9+tbe+Vu236s6wbuy3QqpUzTxCJJhAao0sFjxFUE0Y+jtY45iYaCW+/9pjoYBSPcggitqXYHRDW7fXpFxPG5ABDCkggZMSJU1QCIZfBE1ULNB7cHMYRoGrKUCEt6fnj47b/yV3/4g+8vibZPHx1w/uIHgbjvh0cc+8oBT88fSi7H0YAA9OhmXa03td4jnDkxwX4cZT7d1j3C920DiA9fvGd8r8f6dtuSSFNj5py4tm4By+mUmHtvgSws7t5qH6dq7Q0RGQkCW2v7Ucdpfd321k3NunZore1XSXk5PSSKibwFCUFHNNM0TSWn9dN3qqoWRHx6OJ1OZ1WzCGFhFiCSPD+cJoH+6boxy9GNCBHMXUvKiCGEtdV5XpgF3dzC+sEYZcoWQAiSM6i1YzNEkTQ8PqpKSVJOHsBEBkgsdxB4qyjCklIuMJqtgIh4rxWQJGftJimxcG84sjnX17cxd3mEaR9XxGcXDPW2p5wkZa9HODSt87RMWep2W2uIyPl8TjkDxF57ykiDb6qGfcyU3d079kAc1ddZRESc2K2COzObRoD33iOYxrLtOACAiOdlbrWykDAFjB70e88xEoKHmtWuvVuYtsM3VcHBcrGBFJGUEKjrvm3bbd32pojwdF4u5yXncZwgcxvuOf68dw8cmPJ7CfKY7UbzjkVExHj0hNF6JwYRUVUWOi2na7/23hkhTdnUKHOZyti8EyFJarUBqPZOxK6275Vqz6VAgHUDxFRygrtdwNTdlCSxcHj8l//5f/Y//U//VxHCnNzjq69/4/s/+kt/8Wd/aqFIqfV+d20A1tZGZAcIxYhErA+2pZm7EIQrMQXAeOSwGNwTGLVbEa4uTNo7RIz2+pELQsIYo/AQBYY/wMLdKI8KcCAmYgBAIpEEzNi1E426WXAPIAsQCAI0c7/ubx+mL1R1hO1a21UboiQSSSkielMeaEYiIlS13joBJuHf+PLrx8eHZTkLM5MgYQASiw9bFOOg0E+cE1ttDSKEAAEsoPfu7sQ0/DABYABDtlyvOyGlnNzMCT2ckEbF4VRiECGZqTVF0HlJMKiFCEMMJRx1WGbadACy0ALw37Rs3wvaPSCIEYM+6yXBg1Dkpr0RC+GgX2mDg4VSMFNKkojEHXqrgUBMDt3MIBw/O27GG4AQIyE1EL5DdPhMao+I4HFXUh9U4rt2Az6eKxN62PhloJG/hAFVHsxvJIJBtwEAoAGrRodAh89eG0JwNR1Cjt8digCEv/M7f2s7VB3UwkdxXgSEg3s99tfvflJyjghwQKaISHTXOEZIa8giLMxMQeTuA3uMhAPR6O5dq5ur2fjVHgLT4N/c2Ud6r3j3iAFuvmc5AT18qBaDmI13NxN4RGggAYyuWx/QLLz/zYH4UECKz9Gz+1U1PiTdAwgZUgwtCiFgaHAhiRx+Df/GzwrQEJVCI8wHBRGCIu5qG9F4/EAkFEGAIXKZW9C4UmlUHDM4gAHy+AHArynMQIgxwOMIgRGGdL8gPSLsTjC8E+YCHIM+M4vCwdQlCddWyYxFABZJKZUpIKw3iHAzolGzNvKTUbdVUvIIcGehCB9k5WU5W93NncUYa3iYYW19LnmeikYI83J+mpe5d9tvr6I9z+dUTpLyut1a5JRAIiZBdU/zEiDIYtpYZLlcjr1O/cRC6+3a6n69XhFxms616X69aaupSFUFM7ksx34EhFAKh4d3D/Myv31cvvv2m/yQQvK219oUIBKB9X46nXEADDkxyno0qHvJBdTXT68CqhhEQpJaDwxPKfWqMzsxNHUxHbDszOip3Jr2qhAISFqrOqxICCBAGuYOhVgSTIBIFRGrmQW3rhj2cHmY55dwbxZs3lVfXuqSMNyW06yqb3ufT5HSPM1+bcd2206n0psyy9vbFZ8fekcRJM7dGiO/3rZzxnY0oNAOrkYo2DUAY+2X0zSXWZfl4zfruURO9PJ6HRl5tyBh18jLCZHcOhqoBx17ybI3c1UQeXr39PJyfV3b0xmMlqqubV9iRtfL8nBdr0HMRL26VS05zAnSTNMpkPZe86dvBeAsec7lrXYicjXJxYFS4etGxMkDPbpWZVQRMSOGTowo4Y2O1i85B2CrPdxwSCYOOSeK2JpaxPp2Pfb1fHrAcpovT+ahdSuZzTiQ8jwz8dE2YDTtvVaYLiVNg6SGACg5+jFYS2bGwmBqAZySMBKEekSAmz4+P3/x9W8w809/8uPr9YrohMhIAWPxBd6rEiE5Rnz9vGwTvR639VbmaV4uFyonYpqR122X6eS9ubaSJk/L+EAQYQh3gCCy3mvXRCzEPmQmQpakqnXbJGUM2c0SIRIjUuv1spSUSlfT3tzAEh7dVSvnqakx1O6YhM2iNWvqgcbg4frytoMbsiAQuJ6mDHGBIDv02Pdv1p96aCocRscWUjB16AdBICFbWC6UJyEG9ABPNMKuDO1Qc+eJA7dcWFg0vNU43uBYLUHOM3/89BIFnz4849RJYJ4ujMlaZ4zuboHemrW9dpNpqW+3rjovJyQ+jlsgFLoA0PW6ffur7/7kJz/+9OmtZA4MMZnjnCS/fvyuB6Q8pzShIDA79F0dw/xWa+1b7/teLw+PTLJeX+csZT4lKYxoQmWaUz5RKoho5kfdfXuFwHY0g7rv277eXPvz+6fLMss0T3wctWrbAwK0sqREMedEPIwAuEwJgdZ1q60NMUVE5pIAmRGmhMI0Zfa+mypxLKey3cZ9XrsaoHMWxgQQROBgrlENGPio/dhVmCSRmyLi8/P7y8ND367M7Gbt2Bn94XyqrfXegMDMruvBPPozoqvq0dRsmeeny+nttqkFYQYATu2orTZVB1OLiG3d6r4xCxKPTSCququHz1IipVo1OAJ73Stn6bu5EgidpgIcwejk5gYWREKOkibkyDiVcxzrCuDk8vDwfi6zexztaA7LvGRE3dfuGwoz5cBoTetusRAVAoycS5lmQJynmRA6c1DqakEppeTtYCIEQYQkQkphliJJSSSgezVTN7hdV2EKoLePv0I4Cp/36+1t3dZtjcFMQRsRp7eX6/sPX+YyESDxWLJh4vx0vnz14d3zw4kpplwYwdyFeLAykEDy3LX+wT/6+//e3/67vdU//cN/8pv/9t+cz+9/8dPfd9PEmQCnaeI0I1Kru5kKRqBzLpSmlCdBbMcxlockmXNhTsyAnAydha0fTBQsFmhBJU3yWE4P7+qxr9stoDsy55Q8RyA4sDRZMjtoZcSeEHtzx8BmKQmVaZw4wB0QJAmiEBFbMwQOEhJJTMwQSAndrfddq5labYoiKZd5efjyq+/9td/+dzDN3337y/04lNi3V+zNgimRWzRvmLIBTRBZuGVB4uXy7ujQ9UjAGGbewxVcA+HY9+OovdW6viXhp6fn5y+/N5fZ6r5v10vJh6vM2T2a9lYrA4SMdtSIPE/oyUPmkyNmTpc8Wbibl2myY6Nese7Hts6PE5R5jkiIHzL5kY/5R+u2t+unjMDL6fV2/eOf/muFF5Lp2I/19XU7vkOHxDIvc0p5miaRQSRn1T6GWESorRNC7723qhaAPIieZuZmAKB2X8sDgrCMotuuXbsaYwsDDEICxJTS5XRZTsuyLJJzKWWZ5pyzMCLxlFMGHRGkwpwjjrfXlThqRcm6bvXYxwTS9y1tt5XFTBUwwp9meTpNatG6AkRvVR3cYSr59PDsKIBwbG91uwkY57JlAaTT+VyPygTbUXdtmbHIlFJ+u3qt1RLXpinPKTFQz6dZNy9pEkYHZqHeFcKZRUTcwtzIDADTNHM5aaAjtePo7ajHzowEWetOkq13Es65lHkONwJDEkkiEVvry+mcynTJJ6/7d+vORMzS66FtxwhKJeXlTKMDnQMgVJGYORgB3Ee8K8xF+LpWLQDh7tEt+raXJGaBghwDAuNAFCkBIKdc5lOZSu8dAjG8RRzdEyiSmFoza63nLN3CVAfT11UjJTfjlJIIuHetvatr6w6mtYW6ewiZxyRw3fbakxDS6ZTLfFv30l2SIAAQQqi7IcRguASSehAx5uSAY8dtbnNOaSnqoWqggcjyuS58+JEDKe7mk0DEcDM1JGBijQD3JLJMQt7V/PV6O/bjdJoH3ZeYMSBcW63XdTuaMtNpSpfzUkoZ7Z8Ro+OGcCTBwwk5CLqpB0Rg680jcJTU493OEBYkpE1bbZfL6aiVhZh5zDicpG7HtEyJEJnneXYfwSUOR0S0bhGgajkl8M3cqx1IBEh0Z7Q4I82lRIrW1MMYCRj02P8//8Xf+zv/0f/IXQFoq+1//b/93/2f/g//+//vP/wHRMQkBqpqzKLdGmnOGTwMwfugnbuZIUP0kcmBlFNKqVWle+/PwBg6Elq307wc+55IkE3VzJ2QmLj3FjG4PzwoKh5uptghgt0jJ5GUBlh22CYkSdiglhtijNShg98b6s3NDNCZOKe0tR4Bc8rEwswppZQk3HNOxNxVrfW5TA/n5XtffPH09FhSXveKnO+zMFEMccdsoPnclJgJiUW0dfMIR4cY972UEhGYu6ohDXYvNrWjHkTIhN0BIpiJRUzNMwBAqOEoTjG93lZkYBmZooA7vAvdLMgREGmwcobqOhi9CKP/+D4Y86+FB4Axc4d53Cvund0jKNwCAbIkBG61H+0wa4DuTOE4mEJDJP0sYuB4SAoIBxIwH2P90HkiIoYyExHhTr9mHyPfAz6EYQ4RdM92gZkhuAdKGhoy+F3+CeIBfL57uyAACQIHHh3BYRCUHIdZTH/v3/0Puw0kOnt09xgROdX29unnEbsI+T0kxeBAMirMCNBxqBEGtTdAAg/OCYYVLYKII7zVvekRPrQSJBoemJEzQ8cACx/85BiUa7i/ERABgRQAAUzjxjvo0R4wJBJwJKFEaBoOjnEHKqk6hXsE+50WTRQwlBhARCC4tx/C5wwaBgIHOgEABRpQ2D0IhoDh442FCHMDH6Aex3DQwAEUDwiHoAj4HMgUpmAYit/4qQLeJT9EwlFSDoA0dMi7hIf3jBieSq6qreudUo8oI28J7hjaNQKQx72eIlzm00n1rdWKJCzFiCN6EhFJg6t090WNbI0aC450x3Dd4SCrSTYzDUJJpDrNS7PeWjy9e373/kO7vYa6TCcSATM0B0GABnZAl2Nfwb3kDMDhLSRzhGqoKkJImpDpOFqeZoLodQq1o9Z92xAZiY/tLROezmdJCdAMwgIwTQk5CFMqaVpYZOxJ6nHsrXugZAE3ay0vZwfYmpWM2N2iaTt8307n0i2QsDbr7qdpkjw59FqP43qdExYq7sBJkJkIW+vTkpwkJ+pNcZlTzACvogYU63a0qlNOmamqC7qXIhnNFAJ3w1t3+fjy/O7Dlx+eXz5+UvOuaqqb1Xk65cTEpMJHrW+vr+9z3quVnI4eiNQtijsLH7fr8vhhW996t3q0OSfOpblqeDt6zjMS5MK1QWKqe308L722RfCtlOvexx3k7XpjoHo0xJhykcREoj61be31SEUk+ixxbb3e9inR+XR6+fiSsOYpvIGZMqzb9QrAU5m2Vtd6QFgp/Pq2nc6TgiOzEFFZcsnYth4kOSUDD488uVsqkx4b2NG6o+8EFAjuwwLXAIsqJPJJECM+vV4toh9dhBNJ75oIHbBFRISadXNmKZlYJszTQ+Zet1aPoCDOU8koMp9mbRq2G5BIBqLae/TmqbSuEMhMpkrjPAGAALW1EHa1IBamh8vD7/zu3zi//2pbXz/+6pt1vZl2YUFEYqRwAu9d82kyh+VyfjiX7fp2vt6+29aXFxl9Q3nK1XpVXeYTscxpaerN78QygrDeRoLYiIXDzZBIRNw6ogyYhocjxoBSd3O0XkqZyhQBTDj2bIPj3nqjMAz11ty8B4osIyaB4YIxJbntx50fBnT0DtYdKU/TF5lLzg9Pl9//SXzcfhkxUcjl0t6+O/ruocGEjsiZOFMq6B6ckowWB7DWXXtQIlOlmGY5T1h0BInJRUS9W1dZhAtgxCznL9/9xjw9ABLSOATcTXySMiS8He0P//DH+3HkUqQkTgGm67s15V8ayZ/9yb98Wz/mnNzVVd89PU6QVdGVgS3PWUMZ0KyqWQAcrdWjI8Iyzwlp3/au7h6q/cxoiESAec6cJRdmMYDkDhBmvfZ9XT9db9fvXr47tlutx9f9+1+9/xDnJwzLU9r7gQDhTq6cmIW4ee38dl0FPSduJQeia69NJRVhGoegddsOM9VvchKep0DvbrWbqg10XYASACK7Ya9V90Mrlmn44JI2TIkZWbuaglrUavyIzGHuibHMZwCo9TAzNQeW8+WxLPMoWUUDQj2VgoTMkxSL2iNiXpbrth+1DUcCRCSh0Q+w997qGgA5lWmSlPO6IzLlVBwOkKaKy3kqZ76+WNs1FrKm8zQdVntr5AyYSBmcJOVe25RnPrO13npjSFNZlvPJ1YBx368fP/Zwq14NDyrkbrwQGtkBvYekmYjyNLPkCGOmaZoBWdUgvNaDaQFkDycRa9G8eqKU8rycOYX7BubegRIyyXx5lFSO/e32aYWH1EzrsWvrXTUCpjlLmeq+E9L5ckEk643YCSUTO8lXX37xxbt3mVnVcso+AuhdAQnCwvptXfvLf3E2NYuf/OSP/u0fvftX//wff/Ubf+PP/+RfPJwelySIEMBcTsvlebu93T59FC6uXVGAhMFYjxG8YJYkKORgaxyNUiLvqubazdw6N8yGbOqB4IGU5ofHubX9OA4HAkjASIguilmjAVbPKWtT947CBEiMzOF30muQKyMAi4e79rAj0AHRvJNL33c5lW3fb58+9WqmRpIu88RJkiQPnE+XplHr7toIUfedwEmYzLmv7m3Lc748ShLiOMHpDrmEMPMGYO1odWeClBKl3Lpu2xaukssyT0/vvnh4fE+cdiQOxE+/IMpmwtP0MJXt+la/+4UQ3lCqarT2LFGWC50u1iq5g/ZonTAOU4BwC55OkGfIWc2Oeti6LnbMl4ukEg5xHBwmppfT+d/77b/+57/88z/66R/HnCU9a++IcH15W7/7CABENE3zPE3MPBb0IqLmRPLWO+KdeTDsDoSIQnpP68uAODCkAWwY0/uQOCULAV4uly/evXu8XB4e333x1fcu57OCMxO4C6K7IgshXD9+ux61eqTlkjFgOrv2isk15LtftIBJGHt3QJXkx6FuzQJcd5gXpsHhQOGUcoG63W7XipFmREXAzLicl2O7Tuw8c285AkoWwWDmUqZWqwi31pniONJ6VERiYpEEYukisaR+65TSeSo55du27vsOALlkEdHeJc8BOJ0e8rSArnvV2k27kbWEbMfNAszCgUpZzpeLBbiHq82Jwe1a2+n8UKYJkY6gkhL6BsiEMk/piEBiZtZ+5DIB5egdR8UM0tgGmxmZEmOLe0fLvm6IME2l5NzVercBMRmTpbZ9xKCQJU9zjN4g5KZVkvTeTZUdCKPWY6ydWzdhQgQh9IHZMAVEbW04bcMdwUVK9N6C7NhQNWV8O5qkvExFMauaqZtYbd0DCrgQMfDdJwNACACjSB4kJUl5rO7HH6aaSxn3KrzXHzNJBkCPESiE1rr2zikRi1n01iRJEPTeSfh8mpciSeS6bdbbp7frfhxJWEQkZ2nVPdZ1r6pLSefTVEoRZkA0cwAk5sB7KZgIEaIwqf86IgOO4IScEqVkqrU1dwOCXFLXfk7nCM8lSRJt6hFMBAzqHggsAoijAL4efXRvCYuDeeBx28r7SSSZubYOCMSMksIdHAys9a7m4Z5SYmZhrrX9yb/4J//O3/zb7z58zyO6xS9e1v/kf/G/+Z//p//Lf/Rf/f3//P/2f/npH/8rc8u5AKFqJyIR1taGCuzuFi7Iqjq6qJLIqDMChhjpLI8RHGFmRnw4n49adaSCwwHBw5nQDBCRB4QGANyJhliBEK5q1HE5TeExKp4Yx9DrcH/nwdw8DBkDOgK0tpc8D3SKWs+p5CxECQCFeC5TYgkMZtbu5Tl/9cV7086SWzXTg4gBR6Ovt+vNI2jAn/q9200imHlQi8JB3VV12BzcdBCghQXvIzQGQK39clpEEmD07gFQUgECVQMI7T3cU5IpZzfLme/jPn622wTQ3RGCEQBOzIIYHu4BZgEQafxvGGms+0/GAyGCMCw8woCIGSDAwlw7ANx2hc9mGckUjq21+4oW7nYTHFh3j8CgoTEQjBooDDCwGIIEEf7ayeNECEBgBtZ1dJCDGUAQMQJBoIcykkcwD90H3Q0RhBkCw8x8KEvuFkxIn40khAwEzOzhxFCKXE5fPr37/svt0IBuo0jd70Bwt7eXn7qHeb/b7zzCAxwhXM0cDAkIEgTAXiUlNbq/Ik5wz2phb9WtD3zR8Dbdafl3fM1gh4/E/7AVxr3aHYIY73aoQf+xO+Zq1KgPpc26MjEhDxeMdkBGQrQYApEhDe7aYGs7OPBwAAUBfn5GdxcdjkYwGIVhI4AXdA+X+QC5MXgMyQbxc/si3mU1oHvTfPj9/AwAbjFeuQN+RosA8GfZaOhBgOO/ucdICQtzSYt7raHddVSAHX1HdqDQUXCmLIHMMe4ZIpKZqbWayhRxr1MsOQkRUe61DgYbEglzADLzKERQtd52IiQWRIIwYuqGJJkkGDAQmnr3iLyI+LTMvdZWKxOGs3VyaEd/VbUIymVBZqSldwXvtauanuaTEFrE7fVtXnQ5zZQLhBetn15ebtc31f7u3ROVydwBpOTcqPau7haAGCA5IXE9Dm0abtq6BwFqzqKHR8oe0HvHnLohQDPV3hqFtarboRbYDJAysgCgMFnOakcA3g7LzKmUboHuBHityry1HnNmILJg6xnNW+DtunXszWHJPHMiYkZEhylx69YiUpa9uf7qu8fTcj7PtY0Z3nvwfpgQECFFEsTbUfPLy+7c1JbTMp9OGKh9Lwn2w/E4JE0THNuOkuS0zK+ve2JFzED38pjnhxlYEMjCpmnpxzGz38wpwM091JEB49jbPIF7QIZEZGXStX56W1H3h/MpJ2zG337z8uUXnku59cZ96wbJLTrlaW6trbVy+GVKr6uH+/nhHDyJ7q3Ww70QrJqF07F13K+IWJYZgTAnkfRW262BBYZ6KZzS1GoL1ZQSIRphdZiE0czVWjdhJoh6tGmaRoEdBbSq4NaOejovp4fn5TQjwrrt0FZhMsAwPfY1l7zdrvvWIgylMKPr0fYqwke3ZhYRAhiARGTWCYkQuvb1OFgkl2wKX/6VL5fHR8Rglqd3719+9cu9eqAD08PDw6lMvdZU5LZuiFGP6okwz9Nsp3Y96v7x48fu8SmJEBfhOFZHvhoDgo9eQYjRdjCgdcwUjuHOLEJhxuFuQcRcOC3L5ONfRYSCmQAwl6Tmo/oBXcd6uWl3TzLPBnBJCRBywsuU1cAAkTkHdmvqEdBULQJ938FdhJ6fLlNOQv/+P/vJf/O6XmECsQc8zeLHZgdCR0AUYARXCvfe49CqradMqorZWIokeVzePcjEmCr40Xe3RowK0KxOlxQRXuWr9z98fv7A97KUe+BcUoIY7mZ6+fTdty8vrr24fPn89e366fVXH3/y4z89n87z+YzMH959oSf79pe/SFN5fnww4H3d277hwq49l8wkEYOjPZl7Yy1levf8dLvetnXtXXuQBhogcQqvwAmIUTIQo3XzDmEILkhF+GPd1v1lq1sp069+9a22/XjYnx6eSk6ck9YDmTERc2ISEEutM/N1q2OtAQAsaWR3a3ckV0OW3OxY92PrNHEgQK8Nye/1AM53aEIzV2477zuaI7FMU9FurmEYWkM7uFtvx6daf/jFg2kAQM4pAAj9shRmMbOq7qa1diJgIk6p997JE3A3yzkLy7YfRDznYt1aVA9gSSkxIzSDgEglEVBJMrDXABgOwnw5LdtuLu3yPiVJ/Whefc45S3YEMGBDkcJ5IgozD3IMGtIxCaNhOL59+uSumLDhzWg/rl77YdgAgyvtN//q6+e+AyG3qut1T5Mg7uBHElymqaScU+66s0iOHGZdzS0kpqO2uu+nk6SpcJ4YmmuAU2KROU3vzqf5naT08VusRjOgMbQsU8m363U/ajsaeIT56fyQc6YIcJPEw5aMSMs8c4QeR9WO7pimcDvqkZjQ9diP67YOTsdP/6v/Y8jp+NHfXX/69//gx21vmBOckru7OpJ0aD4naXnqVVNOKRUPsFYhPDMJ4djToWp4x0DTCoBACJLwHmNnM+hmEAh3tTEVTsv53XHcROR2fRuqEqXeSbU2dbOgaT7nlBAMIaIbQIxTlHpnYUaPfrhW80pMAdpaq9cbdin+sN/2fa/EJKd0Wh5zyuMovW23P/qjP5jPjwjYt5u5Q8RyuqRWve7UN41QygI04N/AWRBcu7siYW11vb2Fa54mr03XtY2tF8lyWs6nM0qpPch7655SWiGxCEme53k5zUxIiHZ7pdraUV31Y4tMBzmChx17mSZCSG6Yc61HV0V3AD+++xYBXLJDXFF601xf/ajeDkrMSKC1qn31/gtw+/Ef//i77eYQktKHr9/VbV/f9lb1tt6GtRkACYBFWIRZRNLp/HCHc44d7R1xquH3PS6zBOlohem9X84Pl8vlcrn86Lf+2vm0LPP0OBUmlFymy+Pl6TmlHKHXlxdsW1eDlODY4OEZJ/Xb+ufffHc5n05Uxo4K2h5WhcQjiamatt6FGZAgOgCqRsUirJJ8va0gqXDMJXn079arA3mEtlaScODttnbt6JRSHhWKEJYEIVi7TVOa0uU7t71WRBAK18aC5NxDDXvveO1NUq77cbut7n4KH4nL08mW0ylNi/UO0RGtqztE626UiMS1NXORPJ/OA3xNLFkEEW9bJynnx+f5dKKR8ZDTpaxv1RBNCPOUgUbcCXo7CrND7NfX0Kqmpk6h2vvRNAkBorsFIrGouwEyQi65t6pmSbDVyklYUkoZkFKZEBnC9/WGxGHuiDmnPrJnOngRoeaq6kzz6ZSI3H3AdJh5ZIJGWZL27r0xQkq8G3frHz+9VEgPyzOKlJxNNQiJsHfN41sDmPuomhlt30woIkNsVO1uxsvCKZPkVitFpJQS0J3DeidfgB41zJiJGAPRzFvba2tEnFiEiViIKKy5jipmRBhgaUMityhZRpukuy8lX87LchrSvI1dVAS6jQhIWEBXSsIOaO7dvaura7UGCMQEiF27u4+0V8rJ3VnYPco0tdrdIgRSSQBdkgAAiwwsVplSb2rmRIyM1qP3rt22621aptun64DUhoebf1YloquNiqWuqmomPGCOv/zzn7374nsiE7IcTX/2y5fz+fx7f/t/+Hf+7v+kb6//6l/8t3/y4z/8l3/wT//l7//TlEJ1yBvDljJYsBHqKEDEzL9+rz8zSMAAwN0JudaWRXQUfQ24VQA6RjgyJ+EhMYxg1mgIC/cx5fVmOxx5Su5OHKbBQ8YYdGEGM8MhMtJAMLU5FnNvvSLAMk1ZMlGKQCZZ5nma5pyzmXn488Ml57Kut5eXt3pc52kaKB8gFmF06OYs5B69t5wkpQSDbBPBLGZ3StJ4EtU/x6YEgTACRHguWYRzyQDYW+u9A6K5xb1FMcBdTc09JeFAZsSRihrNnR4I+DkYixgUjExs1rs3BGCiYRTCu7/NAQiDAPCOwyFgoEAgGhnE4RFUMyA0Fr4nfzwCnAbqCoYDCSNAbbRTOQYF4dCW3e8wZrp7kO7605Cfgu/2mc/Q5rt0RcAIBEBm9tmM48PC6RoAxAIE5IGMSDwGghQCzIQUCIGEBCnACThQh0T1t/47/4NmcDRXtYHZdrehxr2+/OK2fhy0jDEvMYd1ReYhUrgbMggDApsrEwkQEiFJICAyIpiparvHrAZ9/HNz/DDJDDC927iEA4hicKbvoli4R0CYm2uEYgSyIGAg+ucUKsWg3SEyjzLVEX6kYI9wDBxZuEHVhnvt2qB3wygYxLsEBUPAAohB7QmPYcy5V4bFfX0+RMLhrgO+S1bhCBTII7E1GsFgBL0M7pVeA/w3lmsEQIwB6BZ319ewEQ3DT8Sn66ujAxkzRCATdbfemochcqIkiZABCAiAkATCJeWBJgo3lDyQYIaordvgTbjjUGEhIKD1ikilTCmxD2P/eDrMUiYUzwFqhkTLsuQ0pcupbteBzWR0NeDEKU2ndx+s+/r22vvRmxsQoaCQcE4AQ7DH4Kh17/XYrwDvWbLqUUo+LctRq0fU5stSyrREwNFUW08pIWiZSgAhs7smyWUqRFKWs6phuNeWysxBrhUwupp2TcweoV39WImga48gyeeUkrsJaGKJ8EgJQc18D4qwVo+UcwrrasscYIBUmKHVmkouwnio1rb3tt9uVhKXx4koMQFySuJeY6/7dkxZeu2qtRAFSikTMGSO3jxMAyBAkCjN862phR2GGPH49Hi7bseB0Q4kdtfmQgEPlxlI3GCZp9u6hjZJGVn27oDtfOJlmdSc0SNPfDsSefc2Bj8jz5KieLcgiXZUEZqn8v7d5Xbjl/2oUXNOER7Ct6qJvWuAJGTfe5v6AbSglGj9dqhIv1wW7U5JIuCoAICuvkGQm4EVxjmL5GnOGDQJo+5r9E7MYObux7o9PHHK8natE9FJGNrRzJmnKU+FlEgtIhxKJkA0j/VoAWTutVZmKvNZ5gsS1/2wtjEYRvA0E+H66eP6+qbmXb1MSyZqrWUEuMMC733VVT3nAhTkQgTgPizghFC39en53eXh4h5tvSHEX/7Lf2me8h/+/j8/1lfh6a/+xg+gHd0mF3Htn651P44wO8+J58cl8Pbtx9e311v1D++e/+pv/ii2T1v18vjkktZ9lzSZaZhBOHFiGuFTJOLatffmBGaOiODG7lxK7x5IpuZoQTAlmXICh6o2egwcmVDcGwVMp1N5eJhPp3bsx75db/vlvHBKFN7VA9CJE/EIEY/zxqGanZjly/eP5zmfMvz+T/64tqiHn57pPB37ab9u+77tChYUbVfr4dEBApB7AyBiShhyoccv5q9PicL1l7e3t2/rfvQh1TNnP9BNt20lwEIoo9fKbK+9TBMCBCWM2Ovx53/xZ/XYp0XKjHV7fff4fJkehnM+5XmZL/U43j59vL69lkScM5oxRhLpvat6YMf7QQu7gvd7rcNx1KO2bd3efQkWcDRrrRcp8+lBtXfVXuuddBfKhCLc9ViW+eH88Hp9AYBQZw5rfd2u5+WSypSmabBTKkIWRk5MfJl6mG+1N/WCoNohgJMgYFMDJMTPvapOJFhSVlUscn6Yj7ejrhURA1jVCVgII6dputy2o1m02pnIzRXdTYXGxyBlCSDurY1jZkpSkiyFMRwiUlVIkhK7aa3VAdI0QXjvSsQj3jwlab3PUybE2mRU1QLECCyYw5Lzskza+7YfrVvO4uDbdiMEnnB6V6YzYy9Mnsg46GgNlOaygACiSJ6OfdVW635wypiCkISxJ0KgUHv79JoWlpMDexRnEQDijIjmb7u53W57krKtm3UrS3lLW137MpcpCV4egkTNWKTum3rknJ4enj9dX9dDkQEw3Pu6vSQCLM5YQkIk84yqu7djQkhTkbTMC3OagWhaTi8fXz59ehWRPM1lngbmlMAJJRy6GidGt33fILpp76plwdDm7UgYhLg1bb3nnBYRpgbEv/hnf09EROucRYQbivY9fOPaqMwIUVJKz+8R4LBg4XpQP2oSXsrUWnVtAAThMbY4eSLAfmzA0jscqh44FjyfD5Yhksp8mpbpDRysq7lTImgv8AYUgUEZcpbMWeuBhow42Jwteg1CJHEE1sZEjoEGJG5k7suSorW+HQgonEuZJQsxEBIAqtq33/582bbT6QGQAXw6P+bTSY99B3wDtoi5nCQX2w93DZmABaybWwAQaJkmZjH33mvrKsIpXYBoKiWXOZW51epmqr2FpXcXJErCSLTuhwcoYZ9OHsQO5Xzp67XuRzQlFgpf951E5sS5twyOSdTMA5tFIkQIJDn2rfeWtKHWiTN596DEaZkmIhSWozX4+c+62nEc9W13juUys+ytoTUP/Tc8A+9dW+uSS5lzyfHZsk4Iksg6OjkgaNdBDIiIh4fHx6fnH/7wR198eDdP89Pze2RKRNiOoUIihbW9r28KaBGUF9eVzCOXQowFpczLVKzutr12dbAW/eA0M4SrOhJSJmaKMERm9gjktFYVIXDoprWZLsvzkue4fiDamzLRigxE+0GooAa1NUl5Pi0QzpLWfQck0yOXhdBPrb2tu/lgT4BvzgFqh6kLJwvzag7eW40B/CTS3rUdxAnvnUrhulmt1hulrB7WmrUegMtStB4elqaLMBPG0bqjzPOS8hwkgKDHYSinyyPHt5/MiXMiavWQgjkXVXLrvVZ1SyQsaGbrrmFmEW4w5xTIiJiQLNwC0HxAeCGs9U5EKad5OQFJykV7i7HbhdB6BMJnqzFCmJsRs6Rk7kykZr1WLgUgIpwIVRURRcTcAPF0PrtquAnANJ9q3VrrE2cDYEQPR6LPpJwY3N+UB0Q/CPFeKMACSGPMNe2Ed7WICYGGiIADKUWIqtpqRWJTCx2neard9F5Bjqflkqcpy6iviGPtrbX9OK5vb+u6IkYWKUnMPQDcvSRe5vMyT3dmM0S4EXMEWO/DqQFMZl41OkOO2cy7W9eufpe3zM3t11gglM+6SXjw3RwBRGm0hmvTMhUAEGL30NrmpQyjUN2bqeUpY2DrjXckSfOyjCLD3s3cCBkozAIRcyrmGqMiikiEzfDlVz+XcnLtyBKBVdWu617L0Tyn6a/83n/3d/6D//7/bErf/uLP/sv/9//j//V//89qrWPqHbBmNwcIt1HNO4yrdxDJ+BIiZGZCULXWegS42xiI3TWlxCwIwCLhQQRqhoPsDODuzGPSpCEIsRAMe1yHUiQGDwc5MTPFw8Pl6eEZwl174oLILGc1E8kMEEHmEBGcckqZCcYTGwaDJGkpKSibg/YuzGlOJWfISVU9vNVuQ3VjH1fgyL6MOiAKH9hscBARADDTKU2BCIjvnx5GKu44jtbawBsj+GDfAEAADHknPILIh1ECOTwAkIEQiUeDNwSgR0RTNVMLRxwSJhEDIXqA3Uez4cgY3wGIyUca+h6xQgCMsBiTQ+D9Iox7aAk/B4z87gEixDs6HYcVL5wQ7rxkuCsC4RFgGkMegc96EI4sMDhYBHHwnR0x9CMcMLO7dymhEAMwgA1Nj5l/3UcOOIA06uZMQ+hwyfl3/8bf+dVrVY9uoR5mXdtu2lzrL/7in92NJTgyrAHQLTxUCQkRiWFssiEMGCI8PuNuBkPVkRGi92oBn8vU8c4YQuR7eRy6+dBUhugTvzZMAWDce90YkQUNh076b3DO6JhYkNHD3QDgXqBFQcOqNF4pDBj1eDQIGKwohogggAgad2jkAKcY3xVixMIcfDj13OPOWhoALh/N8uB4l7fC7W56IxydX/hrAHcMqQvu5C6/q4nuwUyUeOyDxlXHzGoYZoFAQIIZMkQAC5lJbTx+wZnlbja7tw6QABESlWnu9dDZpoJIpGpMPPhJRKyq1loA5jKFGxMFgPYWA8MGgURDNoUIGz2LSADoiAAgIuX5nfbavuvaDuFEKQOlcEzEp/P52GJdb7VHnrIoo0Svu6Q0fkQoQu69tV/96uM8Jez7fD6XeXEPi+jamultr2CGBI+PT6E6Lwsi91YhNCLnqaR5OT8/5zyB8LYdIBJmyzLl6bKvq6kBGOVk3dr+Rt7bgQHoAXMpOUlYH5JkgvBQxAiirVY37WZ73bL3NM/JGdCP1s4Y7DFPU8kZoVlNQMGkSLgdvWPMiRJx5ERsl0teWztqF2F1A3Zh9R5IvCS69djURNJxVEpZApI7uluPdsj108c0nSD8trdlTmi2t+7hiWA+pdYVCB2xqRvUnOU0z0b06XW/XGZAqi3CDmRIDgACGffG3nekECJIuG8tCdTWp6lclpOrZaFUFmIkbS+fri8vb+fLiYnMnZnmsiB07zrNiyE9pNLaDv0Qyq223hVBzUDNc2IAINWUE8/nXUGqLouFQtsP1W7IyMCuQXy7VeZYipgDpUSBqdXeukgiBCLAgDwnRAGiY98Zo7bDWkXEy/OH0+URmQJMUK3vTuSUEwwvsQinaRZzB87CaGaEoao9vGmHVBBHw4WF+rjVj2ofIzLrAfDh3RMzu3tiZOKU5Ac/+CER/uyPf/zV86Xfbm2/peU0z4up1n3X3gV8W9vpwmV5+PCFXK43mS/f/80fLll+cX3FlJnpfJo4/LZvwxh6d4kim0OvKzFj2L5v7i7jMw0Qidq+c84sKSCYqBTJWQCRmNAGXdhFkrt5gBAd1WC7mfZqcX27JiKgPJomu/q4vzgIAeJgzg+XakpbtSSdmT88f/m7NL/dtte3N3WvtdXaWuvX6/ry+rq3Gh3SlFqtwoCARzOWJJgYpOQHxiKEpgAHM0uYqiIzCKXztBzbenk4L8s0GpKRINDFCQDtcwr45eW7X3z8MyhAcwHhNE2cpuEFO/Zuauvb23a7/uwv/szN5sdLylNvTRiFmRkIYspCEdbNFCkoScIJwmNdV+368PQkLERcu+378f8n6t92JEuyNE1snURk762qZubucciqzOqu6mYfZ5rEAEMQGM7VACQIDkACfAJe8I34CATfYO4GmAtieEOAQ5Ds7plmk51VlVmRkRHhbmaqug8isg68EPWsAAIID3eHqereqirrX////dO8UD6TpBQPuGVYjyAz42ObJDHxh+eXrvW239RbkbyUiYB71ykQgyeaEYMDCSWxmOtpToSQme5V1cjd9u0gGk5NV20QMBaYlzy7+/221t7mpyWXLM/S9m7uEMTM05yt+zITsZjBfdu33ZYJiNC6Bbpkefh9YNhSo4gAgrkBZuBM6AzY/QiMJAxC5vb+fkssUxLCKIkQgEo2g95TTrKnevbSu7bezayHEiIyBoaqAkJKSd2JaMqptuYIHEQIvcHkhaOeTktt2iNKEp4vOZfeK4IhB+CAwOu2N0QgxyBXt+2+I0DukoPCghmQAQ5Ond2piAZYb901jgorrktd8iz36/H2BV6enxyTe2z3a8qpTDMTTiVzzNrbbT+opDSfiBw9IAM4pVRQILFQBKuBe5qmLglSEWQXNTMSCyJgDObHSdNVwgBC1YO8m+eJYZQtWVigdaeuE0W32mplSZyXzKkkmdgkJbk8q8a2rYksJwCr29Za64PoYwSCWEoZCynRUA/LpzI9QfSyLHp9C2tjKUjMgSOfj4GMAISQhCIGWxBinDyGlb03FhndRBOhgRyr2trDAxkSlZQF0cmIiaecp2kCQmhVq1nXw72rxTCQgyOiCOFUgDCnKeXmgExSSilzJmQKUlV30N639R0Bz8uZhT98+sTCb13npyeurdVacppSAlcMFIzAqK0SYc7ZNFS49r6va3g3M+JUpinlKREj8VF77z3CKVwtcin7tqWUummrLSdihG3f4thOo9xBZDo91WMP74nRrR+13iqehBM4Sk6E1TyXlCWlUrb7nb2XNBFPFtZ7p+gczuePaZpP0FOe/tV/9Pwv//l/9Pn9Hu4//fTjb3/72y9v74CUM1EmCELn1ts47o485ravAMGEER7MY9wrJS/TPC/nUso8lSAsZXp5+TSfL+fzMmc2tXpsLMmY0lgR7Le+b3sqc8mK1I46lZIJa6uf133KhIj7WokkpZxTpt6im2OpgaadAIiEUjEgYEreEUE5SZmQeTuOU865lHpfj6415pfTDNsunMcYfLvXiS0wSXCPwwCQMyJOmAKgbuvz9984sGp7en5Zj369b8MtbRr7euAEIJBLIYjW+vl02td1Pw7tzXszN3dPRZjETC3AHMEMEANJtasFABSRlCQiPDgQIKyqH0cH4Wk5TVMhDAAnIXem8vLNnPDL6+o4Tttb1YKJRdr99agVTJ2QkQgsc2wKzMzM6p6EVQ3IEzOY967EPA7yhFjKPE1TmeYRbEgiIx8ggARobjYwC+HDnmnmo/svL3lbt9b7VDIxx1FHOEtVhclUuypzmZbTMH+kacp9UW0kqR2NhUSktabNLadpmixQHSOAhQlpDJOcCokwjbrLGL3oqg7URES7BYKk0WdkA9xLLNq7uVpv7kaSPDCVebgLxgGJ00Th+3a/vr+/vX3Z99rMmeBpKaN7CgKQeGAtkrC5mZqGA2DrjUVSSjGGGXoAgJr2rmHH4REOoeEjqNFq7aba9BENigBEUxWR3hpJIhqyZx5JGmIkovDhXOCBF4mAMpd93WttxFwmWU6LNUXzaS6397t7IGGS5A/Pgpc8MUutYaZjwm+tq+nf/vt/o61JLq4NkNC0x4NP61GIBTl0PYyml9/8q3/wT/6///3/4/86fA2Pcx+Ch4MPJQiFSN3GYM/EkDDMBxo2MZtqVR2zIqekZiNkyo9qoTEOkz8At18LTNxFiBiXMi2nCcLUlICW5cQoA/1TUnm6nIe1p2QRwvAYrWfEnERMrfVeaz9qHdVH9NXEEh6BRgjEfFu3CC85j3ReYso5EzMBx5BvEdU8l/QYgWM03BGxIBkEuNkAVwWEubMIhrsHMrWRnnMP9wcxF6CbjuyUMOUsSTIT6asLsbshIBERPzI/w3ZECABgCm4RiCxjAA8weIR1RvDuEZn8CmIGDY/hXQUYEzYRBgL50HgAAXC8dCQ0Fk0PD48PeZYiwt0wbPheRIpa17AYutJ41sMz8sABEzMBhZk/wmmAIo8c2kM9GBFTIoiBHMJHdiuckQHAVRHRhysTfZCREPhBlsb4n/6n/0U3OLq2pg8HkKqbad9/+sP/7zjewt0NgJCZAqI3F2ZkGeKyGw69EREU+rD1EI4XCQEFB8YojJhc0dyRKHzwlx/3j3sQUCppxOJG+AsRHXHc2EjjPUEII4QWYeHxeBKEEQTwWKo+1JZxO8HYfY147kN/Hz4f/8riedi88Oudh4AgqGoRQPz17wIw0WCgxaNdbKh3JIQ2sIyELEzEgDDu7YCHl98HC/wrEPxrXhgpHABHKVhKggw2ME8I7sPTN0bhscgLYBxbAUKGEY5DGOS4ATVCAEHAlPJ8Ot3eX+u+EvNyvkAMXFCY9ZyTpKS9add67EiccsG//zHg5hhABMxiBOYuOaWemnqY3+/Xve7fffdrJC5l2WqVnLRXJAI/ScqSJwTd60HWGHC9v+3bFd0/fPOdQUvTs+PYmeB6fb+/9svTcgpOuRz39zBMktd1dW3CSYiveJ9zejhFMdhJAPday3xKcm3rbf743TTNFFGyoKTjUIuRthDV2NYVzIETc0KA7X4vJZu2ZZ63YxeG6JqTAKKqFtRIgJSOvTWg3oGrj98SBvNIhElomhPELC1r195b036vXQVO8yzZgOVyOc+uP/70Gh6Ukoqo6SdRVdNAFnJK43OlHcf0/KxGXqugaj32+zblFIDIZB4GBr2XSY4W1I0C0APdelfi3DxQOycJ9Nq6RziDehzbQRJlWUw77LthBq2qxoBlKd0i3Na95RSlzKZWKDAnhBBO5m07KhJTwJKwMwkJJnl/fU2lYFkmmtZ9JzdCTzn1BgZuquEHLc8k4r0VCUpTs5BIAjWsr/tuQSQJWVJKD+alR2K4324sMtoKwq212g2QgTyeZnIAFWrHBh7ny3PKcyqSp4UR/NisbUloWmbVaNpZsjtI4ZRYIyFhV0ezvVUPaEc1KYmG2AxmRojhLjnD13pOAkDmj88XwvC6zlMmV98oEM+Z/uFf/Gq93mtXJCplBuQllw+Xy94qYtT9GF8AT/N82/TpfIm9brU28+319bxM3Pb+yx8nZjw/WaA6BKE9tlr2lXvhQwEe3wqI1OqaMJ4ul/FFq2b73gNgDjSzAExlRgQ3TehLkdZqVz3PU3XEAPVY140wAFl7U7OUJ7Qabt7r3nSapyHDlCxrcwQPpw8fPnz76ZMIXq9bbX09WoC/v9/er/cff/r59f36fr0d6yYskfD0XHQH7BQUdd/dw4MgsMj0dAoEua27dYOAbdvNtNWq9Yi203x2ZBZkmcZKqfV+vd7+w29/u7f99HySVBKd+w73ujI3QrY2oKTt55//2HvNKQnziMtCwDSVox+MJMgghEATl0QCQPfb6hFqaZplWZaU0sCwHd1MnUSJhIQd0E2D2APDFJjZWUSW+fT9N9+fb/P7egXz5DLNSymFrI8c+JgavJtFN1MGmhOHUQBXQ8Q5Iszs2Nv4hiaiAonKwHw2A53mssxT4tS85sRqrGqM+EgeEJt5KaIq6rYfRohJENwQkDExREpJTYEkiDm89bq7u/v5fA4ikui9X683AGi9betGiOXlcrksNL6lCIWp5DzPc8nHtt2FGRAAEgBwVws4nU7zXMCDAJgiHMyDCJlY937/uXv0cr4IyHyZTxFvb9dE0faNXe/3eyQBCrAQJo3QZnVv1oyFRHI3w4DYA5znkpF9a31+mhmT7VZeckq0zFFrD/Nqqrqe4pwlufrf/f4Pv/z8y9PT84eXJ0Qq05SFEzOGnZ+epn1v1C8fPm7392hu5ilQShYAMQIGoIpgIBNS6gEa2NRrrbfbve4HZ2m6995KzhwujEapPxpYKacEYW6dhFESKLTjYHEkpPlMKTOnzCXnlOGQqaRlbtereQ8IAG/7EYGSUmJBlAg0CAoMHWw+yswABuiAfL/fequJOcKckqRCEb317qSOHhBgjOgOFoaEBDQ2jeihuu33WrdbaA/w23X//PmzgWIiQGfkFNnDcs4lpSICAK31gcBoTbd1O45bXhBzMDMhGTgyuZsUnk8JBBFFJpGUIYiBRlU0ArrCsd/mnPK8vHz8fr2+9q5lnsvEp+U0k5EdAZKEzbzVW+/15eOnnMq6beTdte/brba2zAunScqSUxFGC9PWre0eYKpI8unl+ZiKSApAId63tbcqGCknAtu2awSuxxaqiYIoyLEked+22ilMT5NP0wQI6+1m02ThvTfsR3e1gOCkwtoJOyzrDbar9m0tTwpxPp0up6fny/mf/KN//Otf/eZ/+B/+7fX9HVN5en7+9M032t1UR+VzeH/98gWBz5fLJSeCwFxOp8s8z5jK8vzy6fkFCVPKo/hXWGpvAbFtR6sVAKZpSSw+oHHNJaXMmcspMZ6WJbNkFgPD1y/r+1vtFfpoI2ksqTAeHSglMVBMo0A49QqADSDFo6nEBml8Wkj4nPO0LL33pvbqKZGS19Y0AJY5Hfdjq3enKUtmxkRAQkZp3ymVclqm2kzSvJzOzx9e/uZvf/jp8xsAHcfR2v58Pk8ltX5IyHas2oxEci6jEG34bDzA3cK9t2b77uaAKDkftYaZpCSSiGWv9bHyl2xWu+l5WVjSvu1MYK6IRClrwAHTX/z6z3//hx83RUKYkgC6t+pm2o7WdKzv3ZqQLOLKGZGESdWQqLVjwHHyMO9yYqJcyrycJJfw2I4957Qsy1g9qzY1c7dRH8bMTZUAJSUz79rKNOVSTLubAaIkMbNAdvd920euZ5zeWcTcUTtLRrNlnniUEgOKiPbW6jHPkwVrwNGtREhKLIlFABNJnkoKNzcfB4kRiTBzGOkgDwdnHot1TIw5cY1+28zDhbCUGShZACGa+1GNiMP77fX19fXLse+BBEi5zADATERMLKPbMyI8QLuamn/FFUPvXfuUEyKjCDGjR5LR1hUO0a0PH5WZmbo2HQVbAcE82s35q1KD4eDuY3PWmhKzeyMSFu5qtR6pZsliPcpUerV2tPDIJTFzra3kJEkiwMyTyHHUbkaIzIwPvSbAzFU3N4xws//q//x//Ff/s//i+1//5emJQMQNjLg2FBEzaw3e3t+tHej1v/+//19SzjmllBIzjWZAU7XHLI8xXhy3gXRGpEdtAsCchBJfD4AAJHI3EYFwQpxLxlEEjej++D8lZxFqqiXnTx8/soi55ZxyTohoFqN9OuWRDgkmYBIYVwUwRg/cw0GEg+NUUlpK7m5qYWrDpbFtGzMv8/Ty/DRkOBZGJA/vvXk4kwyeyugdY5E0Gm9bAwghBCFGdicRepieiBAxACOilBz20G6ysBuTYcriAbXW6/UuIk+X0+l0KjmnUoQ4/ZiI+E+03UegNgD/xP4FH31VQDiMDfEgMePjEvsQBSIQwn2AeR6WDUDCh5VkNNDjo8FpRJvokcZCf6T83MPBNIKUghDQXEdiMbSNinQIDgAIFBYmkFGNBoBjxQtkZvEwreDAqQ/D1AP0FI+V5ehBN7Oh4yAaMyPBuBwe7uZDM2UKDJBESZb/7H/+X/5yPWrtVdUjTBUhej/W98+/+5v/p7sHOANigKq5RUoMBO721VgURDACUGr92K6Yn4MTuCInAAdgIkIkVxj874Ch6T0cscPexCyu/pBiRkkVDi7y+FPg7kNzhCGLMPG4KCMoGWHqSQhg+KHiwRoa3piBGQKHcWMxYnyN88VAnqErBNjInAGAdSOmQCJGmXjEFjHINFRHBAzGgt4R/oT5JhqAphGDxeFypMG4H+m3r09xHMg8UAQiyM1bbcDkA3wEj0QgA/m4GSLisd0dOGz8eyHJh60Mh8lUjuNwN0aSlK0f1or2wiLTVOrRhcXNkJkRnVFVS8puFoDukZL01rW3UoojtbYiUUppzNVPZSpJ+nG/vb/pcSxzEZF5md1aThNL8r5bdM5TWCfrHz4+IU3EcH39JUHT/R36IcQoEyEJSW8NAPa9/vDbf396OqvpUpbT5WJm+7GjHsuUmQDDEiExjpQ4IQrOUhIwO7OrMicCCORt3cA0ZUYgIbxvu9admAkg5cySHWlXN4rkTmHYKiEp5+v1/XyaEyhGzMsci9R9XxWP2gJi9F8QYmmWss+loLuje7JWGY+jWj+ccrJaD84JEE/L6flUt6MGMnFCyW/HXkJF0ljrmcVpxvd7IwhDwumJ9JjYa+3r9Z5y7pWO1nNVmTJAJEFTRRFJBWor0wSEYT1YrBsQqVk+LevtBtZrtwwwX5ICMx6Bgemkx3F7f39CLctT8+Tu922nsJQnZOSIe7ejttb16SIeYG4kE4CvrRFSkuJmbX3P88LEXc27YUIpBSxqtxY5qQKnFlSb8oQsBAhuuB9NUibg1vs0FWLWPvgU3HpPOUEAp6kdm9memFJOEajqtWvX9vblrRl+eP7w6bvvpnk5apOUare11bbD84kAKCUkMLUmjBZAgdNo33A7ugUw9N3VgsXDsmR3JyTEoCSIGKGAjERm+Hw5TVkm9Av14/WXbTv2qjnnVremnlNJCT9/3kH97f0u0/RtCpPn8/n5/fX1/fOXCfwPf/iy31bdtqdvPjLDDO5g/fql/rH6un54PknDI5UdyCTvtbmZqg6i8zAGq9sQmAlCUmKA2/WdJXnfMgI5A3PXYRqEvVYAsF6/Ee2Qr/eaGIpQczpqQyDnPs1FtXc1HMtM5i+vb001MU7zXMpspojiEYQUhBZ4Ol0uc356+oBIn99v+7Zdnl4+bPvz8/Pb29tf/+53rtq05YnLU6GcBJKZFsn3223m55zK5Sz3ZsIm1FlIGBEMQeZpTpyBErMwQXMEToRICLqtv//93/7+h7/ufmRZUmLhCYzD0RAsjEXCTZIAjn6iIZIPWGTsx+HuWdlq8ITEgBxSSqJk5r1rX7emx/l8lpRGJ0Ugr0f9eDrR+DCOUHez7m4IkCQPlu48Z6HIzMxyfX8f5ANBoDBAQEmIDwMzAmRGYdFqhQKXqZjXZEx4u9+UAgC0W2Iihn3bNo7labnIAGNOx73V7UhJckm9tVYbcTARABHF89OlZPn85W2vB0EkgjnLKaWJfZqSY7xdbyUX7VQSJxFEDG2tHUiJgDzi2LYYCzgzd+t6qv6oaeFwC2+9DcEJgAEh5ZJzLknW7dhqbb2dLycEQhFm6aEewciAYOr9zUvJ+TlvWHPODpCFcuJxwhWR3Rt4SAgQa9f92ENHQ8xY9IIIl5ymnJ+WWcMcCBQwPCOXk1Cmpye4bxXCa+3aDQOnZerHsa7XL6+t9/50OaXEqsqIbp6EptN5nrewPUDfX98k5OX5godKtomzYFKKSNGNFKhHHLW2erR61KPVY2MmKllVo4O7cyno6hY+XNvoLFSyEFMgA1BKAO5Hj3DIRZaSBRHLRNMMUSjTsa/a9ghzwAhDHnmihZg9ABCEBZAMAFgicQBSyuCwbbdWD/AgIjcNRMJEGBbatTcLhIAIJIQwiggnf6wIXfVo7ej72o7jqHW93W+3+1E7lQxBgJiyFMyBngWZwNV672s99nYYau3atadJ5mVyMo/mAQ5BbA4EjLmUkqcagPzAqwWMrwAECGGepxklHdumqvt6N9Nu/nS+zCn59t5Vk7iwmIZppHLidFbA7od27b0HUCnL5fnD08szy6SqXbXVnTAonCPM9dhup9PZzYbNOYHRVOCgPs9uTkSMW9/u/diRmQOMUj6dlqkEfand2oEGxKlcSpKUam1hVsqEH7/bjurW3NzcnyXQ7W649d6rHusrac/fxHx5iq4K9M/+5b/6h3/5j3/8u7++73Vr/vzxIwScpikJ52kBsJ//8EOKeHp6yRzaFfPkko7al/MTscwl7fdbACOy1d187eYKwMRhLpwgnAnAtW4bEk8pYS7rfowu7e8+XJCj31etu6pabb1rQBRhImCkXHLXIUCHmsfAzbpZbwcQioR2kgyhh3WcZgTASKfT3Kyr9V6hbnur296MmTCC0Ju2Ms1lmiDUejjgVBIVNjVhqhrTlEiWv/qrpOY//Piz9p5L0eoiqfWjGyn0vVZEIha16F09AolYEhF6UAy6bRinAhEiMs0zQoDIfb0HUlkuZTpBBMGRyyQirq079gBOmQAQ0V3f3q/rtX84T+31VhHRqqSLkZuHeQCi9kZEoJ2nFDIRQAT22kw7IDGjIJAwEXIqxEKEZVpO55N7HMeGEL11PjMzH7WKcLhv6zFiDjlnImq1AlGepgSptUqEmHM1J6uISEQsqbdmzGaGo64YacjBYBZxAGCvVRjNwSOyjCwLL3MJyrW7qlV37TanGYARwMzVHB+IUhSWr+tvGsmvkrOZDUAGAYwm75LzDcEd8zQtp0vrxgEBcBxH3bfb2+d27Nv9uh8HESXBEXxDQkDiJBHoBsBiata7m3mEqgYEszCzcEKRQPBw11DtEQA0tGMbIR/t1nt7fNEI9K6AICKtDnSg9L6XXI56IJIwI0K/KzOHPSZ8U4MgayZZ3JRTmpfJPKyrdktZksgQGtwiPMxMRMa10N4RRyRWcADb22OYe//5h//2v/o/uUcu83e/+Uf//D/5z371l/9iefp0u+m+b/vtte+3f/t/+6+3L3/7P/kf/yuEGJAPJDCL4Wgwc2YaLVSDh80sgQERrfdjb+t6TxACkLZ9b9p676pJmJlKTss8TyUJ09EUCZdlEeJ5Lss8sYg7IIDk7B4+SFJuEJBE3NzNtCsT5TK5x+1+X5GmuYSNOXU01YqICIuFqykhZCFDaK2HGQJs+37b9jnLPM1PlxMAjnOmmQOGWh9SnkhixpSEwMEMwRGRKYDQgdKcPcK6JUkPZ4iFmUlwzhmIRmdUEiYaznX0ZRbm99u9DLQQQG8tWCyMcFQvgJnJoxWcaJA+MWAUvwc+skIIBu7qX60hw1424loQgGHO/GC5+AgMfe0YIwJhioja+lf95wGQHgAmcGBOEAbjJR3uIZYRt88pMclwJyERIoFbYEQ8wpymhgxIHG7mYa5gMeDVo5GceRSJ/SluNhKrERHmHhCMI0/mHjH+HZkkYqjV/8v/9f9hPfpetTaNAFP18K5qrf77f/ffjsgYOBgGD5ASYNDDeTTSazB8lD58fvzLLz9886uTj/gkAkQQkSOptrHdJgoHiP4Q5MIDAIjTg8UTQ4uL4ZIziwgbTigm1AcKGB4cMwKMcAQIGhKQBQybiEfwVxEFYkB3wuzhDsJAHLlV9Ie2Njw98fBLIwElphi9nMBCAQ+A9FcFZqiJEOE4uuRGKWHAqNIjemhGAeHhX/1CGOOlgkfQYHi+4KvvjDGI0R/k7Ifs89CwRoYcgJCARlJr/LBhRhu3NAS4RMRopV9O57atIkgYl/OSs4T3wwxG9UQSNc0521Ch/eFhHOYoNavrxkLL6TJmgXkuhBjeU0pT0evtSvycA+alZCw9hIUTu9the0OAp5cPmCftntL88um74+0PHEYc9/efUQqnnJmXZdq3/f7+Ztrf31+fn56fnz/k+QTADlTX61FrSpgyq7mrQ62mSsi5XBzEzI/tyNMThDnxWJESAqiDKAyLNIIH5iIjlpiEtPbe9N0sIcyI83ImhrcbQEphPYuLUJpOc5lw78exdw01U3UmDFwN8VyCmXMiNfJAaW3KHIGO+Hbfp8mIsjssp6WbReB4dCKiPZKI1Y4AOSetfZ7E3bT26bKcn8/HfjvlDMgYHm4MoepTEQAI64LAGV0VWcCUOe376gbTfN6OfZ5KvL9trZEq5uIA9X7Py5PNM7YDCE6nZd3269ZPeOd0lpymIu+vbykdic95WQ7VVBjRzLxMqbVIuZzn7G/X2k21R54YLFxTziSuiBaQyJMkh5O2Vgo3w+tdOdUTJmaOUPOWp9ICKWc+DiCEgCzoxIBGp8W69boPTwR4D8oiTCy91i/vW2v7tvfLy8fzh088LZLlKVHthkRIJCVv9aA8p5JguJKD5mmWJNM8W9trU86TWm+aNTbvKpIRgQlzKSmnfdv6UVNOhNQtiPjD0/nDpTyd+P764+uXt9oMCdsGQJTzLAz7esyJbm9fKJc5i+Ty7csHV/uyrrAfW1MJLYzRWv3pRxQKNQrT1zbNpRQDXeNetQOVC10icqk9+q7q7P6QfkytTJMQxWjmDDePY71dqPHlo2oXsNjsMDVMvcO+799nffn44befDwvI4dFrOGeR1ruHMc3OIYggCQC/vL42h/P5nJmYKOdEKB7oDojBTK3r9XrfVxLhZZ5yknc1QJrK/Hzpidz6d9e3K7eMhBf+8Pyr5ywZ0JloX9e3623O2QJqHVlLEoEkRCCKcVpmyYmIwTUChETD1tttW+9/+PGHf/8f/p2X9s3HlzktEm3N7AABAABJREFUiOQBBIkkITKEIUbOiXn69rs/a021Nwjw8G7Niy4fJ18DHaJZC8CMskiA7rVv2xoOvR7g/vr5l5ePnySVJZwQe9t760ueESkA1HrEoziCkBHQrVoASRIPM8s5n04LDzBgBHkgIYYjRJ4WJGRwIOKUiTFhahrSe+99nqbTcrLw69tbyjJP8/vtnTIhRxKRkBSJCq24OSEzYkqCgETNgtHnqeSUcpK396tp79oqYKGZwsDxfsjW27dl0mZCqHN5Os9zHrSQatAifCqSEvXeMTDRoPipqtnokCREhDyVrn5f13Xfx56k1sqEqZSo7e367giS8r4fx16JKUKB0btp7xjOSOt9JUI1O45DVccCcK/VUAHdWyAhM2PvWltETKVwjklEkCUlZmlduwanNBc2NTdlBBZioqmwBkUgJag9gBpxnk5FK0ri+/32xz/+8Xw5p1Iuy0lEcj5nxklorfr65af77f7dx+8IkYIESXBUhqJh2YFqd2217luth9ajHUc/KhfhiftNW+vzPAPg8N9H3cOVOUWrwmmeL47Q1ck7MWPOBAkhku0GZCjLMs25tHps9317e4OACEtMy/nMXIhEI8AtPCiLRyCzAzkJhIObefTeumqouj+Ocb13JOko6j1MATAgxgikqoNuEG61az321g7rrdZ2v6/vb2/aVMqUUunuAHxanjIJuBJGb1Zr3WvrZsgObm6WpyQ5Iwu5fuV/UZADQPcWGbA77G1vR0xQyimASIQAzUIkXZ4/EiV107qisFuzhkxPgOjIAGpuPZKP0zqn+7artnpsqhoOKU/zsjx//PZ8Wnrvdd+tdwAIgiAgVWtrO7bb51/WbUtJ2B0g0jTnsH5/N5nNzXr3QAQHcO0G7mbBZX76+CtKIjnfXt/mZTkt81+cT/f7XdtRj/3t7T3PvF4rmibTljIzXMoUpdQlzpK1N5nmdH5epiwpH82N0vP3f6E//9Fhn6eFwMmsAD0/PQFEBoBeDcURQSAImXOBBADW6vX2ZuFCIjw7QDdT89oaIGUZNBdM00QkhypGdAfQqLUBci7585e3bz5cMIz60VvFPE/SCTGJuA3vee66xajahdGIrIhAWCKc82RA7tpbA+LWu/fmGIf5lHHfG6l2w+tt83BiBoBwIghteymFmQBirZ0gSimHmjZb5hMgJklF+nfffPzl51+qWwbpR2OCbk1QCJkz7Leqau7JtHvvve7zcgIIBPLAHiAYfV+7w3e/+cvTcoK23tZtqx0CTnNJwrfrG2FMRZDJVDVcRMhUkaNrmNZWt+Ped3qa+ZctPMLq6iAeMfZ87l7rgUSuziwA4GrMREDCLJIICTj3IRhRTPM55UKSozdiWZZZu7ZaSWSgqZgopeTualZrZSLJxdzUrJRiarXuklIpk2rrteaUa2vD+PIYM4ahIHw4XHo9zAMi50RC3M0pyejyLiWJlFRQzUdoBYkJHuwJCwd7wE2RCAKYGYnVrPVWSh6P090D0dx7733bwv3oRvcduSDytm/3+22/3wfKMEayyIEiiCDCexiLAENtNigw4x8bYQnEAESksXWuvXVtnJPIANP46Au3MHAgQo+ACFMLABEe6sJ8mj3ctBNn9zEDY6s95cRCqoqEqio5DSFbuxHzsdWnqQQoMy2XRbu5hfYOgZIFiUjNzaapTCkdrQlzyYlFUpLEzExDDwEYAqUzS07pq3J0+93/67+5/s1/N50uLLkfe6+bCD3Np+/+8i+T5EGW/aqO8UiTae/+4Ar7MC3Q8B2IuBogtnqEm/b+Z70HgOqI6ti27cyURKaSJRUcyIIkww42JIycx10dHjGM5tq7uVFKxKM7XiJCJIlwYiZCYqp6mEXvBwCWnHJOSp2YiCjCMDwxQWJnKiV9IK617fvezZIHgSNiFvEwJFIzggCkKQsigHUb8A1Ec+zdEEBVa1d3167TNLEwwsjsgEz8pwwPMROlripI7tFVL+dzzrmrHftu2gNQhhXAARBG6mr8x+D1WgQCPcAmbjD4uxHjtsSvZKLRfzXECxYCSsOVTw+33ZjJCYDGX4MARv4aXGJCAoIIAA9ilBEdGjRnQh4nRuSvXpeRXgIHc9XBngwb0aChAQCEAYSNDBo8Pg2EYzhPRvzPPczVPQaimAXRH5CJAHP72qVHQ8lCJPzVd//4X/7H/+kv1/049tb7A/TjjuF/89v/LkADAhkGti8ImMDhIa58BZWP8zICEiMQ0k8///7Pfv1P1R0TuAdRDKxcmU/jKrjbw5E1QObD6uRh4cgx9MoIQB7ZqAFeMhh2YkR7MHNGsO4r7edPnGwPoLG5DPBhPxoJNSAG746IJPSgIiK4YQAQMiKywMjsDakRgWCE3sZGd5jjxmMem4SAoQeqDmUvDD0e3HEfbCMSjvhqRKLHazbsiggEgwH18JUNZXDoisEwPu3BLPABycYYMUZEHKn+QCRkpq9EoXEhUODhQwpTxVQCh8dvtG/maQFwhzCI8JTUBovN3CMUrDcLG9ndnJPktN9vkss0z5lx31cCEEnzPHX3bdvzS5mmRViw7YRmTbWrTBPlpUyXVneww73Py4n0QgSupq26Kh4bsYC3fX2LdqRpGra9dtz70U8fP7pHXW9d2+1uIkLWiMWASHIPOOqx3d62bb3eb/PLd1M5R3iSxLNAuLVtaKXu4DGsjBxI6J3VZkl1pI+IspTa9ul8+s2vvg3EW+tIak0zIUteZgSrs9B6xNFdu9+09b5u6Xh6WigV66FIIEmKC7NwSjlu62F+m0otOQuxB3QPN5sK8lJa1SRYmwoEEYJ25KHS6imdS/4O+0rMCKBm6CFqod1JkHDf9xOou4dRksTC2kvtfbv+mE/nWo9lkonp3mwB5JyRaL3d6lFTBldDgVJyr+ERWrcyPS/LguDt2CAcw58vT/f1OADCVdURsLWGT8vTMt3WvXVxM5C0rbtw45ymqRxNu3pOyqGcE0BwkjLPR7fcDiozZq41mrq5gxkgQa+p5OAErdWuicwBLAjUZJ4Rcpj21pnULNS1d13m+cPzx1/95jcJraszi8Nae1Pzo/YpFPUwIodApDKVh+ew99qUU5qW7NXCpG6Q5jxmdSIKt32tpkqEnHLvPQAuk/z625NgXF9fb7e7hxWB2pojpZLddvUjIdCysEE5ndr9PUW7v7/++Puf+tHPU4JJRHxj2Pe6HTUXyomIudZKVbOgC5h1DJil4SSB6WgdWdw8AJjJNQKh1wOZgVB7hyRhre+3eH6xNAt3wljfXwOJSkII8cbWf7xutTUC2LdV9Pj0/a8jz2+vXxjc+vEgPSK2fYuAp/NJGBIzIYbbPKW19lo75kQ8qkAAEPbaam1AwpK2dUMIoViS/MX335zm+X2rf/vDj6fpcj4/JRFi0lZ//7vfr+v24fnZB++mK0HQ6CMiQizTPOWcotemx3A9/PT5yx9//OHnX/54b7XSen5a5jKHLewXwjTOSghOoRSOnFVVROb5BNOcp9KP9dbeO/UQ9KzHrU5wUtdERdU33AUFBXRrOUli6r1//umHMp/P51ODCJHb7TrNC0t2N607pYwswgxlImbtBFqb1vf3t+vtNiU+J+Eyh0y63wA6EQqnUf07IucQlueSSzGP231lwrnkbdvyfL5db+oQrQsnJEzE0Cg60iLCgijL6XS737PIh6dUUl5r++nLTW34s6HWhojmhiTMYpI7T83R3ZoaRpirapDw+21rJS1TMXciPC+FCYXKBlFbB4Tqobd7V1+WMqWMCNf7XlWJ6Ha77/suIoREhE5kYYraoX6+/ggarpTyNL58VKPVxhij3Hdsg1e1/TjGF5/2Xt1jslrVDy/nEu6MlIoQQUkpz3Euc+EinAwI96OqPs1zolA2VYERmm4xIaWSEcgA//j5y1GPROm0nKbTCSA+v77+zQ+/+/jhnEXep/N5uRx1D/PX9+vb9Q042q6EgQAsSVgcqDWriEezbdt7a9rber8ex920eVUA3G8H7AgeYDGqEqzWsNGqlyLgqI0iRhTR7BDCRAiEAiigXTWmZ5wmFpaU2n4HbZfTpeSCocPxTiymqq2RhxPbAwYw1DmFCAiFMEFbj733nrLklNCsx+GOaj3MERyRIGC0Pw6D+LbtW63bvvfeXVvbtta196YjxzrP8+WpdgXijEIAbrHVfd9rrUdtPYBkDgQtSbCIWXMzABDOFta1gQMn7F4ZpSN0tFobAgtnyQTExOhmxMIkATjNyzRNzHh/f0sp12PviITInLwdXTfjhCmlnAOgHo3CmEiSIBETgPX1+lr3Xa0TIhGAORIGOmCE9y9v10CIiCmnfLpIKcFcXj5KyvNUPn/++Ye/+0PtAUholU0B6NiPp5eX+fKCRL/89HMBXJ4+fPz08eO3GG2r2/Xv0h/er/fTNENAIhwTQoLIVuen5zi/HL3//PMv6m7Az08X2rZ1b613IvmHf/mXSyltW327cejx5SeWdCqTZ+rmb/fGeQJAC4owJgm3IAyDxALW3Q7wcI9luUzzCYDMe2AEFSRcTpdjW7U10xswA3Ywvm8rQnx6uTw/feitr7237oGopgNe4dEZMcLBoEBYhBM1dXRPQlk4OEN4hHa3rs3dza32fl9dODBkfv72+8uH959/X+sGQcjCMkU/vB4wL8QsbGY0z7Oo76zEVKYCFmgdrDFBq/W0zORSr/V+bJJRZEJkSqNoFlTNXI+jLqrJIwDDjMHVoLX+9O2vT5cXsG5cFGqzejlfEuHt/fU4tuV8meaFEHvvOU/EgpxCm7e2b+u+rRR6dEkMpzJdq/ZthQhrfUBqcilIrAGZya2DKwIhUF5OBGHdFKLWIxDd/XQ6j7oo7Z2YEfA4agBg79FbBIZr0AD6iggf++EIEVHKJCkPboxICnfto0Oaj9YC4dj2nBMTSUoIsG1rySWXHGaOBOjbvoPxvMyIoL3lkpFG611MiT2JPXb+Y+6DknmcLcfo+EDzAAJSP9ox6FG5AHNv/Ti2MNfe27Hvh77ft/tWr/e7NlXtfyqp0a4AUXKapqnVo/UeESxsFt2qullXER5jWBCFIyAFjJ2NshMSgBuqAQIyRri6I1HO6au/Fuwx9Hnv5h7TMgVGq02SDEXpfDlt646IxEhM3izcwwCRVDtRuAeB77Wdny+EOPCxT8+X6GbqKYm5neb5z351GrXnBHi/35fz6dPHTyKMX5f4o8mBkHqvA0icUxphkn0/jtqenp6meWYWP021zqOMB5H2enRVN0PAMs/gLZVsaoPxHBHD3kWI7kYoCKTW5mUpU0GAcHNTJLTeR+/Ul9dXHZ2gkhCRk9gI0QQMSQ4CAFzd/MFW9ForhU9TyTnP8xKAx7EzcevW1XB0RhKXUmQE98yHOUF7T5hYOGJULEESVnV3I4hlLkRUW7PeUUTHj3NIDMuUmVBYRkJNtZuamhMzII3CqUc80CMiaqt52KyJx5o2rAegmfZWiWXcukzUGlzvq/bu7swcpkiEmR4aIuMD1zw4zf7ABiEFeKh9lW4CICJsxHgQgpAQDDEgfGS4INwHhWcAZmK0QT0YQ4jIKY1np6pOJGNChzBzY0aARxPfMHUMvFEABYSHEeHfNwLbAO3CcCfFCJrFaMZyxECKr+VM+KdGqmEWevhd8KGrjPP7OHVrDHP8UJMCCANB1f63/5v//dt13dbauiOiW4uwsO6m1/e/Cxhi7qgTpK+P3h8OJ0L42tgGD1w1hMf79TO4cprCjGTUgbF7iMyOhjGa1+Nh44oHn9nCcZiYzEf8NDRgtJ0+UMzhw1Qs41m4a7hDOBILQiAHjKL7GNcUEYGZIpyYx4tEBEM3JEII5IQWYGYIMaadsex8gHDG0QJxKHBI465HpHhIOV+b0cKChkVoeHUIGSki1B+woAfC2x34a1zQAcGJEQnACTBw0I6QXIfvFYmGp2vEDcHCwnHAHAeViQhYGMIfYbd42JMEkYjIzEgSBJhaZO+qORdJGcK6Pr5mUs7HbY0IH4Z26+NdAUGmOs8zPCBMEQDtOPBxv3k4JUm999badtRPH08EBhBtu/fWIeXLy1Nvh7c9LXNIru/vRwsudD49Ee/dA5C2rW7rpq1OOZ+eP+VpEkJz7n116+fLC2i93a5ffv5B6/7p4wfG4DztrRNsXiQVIYze2k9/9/vv/vwv8jxJntN0Wt8/j8RmO44kEvMEpgrh7gVtWaYecLTee81JDIAkQ6DkidzqNN3Xe4QRs9q9A0lK50SIyML7XrvG0VptqOCXF9lrReF5WZIJIKOqEPppXreGjARQ5hkiqA9boaIrAux7Zwp9OA0waqVySiW3uqfpxDm5aQCdTpdtW49WA5xTGWDw3jRMj26SSuZcJn572xOYay/LRQMcteRCInmaE5GU+b7+CB04C3EuSSEMkSl8gENzym6hwRx+HP1yeVL38IQkTn69rbmkJdOUwdU7iGsnFo3o2yFJmYsFtu6hncSwnLD7eUq3dbcGyjlC1P2+rcC51Z5FkFNrymwWCI56bB0kjfLIcCQe/Xwsqeth3Qjiw9Plu+8/PV8uSXDf7nu1xEShaN17R6yIS8rS9tWAidBUS85AdD6fkGXfa2s95TLNJTDQtLsRi7fmZkkISEy7qbW2f3O+bHv767/7UdWWLJmjqQGEDI6/u1o4cJnSdJkTmk9+dHl9e0eID5d0u66UUhCgAAoRZk6gRIielhTCNp85s3dnUzideS7R8E+pz1DDsbQ3R3DtdRLxUAbca2NALGc3b8fOTJ2zHnVKPuU8eQpKpoBhXe15mf/FP/+npw/fHLXPCdZ132sN8A5Cfqz7Mc/nLORhw/4jjO5GLHmS0afwyNwyExIT5ZQk8WWZ5ymZWm/7VEqZz3/8/Pq7P/z4r//Nv2NCRGDi234Qy2/+/M+WZdqOZn6XpIPuxCwiVLVFQDuqX6yb3u7Xv/nr371+/vx6/by5KWO5SL1b0ulyekY11x0IxJOwoPemvu2Hut9v99v9dj6f7rf79fZKBUqeI/x9OxKXb7/5xiHux42FnQAIzy/PPdfjvlurbsosGP329hko5Vxu67rXvpwuEN7boaoi+XS+pFwC2R3MfDuO19c3AEy5AMS8nAwT9D0oEiGLACcPD5IgQAM3y9O8lKksl9v1zVo9jrxtN7MO4bVaSvbP/um/YIpW+33dhQQCwp2JEZAAHCSfXyrccjnq/ei9E0JimfL0/PTJ3Fg45xQkQjjaJ4gAPYb0tm59P9rR/TRPExMgcipcCFja6zsEqLXjOEwPibOcLm/X2iLyNA8WgJlD9JKYIJnZ9XaLxZcPQgmO+477PJEIUxAhRBIG9zLNLKym7agikiQRDzut1+4VbNs33TSnaZ4IwpZpRggRSQkl85wmlmGY0n0/3HROiYXFIixAzHqbs5iGBTLQuczW1n6oZZ9SZoyMfO/VTWQqSw7r9y+/HKrx89vrfuxIEYqtHnPOWARQDsPVbK97q/XYtmO9t2M36OZetyqIpcwOuu5rYmAuIgzh5qPMlALQIo6m2iqCEcmU85REiDQis1gDwlTOz4q+Xz9XTHW9cz9KziWJMCfoqrXr0famTVNKRAXCzdGs1+1dHYklCVI4o50m0iT1qNejEQmmhCSDX0mPvTp0M/fQ8G0/7vfjtt639d7qIeChHQBj7CKRCTFnyVNxD+997721dtS9th3A1eLY74WSZMREyGCHOjgRCGPOUzjU3pkoUAOCUkqUZcoEGNSQGYEBkIm16/Xt52m+cMmlTKOrFInNPIiAODAcCYny6QzICA7hRBiS0FxkAD/IXV01IKZpTkLWD0SMcMJE5zMRbeYpp3q71ZwXlOcyvXz8ONqeydrz5bw+X95eX9FDyoTunTlhcPhpmf/4008GUKby8ePHXCY388i9ttNyfnr+GOZtVKdJ3l4/m9bWmmL6OE9OPM/Lr371HSBOqXzzZ5fXt+tlXu7zLCzYjtxW94NBZMqUiNDNFO04JekpAbCZIjqEPeYhCNPWjlV7w5zKdPr2z37NlCOiHjsRqta6X7d1dVfyACkynTEArKHH3vTzL19eJn7OPJp+mmoqOYu0bWdmL3PfVg9DQi7ZzTlJtE6UtJtZbb0hIpMIgPEYd83NnAgxRGKe8p/9xV9t77+st5uZKyjnZO6ttpxTIgCn2nSaJmS2wAj08P3Y933b6wEYR6thfuzbMk9h6O7AlCbR7swE6BFQj7X3XkwhQiiCkHPmlPM8hxkhamCzOJ3OHz88ayBgjfF24eTaShImUAAw1bbpsVk/yDRcD/P7bhQrT7PW5v2gVJATA5mpJCFAEQZwZ8mAXBYH6tp7eHfwAO/9dDqVqezr2gaQJqXj2Htv+CDKDt6/JnmkVIZD6na7I0Ctlb42S7u7CIdbVx+d4L1rhPdaMedulktmQg8nAALzCE7JPBSodQtk7UrEyNDViYEgRoaLREaX5XH0LMRJ3GKsm8f0PSZNVW3dWmtm1nszs3pU91Dt2npTq8d+bbXkIiKA4Obu1lpXs5I4CWvrqoY07Cdk7jpo58OFwQmRAIJFbJglfJgkdKzyozez4ETEA7b6wNVas8HSBgQHM41pnty9HTXlNM9FVYkf3qg0pzEGjYxMPSrTIAQFAZh6aAjKNx9epjIlScyIY+gy72bzND+/PE+lgLuZffvtN4SYS2Emd08iSNS7IoKpMqeIzgDCI8/Apcz39X5fN0CaSniEmwUAIfrwr3WLgdc+DkIyD4AQptYfk5c5IqL2LikDczdr19vlfBLhR1c2kEgaJXEp5b2uEBaAIgnNR3TRzNU0IphFR2/6mODDhXCezqfzqcxz7+o2uqsCw91BknhEU++tF4lUcmGRJIRopuBmA5vAFAMNQ4/2q5RLSgVuNyREEoxIwjmlQCxJRDjM+qDqEgc5WrTemCWJAIinPK6Zqg6RdJwkHylEIiYcmAj/yjWPoSMS3e837U4UEGSPDM5YnQAADMD21/sBiIYFxQYgiJAgIMIhaMCaA4CYkICRkAFw2D6ACIgI6NHRNKJAkpKMDhRgJjIKJh7hm8FhJvLwod089Johm7pBQAsfVYcjWQX+2NgQjcWP22P+B2Ye6Z6HEsFIA9Q7fEYDxxOOEAaILISI1hwfFfHkBh4Uw0ASgR6c+J/9k//k5dP3r9ejmz/eph69N3e7vf2oeogwBD2gNQM3E+AexF+NOwARNDDmjw5aBAzc1rflZQEkHK2rgMhYpsXURvwRx2p5cHJ8EHMeLyp99fE8artg0KPw4Y7xGAlAM1MIAJBECOCG9NC0Y+Cwx991BEJyAGR0G6E8GDBvRIyOA74+KtvBY5DPwkMy4yjOfahPw6c0mND4VZUJAEDGUSIX/ujcQABkCoevvWZfcT4YboND/RDLHGBoQDGKiHxoO3/q/kOECPYRSQMIQGSg8ToYhXu4BcYwtjkRERNESE5JTRGRWUJ1uAzjkWfTXg9CD4dufhxHb01NeRDgwsJMRIiGRZSRaT6dtTVtLZcZGV17b80iwowRVNtx7HXfpkRM2FzR1Y6j3t4sIky91vW+N1XKRU7L/PF7Pra6bupWzNfVhXk6LdM85ZQ55UC53/c8r7Qsy8v33ZE//+HnX35CkacP35KPNtqkQf12m8/PSL+st8/7euHyHaesrbqaewdtIgJoXndicYREVGtTihj8KKVW25xSc9JmOSEBpMTEstXD3JGZrBPEfLoYMPUAj8RWzbva2207VNHofJ5dLaVEKXePdd9hOlGCbW/nZ5mnpL2zZI7w5tqqOZMQApZp3nb2egsITFnK3OoBrUoRVzOE7ooIJKX2tjB7kAjlean7WgrdtsO1TfOUhFojtmMuLx74y31nsKl43XcNf/r4TS7TUfcp8/X1OiWhIDP3AVEHCYTmraTUamzHUatiUCKlLEYSYb/88vr9h3NK08vLdL3v1TD60RwAsJtyxsHYs0a9WcSWppO2NmdRhRxx3Lc4bhTh1pCSW2MWEfEIAaCJw93VujrjA8HVahOR6/291jUnef707TyCgeGJMy2z+7q3mDLvOwhja6b7PbGw97rfUpklDgi1yMSSGRT6wYmITpfLtq7wNRDMEeGmFgymhwagqu3d/sPf/dK7PZ2XX398IgB3owC3bl2RGDz6sXFCtr3M/Etr93Vn0HJia62GRz20GxBNU0YK5mAKA+AyWTljWUAYvKualDnmM4ObvWlvMAR3SuEKrmG1iJwvZ6uHmnmS+fIt5lnQZJ7A1Vx4wiVFR7dcXNvRe296Lulf/NN/VOY56iquLzO1itfbKGoC1e6ALKPvF3LJ6G6t7oiYpssygxlKcgB0U/U8TQxBKc8ErbXjOFpthNDFofVPHz5cLk9Z0n09fvjjzwCgvf76V98+LZkZ58wEOJd8W7daa86CCNOlOPnr/qXcy9vnL/+ff/tv9nUzMxPRgFZr3auwTr+2VldGwfC5cBLnaMdxvN53w1SP4ziOcOjdwu3l5WNiIQDt7e5bymmal/PzB/75h6b9qL16O+UTEaVJ1DRTmZZZJGXy9bh9/vlHALw8PU3TgkT12Go9pmk5XZ7Ol2cEcOsYdhzrfdunUhDZpPDpA7QDwxlx8PhDK7gZph5gvU3oLAJlzjlPOetUvn0+16ntXe+T3I/+8vHDNM1zKX5x85+16Rj8QtuSOSD23v169YgAIsIRrZ/mvCwLszRVdx+jMTMzYY5i2j2ASHrvY++6rlurrWR+fjo/pXkq5+X5U15O8MMPrR8T02Uuhcm1m/t8uiynMwBwSoSRU8o5R8S+79u+MsHlwyInKnF6+vDxgdFOE4kc67Uf+7ScTDtC7CIAOM5a5/MZIGK9usTyknaAru1EcxASoLAQEyOogSdgoIEGVNPeWmJKU2IESoQpdcqwNxFACws4zWU/mkbUoyaieS6SUjrlVmwHL91m4du2rntv+5HQu1t3WLd1LpNMRRWOqns97rfXWu/7dXULtSaCo/cEkkQ71EIIcpk+fPy+5ARh7gjE8ChefhSiUjghnpZzyQmIWJ1A92oWJr2qaphBSkGpLOdw2GubptJdwoJCS5aceN37UVfg7gC99/X2BkDzlKfLOedEnE/LrNbvb1/un+979SCWlIVZmHIp4aDuZtZ7v263n16v2s3M9tt1rAwf5cIppWEIPp2X84VZ1Ox2u5laQAAxYSYKh4oUSEBEnElNY8CF0BwQgzhNPKD1o2OULXOxHpwAo7sRRiLILIlY1JUpWju+vH5xVYaIdlCaiHO4QRiLOFDv6qFuFqPmAwXQkALDBxqJmJ+eL8/Pz8e2vn+pLESYUs4RXsoUCGpeDY7b+nbfAnyST+Bu9Tj2u1onhADqZsv5rKa91dSO/U7b7//u/XYPdwoI1dv7OxG+vb2+/vKGlPp9ZwBCms7JtQcS5tzUovYvP3+518Yi217nkuqxbfertdbWLefiYUfboR7TfCrLicrMqaCre3fMJ+n3tm4hZoG6mzZiBsTaWm+fE3pXEJJP33/IpezrBoEwdIKw7XY9ttWCUuKlLIJAiNbq6Mbu1m8YgGma6NPLN6rHWpuIbLdbMycAlnS01gzmIEhCZqnM41OfgBJzaxXIp2kK7a5qESllA3Btqj2gBOPTx+9STve3d2gNqCBSM4vDl9OEkvajOWBKiZHMox+7aWemnBIS5Zxbra13ESEms5CcA5EYx9ZRzUi51aPuK0Jg3wOp9+bIeRCyCf04CGMq+TGYepymIkzmhsRApOaOZh512/qxZrR5Egh2wO3oR9t53wEpMJlGKkhJwkdLbBz7kVMyylNOwFLXPSC6GiGUaZqmZ0TovT2sFr21VsfoQkLEzEy9Vh5/BgAAzCylNOVcexdh86EIgBCYWspJJB4F8EzzNG3rOmATaiYp5ZQIAYmiN4RU5oUe2QclYjWDANPqKYkIEnqAMAdgztkdSYSI3ZWYtHs8hhMcwMcI27f7sOmp+wP0EQ7hw1tw1N66L3Mx8zEvhwcjEqGqNe3hTkCtq7maDx40DfYzE8OoYnV7dDJHxNDleiemlIRlUE2DBBHx2I+AcAsmHvNLQOQpAUJrDYjm04JfRyrtKlkIiRhq23tTrdprDwkEZJTTSdD59O387advP3x4LrmUXI7jMHNiEuY8aOKEKcnXVIQN/r2qjqR0zhmHNo/IFM2tqwME80CSoDDlxPt+DItAa12YxwjPRMJStQaMLiqL8KkUYaIyqSkAxEM4IEDct23olterSxJmCVdGEqaUGJCneTHz9di19+Fz6a1KKkTIwfF4hYOZtKuFn8/naTkRYkTU2rupq+HQWREBbPgUws3UOiF/5SGPmKiq1aOqGRBNpeTERJhz4ZRZEgCeL+fWegCkNCOipDSmd23dHggbJ8ScS8o5gCxCRFjyyLWwiLuD2YOtazpuz0BkYmIKc3Azcw0TZkkyIUD4tm3WOyASkbtDIA0lASIQXUdI66s75GsYzIfthB4lVjC65BEfrH8hYgIcbeDIzAD4kAOGGyVohLkGN90MAxyROEDNeu+uNkAvzOLgFDTeaAEIFKb24EUijnb54d8ZYa5xDR7dWwAI9KerCQHOPpqhTB0BwyD0sdOBCDcY1KOIAHQD/+ppAQ5iiGB01//l/+J/t61Hre046ij9MlcMN+2//PRb5hFPA3SMB6MGHkVMMFjMA5EN7j7ycSGETCK0bm8v3/6DYLEAGCVeQCKTWxADYBCRO5gbjkAeABCaOvioBI4IH8CbYUfxCAPPiUd3vA6g0Th1PC7pIFcAMgiHD9Mj0OBjh4a7ISKKgIWZh5uFPdhQg2A00nLx1UBFRIQ23ESPHN3jw3IghYbVBwLoQWGNRxIPIJweDq6HfjXYQsCIg2FNiD4wSiMQw4/eM+ARTGNwcA+g8YDgYeuChxw6RMDBwRrWQv96hRkpEISFAeDo+6hOgHAIGQphuGmviFjm2VoXoXnK91URAwkEeIhg4/0xctdE0Ud32DRFBHFyP5iFS+69swwmnRrllMvp5VNpDSAArPVmvUlBIndthnI0+/LTHy5PH8r5WUzd9XRahGJeTjRKp7TTlI/17bP29vyynJ84DNFN7b5uUvZyzud5CfLXX/5I3r/587/6q38+//W/+3+37Sofv4Wxr/De99skVPfDbDRaDOFUUJKa6baS6VQma3gctbVmbiWnkosQDuNdDyCkqUwE4UBEgn6k0cDXdXxEbvedWWKDBHEKYEoIWHLZAyzQAY6uL9ApUW2ahLYaEb4riLcsbF2nkn2ZdV/JtB01zBA8XAXBtJl5mXJK5b4P3hUdtQcAAqtrEjaPri7MPE0p0X2v81SYMBxdtSS8H13evzw9PbVfWrQ+FX57v6ErQEgqralaC2IgOqpezktRUTVmUaWZYvfOadLur1t7ukhhnKei93tIRnVA9N76uso0zx7LxB1KVw/tAZimEm4WUav63oAogiCidhdpJQmLADJ5IPUAJg8giYje+4DbM3R2c5qny8vl+TkA1/3IQinPyyWBm/djztQTaycNUOTwHm2H7ltv0aDgaoD3XnvIUhJKSjJh36qGSEKifhwPW6c9DM1m/oefr6e55CS99XttS5lFpPYegKqqriI8n2arq3H8cO33rm5GwCapyYwzRDdGDbe8JBHA6CgIeVE5edDzy7Me29bIyJqBHHoc1c0QgSGaWoRnwg62t366PKVpybl08xNLC3JtLnhZTgGGu1ofW+gAbXW71UBwvZwvaT6ZHl1btApEJWdiFhE1T6DIBTwseknJ1LxXIjL3mRKGsxCRO0lvqu0ICGIuLGzee1/v67rekVBYBtEmkH7zm19r1+fL6fd/+MNe8pRzhCfG5yUv8/z5uqkZQpQpOds/+B/9xxTenf7Nv/7X19c3rSo5lwhL5f76dmzVUcsFr7erNfBuS6ZT+gCBHWDtpoHtWLW1IgRlFkmIspQ0vNNj3TpaGcPim09/3ur2h9dfjnoYaGK8nC/ff/PdPJUICqS6b93ewo2I9NjWtj92aL1fa71e36ZpYWLAAFciZMBjP4QpT/Pt7QuFjkYNUxPz8Z0AmMLDWuuExyZMjBiMPs8Toy+Fnx2O8/Tz+3Yc7eefP798eF7m6XK+vL1+0dbMNDOcyrKcT4C8HrXkoqraqge6e6stJSFCbtTVGFFE5pLH4Gdx7z2QPLEgkWmMowUCXG9bLsv5wmWa9dhOp5OZzsw5AgK2VgE4HFrrrg1cP7w8N20hAYFRERCx00xPRUp5nj8+f0ipqOptXQEApikRlnmuB6rWVErX3qqmPOWpENJ9X1NKLZL2PbIBxCCzppQCUSRSxu7ea+vdjlbdvanifqScUxYiShOdRDppP+7uFcGnkpalrLvu2xruJad5Xg5rc5aS0v1WceJpuThVEW77u1o4aG3NEM1d9+12vV6vb5A6OUxJMGFHtOh+xIge9K6SiBnPLx9fPnwUZnFDGucNgK+VpTWIOZX5nHIOQNVu7r31vaOwtP0wj5QKAyKyBiG6a9/3vXan6EtmxEQ5CUVW7arb1t7frwL44ZwY1LWfP37Mpaha1ypI3elvfvj52FYSSanklBgB2M3htm0/f/78uz/+7vX1/XL6UOYJApbTeT5dpuVCzIij2yElSUTg1q2paSN0iMgsMkvvjbyVKRMxp4QEYY4MFDjOf6ogOUtSQIUIpwCELKJHO7oSReZJeHagnNKwJpXLS5b58y+/ELggIAulXITZlAmR+XDSsQAEACAHAHQkQmCRpOao/Xw6nS/Pp9MFwj9r792neQbAaTrlrC0AAizAzGvX9bbepyKM+7G3o223960eR+sIWHtrvQfioaq367bVlKc5p/r2+d++fZFpSaW8vb/15pKStSPcc5JuZkCh1UzVjJButxtxQqF13dCnxLQdVd0dKLoywFTy0XjTjohzSrmkkosUua6HqxaJ/e1qDgPkMdb1zOQBDgRoOeXl9Ewk4+3GnK35JIIvHznPvVYMYxbrPUrCNFnv3XxOZT2OQcdPrc6lnE4nRz7W7Y+fvwgnEJkITd1blSSPgpwAlBwRpTwB3aP31o7mqESImKaCXQ2SA4oIEJt5yqfLpwTv78fRQjVaWz2qdkyzWgANAA6BG4R6hHkw4Txn13Y+nVtt8aBdBkQIFc6CiPt2TFNDYnMjYQja71fQwxAlSQC4aduO3hoEMLEF7PuRhUtJravgKLMKd6PE2iroXjgowN2yiAYAeCKJUOIC00JIZmNsITdsrRKxBXqgAbo5IgiTG2Si89MTl6y9I2RCcrfjONwcwFNKRDxIMR7BIug2AKug2Gp9mA34IbHgyKZgqGoWFkkBcWzrIMtEeMoFkXIug4ELQB6gqiToA5ZsCgAlT2MT4dohJxgNSyJhpmopSXhI4dEARYweQYGDDRxuMqCo7pwnjK/5l4iwhkBMNJds5q029zFHhwgPdLFbtK4jf4QIgWThYCDExAJEPtgaEPB1/9+/jkjm7uAD3pGyBICZBxgwgAMnCo/WWnjMp3may75v2n1aCiGu65ZT7rWbW5kyEo4Oz97Mqr+cLqfTiRO/PD/Py2lKZYSzkEiYp6mIiJoxcUoy5nl4zI8YEL1r76buGI4I2ruqCvOYrgMg59yxu5uZujkJRwQzH+2IzUvJiFhbLaWYdkQWofVeVQ3nkiUNPlSA5JQkSbjXejCTD0dUb2PG897MA6AJkyGpoQMMbnQupbaqFm6qzc1jEoYHpxrUjZERw5hTktPpIqVs91W1mz0Y0EnSA+MVgeDW20gOE5K5gbseB0RYxLHX+7ZdTksuuXVlZiJBIkAaUKLwCIheO2KkXBrycdSJg4jUARABOJAMgQmZKI2gy8ixOBCLJAoPetBsE+DwBZl5jDife/Ru7taxC3NKfL6cc0732721BohmRvTI6g05we3RiQAAYWDo4105koNIPObrYaBABGa27sIJBRBHe/cg7ZA/XPHD/zQwWePXg+ECEGGM7uowXjsDQodwBwBHImZCBAx81GEBIDzeZcjDF6LuEODmEB4EGOCBQ6UK/JpIcocA+irMANKDETzQNgEP3M/w0iABPNxFQEyI+N3Hf/zxm1/9/OVWW+uqpupuD/lR29uXvwUMBwPHBzkMAf7ExoaByAEaP5HQgsZHd1fFgttxJyaDh6TlbshY5hNJgVD4+pBHDxdaOEJgIBE9vgXGRtBcAQhg1JuNli2gr2TuR5MWBiATOriHjyv7uPfB1BCRRuQV+U9UbyIMIgxAQkIccvSgIo+PZQQ0dQCCeNCSkSEGqWfcVkQxfntk0xRGoM3Cw+Lr6wVI/FDQI8Ji3GZINJR1hKBh8SEkJAMICwsnAkQy7RqjZexBLCLAGA/gq1sqAJgZHs8XkXA4w6TXau6jfCGXEZGl3rtIV7U0nbv1rgEA8zwdcJxP80MhRNq3HYnasZNbhIVFAJSSANjNWDIilsVd1UxzzpzKvq6MxB+WhMnCAjWX3AwB1FpDklIWd1D3bdt9X3OeT0/fuN1E8rycpyTEIjkT4bHeT4yYcq0rXH1eEkkwswiv17dyOmOeqpDvt36s0+lpP3pm+e7P/rxeX4lgO7Z+9GO7l8SO2PsuxGWaENEBt9v9Mqeth6pi+CTMQa6dJQlg7XZdr4wQpiRwNIXucl7C+vvbqyohuoi4U0FEdG3QzZtarc0lYVWCWhg4CTu5W+taO3953yRlAnCKlKRhjlpfb/t3H077tqWcXp6WO2IW2urRj/rhw3KoTSwc3rstUy4CmnhrrQhFROvVHYugjZ6AYa8PJgKe5uteHfDRjsmREl1vt2nRJFTrkZjmqby/H6p9AbSpvF9vkjJGHPuehRHxtJSE6Ezr2hPpsa/mAd232z2mDKGZqZvm5aSGKWdXJYQQOXpn1EmQS8Fga8cCR3iAyBao+zZdTt2ApuLmzbEEuplbdxsd0oMWCgZhWttxmFs+XT58ePn4fJqyMIMjdo9JOI7j9n4NrfWoHuDAvdayX0ObbvejlWaY0WvfnHJXoAQWUURyKSWXox0R7haOSESJiSK22lS1a0ek0/LhXOTj0+np6Xk6pe12lSJuGuoArsCvbyt46+bmMWqQ05TXjs0gME2zcCSEKJldNZwiZ0yLKdix9auVTC0wWCwEuXDyXPJRV3dDN0BmFkMq82k+PyHno94hrMynMG9VhbNatNZb123b636w8By1HjuEbfv+Wqbb/TpJmHaBQBSPnoQFqYfdNHIK05okpZwwYH568t5GS457MHg9KnHS8dHeu3qkDCNtTinJNPfW9tqa6m3dEbnMZcrpV99/K4yX0/n3f/gjISDK88cXJKn687YcqaCTkfC+vu7rfpk/rPsRxFyICZn5/f267dUDtFpYvem1pqO348Pz8zIv96Pe17talJJOE52fnwGwauy919pkmR7Z2AgoMqWsGsdRXz58JJZvHe3JkuTaWnib5tN8mlOazGI/jgA6nc9CUHIZn/FubiWpuoczKIQRSi4pCUdEqw3DtR7b9fMknIR5SPUBiMCSCYIiiAJc234HHzW3wehEFJIIaSrzJ5l/+fK2r3d326dJRITZMdQ8OFi4pMwpeUAQnk9zq0etak61NY5ApPNprq27ozAtpzkxF5Hf/v5nBEYiZEQyU59lKWUSIXP/6aefWm3ffPuNEMzLgsToROt7N+3m636sv3yZz6dfffdtAK/H2rzux21vu26RF/nw/M15eZ7TNKUcZmvbkGWa595rzsUQe2tIAMTetO51Pw5JRc0IPdy367bVSgR5EmTKqTBhzgkQm9bW+lZbBJvaUQ8EQBJKmYYZlYiJp2laiDdhwGurBzN/enlC3N6uXc2aOhMKygSnJS0/7b/Mhc5lHlu+17vv2sx7s26m1/vt+vb++vpWj21+mS5PJ0Y5juagmELmRMK9NoiQhayHJElJCMb5FUIbAngYuobRba2Yz9PluZtb3dd1U1NTRSbJeax1CMH6DqoaAz1te9PWLQt2YWK2ZkdXc9iOum7HfT0up7IsBbURja5qVfNAycvzt4jrfvzy5b11M21G0XuqVe97u67bHz7//La+dvP79tZtmlIJpDwtKWc1BVfrYNqr+TBctLpjuDA4YkRYd8VgBoCERJTEwdwMgFCcxlLMFSITJ/eOGARQJAtTpWg3BUE8NZEuWCiNGD6u91vjOk9pLik8gDNKDiRPYb0Rho+jGQQjRygAg4c+tnJ8yqmU8vLyspyeUpKS0rwst+v7UZs7TvNpLqU3SinDCT7vG0Lcbrel0FzKfbu31lR1X7daNZdy3WsueS4TbO8ahIGZybTt6nttfL9jmnsEEIspwwDq4rquDuG9RkCZJ2bpTXPJKTEAWKB2k1xaVwPTWjE8sF/XW5nm42idTMSLU0kylby7C9P5+dI//9I6kKEQMtGppNa9m/VASQnCEVkSm2lvjUaCvyzHXoUJUJpZBFB1U2VJQOzIwUn35uFv1+ua81xKmU+n89NTa7V7PQ7GMPBh7kdkIODEktJ6WxsgcWES7SpM0zQDhJsKIjCpeW1+eV7QGTBCabkEy7at27o2c9uPA6Wz5KlIhJohE2ivpg0RE1NiMgsAOC+n3ru65cwAoNaXZWEkBDdtrtKPg0jQFUMtoteGKObYzdW9tYqcck69q/bO0Q9tR++nyweeZmBGoNDu2o9tS4LzNIFH3XcRQjcACKBwjQCLLkDYt65VbRRMpqbO4ke3LFySrOsGqVw+fmRmDMgpI1ESjnDVUdVAakYegJBTigh1TyJmzcwAIUnmLL21MbcxMkAgcZgDoXvkkjyARdxMhMMj5xwArXcMyUv5k0JhZhSBEMTcWzu2YzktOUkueRROxcgqRJiZJDa11jWQam3MjETmbh6m3XpzUw9nyYOiYWZuAxtsXXcEKKW4Wet98DXg0aD8sCyNj4Rwp5wg4GEAGd0/Earq8HWv/cB0RAQ4oxR5wKEJ1ZwYH9IqP+BFbu7hpWRi3PfN3SVJEmmtIqK7SdDltExzQYR73fejevVvPnz89OHD0+WSpyIiTEzEklIEtF4JS0TkXAa/hwDUzN21HhZhZuA+OpaGJwNs5KS8RzBCxBjwgiFU+3a/p5zZk7u5R05p+J1HUklbZyISGkESHOR5EQBctx0Js8i8LOHe1YTFPQBNkoCDhY7hrNbWIkrJSaR1FecIt6/oYmYB8MHZgQdrmrMwMyGAzILEgLiva+sdwt1NzSGgtUpEQx9MKUlKADDs1W7WWkOkrj0CluX0/XffAjwMJt2BIQhCtTNTmDft6JEYajOPzsGtm9Z+uZyYQVWR+av7nt0NyRlGYAo8As2Gn9iH25kJwBGEM7HDKLfilAKxVa+tGRtiYhYWmZcFkQ2g7gfEwOK6WyA4MccY5/0R0yEiIgAhQsqSAc0jeGB1EAAwCXqEdoNBh0GCUHJWMzV9QLXNc05EEAYBQAHqCGHjpja3ICBgcwfAJOSAYWFqiDAUt0G55q/Qn5FQG74hCCKkB2v574ve4cGUGUG38eZ6pJH+3kM0MMZEGAHMMmJn43kNfoz2+M//8//V7bbWpq13M3XTMHPtbv3+/pP2NQYPOhD8689CZKLw/z9T//IkSbJmd2LfS1XNzD0iMrOyqu4DQAMyHAwX4IjMcLbkX88NF7Ma4ZACEEA32N331jMzItzNTPV7caGet6cWJZIpGZ6e9lQ93zm/M3FDjy6rafETxPkNI2NSwwqzGyBBuCNxhjGJ8KbjFQAjMiNplpzAlL0eJpuJKntongEzHgeBQOnpswYrPMwiPYkRKNLjcZYC3CIJWSYFa9Lzp4k4p9DzWEfMHN0UzDjS+dHtlZABCJmW5oaMIkIECQEPIxRM3NsUsQJiRgJz6oGR4AAAyLNN8oHnTk+zmIATBJ8WNGIUIeZMnMish4YzydmQgPOByP8HJhEiUIbDPDfwEITgYdcCyADPFP4WSTW1eSclgKonnK2WWhceXfWsrTJirQEEBEQs+zHl55wLDhuj1IIATFXN1QZ5SJEMNDMWAUTMxIS+v+fzJ4hMd5LaLYhrKUVlCY9acP3wkdd2e3t7++1nqTKlWa7LWurx5Wy1bk/Px9mfrttW6E3h7fXtknC796WWddlsOe9n//LLz+PYD6FSFqlr0JaOvC3PH7//9fb16+8/X14+M2Ap9XLd7u/vwJUZdGgphYRKKQBUavUxPMNda6EkLsuqEUg23yj7cNMAMGH2REoPVymlEgoX00TMKy9a6tkHgHlmZJ7ued+9cW2tiCyFj5uffTCCn7aUFqMvVRYRgfO+9/68Reb9/bYxfHi6jIArwu99AFCrHBbIxITj1EWkMoSj6emO1X15eobIp3X58uV3Nvfwuq4kEpHLUt9Vz1Ovaw2u6wUt4evbW2UM17cziKiJhPtQv93ul8uqbq6xrOLat+vLl19/4caU0oTO0wtyiCGVEUaWkRyqS6uZQEKeVLgMNRtaGZFwvVyCK1M5XPc9KCPjLAWOUXTvZVvVFZHAw4ndjSCkFgyITIsQImIaQXrsy+VyfXluLz8kVQcMy1LA+24c1ncp9TxuglGFaGlExdyQpFyerY8qDD7UETJaq4AMzLVVoWThgNQxpK3zVSAsD6ZHhiBct/bn7z98+vjCJOtS+ji4yHEORkyW19v7b7c7smyX6/ayoQex+Dh6Pw5LIJHKp/bruhC5ZSAyIpK026lE8vG7HzLCMbkRkrTSgGu4FeFgOs7702VdWzuxYqNLqSjL6Ge6Smn7fnAprTUPO/sgQkhT1XOoHDfhUShHP7SPQsnEx3nUImOcMc7zGK0V5nrYGMyAUbggZj/P1gqlJM3CVAIEDQgq5jF6L7WVtsxx+jgHYK61FOL3yN9vN4wk4dYWVjo8EnNd1j/8YX27H2+///rjDx/KclFV8yi1Wh/q3TN/+/m3ftM738vSRMqk3Kn7fnQgSstS1+t1++Mf/1zbAqnbdrnfbm+vb+F22ZaPTx+WUgXDI6VAW5Yv8P52uxVh9bifRxBslyuzZPoYfV3WWheNOM+ht/tx3qQKFqh1Xbf1er30+3sp1zLbPTLNFCISwTzdDRGBuNZaiBEiwysTMtcqpTyqWCcIGQLn2oCY61JSaoYTIkh1ZIoxhp3DEBAJiHFd2qeXp30/bvfb3vdlu0qtXKqg6jhux75sGyUgU5ECka0tZ38XLlAgwjy89yCk0liIishSS2VRdAHGmmM5WUBv+VReSmulViY87/f7vsvXL9frNZAsYN+PDfg+ztPj9X2/3W8e/puwmd/7vjyTo/PCzLjJh5ftY61LKyUibvcdpVwuEuFMsr1cwvT2/nYce3gQRroSooW+3d4X4coU7xkntnWprRBPjp1kpulQ68Sk7uM8hxpEMhMTtdbKss5RGBADkbT2JEWKvL9+dbNW5eMLBeTttr+9vRKimekePczMM+H19fWXX34eoclZa7WIEL/dvoRFQoAPogSPWa5iHEjJJdZLUQVsCMCIQIzHuJsqgCAFQ4YPM4vMtZRPz5fr8wWX69m1H/cCjumlLpdrSVObNc+IaR0zKUZldh3mrj53R3gOEwnVONQAsh/n+/vd3D0FeMtgj7zf90DRACYkAgb64dPHWpfj3Pf97Bavx9kD9rO/9reOR1mLFCmFQq173LXWvpzj6KprW9ZlnV2T7snMSFBrMUdASMQUBLxzLn66rAKFDtU5TAJCgjKXvmmGMlMpuEgVhMjB1blAOnm3LEZrg4n7SLzfvmKCXy5L/bysG1Dp7vezJ1B41oJIwpBMiBQRlBEpldIIXRBalZeXD88vL601BNgRMrEtFwccnl1dLSPQCd0MMqVIEnb1ywrjOPbjLoAk9bJWlOIAbbsIuGYg0IKe4zRIZGZp9m0sxpgyV921cmtmludZ6zKxDh5RaiWkMCOm49wj4fr0HNb7cZtb6IQhpXG7BADrOO5QaWlL+/zpsp/jfrtlWi18e3+rdW3b2ipDhELAxHP0fYK2UAquAACm535783FY71Kb1KYZeh5mIMwFkhgzFCHmxPDoqonHsO9LWy/XP23b6MeXX37+8tvvkcAAgDWIMIIStA9EMFMkAUQQbkUqMjGFKUw2VfT9/c5Ml7UAlbawm5KU9Xphqbfbe9xP1x3SvHMWBkS1cB3uYWYAMDcUOrqHiRAETHSjjfH+/r4t2/Pzc4YNUyDycI4UQmAhmbsT68ewaZRu9RyGyPtxNKHCtN/vWBrXmgnAgq7Rb4JhmicOYlbPEsZFbFgiA2K6MeEiyWUdPeI4woCqhI3MRI+h6sQpy/PTc9kueh7pwcJCc3gFy7K8v78VZjcFlsm5qbWdxx6ZIqJjEFOE80SHzEV7JAsToqcRc7i5OxIxS5CKSBHGyIjQPmjJMohFZlgeCSMMkKpUJjr2XfvZ1bZrAUCPgASz1NFLqx6YxHp0Ih5qaEGIxBQRE/3jqiSIlDFOT5xDbzNVd1WLTCHyhMoYMHc2D4vSxE0g+pztp8ejYgxQqrj57A7KBE+fI/E5ap9/RQKyTCNGmAU4MCMT2zDAeQxLo0JM5uahTFJqIeIIvSzLp8uH7z58EJn0fH6/3ewK8CM/X59EZLtsIiVhYsIIiTNDmIA4AoCBAMfo6WZukTArDyDTI2RSkZM989QhCERoETFrFgkBk0SmedxMJ9BnZupG7zpGPip/pn0sMpOJkgkyzXy6fghZxyhzPu/BzCKz+ZMcIix5tnEgqCmOmaBJyPTw0RW5FASYjdhINrHNk1Yb0No2j29EqtoERWXCJDkz8+hd1cwdELj3UiUszj7O4wTCoVq4cOGnp8vamjDNq9YiXEcgsXBGuNNsPwJIJvFU750iIsAj+rEncgIUxASwBBbMhLRAQXQf9qALTTQtETLTJN1McQQxSi1TiiPmIqXWfh7ncQ6AUWslLlwz1GauKifXKmaJHH5rlkISYmImDpwQaGLmTIT0+TdNVvTsAYxwQEDkyaiKNA2P9BnPTCLA9Mf78NEIngiEGQ89AxKR53XCgIFJiQk0te3ZdB8JiCICDJHuHoysZlMgyJytWNNuloQUDx4NAgL/i9OHZvM5zHxWxqMQCgAZKQkYwyMyCYGR61L//b//D7+/7qo61MJ9orgjw/T8+af/CMTgU1v55meJ9HAPiAikIEREZmbkh3AS/g3pExkB0yMzQ7gJkUlJIbLoeQMA5H+JjuXfiM1IEGD4cNk8UpUPk0NEBGYSMUQigvCj334+Bt0SMRFx/to9kZAFp7sqwCHAI6eVC+b/czK9HxmtKZTOTOv06TwezunhD6PiNxRUfgt1ASZS4lRd/wYseoCSIxJykokSQJgSIjGJaNqPMlI1UOiR8mLEwIyY35kQgeWbvDfPeQI9PEdukQn0zdcGOHHdEA4IIDKHxkAkAglJD+JJJPShU0qqrQlxhCWgkJAwkdB5IkKpIryoamZML4mqZU6ktttIdy1tm2wwJEwdBHC+/fq08OVpG2Z+HFJJtksfhoRSZHt6bm1ppR5vr7/9+vt33y/H/Rbu06y4XK9PH7774fkTz0nEr6+t2+31y7q+8NNLWVZqFwlwt9vrF1uW9SK0trqsJEiEzy9P+vbpdhwZaommvu9HYQonAj/Vay1CyLX46JAgdcEMs55mlKYWnritlTPrZVNVG+mRnj7e7xmBEGvDXOta5dqqHkeGcsJ22VD8PHcED6cxNFwAcZXydFnHeZqZmw0HZqnEZgHgZdnWbd+PIUWoSPdkV8cCET9+92QBi/DeNW3UJgVDqrCgRxaO4QkhfT8+fPxYtqfhOc691uI6qmBhPvpowqVe9xGBIITbtr7f7rdjmOrZrRRhwiKEImq57/t2vRhCP/r6cZ3+FdN3VUZZPXJZa54w1HvvQkBcqC6HR6uI7gKeSLWgYTn7WXEY5/rdn15fb8f7ayuY/RaRgALpyo0juDRQS0wubOpJIURA4MPSc5iph1vnZds+/uGy0POKQTSGM4Vrl7Xst6/H7f7h0x/6doVff67hK6uA7z0igmMkYqZZ7+qwPW2tVaoNAQTDVFtblrIfhgHZRJCQCvd9ICYxgdO//dd//v77H67boubDBiIFcilFGHeXG+XlY/38hz8AEgud93d1PJMd6tNVWAqB97N31waO9Dh/nooMJJLSiNE9whFYpC7ad0Tk0sJGEamlQL0udR2jJ9J57IVASvGIQBIEIbzfT2JBEmSp5EUGwqhNjj6G07pd/vynH80V67XrEOJ0q5w3BRbi2mQYEhahbb2c/cyIbqY6qhQmFuaItOkRJGKmtrSvr19JewCnewoSwlq5MnomQcy1ZiJ8fd8xvJT2pz987313z34c9+Pcjx6RwssY1o++70d43n1fny/Xy2UlroI9I5GEZXtZv/v8+Ycfvv/Dn/6uCG9reXn58PtvP//600+//PLLcdxbWwgeFdfLWrku0pb/8l//HjHN7LReL5OYDsu6ImaAmfl+6rHf7vfbaXe8BTde6oVYPn76AbT30WfkBCCZMDMSQCLdBQgQsC4XSEdXZKQiJFzb0lpbCgkRQyCQWU9XYXISR6HGCRgeiUwPzj8JyzDD8LkQuFwvS5XrWhIwAFFk12zrpS7L+xu83vvlqbr1BIx8BG8i9XLdWmHzMHczrVJbFZlLGSCqgJ5lI34iAI/gYNCIVGNI9aBSfnu97QrE9P72bkNHkeFgnpopbVWPX379/ThOLtAuT6Vcl82LrZSNiIX5OIe7EhMTuZmHr+vlw8fPx3Hfj2OSSpNIqkhlZEFIHb0JX+rK0qCZNA6KYDCzOWQxs0pLETmih8fSWmaM3mNbQhUmaQ9TPZBwWVcutbbr2Y/729cF6dPz5TyO8zgygZhut9vb25u7v72+ET1WWy8fn9tS7/1rdCek2moKWOqx3yJ1vxO1wksVQmELQcAs6xJp596llbBADB97VFlqyXEg0/Pl+sc//vFPP35++f5PFKpqqqZh7lmp+3EiguupfSKisUjBh9f6OA6jUprwOczMmVHdHRAzTIeOEyJLKUODIt38dnxVh1JLJYiEzBCGzx9ehi1vr2///OX963l0G6f2m71iS8HqZ+z3vTZeL9zh/ut7R2c1vGwXz+frukmrzOTu5BgORFRoWiMLEyCsuGVW6qmdTxEGgOlFSTNxiFBCllIpEYAcICLLUq6fpH+NdPBzyPYMXCDQs2cEouz77X1ZhuY5+tmHqlNZuLTqtRZaWikMGErEjuRqnCHCpWArpZXJMZjNmYYAhaZFrPbhqicgWoSOsS5rKSxCQ+3t/a42zKOs62W9RmQASy1EdLy9Rt0yYnJSASilASqqsykJq9nIYIDGtK5ruJ+ZUJuOTpTpAe7JNMt+WmsJ0ZqcB7hpPFATwJjaB68lAYbOqT5HWKqGKgC15VLvp2o/TzQlIvJIiKSwt/fX/fW3K5f7/Z0hl/UyaLudZ9cgqW17AqIHlTe81IoZOjQQJR1pom4zkOpsU4xY1qURjLX+bL0b1Fl7xBIRGSlCRGtxNzMznZsK4tKQwePY75AhGcly2w+38eGppTtDCgEk1aV9LNzq/v62n+dpWmwURIRwd8t0yJxJmQgfY9TCCDRb69y9H2cyCLPpUFdkMTMfp+vQfjhQuusY7h5hag4JZjrdn0yoqsKtEB/3vS0XomDrNk4bRwIUmjcfRsIIoFBEFuKIKIzkw124NeCVWcsiiEClnr2r97VyeLRldSBzkLaM8yAiNwuZcRYQJndflwUzHMCnQlSKqc3kARPRdAy5zOW+m6r2Zb0QCxKmT1REELO6IyCydNOcamZCV0V1EVFVGw9vHDMzU6mtD3u/3ZdlJZFjP4oIUPEE704CJA9xgKWaee+DGaWUmAgUockdSyTPzEh3S7dwHw46tArNvetMlDxYrYBEmJnE/KjQIXr0fIX7OQMSDwyG66PQ+lH6BEmIEyIbHgg54UKlihRChowkJAwAmvthLyKX7VLLUliWUq/b9t3H75ZSMh0Say1heHabRG5imqGhWksiPyqfMgEJkcydMiFCe4/QSGAptS1uBu6lVRHWMTx9PhnU3d0mKQRrTQCYpWPE7uamhFnbykwUqbX08yQiIopZ6csc7uaGD9wMzEqHzECAYz+QmQjdIzJmG11ERgTT3EVJRq7LkgDTouQR7l4KZ6SbZiRg8HRlEK3rMs0O6m5qk7ntHsRQWEYEIiDhsrSzTy2RhupQ1aGe0VXPodu21lYvl63VMh1nzDIvY1VTMEBEwnAPMyAyMyhTfPLjOJGYiLrD0ngaXmYLeAKYWynVzVVHH4aIkcg8r2Sem+JSuDBlZmbS43LLGYmpUrDFeZ6qdngQscf0AyoiEyHMzicAwsnXn6ae0FSWIAIiREp1TZ8Y45jhqb/9FYk5AT0zXWXpARbweJr/rWIdECepxv0RLXoIPJMVBezzbkGciTeceZ3MWZ2BCAmTqRsPX4yQW+T/sV4LML8VZU3fB81PQcgEEpxZqXT3/NYnBQ8ne2biN2azRyLif/j3/5Naqnkfw0xVdXInTfs47r//9g9TdHGdeB1GTGDkhzkFMXkm0ywsHSYq6dGPjsRE18tlRuUAC0BAMFJiQl3W3pEwMzMskeBBxk58+HIgE9E1vjUQz4RVuDsQyJQPEROC5W+tavjwOQIA5SPzmzPbR0jglpQM00icQPToWUcEZjSNTHzgrfFBEA9IpkAGmHzleNj25jHPgICkvx1ieHwRfLh4pi6EtdWJdUdCLJSzWyuDJ17MwjItPXsyz053ppxYpYT5vEOchY0R4O4RD/1n/pk5bp6lynO9jYQimAAC3xjpFsks/FB/HgztRG6tTENcv3ePEGJMgojWWgK0tqqOqVW7uXsSCwOo2jAtpYgUFomArn3btnp5Sj3HuR/7fQEExMvLC1JJh6cXMj0yQ8+bpOp+r4WO6L/99b+syyqlAqLg2pZLe3pZrx8WZg24daHffjHPX3/+R3e9NgKIti6QacMi7DiOsnWzk2Wr0qQu24fvu/31/uW3WpsnKhZgNNe2LpdGvR8MXpDqspyRGECQ3qHfeyM4jz1IvvvwVC6IVNM1b7uqm8/wqg2bwVt20MsmtdXzDEPYlooUYd10QDgRIIJ2LaVvbf3h04c+xn2/M7Oam6Ak2rlD3X74+HSOMcmhHkDSBPm3X3/58x9/hLODx9ro7T0tkVsj4ACTWvfbmYAzNbnf90tbl6VCqju05RLalQYCakJjlOVCmH0/ELxVsXBByu6eSUgiwgU7wzDP+7msKwa+v73WLeu23L70RjpGJ5ExtBBqxraumUAIUqubmyciuoZwqGdhonUzb5oI9zvoyaVYeoZcWibKW5ckCW7MSEhpI83q0rwbS9GhiECYEKlhqvr84YdlWZNJLSuHeRQpbvH6vn94eW7PzTyWdfn06cP71y9Fe2I0kTSI5VIagmKWLBUTMJGLILqbhkgpGU9LzdPNLIqUCfp3nRp+KXy9XhhT1UQIUgAIMKHWQ7PTGqKHjWHx9HJ1U6BailyEz4MJCRnNgZaLD+0IrUgCOKb1xFqHapxDSpXSzBSTMMACwwGIU5YGu0MFKrMSAMOE0ocmE0idqFdzS6RIyNEpRoku5DuyLNcfv38BbstSWluDNrPI5FI3gkMkJEugrJermkUkTO80c4T304gYkBAmyj7u91tbLyLs4zzeo6Rz6mkwzFX5eWtSy/efPoyhwywhMX2yZiGhcNla+bd/93dfvv5+P46vb3dzzwRErrKm4x4WbhaptxtAOvNl3ZZWq0hC/uGPf/jhhx8v6/p83X78059bEYRYCn//+ft/d55fv/z2y08/IWahnEn8KozXy/fff/6Hf/j7s6t7v99v9myAiMKO/v717esvX5FYpEYGZsbI/ctB+uXezuvl0tqCCDCxeZkZ7HOOloloszkCozMxysPRXpiXWsp0QdLD68m42DRoIoFUyogAc7ewOfQTphCekyVKQyiBzCIbCEv1yLOPcfRPP35a1vX55dNf/vHv3758qZUJwN3DQ4S/+/RCUiOhiKi5mwIk5QNN55lLqziorgUFAgivdBw3O33hNR9+j2JjnP0LMY8+IjOJr5fLOfT6hGbaj/vow82IaZx5beXCzxk0ThugpjabSFqpQGSm63YJiPPcz2MX4cv1ajruN2cpRASAYcEsrbbnZ2nhHY8iNTwhAzwQmZAYCMMJsdRaSERkBs5lyjffIuiZOLs6Ls9P14/VxtFfPozz9vb1969f39yDZjNXOAFdtu3p5RkIDQJDShFMEBEILq210oARCzqN9/d7nHDZGguLoEjJ8AQdwxJ0e1lcQ0c/z31u4Z7WumytPH/+87/7P/34+SOHlVKJUQNlOsC1Dw3BZAJ0h3wUtM9VF2bgtLu7lW3lQu/3I3WcfUQiMYzRwQYjCfp5HJzqbuqqBkPLkWk2MpwxmWtZaist8fVdb3fdPTVYhbk08WpYYlmKMPVzDINSEBFGHLcTI+O6PV1qYylhYQ7hHhn08KAXIkLMYMygCo0ag9nAKNIMploEWCKRwSyTMgKAhEga8QeMExCTyKS2BKJRwBIB06Pvh2kMswTKGHra3BuYuwhWpoxgkRqakihokFJKXdb8RsY0VQ8vtfiYtntTd0RQi8iOAAbWKmPiMToEqLlbMHOtFaQACbFkBD7F8fYWCJlILNS79Y4IQlkIzAZ4OCSVogFijpFYl9v9PvqxtSpE63aRdXM3zIyw89jd3M0AYDr5mculrq/v95Nr44gEMw/EY9fbbR/noRGA9HS9aD8AfJyDmQoxEifz6+3+00//HBFQt/3YzZyltKUxY0Qy83Cz0SGJGScaANnTLImlVsa0sVM6lw2llVpjdLBzf/vi42RHYgJAkpI2KNMdEKdLw1or5tMOaeM8ICzdEymJMoLUD+1bJQhNLqUS9ZtBJPL16YIs5azHPtriFNCPPvrppud53u53kBppACEkSOTJau7hxOQQQ/X9fpfaShmuw91jdHP3/KYUqdbp3BdhIuJGaGq2rBc3tUzI0KEsmRAxOrAQgJuBaVJ4ohAlgpSt98NNq6AUUah9KAlrFkaaY5jIrLUCoY7OsRSg+31/fr6WUpjFVFU7MJuOfvbtem3rlu4l434ciJNxO736jAiQaaqIWGrNWdDi0c+jiJQpK2SGuZozSXJKKYjQz+4QzJRJszwwMylC1TDTVN0pI+uy3O97a7elNTPzAJZJWo1MMrOJnUVMRkwRNfUYgCBCCcVV1QayIEukxxgZLsIwTD2EiaZ4wRyZBI+CLTNHBDOfFVEeATgzChEJObdZwkT8zbDg0/uEhEAgNDWTdHMAt4BxDh1YqhAjIYUlJ10u2/P1+rRtHz58LFIYERJUjZDebntmCrEFeE7McCFiJnKLgIB5byBmPNZWaRoBTJSQKILqGVFERDjCW5Vpq6Bax+jqigAkMvUjj1Bz8ABAkRThOfM3dWKTUglhukggk5lnAq7WmhmuVkph5tbq/b4nYiul1pIA5xhmjjilzGXy+NdlNTN3Y6ZWZX4UP5w4CQBjeEJgRhGZVQDLupVl0WGu45GEiTAPnNg7d14o3C0iIcPd3QFy9A6EtRRizKDnl+er+7K0KX65OxJ65rBea52uDfc49zuXCoBmzpzmnpCqjkjhERZtqRbpkYg03DAB8HEPQ04NUwHm9j/CwT1EHAAj4hwoiCySGRCBiGYWGaUUmTheIhKGby4SNyeRPBOQZ45qFl+5J00y0ry5wgEIENIfllZIjFk4QA8J4BEQmkHF6bOAfNCr5rokAmC2Kjx4WAmQAcTzCp+QKIj09IRZukIT45KRAJHugJnE81MSZ5JsqqKPvgYUfkQ5mThxXsMzBwXfiD8I33wyQFM6IIJpBHJPSA9MJEYmsITex//yv/zf+xhq3scsnPRwcxuh/b/91/81Q2dEKyMZ6RsY5+G1mZKXzKODEA87Ej4IMojgua6XeWWGGyMBYcT8dSJAeiDNNw48vnwC5hRu5tUKOF0riJAQSMgYGRM4RDN0NIk8hA930DxwDywzYgARZkQkRIIQAyEwhsa3HBcQoM0eiwAECI+whEDi6aPy9PnhEJ4z5waE6ThB5oj5uFQyENEh3Q0JJ3HosSHIh54IEf9S7uZTuSMSYJc0mG1gCAAElBAPmzsAhcdM4P0NVDUvRwdAkW8mywmRyyQCkkwggVngJVkQEsDMMoFLhfkjIkjCcwYx1HVkQh9HLZLmjOiuo3dmYpFj30ttnIDMCbku1cwzcfReW2vLAkTzNZCI+3Hv5yltgf0kIhRCZHEb43TuTomhTfj6/NzP4+x9rUtlTOBI8GGjG1cAQNc7Y4bD4aO8/k7XpVZiaWYuBUNHQoDut/eK2FpZfMGPP/xJavnr3/8nt87tAgk6FDK5NETw49QxtrWUZeWEo1sgOC7au1RakEbysFiXuq1LK5+H/dKpn8NESmEkHOHRz0N1xBjXS8t5ojMLYWGe2MnCBSGRkpCO+/78tH16/vDrWz2GDo3b0bGWoyvG7ue4XJcEskiPOPvB7dqH3e93IXKLJlCXth/eNc5dsSKwMC+afj+sFtKw/euXuhQpZRKj2rpBJmEgkfVO6W29AGP3AE904yLPz9tQb43B0sJaEQNUd3+7LUuTAm9vr01aIJ2GLGGm89IrhSCCSnEHhhAhAopwEPGMtWEmlVLFjQk5tSxLAEAYr5SIftxrKSBCjBHgbsKSGe4DWVTHUGNKcI/wheP6+dP1ehHCBOzDAM6yrAnQ1mV/f//lp78u63q9blQuLLxcLno3HDfKof0EV3cgIQouEIgeEWM4EQrEMHMNXK6s7x44hzOzF5mZPNATfvrtNRy+//ShtVZFXu+3n78eh7Im9NBaald9v93XyxVyaqwACUCUxJ5JpYXZ+vTcSp29DMdxeKKN7qocuQAdx1CP2mKYC8t6bZBORCwtyxIZ1ntOTOT0DScJCxOp6pwMjDEggqK31O7ZlvX//D/+T/Xp85e3HcY+xrh3ywyG5BCJUMt9v5eWjvn8/HGYhtv0OqYnE0Z4pkfCfvZCuWzbTOoXKZUzAc4+Yjh6lmWxyLYslbAQrE6nQwBHOHiOrqFj2bZlW8t9eX273fYzE5k50ksRoPUl8vX1LZODoIdSzfH2Co73YyeCdGfMbWt/+vGHjx8/udt+e62ttXV7ev7w/OHDr7/+tr9/3ZaS7pHDTGtbpQgCDh1hfvQjCcpauCIf8vr6VUd/ur6sS+0HLMtlabUWqmTs+/3rrTCyCDNxOpCYmk1IJoAXnk9wQiBhpoKI6VpFBKPQNGLSo4wxLCLHfO+gTdRFCqI6hBvCnBzVhunDPc00wT2BMzm9EJZFzILAtu2KCOf+9uXXv06UIWO2VplpvVxLbcdxEnMlSuGISLfZFJAZH19eeBAUGGmaxkRZiDxdh5q7u9sjD03MCCTCCDTrcmop4aZqCHHdFiDQrqCJKjq8Snl6us5t7batQqJu+5GQcX976/sOkIR4vT5F2LBuqvNdu6xbXZbChDpwHO979xgLXyHA3SmDa6uFMzAsKia1sixtDH20UdY2kwYkVKRhoJrR6LWJ1IrwvG6NIbf1dw0Q4QTQYTmLzGiSHSVdM1GkLriVuiKSqhE82rNKc3XX+yG8yiZBCZlplJgilYXHqQ7+169//XR5+VxqItXteX3++Pzxc9s21BMRrHdzgwwBzxw5saezdGqWK0BmIJfFI02HghPS2+G1ybJuY39lgv3QyDj7gHQWznE4OlfBTAK5bBeuVyk8+u7n3VUjIgC/HsdPX3/55fYFisx+L2aCcCRZeBUmyOAqiKVIISYCAc/jOBmFiKqUIg05XXluGMKNkJE4wSOcCBsXkCQSSnv4mNwLo5ObWaYybjyxkCCAJCtDjYKcOQAW5oqVASxciSHSwUaoBhIipptbhwRXvhOmc0WtBRdBIHJkyLxcnwhpDG2Lq0e6IaAwQ110DFeFBKpVhCNzrtnSlYV6xC+/v5mOp8uGyKUUkGazxVq7q3r4UENi76NAEqJlABEAZiby7KDOc3ScUFuEZVlmjAKlcFuYmIhM+3G/e6TanqHTyJ4BYwwRWpfltR+Bwixf3ymQ7/ttDEWmMTQS13V5ul6Ixfrt9et7ADnk8Kht/fL6fp5H4eLIl2W9Xq/bh89Syr7v+7HXZQlIj1xE9NwDZ+cNTnsIYvb7DYkjkfZzP/YFxhj7eRyp6tQEyHUg0yziMdM500pEIlqW9Tj2cJvYh7KsHolEk2kBkV+/vj0tgAhSLwAgYWpGANUCIVnKz7/80pYV3WYtCSJJrcM8PA0yAaoIs+znmMtrT+h9INLCnACegChIAkSCNNTNTM1qu1Kc7g5IjNGWeqb1s6cbEScgpeKszWEEh4AckQSIQJluQQBUoFcIqAURWhMO2AfYcahqoGg/g2RdVgAI5FbXBLBxssjtdltbiQgRcg/PCaKAcD/PEzIhPcNVdY4I5ucDYbr33lUVEVmkLoubAaJnxtmJKTKrcGSm8NzhtNYGmbuBOQiAGQsjZBNiZPPMdE7wDATYu37IVPNpDYqAIjK1p+E+hk5PQWSIVAAcYXMLGv5wZ/joQDppI9OEgpDMbOGFZXonIGKW1ecDiJEA5DMS+djhJs2dHgqERYR6zJ0qCwFAbRUJMoOJpwYhhaGymCMSIQoxE7w8Pb1cXtZl3bZLLYIARJyRZz/NTNXMM8NYCpXiCbXWWlsmqOroAwiZJdxLKaUWV308rdQQCQBbq6UIEmNmESIEdxu9I4TQrJ+iAbBUIeZIMPeJ+v5GY4HpX/CIYab3+7LBLDNh5nB74FcyAbKIsHCphYnMrLUa+YgLETMhd9MEY8LJG85vVOoZapqkghkxkoqVS2PYj5NI1qW2WuWh5DIAWD+my6Iw9ZjpHZymITznhWlQinuYjqW1dWsB2Gotss2KNzOf95G5TdkEUYDSffaFuanu96M2Z5EIHwqE4ObTpxLhar6uDRHPruHKzETkGdNDNJtVpDZCnIjlqRroQJo1aZbBhBETOZyZ7hkefZyZXpgQMTwyo1YhJi61Fem//zNAQFLGtG+Am/MEA0FMik5O+C9kYhLwNHLkA04FgBCeTFM3hUcXGCAjJsKDJYwUkZM5yTKtPUA8VZlEIYaH/DQlo2+qzaPbPacUgshEQJA2e6tm5Irg0fsE3+w8xDyjRvNqmNFgQJz+sgBI18BvxKB56UR+6yCfDiACSdqePvzw45+/vO1n7zbL7dzc1Mf59bd//v3nv6fySCNxQQQwc8+cucZJmQGYYGRMSIbHAZm3wTTTtLZmOABlxkP/mvIQMSRFBhOxTAXtYY16KCU5e79wOn8ImXjicMgiYKKaExHBAjKTkSb9OjFjhvyAJo9z7pIgkYkeoTJEIISZyIQpN09bMT24DYHJD4kwHTwDEiPzbwihcIfkjJyFWRg57yYp5AEPKrSHZSLOaOlDFySY+iM9dO/MKRoKMk7lEYGJASEAmVCE5oc9FEPEKVlPUxRYJKIQEgPA4wTPR7VnRobMQ89E/lCcHqm0Zau1tQQ+DVaRDLQkszA/RChUXcdEoEM4IkcEINzvN0Re1vXydHE1JgR6TDOkViY59jtE9OMcR2xrLeGZKNvWeG1FEiJTLi+fME13l9YWrhG433+V87h+fE7HGOd+++ruxuR6Hq8/hw1iDtPbfq+LvKzPxLJtiw8jCC7CTPe333/t2rX/yT9//uGHwJaI59APlzKZf0g82UtLWzL0BIZIIbgs5fRpdWYp9LQ+3U/tavebra0x4dN1LZ1LHYQ0lOLbjR7h9/sdwUtdivAY2kppS03TY6gnJJYinD4yMQBKKz9+vHw9XC3evn7pFmcy7Wck8Dmu1wsDquepVqhv1+vb7VjaxIo0plgXIpZ0p0TPgGUp7teS/bQA2Pc9vNB6yQhmJhaEhHGC21D389RzDB3udrufjNmPe1u3rRV3v2z19ZYQScjLspj1SM9gAOxjFCaLzOFJCIRJBdDMTvJR23LuR6tlnn1V4jAEKE10aPGT2gJmgcGlgWURCHVCa221xFJYuJ37bZiKFEp3j3OY1JIJajrOHZD++HFprQnRsDgPDRs1gaTYUCRkRLb7r3/5tW3Py3YdTuXyYhDUbyWH+RlwAe2cPjFchOGmDugZiSilLZVr5fveh4HPrC9AYTLFt9v7X3/6uREg5o8Mgf6//ee/fNkNZW3L6umlYI5Ujy9f3hFDPRrQsl6AK2G4u1sQ09IWYYlwY4+Es1sEIDEinV0BUUqZ/tjtckl3E7kUCVoCId3dXN0hsjC2Vi0pIvd9Nw/EDDN3x/ASxzhGSqnC++0cxQJFHVV9GqZZmNMjSUrbiu/He7s+S23zjZoZ5l6Ex7AEtKHJOj1BgJzfrKz3c0TEsQ8RbmslFpwZV+StFQRpIQr0ft81htQSZokYkS8fPnx9e8sEd8NHkyYKyLJdIuH17bUWkY3ub6efERauOsb5+vW3jx9f9FwynSghc2klvqWvEeDTd9/9v/75H//6q7KUbbt40hVw9MPc11ZMeI4ekcF6v52vb+9vmLC1FVw/f3wGzG1ZyiRgF8lwDDcPwWBCIBSupppIM0/1jXQAzCgsAEBZJsI3Ini++ISRKYKD5OHv9MEYsl0KE44xZxteKrcKPgDcQ01dmAgQuRIh+SCkl6f1SHPtc5N5vT6HK1MyMWQiwtnHsj1dL5IIo5+INcJdMSd5kAh3vF6ugHFyT2rEK2Cqj96DCZkEEnzuuM0IoZ9Ra0uv9/sphcc5APC6XfbzkFoZCYJMfa1lXVoRBuC2LNfrlVh6P1X1vL37GCKyrmu4rcuSEMtbVT4Bs0rbtq3UBQny7vsRHEiQEYatARckZKKUOsZQVSJkhMIslzKGThYrExKzkCx1SUdVvY/ubgDAVNdalu2prcuaIMyRsKzTV4zmMcY4zw4I/RhMBIUI2ayftwMlQsDUL88vnbvpcX//knhtTytLsdEBg6UgJ2BGdOP8bf+6SP3u4/PThw+yLpmhDgyE7qcONSdImITNOc/xSAghDABPxIkiFSQRMnOzWx/qiRGYCcgkOUZaArdNakVCrmV9eopwDSrrFWVhYWwrPH/0oUxQCvRff7mpWSg5BBMXAiZIl0JFmhu6K1chpAwIBRIgJgR0137sg4l4r2Vd24pIHmkDHBwQIYkIqZSNAeCABEkH4gVxwEECkOw5QESIGcRttrcmAWGIena1prpcLoAcSAnJgiyFkDwC3JAbVk4gZhj9sLZ2IosDY6yfv5/vtoaExO7RqrhqT0AwInp5+XB2NX/VMRLQzvMPf/rXZz9NvVZem9RS3OzrcZpZq+u9a+BAfjQ7T+v8nNaiWyOm+dWBA9AiID2RMPIeCeTCJFk8kYiY2W2EofZuqqYjMx2oLE2YbJz3+66qtdUs9d47AC8N+jigbeqx317dNRJfLhtS+Xo7LDEtL+sqzK+vN/eB0ghzerJGH6/nrY++1PanP/xxe/nkEW7q4cexe3qGD00iyQidRAtTRxwQuFzTupvf399fLuvo78f+9dx3hFkrLXMFOSuDay2lcIyztBaeQtLqIuL7eQw15qy1uEddr5A+92SZJ4G6HkWI5bmGD7OINE9Bf35++stf/goZW+NA7udxvx+aXlhKKYRYhAJpyVRTEaEkQKi18CQAu5p2wiSpbkEUlOja3Re3QcRFGCNCzyYURXYdFl7XxQLEjcHPPlxtpogmsiHNLQ0TgGm7XIgxkN+GYgJlasAICHBHKcLEksRhmoArU62y1ELMpuqQs+W9SoHMpbVACo/jOIhImBCAmaSUcGdhJgoEGzAi1WySI0qtSDihy/b4j4WZRcwMEFUNCCnJzTGSMCcx1WcFR0RkajhLEZzhLCzLCoAZQcwRoYeO0SeH2QPULR+szyRGSCAwxkjXMA9IBgKavkzSrsxYSnE3YKZZkZ3Re595pYnFRaTIBIzJEg43mrlIAJqk0wwkIcbpbSGemSfxCAYmRnd3s+fr5Y+ff1jroqMj4PWy1brMlzUkZU5Ym88c1NIqMUJKImYAFwFM93hwTTIKVSklwnvvGW7jdA/1UH9wUs7zrK22UtZWBXHydNUNzIKARFgaEwMLibjZtGhNzohwiXDAEpk+G9sSTIebQ2YtQq0iAIswkSAEYa0VkVj47F2IWAQmtcUgw6fXprb6aMJGmthgYWaiRyt2ILgLBmWgcH15QYClVamLjd1VwcNcp3iE4d1sokUywkwJyc3cTJiEcalVGYgZEITII70rP5Q7UlWpBYkne3a2AiUmM6q5eSTSGJ3cmOThoIBEoIwAJA9NwMICiGM6PBIyfBb+Sq0PWxzRI0oZQUThAQmJJEUiHKYmQCjMRDRyDttwWKgpASGhnQOREtI9EcEdwH1icZBgprGmxIMMNHHPOE0oSUjzzD3SgQD/siGfMsoE9AImJiH4I3v0sN8A5CygmpGrKZQQxkxBJvojcoT0aL/DjFnwVJAm8m4emMfhAf7WN5+AmGmeTKj52On/zVtElIAPHMyUB91yDuceviBIc2PCREjItADA/+G/+w9dfdjkLrmbZnj46Pv7f/3P/09CFCRgtBkxT/BIAGBiRIoMwmlWASTIgJj+lSkMJUQCMiytRaabIkpMm9M02BMBEgDPM5IBEPm3KBXxzIBBZkz9w9Mjcwp/zIRJgDNKBZCIAeEOQUxQK7tnRHxD4UxHCiJO9Hkiz/KvGXBAmDYpntalQAQCAqaZ40tHiAc2CgIQgRksQ4eJIM4fS8oM1fnPzwhkmg7vfGiB89KIR2orIpDm1BUiff5YIWEqDBQZCfnoVGPKCcKeTClALvBgU8/TP9NvUzXDICZM9HhgiABSTAcTmfmct7gHIkYMVzHAMSIAM3FdW22bIJyvvyKAuRFzKc36ieAPnhLQ/XYXZoRgTKklPWQWlyEggJshgYi4iXBB5n6cSAzMrsHPUqRURtWRbglJCUuTsScRT48kER/HPSClVKWSY+dQJFzX1pXPfX/9+v789OHp6aMnouiyLMyCQHYeP//8396//jL2133fm+Tow7RH3zNSKAlz9O7h21IZ8Bxmnh8uC9fa2MZ5ViHQoSEF4h75roy3UyALF165zV6JyFqLm6NbwDzr6pkITaSs21UWidGT8FAAJguyzK2Q9bPreuX403dPJuvzyve392DSWxCAJxlyepZSA+HY96XKmdSHAmi4epIIEwovhZDEAkv2fl/aNWt4YF2bBbAFcSm1ZMDTdb27jdsbUsXCHnGc2vs9MgNRSPrZo0Wri6oXxts5ahUbWpcW4ZBQILvHcCMWA1iJDtMiRLWmx/2+J3lS7epLadrH6L3VgoShTkzOFwAIPQEVYbDuFOhBFIFkzIs5LAtJXSAN0h2IGBAlATPB1HTo5flqmYTonhCxrYua+9mBDufGzFgWS/2wwdFv24cPy9L6sRPSl92QtipF0ME9IJGQEjLChkamlCKlbIssBc9O95mrRAzkUgjSRKTW9na7//r6/rb3n3/7MoDuAxLQzcgdgDQQafnp93uV83pdl2UBLKNrVy0M7/dduKzrEpnIdBzH/d4zuW1PiBnuhBBzCIMCSMKl1AoRdpYsLZEzAtMeui5TaYWFJ3TfI/sYjEAQEFFAr5z29BHAPOPr62uTq7QWGVwXcs2wMp2kwqTjPO9y+RRczjEAEZAbwaUASblFIFMgaZgBWniZPkKScDvPQcLENNSQeanUWlUzpELbC03PzHkWAoSsbfWaD2Ck2ra2ba0WysUJ0h2FmBsD5P1+06F4SFvXkLRhemKkA8B5HmN0c8sIYqqtWT/cAjCL4A+fP/38+bv/+J/+S6ktkc6z//Tb15lAzsQipT6Lp+5vtxPuibm/3QrXuLhUrvMRzgwJtUhrjTAY4Ox9TvsJA5FqvXoEZjAzIFmAZzCkME+X9VAzHeEO4cmcSCyMTNIoI/TcbWhSGiZJbZSq6oDgCCzTOYoR/C9v65iTIcRIH/vZ1fzp5RMhExJClLl4KEyE6j76uV2v67Ieu8Ts0kPQMTBdCusx6gtLaQsuKAIkw8cNHdPcDACJGTLdzc1moCnDziNMuxlm6tPWhImlLOu2tnVbL6WWjx8/gqm5S+N1W2cHSrqh2zptGNtl2zbBBIL3+w0BWTgyREoRIYg0C/MIX6WxyLZcqjRzYMQwDYgqBWuqKQAQAZeS7uF27Pv1+VlEeFINqOz7/bi/u/UIWJcrGKtZaa0FhDsDzvGZiKiO8+yRUGob40g05DQYTaRgJHmA4zBHLNfSuPbbjpBEkUGyFFOkMvG7xVskorsddjoQ1Xa9XgHngDQx3MxNbRqYgeSbRzLdNIEAEUVIyvw3EED2bnlKoaEW4bPW5RzRHYJEpLTtur5cmYUvV0HiQJBiAYiElZFw5Nn1fP35l//fz//49bwBEjNDZFoCxgQnMRZ4VDAjQHo6jFhKra2YJ2QM7aDpBKsZIVRpEfPNjghILEERkIRLKRCumOwYQFygABoFCxbkREpKBiTzRIZ0jyPdAoXc1YdRLUBMRQgpUIiwNskwjxSq/gADE6QHVCnPUAgBn56fmNsYQ3UgYF3WtEDmce4IUGs9e89wZvJHxwswI6GIkLlbP8EVIgRRzz3czby1JcIzkhG1H0PVEyrPilhRgAKRAA5oAcxMwqbKzAgpBL0rEhWWsqzpNiI4LOz05CYipQBkWdYl4exKtab2KIUilqWiGACGh2Ms2/osLMyHZmUKOxNhuBOWZbvs9/fIIMIiAm6esSxt2TYm/ss//1NX+8O/+relLICabqBm4RouUojQdLS2hCumo1sRcRYECB+3uz43KqUSA2cUBAyfCSZIECmIDIBU15lU1bEHEBH7OJHZMwuAFDrPo4hgRIzujTgBwkIRgEppPI7WqprmIKHzu4/P51DzxPBaZPRzQPQcz0/P0ioiYubcl01PRGtNhOcdn3NvNe2LE2wRE7XhER4Rsyy49xFuJJKQ+/0GgOuyWj8C3B88V2LidDt1rEUEWAoVFip8DGMpmqz9DBuYiYhSKgxNIAdw1aGxbeuhsff3l+dtWxemhzF/Cqk5kRsxsQnkHoAQoxfhyiQYgMIiCNmWRX3228oY2s9zu16J+PRDSiGi8zx19HVpMoujhSmCC4lIeAASRq5P1/32bjo8UkqZ24zJqblP5z7zbGA4z9PNgASZIyedZ25F5jwdEXOrLCJc2yTazJCaZnowISNCrejBtTZ/5Lq+2YVm+IKImCszi7TWMkItidjMpqyFSMLTm6nuzsJunpFcWEREOCHcSdblx4/f/Zs//pmZGHBdl/R4v90fPoyMdC/MTNhK2bZt7g/7GGphbqVVoWJqCUHESytcZNqojWyM7mqq2tUiYY4V8hvmFsHBh9SGmVPtcjOUEhmAEAmUwCxEtOtglseue3almQNAbc3MRUSHIuCyNCIyNVeVVnX0iCBEVZ0ODvOcYyfMUHOIqLVmP9WUiJmFhakUSCjC3zZcqr3XpS6tPjqvpUzirLtCJBK7z1EQuFnXEUBIlAkxWy3SSimtVSbwgHNYeAhGEkkCTlz3TOsEBIB6hPlE2MwAk7klSK3FI7lkmj/8H4DIHKpA+W3DD3MvHu4TkQZ/K7YGcJsVGbPcCiJCR593kyYgOEC6B4ATEViUUh4snTkMI5nWqLlTDUibrQpT6BFkmFDHBIKwBAQWnIgkJoQHvQUBgRLjm0HXIxnIOSG+oXYnVQgnUwim32JqQDQbNGe+ied+BjCnwIQxC18QHtY6h4d6QQjIrh7f1n+PknGHyASOh2loKlORCZQIEbMXb2pPD9EwYtaHTQnmkdKafbQ5ATezEi0BgjLif/6//t+Osx+nzgpjyHQbfX/7T//x/5HRiXPSPAOmT26KWejhCDGL3R/fYWKqPd3jEc0C9KnfhWc4IpobzD+NlODad8ggSDAETKZvIgc/PEARUxYgzEcHXEJ6JFBAeOa3lraMjBmjogezGYEZGNkjJv2HCCIAMU2NGaer1NwzkB6WHpxPVgDMdAJCesCDkOmhn0GGe2YCYUFGfKT4wsMhHj4jerjTpnA4Fc5Z2Z7f3EyeAOYkON2U08WGhFzBOWaU8yH4JQVEZNqE7jMjUczfgkSGmDWTmIiQyBgTw4oABEmRielCLGrqmarmbnNrEY9nRXVAgFldsazr+v41IvG830prpbTpm28LjT76/a5Da+FaC4SPc79sn0FCSk2AxKB0LqXWbYxBxB5JhMGcTKUwctXIGJp6mI7WWhIjYT/Pfn87bq/hl5ePnwAp3NbLU10vwjXdpd6rBXMh7K5qbr/8/NdluT59+FQFa11FOMZ5vVz1w8vr+/t5//L6hVbUGPs4+l2olAVEyCeEH8/TUs3CkQtkLBvWIgVTGg+t6kmZjSGkfL11MCtMwpRphaiJMIYL7XdFQKmFGc386/lW25qRz0+1Lk2A9i/vEOZJp3ItdSvBMRTrtRYl6FK85HOp76NYJibeTyXIkijLwqWoWUk9FLjIvp9EUHhLs+G0rI1E0lSqZPRLK1yXt9vN9dTEQvj8dEmk29cvrRW3FB6yXjChhZuPUK0EZV1CPVHMfNu2s7/PkFHhIO9l3e6vx9JEGNScKWOME8SSXn//woWZqLaayAA5AuW8AZXjvidcYKlCUNvalgbev/Rx3t+QaC1yuT5zv0ddVqCexTzu3Yl4Qq+RBTKRMiPaQnbitixSFzO4vd8vlwuLQGgRAmSpa6kloLhrYilPH58EELNersvlGgu2pf7200+2f01fH099IEwnoFqL5URdgun5unsPhknfQhZBJtJzZwqAMNP9HJF4PzvVBlxYlkjc39+krpWrOyWsXQ85lLmdeEdIVT+R1GBpZdZiqHk/B5WVMMMVwpBhPs+ZC5XCxOv1mUUK83njwwIhKV0IhEAd6rKUIuaaiKqjjxE6zLRQhum/+1d//OPf/Vuqy2+//PX+/j65EsQmzH0YAKlnSMWIyqJ2tvVi7honSWGp4Fqof7q0srbnhTzycH5XvO1HRgg1wiBKmPWl6WuhEyAT3XQAUlm4lOGUkAm8bBdAZpHhbskA4G6AsG3b81P3VKp8HBbWiR/8fREJNbJIt1IKMWEpguu6LlXkOI7z/pb+ObPMV7a7ZrIQr7X8+Yfv99vtel1IyvF+/Pb6vlwuHz9+/Pr1a0SsazHj+z7cvI8jLOtVaquttVqrq872t5ltb9vaiqzb2s9zPy1MmZMwMh0RGYFrnaOl+SCtrdXWFoChOs7TRp8NBYgoAmHElVGD3BEg9QjrEIYRFJmuY5zIhXy4WkQsVTw9zTVNWEpZhPIlh+ex//ZPb6/vUmuRZESmlFJLpHoyAQEy8/OHj6Ofx34YGRMiEou8vX394ccfW2trKcztPPrb8f76vo8+MlNKJYFwyAg3a+ti5iNiWaoQdvNt3Wa0AaVcn19enj+0WjOj1kZtIUzism0XN3dXBChFAlwgwwbBurRy9hMTiBmJIAAy3DSJjj5GZKnrWq6lyGW9FqT72cM8QjPIGWlZyArA7Gk8ZyUlsZjZ3FiZwTj09e2r6zAdUioA7Lc49ntmPF3WuSSIgGEakWaubkVYiAyZWAjistWauTx9kBUMh17p0D4QpLTt8xVKIJtbLJfsR0Sa1JV4GhUjwNSteyDLdrmICAB65iMvAQFAyRWZMRKQkSDUHRISuBQQAWZLgIQoNIY7otHUwXn44FZWYs8wcy7terkuS03k4dk9CDMy9/O08OM4bre3+3n7+ctfXvffjJwRWBgCI1ygzI7phABGTkbAiOTMtrUPTx9Z5H7cQ2NOEbGSDj3hFtUyKTwEZa5xE8G9E9XClVgg8bSdGIkyHBNSmIDdEhBQakWP9EzJpID0UBvhXMpKDblghCBHRGDJ8NZWsh6PlguqbYP0sBGyGZbdyzUkwfu5h5osrbUmG4e7EwXhGKOfp5mmRyZenj68/f4ri5S2YsS+3+7vr+A+vRiCUBgv61bW9fXLF3NDSD9PYK4is5xY5+YYIjNRCrFMf/qyNJZiqvfjNA9mKW3JDAe0fridXR1IZNvaUo/z3O83Qq6F02efBiXhcKrtMtX10trSCqXv+11PhTR3Nx1qP1+39bLgeRLRRDhSuBtgJqzramph9vXL75Xx6dP3JA25Zaa7FZzKm9VaSymBBERbEUbIxIDpHg+IUZdluWy3Qz3T+9HCiIsFQERdGJFseuHDIeHoHcIZiYg93MZZmMFyjEFEhQVZIB0gWTht7KPnuBuVMNU+Rj+JpTUmCzUnGaWImmLhM87TKiMLU4JlZoSH+3pZzjFKadvSCmHYAIiMGOdUeco4D355JmJzzzBGqEUMwSIYgdJvb1+XUnj2PRMjIkZUmTOXIOJArKUS0f04wl17d8dI76oEOMwoklmQyN0hcrtsl6cXRNqP436cl20tIn30qUwRBH0b5RMzJbrZ7LdW8/v9vrYqZOHEUpB4e2zViJmO4+TzWJaViMKci5Razn3fj7O25uGCEB7CQMyZOdTSBrdGLPt+sIhIUdW5Dhmqb2/vkEBSho5/aYWCnKTbR1P43EojsnBmci2tLSKEE73vgZClCGZGq+7OSJ7gbmoaHu4+gxUihUspUpEQMolmwY1OSEpEeMRsnnILj0CEWks+8rHBgRbBiE/XJyYqUj5/+Px0fcEMZsTMwGit9q4AMVkjhFhLY2YHZEYd2ns/zt5WzkQ393CcBUxINJ0LTCsvXbuNMUYfXQGxLQsiiggLI4Ga+7BiMdk9CZgkAQgeyETEkfloCorI8MwkZiIy02kDcHMz7WeSlPM4ZMja6tJqn0hWM8gohA455hBu5sKWhkTMTix1aS9P18n2UA/PFCkxbRgzZGpWl7q1hjCRQ5KubobE4RYe+G0bizE5P2GuSJKIEF4JkQUQGQITIgCJIHDiU8KMmTPCMomyMCWgq0cYs2QkU0ygNQAwTZtngtA0qzAXBIjph0GYnekwa8rT02PmPf/WXjRhTKTDABDJ1MJj9kPNmJSrIhMiqiUhTW9vhM9oU7jjt4qvmUmEjGn7FZr2jwe4xiNBJhl4+moe3UrfarwJvgk6j6zeI0+Ej2r4hEeGawpV32q5EYD40Rk3q9bpoSvNpqdHUszjkSabc+6px8w3AgJGZti3H2fCgHm6cRqIMudPZkLGA1EE+VBBMnFWp+NMI87PnYLCrKz6Zj4CDBBYyuWHH//865fb2bupmQ53Cxt/+af/d++vMYWVKWrnvCSSeOp4OF0/0y0YmZQ8n3XzfkSSKUzN11BG2HBPJAbgxwkK7zhp8wiRhJg0SU2PjBoipmkQcVIi+Yyi5xxczVOQwJgsQBM2CBmZ3lNJEXG2VM0aucCYBxxx9rrnIzqZMKFPOC9EgoicIt28s4lIKgPAVNcm8YyIVCMjiKaYBab+wN1/uz4A5syRMJMQISACiPJx5qFgzn53JEqgwsKzGzEscDotCYkJHTKTkB+fTzjBQJmAEw716Dt7eNJm4hARp2suHIREmtSzn8ThHpEZrsSinrtG2yQ9a61bKyKU6/qOUJcNMhCSSyXM4+09gEsRglzqJSOj736OY79dn56IZZgToI7TXct6kVKt1Nvbm40DAMq6mUPltH4EhB9vHJpMIaRDz/ttlmJGxn6/t1pePn3++N2fS7vs+53a+vnP/yZ/+vX29mriRBAG6nHb35fnl+iwLFyoZIVPP/6ZRZLE1PR8v1RkxFpquO39fb1cpJQi4uanmp69UQjT3rWPL601SF0FjXjatof72LuqhulSChNi5raUQsEAUJqrawQjCFOmR+LZzzGG8LWW2pZlP869dwwOxG5JCNJ9bREeDMa1JpWWfntgQ3BYAALFGeF1WUcCI9SGiTzMImLoKIXLugxzZk7t7hkIws5ga2t31Ug/Lc/b23p9SuL3/b5e1tBufSTiUsvy3Yfz3vvordXOeZ5aiMxcShEP64qQZavjvrNQ7+dlqchF1TWFAp/EznXV0dVDCDMCCAnIUhiBRUz7mXEtCetGTG4oQknt1PG+D4vXjf22v2NdcHuBRFNtSytSPJxrS/d0C/BxHNu2LOvnjOTl6jYirC2XCFIdjEbI/YzAkUmNMwy1Ppua3e7Xp+e8PreSzNR/x/HbXwUA61aFGQIzsCxNBMNMdYx0D5eGwBk9GSM5TS3RANqyAsqX1/eljXVZisSwAaUgNy6b6Rn3mE8OBFOvx9CIrJLmAcjrsuTsN0k8T3OqTLwuNV3H6AAQgHUlZgLgWpdSmYj3+/vr1y9upmqLEF8WMNta8YgxzqEz6O7z4IsQhb5syx/+9b9++vjh9d6pXWCkqvk4k8DPAZDI4sDoDpkMmG5JlXIuXBgyMP1pFZECOCnZpeE2ehxdEc3UqIoFRJg7CGF3JF5qKzydyWOYKjEzk0cgc2vNIzFO9GBEB0i3bWnrn35EitupZsPMBJKYEIEJn68XQvz4fFnXtu/997f77ZaFBSEJ8e33X/0Pf1oubJ5zseSqif60bj/+8KOjv5+v1+XKL89//PHT29H/6TyXtZmaa5pR4cX0GKfVVrkIsRQmRgJmyDD1XGbwg7iuZCfWCgD33Ynp8dach8tGYSaBoeARaial1NqAGIEAUMdpbqggTAgByWW5iqj2HUJhvqQhEMM9IEeYeARgMEOY2aT9ycIMALmt22VrADAsapnjBex9lCpcCrD03iMivY/BpbQHco5IWp2u/lPy1/vtA9J1I2b9+eff/vrzz6o2jQxz0mLaVXsVAYDjPISIGffjCMAHmIDwumyfP316evmYbpm5tFl7VjNxjDPNijAId0gz18hrreu2pg4dQ4e6B7EwpxC42a2f+3629SIs18u11lJZiPllufz+669AUhc4zhOJ21pMj8y0Mbr6xZbuYaaIgSci4i8//b7vt2Wp+3FIqXPsVUsptQojInmimqFTpKpqukvhcEUECvzu44fvPmyiCiRRwLARQEiRTKxEUgMCSV1cDSNM1Yiw1jJ7jHSE41DAdnkqdUEiIAoQCLBEoEKlzhg7s8zyl9ooIWd8wJkSUd0JkdoCQ4nrApBupsrcNiGSqkhnP4lFsZrBvt+Ga5Acff/y+5e329v78fp+fxt2AA0glCKllXCvTIkTFUlEjEAoxOCMBQgyknG58MbMkkROiSALuYVrBHm4hgOCMBVCICRhYmazXomBkjEbLkiAhBFLpx09iQMw776He8GEQYEEHLk4E9oxrJ/Kt6W9yLICISOhWbi5qjAKi0dApD8Ggpxhx+1VywLw1FovOe5ff0Wkl+XH2VR4mkZERI6h53HWuiRgW7anl0//9J//d6wrklyul7evh6shYiBBJCZWotLqpHqFjgTkUqf1CDM8smdkxgBgghJOSGYeLK2Km0ECIYWeoapVEKCfR2jnTF7W0hrX1s/z/evvGlBrm+BhghAmTArEpOI5PVXho3e3zBDy++jDIkHA4rjfLjXXAtyqtMtxDjNbpNgYnEFCsS4R+k//+A+Xt7c//pt/B0DWDwaM8EhjliolMieWsrS2LTXCzz6GOgBTWeLol1a/tKWrC3E8rkArSAjJbZkVuAjkGa1VMEugQFT3JAr3UipgMTV1a1CJm+k9QSCzH3cb/bT7vft+9Lmxwm+7ZAR8+HoyR+/3clYSQiQWYhGp+7i/fn3jVsw0MstsPwgDFqkwukOGDVVVIsoZGmUGQHXXMcyUuGzXLXia973Umg7I5GpFuGRGZCEM166RGUvhStSPfRZWInNZmqoiUxIjEDVpy1KLbNen0pb3199u9+P56WldNy82+pkZoaquWy2BoOZEMMYpUmdT+L2PTUqMUZiZeV3XdD97n9Gw3jtkcincGDKZuC3L6N1UhUlHn/R+dEuk3vuA0F9/betqATrM/UhIJpLCpnpGACCX+cZjIEzPpOm6BpgJlMn9SQgdzGzq0B6ECkggokxn5BBjEVUjAYrcz2NW1D9gtkQilYvgfL1lzvt4ehAiAplrKTBpuICA4JmZDgDMsi5tW1Zh3pbluj3NVIpwYaZSmo2BlEu9lKpF+lxiycIzI5eIZx+ZqWP0Yfd9n4T4TBhm6dFajVARyUjCSKLRu2knAOHHBh4g54X/iBnR5EQaI1QRhFRzAGzMRfjsp44+Cx/MB+aEvVK4z6DsGF3NiWRbJE0wM8OBubU2e6bdvdRSFzjGaebTaiClIJGUQpjMMvf0amaTP5yppuk+C+bCLcP6cTJEESo1IdPMkBgfm8QMQJaiqlOfbSIOkBkWBpkxNJGEEktBJHdL9yCaWCARQcQEHP1UYp5VDMjDPL0vtXimuycADIBMZmYid49Md/tW4AWzRQ4y3GxgnwChuTFOCvepH4FHUoR7mp8AwESmLsyAYHMTUgsShYdnsnBEmpkIf4NhP9QFBECiUgoBzYavCSp5pJ+m4SoflBRhnnWqf8tSTU/d9G0APog2ExGF+c2kAwkIzEQzRIYPnA9kJCZQeGRiZAITI+D8oGkfg3lSAVkwJ2sTgOlRcJYYiAkAFopIQA+a84xczbBV5oNDlI/EJ0BORgHwo4YkwMEyHkzmCRYmIsBMCAdm+u//u/9LVzcPtTCfUBP7+uXnf/rH/x0RYUIqJuIIkJhnPd9D7EoA8PBIpPmQeChihJHJGFPWw8T77Xa5WkZkUqAhApGE2Rh3IqRESdKI5EdmdH69DJ+8a+Kplj5AORN2HpEPVGCEZYblxGbhhEw7MAMSYFAmeD7ARNOj9RDvAJko8xGdmh87768pFRJjBMb0/CS4h2sioAhGACIyy8ONOodVEfQIAMI0EyLCJE4SsFsAEAQgkkz0/6w/m85LfAhqM2SYGZP0lOg463iIAADmZgWCAzEgDBz8ka3PBAamKboBIiABJTiSzDBdq2UyI3z0QClt0chw1fNA5gQqwkjIy0ql6ttvQo71u9FHP24WwBRbXWJ7GgGQyQTD/PXrV8cqCyIXH72tz+N8GyOW5w+RCFz384aZx3BIaKrrekGhmfYztwRk01Zr5naeuh/Hcb8v7fP1+eP29ISyBlBAtMIfNKWI/fRLumdC7/r7779vz58+PH8MJCzSymq+V6Hrut7yfrvdl+eNubQClaHDUB0YQQDmrgFAdCS7pTA8LeuErGnQuizsuQ/dj97HyAS1iFBECDMNF4atSW01AvfzRHRGdg9mHIbD/cv7eLm2j2t7um4WjgBJaaY3x6HwErDW/fp8WUTegQhhWctpbkHAEKY944lCNdEhGVott2OYW2VUT+SUWnwMt0HphfLoXoR937tGItUiRx+vx5Gu5mBuRYRrA8/X+2mQH5+Wp+fVv+T2/F01G/3XgOj9LLVsy2oZ535XjbrUoZ5cHJAQPzy1r4cPjdupywq8LBGpAQSwbNvtfX+995cP17quocM9bpl/yDEduL6uSVzv73kpw7Ef9+EiQXmcAFhrs97DVDjDnYl02HQMLpen6/VpDAWk5EIIZz9rKUSUXDIQiWOo2+mYVRjxPaidCbkPMH3Zrh8+1V88o/9DtPW6VEynzDFs3SoTAjgxmrpTkbpBKIz+7ZE6byJ2V4u8H4e6A1JIxbqmKwAx10zRcdJ8HDIXYLMsaCDy8nS1pPAobSnr5fZ+o7Jdn2hpFdyOju2yzPcUpgEAcWmtCSOx/Hb7y/vr15h1DQCn+uTmxKzFPXtCgocIY4Jgvizl848/6Dj+2z/8429v+1CdTkYGDgtAWIUTJgAi67IujRyefTxaRQOQwFsOdDQTWdiT3EMLo8CyVBvp6mdXRCutRtpt7wnUKlSsI1zQhQgQaysRXpndAxIQQUqtFVX1PM+0cX15ch3ff3jJ376eRMZophSU4X/+0+c/fv5uKVgwXQ0+8++3/pe//tRVIUHH6eamnXFFITMstdp+y0xu66cPz+6jvBEBieDTZWXZb8/HMayyMFNC3Pdx9p0LllW48hj92I9aIxGrSICrZynU+0gkgqjMtdRY57LNCMInStOVaiEughnpNOmHA4iIGdvSEHKMbh7uXoikYJSSTJnuOjsOIDPRH9MwSJ0zWSEGcKFCtRbKgtOCPGZ2mFm2ZemqHgGIDihEhFRLyQB1s35CIrO4KmYiS1uXVur2cn2/3+3013K7vd/62dV9podLsMY4douMUktlVu0YVsoy+jn6SW1V8wRdBLen63VtEkqppbYmIOh+7GoDIiq4n2BnzzG2tjhTrdXMKot5mFlGLK2ZDjc9z27aKdw6kxQMKFyJEKm09XJ1v71+KSLH2YkIAZsUEbrtR7jd77dIVHPAqAuLSIZVKft+Vs91TUQstQJhQJrBLNp85KcBMIGZ3bxuC2eqnX0/4qkQMdclBNU1BVapmkFCLGJqIcysABjFEBKTlqUy4ehYFuEgqiXrqiiVxICSJBCzLOEmIqWtCQnAEP7YJhHWBQGiH3sfwyLWVoV5WRpyzQwz9f14rqUQAqIBIYKa/uXXn377+svtOAI9AUbqvt/P0c1OD5VGgA/ycinNhxILMaeHq1FhIIIkKozCGAABrdTKhZxsmPWRM1/AVJDSAwFkap8YBMgU4ZqIFQXRC0uGEclaN4csXOFEkEzv6QEgRRANEEAS4iTGDAZZF7YAgL6/k7RaFiSkTBs9MsJGbZs5Yhp6AJBntfRJJ2XB+x1KWreH0T08RzzU577fXHupslyeiQqXSkSzEJWYj9E9JgEYEBJCJ1qhn0c/u48+F4m1imqcwyb1ICYjBoCk4PTfzCYZczVPMwJnFi5tn/xzVwIE5suyLtvFVc9jNzP3dJSkzAzNYBEgEpFCZG5YmgKhdU5vtbLw7X5EP9vTS6krxgj9moCesDAwJ2IFxAw/xyltXS9Py3b9gvx+ez//v/+fP/+rv2OiMQYAIFFdL0Wk9xMQlypNHimGoQMTIFnammkR+vJkv/721i35QZzgiAEnbVK51NAYQy2CCYXLnAmXTMsMacty5SIZ5jq4ifZbJDogQyJQV9gNzGfde0aihYY7pp/9cI9HHALITE8d6ZPZh60V92ZuheXsPTOX5QJT1MzZi45dh0fcb7dl2xizMoGU0FFrVR3j/aytXa7XadYvwj6GuyJglSIikV4QAeh234eHmZbGba31shAAOgVKIlS+//+Z+pMnSZYsPxc7o6qZu8eQeYeq6gYbDbxHPoiAW/7/O4pwReEKjw8P6EYPVXWHzIwIdzczVT0DF+rZoMiVWtzKm+HhYWFues7v933dw5OkCJfKZZ1vY1WxWpFwbz1ShZGZETiZ9tasHVq0WVCCMhORigBkerfepdY+rERgKZ5BzLUi9pGErR8avqxnDyNCQlrWNTPdBmVU1YiYR7vTUtrRIvN+u8/Ty2E265BSaClqM56JCJIEwFQtetiIDCJheezlzUa4T51QbwgZyiCsGQYAUmrayAACHGZrKcRE+54JmY5AyKh1mROW4d3MMzPTEJCYZmwTEGAyggATIhEYkUSXZTkty8vzy9P5YmaMUkq1MYhRiI+je6T1jhmNjQmn7ngWP0Zvb+9XLqUdDRHcPUkjcQyb4w8Acrftvk1UhY2RmcrU9x0yhJGBPSHDCNXHSAAiFmGzQMGipfeW1g0oH+OeIBpuo7c+qycIGBk5K9X04KIAoKrUWlVLrhiRMwNWVImpMsc0GxJLU7PBTDODfrTe9yPSaymVgbV83HbUhYmAkxCdHjkJjwizY9uEeV2LmTPT6N0BI0KkIOawQNjacEQQFQRQIkSqKsjStns3s0z6Hln6t1ATAI7emYWEAbCbcTizJARkem8d0r7PTSxzVmKnCImRMifmCSGDkJjI3e73++UJEVFF3QbQJMtP0fesWkdOxs6MljwE38gkyRARGE7EDrjv+7xlzMP75AQzCwBEpg9j4SmuSkr6NzdWAiFOZSwlAEFmIBDNN3+idi0mSOd7nydoko6nWQofdJ6JCEoAt0ACCHwgXnKS0PE7sttnnmPiX2ZtbUbKYuauIoQIHtWtBMggIEJGdptlcaCIeX5HTFTCIHgI3ROBAGIGTwgQKRGTEoJAZjstH9mWSWWaIwYz/7//5//H7bbtRxtjuLvZsH789//j//mQBD740fi4mHMOOB8JF4QE5Fn3nIxDBCCebxeE5YQ+s8jH7euf6D9OuVWGI5KDjd5tHIwyZ65ECJiRlBEYwJN/LPxIAiEAoHtE+mNSDQGA4RARMEM28KgdMtHkyiMCMljMWd/3TFHk99cOSBQ+k/0QkLOYR9+bjZPMYCPQHmxqJhJhRPTIWe1FlXlpMmL647+DBBFmJkAgimlwi+/1uVljTAwigiCEnKUvnEjrTITHjO4h/KIgodkLAwIg8AfPDDKTkRJoQsInUGgO4mL+TiAgoyy1RIbvDTAREolPVZOFUMMz7DjVJ2X45cu31pv3Y9u7lksyHMMsoQ9v9209nXrO9F1jSNJKOE7MYYf1RNwyedBmvWFuXHR9ekYE4Ti2fZh9+fKlKr++xvPrSxJ3Dzj6UvDp+bIPj8x6OlOtvffejXQNEggYx6bKXLUuy77tGSmlcEKkX9+//tN/+y/x7/83AKxVUSiPtt1vS631fP7y6y/34WflQiAqffjHx/W01gyvl6ccPkNtCUR66sEqoxAhyWmplcDeHDEZycIzYmRmhI2x974s1SNfpYpKjcLTiNT7pMMjwvsxkvDF/FRrW+ZgNUHEzNqwtw2Ub7KuymRtIMOpEIn+9rbJUm2/O+F+jEXEAIEEIJThfW9ciZnMxna767IwOq2L3TfI3O79fCpuLTNTBYFb679e788Lhq6ReGzH5XJa1uXjvt22FucVKW8f16dPry+vn96+ftFFllMZI5+W9Z247UfG/PSiYwyVUshfTnUbebtaMSfmdVGFiUCh89Ml09t+lKJcF4ogcCeNPhBaBHSLfUD2VlS41mZ7ABHKZEjl9D+7J5gnRQK4rU/P6+W5WTCruzGheTCDp0BGenTITBMmiHlnHfe7IR7L6cwo9ekJwSrG3/24esAiEv2Y9dk+gvbtdFpqUR8RqIIiRfthbuYWpS5ILERaiyVypkd8/fZGSLqcFHGYWf9IQCDJCJQiWn20+/VtOZ0z1MMtxlrkdL5o4Y+PD8D6/PJJOAng/f0dSKSUjBShIqfedshcl7rv19/++b99+fM/e++QAREedD86ADJTay3dicmHRXiaIdGpyqdPnxzlr+/HGHa05paXp6cI834QArO0kVr1MTASSSRcz9muEWEenhBpJ+oWRevZkybLDIlKIVjPRyaRI0J6tP0YrWWiZwz3MPfwdD+/PCOrZ0YkFw3v14+bYJa6JgCptAOWRQvC8nQ+ny6lnpCkm2/bBul/+vz0v/z7vzkJtv3oRxvMWldAHPv59y9v47jL+Xy93RyRWRgCUDE9vboNAkeIy1J7P1skxiDC07qez2t5+2hjlEKBIAYirFrBs22H1VM8FAbo4SI8UZGJ0O9bLarrgoLROhFhzk8+crNakFgRiMCJ4oEZKUVF5wMOEqIoATDC1LMioLkjUVKZt+YYYW4QEJFzrxiAvIh5ioTkECDMMLcwz4l8ymxHO8wBKZGHmZtpLSqFK5OFJyA6s65rvd/6lK8EovVhR9/sKiyJHAgo7DHD4JaYgbEsVYnS3a0xQoRZJDEL0xiDwKUsfYy3t3cBuFTQPCEYCjOQw8zSHfu27UdfLy91OR2t5RipYkkZM0lbVOTj7Wv2Q6U8Pz0B4tf3ex/jdDqVUuq6zjb2uq4+OnioFmXejuNyPquyIzez23b00fsYEbZeFACPq5W6qKqwmFmppVYV4ZwEqQiImI7M9IdAFyB6P8ITCS5Pr8+vPwupihze9v1WmFGEwhmFhEi62wjE1MxUZuwNwq3UtZbF2wgP4ESiSdwYDiTKxCwF+QEEJZYAJBaQxEy3MXM15vbbb7+fL+tpqRGhpQKABWpdisdpXSjBfISZAvaIb9dv//T1f3gkzyQ4koVFDmQqpTJjwIhwIpIyH4K+X4Et051FADHCIFxoIRFMmrxS8+Ho4UAJAizCwMAY6R6EmJbpD7UFpEpBZErd04d3JiqiQnqQtt4sMgLSiYtAEtr3/vuAcMciTtn2PYLq+iznF0i0Y/++R0QkmjE5wgAzS5wiHq1F8oQ+AFKJIvzb19+2++355YkIigixCMDT+sxSVEsCbHs7P12AhIWWquu63G53JtZaSRTTiXXb9mFGGZihcw2JwJSMGIAGaJn+UM8wEHNRTG+tRyZBijCzUilaFRKmMAsQy7KM0UdrozVGJCHIkZ4EGRHH0QDg+YkxO4QBrg5464HWT0AZXusCWHpSJKKnJQGxah3mEBgAx7ZlJmolEmAtJKfzcwDtrb2/v33+/DmsS6nAFBmJuB971UJEzIIQ3ZylnE5PwijMWBeQ+gILyPnj/WPb97kJDeYeUb2zEE8Y6jz9RHimZajoeV3Nk4SQQEUHgtnw3nj0niHCUldsjQwIYR6A8vtGdqZE3GyCYGw/mueTLIEYHuaTWQkAiQindXm+PDMmMYGjI36PG8B+HNfbFUUpUlTdho+WmTE6ApxOp0U5DLbRezMmEhbITAQPa90inFhnq+60VGSxcsqxZ0HsjkjH0TP1OO6sgFqUsCoL88e335FZVGQqoSMcQFUIwAxOywLgygTDAECYy1JF1cdwx8xwN2vt8KhFkGSYFS21logoguY5egPE0TsAqoho2e+3YzvWDBIxt3l6XpfSh9H3N0pV3N3c1UOVZ7Q1ImIAoGdrcyQDSNNqAxlEDJMSGsnEmXC73xjgQZ5hYiY3C7dEOJ1OE3ZW17X3jsQi6tMhbjbGiIzpO5+UUwDMCXDxnIDSeYgspTy9PJ3W0+V8eX1+eX15AYD77T5pr+t5iQSP2I9+9JEJ1luGxzxGRpxOp1qBtD6/kvUOtYwx7OHIgt76druDKBKJ8Bhh5tIOguTHACX6GMJThUizAHX0MSdLAOwe4Z0IEcnBWZSE+9FaO7b7KCKllPhOpTEbGRGRy7LMSl2pCyKoFkBiLeAxemcAZJmvkUXMY5J1M/N2uyeSR7bjQAiABB/lfLLIYc44UBhQCOEY/bsCHImFFQCxW/Ywmes3RAC0eJCohbAWRQBENDPvNrmztVZirsztOPrRiREyaDJ9DcLGnFmkgTAr4+jju48M0hzZ3QMgmSc6MAAh3B9ZE5jmwEdqhAiYubWu2upS51MBItoYYTYTTz7sYb1OyAk9YZ69J1XtY5jZrKkRc85nqsekJnlaDGZQByAZM/xxeH+Ulr4fkOdIIRAmqhwewr7ZwoRMpofsnWY/bUYqMB/toVm3muGPGe4FpIeIHGGOAmenESgm2DgzMSdSLqbbKTJimiHmbSMzOjE9qlz/81UmIDzm44iImAA+bPbRYj5+TsUe4pSOzSGaOxICMERgPAY2YR4RyUBMlJB//NPfvd3aMB9m8wP7n//x/9P7feqeHl9+VqQeEOM5ywMkDAfrjo+fFCIiMswx3mzgTRgPAd23D2GBNEAHkMjAyPv16yRfzqQKEwcGeGQCzuGX8BzpzM7T7DfNvxm+J3oigHnO8mbHLxGAhCAe6dLHrwEiwndTWkJCus0QUKRB2kRRAxOFwyPGx7NZh7OsOhFMLHOdNCOL82ccgAQzK4bTVceY87E/4dEEm38spqAtYg7NIDGQ/u1PQGaC4xwuCsEMbeODZuUPaKMnBo2e1gITmCdicX6d2dR7jF8pMRPcACAlMpEEyAjIkZhC69Ifn6qWlv369dv9DZaLiEB4Xc+liN2v4f243UfbLWBrbQyr64mF27BcFi2FRk9k8uEeQLjv9+h7srAqEwhFCEctyH7s7b4dAF/KUkt9un18XaueLk/MrH0sdaV6tvDt433f7tu2nbr5OERZSx020nqRfHo+o+QEK7y9gbX9z//4X6L9Xwr/exUCrOt61qWC6vu3t+v7t1jKy3kFVgRaqiSktVs9rczi7sw8i7HbMAFQ4TDHMK2rKlVhJBodCOzoPTzdewaG6r05wn2t1fqggpez2kFbJLgDAjMe3X/97euPL8/LUu77YOzLQh+HFkRI2Jq/349TEbPITCVkmi2UzoxFpFuE81p4PZ0jxsd1I8REySQS2cxOZsNd5xCZOSOSZFlPe9tiHOenl+1qe+L71p5fV2BEon3fRWtdFAF66/V8bvvRj366PLl7O269DZVqHsu69NYsvBbdDzsVccT7oPNZdREC70djxOMwVgJOglg4fF1u9+1o7flJBmoEvr1fT+fLCMzRM4GXdRJEGWENSkKfcdYxIEyZLRisHRbCuJRFVfetMZMWJeTReiBQGiF0TwgXDUBOQlVmEYdKguF+HK33ttS91sKYCymKZvi2tSQSRNbCYMd2x6oIQIRpvW0W7k+VtgGjdy0FkdyDGAGwlOLmvbWptwhILgshRoQBeTj6ALD0DBtGhFiA4XJZM/zj/RZYX15f0vv14w25DgeELIDCfDqdAa0f1xjjt9/uf/6H/+r7fZpZCYFVmNly6sQCMpHIh7n3DEjMAvnjjz+XZQ0pnHSu9byWsACAzUGZIGNGABAIwCIsrY9kyihFrvc+eRLbx7tKDCd+AiLxGCMQPRJQVJdlDWv77T48I0O09OOgTAk62rEsIiyRMNNGc1PX20jrZa2EeT5VKicRafMdtGQtT89PL9txtKPv26dz/Q9/eH0t7BmZSSpkaH0UpKfzaqO/3xs9PQ/3b29vf/jT38g4kKDNJ9McjAEEqlKEyQYAJWAp9HI5XZ9P//r1t0ZOTFCgPpXJ9y+iJMsI+nx5WU/Ll99+cSJwP1qnBqJiRPvRhdLawcyIjIzEkgk9QDK4SCawzBwpuD0yNa2P3hoRLVWmRHIMt8jROyYksSVCRlDJImy7uGU4E6R52FAtWmguGUYEECMrAmAE9A6QjDgiEmEudYvq7N7P/DBlcNrz5SyY9/3Y7rfb9TZygDKtjIDYY0JxBWnu+VgZKc56Hnsfw4BLpLEomjEh+BjtWC6nMDo2aMMx7Mr5cj79+Pp0WtZEGklHb/04eh8RoftObn0MJ2IhgwDv0VstpRS9vL6GtSp6qqd54r1++e3X3/Lt/f3l+Vm0PL281mVd19Ox3R7PfJFHM8/c973ZGG7mg1WURBhaH4BjP2xvUo6jVBVVAoQAgBCUuatjwkAgAmH0QDObfb75SHrf7XJZmdTdkFWoJAGRIGC4YQI6piEqlKW6a6LHSPDOSMnpEe247ce21JrI7uP28UXXy+V8QhhTkUdCwhwROR/DIojwfrt//fL129t760O4vrw+1VL248iEopJ1RSQQengAR9+OfbODVcgiAoDSm0WYMJNKZDIBIY9+QCBCstJDfYKMI9ISNb6zLtNsR0MHxvz+wKszNRhgkBgQ0N05dxEtWgAx3BzBCVJyuoogfaQ5MDm0sPRITxsRGenoloXYMSa3CxnH8ON2ux1vMfzzs4zj7v2JdfFMyCQW0RogATjd857kcyuMuC719fn5cj7ZsUVQD3M3KQoYWhazoapYlwT2AHeHiPvH+x9+/GSJH/f7fj8Y87SuI5KZwR1ZDR6ERQSQCQllqkJhSYlBHAkUPh86l/Ukte77AU5ETmGnpSpBACfiPJnUUsJ92LhfP5CYARdVZ9ZSej+s9/AAoISAjP1+haKREmJ1vUR43/fwLRHu97ZeXnRahNr9PvpSZEkg5FAZvc8t+nJ+YqnmTkTldD4TOuC293J9L1qQKQDadm339+3jI04nLVrXBYG24671hERlWVR57Nvy9Kmcnj/95Nv97e3Lb3/585+bHQSYtHpkN5+mXqLJT5ZwFyQzkzGICAlHO1pmP3Ybe80O6GBJMVBXqSc6WlVmhDbSJlfJ3d1u2+EA3k1PlUTH3sc6WCTmVp+ZRTOiaum979sH2gvCqZ5WaH1vXUod+24ex96eXqnW1UYfY2z7ETa6+7KeKAPHEcMWDB+9A5VSVItluicx78cY7T3DXi/rp/Pp7tqHS2aGS8aRKExHMzPvvtfzk4gykSpDyO32cV7XKhqJ3bwPQxUicDdzW2thZT76MDtdLqoKSFSXQPTRvA3VwpJjDFXwzP041qWqajiURUdrFoEIs31KAHWpEd7aIZEk4v44SIuwmUcEI2SGsJj70XvRYnYggLu5B6syCQAQM8sUTwlA1CIeCAg+DDGVmeiRhXZzgtzu9wh7ELeZW+tjDBYV0Ujovbc22ugqQoQiyixzTe4TVQYZATMElJBIeD5f/uZPf/PHn39elxUyaH6EAQqTJzICEbWjTcGWtYGAGRN7mogxe2qRXVUi8Wi99+EJQDx7HPtxtD4ul8tMTj2W7wyqIsKimra01jLI3CnBw8EGBghJZrhZZvRhmVmUHUGIlmUJs977frRB4+npXLXMFOEcCXyPZSGyCPOc/oMDILOwxyzoULi34yilzPzKo2KE6OlhhhB16uGRkHVEiqrZQMj7/ebdSHjqpeddVVjMDTKT2AICkJFFBRAnjppEAQJnsn5ZbFgC9jEmkpuFa62z7DKBt0QiHEaAALWIlgpIbibYkNUiWmuBkJlLkUTOh+YJASDCYQo0CGeMgb4PV4pIa/16vYowE81/gNlstH0gQM5xgMjs1bj7lNZBwmQDIwtmEDMyxfchRTzk6uEOAO444VOU8RhuZmL4w7eOhA86csID05OPpuNjnDPdqYmZGZiYmODEFI+q1cyFQjxwO4iE/DByfx8hPYYgiAgkmJDmQZEEBDmpw5kUj1RHQjzWHHP7/UiyUAbihEonPChJMEcghBQO+YgxzWYvAoUUyqAM8khzL0IkDJaYkQDM6QHpDkxE/MPnPySyRfZhmWA+7h9f/vrn//LAKCMgEQDB4z1MQHwgqCOJJm0aMSfK6HtTDTIy6fu4KDDd7eP2NgcimQnpCADM1/e/ipSEQMakTHJAxERmBARkBMjw9Az5njgiBkRGhIdhMAAgWdI9gAKSE5iZmChGZIJ5JsQck/qjfDczMgSI2TMnNGe+wYn0GKXMKfrjilCRuR6jpISM9PlqEHMWzhIiPTOSEBkYMOaLd4uE72Wzee18LyJmIsxAdQbOgWXAdKYRQXp6JDOSIGLOkmMmQGJGTmSqEEPMTh8SYdoMoyEk2EjixMf/BTgloDaGW+9mYXY5n3S95DDvHYUJMmykd+pJWZBYa0UmPZ19p33/IqLKGOHhIxiqrHo+radTv18nMnxEoKi1frQ+zPvwRLLRVR6xNS0LIH9cr1uzvt2kMrs/v76uL58oxnBbCy+6ABCYff3y5a///A/R+7qUspzq+kfJ4Mv5vFaWRd++QnprbfS+bXvbtr/+yz94vyP+p8vT0/n5GZn2kcv5Ux/ex9GBj5GIIMQhxQOt9fMPL8d+MIN1x4ze9i+3w59P2btbI0ImrEVgZJBJYetj/koSAhNmpnl45giP5uuizCSCNm6ynrRUd79u/by2WpZS5K+/9VqiMpGU86nMp4pvb0cyeYRQCHpRHtZOp5OUem3exjifFsGkZWGicexnJVEBVkbqY/TWFKIIrLV08+12LctqhozpvalwFmnNezfWBXAC25PccZlGhoGI94+PxxaaxD1Gv4sULlrWU5gNzyKIogI4UaPhY1UmWsOsKh0D0DxG9P32djsMyAGFVZeKEEnlftuZnMuqimv6Uqm7RCQhbvcrVUWAtda9pSUgsUcUMkgoshQIVhkREE4spejw2EdqdHNgypEQObggrydBnxJAxHSLZr1vm9T1vCqt7BGQgVpw7IkimKO3bkCQUhcKYwwKqKc6jKIFxrQFmQ/LCCE8LYu7B2CkR3gpy/zUzgQmMDO3UUQiPH1kCjIB8rxRRNK6SI6P9+t1Ob1COScE5SGihRNyfPnyyy//+k8fb29t2zAdM8JjrYWKIsQwt0g3I0h3R29uxghKuRKtdUnrhheKTG/lfBIpUMIseoR5mnnmTlpEGDJrLcKMHsMsiZe6bNtt29vttn+9v2kOC/jhxx/p6bMbwkMWmikFAA67JgAhjj40+uW0cilt9LBM5O2+BXKk2xiAOI79IvHj8yeoFy7L0Rqylsq9tT7GogiAP3x+zXDb7394Kuei5hGQWmu/NxsjegNIiTjV4kmqKkWP42jN6uUpj/uwfGxcRa6329f32wzniogDhdnzaf38fNmO7Vu7L2dC9sIsy9kji2j4OI7t47aN4ccxIvu6VgCoqsiS4dv9qIJMCDEcgri6eYxjjEGnkyBSqYrJLHsbv399W9flcjoT0dF6UXYGUsnEPqybhwdDAiZw5XqicLcBhGQt+10wA6O1liQEVESKyFx8EZGZp42gclpqDx4AY4ze2kyP2uiqXOsKxIhMTEWIzuecbvnWU0EIp38XnASJq2jV5AyPyKjMz+X8DthGdw8kBqRuJgr92CMi5IlqZZE2xvXjuu/b5bT8rfUflosIWcLtvnmmMIMUioAY27GPRF2qMKZlb4NFrsc92YmUtAyI3nrzjQt2O3o/tu0KyD+2/sNPP69rAeb32+16u0LiWEbpMsyYCUQqy7wST4sQCwnvWz/ux9G2M9R61KaFCBBRNSOnjRX2bd+PffTmZolQ13WpKyD2YV++fmmjlVIDwsAsDRzdPSFH78fYcRGgZArMtDaid2Ra1lMM68NYce8ff/7LPxLT6/NnQGARt966rLWiIAACShJm+HHsrQ0brW37t/dvv3z5xYxeHJ4/+c/LIloKFXKHBLC8tx0z2r7dtvvtuP/68e1udwwEe2zl3HpgKAkThnlEUpKQMrKy5gR7RgIwaRABRPhIEAGOaB2A+hjegxJPl1WUJQg8CNmb7fdjdPPhiFBVl1rqWlHYAXYYEACEqQCANUujjVlAWFkgpftBJOEBJAjm7t7tOLZ7u16vV0M7PZ2lcNhx3N7LGkSSGadlWdZTAmIQKxALBHgfYA+jMOXo+91tUMx2MrKQiLTW2r4vSz2VdT9a70212Bi//vIvn85/n8z7ts/5aa1V5mN2KR4OrUWkEyFiTnSihygjKYkyQIxBCEDzmOGYPto+uydMUuviHukRNsbodV0Kc0KGQyQIIgKoaFVpx44ZxOrZZw8RkjxzH84EQthaY9F6Prfru+UckeS6rFFzsB/32V6iAIC0uXIHxPChrMLcWgsbRevzBe9tvH1sz2dbAZD1MEPIZalFi5Yy2thG3+9bb40//TgG2YjsfTmdtVZmOZ/r5bT++NMffvnrX377yz9Hu3ckbP1h9snQUqXWYb13Q8J934QSIFiKIIwGYAM5whMzOlC2nokpK8ZARvSBSXNV31q/t6OeqpuvyOeX9dBjeNSEbrPpQrKeOiEi+rCvX77+/MMf+BSnZdHIbqGinToA7ce+XT/k6UKAHhHII10pERDCiOp5lbUoWHm/HyHFE4HIxiAIIuzDTgqVY/TOjB0Xh2UPmzFZEs1wt0GlFqFTkfC+7z191GUpjErkmS3dx9h9KLONNim3gKKlkAg9zJKQkCoqzBk+xcfu3scAgGGGB2QGQQhhWSq0HgYz7DMMVKQUxTk+mzd1d2RmZvcgBGUCpACMzFKKiCzr2cwhJk+WtFZkLqUSszADYMb8DWDIHJmMqPpAXCTkxD+5DZ8LbPcAmLS6BBDVYR7mxAQ9Z4yRRUop7oMQ6Xvc4TvnFRDxdD7/7Z/+5o9/+GPVambrsiBk+lAtIbL3hwhxhmOYBDiIBdK9JTAPm9+7McDoPTNb7601T9K6TArefduWZRk2ePCsfWVEOgTT7DmJ8GkaWh+QFN6PI4EyE5LNBhNDxugNQUC1D+sfH/vtNnof031B9HQ58WMAJxHJWkjKdD9bBAK01rQUEVRR0DIjUgBAIh4ZESKciXMlIECcmFKJuNQqRd3CeyfIjDiOAwAws0zIEGIpgkDhfZK2RSRnrgUwEqeGHB9P78GIPFPAOTJBRIjIkEopCNF7J5iqpRQVAFBRYpqTCCkVWYhJy5IA+76rcKkLAHp4RI7RmWn0gaAwu2kRmT7LcdNqzUIifBxHO5rO5GQRDibmWRJPAGKOSJze+IQMQH6kT5g4KcwAEYUkwG0OJCNnQ2cWc1j1O7w5CTF8JoGSCVm+J3rgYXsDwowMjzmyAUCgyakGQHhYCAMsbOaqmAWSERLRYX4MIBKgzTQPYQBEBATQlMr8z6rWVFfNh+qIqTcMmHyZ9IcBfc7KGIEmvmnyaXBmPJAQiUgF3eZoMQgwIAMBA1obEY+VJBJaAM0pyJyZMonQVEB5wt///f+2H6310YdFRPr4b//1/0UoQJA0I1E4C0lM6J75SKqAZ/pDj4Vzgz7rbnOMMdt1iDAbZBbhzQOCkCAS+AF43m6/MXEkAKY/klnfMy8IiOA+LyEwCPouR4PvCS9AIExANwecsrWc1gg0d8CcvUzkh6Tr+794ZLKYHsU5IsgJzZ7DK8jwnCa3hMh4VPcwppvI3R0c0h8vMsMQiZmSyMOHG+vEH2WEj4kKEgL4PlzCBJwOPgSHhCAIIPxeP0xkIGSAeUsOcwuHiESeXjTMSFVGmfeopFlhUHSL0SMzpvQjZxcjExMngiHG8LC+KK+XZ7NgBKoCgRlhGQzAGZGYY8DxhcuyXT++fv02S24ijEAwnLWMxBLW7x/ed2YZwA5EvYUZZJgHQH779bf9dKqnUylFl3VZFyKq3dp2+3j7uv74VJQ9DFlsGGWWVUDK6GMpOmx8/PrX7Peffv6JmrZs6/MPwkgkS9FNBYD3fSdEQegIx7H/9utfh9sPP/3h5z/8LFiOfrDUspy/fryFuT1/WrTIUvqxF9GRIcSVKTEcAsAxOmS8XTcCSma6HQLQ2wggJmQUVUUJUX3ICwNM2AmBed97aeFAzCgqS1FEsAQLv27Hp9dVuXx6vrzf7kw0VbsUIQjXMUaG0Gz2ZUQgFxJ9WurhwyI9wCOq6uWy3q6LIRJGZmCmMA3E4dlv7fmZl9N5977vWyIevSPjoipViCCRvDUmPloHJlEZ3bTW0Ya7CUbbj1KrammtEckIAwOasFKkBBBEqGewYwyPiEgkAi0LEiwqOfZE6I4esG13ohyVxxhFuWKW0xkitSgScYxTFU2533Zh2EdUHihF18JM7Tha7wB5KoJSuJbb3tYKqirMhOkQmEEikc70yPiKlkAcI4AqAmQE5CCAtWq3tMjb3guCYgayYDggQPZuGANIzJywD4/T+bKeViKEXp7UYx+t+xgDEIlYWLTg4n67Xn/5yy+f/wCEm5aSiSQ6N3NMLKUSJMwJPCQh3rZjKUxEbd/ut/Hy+rk+/7FZUn/vx33L/svbr//6L//89bffrQ9iUhFhxAxGsJjluPAxIoPSM3NFT3AocpZM79uI04lPLz++/vjD+7dv9xG/v93WWiD96CNQmVkEMj3Ccw6mAYejkjp4HyPDWxsYJozreX19+kEkQtgcSUvvnZktsCxLvzkijt7Th/f9qaCzeGI9P3N0pdhtWB+KwCQWKeSfLguwONB9725GzCLcj224x31nISa+XJ7+7u/+Pt/+cr3fdYnL5QmGYUKMMWO7TKzEp0K6VAKMiOE2PaaK6Qj33o/7/f/8x3/57cvb3//tH8+nBaRiBKIV5U/P581e++8+jjG2END1UpFKmrdje/+2A+RRizBFgnuGPGq6CEQYblFEAQCQEcLMKIOFMixGd3BQTchu/uXLt3WtRVjAT4UivBsyI5AAYkzEL5En0HSOIhGIZ/UwQElKQrfM1kYQvT4tRYQSmBASHBOIvDUnWgsnlzSOswLSFgJhs/CUhCwym+el6CVPhLAjoJCPICIghMLJxRNo2jGU0vylns5l2Y/uCYGQFpG9p1MEcnJVWoRPtUjpt83Sh9u32x2/8X4yZY6E+/XOwstaYQznQF52sxGwHAcxJcMRPva3YbfIGHsAYd8HYKRYOS0ltVsfbfu47l/fvv1d7//hP/z9dtyvx3u3DpaCiJBPTxeEvN/3p8u59bEd10gETBCsp5KWzQ6Dfd9vp6IijMjCNGY/F5HAJK2Hhfunn37+/ONPxDzG6H33HB/3L9oqOLvb8NHHGG5TZmSt0VKWl/O5rMw+hi3nsiw1B1xv5sOXpSbar2//amCfP/1UcLmcnjB9u77fPpKLEJFHxhjbcbvdPkbro/et3a/39/f7mxv/uP/xpz/+0agiqcHY++Ee4fnx8fH7r3/9uL/frx9ZkhaFBHBKCKIMBC5CiFPMzFPSZTzF89a6lkpEFj0sVQtTQqSbQySuzKKYoCy8qDIpEaO4O7LNZcGex9zAR0Qf47B+oTjz2YZ/7DdwJJVyrjECFS7nk2gloUxTXRCMiN1BnDu4tX7/uG639wG23+6uWM6VmJh5tM1tIHORUuuiyr1P8OJcjYcwgZSJPk0bfVhmCCYzE0uYA7Aw7JmAFEDD+gR8fvv29ctvv339/Hq6XC6XJ0C4flwTQEvVZfHW2rF55ug7AKQKijBT70eEIxEn67Jo0f62JZMxtb2P1uaekCkpcYxBc/2OiZQxz3VuCGTmNJmQwUULIrMoeaThiCBiEe0eSGTuo7e6Eiaq6I54dEcIaweLJMh6emaphMTK9493TwTRSR8dw0d7YylJxMzhprWeZTlEtuPGdJSFEaGbo4dz1m6E+PFxJak2rO1HZvZ9Q8j70avg+flVWKQsK5d//x+ffvjD3/7lH/73/XZ3UmShhLTu4RAeyIjIMYAVkSrCsKOb++iAkCDJmBCEDN4hEjFRavYjPNIhwwGj1rKWchzbel5eT6sRA2Db9na0x0N3zv8Bi2ShUkoihlvrHYiY6QHkFMl0jK6ElpDAZvvp+eWyCLRd6kKQ3bqzCvHT8nQ7PDwjjEWjt0goRaWI1NU88rg5JUghQCAuwu04wlpmqvBSFy4L2jiOozCdZmCnH2ZOkCps5t37rL1YBEbUZfFhE73BnPN05ZEZ3rolwrqs5hHhzLzft8hQ5oyDBwGQMIcbQwDwGEOEEYlkEkO+S9eZAUdvfRHWqknMosSMiCqMxGieQHVdSikJII8E0Oxt0KSfhCPmpDPDMJsvAzKP4xhmEflgCSUQS1UBQCTkhFqxt1ZrYVEVQaLHBAAiwh+G6QjzEJGff/rp3/3tvzudTsoa7j5GgyxCEP62H611s8njQFUlEUTQUm3MrZznmGaGnEFGNwvE1nrrBshc4nFwfmxQsLUGE76OOIYzE5fKzBHAooxQVEcfvbXMzPRIBwyLoFKEKCHDPKWYW5q79UxTJrPove87Pz+fn5+ft70F4Ij0yIcIKqMU/V7hsYhAfAwp5pYlInvvzMssqqgqE4kKIPdhicgkKAHtgExmygcqeB7tApCJphWwRIKozFPfDItM7Vm4mwWLPaxXPl3aYGZEIKUyMxDCo0wylRhBRADoYWaGYbqcEkBEsZR5pc2CMWsBSDefcZhS6uWJ3b23Y1bDiMjNj33zcEwQpnWpPkY7jlpKUZ3InYnLTUL0APd/Aw2HB2Aql4wEmoRmiuijd2L+XkyasRECnOdsRER3j8i5H0wEApqZenxUoWb2BwIhw3MW1h79Y4CEmTma1T8mCCIfM29ECPBvELn5d9IjGhMRM2/7QEfPoQgEPhgv09E1lSlu8EiD4ATSOEV4iMCDh0SQGWNk5Ax3PxAwiYQIxBAJ3jMCkQEIwhMCMNDSgoSQ3HOyer9X1xADtfCYsoSw//X/9p/Nsw8DRLP2y7/+n7eP3yATMJFgjlkenb7Mh6mLEQHiEVR6JNfokc1JwIdEjgkh0x2RUID6sN4OAMIpzkPMzOvHr4COkda/n0xwzlQAJ/Q6AxIgAPhxQ5peMyBCgnD3DEiYljqImLNpREBOYoLvOCZkwlk8zshAnvXyyVmi7yO/eQCP7+q0OcQCyMxug3hehxjxHddj8+cAnoDks9tIRDYCIBjJ5owsAQDCgR7zRPyfbKEAmJXAiEwgnq8WIOYVnXPMPqc/k5BEM5D5vX8ZEeFBiRgpwlpYCnsYEqXj/O2btAnxiDFGuv38w0vR0hJYSyKZdSTKGMyKKMnsHkwMy8X268eXXyOAmImjLBX6kctpPkbM8qpKGQHIADESGcjNiFUunDbGdhwoisTqHqMXwfMqGjJG3/cuUmw4IzpCWZdaxWy8396O1ph5P9pvX/3p06dCFL/9q9so52ctqwhd1tN1u4cbZ6pKptuI2/V2HPvvv3+5bcePP/+RqGqtS5xfPv34+69/RlWpr1oLA5IQEYze0E1VsVJ3k4zAOLYDhVXp97crIVbCuoo1tzGYcC3LyOxtmE2D7IMT3D2bmSLaGC/PTyQyIrG37m69Hffb6dNTEXp+fvny5XdAiqf1dt8/r6jo3+7ttMrwrAJKuTkmKTCVoglJzKMZv8hyOr1+eulu5pi2CUksSymFsHaWNlygAVKOLVEQ09xCmQGWdYHEtu216hQS6qLRsQ9zDw/SKoRBhDG1k70BooNNVp0IB7Cnv5zK7ZAcvVsTDoxE5QBZlY6UPiyZtRQdY2/H2+9fSLiq4tMqtpfXn4hgmCmDlJJGwqRleVo287acF3dHcCCKSCE3rAw0RoiojRBokf1IJYyqmlRa75ARxBBJEawqIo6kxDF1eIzDwoFECjOYHYhYBCCStP4bsk6jU2BkXS8XLjWRtC5S6dhvcy1j/ngkAsCk4V7idPm4Xv/yT//8/PJcz2dAZpapG3GL0Y5aa2but6/3+5VFzYaK1KVmGLMeXp7z/dg+Pn77l7dvv9+v7x9vb6N3JpJaBDiIklWKpFkfQyDTjb2fCKvSYRCRgfxSaRH4OJb/9J/+49/+3X9YP31urffAgDdoY5gVdIhQxVIrEphZGx42iDCCdKkJ6Mgeo7dOzOz+vORy/kEWLetzUkXCdCsidT1N7QVpQcyFpxAUtmTbx+lUPBKCeqIlR/TB/IfPnzJBSgHCr7cdi3o6AjAxMbBov2/ISQMJksFP55PnZ8Ewd8QCzFSGDqWMdI8EJiIKSmTR9y+/77fry/nERJFIxEK4fXz84z/+88d2IOYPnz6ty0qCEICYu9uy1p9++vz17asd3a0ByeWlaOrtxj4GuIkshCyQ5qM7yXDCZGDwYKH5SJaRES6EpEWI3N1Hn+2/9XwRkZens0dEvwvhIuhOOW2jONWgCB4Tr4iRkEZI6SM8UCoiQd/SPWJs7fDA5/OQEy1LISQihkg3c2Y7bt6vXJd+35nl9PnTUn8cAWF79s3GngFSF4+IDCKcSHspFR8ih5nwH8wcaQTEQgQ60t+2+947MPrwPvqyLOenRShFVxLSoiloEA4hBXOzvvfbpigsJEIqp7MUwQJu3aEPIE/vvX+7OxCbee+jtbeQ0Y+EA2mBIxqvokIxoCxVkXxFrpqB1j7+8pd/7H6cVz0xjcOfzksAPl/WQjQ/gIpw1HL0PSEJqK4KPaP3pcqiZalVhZk5Mk5LmX0kQ7UxEHtdT58+f/70+ZO7b/sW2TGCRIkYEwTIWw/3sCGFuS5JiIKiCO4osiwnwlFYjt3BsWotRVDUevv12z+8bb/WfPrh+eellu1+fX97l6XwqfSt3a/X9/dvbbSkSHCsaGOzMY57V4nfvv4B/ynCfW/3/dhGH2PY7f3r/nbjolxR1xI90oFTINLGwJXqqcCwNEMCiAADmOr5WV2PAGShgrwQA4EDJpUIR0zmIhBZdCmsjMxJkBQR0Q/rvWp5fX4Js3401UcFzNsY2Eg5WsOEgBIh+213PCD89QUzkAggs6AwsQdc3z9u19v14+ptGz6SGRKP684g+QK6qru3/RruB/OxX0ULICHrfIp090cFH4ipmkcRJmQmIERkbt1w60Wp1PU4ejt6hItoa9v729ePjzdGVJF1Xe/bFu4JnGbQGqYPczMjJsVM60lQ1ktdzsewsAFuGQmZJEVUmaQ9WhNZ1xMCe+/NtlKUkYDltFZEttF9HBGIEGOYAmBdzCwQVcqIpqUyTqZ8CFNEggcCqAgC9MOObgCgZdGqCIgYrZm5Pa/l2PejDS4V3CKTQOZuNKwDgDA7L713NyPCljAszkXY49j3yPTt/ltv67Kmm8eW6fe3L4kgpazrCgBFa7ivp4syITi4X86Xf/f3/8u//I//+v5xsJSABK2BgP0OXB6rbUKP3Pcdmaa7nhFpxj2SE8mAhvXHTM/HxGQACaKI+Ovz5WPbcdFtDM/hASyaiKI6ejezdvSEJONlqZfLk0eOSLzfE2BEjt4JmUR8pCdu91ukU1mIhRBF1CJINRPD4LCs9QyIXNyPZu5teCZmpIqc1iWIrR39GIY30pVYynq2zB5pHx+EUGrNGADJda2eCLGsp2VZjjv0cSOcBBAnwnYczBLZZykG0gkBgI7eIgIzSYSIMoO4WGSpNTMAETKPfXcPV14VkDABVIsylFLu+2FmRBhJs0Ayf9UTCBI8fG8tkbSumTGDkEgUbq03EYmp1ipai5Lqo5yT6D5s+ISRWLdj36f3nUoZvffe+xjukZmIQMxr5ekMnck4gEdJRVURYIwRc2GeiTM1P8XLEefT+rd//OMPr6+AGB5zDnfsx829934crY9RVNfTEonMQiwZHhFjDItAIvAQIjMLz4QwG2Y2bLTemSV3cA9EEpHe2sznz+/awoFxqqIgBRB9NraIHXo3+74xS3fnTB9dRBCJRUTIzABchZWIiHY4bPR7RlWRpyfRsvdBxPO0nghuPsZjGOGOALAsa0Rs+8FMk8qUgN1iVohYlJkJSiSMvRGrR8AjZ0JKHNEiDIHnNhhzRrwNMx9VJubMadvO3gakiSgQAKAKh83uF2aEZ/gIKRWQplJJtCSAj4EEqsUiKJORM6XUBYncA5GnP5GFkRnm2goxM5g1PJgZiZB1UUYmQgw3LQUgjn0ffThTXcrtvvk7iIpQYrhIQaBwHxHTn4SIs9cFQDFlXRlIJEyX82neSCKc5tn+MYlgniXriQlBHMNoPoIRTWBSZMzqleejrAeQ4UCEmJMqnpPj++h04Xdvdwo9SMKzXj7TtBN7EMhEwKKSkQAzexeRQYiQs2OU8PCUA4JH5JxcT+gWzqQ3IiNmgkeYg4MTEj7cYZABPCnGARCPEVUGPuZNmRkIiYyCQMyS7gApTPPuMc025pGQzIQEf/jj3/31y70PN3d3+6f//v+epj8AiJyZsQxP5JxYc2ICAgQAD8rv858Zd6KoHIhkEVM7jxMeNA3XyL3vzE/DcJZVW9t7v09RY2TAQER8tLBwNqYyJ0YwHvHtmF50oMTMgLDJP8TwdJ8KdphTQEwMmx5SRABGQMawtJ4JADR5SI8ncfxOh87vczoWBJqzUAqPR8ZyrocdMgNzhqIYIK0bMogATn18JjoHJkwwLTwyO27uAcxIjDEtGglE+GhUA8Z0nAnNLhg8SFAPnRjN5S0CMWVEbyMJiUl4FsrgsSaBCIx0T2OISQfLDJB9P8Dt5x+ekaRZWph772aqKqJJZGPC842YWQul2jjOT89+vS7ktZSiArQMT55niLAZlV6FWiIV8aQwKeQESRAkqqfH+HS4ow3KiO1DmEjrMI+M6/v708vr5XICw6I62kfsV9uP9D5nNNf39/L8bJS535MwrC+ny4fbdruVqizPdN9V+DiOcO+tH2388pe/AOnT0/OprufLGdN++fM/Xa/vRQRNSy0fHx+nIkXKSXVZCifAcWCt/QgVklqOo5m7iJSnEwAoC4ON7lokDRwGKyOJubWjeSAR36/7j5+fs2Zl6B4sfBCn92NE3jZWPtW6aDn6c2/Hfjuux2H3viwC4UeHzEAHZWBLhjiGiVZCZmXf3C0J8nQ52/U+Ri91QfRh3Q0uz0+1rp7j/nFNMwOI0VjUzO5bKqUklGWlRRHhdFpHHwtSlXRgbwMBLYA8wIaIQAQVB6SjJ0EXYsgstYbbsW3ny7NFSdbRdne7lFShGG3/eOse3SEJdamgtVZlYotsERUZIbsFI4JqN2DK06KjNwwjpH40Vbndj7lRZdFlWQBydk+XpWQEjU3jSAjUV2GAZR0dOYxUPSxAAhHcPTwRkDmRgigigKX3I5grJ6dbIKvovJ86r2upy2lZygAWLYiRxGFBulaqJ7iPSdUNB0IkWpbVE54QW+tvHzc9hruJlrqsjIGIHzMr7eP28eEepS69t2VdM5GYRUut/3h5+XS/fv36619GH2tdSAuEA5GPBLH5XEWGRMRM0dto15K0/OEPY8zf2XZmp5BY/vDv/+5PT58+f+t2/frWe2OU588/PQP1frTtdt2/OjrScLOyrqXwfrRIxHRgS8g2GgCw8LFt4+u39xivwH/z8rKezqi1+VAu6/lEUpcS9/2gjNfnZ9veP25joLYgwrjvu7lWppyLJeJ0VxFZn/ro7/dtGFDcAaEuKxFEwPl0Ei199Ov1JsoE5ADy+lNl7K2FO4lWLbTG2HfSInEopAO4jXCzwL/85c+ff/q5iiBLuINB65GAX9/fj96+fXu7XJ5qLX20zLBsuioqnp9qul8/9qL8tJ4x0XsvS93HyESu9bScIhPCzToBK1OY9aTz8+tSi7tbbwlNSmUCNm+tcVhAjN5Fl5fXFyUUMAInBKb0mE8YEd4pHQk8plApCibAoBxCYCiZ2IGawX60EcSlfr2bebLo5bIAMLoBAKaQC3ASeT2LbaPGKBJXXHbEvfVj/1gzWZhIYupxImpVuxmjCCtYRjoRsCIpsCZBqoiFI0SAM9ORDhS60npS5CBCFSUqSNhbM7Cn1yfk2K93nQmlIjy7KIokSDQVn8NjAOfR9+4xzDQEGBC5Mpp69x05EcB6mLVRlrUqCKxC5KSpEF3YF666SJ7x8vx8HIcdh1Cq4Nv1BpCkZOZT7yFCCabEp3I+1dN8yHqcSTKBMB2G2dEHSamnE0H27ZYAjLAuC9KKzBkJvaGbifQ2lssTSkZ6fTrTwqIJbuBUtFKCNevNpKhKRUFUxkSQiLDfvv7z//iH//386dKO4/3LvZ6W9aVmyrZtfWvr+czMxMFKj/J+1lLt16//x+8f//1ox4jdAsKjHa0fveJljeeL1NgcDDCBiMyDmDE4rpYJLILhZm6HMVRiIUISIWQKQQrGhzVGiq4kCejpmQGQVQoB5QiPZJ5khZn9lxkeuX77ogK1VkBGYkR0t5fKbVhkZ1zSxjY8IwDw6XwqVT8+bsJJhfZt+/b163bfbTRWJCmWWc41GQrQ2I9edo8Yx2FuEXm/XblUBPZMHxZppVZVZRZmvW/3Wsvz0xN6tOkZcrdA0o91ra9PpzAzGwAgdIx2vP32y2g9I+73u3ts+9Z7j25MyOc1Mznd3GcxztzcRCzWlRU5WXyMcftQJi4LqBLg2HfOWFVEeDzuF105uZ6BBIBV5Ri9ByQkz10qIMwIN+Bwb2YqJARJnIEkMkYfFj5a5LOIADUljAwzz21fTsTMkF4ZI/wYA6REQhExOxI7cWESQHS3zCTwomLW3boSbq2dRxTVRbTZCB/JfL9/5BiiYgHhHqMl4ni6qKjVVFHAraEjUlVlDBEGJMT03oQQiCxxPswSJJVlitHcjaUS87zhY7+ndUBuowNiSkVvYR1kgegEEWMEUgYIEkPeb/tyPtkY7i5c3B1xZAIhqkoCzJsts6iWdDcCGMPccuYpIhNyuBvQ+7evwPrD59cTmzAF67DADMI0n+7LyTPypRazfURAjPO6rKfn2+1937olsojYKHWJSI/Yt2O42RhMBEjhDkBalDEh83a9uo95smAmAI5MZk4bxNXN+jAVdndmMnOiWeULt1DVAEiA2Qx6gF2YPNI9QvhcCyL3MYg4EZiJESwwIlU5ItwGQYaZjc4sfXhiR5YE6H0wIQCJyLquk6iiKrUUJpzCa3Pz3vGxYTbMGDbMDBFt9O2+TcRFxFzSIAIuWkTKd4qTIyAyz326jRERrXd44GBAVSJmuEk+v77+7Z/+5tPLywTgdhvbfsyM0HE0s4GIpZTXl5fTuiRAJLh5a4e7hwdCzkDQGANp1mCn1trSrfexLBMDwhPz/PHxwYSlLvOkmu5AJMxTeYyAJGK9f3x8DHP3WKoiogCMMeYAwDMBUlRU1c3cOhM+nleJIoyZUYoFJjHxgxIz40U0sSUkM2OCOCnbE+lmGYnEwBLDVFCYZ4AxATxsmBM1USHiZVl6a+MB58Z5sjIbAU6oSDiGg8NMPD3CG0hjNB8DiYUFANpxTFDIfFUi6u4ZSUUImRCTKCPauJ/OJ1GFyExQFRZB4kygtMggmDPF7+icjBlDW2qFtN6OmMgT5kUVIBGRmScomLgB9Tncaa0fx14wAFJJmMiaIeYjAUPoEO6OmBPu8CDRZEYmEROAJczAT0RM6pC7z2TN9+XHQ6CNk9qS6Z4BkDBd7MSEEMhM+D+NY/g92vLIHM36EjPNr0IIj8lUTlkZZiIEAMMMgVISJFhOKThmQOD3edLUvzISwQNLjYj80AhPXVlApE+lEOX36tMcuCBgzrFGUoYTS2JARAYwYsqURMl8q0Rm2GjSiOF7hWqO0ehPP/874rL3KxID8q9//m8ROxEGYHhMVDY+DmUkjIjhPktMwIKEE/NEOWlHQOYzdZMeMXoi4hyHISQm3u+3y+srQCBgRHz78mcEfrx/wEIUkEcfCcHMzLMyB2GBSEw8sUuZSYKZ6G7hgTQngPOnNzP6kBZIgIgeMVF1kADoU1+WCYn5aNnRvJiAEIWIlRAnNnrOtjLnE838kTvo/FkT5IT4JCCRMCMnUk4CMEy4TybQ46cNGIjglgQIMFtawMQsHOHzCxESIz7CSjMe5AaQmNNgyhnzr4LAnCxFjwwIFJJHrRgeuP0It4AAAgaaIRUQ7/vr5URSHJjIYhzuudZa6hIAgUm0RhiJMhGJxOi0Puv9eqlMqmYe21aLYMake3NZhAD6ODokiaxnMmMV8bDeox9EuNSaGfftBrrUWqIfYeZuCRi1LpeKEW27VSGMFJGIgDSKFr0zRB/DbIBIdx8fH2mDXz+NrtePNxH6/NOP72/vEGmGfQzRMtGz72/fdD0z81oKTcju+bLfP452X5eXRA4kizy6KYtCCvNal8w01qVyYh7unsCQ+9aQyMa4VIU8KIGQSHRVZJFv19H2VopKodbheth5XTBGIR8RheCIaMYjvX+9/cd/dyoMry8vX9+ytWbDDoDj1ojTRieR231fT6swYfjoaDRYhEUGoigfO439RqxgVjATkMGOZmOD+vrZNlOhFgzIDqCEmWgO5snekkWJpryWhfe9s5brt4956UASEasQYCFEG9iPTcty/9hUk2opyqGltx1ub7Ken1+e3r55ZlpgjNFut+2+jcR6vhCQMC9IzMSIwIwJhhEoqsUsUBYncW8cXcmfzuXeHQjHsAzfj3Y6rZfnZ2X2Poqy2yCEyuFQPNATIRAzI5yQLY0oRRQzmdDdPRIhgmpv4Zm1VLCBAOZzfAuY5iasul5OGXm+nDndfSSSh0fGcduQBEWk1NxaZjLzCCcWinAPEWUkJCHRbT+s92O7f3z7PTNFJGwg5MwuBmA/dhXZ3QA5Ad2G2+jHMU3gl6enLMuE0XsCZ7ghQhCNqej1CGvbx9d3rctpWK3VvJUc63L2cl4un28G+9c3NzN3ITpfLsu6nteyygnS1/NlDAMkrmsCeriWEgBp1r8n1UV472E23rv98LT87R9+WF8+l/Pr9bZFpAju++FxFKFwM7N6eqWynvXjFNPaErdt23c3MCfFsJfL+dOPP/By6u34/eMjIqWeMgwArQ8QZtVaTpcLSSlfvvx+u93etk1FWTlFXi7Pt7evx31DQHdPFmItWvpw8T76cc+8PL0c+/7x/vb6/OxjbLftaGPr7gnp+csvX3795dd1kcvLqfcO4XKC06fT+XQ+6fnHz68Mej4/PZ8vzOrdh421lNZHtnZ5+fH89HJ//xbj5hBmsZ7O2+39/f19PL3UugAnFgYmIoBE832Mrlp6a4p0Oa8EMFqb6whhyJw5cBMkc0skYgJ3mh4Jj4wQCojYx2ie+8i9e0JY79et2WBiPT29KgOzpAqW6kUgOqRnPwQARivHV3FBUOASiT6ady7LJWHyOhMR77/clFVXlaXoiUmIBbkgMyoKAAQkAzKhFqlnRdClFqlIjG6zXg+j9cwolYXp5fX18nSB8EBhLRQwB8mJmJCsHGNC0+bO1RSZFIN59PQjkY051ShatB5aMDE9s3nvOdCJW9RTIUxkPi1n1frp9QUyP7YdrF2/vrVjI0LlcwQBgfnwQGQosxiTgRGkE+Tpw8MybNj1dj3aeP30SZkhjOZyL5BJQIhRzI3WE3iyR1zv5EaQKFAqcWVAdx/ZgRYmwGOzsVs5VakFGVmlD2CF/b4DZvpIBCkqOJWqOa309bSslyUjExOhnc/iBb1wKXKMd7MBgABkHtbdRgfIpOFufWcQJMAiqqytGyFpzh6BJ8aIPtxHjJVrLSdQAEmlwqFAA4kxCNBrWdeyGGQY9nEf3nGgpcdwAkyfvUuBqbsAPD09IUSOvYgAAoGDtd4PIFmfn4IwS8nLenu/3263/Th+F073+/3+80+f1/X09f3t7f0tPEiIdd5AUQDracWAPo7r29cZlU/E+dxkfQBOLKWbjQRkUSFGIiTZ2xj+Dg9mALlbRvTr+xf3/dPLD58/RQRBftzuNvrH/eYZBNH249gbZCwMzXdvtoOflmViVpgozRLREnYzOxoBZDiSRO/zFCtI7iMjgCimsT6yiJKqqJbTxQFjWG8GiR4JkcKTJRAQlobuBhAzHp+ZPj2LSMw6YEeiSBieiHw6r8f9OoC8d3dnEZJyEu7HHu5FlwSMROGSaTZasmImESCLe9g4wDuGM2YAvL+///T5M0NIuoOHd0ICYe8NHuhJABv99jEQAj/Gfv/Dn/7m5fWFiDFsu7799uu/bvcNPENwUlYD8QAKN0ZU7AlYS4FgHw7MpayA6EDZO4kiKRJJBJTSB+aY2pVAQgZwkTmpPLY7zGYJsfcBAI4YCUjIE8APqUKvz5daNZHMfVkWSBjXj96HhzPh+bSUZaWlxmiAjFI9MiEYMZA4zNPG/hGJI5m1QAYy274vCEuhdtyDipMKi+h8KOqJtO3HdvvovZ9OaykFkdK6ja6ispT9dnUzc5tn0WWt2MewEZmEWTBCJMMR4XI5TVI+IsxkinvMan2BBOLI7L3N01qtBQBEhJAw7FQQEEcSIAMk86N6AQjE4r2pzlH8pFmEjZGIDBN6i1XKsq5mFu6MAOFhMC/m0QdgMgkhYsaxbx6RCa0dRAiApdbZeDFzLVq0kEhihud4ZGTAPVgYsvTRM1OEMpKQZzmtLBLhtdbPP/xwOp09wKzb6ObWupk7ZIpwKfogVam4u4ebp7uN3ufhLNxPIvAIegQAAvNEnIRHhvc+Jt1aVdmDiY7WZ7tKGbXqZVmfXp/noKoNM/MEmrGVzexRiMNH1gIRPWAmBVQkix4+IjzTwxIRl2Wtp4vUahEzlOHupSgizEduAEyMB5M4Y/QxwxM2LDNxGskpMwiFPAEjco6HAPajzdGVmwMRuDEjc0UkwDlW86laU9VH0W5KtTzW87mU7Bk2jEth4UgdfcyjNTORaD5aYdOADpgQ4SJCUj0BIVmIWLTWTDBznQ9L4axlVvzGGMwMBJiEjOmMzBBAzJAQ4YjoZkiIhMt6IVbRsbqdzyczG71bZkZIOIUJhQOFjXAXLSzMTJlIs24TNi0KcxDzGOEQzVaYeZjbPK8HQXhMYBkRWZjgYywUlomTVvZofQFMtCc8/OAPJfwctzygzu4OiQ+nFBHgxKsEIPEc5eSc889IGs2eVk7WED1CGpmZgfiYy2Bk5qMARvA/HWUxUys0c3Pw6H4hJE5TOqB5YPqEFbPSDHfDrDxCUiIhmjnzTDI9SEg54f1AwoEE/9f/9T9/3FsAsS6a8tc//38f8J3EWepEwsx4gIAmbZgRcqb6HCKYCaf0POAxPUnMAACeoi4PiABIZNLb/fr8w3wjgIjuH7+u68nD8vE1ACMkxLrFfLHfdelC0zv2mHFMyL2bpwUrhWeyz4nPHMxME+PMCU34GDLOMhkJQ8zGGiQC+ux4TUd7CBMwkhEReJq7ZWAmemRBJuWwSJ9Cr/leEgQwP66QfBCkJj37UV2c0TQCAMzIiDHvBBDkCDhJ2xGRgkicCJNZzkjoPOdERDTXD3P/AZkzKyjKk0UzS3c4S5/J6IGPgRIgMyFQpvz4+lQvz33MoGsiskqoCjFbOyJyyn5jNGQBMK0rFc3T5fj4ZhQoxdthzUCXy08/Z0aMFhkdVEXq+cyQxmWMgfOaFp2zRoGk8G27s3BhRlZGIOIAHJaEY9vuUuppXc3DfRQhAgeIGB3caq0i+u3tQ5dSczn68PbtfFn21q7v7z6MpbTeMlG0mDnEltb2+8f+/Pnt7X1ZKwFIWf36duyHPb/y6BBTxMp3c/Wcs5HzuhACQ+ytn9Y6PGkMO+5fzVgFEXpAMbPAjGBZlkKr8nVC75NEqDmwQQAuROi5Km+MAelB+4j7iHWtK+CiZdgQBCT69nZfCrOKj3CqIwlFAWGM0cBpsPVGPno7Si0ipTeTWiKzLLUdh/s49lT+2rphwtP5dN3Z/ViW2obvRwtPXhYboQu7eyLe7+3ytLTW1tPSh8mk8zFPT5RDOkqQEgCVk4OrKtezZLbM+77r+Dh9KpeX5/v7+34cGOMwDF2ZVFUTQKc3fQxBQ2Zi2Y/ehj3VhRVEtRBtzdGGH/dvv37h9dTAAzDcCON8WgXBIpdFZ/NljEZShbuIMkKmZyYjWnpG9qOzCCvi8c6yBBZM8OHE7OZpnYXnejBFkzAO16fKBAkopQDk3gYRc9XMBKRM5lJat237uH98TZ+7FgKAmTNQ5kA6MWvRhMyi+3GQDxQ19ySaQcv0oEhRVhGABxPufr/u95uKiMrl+dPp8oxIEe4WqjHDq4gIOX033M32o/eAwtLda3rft7Tx5dpprXRpFVKXajEEqZbSuo3Y234UQUI4nVZPMM993yNCBFUXS8TKbT/mnLs1770L088/PP+HH5/XywvX0/Xeb3sTomb3gMd/5Z5IlAjnl+fn5wvFwPD7CP723u7v1pwQXs4rEByg1qL1h17ce0+ESEhBBs3IGXWEyE+ffyTRdrThjmmUQAh6umzbBpEWmRG6FiE6v6b0YXvbIoaN1seX3796RLvff/96+/r12/vvvxDEy+vz8DHcQuN6vx73fYwON/gUrlQ+Vy1a49XNBjOpcFmqNypFtC59jPf3b6zL7fqNwdbzqVmsJFrX7X4bvZ8uL8+vL7rwsd0iMQFE5Gg9hmEiMw14fFaZJwAWBCVwwGk2YeaIZObRj0wfEebBjDx7LjOkLxxJgLltG/VBz0/fblK+fDyd1+fzWoRJnYsAQMRA73LpY9sI4gR97p746RxmEBZ2pAMAMgsQZ3daVYSWc6EytZWREcwlIx1GYkJi1cLcLLgupCQkQQWHRbMeCZjz/J82opR1Oa+EOSKtWwAwu9PoIpwAxJadBDjEPMCMUlFymLWjQSBzLlSIoPdQZJWCiCPd0rv17TrsCs95qiufpR6FMuC+96WWPsax79d9D3CRikREioi1AiCcz4ugLFwWXYh5tDZ693Abo/VhZkdvp/OlqGYmJhRm1mJzTQPJLJNq6GBECkjRGgqwFIyBADkGuEEisO3H6PdIJ0xBVsj5jkZlwgAm1FIoQOv64yc5smEQEZ/OZylFlNu29/16edbLpYTj2+9ju5msCJUIcdiwdmxbQ0AhJXQlolSCwpSiBYmrLszEwgHgksFjwMic8EkospIiyGBcBYrHQMaKCwkWFQEaY3OPNITU7okBzLWWQsjCDJE2utlAZGHh89mHhDXwAeNIOzBCmQV6iiZzeX0VkrevX7f77TpGH+7u+74hYwBoUSpIRfR8FmLAdETwR9i5e0egKbEAUqS5RyRAEhEiLkVPp7NoMQtmCkRzF2YmAgQimftd6Ecper5cttv70+Wybbe//PXP9/vdZ/3Pk5iZsoDVml+DzH1EWhDzZD3wMJ9hffcMzMf3XlcMy0S3wUQqOp/qpp5GROdnKACL8GHDtt3CMj3dQRhJEgwxsm/DEoiWosxkFpGmXIhl2ABWKdXHSDAIL3q6XJCajYGt9UiPcRwZNQ+QCmwqmoi9dU9nQoQQpgduLML2zccxzTmF2Wzc7lceHdwgk9ATEwCYOcwiPIGSyN05LXLcwC/X5flyGmki0t3e3t/uniTChCRKGeFh7pmBpCBFiUVEy3K775nBGH4cGAbp4SBSkMit99YSZcZnmMksHXByHC7n9e22jX1ABBWlKtmdiQpzHwYs84ikzL331TyYgdjMbLREAgJVZPBFiy7LaMfp6fn59QcqJdKt3+77VtfzqVBrmQCqikA2bNiAcByHVsBxeDDouZSVVXLGUrYbMU9y53eoQozRvR9ITNJBMDLHaABESpAQ5izs4YRIosTMhDZJJ0gsMoWebs5E6U4i5gMChAC1wEyVshBRPHINBj7O61PaIBXm88yrHRaAHKMja4NG8chqTWQHEwHOAQwhMUvh+aASmWEEToA2LCLCXYuqSGbiAGZkLsMMHht6ykyPQKD1tIooMzPL3FRPxeBMgkACC5/kVIrMov3pfBbh1noRYZFlXUXVI+7b3lprx5Hf+bHrspzWhZmZKDJbO2IWpyx8OviICosTRQQxZQY+yLtTmYoiclrq3kZvBxO52yxFZsSi/HSuqgqZqjwnO4hpY/gYSERaMFNk5KMojcLs7hPkQpnLaZnNFBuDEJgkMoRZ61KkxPS9mU1aUDCHx4QW/5sufGagRh80373vYmdlVlE3y8wwiwhRRRIty4xXIfH8MTBFzCwEJAKKagbPPpeIAqDNUjkxBiAisZRa4XESJhElYncLc0RS4kxwtzE6NDidz0AcTvV08XlrhhTWnPMAACLQIojUeifmhBQiYPKIOTCDACSWsoDZ3LvODM7swjMAYLColJruGQYA4Xbsu7nPvlBEPIo6yGk9kucYZdoGwmPKjlQn2Ypw/mrMQBA97GNE5OFz8EGEGTmxMlNC9VA1Tg4jQIaHowV8bwI9GC0Qj2QPQEJMQ2YGJM02FkGYAQBRAgHRYwBDgcD4IEgT/v+lgzDhERyChAAHxIgkeFiiJrEGaVa6gCgew6MgQspJFMoEDKB/Y0hRUmRC+vyuESegP2P202Iymec054FvnmVQTIwfPv20bTsSqwjIostpjC+IEA/D+oQmEgBYuoxJX4ZH5A6m9gxjYq0zSRJxbtMgI2cenOf7kqS82GiMjA92EO2332euZ05+R0RGEKFWgZjXWwJhWUCYp9Pvcd1HzslXyrytZkQw0IwBZnz/Iz5F9AEzXJXpAdMVX5TM0xMyLTyYCtFMKaW7YWIY+HdzHTFaROvONIFt+D0cFoAIBBNIQDi/fcgknhO55ARgeCCiQHIMn+Y0nBuXnF5UnMmeRIhIa8AEzDCBWIAOAgTISBHpPuNuEJEM4Eme4REQABNOhJAz9k34mDcGuLvI+aWNYcOISbVmppYzEqV3BiMMtAE5PNzCMZRoYIYwsWrrjWwUYSSU02UOERlk7gBlPSNyqUpjhrIilDkwJvraUxijjWPbTq8vvUciDU9dFDHdbT8Oud8yQgjGvg8L1gJ4ZMbl5XKq+nR5blvTyyk8bl++rovU51eH1d3VgjBZF+Yt0906QTLTaO3+8Q3OZ4tObrUup6cXd9v2w1gggpS6hSYePSLsaS3LUiMBvGtEqdSGYzq143rE7gVcLWk3IAJzt0w3e160e0amSkmzPmwjCsbKRUoumHu3+31nxSQBFuQqOYpCBgamzQ8MpUIMhKUuyCyMiehjDLOwYyifi3xcNyTwwAAoSr2nIhsIIlnA8BSmY4SYV61Dwz1Fxe6HRZQIT3Gzvu/NszVDcBaFdMKkaYlDDsTC0Bu4jeGhiFI0R4JZO9qyVI8E0dtxwMd7AuTox74BimgtSKQlw0Y7ErIsRURsuFCYh7CEm5vB6G0cVtYI2DqwZxX6669fylqwnBPp+fnlfDn98HI+Wty25mkI6e4Dk0VUtfdjmgw8gSloKZ487Y/BRYgzk7S6hQ1jzNb76CkizFiKHM1A1ypCPKey2CwNhVmWWplFmJrF3vrt4/3b779xYn1+mTCgiJB5a2ZmCg5w9yqSHCInAuhjkFFMMJQDEU8wX0YO60wUNm63qyK9vr7W06UsJ1YlotYOO7bLaV3WZXLtIcKsexilz1CQmx+3q29vZI7l3JJXQsQcfQzCiGACdwPWiAzERA0CrlKYrtfbvC34COJgltkojTSzyRFMJfjx6fT6ww/rD3/6eutvb99ut1tklmX98fNnXgoTCyK2lmHpMvoxzB0pAZZ1XYoQYS1lO/r9vvV704FFsAilp+djH0KIY+zuQsyTMiBlWZe1LqXf7ggyhl3vt5wsKnfSUlZeThdEkrLAcUh84HG0Pr59ezuM8p//st1v99sNbZcYtZQyfH2qZA7p+/vW996GsdFe7R22Jz7wGeuiubX397dMul3v930nRCZe1zWGf/nLP7Rje1oqQwbi3vqlrm3brB3l82ddVkYM6z4OkfJ0IWLejt6GAbTeWhFi5tmBHzaUIGF+xDsRAaaNwYgR1tvICFxKqgaAMmVgrst+att2mA1BsGHH0X79+v5x27fXl3PVp0WWpcwWo/tgb8SCbgp8fvr5mXQ72vvb2+hH27ew0Fozg2ihgnIWWZQICAkIhEAEyGmkhQAlhCFxAEVduRQmIpRIhP8fT3/TZNmSpWlC611rqere55iZ+/X7kZGZlVVFIyDdtHRJNwxAWoQ5CAMQYcSIOX+GOdP+G82oGYAIAyYNVBdFVXeSmRFxr193N7Nz9lbV9cFAj4dIDGISHsfOx95b13rf52FRoUSQ81JyMpPc3o/qsj9fGUSwEAcsQDkmWM8+kYySBZUPHzNQ1xG4g6GbgryiEOfInpY+/Kx9k02z2f1++/IuJM48gOPt+PLbt+vl+vHjS9Vyu78e426e0hqJZtLlUkQxBsDSrqWq7sIi1SKP+/vXb1/GnJQZEdPiHGPfn4hSkHXbpO4sqkme8Xg+IvLp/exzDJYq4kUiptNpqDS/HRFUftjILc5UV49EsJBw4aSplebdcqySgbRSUSq96Hib6RHIVb4DBsMFqFWuT02oHK/ncbi9e5nKDRROiaI1KWvRxlvTtpcnFRWGqkRkW19SwoMUIHXLOPGmzKW12hqUmKtIBRWerEUv9SrCQIY5nChcIBFCzKVKa1trrVbldQ/qZz9ubmbmPif1k/yI2cMnZQgrC4Q8AjmPqpfy6VMt5duX33rv3cItus0kKkW2ayXKUmtpm0CIaOGTH0DMyPBYz5HTup8BLVIqI6XWWrVuW2nbGhABpLxG5ZKUgiyqySJaZ62X6xMRCFxr27Z2e3+PcGHchreq29Za0XpYT3m1MJZzrDpPJkTAVdIEYTMitFRZVA7GOi9lsgMBWkIbZuHSgpIpg2LMUagicrpFhIBJKSKH9cI8wuGDHUmSwctnHJnDRuEVyheL3OvyQ3NyFCGaN65bgXqmgufxfnfaONaM9dLqVrj3ntYve5Wi/TyP8/TAtu3KefThERI5gk/zvW7Z79Q7MZgiHqcKJJcHkZLYSSOTLL6+vn788CaML7++ff39H2+3uweLiqRVbelQdwOzatsv+36x0SNgicvLh/P9LZFU1s60LX4HYZ0k4W5zGvAA2WbYQyyV1FQ9aJyublm4bRVMAqhytxmWmcR72/dLEsycRV00aSBTRSKYkup2Icg0vzxdWbC1OnovtcHOAEYQEbt7wiA6Rp/r4K2VW5O9PoNv53SfibDI2/1ObmlzTA8CqT5t+4fr3iofw27HSaH55k+XlkUXgEJWuIkgjFpkjNktShFKYpB+tzqGW2QOMwKN3gl0jtUdjqIlItIsid1mT/SeJY0IKmTdpO0eNCMzSVTg4u4rr1e32s+uRX1Mz1lLfXt/K6UFK8AioJTpw2dP0Bgz3Bc/e9XKplvvvY8VUmfRsk5xy+ikWlSFCO4BdoAI2Fvd9s3NM2Pbtm1rK5fTtr3WQkRz2hhDlVf9yCPu52lmc1pQFtHL3q57q7Wtwy2LWB/34yTKlSV4zBce9RUao4uqMEdGuIUnRTKw7VupZdvTg1aHgkTa9bLV8vH50oquAYXNSRljRjczNwZ5eCuFiMxmrNTSQggiIwOgTJp9CHhlWofH09MTZ3qQucd5yxMsYh6RJCJjjsdUojLRwzu+WocRwSKL4zrmYMk15nb4ss7btJWSEIYTMnMFXdacVEXW2YEfkxd6kIYpI0NEmVfQhCI8PYoWLRpumdBMFPUpPc8H9glk/bTRayvpOxcRrQuBM80rU903Ys0kc2NwRC692nou9WWEoQXszyChJIBVV3LBH9UrypWM8DUPms60DukESN2vGD3dzGe4rQ6R1mpu8uDxrPRKVWXRsijAa6YmquG+wExrtvFA3eSKzlAQcRLzEmMnklBW8ycjMp3y8f7hUfXBoylGFBnAwyuVREAkRVguGKVGQlYzKR8XU1pRReGMiHwkUuhxEv/Llm81j4AkwWPCQn/5izKXrDUoEys++DBtxRplAEmkjBlYIxpwEnjNEh8JFFmOLGCFjBes+i8xFVqEay/1Ehm1qKpIyn/6n//v/m//5f+RMCOCMsOSgtZuJSxn+kLi8JJmESurqLrbjLlM9evBkoNW6k9LYWZh2fWprCAcL6hTmNnL1rrrbdwiPR8v7FFyK7UB0udI9+XwilWKo2VcJ1ptSgYzoOyGv2SwghYZOQxLP5ClMKrQQvpkriGjW9L3aiA4QeQZMQNI9zUCY/ACUJMwPyaQoroyWIn0DArV1VcjSBKt+R4yiAAuvIjkjO/FDgWRhJO5ezwEZMwQBdGDDDpnhNL0VBUAROFGKpJJNiMiV7FVFRS0tGFYuKCFtuWEMD8y5xS5jPKhsw9fyCjPSXO/XEEZPs36IkopqH8n/6dNiMi+iZYqkkylVa1bALrt2/U5zvv0gaAi8NmJ6jSEzXXU2YsAxQi11PN+m8PSLPtpd4QnaSFGevScl61F5pgT3IXZZmB78tDQDil7LR+fn18+fLBMZvE+T4IB3Gfdni4ffzm//nnOcb8fpch5vxHF9vIpIyliHu+zyOVyReRegQ8f316/vb69Nq3Xtul2dWLR+n7apZLofCqiqpHxfC1OHtHjcomMa1mQiRDR6cmZQXQOH+Gfdv6rT89f3vsMWjJmjzw8P1zqXss47s9PFwPPOd3s9f3+VLetaWH6etzJ5xjWWlFmJQ8pwqitEaC13s8vSHKzrcnleund3u99WStDpRadFsyisqr4xOD92sLyOLson3MolQRkrTN8Dtaz2xi9bM1sAlFKXQA5zgkLbR8oCSyXrVJ4EGmpwRCEIO7nSRkIF9Xb/aCM43Qzk4IijT3Izd1pds+836XWploBRGbdNnK/H0dTpcg4b1yvWre3t2/DeqvydptbHM8fPrRtS6594rmBsb++38Z5KjOI1vqvIAZFhrPwnGgNDCEuQgSlFN2ZE1Qv17dvr91cREa/ZxiKhPneNq0tQUnKpZFUAKUQ5er3ytHHl9e34357e79z2dq+b63ebjcBEbMHExkz0jPThXKvmoThPsdgZlUsDo6o0sKwRkQGgTPzfrubx4cPz9eXj1idWnqUNhGxb7uWupBrhGSiNekikojs520W2i5te355HXne7kVrq1XB/bwzK7HezlvbtlrbaRnhWy1UGzNv284ZNoao2ApJR7Rto46k2Y/D5vhxw1/99S8u7U9f76dREEqt7p4RfZw5rWz71mofsxTdqryd/j6chdJ9mhet214jorS2E+acZlOl7PvuZpYgERGhxwCbzIwAz7zW1FIj4B5TEqw53fptrU8rNWVlrURglo31Stzp27AcnseX399evx63VyLA7fm6fX2/fbt/m3mkeRoQmhQqaE1n93ccf/r2O5Uffnz+mBVfvn374enDP/+7v9Faf/vt82+//na/3fbLXkSo6HXf8ODHlEwqtYzzYJZ1AtyfP4y7IAMkOwEEM5vnUZS1bMCj6j8CpdayEHcEVh3DYgxJX08FvqLXIDC7C3IKeN/2++0UIgVmP9OMicLmGF1E/+bT9acfP9atiihNIkq+aCkVScRaWGp5psxvr+RjgCJslEKKDFmd+ggzKcq8CsISjtAkojTp0ZsKEioMYeJIikgpIkoaHMTJrFqqd1JWbuILpbjIycSEADLS+qTWKkXMiFLKdt2YhSKIqV6qFBYX6WQeGTzOExmpxKRwziExnCvVjeuuyK1tl+fnF1F5u7/3fmPJ69PGUhM0uzHXWnCpJZmZRSF7UYDZ/LK3262+32738+xjDnMi/PBxIOZ22eu2J0vgQeLIzPXV7cf59v5+u92L6t5qlWFh/X4eR0KUClufFCyGAAhQJS2Vxc2Ng/vdmLRq0H5p+w6IwVVapEGUi6owqyA2zSpZ7U0DXCG4uptzMg0Dm7CkCmW2etn1uXDVInvdRSQzzIxWwp2hCxNY2Enf5+/ScN1e9u1JFOZd5UIk0NZqq6zMBGS3EyGgIBAL1orJphGBwUVVtTIYtLroFNsle5vfzukHEiAShoAoho4RdKCOUvdPP/64FXl7/Trdp2c3D0ZKyl6ZZNFLKIhzHeYIq9sTmZyp5Ave6WHjdLe6XWqtbdtlPTqtfjozC6SUteJuW2FwH2M1prdtj3Amfn+/hYdPK1rdB+9PUB5zeD8ivJZyKfbqC79AC7q5lYKwzCilDE+hYNY5DWkKgoiB5hwAO0VkhifGUGFiCLOoeNg0SyIRrixATItWhML7DIEQBVNyuM2csTTH6OexiNb82EuLIzJxP0/3CHBtm7kXTjaci1AQgyadlMujXNuHH3/+9Oc//lNfqvXM1oqUF+eDMsZ5SDr7bE+XHs0jREvV2s87UYIJQfyAoZJ75KrfJuYY57zbee/n0c9TyhY2UlgFw53ATdndKMncAii1rgPOfr3aPP2IXKwQFsrgNIrMJTSBZPoK4BOtOyHAAmZ3U2HK9GHnjNIEOyeFFA4ODl6tnf25xLIgOzxZlGOMJBDhuL9JIzMngkeMfgJgKanNzntnraUG8eyn+yEiFHY/hrlpe5myqSr1b1jpmNHNppuDJRYUJnGY96RW9sJR1lLX5pxaassMSkSETQuAkkrdhHmdAgmk/GgVba2OARF2D3OPsHAHpXGOadAypo056DjMvJbSx1DhfD+frtfZu7T76L3UCnAxn2ZEVFRtjr3U5aMJQVi+3Y4EJ4uwJuUcI92XbHtMX6MNTnJ3mgi3s4+zn31MAqsKEY1pmcnMWoqoEig9k+g8uzCul/35+elyvYpoa42I3CwjRBWrBJQhWsRdQAHMaWPM+3HOOS6X/cPLc1FV1VrUI3sfkaGlmJnwo9i10ksgRDhlMsAiPg1F55wZ7tOcorAEoapue5vusQR8QGt1ecQigpDMAthco5rvfGXyCJ/5fXM33YVZVYaZmy9p0DTDeQB02TfWul2f7/e7W/TewcGrhRQpzMz6vVeUYwzwghE9DrhaSiaZ2Xn20U8tUVszt4xwyghf0xxa2QmiVa97BEwzGdBS1uBAlp5szVkS3+nj6zcnlKnKBHKz76MDSncR1FpWNypspI/r0zUJQWvYCouMaX8JWIVNAuaczFJKus1MmmMSsOgyqvqALq/zb+T3UYxkRnjkmnl5uHuYrWq2RTJrZLZWlxMpKSrqnEYPg/UC0QTADxTuCpmoZqaZrf5h5veEFRbRbhUVJz2aY6xaI8LdQSksDI5H8+cRXKNkZsQaAi04DPLBXc51QAASsRa0yeucLLJM8JlEbp4JCi4lhTMBRHxvFz1yK6D16ldDgB7ZogxecBjK9SKFZbWMVtsMIEKA1uAYROkUD7AO8MC3CBYxOJPCI4UWpIAXjcIziZlIhInIydNJuP3NP/sPPr+eClGV4XS9Pv0P/tX/9v/5//gvPDIdFExJ66NcHbagQKbNUGERYVYmsbSkFMGalT5qaOtqTmCSTbfLtilL1aKMxZlChJTL5enD+5//zeN/pOCUsAzPqmDhHJRBGRkziTOJRLH6lZRIAQtFBDOIyczDY4W6FkwgE6msysJgFmKiCBtOkeQAI2LdI9YccX0YhGR/fJnWTxBEUOFMUuHWailiEXNM54QHGJ6e/qjwhX8XqK3RI3K16ogo00VIRYhomPQRlLTOxD7zQdYnZnlILR8bGWEKxKoP+sJHRQAqgsKstF5uYsWdVoc+Mj1jOfGQSBbW/XJJ8BzDxrmsgEhz93AHeWEMTyRKKREJBQvifG+1tq318w5RLhXMIiVGt3nmHDbOdEsiVcnS8uFrI1ZlUGuX+/TeZ5itqb4lZ8wiMudkVS2l7lcRZq3nsExaipIEX9p2L01K2/fL+fZtqSSfXl74kHPaTL7uLyqlqJ63t8JRn/bb6zciVsZ22VTkHP3966+tXa/7vtW4lmfW7fNvv/72+++vKn9Qvj7/YGMi6dVOi2IWWy0gqVWGeVOxOfXlyirl7Kdj+oqRWxK5W2Eykg+18DO93s2NgmFJTvl+jk3zshVxMfDX19sch99efwf/+OFJ6gZ+n+eIJJWy11pgEE0uRKFcRLdt2z1v1AlBRDT7KEXuNpuIJdIC5KR1mBdJQZuJQqhbO85+3IcUjHOIsFBAwQyLfHm+/vHP9+yzFkqplald663nNEsKtUFtq0V8DE3vQaWRJa92MdsgZKrWiNuYIIdqLSVtisq2bcf7Gwtnu2CaMNuc2/NTJs3jHL0zCEF9DmJutWxIM3+7HceZXOrTh2277Fur29ZE5BhTkjehs9Qc3cOUN2K2OTx4BoFIojOW/iuliICKwoxm0lMr93FCJMb06CvWKaCnmlSLl41ZUmuygqm2dp53G/bV3CJ+/3o7x2hVt6enjCDK3k8GO5MyUyYxzTEhXKBJcI+IxZUEiwTcSdZdNtxkFWlrw5yzH9OmspRSsAyarMwcEWMMAlD2ZNjtmwi3UorKJLq9dy3aWhWiv/vbv/34wyds1+3Ll393/+8KguY8zNxNCheGMjSjCiezuQ2XYgbSul+2Vvu3z+OBm5dIF9VdlI+7jV4Lffj4w5ep5+Hd3/bLS7s+a9E5Zu/98+9fRMqHTzhut1KKRHx79ffbyPXItHR4EFt5S4h7HxagMVUFWYoKxEmFgaKI8PM2+0ks/bwrkqVuT09fvn1jd05ikSI6MzKzbtd0P3uPiMu+q/DT84tB//TnP799/e0cc855ue6U9Nuv73/6/ctxnixRCkcqgaRKY/H0ujXPiNB55P2th38Tqj+8PP/NH/7w408/7/vTLz/94defP/+b/+b/Dcb1ev30z/6uVP3tt8/zfhPGQXPOGZSWmObH++v1+UOipHVQTgsC9q2dJ5VWtG7EMudgCi0CKDNFsFsmZavFj4QZAGapRI8nGi1iAYAyqkpr9bibzXGevdUGFRFxzNGPr2pPz9cyQ5NZCpdSGMLqUAVJZvR5KezXJxt2f/tSmEX1aW9uJpJlQ6mKysS0gnML/JMBSw/1KEIGYgqevNZVTvSghzFioYJWvhnMcLMMj7QistIzAvIEsQR80KD0gqKt+iQG1VZQMc8pUuaYb+8HBVs6OeX97PfR6uVy2d/KVoo8bz9++vCDPFVlve67U5Ck1OCMVquoSOH3b+M4h0+SIkzBa3UmiYx57xvT3/7VTz99uP765ds//vm3MW6llHRncNsvBJ5mRGtLGW4+x+i9f/32++hTVOvWoPLYxiEKi9aKWhEETq2lUktNvhDcfHgK7HjY5osWXFRr9XOmo+0XmyPSlUSYtFR1jYzCxQ+Ay6WmiYU7QSJtEFNIgTCvNsxWZd/rJrKcIOvkHKU2UVnPd2AAdLcni35tz1vdVcVCFFsSe44ilSgWI6R7UECyJMI5CQyVjFx6mqJctQijtR3pxOI2XWG3CkAyiGjd+hGDwhIizGq37em66Uea9/uwBt7cJuckShURpQgkP57Qk5R5mUtX+pqWbgMMqTJHUl72/fnlg2qNTC1FS8Uj1ZyUSBBW6x4JCgoWLUFgllufcfTj9XXbtt67G11ffhDE+frV/HSViRR2ug+Hom0rlT+yar1ijNEnC4sPEhWipGQpAaynYVVVgc+TMjicVTLRe1+qmQyndBaJ7yhcpKhoXeg+ZlBAS2ZWQai4zWMMKaXWVqsWRuQEaYKkqHipWjNijF6V63UnkAAhdQybt0Pa7jY+/fDxPIeoBrHUPcPm7Cibtm32nhAgQDF6H+bEGuH9vMccohpJZAORS++Fx+aGAP769bcY9yJaWC5FzYaopPP97Y1XWMOcSGwOZpBIPw/VMkff9i0jfHbNmYh0pzQmV4Ewwj3THv2XJBYlm0Rk5pmPfL176qbE8GGhbvAQckQML7RJaSyFfKZbAr2PUjWJ3CYoM9LOd4Rfr9dMOo/79bIHJURdcvahIgAJ8xxdKZtKFznP47y9XRjfbu/u3i0lbP1Y4tEgSBGdMVnLMA8bIoXrFue7zxMxX7ZfPJARzAmkjS4RKGVtmFgkndcDA4EFC2Cai1e1pMNm4e6eUUrLCBCC+Pq0tyJbXuaY4Z6sXCkiRKQWDU9FjBjutNVyvV4BeqrXJFCrnHE/R7K8ff0tyTMiw+cca+6mqu4eGYuxuxI5fQwzZxZimJmZrZxvLXWdUVkEskaE2dr29PR8fXreto0IkaSqotrPMc3IHWAVWZ2Uc5qbJxGL7Fvbt7K1rZYChqomOJHESMs5Z0TIsq8+BGckyiKc7pTEpfY4R+9jjMUYzkinOMccIM97La21olpKXeuOzAj3KaJmg2hNAFIAgN3GIj0Rs3sudw+YVVUYt/dJSW7OImc/QbRvu24XswB432utVRhzTHNjpunWVltwVSwjM8LMRWS1fiCSnuPsYzWU3a/7PoeEO6qKloUKWrNUCNdaM2Kmh2eYlW0DgQtHJAuHx3QDkZGJLO9jRoaKMtNl3yPDpj1KPWtAmbSAQenm/aitJUHqxrLAtEnhDCyfPTxt8RXNwU4ZNmcQoqSK5vLBaSGsOAMxs80ZsTxWsRAnAGihr8MJFLaOU8RMIpzhl0tz0/MAKFAIfbCwBxHSegcDwnP0xRFb5brFyQbWw8nioXwH7UQ8UDa5ips8jdJTGcs7EUDGIzaVtFxPxOveGhHhJKCkWAUqpsxcM7x1geJH0uY7uC5CaInPHtmox2p3cYsfUBhQIFbpK9agKcFEkZ5rIJEej1aRLuTRA20euczv8ihaItLX10MoItfLWCo0iyBwWEIJwArVrmFGxIowEREB8h/+D//HkNJqWtAY/evrrZv/8OGjTfUwCigLCUUECKJMuQ5AHOQL6c2A+TQ3Fl77nFhxNc7MmEYUrIUpMWenUv7l3/1HtWjQAPGnP/yL//g/+88t+Y//+I//1X/5f+r339fQJIkIGDY5TDiIOYOTAkhfWR3yFRaKIAiJrro20bL0CTMzTVaKZKgARE5pc6ysD3G6JzkTsIYzxLG6dVIKgzMzyNf+HbQIdZRJj6zayuo+VNO+CnDrq7BaigCBaW18I1fFHSygJLNQEJWU9aDlq/2XmZgevpjZkrzYUk4M5TXxWtE0QilKROkZSZHIEWvIREksANGae1GAyGMNCyMoqagol+YeDDBLhD0clmFkh3uOUoUlOCNcljBg3oSJRa/Xaz97ZqSPTPHZB2g5Ehkwor2yloJ6GePMOb1UpQyPo49zePRTCZeqzjDiyrDjABOnvrx8WB0985Cyx5cDWV4AAQAASURBVOzT5jRLgtT6fL1sT09vb+8vz8RcppMhSfVpu1h4eMR5K/Ytjs85B5QpvW7taW+/fHrOevn187f397fbty+1cPv0Q6v7JH17ex9j3t+/7Zf9ev1QWzMfs/cbUUSMyEsp4pQJVbm0FmFB3pRAc9+e7ucYx0gz4tjbZgkP//i0i/RpYxwRoDnt85hF+GPlokUYH572d8aKPASoFTDx2ScxK2t9/lBm37R0rk4xx2hXavvF7LiHq3AfThQEhYgWZa3v7zeNUQjQLc43fd7TpU+3b7+3Vn1rbuYxw7ytj8JQFQGqyskUFsE2xgmbrbTbUPfMMy7ZGesDLAwdxxnpfL14uFkIJzAzsgqNPq/PT7MPKRsiw01EyIJUKYnTWxHOxbwlrYUik8I8EBmsSVS2vQAn8/V6KdvzKizUWotidjtOh0LA2+VqZgKntBTRonYMLgzZ4zw5Q0WXCzGk1K2O6beZR7dp1rZKMSkEwLYX16f76Qjbd21tQ0a4v76+fvnyxYnP+7nyiq2o1sbpmZQJswmWJEJmqzq7qzBlQHlGKpFTVmaWjPBkBTySCHDKyCzCcxEWIghc27Y/v6xlMTOIyDzmHNdtZ8bsB9msxFqVSmOf274JZcD+2V//9X/wH/6PLOm4vxFCQL9//frTX/31hw9PnlTqZZXA3WYfvW0X0TL66MNqERW+7ptBwCgizOwWMQcRIChFt3Y9U93YgwQUYXW/VEGrtm/1PAdpmcPu728/fnhK8N347GMlV0BpRCzpketpTUrN4yxV0m04LU0Law0tSHOzOY3CkkVV3ZOza9JeW4RVbaVtvG9znPfbbRIzqPfDz1sBlVI3lZcPL799/u1+Hvejv72/Xu6be55jjm4RuD69iMj9/S5CHh5Bf/j5l+1pX08anz4+3+6344yC8bI/27Qvn3+f1/704cPHp3/u/aj75ceff1Et+1aJy9//t//+fr93inSrrX3+7fOHgPVb78d+fZ7HTSgAzADXvRKzcHdKszmnglpB+CTSPq33UYqyoLbN0jclMUyPsGmdhUBYnD8SkSWr5oiMOMfJh7JoMVHE29vr6+2jtP2iremuRRhJLCCQKBNj/J7n3W/3SF+3LndHWtm5PZeyV1pbLwIlRCiQhdXCjSZrBi3nQiTAouClo4zULFpLEpgFGhTezczdXZicnLUQV++dRCKgAueIcAJnYR5lzk6cLOLDKEhakgQ1njfjwgGM9xMWt7y//Pjh48sPP378+KE9PetVW1VVVfTp21a0PpOHqIKD0lstCjqOYSOgxHChGDkxe3gEMUmF6PWy/9XPP3962qcng6U2Yu7nubQ1BMoImz5svN/fX99en64vFJlubqnCKmUth7dtr9sz12ows6BQKk6cs8e04ArRJhIRxgJhZsA8o0epqqI+T+IUyVorTc0SWhv1VKkqKLJQsGQ0KIxToSos4BAuRYuoMq0CtlBYphQV0bJQYsJglZf9R495aU9VG3EoNSZZpYYwZ2REDjebQSvLr2X6IzrhsRZHwVDnIBJWWbEUENFEWCcPpIc0eQiPIsOzbNBalLcmxrjuG9ExCSoCCiSCGBBmkGVAKFMotJRat7JdVmkibIaHlNK7uRuz7Nfn1rb1JVbRUgoFmTsgi6+QFGMYCxb/Iin6eVbd39/e7vf34/Wr2TI+ETNijmQekQ1IKapWebpZRGI9tBBHKcrFzoPS3dNtqhQnvpsvrQGzIslsCovNI0GLCU0ZY5yPygHRnF6KElTYmfWxTg5nUmidyySTSYTSdqi2UqQ0EfUMN+dSfJpNC7O2X2H9SO/OT/t1c+q9I6HbJbiPOee01/d7POBPmgTRFmCt2wV5s8mtGpNnDDcCe7hkcBjzSn9pZoj7AyABXZky6/fl8J0RCSVGirKwiqQKM9xzmBELq+bqPUWke1KO3uM8I8PM0g1SCDIz5xgsmjYos6pOZLiNcDc3n5ER8UipJoh11eFznoOE5rBUJGj4GGOIFFVyAoE8k/q5yGsJDkCZf/zhYwYB7B4SE9FJmC/7zYaZ19oy41K0H3etpbX6fuP39zdhJimPu/bKN7pHJJZGGexB5zmeX/I4x6UFU3ZUy8BxK3abLnP64uuNOclm8zGgRdhsekR6pBvXqlqY4n4OymwqVZVKMYumlJlOebnswy2dSi1bVS3lHH09Iyfl1hoeKJzcWlWh92MwL/oIwmdte3gWovrydDrGNGHYHEsbvE6SZvM4z5VCFuHM7GOaOfHKRSzUaGEWFVmoCwIe24tSn56efvrxp0iXpQjKJCJ3b61piX4aZYLTfOUKkeC2lSVZn3NmhIpOswWPLaVGUkbOMZJIRUsrDW2M7ubpZplFWFUzPDJLKcsZ+v3MT9wYwNFHZLbWqsoqtcY4YQOlWMSYBwGlVnmwcWOr5QinCNEC0BidiMNzRk+bBBJhMKbZ6D0zhZFgT/I5VISZM5KZ61Yx2DNX7rtJXTRgMIFFubqbWxBo1anm7GamqkcfNofULQEPEmXVstjJhctqxpJIBSbNMfI4DjCLPExPC7AdkQA/SDrLQJ65omUqnCLhrqpLN77+irOPfh6tFN2uCSYWZolId09KVqGIPkfZKL4vHBgcmQ/qQjAKr9SK0RRRCvfEnObuyQ80rk0DAJEVp1ARG/0vgnUWgNkjChVR1NYYSJbtSuGe4QBiv5iZjWFhNqbnQWApbQmLVs6BmTNhaSublhlLc8aMiJw2W6nKnKsUk5QIPGYmWEGjpOSk78SrlfcJMC0pOSGhAB5P9ssltcbq38k9WPCgiCBeAKDvPKFVzHIERcaSjz2U6swUvPzdBoEoUZDIejpbwVz2M5YGbA0UHoq0pRDjyCAkL738qu9g/Q3LQ/6XwCUQlJ6PeI7Z+E//s//5mB4R99v969evb6+/9+Pttz/9t+QuxMRY9/w1EfNArTtCiChxJiIyCQHNWrVKW0xmMFaXlwgR0b0n4z7ux0hK/EelBREgomVYvN6d2dvTy8cf/8U/vn2OjAxiRoI8I/2hdVu6O5TECBsOkLBC1gIo1wDdPSngIIIIpXl4JGcufBd0dfFoxaVE0XTjLOae1iEmUEZlESK2aSvIBCIRrCW9W7BQJpn54vuIcILnjIzk79GzB2N7tUZjjf4oLZdE3j1HxDlQdFUBCcwRyKRaZP0rzBmIpSwA5yNHSMlLn4zM78u/sEXxc8oMJ17DrZUQIqIVi3p83QkKJSIGgtf6sRFUVcB3ZEtJlpKPnjYxgDAuO2ojFnE8J+6vX3POUMA9Z8+Eam37E799E47t+sG4ciQWvhniM8nNjruqSJWzzzlSah3TnPC07Vy3MU0oSMvL9ZP7oCjuNmZ/en5BErYiQW3fr59+jPf77fZW22Zzbk8fWoa2XTnNnhF/gvfhkpntcqmX5/b0Q7l8OKacZ//98x+l6g8/fHh+aq3mtl0y4+3tzf7h7ynp7/7un5dWBA2i5snThlQfjgQCxIQIKEPbhbldt0yy2ZMoibJU8zxGPD/rj5/asBj9zTOcOWx+vZ0Fu/hsKpVxuXy05O3p2ZE7W1E2DwFzEYrEeq7ft+7Rzx6z+5wxY98rGGlGxNF7TNuuG0Q6I4xy9Mt+fZ/juN0ul5fQcvhRwS9P2++/f0WmCiyyMHq3piLLpRejbPt1V9Yyz4NyKjYinpH3bhj3fW+APLJl7h5wmx5+u59YS2eukVrDlaHsTph9JhCEsKGtKBg5aBEOPfw4hFFK48JjDKZEutR2+fApBdfn58v1adiC1Ey2LnYn4nMEJUW5qEoGsZ9BhaAJrpz1WrsI0lhVVu+SFSLkOd2IMszeb+9FISylVJ8esmWJJCQkbPbj/cvr7X6/P5qhEZy8LjVhc7lBM4OIwmxln30OrOppppMIIlc3dGaApBQCi5llMrOJLEtWRqxoZ7p/eHmWUlTK6hgnpfsMn8zN51Ey9g8fGORgc0eAwPP4tlH89Ie/kdrmebgnIK2wBZGNp6c/OAFSiXKehxnVqkLBwACVrYbb+9vbOA88fJMxPOAOIk88EP0iVQFh84RWFC2y4sRaVWvbjuMkke2yz2TIJgiNzc3WqkNYtNTMXHg+FVahcZx1w8wU5lKbjU5mADwSS6uY2aoqJwOqKAVJlUFMMYetwlR6zDQpiqhjnNfnpyj7eY45+q+ff1uAwde3GxF++PRp2nh7u7mTCpdaiHLf+W8//vzf+5d/1/anL29Hv90+Pl0q8+fXb2UvkXGeR64jB+GXn37+V//Jv5rTztkTlKw///KHz7/9+vnPb3P0Wgo05/0NjFrr8faerGTR57lte2SmGWtJ9yB38z4mCcKmqZLI7Zjkc5gyoEDZLqpU0t38dszZ+5hTSmECMytyq2Wr9X4cY3RV9dn7wdgvIm4Wv3/5om3TUrb9GlyJsc5XIVJU5Twy4vX9djv6esPdw8yff3wREXKSsriELIVjnVQiPCeJE8hyKlhYgpKFIUtXsbJZWqQo9KEZvXi3o5/DY7atqAipjF5SCmCs8HAC6uXCJnk4VjofG2JKg3Bkq5qINTedecaISETcvr5//PCp1aYLVqsh7JkCEhBUixSA2OMeqUXyspVcCxtZSuixbDsMZgQjZduZZduf5k2HmQcXxrzfBveEQBVEEe5mxxhfvn0Oi6KS7sgQqdvTB6KATRWutW37ExftfmRMR0IyJ8iZIWRZt4qgCCN4ENynUFUe7MR78RJBU2to2/gk9ygsobk63kwIpHskMbQUXBjEtPCfLAAy8SATYi17MzycM3omcSkZfGkvglpLAzDdEQgkiJq29WzS++lu63wnoiIqZKtMs3LEIF4b7xTKxF4yIjnN7u/RbytoxFyISNKIjFRku9bLc72+EDGll+1aUZcCxkZ3N13XVkjySmpHs5PkWeultUufUxjbpSWRnidLNzMVaa2trLlEEWFKgDmnc63b5ZmIwrrZDEspWoRYiwDvb2/H+5evv/06ba7eTYLRX8/7+9vtrMoWEGQV2ipePQBaKfFMBNiRDl7zH4qehVbpgNbdwX19OKrs84gwwqW0JulgHWbhPudq3wOiOZ1yuV4BoshkIuSSeuRWdb/swtcVfmFCJJW2eYIofXokWT83XWH/4baIExTjrnzRoubOoNvrN+v32vZzTLu9tVpr3Z8/fAz38+0NFN26lA2Zkf6AZBCZRyvERKVsUHNbbOCZJLUUcvOQVjdRtt5VNXJG0hwuBEtOVlUJCBHMUzmhAhHv/XYemaEgVvWUCIKyiCLXwjVE+GE1IYT5enwOd4CLco8BQn/rWmXVuDjWSYoiA8qJjLBFpT27gUWQfQ5KattWL0+XWp6eP7TL83ncapGregK341Qpk2nMw0C1lMvlxzmnLfBextGtHKc2FC2Z8NnNHg/rGdHHDPcInz0rc9svc02yhKmUfsivn7+h1JU5IAaBR1AGe3gRwVL4FMnMRYtP1lLTxkxKoQA0hSehFFaIuSOJhSnjPI6ycB4MLVrA53EsU5ZNM7NS65Xo7d4phRmj93H2bW8jorW9Mu7391rKgiszs02LjDHG/TzHNGVZR2UWyQyf37kjj8s/rwEAMzLYzZxs//CxXS4JWkFzj4h1COY8jsOmmQeDmDlWUtp9gUIQAeBRcg+zGQyoirsDMmzGSnCoUBJzYp2ugAwbiZIhzKBkolLUbKYHZZr7vJtquT4/q5ZLq7uiz3GOE5SarmW9hXj8vyYRI5NU8ulyWcyWTHqI2H2Eu1mKyJgGUNv2+/u7ql6uT5DiC4+dlO4rtEYPwBKF+6OK5R5IMEXCPQAyt6SHEnIte9xtzNnHqHsAvKYzAEQKUdSi53F3m2N6a7WoDpU5LWwQTVEpWgAsxhAYCHiCAV32LKibt1Yzac4hAhCp8NICM/B02SMiiJ0eqrYxxgKyaCnuC16zPq41AyVKklIf4JtMMFOGu1EGRVhiCeGVdeGVzawUzXQmXdNxsKzUqrkvxfkqJ2bECpKySkYEIFxES0T4nN56P8/jfodoRI7RJbMUBRND/jKfIqHF6c1MJmIwhNIiHryxVQnIRbFdki92YpEliV/31swkYv5LRCiJH+QbkK5UjmfEcmKtjywplstrlfuXyCs8IqN3Z4WyyON3lAxiWUIuACkFRCT80GnxQx21vpEhdaVvEhRgIgaImIRZiBIU6SuYl0S0mK7f+Ubfxx4EUC7QFQECvFx++Gd/99///fV4fXv/9dc/399/P99+/9Of/93X13+oRcySlk5gvYmJTB29g8FEkAQT5DETCfdJ5yPilMmMMAKIFZSInLezRxiofH37/efLD6xKYJvn6/srWCns91//LQsoeIGM1swjIpIAitm9bAIIK9P0WiqrmJnb9AyAWSs4E+tZdk1CwAwtYPIH9pk5yN2DiFSlKBOpU5CBkkWqcrOkMfp5nBaT9XtVPoOIVvSmtapCIPIF9iDOwNJLLHJUZITRupBGkIoSI8LdnChZHtGChbemjBU/SiKIQB/BbiQoYuHSCA6mSMrwpNVW4zV9XMOdR+KNKNwhZfXrsFooAB5rpsxIXWqLKhS8RQpUmRKsKFU8gQRrLpYNU6RMd1gIBZG1rXBeg7QnD7foAebt+SXcWDViJBFTCBLswQV1rxc93t8FTBlzTiJikAUR9Oeffpzu7elDmDMnSj3HsbXKoNlv18ultktGil+0tpB69q5atusTKC7PH9r+IsS1KnnvAZZatB+nEfF+uT5/+Kj7875fXq79fHq+vb1+/fLl5eUFGZmV7BQmgNLzdn//9vb2Y/vp+vQxY9g0QMZ0SmMEiCxm5cDkYdmYt6ov1zrm5sXGmDNAIl+PeRnxrPV6ufz04jryNskLCHwzCPneCJnPW0HZy9Pzt69vI2JrlcCspZTmALT4OErROY9WC4URkQW1UsO9iowMpmhMtUqYP+3a4Tbmxvn09GTHu/uoUl5erk5Uarte29vXrrV4QIpWD1VcP360Pj5//mMArT7t3Edieob3kVRqdN0zhO7352sDeN9L7xkRDISNfns7+qjbfn1pVNrt/S6cEKS4SO29F6bBLKzEsNhpDAGqIoKsH4VhVAVwp9rKt9++3I4jM6VdPViUo99IcHjsSo+MdAbFnAlWhu6SNIKF2Xu/29dyeRHZFfl94B4RYOZ+n/O8C9PzdfMg5fAYYwra5bojM8Ptn/7x1y9fvh73A8iy7Zdarlv78OMPFnk/BsUSaeTow+YstWoRRc5MyxSR9QJFhDLcPUGqIlqIaGSu2X3GJFqbEwr3c8yq+uHjx6paq8xYTz/fe8ZulyKtXZJ5mK+aZ0T46H6e159/aU8vt7PPYUGSEcJI0ZeXZxadToV5Hncza60pi1Ce/WRiTv/27dvtuLv5drms4yurZNLeNp/TZzezsu0qRYpwke1yHYFx3uc0Fd32zecoRfv9LakY4aKa62crCc5wuj5dwRoRczq5gWjfLl+Oz35/l9rK9rz2XT5GrYogCBNpVdUM8tlJStvatn/99m30/uHDD+tWLWWTDTFNVSRfzn7q9WVEvr9/9vPcm6aUl+dPx3Ecx61spYSc93spTESlNBX++Lz97V//8vPPf7U/f+T65RVIm9dWviV6t9mCn8ra33k/397fnq5PKrKhGHGCI31rbVq8n2NLzDwZ1OcX1cKqm7kya9uXs5VFRCvBiBJVaIyzL8jnqapuzhnCRuBWtWohlYyZ3nWtO8x97VaJGFCm5+vF3I/jJDPy6QNZazJF2PvXL1pKLfXp+TmMWKuISGmqTBnc9tQWJObOLISIpOmkWtd+ghkJZmIKpARleiQkOJAIIJmVk8GFGMycwkEMT6VyKTsFzcXuUJaoBakXwiYxyI0YV0piSSdLCi67tovPMz2klfLU3DWoAlkpzaLluDwhjf2kl/2DSlkZsW3fweyWninJNowxMlI4IKooSeTEmm1iisjlSu455siwUnckfv7px8tWfZ4e5JTn+3sfc3hrIQBgr2k4Rn5+myOyti3W2Y7s/f721J6QWQSPsj4g2lopKqVoYVbrw8Y9I6kInYkJZHASVpNDuO5Clt26zyh1K23zOYeN5IAyq1atAY/Hg846+oKZkZyZhQuxAoU4ECBavmxk+jocAEBp/JdHAehaEhJCoSrKoGk93CmxDECLtIswt0kEFWFwn+bR3WckkVQR2dqGtTEE1aIqUjhGP8+3r++//n2MIXVHWlKCktOIgrnqfmnPP0i7jGk+J0RrZXKfwY0oelCSgJFwIhIGgeVJ6rZtm9Zi5pTBzAQULblh2uREXcgfbUVkKUAiYz3ZrLVYPOaSzOQqkmn3+zn6eZ7HcdzXYQMgpH/65Zcvf5z391ukEBeuLCOYe8JsDq0lF/qKYmZGJsIlhpOEWYqywt0lH/tgBhbsBx7uU0yWF8qJbYwxh2fWtouorZMhkbtprarl7BPCLAJARYrQMlAf7+/G0radwOvmElWKF9VCcLIejPdpWlqt9TyOOYfUjUESc6nfz35EEud0A1+fbXZK0tbu99dlK3Zz97lGXeQBIOaMGMlIXrz6IJvunCq11a1V0SaFWc/k4Yz0gFuMqU1ZsCCm2C+sRUVpRezHSaMTczAFCJBpc9WeoY2mEQsig9zmjAe7cuF1UgAnarWuIwwnItLXatMjJ8ItYWE5LFWRsc57PC0E7KBSipvfI3/4sQivz5Qyo7LPpvfTMiNtuNtxcpfSrs8p5exj2/v5eiaFudVSBXCIp62F34zIcFA+Vb5cr25z3G9hJ8qWYemDSxuEBgl3IETKvu9Pl73b8mrQ9dL6HCs7Iaqeea4AS6Ykb5U5I91YNmIVLSTC7rauDFr62QlYgNO9SS1qNktrC/M/LIxERLVWj5hxjuM4zq7CT6x124VQS2V+rLuG+dn74uAIyyMVovKQNaw4w+pVeVAap8Tit0x7enr65Q9/+PDh4zqGkciaBbCoeyAyM8zmGpVONxEWZpB4RAYsIiPmnGAQyRqLEKgAXHQdbJjZzDIzVTJDtFDGWqcdowPY2hbfz4qLd5MAJdq+Pz2/tNoyXcg3iaPP9JlEkllqnaMH03mOxZolIvZZhUnEIsHcti0jwh5nlstlp/t9TgPR9bInF5LCTAoeM81tVb08E8ylaHikPqpemWFuAC8h+lKzEWhxcFa4YXiERT/7dvWylVprrrFB2AIPAQxwKY9kx3IOrqmfz5kRpRRm9scwhbe2eDemqiILogQWbdsOINzNQ4qIFhByBUvm9OmoPPswdzATpZsxUxFZEyD3FSjORymKGZRjDBAAsn4sNxO0MAtlGs3VpcpwMxJmZAjHJGERIkJSUfFIZNJDk6Scj6v7mFMoZ0JKA3KaCXjbWitint2ssprNjAQIlGEWBFUhULp/H/szACYYL79X8voIVo8rfD0MCWtZS6CMXK9kuQZSKCMJjIfpPR+kHmcm8mUqZwABeEaAHoYqoqSgoHCKSE7h5EdcK5MIwkhkZLiTSApoVfKxNOeZa5oqyCLCjHjI7KXIJlwjw8OISpgtmU+CPSMXUTIygjx8XXEJoFzzRiCRGaTyn/yr/9m3W//96+tvn399+/LHL7/9/T/80//LbLA+vFcAZOWGPCJTOEXoMUlCZqZ7xuPtIC28t6uZm/c5Z+YaBiYLgXzOGclF8efP//Q3/+w/ZgVlgNJnZ/H/7r/5v9p8ZRBUAVqQL7dwSxViRQYoaXanpIy0mJg+h68UFwQMJg0KCaaFHdKCYKhQeoqSExEoLM2CmY3iwD3y3SxUakS+H+9Ex2qT8ZaNGCTu4e4oLJAkihlRLBbbx1fM5nHtyYfWjCjhZk6IhMgatUNVhDgeRB4iyXywunk1FZfYXXh9j9Pd19QpExZYnOdSGITw9X0kBkEkLJdKHg+r/RKKZbhlMgwEiD50Ezrev4hIlC2IpVQpkuHhChjDHoUOFEpnIsYAL1VwBiEg5foxuZyv39xsWu7Xq5sxhUUqqye8n76O8lJ128lNilino09mBVKSkP7DH/4QSQQ199kP7Bt6b9sl5pEetQhJO+5vIgXtuV4/GJW39yNJ5pyXy6fr9WlRVIrQ9KilXD58mmbz9bfSWlNWBkWAZbts+94yxnG/vb9+8f6uXMxnLbq1erlUEH358pmZyx/+cC1VhUEwd58jVMIsREyUKcc5selx74XLzy/Xz69vodWc0uN9xt//+e2f/cKb6svzLqdtKfdzWKA7CtP92+2pVT3Gx20n89nne05mYVFiUdVWmIhCG4UhPcIEUreN3m/JpH4kIIIMvijgLqxU9TwPSFq/lXrBfrHMhhQmFk5QbTv4LTy16BhOIsyAn5eX5/fb+8x4P22ew2Xv9/dWab988qQMI/BtpOUEp8CnZxLcZqY97fu4v7GhCCn4GGl9+nXLYeXSBABZKVU5zz6lNpCe/ShMc2YCI6kxnz3Y7cuXt3pp9jVEtJYSxOnOskUMJWeC1Is5jZiXqvu2v9+6VEhpMdEDwcTEKz9qGbVkBlmSje7hHL6uWzl7q5VFCkEZQr5v2+9f3u7vr3/8pz+e55hBTCF9vvz48vH6oZRCZpxmnlWln/cvv3+trUndImJGhLswmkokigjFaXNpMsUzM1x4revS3TMMlIWRgrt7ePzwfG2C0mpkMkt6gDkjBOnnzeew7cKZHG4RsQAJPkX00y9/3QMLXJILpAz66cefn16ep1NRVZX76O6+bZuN8X6/K0NVx/04j95Km+y999BS2yYsc4w5p5mTj6dNnxs+Pm93p6J7adXOGZEqnBmznwRWRrcOirpvqjo9mCkhLAyyt7fXbdu1qDA7c7itULdGT2o2jRnkFqMPY5ECanVr7n4MI26kGsRad6Jv5DbOG7iI6NZESnV1ES61fCi/BOv777/n7Nteptllu7x8+Cil3o/34/2+aJE259ZUi25Vfvrh49PzM4uK1h8+fjrf73aOs8855nG+pUcpBddruWzn2c/526+//bbv+/X6hNI4+Rzj7f39GNOm3/y8XFmQcwyPkFLbdt2bStEZaVAhWTJdRoZZn+7mjLQg8igsnKm8dLqQotASBrcjMmQ5hMxIlGm5MKW0tu/zdpy3t/dLKyoSPkJbOCXZ+7fX38p+fbo+PX+MtdQKmp5Id1Z++Xk/4+24Z7isdoqHAAKWJFBAJNazHBPTw29ACAIRICRCkkuEEcTM6QziiEwLn3Z4vx/3ADaUUqLs6ox7P/oxVC/1unPVOQ7yZC3uNmOwCAsHBaWW1gArIswRgq3uTS7IgkiKtDnX1BUCS0ppIppzWkynEKQQEzJAHMt1SeFUW8tI5ujnDKdapNVyuVyIdoKG91fr8/bVgtyCKZdgRQHmON7ev3374klQJMijf7g8C6MIUxBs2Hnw3qRUFdVSwuY87h6J2thBHkSLapxSKTI5iSEAkzKIEQxCSipGskCgEHYClGshZFJWrszKohGh4UTr4YoinZYU5LumZDUwFmlgqbDwiHWvZW0kedJK8S+xLVYCcU6ncEp6wFxFzSaZWYSsCgezqj6/vDCWxwPMJCBFpJ3vty/W3x69eSPKycwgBVH98Mv1p79x4q+//dnn3Pa9bLuqqsXpkcR0nCkSKSsvLyzCWloT1VKEM4qQTbe5vid4atvobO6irKAI7/MkDyImUZaSlOM8hHnOQQuDCRcqcxyv376+v77djxsJxQyKiMxp8+vXt1rL9bK93s/j1hv2JBUtyMEU7E6CIhqZQsSAqNLizVXNSB/nEj0ALCIW4T5VSnK4ez+Ppuwxp4OxdLwECrdOSRTOwpSJZLdgkECUiUWScLzfSAogELYxIUUJkHBKLVtgMOi67/N6vR1nQkgULOppZpyJDBFJLpEZNggUUIKU2iiIKAg8g1AawFDQOAFecAwntlwJ/7XOTRDFQiolr2WDzyH1+Ycffkyi2+fXiAQkiFX0+cPLeQwiVpV2vUQEg8577xHkplK1tJz22GWbOU9mpWVIWCZyCBALraFC+1aTyCIJOcei89LZp5mvyEwMTyRvqq2B2cbMsAXtOPtsVcvqQLFerzuD+nFvBZAWitv52vuIOcl7ZEpacgVF2bbjfrqbatkvuxAJ0xzdzSlchG25P5m2Wn/58QcVfHy+cN3Hmt+MIVpUFMjnyx5JY1pSmien44GtFTD6NCJyMxFJoqIl3Szi8JjkMEYEkmqcHts8PZkXSqSf5+V6ZRGb08KZYA+NlMecWiQgo/faWmtYUGew7tfqbh7x+vp+8Vg3aBbx8GGzj3n28R0u8kgliEjEisJARInI08MsAcocfc45WeTlw8vL09PeigvOw+eYudT2zGs0OcZI91rVI0TW+CMZgMjqiD1AMO4rQ7PiYBERc8p3mIuIZMRxWikFTGELDwIC2xx9tb4yGZBWGVxWtKQ09zhHZ4BVimBrbC69d+59f6ougqBaqyWGhTAQJiLEZYHp3X2VIZCxuKqqau7KIG3DaZq7B4MW3XcBpYmWn0szcwWmiIi1wC0eQ41MkGohWoQjX+mYVVw9z/6BUrWsf2fMmZlF139Z1ZLHrmYxYhkcEWbxHZ++WifBDDOTB1yyr3zQ/X6AKCmFaZXS/DgxBr4PcmyxmXt60hoBpiBtVsaSdT3uLWuwEb6+GwBT+pox9fNkLZSgnMwRsdp/j1ALEfnsfcZ22T2WcUUhCRaJWNCcJFp68YgkyjTjVkDsNjM86NGpkrqRmdlMyrKmfuvwK8zfLVcriwECAws/VEp54KlXPYkpsUIVUUSLCjjcF34M+eDKre7WelUPd1as7xwFHr0q9iXMolUAWkf0eAT8k5i4cNk2TiZLdzMQWGKGp0ckqxRhprTRLQOPiNBKrVDGKqrR938dZOlBfX2hgkakJwUAlIXWS4pczyO1VrCsUu2iG1OmKHsEs/xP/qf/iz/9+vlPf/7Ht9//+PnXf/9Pf/rXDx+j+4KgP/7aR/YoMml95t/fhbUjefwk57SMOyiDLCPJH8UtSeSSkgOsDOAYU7QQJUHC+2//v//63/zX/+fEarCFFlaFO4mIcjITK/hh+luPQGTuTCFKIku8npAA1hTl0VpNJJQiaczQJKzLT2gVIqbMHH29oWRhkQtdHhHQymQZnukhxBAC8XqEYiGK9L/87cAjMPYQuax3xpIYyFIYyQuNtDKU3/mZD91I5IIhMiuCc3F9ktIt11ObqhDT9zeTwoLXz4Ow0ObCBGESYqy3L/EX1UAutjgxLxY7INDG0S3BzqKcE5Fhw+30OVQlAYiaLdMbgRoYUipnEC5x3ogoBdetxeipIrWqCojrdgn3PqaQAwTd+rA4D2Es5xiJKqe7SxIxVAtJa6IZNkePJGHE7JGISGlPmQkMaOnnifOtTE1WrRJhEcncCLKwCGP0r/djOn6/9WPapz/8LSWY5odrCTKf/bx9C7fI2c3HcVw21W2/7Nv9Vi9ba63se+29//b7V/nx49Nl53Dp1hdKyy2JuJQ0d88+4/P5fqn1ww9Pl6pS5H6mM8zH2+z/8Kevf/PTi4IuTRSqme8jb3M65bQ8leKMp2mCcR5H1SR3SPGk9JBwEelgPgdlJolzKaVqqcIeIbpfJcP6kJxjWtvbPKwPtzm9MMbr86dPHnxGJkVaGPXwYNEkqLI7nWMQlXOmuZXLVTN8WkKIqV4uxGV//jAm+eiBTGaHunnOHgQhC65j0A9X+fR8CaKYPcHCmfKImEU/pDQfoRIZEKTbHMyR6MlUxKbRtIgTQO/dgdv725jjcr0SCyVPO5VRtCCRwJwrMs/9PItog/W7SSPiIqWko+1b0TLHSIFnST9ZdMw87ze4F2GLmZm1ULoEpGF+/e3zH93Pc9y+ftlK0b0FJCOuBen2fpy7vJ/9HN3avqf1r59/P/qorWUEkRBYVSkcyJV4chvmnu4qIPNHStQNhLAlswRRzDHGGJvK82W/Pj8n2JJWEQq5SHZLLiDKCDNRXVYpG9PM9qLb80tp++j3zFSmWrC1/a9++fEYNuNWhM2cwpK49z778X6/11YuWjJsKyS1NJTV5kVEhpdS1rWERWe/3zG0Nd5enEShKs7MZVH15ggmZOy1/vblrV2ehoXWbQw360iOsNldNESCKafN3oe7nb1XuNq0RYubMyOT3An7vivz6KcUJS6l7QQQH6oFraX7umFDCms1uydxJhO5jexvr3y8fbxcnreLkfTRyWerdc455qhFrk/X56fr096e9svT00VYMtJH39ql7fvZj6/399s5xv1t9OM8jsv18suPP6jWUmtrDYQxnWvZts0CfYyPl/35l0//+OfPcwwuurWaGazFbfC+ZXhCVcs55ujn7TgFJEjKKLWmhyC2qhzBwYLUUmpTBqUHwJEBJAvLwyTtK8sdzJV037bLZe9jnpZa6f3oX96OKvTh6eL+TqyX6zO1T4VbIUZEBClSS33+6Rdq1xn5+z/8OwiLgJGqomBmYmGjVfVJEcFqG69JAZQoJZU5KOo8Zu6elsv8/n7evn395pgefXRjr+3HH7ElhHM4e8j0etGyVXCkI8nJZ0JAkunYC8VgVtVKzCSoUMvJWTMLAKlFWVsmZYoQKXofEYiElA2y0zwinRkWZjlnD9hQJmWOIJvDbTJItb58+HC5PC0Fiaps7VrjA4/3Vu0cUuqmQv08xuFJxIx1QQSYhGot171VFWYwpSIkLaNQkoXneZCPzGBimiGqXKqqnmNaelUNIiQnIiOEVWRmUmHOBLcakTMnBWEES0VRZIZHkaqiEI1lpSFaeMUFC/AMQgh0Pf3jL0OghRoFeIVIHo/CkkRzGi09JNhXtsktIhZ7npkJ38NHkcy8qJa1lOtlBzhWLz3DZw/zMPNxhncGaL4TYeEuCQVceHuxwOvrl2+f/6xMe9OmTwQRMlqtT9IH1YWh8lCIZESa0Zxc66Zyzj772fadRWopmSQRtRRmjHHGeSzWYb9NksZatm0X5lJKbVU5Xn//8ts/fA6fo5/97AmIghjhOc7ej+O8349xN5uc4R7n7R2lZqIq3achHYnj7EnJEGWKWARFjmkCIjdkOJhYMrQUFfACT6xZqkeGrb0nqwiLUpKwTOsqFGFgFhGPrLWWWsiGzYOkWRLSatOCloHMFecPQQZSBWTz7GkJlmKWHsSUxKoFMaeZBTGlKwtxsTkZoPTj2+9eSiqP88iwhG61Sia1YCSISSVmDLcV+Fi6tghv+9PyAR19gLcimLe3fatM0YTuBuaUum1Pz5en51Ltu7qEzvP++vqalMzERUl02y9RuN86i7g5lxSiBTdZSF6mJGYVnma9n5AkpNkCN5GsmgpzFV0BPTJm8N62eR42R6vq5knOoFprhANLJTTDiyK1ylbAiWF2P7N370fP2VtBKRvpnrKFh41+3I45Z2WWugUlg0ilFmFgWBCwtaqlfPrwPIYBWVSpEQFpc4zBou4+xljIhfXTJILTIrkusya7B1iSco45MRHRlBJqkWYpqmMMiBbgEd1fR1Lm837ft4ZSciZljjEYBFZtlSlFi81pvbNKRGopu8i6966uSu/Tv0cT3Pw8zzHHohWuFGFmELO7L9WUh8OcmUVVSmEgwueYIvLxw4cfP31qtUY81OxJFB7CYnMx9Lu7F+aIeJyoI+acSxS1ND2eVFTNjBlmD1+2mVlOIrRah3Ulblu73e4RwYQ1oVuC6hT18Pv9XBVIIuKCbbsQhGRFpJmIgmhYEJGU8tzacT/OMQTk9L3IqSyQGU7mACWrqDAAlYziNgj5/v5O4Np2qZsnhU0hTPNwZ2YAFl5UmWWc54K/Psb0q3iSlGZmDiIWMCM8VibI4uhjMHOYDaKMtGlpWXSVffMxjKNkKZnpkem+bZu7u6+R0wPNm5FgkpWsAUS1AnOM3s+iBcKR5G6WQcSlNVZdcZ7R+wqiuBtEWXRduMI9bAKZXCCA5woIRMaDwhYhjxMp+ejI8H56hJaq+07JYw4RYmWGMPMw+JzCcCjXFhHKzBRtq2AJ90iKDGSuluK2NWZkpM2xYqG9dwqvYIi2/RKRZtMJ7q6laClm7hlEKcwiHP64k665RayqzCp0gv7y1c9Miwni1QeMDMSSFlJSYP0EH93rDIqIh5mHASnIFcpbF24QBxNhWkQk8zo3JJCxbG5lFxYnH/MAyaU979vVYx79lSKVF9+GsUB9i0wUFEmL7QtkUKcESETZw9fn7pmPRFjk961NOEHVM2hNJFdZDSAK/K//N/+HP/325Y9//Ifbt18p/Nff/lskkr5X2ZKIk5LMco3AKNPTF1rGVwSZ1zxkTV3Czef0lRsWAPIwhBAQMxYiL9yfrh+PbkCBKFH+/b/5v/9//vX/BSAQkjMjI1wUTBREWpg4F7k5DVI4I8wzHSiohXlJ0imXKW7dg5cvLheMWZgh7hGWQIoqIXxEZIIhQsLqSauTxUIgIoegqMga8AR5uCMhwrWJMkdkrpY+xWrGegYXrq2AMFf9joKFKL+/+FXyWCU+ARNnwmdEpCrWuJUyidJn2HxcHJaMnQkUYJGMxbmmFEJyBhk8gsBMjEcPbSGTlmeOMh+FxFx/gpK2pHSPJkmA955kYZ60aEYT5jYnU0op+hf0Y2bMIFEOS+/MdiCnsAJJJKJEI0EAjXMwiwdpugQyhSJq3Y5zYAXw3DOCCJd9l3axcdo4QKlaqtLovexX0Xa8f6lbe31963NYt6rYP/wUbjb9fn/dnj5UcDgFy9vbfVq+3s9vr+8s1QPH/fxw3YVxvn9zO3wZv4sQV+hqlJb9sl8ul9bax48fW9tvx/n29XNVCF4qKFfKKjzdgmD9zCSLFM/wODOek16ul+ERYV/ex3l0MH+x+/PzvgtVYdh4uTSQjdnn9L0WZqTI7fDNbpzWj+FExKpM5/19r0V2GdNnNxFwLaSbm7fWOPuc0s/j44cXU+mHuI1zxjS7HYcwV+gcPaY9fXj5+vtt2/W92yKMLy8VURYtPuc5XEvtMyFsTk/XxsSGGqgecR4npKG0edzkQZfILJXcAxWlvTx/5HmM+Pbxw9Wk9NAYbyAa5+1SFdqk1dMs3FhUmLVW6+e68FFMFWyK5aZjlmAeM4m1XT9AdCst3WY/CL5tjZIhAgJXIZ8eCa01ImxE0RW2i/AirFtdfWNDjTlk5VYjiOEOynk/k6DM/vRU/v7Xb0UhwKeffmrblpnKKZQvl/p6O4/7ec+vfTpJRdj7t68u9fJyyQybvdZCDAKklFwGSMpkQU5VtjkyU7R4rFgvK6WBM2KMOc2E+WUrz09PWqq5N8ZMChLypEhiLDujzQlhpkQEaN0A/LK9lKKUrqI2zrMPC4oIJxp9BvGYoLC9NY/oY9LKwUaCksKuW3Vtyx+qDDD69Eza9+3Smln5evZ//P3t7R4//PW2PTdQrngQM7d981I4yefBolvVr59/3T1++OEnJifmacaEsjVZy0x3ivSkBeM8+thxEiENQs6swlRaK22ndFWBKJhjdq1baztkoWozwqfn7f2u2kG5kGk2u5s/72X79MO3+/jn//xf/ut/++/f8rePH3/45adfPn/+zWyo8oeXy7/4m7/+8cMLEVh0mtkc1u8R1pq0rXnkmPHtPs/j6/Xt9vPPP57nySzP18uPnz5dn1FB45jCfL/dX7b6/OPHiLz3+duXb2soWbWIcAFVTUpRVc8cYxAWDNy5FHKjJJGSaWsqn+GeUWsTCGWad07SUoY7iwARRAzM7gQopRMVwXWr/nR9e39///1tBo7jXhj/4m//am8l6fWPf/o89YePn/CRnFtVEYogt1bqbK3tT6yVRVR0b7WUUoRXHE5Aq2guzhTKnMlOvG78SU4QTcQ4zsaFIimiPrXQvNMc/cw0FW3t2l6e0E6aVEJT0C5NWvM5icFczJ0d5G53AyjC4ARNBoleoG5+Oo3ERbSKqoDBurcLqxJPEebX95hO2qRI0CQQ+xRGBp1Hn0f37ntVieUOSBbdL1X1cv346fLx0/Q4brfbvUuOluHQaV3btV6eQc4BP94joSq11pgLoxlPl6fLfgEl3NKGMW/MLJy5AjlgLiptSU6FBYxNhFk8k0XDY4wR3RGgdIFQCUSCQoKoT7CV/cIdusRdhOAHeo/AtVUQ0m26MasAmUCGFgYJIYQZUh71/vX445GyniSWQ1TmnFiZ74hIc38IZRKQdcbJCPPwSe7hoUVbbaL8dL0gF7WhlKIZOfr59nq7/f7l9vYtfAKITFEG+cowouzQEm6Icbm0Mcb99o6ggBRhEGDJlO5BNKFFtSxl4QO86Z4eEAZLZb1crkkpoqKNbIqbU7pQ2yoR5rT3b78lpGzPRHS9XGsrKjhub69fPr9++bzAZJHJ4IQAZGEZDiK4hUd4uA2DEOGqWZBV5BzjPFnKZgkC2qZF68hMB9LdIEW11ugng3NlLJJqbd+lSLpW9MLGPkVrpjPnMDc/KVNKiwzVxszJAXLyOc2Oo3MBGK2UqgKpYFkBBKdEOsIQdn/9XbdLkrBoZdJS165PKI/x5v6gukJ427Zwu7+/m0c/b2bKUsZ5y7UZFRViUbNxEnINOOHrpYvNQaxFhNxRNu8HUfbpTgVwzCEcSnGtHJB2uWzb1aYlJSPDrR8jbdB5N0LZt/r8YsHcWlHOuaW/Z5jmeFSKHt4UByHdpxkI54jX9/uy1EQSkFiAW+Ikokxh5iKqzLJW9ubBsWIrbqBcTDrztGml1v3ylBTXwpzmX99Xg4mSSlGSKvvTVmsSIvWQO1GOfjx/+lj2i49RarE5MlFreSrt46dPlAEWmx0wfcBWMzOZ6bqXr9/et8uTluJzLPbqOp1s+85AVx39HGMQqKqaO4GI2YLOPrbWRB9wkKLaPQMeK/jNrEA3Y8Y5RlXdtm1OI3ezQeajyFbU5hCREHEPIihRq01VzcPnHGPUbTuOcymh78dpZpGPCw4evmiA4EvTnWm2YhhZS1ncw33fLj98fHp+ul6ubd/3p2s/DoKAWQju/f3tjZn3fWdwkHsEO63JTjzcPus/ucJFCyQWEQuzumaj6RGZPYPBbmYMVRljqIiH50gWXuOPtabvp4EZpbS21dYW14eYxpzujkxhiIoCIny5Xt1n5io/07Dpi1VTt2EzfPH6RETcZlHV68XOMyJm0GV/YhU3B9m67mopKmLuZsacRAHhxyhtcV4iPHNM8zncQ1VLURbJJOEFblaL4DlV2MzGHFwKhJPW/RnmpiKiRUQjlg07PeI8zxV98gQL46F+f2CGljO+1EIgGxRJhWXanGOASEvLTJsTLJnh5kTEzEkasbL4vmh0APc5WV3A6Y+KCpJ7DJvGALcSGcd59zlqKe6R80S6gIJiBc4WNyoiQOSe/Ti41BBBMLXKRCBaJGaAIkiYF6TmsQgBaVEQWEWEz/vdzKqWUjf3EeFJsOnTjFUJRJGM1b5ZGJygXJ0we6B81vhntcGW3CnCIolM1+FiZaoowRyR02xdeRYa12OVjpiSLM1mUCy45iNFvbx1vBpkyOQIgqdToNat6ZXAfZ4CJ6ZMP8/btGFzZi7PF2EN/ZkfOROQ+XRbrE4ACymd6VhcrHwkfDOCl7txHZ4WX4gWwQeUTgD9/NPf/S//V//73768/fkf/u15+5oUx3mf41jTsFiZlr/cmpMeKvHlxvKkjHCCYIXZl3P1EaABVjoGj83ZelcyMrGqWzY+vPx4nAcpOOuvf/x3/99/81/xilaucSceuWcwreqjMnxNXIjwSCVTJqWTUZAngcBIWimYlUpISlKlNb1QrQAeJypkUvIjtrQC1gl60K6xOpuBUlSlZMDdyWOxoyAoIitrI8xJcHMGaxWLYE4mYqIUZC0r27gmQRQcSREZHulUN4YKJ8AkSQKOhQanBH0nTWFhnQKr3bXugIzIsHQgGRyxcIUEySSOVR/MzCRBcHlY5HNNx4IooE6iBeGR4dNnEoXnDErgfju8n40J1rnVQJJsUCa3tAFy0UrO8f7Fe3++7hXK7MYlIrnUmMM9IpKYainroyHKWst5t721sJlIFfaI18+/Rmbt97ShwrVW5LThZq6Rx/tXd5v3OfrZ++xENvP6kRJibvf397Z/Pf3Xsj2hVAKScp53s9n2yzS77O2HHz4RF1LmyqqltsbbPs5jqwJwKbLvmzBPN6cUhoq83e5//uOfbu/vP/3wAh9x3ksp00Zhz1qIqCgL8310Mj7G/Pjxw5V8+tf3+3I9sWXeJ2+1GoUof/78+unDrmX74+/3VpSFA949tirIael9uLllEAs55Zjp0yxSA3spzDItwq0oB+G436fS9fnJvJLIeZ7n/d7v537dI6jVOvr9Mrdy2ccc29bGOYZ5ZiQpJZWtTjPW0o0COmyM6aq7WCQbSenDw/t2kQhnxhp7tlp6z33DDCatwnj+8ScVcqnKUsij83GcLGwpnBmjs8g8TyFOyp1pEscczkoswjwDe5X74Z6mBf9/pv5sR5YkS9PF1iiiqmbm7ntHRGZVdnWdAoEDkq9wHoFvzVve8IJ9ABIF9Gl2V3VWxrAHdzNVFZE18EJsJxhAIJCRmb7NbVKVtf7/+8zs+9dvn37+hAjDRllWCj/PVqxTWT1C1wtHeHRlJpbExXxOtRmQEXP0ripEEgBuIzNwjFvV+3m4NS2LmwA4Y5KUQJayvLxc1m1FyCr0ershIbSHIVPqut7QbWM5hh3395BShTIR3CEhMzwIATySIQkp3DGjFs3wCWfLzDSfind35xg2sXaI10VfL1upahE4RR3AkTEsaIL1hQ1QEWL0mFP90dJahr2+XKWouwvB4zzfv33vj3cm/P3r++VFb29Xd2esiHh8/15UAPH1008+BmIgsbnZce+9owgum3tGQlVZlkJIKjJuty/fv//2/nXd7T/95S9//tMvDICIDoilXlWP+/v5GBFw2cr5/YFt//rHr8yy1CWEzaMuF1EJ54gzn+2CmLaItE4iXKs5C6YwReY4TwQnFkgHH8xVOXFb1/Xq7eztjOEjCIhm1Trc3RwxC9H1cjHCMf64qFzXRVRfXl/a2dMzLT1sHH1bLtfby1LK8Nj3PdxYSKpmrm72crt+/fI9gI+eZ793z1rK9eX1/X4m66efPy9FusPHx07pl20rpYwxXi/r621j0VprZLbjACYPWKom0FLrtq17G/Jxt36CGwirFkIcPcMdwtIzw6idrCITlGGjVkGbStN5t+HmATCp8OmMVeWyLjaGPY52nsfj8bW1IvQPv/w008Ktt9//+DYe+fpyub18TkJJI/CCgD6ur5+UidDhmZMHLgDEBIQTpzIYAEkweSQCcgBMtDBkmorKUFbyDhzgEdt6LXUJG5q81CuDj314EBspL6wQ6ef3RxLSZSUuOShiEAFk+NkIyGD0+y6ixBhgQEAMqnWtqzIkqkd4tHDHhmOE91MWhqDRPyZjFkkCnETrpS6vlSERgN09gZQAyJ2+fRz39gcREcOi67K+UoxLeaHjMPNMsHEEqSUgpIiwO6XNLNRlvZZSAyAjmfX2+unlej3M9uFIyIhcFImIeGZ8GcEjlFmJEsjRIwTdkdGHIUZQUqQSIOBIyAQFXrgASHgSCyAyca2FRWY2sEcqKwtb+FwqC1EGRCIiClEiuRlkIgbMQHHEE2PsMVXSAKgiiMCRgBhm4MY/oAAQQZCEMBNBiAk2YJzjBHNvO7x/i+F+7Psfv/767W//Bo+/vWy0akYOdGYEZAVZcG6psl+3shQ2nwgLN2vn7iOgO2KEJDByfZ6CZF0XLXWYjz4Ac902zJznBBFFZGZB5hgNMtgxmRM4ux2Pe7r1ffd2LH/5TwjLsT++/O2vX3//W7pHBAibeSRoCDERZVWG4ML8cMsMxmQMG3FAgkBVfcnc+/AOTjrn2iqaEUhMMYf0aJ5JAoiFmUWIGXiyF4SY3Y1LgVAwwXQh9GE5OoSPiAgry7Zcru04MB3SzPzsPYHDzXswYiQoU2Ee7gRJYf04/+Ov/27uELGGzK0gIiQgC6eNEYZTHg7ITEhsw9pxeAAzCbHU1drOLMjFAzBSC49J5vQezEgsTM91RiYTAVECUAYjmPloZ5hZQrr8w6efCOT9/XvIIqoR43i0blGV11KRcXhILWBBxLqsNMzNmIB1oTGCRMpS1gvdP8KsZQ53AoiwdJ8jyDHuwwyJlGnOJliEEmanmESWZVFmZrJwfu7vp5XoOWSAMF2Xy+1a63IOI4hhAX4OC+8dMkuhIrJePyXwcn1liOPsiDzMCAD60YGSWLgIikc66cv1yqLTsslENnobfauVkSSttQZF3671di1eru08z9bnRIOISikJUDJtGKGHR4QzMQu5JypmlshcljIsEKH3zkQBGIAMaMNUlZkZkutyPB4XlqKKtZwnjj484LSA2fFAEpH44b1OxMLgRMQszPu+n63hPFsRTmnyBDxPjom7w4jh/tQ8zV0Ax9vby+vLCzNv2+Vyvc7N+74f4c5MItxaR4RayrIuzExkqnL/+Jj8J1Sd/poxkplVqYgCwDBTxD4sos+gLjMjPKlPIJAAow2SaZs2BBjW7bRwnzMpVe3DVKTUlbTStCsjIPDfZVjEDIgJmDjZ6wMBtSqo4OAxDBLm0JxZaBpzicKaMCMAsaQ7sgLLjFDNoRUT13Vh4jiOSbmef0pEFNXIHGZjDAQgSC7FI479eDzu67rWugRiZCARIVlaKTr208ew3tbrNtv/iNMnxSoybxrNMALCXVXHGDmN64Q4P/45JSaQGTZCtMxOEKsAMYAhUsKzSZkA4E9R2BP25D4N4iIswpmAWCb2eQzLCBVCwj7GcX8kBESAL8P66H3dLqRFKkmn4zjGeQBQIpznWaSAIGAqE9babWgm2ZBS3Q0QoKcwIcqktRFNpct861CEI0w0FQYCC4flGKOwiJSIwMhUngkmIklEMzcznrrGeXHMBEBlJeQ5FYFnQOIJcYGECPCRc1xF/EOSCiDEGZkOz+sugogSss0QVj4XwUSETKplW67mfhx3z4H0rP7Nv4Uqogx3HzGTIeYW3uEZjQUEpAAIMB8IYCMzgIXN0nrO7HZCIsUMjRAQIM7cB6POihZRIoA5QGY6zCY65Jy98v/2v/3f/vX/879/+/olYrBUYvn1r/8KSQBB0641HT0GiSlCT3MMIPKMmE+ieVoEz2cxAWf2GMi8Z4BboOCP6NUTJ4SEbvDf/o9/vb3+Z14uj+P+r//v/3smZAQRMOGcR5MgTco1PtvLHhk+R0hBiKjPGesTHUVIiMqEs7QYc0o126wz/wuAMFnywACAhBQTcg4ZAcxAOFF2AOnzVkgr2ZjtWMpQiBBE6wMSPDIg55fm9J1FBDMBkIeZWQaw8izwzxAxAM3xDiJkYoTPkGwCWBonEwMiJ/As2BGRD0/PJCACoP+/9qVlQrI+C33hMd9+s4VG81d6vmA51R/MDAhpIYhgNqYwabKdhvl5nhhWKG+3VSkzl4l9oXAITus07kAMaO39fXx8K7erQ1T07/u+vSzJxJC9BYatizqS25iPjRlaGzP5PKHhZsPD7Tjo/ZsXWbdLXTaiOZ/1jBjtIFYII5LL7YbcEgC9HY+7jS8ISbXuH7+Xstx/ex8JJGsRHu14/fzGUjHhz798fv3pF6Aa9NFGr2XZ1ktopXQBpLB2nhnAUs52frx/FNalSlX+9vXLfv9u7QDrLwU//ee/fHxkZSIGDzDAETk8CuDH/WFJf/r5k0h5u5qZjUBPdsCHE6Fcdfz5n/4sfmLvb9fShkdGdjs9BWU/uxYRpmP/rpzLpujRvEcmq47etzCOkUUsKdpp4X2MGAMAUdhH9zHO47xtZcaUSKWW5TwP1GsA5jBiFmsnsptTkSQU1fmF39vJzJVq9xAUG70QIGQfTr0thd+/fMU0qFevNROaC6oUymgPF3t9vYYuj717j62ye0EpKOStITMzTTHNhI9rreFj7vvcQ5laH1okPMewdEvE3//4uFxfZ1W1rFtk9AiKSODejsocmb1bqUyEkYIkkVBFVCnn1j8skH0M8IEEinRbl++PnURl2QAg+5kAVC6fP73dXq7LumY4YyahmZ2nOcRal8lV9XDsXelteDRzIIo2b58ozABSVTHdxgjzsqzeTsAAVlXuw4IZEng6DyLcBqQLwOeX2+16CxYRicwnm86NEBjRMzNSCQkpEDDDbWQMG01Vkfn+2D3e+8d3TXtbim1/+vX3L3acRe9w3ZQlAcboRSXDpVQAX6uyyNHO89sRZpChyqxKSOCzjGxrrchcS9mW9f3j8fjt16q8kV1ur0LZWxt9CLEl7se5kEfwX/7TP72/f5weIoDpczA/kWaqhTBbBpwnQgATl3oRc+FELguHDQPmBLBTS3WAMcakErQzEuX15TVH6+feWxMAShgAdVlmvrf3ZoRRqhD9VLcdy/bbH4kkshzZiVCIzfq3L1//9re//fLTJxFlJQA4j0dEKAGtxX37+efPx3G23lrv9/v7t/cPJrrv56fPn5dS0IPBKuHhw2ysRWd/V1WllG3bgCjcKWO93d4+/wyZAMBEXCp//57WBljvAUTMBJky720D89mejoR4ikjGIDAID3cV9Vmv94n0QwAqoi4GxX2r7vNq4hHx25dv23qpdemtR+bY7/bt3T7Ktqy8bkmiOQLg559/Wm6X/ezZzjN9koJZJFHYdS4hLXzEifA0rWiXIEyaTEJZlwJjXucMhpFb0aXICstGh7FZRhIIICMwoxAkhl+2i4F1OyOVQHijTPMxpnCtPU4sRAzWBrJrEUAbdtp5ciaIJFKEhfnonuFoD8t3llHx4zhePAqSUSWMtdbL5e3zvP+e9AqAhgnHo53DID2BMvHoLQBrUVluF13cvfWOJ7XWJiaAhMBwrvKWupSyeiCGL6X89Pnzp88/r9vmf/ze4pwOztnAYmEmxQxiMgtkmGiPtFyWaoPcOxAwsTNgRpWKnANpZF9RS93CEwFYl+EmWi6XK3Oawfv9ERnIPL9J586SiT0DAhIoMzBBCJ9HpgBiWoqWZe2jj2FTHAyApKIi6ObmpKWuq4i4DTObc5qisiwyInpr0c/oBzMfrZ2tj95t9C9//PHr3/663+9M/k9/ev3za9Hs4YYYjAhOoDrPWiKCgIj4GO04DrPwiOGQgMRSlLVWVSHEIlwJi7D7k3WG+TySjN59bqpLAUQ3M/d9f+znfoxx//btuL8zUbod3v8AO9+/Wj/292/gRhk0AQ4APrpbVy0oEGFjDCnKwkDVEzAGBYxukrQor0sVtu/HyBEgGgPOMRKyiJQiEmmAU/ozYwvEFADRBxIhUZhB5hiGiO7hvROEaBWlDLLePTEzzv0jIwhciM1HmpVaxjAEdLdhg0Snl6hwEsbIFj6SipQKyCoFCX20dGtm6UPBPDMjkklZr7cXt2FjVg6BmAGBpS7L5mbDfIRDOxAwidNtjFEXIdV0w+eJ05EpbEA4M2e6sCQhjNEPO1feXl/aeTQfbuNsJxFBwmxpXhZhjhMTMcbZ3vMjbZjHtq1FBKVwOLImQL3eqCzIEl+/iBbmbu5oRsRaJBAJUVVmnUFVARmxn34ARCmFmd06IQhjZrjFZKA8kyYJx37YMCJBwON+H2m5f+dFpajy6mZuLUm3benn4wi0uT1CYqLdsmgUkrbvy/W1aBEmC+i9MaVCjGGCwCxna0WlCpnR0fyyLX34spKLiNn0QnmE2UTnAiJEJM8bgDAKxQnDqktmIFEpPGFJrXeARCRHIGJEIGL3wZnrtvXeaq3hz4QFixKR2SDiibBEIndAdM/8MSNGJHoc57auIvSDEpSqBYl/FJZmAyRwDB8DEWutnz9/evv0ttSFmFVn27J0G611ZR7u4vTcnhPXIggwxshMYb69XPf7LsyigjnN4pMgkwlQa01Es0GEc1IWETOzM1/6CXzNmWEMf0JsATJSmMODmCCpEhPz/IC0bn0MJCwiQgwc9JTh8PNkPfp5dC3azIWJecKoANKFyMzm4c67hw/3p9Jnd4ze12FE01+IHnPN9/y6E+Zh5mMQoooCUhEEnLQlB4CEFGbasjeyYUXn5cUJ8Ha7+hhV5dMnKkV9nG5FiBFngQ6P3iNSixTV2TibaT6a0G7maVibn8SIUFUbfR4jc7Z6YO4GqCzL5GoPM2aOjIyATFHB6ffKGYAinqx3RkwanuaWGTmcEGKMdu7LsmgthBDmNnp4nbkaM0MAVQl3a10QVVCLzIhHrbW3Y4wxzFB03jy23kyL1ukgwxmpgwBgBIA53qLnySI2qjHo/v7ewmspDOluGUZP8VKfHrawjAih6eeacmykWUdDnBy62dudqDYADA//4ZBKSMBJIgMVycCMZGQRTghGcYcYBoHPlvgEBCGkR2+HeRSSeruwSLfR2p4IPcZ+3hGOBAi3BGdBTEaY0dzMKWACBIswT8jZ/kbIUqUIMkPQfNiJU7BI0D0yY3YXaW4DcO5RMnwuYp+VKAD6/Pr2X/6f/49+3gGRWbksj/392L+woDuaJYlPBlDEBMHMYUsSJQXPfCXM1A2Ah43uESAi6Zlk4CAiQrOCNUVsc5yHkIhA//pf/3flfxXVHici/iC5PpndjMD67Js93TkdPCYGDYuQEFqkZWSAIJJwJKRB4ByKSWIiYXj+KMPN2hxRUmJCJDICQVpC+Ez+zKLuHGWJ8nMTlk6EyRCZP+7bnw8VfoCgiAVp/ueMCLcRkxA0v/fT50yYiXHeySmwUEJ6OGRAQIRnAjPw/FzD88l6JvIi5kA0M5MzJkdvWkKeXUXMwAiwSBbm2epnSsiIHO7ekxmZiIksQ8zMLZ7IevPee1h/W1hEA3kSID0A2p69oWiOARmJEt0geoTL7QXq4u3c73eHuizVgc9jJ4ClaiLH8IRExHYeqqos6W4eSAzPImCajXPfEbayTP0qIVKaLYsScx82S1is/Od/+FMmPb5/aeeHnw9dLhA+zoZcSDWHf//2h4ogSdE6Wr9UfX19A1YbQYQVYqlFhc7RyuWqhEzow7rnerkN94/397JsF9hU1nUd9/cv3xAYsny6efJl29Za3C3MHenojszAQlu592a//fFyvbyIBPLZfW/j8XhkRi3LHcnSf151eGeCBOzmaabIH3vvMblh8NOnFyTkcTw+3kEqEG/XDcMhgcOoLoIw64nm3iLkeCQWgkRET1zWy+h9DF+3AogoS2+nrts4W/hAABUBCGKy3pmwW/rYxxgiuCxLd7TRtW7EjB4vry99eCYx47fv5ypX9izLCkgADpOy3+1E3ERuC3bW95PXi+6nhQOIQma6SVFCGf3s/ZxaQiaKJMIMQGVygGWR9489EUutl+vlbF0VCHG4VeVu4EkACeZT+QMAbdiyLERURLsHMs/EGQGxIAV0795PKlVvN/N4kRKApOKRkcqE+2mvL0uRYDBWSRutjdGbeQImMRFja+M4e1FZl8oeC9Kxn6Es/DRnCDOEm1lEiEr0I9ueJMwSAMyUkcQ8xgi3tOY2MvLTdf3pp59Qq2UCQCKriocTwsBsewqhEqgwYmLCcwEHVMsiFI+P783D3VVVrle+fGKCX2T56//474/Hw/H328ubMGc4M+6tJ8A4wy+XAoiRl23ziAmzZJq8OEnE8zzRel3qupSfP3/qrf3+5eu///v/ZIRfHC6L1kgc52mdy3p7ea2YaSa11CL9tHAK4blTykQiqpwYZjG2WqAqHO0cO6DWZXWcSzMhUZv3WTgAIFADZXhyZl2ZiEh4Zs/rbMcSrZdrAiLyLFwAF9SKNq4vL5dt+zja9/dvrR347C2yCO+P+/2+07xl1WK9T4MMILzctlpVRd4/Ps6zmVlvZ0T2MYS1qAgYJzGXQnC6YWDv+PE4+hiXuejzONvpkbe3n2qpNnqEEQsQTcTsmRHwZENCBlOCTYEniIoIj+FIJASEue/DMgXC7TSf2s50IPCcOVEtEpA6/HKBOXuyMfbjeH/st9dXz7TeiKgd919PpO3XX/708+tlDYR2nu/72T0MOHQT5rDBdWFkD0FQAGJU4OYIkcYJEqJYYupSQDiAGRD8tI6EOEzN4HGnwrEpDUQkcBIWkOnMJAhLN0IgsIyGI+W26ML9eIwIKggo0VOJWDXRmQdrjHa/vz9iJJkKlURkgMqUEcNMcdixdIYWK5JCBkS3TukC2R7nWLbNARVVFg0vRFRp2OPjmSEnjsjjOMN9LaRMSylSK14u/dwjwRHGRK2gUcQiZXapisjb2+vt9VMpCwFpqcsEcsxO9rSnz9WYFEbzmUcHQCAkFIWwISRrlSQcEgxEHCy8uF7WS0KNTFUFKtwasiBLZijF8ydlRsC8/SXiySuAJBFGRCGExDIJ3kqAhG7RjrmGntEIJAJk0ZIwiYA0x/QZgTDCQ5jruhDL+/v7/vg47u8TzXLuezsPICgq4B3tXMkc8PfvbdsuG5pigBD6iIJI9Xy8AxJzScDD8n608zQESKRJTZ4jIBLtI2wcddgYVgN7b9My+eX33x73h4VHAqUnoNaViHy0RL7fPx7nRzsP7w3cIVVZYrT92x/ZHkgE4YQwa7NmaR42bMIRxCnCLXJv7XBU1Ytw7N9DyhR0UA5VXZaUcn59jHO6PzCYJTMA5TgfohWJE4CkABEhEVMGkChOYTzE6EOEtRRB6OdpNghianczw62nN+aCKkl4nuePQgEsoiiS5tY7q/o49zYgzAO27XKOICFGILAYFm4q5TgOQdBC6UkI4UOosnBkiGqG56Sc+FGWbalLFOdmZ2+WEUiRTghCs2sg86CRONoY2M55Pz7fLQmBgZng1o+drmtFUXdPN0wgG0hkI84+zs7gw82IBNoYEYEyRheVQoyIQejp8KTkQF3Xa7y1Y1eVy3Ydw6cInBBERFUlp0+PZ/rGhsBcoWYQYZgpsyVmujBlcgQDIoISBMVAb+d9SLQcezImpAVqdqASzJFg3cDsaOPjcez7cZyNMgpCH86FCLNbLJJLLRkR7tFHMBFjqYuPTvNAgCxlCYpISi37OWyMuYKOBDfffV/XFfBZq5+k5EyxMRABElQEkTNyZoK0KBCN3mcXIMORilbuZ5r7HNb0drLoE+gx/yUgAmhRSR1mz2lO7733jEQI2S7MjLPJMqui/ByAzP83M099zLqudVnf3j69vr2VUlTYI2D+cJZ5JZVpu7BhFsxcioYjseSMHo7BRJBQa1EVJgYCNIKc3mvovbv75B/P0AIRTkjJrOgQ4byKEuE8xIKwu+WUTGfOcBgSCRKSJDwl9MScEWbOjIQ4t+f+lNDbLKTMVn5GqM4sHzICEaqwWY5hvfV59DV31mrhj/2gr18v1+vM2swono8xMysBNlkzM30RGcNSRDMpcDJiHCKZ+fr6wiRlqdPfnOFzcscz8gZ5Hns/D2JZ1tJ7z0BhtjA/DTNLrWbDzKfryRGZZudl4kFgskbcTYhHH1PXFT6B1uDhME/kOAMSwCJmNq+SpVZsjZ5Up4DomdHbhEJFYYxMGyZMLy9XlgKZqiJF+U69tXUZSYgil+26rpsKtd59dNHiMQ29QCIFFkA620kRIozEujAAeu9OnmYkDAkiRKTPOAMhAaa7IHomgC9LSZSwjoRzeD0HmplArMgCOFEQ/iQx0+TqMM6pEgAgJvwwOU1KC5IIAVHMEWVGeAIkAxaprGrmFsYTnJfJDH9H6c2eEAJgAgFVFXfv3sO6uyEiQgBkYk7ODVIS4OwUMMukw0yvBUx32JzHIgoAQRDlHHaYWyYIowowghssAh7ojkyYz5cYIEgQDMNnhiye6ZOvX//w4UvdhMr7/cvH41tmTADNnIwl/F1MDMQ/+mAC7h4ZaTjv0TMhwiKAYWozn9ClnG/GyOnDMvcIZGRAiHAWysAkH+6I+fdv8hm/cXCgMAdMIGSgdE/MrMSAHB4RMRJIWJnD4pkzTpjMDEiKJwEnEcED0mNqMxACCSYeNx0AMOxpB2Oh51MPk8UBAOGRPiBikpPwSYZyD4TnjBLgx9qKnsjOKSeY0BXCzKRkN0+cvUCYKafZawyP2bidaYZJ2kkEmMGkCDMgRGKcU3BIcn/mv3B2owGBkoICZoPfMjMISxGiSaSmMERJfjrx3CwkfGpW0y3G6IywrjXDm0GAi5CSAKbrwlojXMABmLmwiHXYarHEEcGlYo91WYfF969fWAQhu6N5n5NmH8mqRBRuzDzM5704ERk4Aoa7uz/uDyLe1pVFtK7mxlI4zcwAqTAJAoocjOE+LCSBRMboBRCkLEq9W1gn1vv9nhnbuuxtjO8PHw5xmjVhWpfleH+o6LIu20If9xMgLrfLcR77/X70EIGq+nq7jXZHAAf8+u3j7e3jp7dPvCw4TtLiw0LBQvb9YJVh8Hh8XG43qtsLkB6nELzvHaw39+OArvwqJc372QIEgIKE53iLaMZfb9taSum7PI6dibK3tPH5T3+y42QWRFCVtg/GuCx6jkEHkIIKy6YfD9VaS9V+dvNchJIkmQAFJdI6kuRccpongCpzjoAgRmJBxKIyIGuV3gdmPpGT7gKohLWKaBFVJgoL6o+RdCSSxzlsLmu4LNDPpZB7FpXhSYnem66cBEcbFjh6V2FVHkHZj2RylIcZxnC3l7fPqsqiaUOWGsHtPEUoR59bVmStRWJ0j3jsJxAR01IkIqbrIyISF/dmrVV0bw+Fquvl7ACeZdF7CwQK79EeOr63k3W99HAkbX2kDQPUwmZmPcx8ygKG52Vdre0nGIZbOCKylgwn5ujN3AERbSAhEAViWJ9BeXMPt5lcJaJL1c+f3qjUkcAiblZ0LojKnm49fyw3YIxehC2TkH/5+VNd6uPxiNHWZZV1m11XJgQ7aL0gxMvl8uX793Ye4P7y6bMQ7PvhAOSGmcSsLOtS6rb13vt5fLvv1joSFimXy3qcRIxaqnlora+vL83G+/vjf/z7Xz/ev//zn3/5hz99zoyRQDZ0vSzK/f7d2rEttQ8fER6pQpCR6WEdkD2ChC0TfKSbEqogEg2PjEhAIuHC6WM/z+uy1KVKKZCIQjMdyIS362U0JYZSazfvrbGIipJgoo7hySyYtZbPv/zcf/vbgA+uUBbpJyHMK4S0/dFKSQ9iFBEUNk/MYIDbuugvP/2f/uU/F5HWjt66+ahLvV7XuqwYYecxYLQW53Ha6MAyPLfLzX18/f6eEeZmCf+JWLX0dmCGzH0iC800J4BnYAYRMHBIJDAQoDCzkggLgzljMmYCDMsxfHatETAyJ+80EQMZSZZagWQErGY+FbEAR7ejD33cS13P0P1o3//rf//b73/88z/++Vr1OI6vbQDPA9TCUtJmvIwohaAQ8kzIF10yVbiURE4EgsAIz2wuCG7BlgiAnpgMAsgSDmERyKyKyYjEooTUW8vnCi3QUVikAnijQCFG4dCQXVlEdCGi9bKp8MMMqFmebnuOEiNfluXPf/pp2bbHcT72B6WQQxItS8nMcA6MSOzn8df/8V+JeNmupa6vP/+jijiuuAKevRRFmXuy0VsbZkJay0LC4g5kmXlaOjMwYCcaOO+QkViZX67L57fr5bKyyDhPQChF5OkrobJewgbO7wGIGXUERItMABZND2RZqiyKAZAWYQZmYeNtu27Xl2EEKAnZh0V4jNFbT0ARmbC/ObVhflpf5hlDmUUEAARx3rcJCxCaWUzBL9DsCWQEScF5kwokMk10kJGYAREeDgDw2B/H/v7ty8fHt/37l/tjh3imzUop67Y9OY+Zi4qb/fVv39ZFPr8sV6EAt1S0iGYegTySxAFHkgeYW7cwc4/0cDMXlvmzipblstW6MGNr7XG/u9mXr1+WUpalbOvKoqKaEedxPI6jtS6VhXDBkG1jqf08M2IpHN5igHn4TMNkjjEin8cNnEE8FhsBmZbgA2/Kdbl2LKK1oIkfFsiEtdAWfQUwoMxclMfoo7Uq0PvuCSwLMjmKJTOQhwsRAkw7iQNgJiOkiM8N/99jfzOaAZTZGaE1O45zvdwygFl15k+JYrRxPtq5m7kqX1bdti3Pc7hbJBs+GcN5YgaVBZU5GxHP7fH9/euwDLcAIJzWXwEit97O0yLSrR33zPBhwlzWDQABM0ZPFkSIDJpq7TnqdA/izMBwQN6bH8PW66XFQVrAAyFPM4MMoL0NH6MAJtmEVRAmMxFkKaXbHhERQXkayFybYtrE+bmNdu7DbNI3i0qRybUHYgYIYWImc88MlZJAl9sFEcKBmMOssIAmZBBzP/bzeNj50YFv122tMoa13nrvLRHF63Ybo3s7zPNo/WztcezmXoQ9MdyP/Xi5vS5KRXJqtke3quruYJ7T70BcVJHR9rOupR3HaOGowgSIQuyZETGGHfsuwlOTpaWEOwIxUWYwkY0x1+rek0R6t6kS93AEVFXIVNWstbf25CiLIELR8tw5p7tZIHrEum7btmY4MzORu7fWxjCmk1loArxgYn+efQEkzsz08AgR/fzzz9fLVVSnrAcTMr2dPSJKqVNRM+lCTKii8wbAzGNMwpdM8AgJ16JzK4ZEGZARwz0jmHn0/swBZTLSMyQAkNOohZiZo52z5wUAM7QYz9+LAXOme1g0ADOBnxKozKdzYkBkYtDMQhASKjIXgNZaWM8EJwzvTlSK8AzXAgUJFjSPzBw2kJ4r4MdxIPP1egOaVDY0dwZgpt4CEUX0CfqbwyCc2m+cPkHmZzUvE5mVlYQRIHsfIkIIRCRMl235b//1v0UmZQRRG67Kc3bTe2dR84B8frxz+DlMtDALi2RGjAnDc1kUIMEDZg4ocYaGWmtISDQHf0hE00rGk3qrlrM/Ft7bOXNsAcBEy7IeZyMkrevlViPhPPaAPB+Pfd9JBEXWdZ0M4iRM5HXdhhRADBuJgJFMpLUQodvACfiHJEwA9Mh2HDa61gWnrZA4MglBgDJsUk0hAzNFyAM8/Dh7IhDJDEYxl+fpmBCEM/OH2GuKVgBnZQcSgCwMAQoVAnJwz44Eif7EpUVgJgD68EAnksw0H06YbgBJPN1LQYBEKMhEwiTLsibgx/39PO4OQUjrslQpM3iVmJO/OMcTmRA4GUz4lPpNJCgyzgE9JUCaB0NEIoQpQ+FnFCzIAGitUxE63DExhwExYKLyDxRwAhPMaND7x5ePxxf4EWQGRPBMcCRkoox8Cib4mTtGegZSfJhHyjKLXz9O9Dp9kYgAE0QTNnMyU0OFhMRKEY4O4TEJRsSTkQRAOquqmRBmaRAWEU7giDSzDgmeSZ4Zkcik8CMhFACYM8A9H2lEEk9QNQk+gfcROLk/iGnThwaIQMoqSnPykwgZkDwzm0+otlvMWc9cwUWER+DsVk2dXMwHEcxzQeKIRAoYOMxx/oKRAD7vmWm+BD/KX082eUxFwLOSmJg/CCFBTOFuDkzT7zFZRjSJS8wYiBFAlECAHAnk7hM/9aMZnZP4EZF9mBBzuJUcw3NVDqRhngnuQYQQBpnugVIBgqzNe9DwNI9AYmVNADOQyvsZfXx8+4JEYSMBVJji2R82i5eXm/U2h/1zRI0AHvGMuwG4+7IuEZGA89MISH0MRCYtc5jdjztkYoy6LBmhRQEwAKVUDxTmZamj5cf7/WydmT8eR/z1b1o+MiPHqVM7nxRuY4x8uRHTdtGangi1LEDYzr3oJb0tAkutrCWSjuP+5dv75XbDs9dSfcyzBLPQr398+/7+qHX7OPqvf3z//Pa2lUkDxYmX7z5661TL+8MlLeyMpG25dhA3Szd0L7WMJABkFl22kjGSgqT30T31cmVO732pegAhoZ3n9XabGw3rvVD+dLuI4jlivQpnIqp5FpUM8zGIabTxDHXPNyIr+ChC4VSWbXhSZK2FRDXRERCzKod7i3z9/JONVm8vQMSMQtpMPTEss+DxcQc346JlUfSxd4CYV/HmrrIee6tsVXS0BMQJyImIY0CEo7JZ9BFAQsKU4aPXWnx0rRXXLSOdkmBC99HdE9lGl1I94DiOpVZCT1wCpSwVIFE11kv0OwHcH+eGirz0sFXKRtDP83w87NzPj73r5v4uUkg5rEPky+ubKMfo5lCLzvK7Rez7QzBrkUcfIgLEkcnp1n2YJRBEkqj3lLJYa4iE/oCISylS12Q+Hvdidt22cnk5WssEyBRRyljrNsLIR/RjNre1ltt1c8DXy8tPnz/XWlrvpS69D3NLwCf2jWmQSKAi367Xx/7Yh3sETcCnFiGK3qQuWqqqsEiwrte1btcz/ujnDggseNzfj7MFlXRflrrWCq+vRJz+H9++fXs8jl//+L1IyBayXiprBBy2uw3kyoTr4uCYSNN4EWGjBaVCMglWpHaGwnF9udVK31prwwkAWcZoAGmtA2Tvva5JkAlg7iIqdcFdmQQrCIKo0HMaYh4jkiPOzATRwATWhERxzIiePhwgw73tx+jdj+bLMSCAKM1lvaKIh49hakYA//Kf/6IsH/cPs9EbrEutRYXRI7ydKQtQWd9+KUVE+O3t7diP//nv/34+HuH9+8fjL//Lv1wvF3cLN8BEwrLU/Tim11hEOAMAwhxpshkoAgIYkYg1ESMgMgmCEsxitiaJKGLu191/NPsJgBnYQZmWUnPLszXVAkR/fPny2+9fXl5ewt2B4I7v9/vjsLdPrxZGIkslKQQQwOk9GYtAnZU1pTotF8iUbuiQgaUsojzdSe4nZAKvZZw2DoiUupBqQAwbgzyQhXVWTQQ5wbRixuIyoMWCUq83EmkPCweWhQRDveiCgt4TkY+P87RzNIBERsmp4PQstV5f31QLAP786S2ZzzGO0bRWM/fhScakqtfRWzv3j29/fB/+xx9fLtfr5fWXZdvMUpZFpCYCZ7ksl/74AMoiSlKXhT6+/RYAKJzjDHcF8pj2di1lXdfl9bJdSlkLo6r1w0YDnFAI1rq+fP40+ojWCvlxHI4pE0JLEJPgjlSWdS1chSzTzvb9/pA8P72+XC9XzIQJenwag2DfGwEE0lyMz+t9ZEJiTAMxwMz5CjMi8MQZMAIyQAJ6XQohD4+kgOykJZEg093dfbhpaoa79dH2/bHf73eLALfjOPpxH/1M92d5hYWQEsnMIrKsV1pXSht9BAzLcsCSyZJOLWDsGRmAwEkcwoSyfv24f/v+MdfLqgUAIByJu1nv00qbiPD26fO6rL//+tvLy+1a+ae3i9bCohEA0SLzuullq1Pa4aNTBmoRXfD11c0YwcOP43jc72cfZkaIAYgAl22ZZ78+utlEwQeLRuJh46UW7PY4wQiupUSMr3u/bOtSeZgnkoosKj99ku2yIkA/Pv747bcv78fIQCkeUZFKKXN/OHHdy1LdxnGeGE5hngEkwkSJDiRM04R+thbhXNdIDAJM6/0UrbIs6d7b2fqIRMto/ViqvlwvbfgMNLGot54QWioSd492DkgnxN4OIXbP+eCZkRmHQ++27wc9Zd5wNnsehMBf1mXuabOIWTzrJYksmsQ4mQuz4OY9gEzr6LYsWmvxoL13VfaY8S7ykcQ8YvqXc7IsMXO08xQQZk4fwxIxYgSQj+btESMTyGwgIhOOYfVyEWEiUGGHv5MsoS4Fh2WGqF4uG6BEPqHF82aXIB0iA5B5P8ej++fXC5W1jdMziHWtcJzN3c7zTB8cI4kf+3GcbXj00QuryPLy6XMAl7otS6kUHh7dwH3vo9ZlQIyzgw8STmEIjoDRTyDunsIeHkstk8k5wwLWuw3UWudN/vxLhOeynZgnOcLDFZGFc+6KmrOQMHtOJngCoNlAQBGJyG6OMPEZDGB9jILo7loUCTFzqZq5mvuzjZDhEfPANMmxZoNZni1T5tvlUte1lqqlEHFCZKS5hZkwjN4gXEUjg4TLUnwMgjx7s94nr1ZmXY0ZkZTZw4c5AqS5mU+w3I/fBSAi3PHJrYG61H1/hHvOaVCEuyWwgoT7VIPjvHQxT79YAnpAQDLnGAN+UNmEmSAHJGTMZAQiRjgDCrMRoaqo4pwNxIwXzBQNT1qrzmmOTK+UFxEEIHjyxmc6CZFimCiXukT4LBNZ9wQU5vM8JzpAVUUUmSbD3n3SqSNIeY7vZ4IakYkcGQnb/qgqsl4zhxsuVW2khffRM4ImkTdw8psiXETnRA9TPFJUiYmQHP2ZY8h0s7lXnucUyCREJkGMmAmBfA77ztb3+x0yri+vxCRaSJQJNcBZE2i6tVg0wyJiuVzXy0XqgiwM6BFmkTGEKRGECFXdwzNZGDKZotYaETaaIDzJRO4TxudjIOHADHzGHVyFEHP0mCSbzGwNiDPT3InZxlDhAIocKApmxAxE8+mZtcqIOM6uT8lFAqFnCIHNeRWmsJDQ7P0RJDEBYjh4+Nm7zFJlRDrMXv9EVj8FV4QWnmYE1NoZAcNbgk/2DWQwkzDZgMx8+tFFZtDKIoRImP7+w2aOC4lQARHMcwz48cUB+BRGwQROAQUgC6En58TBRLTWGZGFAJBJACDcPBIAzMJhArFwksITp3o8zKfznll+KAgjnzD+WUp6TnUmI5zyCRaay6ac0pp0IKL0jEgEVJ2fsHTPxAmMAfxBeQ6ftIuEQHNgQgJ+zkYSc1J5IomfVbEJG4z5pz/9QpCU07wF+fykM87qX0ZAONAULQMVlvkzIRE53X4YYP/e7QIMB3RIRUQMixnRJZkPht0jcXpAcI6oJuQJCXMyTz2e8H+Y6i6YlwE3Q2ZWJEZBmuMkg4QEhZKRQE8gFyAiECIhJT7N7zCNvfPRwpzdQwKGMAMzYET6swFtP3Jgc4scNmU4wiIAiemkApAOmJEs2toZmYKErPEsxglC0CJ1Wcf5GG0f0QQaS0FEC/c+uK7R22gtkeqyErOIzvRVPwci7Pd7hs/vVkRSYbfJJABGnt4+InazMRxZmYhEMlO0Yu85O3WQREyQQni53twNia7bRaTkGJDpbuGOPHEMlJC9tfv9DhEAzpBMdJ4tbBz379fXt0F0vW4o/O3bu4gI4ePbl2W5rC8vBLndXkfbI1NEv3//fr1e4u1nx0iD9fWycaxmx3F+3RtSAeJvH3ui9IIioqIhfZatc7Te2rnwrQpGV6rWz7TcmwVCLWU/7OXttdbqY7BwUbXTWPXsw799FS38+kKZSsBCpNqPI4F0uSF4GzYyCQHCwYOrMKCIAsrE64YdKkyE/eyqoqUkqtQa3peqvndIzwhHSotMY1YepwHGCCEstWa9qHdvj+X6mjGs90RiAGRuza4ahwWVVeri6duaH6f11ggB3JuzlmrDpCDLU8RIhKLlTEhhZE5v1k4QzQTP3Eo1c0TC1pGRCVUq2HiCTBGJYFkX8IFcWmuwLMilFBEgG11zKNP653/cv3/tx91JW/CyrWVlxPz+x9/i42u7f/t6P09aZL5AUi1cWHSrZakxztZNlxXDIhAApSj0I2wMg3Wr1kc7dxUFEQ/XuoUbEYaNsqwxwYExLiKvb28glZaLZ2gpfb9v11tPjEghAgDCFJGI3vfDLBAgwyFiU/Z+vr19ev3807ZdWJhY6hLn/f5ooLWYGQCDLEQM1uf3gJYafX//eK/KZbsRkUpJElF53B8nAgEsl1upEu7bssbo5xj9sfdj33tcX/hxHBAmUpbC+HoDa7dt/TjO74+Df/36T/+oZ2JrbVZThRBpQPjn11c5z9M8UOYVydzRWMDBzSOG+6L4cq2nZYQpc3g8Fx/uz2IOYPrAECI2UDdLR5ZqMVnaJJHXy2aBRzt9DKR43smMgEjWRavu/UGh1nz2WWBZBPPl5YZC53GsIomRZoBHuWytjzEM0gtzXdfXT2//9E//DBltHEwsKr27EaAnVr29/LJd3yDHvKFcV1DhPePr948R8fMvf2JmT0ekyDyO8xw5Isw9E1mVmcCjJ2QaAk6yL0DkvAQzunXzmV+NZ44bwD0iKSFmaHWaWjFsyhGYUJWH0bpUJGZWG+Nxv3/97X9+um7Lp3+U9ZaAZ+RHH1q0EmVC7wOzYQzGilAJhIiJkREwfYCDA4f24342Lz9fCYqHh1uyMnItlXwb7RFPMwMKs9Y0C0tEUS3rUkuGme8GFJGNDzqCizKWaAk2d7Zz3yRCCYD9PL11hhSa5x0pUS2sq8c4f//6vY3xcr3+8nJhUESmpXIpgMIwnC0QE553S+d+fHy874/Ho//b66dPLx8f6+WFMS6ZpWy1blJUyqK6Rd+HjetFl+vt/fvXs8cYniOUWFSwRIu8XF7Wy3W9XhZlTBi9gwVhqvAYPRO4bMz4/vVbUTqO454hRKSFBABRRdowRLAEBKxFa+Fog4AAZbt8+vRyAyS3DhmixCIeoKqMPLoBcx9ms8OfwDQ1Y6ilQoaKPBNKPMkdBETuBoAkWtcLIHnvNjoQRgQLm4/9GO08P97fe2vI2M/TzFpv43GnWkVElvVye9kuFyT6/v4+2mmjZSZEwOQM/tAgZERYH976eez7KRjCKEwiBaVCpgAAaWF8uV0+7o/eEwFqLQAwWh9mw6azxSLNbUTmf/rLP9WlMsKybeu6KiMxJ5L7RB8pETkgILmISJnhFCKGCpEhGcjy/f74+Hifhy5RUZ5aRXBzc5/O2nq9LojnvvejO5CBW2vJum2XGC189FE2hbP7oxvi6NtGdatQL6vUeJwlv/veLRBZRMcYQuDAEwowYo7tmAjcmsNzrUvM3j0xVYSY3UYfGEjp0c1ZwBEDvI27u9VSACfOAjPTws8zfVCtqlXNwtNVS7ICIYKNbg6gpXg/PQgwCHLi5OcZQwRthIj4SIfE8G1bkHTY8Mhf/3gvwoxJBNu6RuL+2IHm2ne2UdOHTbcdmIPZDHNHQIwG7WyDggVn8Fx0mAnxpNsWFSQSJjtbe+y0IImgBxADoQ0HrlQA7BFmU6NZq768XO97e9k+4ZTsAgHT6G2iGObhR7TcrtfX108s6m1393lmCshMDAAR/ulP//D6+adrpaVAj/w4+nszGG2OKc1GTnZSYAB2j9F62ugtr7dXXa+Xl5/GGMQsEuRO2ZWr2Xj/9i1Iumd6KEJvbcqGMCwMWgbVgkhj2GT3TJAwIxzH2Y5dtJDbPDW4eyQIIybNglW0lgBT1AUQoqoiM7Bts9WF4Jal8Cw/uPsYJgQsKsJTA50wvS/Q9p2ZiWVd15kGQgCdjSzmOYIRFi2FmVXKsi1a6qSGIdIYI9NZ5io9EaAwC2NVmRAKAgCiPjrNUgzkTEm4GRETg+EEDlu4m3lCMnHOrxRz0eIwIzbCmGYBOf1js1LxJOtBzrfMDAlxRjw//hPFhTo8AAEBpSjCPLMiIWzbdhwPAsgwBwHAiWDNzFIkglQkMxFhDEiAOSh5/mSAqTtExDBztyI6z10T24FIY3SmIGLIrLW4u41BiI/etZQ+upupRCmXUipK6b2F9Zg+KYRZdYwMUYkAmtfi4RkJAKVIETazcBcRIhLhOQBgkbkqEuY+YA5B5uNHABIZ7ZzZPRASEY/AcAifnBHV4jYYAmZUB2KOBadQXCghPHwAxHp72V7ePGI+00QomgkjM3rv87zMkHVZdL0iMyR6zHwpZIYP5yQpFSEYIIggnn00Yqq1wiRIQnoGIotqILtPq7sfH/dlqYSQo6OWqur9mO/GNLNxRmTKEjnV6UCILNo90myKGokFiUQkE3rvrZ3849Q+02bzn5EGSUIipICE4J7DwzwC5+hgnt8hmCkR0nNCVRAwJ/JlgvkyIWOSvwBABAEVERkpPYe1zKS/Y2+eITHInOj6p3GLiCYwh5hgdpkTImYtD2zO1jPNc94YmCcnth5FKCA9p4cLZvTHPSZ9mJBJBAMsYsbUldhjQMIUgwLz3BJNnpePRJnZmGQmJMgIKQVtUrkmbh4BEHwCsjMn9DgRZlMp2Z/4ZZzsr4mteRbknSbJyCEmkJwQIWAaCVKecy4AeEai8olCw2ekC4kZM8ewfAZ/YNLMCRDoiTnv7kykhSCQCYQpJ+/rWa5PBGTiObWab40IwMh5JCPCDEub72cCRCZJt/lZ4UytrEWRKSLc3DDmVzRAImLE1NsREXqkjydAHgl/pH2AELkwQiIhACEkIfqzTYoZ+UQ8xny4OA1s9KRWJQJMA6D7dJfPW7b0xHQgIRHGqfZLJELxSBFxpMjJ48zIZGGdsVWANhwJI5y5AOPkcAVL4gERGcBCmMCl8jicGDBKXXLes0wGvmdCPjONwGMYciIz5Y+Z/nxJE9wdYY6pmnfQbc1MFrXRrXfCyMxat3YcmUHEonoe7mZSCjxjLSlMvNRSyySEPel7M6o3RmYg5Oi9904iYcOUE6GW4jbGaMwy+nE+7tv1JmVDG8oUNpiQqLx/PFCWZtuimlzO0VXLdam/fv1IOFlLAH0cpzXY1nJdypxZF1Fal0e3Abi3CBDrIyGPjwdeL5Gqy3Ieg4i0Fg8nDjhIhXRZHsfZz7bv5+j9VuVSsKoYpBKJYBLhaMjikIB9JAOh90HL0nqTKhEZ4ZDQ2kBEmfUSM1SJ8wEIrKoFW2vMNH23x/4opVo77u/feLtdtxWmnkDqOc7STk4nZhVqIwQjSQy4Kuw2ohSuK5dCx5fIBKRal957Ow4txUZQpAgFYEZaGqSL1rqsZqbLum6LLAtBMgFRgYw+Op87Llpq9WSCyHRwJxVmRlZJ9MMBvKponlTWP7693/cPoXz7GS/XF61rb7slPd6/rpfrx/tHjn58/H4e7QhZKqdHkjIhokAMYYrz/tg7sEK4u4cbPOmCte9xe7vaeYeRHoaeFnG283Z7aefQooAYYfvjsVG8vH0ur59AKqQjcZynMFJRB+5jTNMhCwszIYR1BChK4UIHCk2TaRFl8yARUY2IC1OhjU9v5reXy/H46K3H0ZjJ3BiwrJcX4t9+/RU9Xl/Hen2py0q1pHv6aBGeeZghwOvr63qpl+tt//6udfu470G0blewbonez1rKpVD56Q3oo1u6+ft+Ht0vGx3Dm0UVysx+nJdtO81HZEQMH0TkCYIoQpQ6Rh9jQObL7aaXy7cvX5E53YFQhAkpIJmJtETE8FAzS7NoCSmyePhl2/oJ1s/zcIsspb6sC2b2CX5kBqR+nBGHyqpRbQQYFNEkPNIz89H6a6Ta8H1/wiQR/eRFtagc+z5Tsa+vP/2f/y/XZdWPj2/3j3dCIBaPEK6ANGW4wjzP6sz49ul13+9tDCnlCXTA51d0ZvqEXs07YMDZrSKm0c6ICJgkwoCMYdG7h0cAV+KETizTaBmefxcBQAZG0KyJI010HBNNshEyelhGIub15eX29nl9/VQvn5Cj1CoiPCc1RRnRvCPScrkCMTAqrQjEMUPFSMAMkBb3b1+sHbquWRhAmLVq2Q8fR8OM7XIppRCk1CosyPqUzRAiQFg3o2FhMJLICEkrU4EYQiV45prA96RABKpSM0VnKwGAiKqoFxirXy5mNo79/OP7N8J+jrPWdVlXJh6j+egOI9AZMAnsaN++frkf++G7cbsf0Y8zAiLhcru9fPp8vX7++Zd/XIhLXUChe//YByw5PB/H2Y7uPaUgMUhVCLy9fNqur7xenMdpydAIzSFsdBUlLst68SS3JqVettJ7B5w5LYx4AqJFBNyf/oVMIVyKvtxekMBR10VtcI50M1FVFWIoWn2MZp5whnmY/dhVoZYyLSNAEA5MVGpt52mjE1MCEFEAHt2Ht/Pcz+Po+2M/R2SGm5bCIgDx+vnztm37fiCjtd7v36nW2UtBhOvtRsJSt/PcZxQ7geB5HosJrI2wsGGju529dx8tx052QAzwhDBABCYBf3m5fHtfzuOQUkrRmQXuY6ZxhvkYNnxY0RMJbrdr2qhLIVHgqf8LSBAV1JLEGYDErEupxcx6awggpVJGuq1a/vyPCADfv30jxHkzc7az9Q4JIqLrEgE/ff6ptwMjfIy9h5brhbqHt2ZMoqWY9ZbQjoaAKMU87ke38NF0A0diUfZzZD+VkQjDGQimpx4SPAMBcsa25jmAKElQk4kNUBOFGaJbEAC5nZjuiIDIRASBCFMr6b0TYuK8KA1dtdR6Njt7J+bEzDG4FiAyyAxjzJzHYKYxq4MoOJGqGeRGBMQqyFyWAGSmMZzXpQ/bzyNbi9EhE+YYC8RtsipYiCIDiJ0xkrQsRMkMwyDAPVEIcTZCgaoIA1izqbNllp5kZISBhGCdSYZbAAOEh3NZJGE8HiSK1MB8W+o8S+lz0kf5fCohIudykxlvLy+vn94ej0NFIrMInceRiUxiPl5erz+9Xq6XK2UL62P0boaIPRIzCAmjna0jJJXqiW4OkGvRkfA4z/Uc6wvqsuU4RyDrwlgFbV3rIvjbr39zz/Bk9LM3JprnTArP4a13QNKMWsoTJOKGgCy07ychclFgAsBJ6xjjeegy82n0nZ4wgEASz0RIJiGGzFRFwBGZjEgI5zki8rCoQNu2FZ2B/WeHxTP7eSpLWWq6MUtdllKUkOb1hZhKqTPvw6qlrjBx7UREFA6tj6cDaCbD5jqWUYkzM8wmnlW12LCIENEZ0IhwALDeaCrmMwjSIoZH2GDhp3gr2dzBeyB5BvQQZiQ0D3DzmMuVsNFFlVmI8Dl6wCQmJGkWgJQRCY6p83M0eisi84wgM3jrGYiEFGbEBCAZY94qowgzmHtGRvqz+pjP/h1B4PO/MER9PB5EVNZVRKDn8CiI7qA6wxnQe1ctc75TVUstt9vNAtyGj97aScxVi9uYNmlhIRYp7H2M0TwSIYUgAQPAbGTMKcksQs50w8yh+Exahfuz6BMBgCSoIuGzlGe1FkjsZoTAwgmoRacICNFAZAafmCmmESyCMV5ebst2lboSi0fPZ66B50x59DaVCyqcnlyWRJyBqTmhpQR3h9EeZ5IOyjQzlIIilgnpRQVZEATT3d3cpBASWbhFEnEkskJG7Pse1o8RVAqELaWER44mDPs5uNhyWQmJBZAICMlhRCQCQSKSshBLuItwljqV5ozErJNZ062bOQELVSTOaXiKxIAnOSeD5VkWcghJAMK5cSfCiB5p+VzeBcDkvBARJiYCEhIjRUQfI3OG+9wjZ+lnJkeUABFngAaJiujsx3iYe0xvh6omzImhnz0zQBhEEZDCc4xwNmAOoOm+oznai6cuyzOFWYTBOSLDEhcUKoKUkN1bpE80xAxdDXdygExVLosQ5jAQZcRo/ZnFmxkzjwx70qoZ5vwDmYiQhHhOFYGAkYFnSpjoCZDOfD4NwE98ZybG82YmAQIJERIzwz1mrylykq2RGBCAiFXEMuZJcU6RcnKFWBhp+PCeGQFCkZAxK11ISBnITEyTHDQ59ji/7J55NERAnkpjSAQAZkQRNkqO0a13Q0JBxoT0mHdKADhHM/mcxAGjACWAz6dr5pPne2xunWfTOgIQmRABZ3gUAGbSJ8wzR5RSBJVonmcip5oUMykCp9Yvn9VCIGVJzPlbCT/7SUKI8ysj5/PO9GwUPyH8yTzD5ADgBGztCHPwgcS8vQLj2UcARgSVgmBimeF1rZFxtubmESHCS10IcthwdxIOs7osaWPmFZkQAEZro9bIjHBasyPosobb6E2EEVkQ3O15+YF0s37sJIpA4Q4ZxFq0uA2PWJflOHYmcvDn3sF9LgQigkWZSBkwo/eRCW4D3EqpY9h5PI79JCyXt5/g4N5+G+24XK7kPdqRy/po/eNsCgCEw+zj91+N+O2nPy2Xl0xqntCtCCGCuUvVWleHHceZLMB1/3i3vhMLBSIAs7y9XWAS9DwIkVTXWrmWMSyRbdj3j70/XF63Uut47EKgTD56PxorpSMRDINMrCqAQpjMcZ49vSNhWIhIIGdCS5LMCgPLGkCREeFEVDDaeVpr77//ByLcP/bjtz/+6S//sFxugLgt1Wp1H3q5gQeDeWJv47Yi1gsP4POwURiChbQuCGkBCVnXi+9764NFwqwsSwDPlyPcx/GYCmImKMtNtGRGJmIaIK7rxSDMfbRdtLbujMlEmB7TDIBQLhfi6gFpg60r9sf+7XsbyLq+/ESii5IDwsiPr1/O+zdGBJLmjXSJiOQiIgQGkREY4X1YWWsm9tZtNMyotS7XK3rf6ltkBOC2LS+3S0bsx+mG1h7fv38b5kXQx/j5Uv/06We8viZLIrhHmEsp1qoFGoCqQPKcALOqQMRAVg3EPM/0WJdyuawhKnX99PmTsow+mOXoHYCXtdSECB/EluEx9qMB81r007rRTh9r/ePL7xb+xmV5eZ0GWBXxMWbb/3a5XrcLMl1eVhB93D+O1qRezta3wt1MCMOjKDpxKaUU7iZh3nq/hU15M1pz4gx/PB69DVYRJs3RDZl1WSoTI3qpxRIpIsK+fflqwwGl2yjCGRnZAElEiDC5kLChiDDHc4gtRLfXy6jUmphZAjDmUktRTeKv98cYPkab36EAuJTLR3tX5RRG0Mh4/7j/z7/9ttVaXm/RznBPxARGknXbujkgN/M8j1K32+31f/1f/6+P+/2//Jf/13p9ZVbVEOEemePcd13XxX1kUjis2wWReh913T4+Pv6DSJkQQoRnFDa9ATwpbwQTW0GRAD4mwCnNMj3N+/DpVYmwAJ50fI9MxEin6W34YXVFIIBkyXUpvXukrFXPbl//+H2GRP70pz+//fyn5fLCUoCgVJ1iFRFmXRiDCFRkWRfUHBYcWbUkOkBiOBGhMpa6rUpw3t/3HWIYiOi2Lv1wO31Z1k8ob3UrdZFa5ykiMwFnhw+YBehCxdMP7k6CqpUQIRllenbMzWGEkCoJCGBBIUUgAIwMCgEJtNASYwzzPPvjt/PjPvwy4IoUif38OM6P0eJyWda6dH/c3z/2x8fIzjcXRHsMwCCkdp6/3j9+//3Xl5e3+/uX9fJSt0vVIqrC2QEe+/HYj9FH7/3+eJCQLlzW7Xb7abtco/czwhkFQMlZZL1+mrM44gIzP8jEouGegMzKJGcbQIgURQuSM2KEQYQQYGHRSzPvoCsvhTSy2QRmEyAVVhndxnlmG6xCXBICEIqqMNPkCwIFOSAc+/n+7Usfg1gSIN0eHx/dvY8xL6ntODPB3EqpP//pFyJEnl0EvVwJkb32k5GI6rrOIDASMcuyLhHOWABm4CMTkhHTE8GZlaXoshEmZJzHw9rBlNH2djzAT0hzw/CzlstPn66t73u37/f7hJefrZlZt5EcAa6F5tr/sm6jHUgchASZMSBMmQDTExB5tv2Z2Sxa6+aBLDgT9ihhVpn+8g+//PTp9TzP9DC3YUZIzDSXkq0PArDj0e/fxtm4lDQvpVyKnGcrdfv5p7fv9/3jyxe3DqwJwMyEOYY1QmZBFhJVnWHroAyYR3Hl0Y0y0zNnMLMu6D76GWaeOU/yo5sUsRijnc04IonIAcBDihICjIdC21NsDIiIeYgAcOTTMrINCykViWeFJM2RJLG1HkxcShGV8FTAMFPMqjXSgdjOlu0kUSxSi47hyATQIF0wk+Xg/PLoFR2JWHRaDhgBE0cSqQqznQ2YjzGe33TnGcAJYGa11lKKePp5AlG9XGZwLOyMYQSgpeiikB6t5Uj3nkSqRUQ9fAcCkolMWWoBgKKaSEQ8EsKTkC1t5hSUVEt5eftpmLfekQARiGWt5XGeDuCRZxvdPGzs739Ye6S17twCiQUhMqwPz4REGs2QiVnLRQTj+/2AyLA2zp3LRhEoipBA0IczWC3yL3+6/fb1/tcvx6PnVig9AdDTEEBFfH7+I3s3ZoxIYTF3kVIrRIa5z5kWETsmIrkHsURkgk0y9LTXMCGJmPsYJwsD4BgdECMmDRq1lNYaEZpbZIhI6x2J2nmWUkQkzI92TlJVLSo8c3GIiYApouu61LpqXbRWmEtZxJwTHARGGqNDJj1ZGRCRw0yX1WdxmsTdkUhUW+szXEGAzyqRe3iycD4RuZkQokrPIKFNCvUkNBeVMEcEIcwAhyCEuW2f3I6ImYBxYUFIRiLV7l2ZnJ5xNcyccKU+BkBmOIM4wFxXEaV7KGKEt96L6oQkzE4cEPbeExAQ3INmVQTAI1hkUiy6+/2xv9UCKUQcPuYgr7X+zC4hEgEzpURdlsvtFZDCxyzpV9WItDFYaPZ3UKRoAYi9tzBDBCZUpjbSEsztWVJ7MlUCWDwBENMdmGupbiMy+vDuDRE1dTZIphdoRpx45kYB5szrediOkIlXZs755CBCWJIASlnmL2iIGJGeYd1p+qUinrkkJNAiBO7mbirKItbb2c7WWm8dCWE/EYlFCgWZzRiaRc6uPSay1CJ1jH6/PyITEMFBmbfbTQlsXT/e3x/nt7GfFrCfJojdrJ8HAmj1spRkIpGZUkpFoDT3WaWKyLTx4wHzs00KlBhAkDS3FTh5LoA5rM+0AUlxT/Mx0xzznUAIHqFSq6ylLIkY+ZGwmwcCIDLinA4BzQoQPKkvSAiBkOkxIqdSnZ7lsHm8jXkr9WTtTfLONMsDoFIpwo4YliQTez1pwQkEwyIhx0iSJE74Qf2YQ6n0H/MLBsRJZsNIt3TCtJyDp3mFncXAQEBIDE8CMAs8nRiQMtJnYdBOKKqkhDjniJGe+MTNTW0hRSRKoqV7zJTNTHuIzuoZgWOkRxLEBLojMo4xMVyIOSUWM7uEs+v697nac78yiV+MhWv48ByJycwRYBGAhAjMjJGRggyZGZDhSYgo0yUPOAWGMOuTgJggCDGBkwkI7jkVe/KsTwZgECErTcyRm0PiBI4TMNDkN04syjTvDpgTWksiHuYomBDpSYmz1hBzxArPxHdmUDIgR5g7MGBkIjjS1K9lWIYlJAQGMUyZH0IAAYsQzDwVkMyO5nxlcSotCHBWiIOYWRRnvAyJeGrbZtnQ2n4ChAiRVCHKsLneDIDhT8Has3kHIcxuTgQiRYTn0aAfB0J4d0AkCIQsKoQ4zKafsrXOqq2N0cflYpdnsptntTUzjscuQgAoIvu+RwQh9N7jcVdhnzkOBISEjFqKubd2ug0AEBF3gydVicyjtbZdLu4R2Uspn9+u39+xj34erZ+Pbdu0LFw+Q6Z8vGstq+BWlQnqWjP89NiP8d//7a8fxz5zyIC0bNdgshPOo90qrcsmhJl5ng2wrduWw/bHEZmXtxuQEkImrpd13/cRzkTpnma4LG5mY5TKl3Ut6v3xfvZe1ychEhIiIqVERroFRhhMuUoiMuFUzTJTAC61eAJwAUj3jNZlLXEcz24lIhL0s71/+wJmqsUTlhtdAcKdoo3IVL5slwBNM0JkhKqUrsNyuYmPwPGgsgDzMJBltdFntE1LLWbeOgBhWccwZJh1+Iw8ult8gJ1lu12uy3DycdowydOAiaherta7A7H1Ranb5J+htS51QTcSIXREMtKP94/HY+ewt8vyx3/8W/njb3r9aVlkKbq+/ImGvd9PPL6MYd0iycuyzZCUdUeS6+trhhGXeYbdHx/Zz0WpUKEwRtjPc3gAIIoqE0SLpQjnOI9X9f/59cse9I8/vf7ysm2ffx66eU5W4UiE0bzUYoAV0d0nzYhYRDiHAwmKQs4VGW5VXl9vsl1/+vR23W7DhveBDgBpYyClMHm4CickJuFSwWP07gSUcdu2HP3c77/+RzDT2+vr26c3w8yEfXRIPM42zD59+lQrrUs99/vlehuex/7oJxVGUt5H8w4ZWQgKI/gA93N/vN8v6+UFIbnWkUCIo3cLE9R1Wfp5n691EVkKoPk9jIhOGx+9ESIQJ4CWyoiZgUCekBEcQYQJFBFYVmHz0SMDSVi40xAtzMointB6Tx91u2D4ebZIuG2LB6+1XK9XhBh9IISbv9xufYxv39//j//xb+38+VrqIlJVMY6W+OWxP1qPzOv1aubDQT1qqa9vn/6Xf/mX/TikFMlzDt73x/7l+15qqQuvS1GgyOxu7+8fH4/9+umX74+W1gmBhWrRS5WlsvUeYUgSmaMPwIAwBkxEKjVVRmswBlMCprljJiInZIB7JgMoExAm0DDIZ4U8p95Ttc4N8ChiY3wcj7P1f/7nf/7lp8/LWlWJBUgEZUbZAYmmcFSZEogYwkffx1RoCitkIBMwB7ow62Vr5+nnOXpCIKN6cztba6P3Njfxt5cbgi91nfc44ebhmTE7AaFJXCAHSxGizBBkWMqma/ho1q3Zk0NBFJE+AhEQGFEyERI9ovc++vCMui7rBV/KS9HFI4+PDxvvvfePNjy8N0/Hx+Me7Ly4XNhObi1MPXycx3H2dt8f9/vX+/0P0SJULrfXy+328npr5/v967fjPCJhXddaqqFplW27FC3RG4TRuslS1lIovVQlTx8mRQARHAsL0CzTsUgBUlEdlonIDFoqR4RbuCEkpiNiKbptWw8ayUvRkiEhgByRBhCJPcESZ1mfiQEViNx89BZu5jmGjX601ntvx/evZ++1VlEe5ud5hgczX19ul+v1dr1p0RkIv73cnnYes94bIQYEACzrmpkiWkoxG/vHvdTChAjpbir8XOYjQgIRAszzHhBJ0SfeguEVwno7dNlH28M6pec4geW61M+fbv3bV2vjbN28mw/z6GMwYhHdSlVmGyO3tSxLhJkHUMr0YSAhgAomYURAOgBBpqiqFlE1M4QoTAGBEEWolOuybaP3WS4LizFaRhJTlvL+9Xc77qM1G2NABvVupTisZcnMQH55uY7e927DQjhFhLToPEqgoNSl9kc7idDDbPSIoGV9IiQRCYGm0yAQojMxEMdMfLtjREIQxNHdPUh0tvIDXJhZlISCk4dFBsbcaTKzAMB+9j0BIXXZRCugNQtIALdZwI2kyFRhWXVYHI+hwpjWew9grlsijTCzaDmmazYTAFAJpQqpHgdbOzUdkpKwaMGYGW0g1lkVgSSIUFmV+fGxH4kMgJnmQREAyEVtuAMqq0CmpVax/T5GemCtmgh9eJqHuwqbdR8jMphFWQaaWe99uMO03k5UxcRVMKIT1lr/8S//+fLy9vXrH+bhoxOQewByAiXOtJ5D+OP+gVQGmZO28wOIMnky9PscYyGPTGV+fdkI6eyt1PBwNxujk9bzbORNtyUsmaCbj3RN/vPPb0D0//3rlxE1MTlCRIAwAXOSNjKJMRNY+Mf8MlZebDzbOvP8F2aAqLW4GSLMDXiGF2Ug9kia0A23EUHMouWpJpr1jEgVMXfCvxtwcPQuTMc+5upgmLl5ESpFffLB8Vmp0FLXy4uWMt8Js+nyo2KVEUHCOSJ+9FSKlkQk0sQpSwIbjYncfB51PXOGBOdJEiAm2sItEmKu3llkJiTNTHgecnF+NYWHQ5olAj4h1rUMc/eJcM7nMZHZh3/sx6toUUbAsIwEN6uqWgoG4/y6DEfs5uBuOcu8REQ0gUSMoEzWu4i4eWQOMwCYfrTZ1p9O5zGGuZdSmKdJ2Z1sgjlYNUYfY0RERojqfBWu15tIAYSZrxljhBkgiIq7T8X7JNektf1sY3RG0tkEJpx4pIxYt0upxd2LKqFMhLEIOyQAiLKqDBtzNmhuNptl4ZOmMhfMLDqTaO4xW4GZGTZsjOVSE4BAJp4ywjKyuwt4Rs5yHwCZm6oS4nMgOIMCNHtWGW4zadiO4zgerVtdaiUx92VZWDTDRUSZPAIytNTIZ5Uo3GopaE/sMyFqqSKsIuHOVV4+13p9O/a9MJKWszWENLNj32c0O2GagGnmH4FAmAHAIs9zZ2YkBgAVScoEiAiMNCJOAkqe9y3ebACjiFZhTSBE90zKZ4lxfg8lgJudcfRxBqT1DpiAgcQ8By+AGQE/Ci8GCJHumJA49VYIAM8NYSTmj9nPJJi7e2afpKQJNgbAhDz7cDD40bSqRQg5INoYCUw03SOQnvMwHzFHLjhJVcQoE6AN6QmJ6WGA6DmnAyRCxGTm8x0vwuFJCKosKoBp1qxbraIsA6L37pE5J4oxsdGMzw7yrJVlPDlZ4DYAUYSYyuQtTeLYE/WACIDhwUg8RcU5V2KUOSlhkZEkjIjPWjfMqCISIWamO1CSUERYBuDEx0ZmzIQ+06RmpZCg8qRdj25E+TS+PVMvs/oM87eYLVQizJwUT0IAT5hTFKLJBAO3SIenBwGfwCSf6nNAZvAImg22JxU+3UKUQDCflR1ym7C4+T8lgHAHB4tE8DkcIvck/lGAnfOlgGmgwCDMpMmJjOfbkCAxMyEsMx0gQapyJgzzOeYptaoWNxtmiDkb/jl/Qx9gA0UJGbyHW4YjYXj0bsSSQOHBhAnQz7NoKUKRNMFRhJAIWktvDcC37UoIbgbEzOSOyhRm9/u9zjglpLQmIogoWgKw1BpjgHdghaR+nmFGwvePj/TY1oKqwMqVwwwRRWjfe+/9/0fUnzVJkiRJmiCdzCKqambucVV21fRsN8ACLMD8/z8z8zTbMFVZmXG4m5mqCB907AOr175GBFiYu4qyMCEhfigiS+aYcwrTSvVk0ioHWfJYAn55+8L4ItuHRY7z7Od9ztdw2G+vs40SsF32glBebrXWKgQAh9lf//n//PnXn33Yvm+lSIZ///N397lfX4RlNPyFy2XbfR5hHsruHrMJJW1X1JJcYLW2Mo0xM4gAL9slPcxszP7nH3/96y+3cv3y5evtg2KOc9MWWEB3zLmc2zHtGINFATN9eDAgmlmmuU3yAVpW2z3JBmmI2Vr3SA/wPpbBBqK3ZoDCey2lkNSAvG5bIuw4cEJEZMy63+4fXRiCCSELw0wCnwQoSGHds1KRfj+AMKYnM2LWrU6bllmKzIxpTsTCzCr344FSr19+rvu1tSEsTFyUzu8n+4n6a/ILibqNHrZdbso4bZp1ZWSYZSuR5KMZIUpFAmIBrkAsuqU3Gt8z9bwHOsD+IqWMRsQc5aJaMS1j0QmFpNSt9oYIQUThXjlTKDOmBfZ2ep7nuVziOX0jgEiMUIQkfr29lLI/hl3Jr2+/8de/9fNUhDlOAY9kEepjXvctEqfbbC0BmSkTSKvPEWaZiYCllK9fX7fLy/7ycn39QowMApCttxiNwAMYVJmQFjlPZCO23ipGZL7drsqkRc/HeR6P//hf/3f+y9+snb21cwws9XpdXsfSzS9I5nYcJzO5dQBJSEl3CyKcAYyICKLKTFdht/H4/CStWhS1Ht++FVVRhYRw/7w/2nlCOC5XOYu7W5JnAMvZDmEiLVKUIjeBsLBIsKEqy13pvTc/zEOF0wayAOFjwtnGpjjdhicCvF62gBztLAQv160PO49Hqdef3t4w5j8IPj6+M/B9DA9ALgn4+8f9+/3cmF8v+3//9dft5fZ4/Pl///s/jtZY4H/8j//59vYF8gwAmxOR+hzp00oPyYKgKoIxjvP7+yeg7zfNGe3o37/9Ndy8t/dv3+t26WfPZalD/Pq6/fy2YxiBo8i61452CvlWLyyKmJAa7oC4cHFASLja4nMubB5BYY6MiESSVdOCiMyZEIiUkKLBDYmgMOp1/+ntdrnstRZAUAVUjoTIAEh3W40VWApS4kxgjDGHHySUcC2ipW6I2ccgYEt59Hgc0yNECwEpF9gIiUfv989v6aM9Pm4vL7fbi5bKokKIosIFAAMCEGK2JGJdxFMCxOgRIokAASK8NjcxoJ/DzJKWZRYyMCPd/HgcZ2us8tMvr6+1VA/2bhEMwyKIBKh/zuOYvVA1cn4DUISA7KJMZpEQLIQ9AdLJBnUPHGbxacf92x//4KqakT7n7bIngjAFR8ooyDk6beV2u12vV5LFw8YkBjcmlnVfRGQEdwAIZdmv1wxczNsFclym2u4OQJgTIRGpCGsRhdJmtqDLduut38/hiX1OUvZpY87jbDEHAqBoAJ/HvbXmPn2RA93Cp6je9u1yvZb9sqapF7fz/jnnUJa91tXhmABLPHIPABhzJMQTF4pIRMKKkGaDcH2nrdSaGTY6gUKYm6/d5lyb8AhmYcK61TG6sOy1QPq+7/v1FqO7nfM8MxyQROjryyuyuOUf375/9JwQPowSLrrvtYqwCI3R29mqSgLYHFJrIiEhitDq0kDgdS+EnOGLJ8VETpTu5pYZXGrMDmvjzcSyIZKbw4kskij2eDw+v2OErUPFIphKFS11v+5VsGJ42Fa0FrGYADHHTEDZCm8bCnAMoAczeuQ0S2BFytEBKX0u92IizGmIhIksCiuSg44JtVQCXzhOYU3IOSchRsY0B5KjDWN0gCBhIZtLSYgF4iFhJLE5idXXjTCTEQiiiBCzqDAXm8OmrUBIPJMFrlomAgNY+AhHxJgjwylhuItIZc59GyJ+PsAtSahWgOfdnZgwsooErppjFsDr9dahCa7NIY1uiCCY/8Vp0FJTS299LVbDMgUIsJSyhG+WQgDz49NskkjiKvvWz/tf5s9VJRE/JQNAEd6L/vK3f3376VcI20o9P++1yPSM9D587dIhY45mHl+ve2QW8ugHDGwO4ea9Oev0oMzwQUxMAsBrcY6AgTwD5jSeM3V/P97dh2hZmb/0KKpj+Ncvr23mP/74NhFfXwoQXPZqgb0PQFwqkKg8HRMRix2z1uzLPrlyNOYeHrl6hSMyw8wRrdYKqzT4x1yCkNOe9vnlWwkAQmIR85jmAOtPsNqXQ1UyAYHGGJmCj0d4DpiIuO+Xt7fXsu1S6jKG+GowXaVgq4yACAAhQkhWrHF5IcYYY3QVXmEJdweIdQWNiFR94pndM56l7wsWGx5I6BGrm2xxiCEWzmhFyobbSlULERMCsiQAMamoqHjAIg0h+qO1MSeLrhozoWdlshSNntP6mk/N+3P24nWSR0QMm2aGPqCU6Q7pCegWkGEeIkLMCzMCmUVkepr7nFORkLi3vsrmM6Jo6WaIP7xCyxJIXPdLRMwxhZ6wlxUxWY1mwjwjI93NWszHcRIR12dvx7btfXyme1Hdax3uvc8VjssEEWbhtHSzdhyieh7HwsP+1+A753rjbMy8OryW08EjiJ4a3IQcvZPoitfNaas/ez2KrfWVXCbRVZWekWtufOKrgjwAFzyFENJj+tl6n173jZkFUDNqrcwcwevhFOFMXtyXlZchhOWrraUi0Uq4r/6vWLo/Ur2Uuu+Zwcz1elsBt7evX0c/Y3YRTkDKRAYCVMSIjEgiJBT35CfUDIkW1Cc8EDwBYiks67/PQCklLB/n6R6AiOyIiZFLqFmQ78iEdE9Y5uvMZT/wVdy+0jv+o+7th3PriVJeiPIMDwtBBoDpixS3hvWANTwD5g+jSyYEeVgiYcJqlcrAREr3BGfVRTt2fPZKLZELlvc1IUQYF+zIwQN8kXieqCtEWr0k9AyLeUDAKo1DJRJACrMwz0ywOcOTMADcZsD6MQSiwoICiMgBcfaWkcv8yowLXMVcb9dfpp/tfGT6eq/zynsLYiYyYoLPREBgiPQ55xyhIozsGZRATOs4CUDKZaCCdbISYSb+UG0Ace0vIAkZEAmFtZarlp2QPHy0E2Ee83APIkJaGSp6VnHhD4zRsk0RET1z3YsCvlA+q/A5AyFXjSeuvOg6PcxsFdBb+Nq4Pl0cykV0/RrLcEOIAauqA0RBhALBR+bzakxPhSp/MAFEFrw9cGFkCZbM/UOJhKUfRwAh0TKhoUyzMSzcS61121bHSiLmkwu+VKX8wYV69vBhJrEk4pzDxtPnaTYQQkQtIcYwsoJCiH0O4dW4nKoCkGOAMGYEMrGIm683rTC7xTTfti3TE6CdpxY1MxF1EZ8D0hE0w2kV+wWKaEIOTySgeaTNANxvb2drZ2vCdL1ePKKd5/IQHce5Is1ufv/8bK3dbi9EolUg4nKNl9f28f37aMd5fLbzQxWQWete99ciVGopVTchxPSUut9qqUebZd+/fP1J67UdH2eb7TjTrWz7vtW3txsAMhNJmbOLyOvXn6BcRqAhRGKijGk2JyN7ku4F6KW14zwfo7dHq1+2TnHZ961ZN/ek9JzLqDnGROuQsY6zBSERxo8eRTh9zmROihiQkN4jIQKK4OjTbfrnedw/ylYvbz/rdaeyIUK4FS3hjpSX69sYxy0ecblWilLUbq/z8TEgCQmlsPvjGDcl0opCzSE/v89hWyEk6B5H6wWccYEdQeuWfTKjEvUIZbi9fn35+hMAtPsnYDJAWNPtMhu0b//cfxYAwvDVXp1IimjgkI6ZwuK8zzHGedbShen15UrXEm7T3s8DArkUCZuP9z/z/h7ymsC16k9aeH/9x7//r7K/sohU3VUzUhgjIufAtLBp5lr3hGgTEFMYfUa4o+h0v24XrhhI2Dowb2Y/M0k/+OXrnJ7uY3ZzExbm4quXBIlrjXY6SxEU1fUuFuHH2cY4uxkQqmpRKcp//fFnUQFA6wcT71uJtDGzqIjyOROZX683RDwxzoaq23Ar++WX6+t5/bR+e/94/PXnH9/ev7Xh9fb66+2t7hsTQ2bv49u3b7//598tHHxSPN9/J6Qg3Iry0nHQVPWy7/eP762d/7ZdBWxOQCll25CIAd3mHINUh7mNVqU+2rBIQpxBYwyzYIQqIvsWuqU7RHDBi4q5j+kWgcAzgpB6b2GslETks4FWZDnOh0dmZi1bD3CzzCiqG8l5nO049+uLlPrlp58jDDKP4xFAH0czS2b2jKOPu/n742ge+Y/fv3/cp8W2KRv8X//n/3l7eROR++PejqOUkgB/+9vfLsJzo0stqiIQ94/vn0c/j6NchAt9//3TemPWzJyzuyeLjNGWqt77bCeqZBa9lLpxOR7naSPTVLRoFVaP0FBXsemeEBaZIURro5GQ5hECSLzalyIyAZmBkVfrqDIbk4is0pAAvFwutQgxm68qpnUN8HCIdCYW5vAZmMyVGVMhwmx8zvPouNWtEuecYx52v/c///yYc17eLhlg7urApKI57Qy25tm/nZ+fH5frS912FRERrlVKwQWLAfAxymvxTAxhlgh7YgQTYG2Sa5mnY7gwp3vrvY3DwSMSnWzGeY4ELEU0sIASOUSsMwFWu7dKFEAisCREUSQm+8ALv8ENzvNwnAHMQ1/K6/Vr2W9XgpK2xqtAT3ATxLI2XwTMmJIzk6b7OGr95Xq7FVVzH+Y2Rm9NmS5bYR8oQkKZcbQz3QVzv1yXD1WYVlPBmnMWlUFqXV7NJGqWfbY2/HF2iDn6NJtuPtf4BzDHaGcLnxFhNtp5jtkTaROp+77tF96LCte6XUtJomQhEp8j2j36EcGrKkWLAhJElKJzWvh8rrrCnxANwEQspYSXCDd3G9PNbRojUq0MaRnhhhhr05axuqsTM60PH2PYYIJ921SvV0bvLdPP+2c7jjUjiW7X65eIeHl5++e3P/9j/mPQ/PXXrz//9BMiPo4HK7PUiJCiohXTtLKQAIBSsmhyAdLC/JxLezcPAAwAYpqOjChak8VIM7w+6z8szBGwbHvdLwGAzJ+PVoSQRdJRZBUGaVHWkph9dnR/2fZ4tTa+td4j8UqviVsgA6JIrUWI4OgjgJY64b3D6tkRDmSMDDeRsthMAChMNg1ZkFmF7x93j0BMZkCf0xOJJlpEYgYWSVyCvAMkAnpk+iTGldZnlrA5+wnImT7CYkwuZcVzzmnWThUqpTgwAwtRAkQ4M60mQltnjko/BwIwk2euXhtIHaWysnt4mC66hypBEPNq3E2kNmMT3PbtZjaDpNaMJLNwY1UIgEzP9MeDhW0OQZRSAQUyEJnZVHXlW38gETB84VdwCZSfH/cfEGvVeE5CRcv17eV//5//HyD6xz//yawkBAjC0lqD9Ij0CBVK8BmZSEUwYR8RW+lm2IdlqQSozON81HTV7WidzZg1gQDRZ/PZWztgaVgkw7qWJEbwALDWQ4ks6G+/fdkL/q///N4shIja0G0nhLmEikVUYDZb8iuKitkMd6nsDqtgi4gAAVetr4i1yczTDBGZOBGYOFdLd0JRjfAAyASLlUR0Yl4n1RwDFi+GkIjXSpkQEFcLEp6tXa/X19e3l9tt3zezmGOo6jLy/4h7ZiTUygDpNp+sTQQmikiDIHi2Rq0QhoVlpHsQkrlHxhK/PWKaMZEoMQsRGc6n5SNi0VjyB3d5wUtVyG1x7oB4PS0gzAlUatFSPWKMubh4RXUBO5ZfIOEZUhu92Vww7IwIQmRGj0gbSAvXahHBIu7zPBsQMUIpm2PwmuGQCMDDHYhFtguBqBY9jxMgSynTJrVeipr7eR6r9G5NnuGOQoUJicHdbSSkLEIqM4k8X84rIIQYGUd3+BG/yUxE+vrTT/M8LKPUsvqJiGCl6IhYS4Fc00COMZdD0MxYnq4cRp4w3DzYFtYkEX2ZmxZ2ejG6IUdrNtpzniwSP9riVEuIQkbMuQqExohwB1qEG3SDBDA3RrAeGZ7MNnqi7JeqogCx4kTPciZ4liUR0uKarfZRXM/VGJG41v+4sCXLHJ4/DAnwXFgALKMPuSNCbjtn2TIjfcw50V1EADADECnChZkEAeh52kSwPJ/oRasD+AEvhsgksz6GTbeEBEwhZFwYNFmjO0Ss/vQVHiKkiPTF5l9QpOWpSVrEn6WyOIR7IBMJAiRgItNKiClwICVG+vpisxCGryNxfebIwcwMmOGBTyfJ4hwn66JvAwUBYkaGZeaCpgNAElBkuEeEIwKzyqJwCizHjdvKKmEuXTlFiHKV50KGLV/KytEsP6ijJDgwKBImLsNJrmtPhidmQpplBgEBUtnLzgtTT4qoWbm3z4S5UMeL2efh/mQV8/pMkICEeTWGQSw6TcKzNRgSE9amfUV4NSFmmKMv9BEyIIJnCiYgFN1u+3XfrwkyhgEiEsccyEAKCKsqLjxi6XUIRIhmjgkqzyK1JcSsrBUyIuLzyFz1LIVKESSa5qMbEoAIEQBBWEAAxAI/U1EtygDIgZHR2zQP98RgosUnWtdlgIAAXKaqlUuAwIDwRUik5/t9LQliEjjCcqgHjOkR6zsrTFA2kQhISClFa6mlIlJCYGYRWYsmiFxwjXWAIrqbEy3vJYXNdAukyAxzFol8gqYgYvQmwlUV1q3CXVRFCwDGOrlU3WL1wgJiZgBkVRERd3CPxYJyN1HFDBKy0+eYLCxaAWlO2y+l1OLmFglzFiLWssqYt1oAISLmaIggIq01QhQtGREe0+bxuJey7bu2PtOMSW/79fb29v3bXz6b2xzTAACJVeVyfa1KpWhVCJtarVa97LUPIxQf86dfv2xbqZ+fn3T0dvpon/d7H29CCsSYKSKyfQHX7sjh6c7M7ZyQQFrLZetnB+ZScUYgiyoDyDnReweg7XrzgGkGYUQ45mznWSlUBJXDjESZKdwj3C0K0+k4zRORmcKNSc8+BHy1+i1xbasVSDFRhEvROYMQpCq4F7DVurW4Vj6nCnCVYcGlus1C2FpzlXp9+/OvP1JreJhZS3p5fYVuDjiGxZw5Y0YSkqgS0na9ArVvf/zzZ6HF6s7E7CdAOIvut2Sh0+P4juXq1kVfAFNKmQkcKgCsqtsm7od1nwNYiuh0SGRk1LpjzHZOitn6RCmOafixq5b9yrxj4hN8WIXTIDEsfHaI6Odpo7UBzCUhk0TSeuvIut92QxICZhruzCWQzkQOLLrVvcr16qzuzoQGSZ650DAWtJrswgFZSolwYVpViUgQPsPGtLhU3WqRovvlMvocc8wxwoyQXBgJ98v19fXWWiebby+vrNxaB5TLtQCR9bkuWFspoQW4fLN/TnNRLcKQ3tow4Yy4br098vPs6dPnUC31IstPHkBmgWhA4klAzGVDqdcdLhUzc5gF9a1ui0/gNon57fXletlbH7Md43hE3kTFAYSXJxFvL689EdyE1XCBKZ1FMFJVkaiUYuO0pDlnEuy4PLSQwBFgY2YCQB9zvn982Gi//PTT1y+v00O3baVCLpcrfP0JIv7DBkrZKmA23/aznwRBogn4z/e7eyA8SWe32+V+HL///secs7cG6WOOL1++9J9+bhbmOGww8ybyet1GO1qYd5QqUgijFJGPj1FrJUwQ4ckGDgjnnM21Y162+nK5vt5eAb+d7bSZiQCAIJVQRKe40ZjZhnkQ8crj0MJD0MqELThdEiMgZfjMTAACFEGfJIRCyET7vq+ObUT0hM/jcUFg4SUDMSkhAqDZZEyWum91K7vb7PPR82jHe0AJiHb0+/dH+/i02UkVBX3Y4/7ez6PUQoX0SjPdA/vZ/P749n6v+367Xi61ai3EZGY253GeAPjL//6v7fGgmdf9UopyEWIkEmcffXi6li3DzY9hPny20ZNdqlIieK7IhA07HgfmEwTGwmbRzb1ibrxtNwyjRQ/NglbMSHQLDg+LAn4kD73u5fZaQ/KJGAyQKgLEAbqqHRDWhikYeDKm+WgICZFjTszYtu0Mn6MLMSSYx8I9ViXa6uNxh4zenpAOgZwA0+JsY9UPq8ph2Ke7DySccy6KzfTpYxCE9XbOuSwP00yQEHPjzKqAddsKa7neXmx0yETiBNy3TWvlUiLSzRFJmIc7ApKsF26Y2ap5wIixVmluAesGC6UIIwWymXmxjDC3Vf+DGZBhfXQbsNLCSICgpTJL3er1cqmluEfETDNZBaMI27YNJBHZb1/c4/H5Mdojh3nC5bK9vf38crndyuX4tTEysHhGRdpqISkSVusOxOlgsYCFIMT75ZKyJwkArh6Qsl2mx5w25oRwJMHlIAOqlxdhTggEJMLRztE7z8GiQJyAnhBALFghASOQAigjwz0hhZUgGPOXX35JxL//80+zsS5dc470hGFEvCvcHwNAKAXS6AkRISZGIoJgBITAxKTnSIy4Ajs+erd2Z0QLjxFCwLTUDYeEIkTCiZQGDPm8uCPDgkKIrBRJErJoZj5t6szP5lmbmRGAI3ivW9m3SESW9DBzBDTPzBSEYXNkMPOlynBoFjZNS5EiCKX3johMSBAoVITdIcJVNQFJGCGG8V4vv5byfj/OGRa5SqlgIiAGULgJUUJKEQcnQCABdCTkVBqzj7lSSytxGOZruGQCoqV2QXic47BSEBESLPx//rf/4+X1Ns8DkX2NxM8EbrHpSCBMe9nbeZ9jjhnKTMJQr/3jUyCTaZgnpCBMFKwbyPKkB2bmbADoDr0dmWAe192Q2dypjmXdR6CMPKfVrXw7cr/c/se/0t//eG/dR+c6HX+YPWwOF2GVVXI+Rq8ERcu0GdNIZN14AWAlxEWkKK3w1TIOWXhGlkrJ7BHMvLIKSBSLroqrRMURQEsByHSDiAAExLQwnxALBB+Hzd9+++1yuagqs5gtw9QzGpQ5V8xzFZyP3taXCJ8Vzr5GtZUwWMMSE02bvXUkFFWpBTNt2rBeS12Y0ch0Nyb2yIUfJRJ3X+XK09eeT91mRBRh2RQgn4v0SBUGygQOEmIBdOYYZourjQDLNLt6epjJw3GkmUdGRpAwEwfgNAt3RJJVJ4IIAG4rPZAOONxVmAKXwQKIbMzhfrlcVDGRVJUAzjYIIYDG6Pu+E5FHhBlArvTJjIkgsFE+7QfgKxqpwsxEfLZjle8sfxsTgqz0T7oNa8mZRHT78uVxdmJ2D2ZZxVEIyIQZwSJm+V9WYmb+IbcxAYRNBCCWAAAPJJIF/XBn5mdt1TKsIqabjX6ucjF8knAzAQG5FGAmwogFcPG97mOST2B5hgbN/XF2QKwFkKSUwszCHIGEaGlutn4m5DrQ3N2VCTNXSZMBYCarJEJGLICUg6+KbfgB5fZYY/cTcLMOBCBeczIiuVtahhsSI8nTrRcAJLkA12iInICMsLQkWF7dhQFOQIxhbYkjT6fT+lNCei7GMyI8u9gAkJCXAMmIRLJkPhaB569HhLTgfS26EOPqDcsn/tnDwyEC4tkehWtNC06RKYyYiIlMxEIJ6R4IwE+MV0QEYcIiBGPCQgut7ywiEAAFAEY4BmIiJEckJYowYyAESyAIEqQBAogwaAJhlZKZljbN50jdQISWl28ZY9KdkldEaxlTFrTeINyWHIAATEyIULRer28Li4SImFDkkhX6uM95QiCzLOE+PDJReDltEhBJSFczF4qIRk5wS0RaKbDViuihKrf9Em5HnmP1MaTN6WMYJMh2vd5utW7u0foxZ9yPA4AiR+IMnJ4R9qM5zAGW3ALBRJHJhPgsmUdY3V6ilIEBAemRFlFUmUULERMgMJEwJ8J6jgIAKAiAmVSAmX26IwpTZvp098DEIrpqLMEx8IknyuX6ISDGgMQAj1UJFkuRh4XVRkJYfOdIy2QEFlFGgKf3j5AJpdSaAMJSVAHR3TIC84cJc8UUMz2MGBE5zAGCgMMjRkOARF5vLBGevSORCmMmrSJYSC1l2hMSpqpzTkR0G1IKZEbYsv1hJCIQ0nbZXl9fj+MR7iyCxASEIkTMLD7n2sMQMsIspZAqIT/G4/PjXQipXhloPD73wpbyOHsbndZqHIBXQNrDIDJj2/fW+vv7t0UpT8gcJqqvr1/6aOfne//66/76E4kQ9FL0cr1UebboQISwXS/X15eXgOwTxjQmvP30t61Ulb9akcf7dx/98f3Pt1/+Bct1hhH62/WtH4NiVMn99tLauL8/gl8paUepF8WFOgBCkbe3t8vlMpBb973KMBdRBAdIsxFmymyJ18s+g4jj+XklYliiGilTQKSotKNHulbNyB55rW7WqV6kTNoublNLIRQVKZLDE9Op1JkZAIWgpTPM8fieUiLA3RkQiX02jd67b7crmB0jWbgyH32W6aWUNmY/zoyBehEkZhah7faCqBaPRDGLPhwAjjaKcmEdvbOOrW7Gv6Ddq1IkA6A5akxm9LGOU4oA8ElhkAaRHtK6iSoCXq5XU7p/P/95P8c5PDrX+vXtjVg61stWaxrFJAgGj4QFxPA5ZyJQoa3uNTCjKITZ2SdzLYW4KLjv+55ubkhMmFhV3QMIxzRkJBsoBJkwR2RQgBCkcCKOMQGpXJSZR2tmgQgi2NuM2ad5JOyMRfhyexEp7suGGXUr7iBCzFwE53mwbjVgmJ3nMcyFGdOZCIhijpExpr3dbtu211IexxmA4T5aw8WNsumTLTFZH48jZr9pYXCtWyRoUfSF948gQWJRLdsO3U8D6K6lCrNqWQzty755OEYIcWW8XCrp1oiBpBR0hDDr7vfHHWQLZCBNSDM3G1IqIqPI6IMRZ1DCKiSE0Tttu4jwZN52ZrIxzcNnb/eH6tqh4V7rsBi9T/P9ertebznPj/cyd12ICi5EyvsFZvdcW/RwFgaA9OwzIsk8PVJUEAT+CxuJOFhTKgII5m+//vLycvv2/f3R2mlzq3UEtuMAgM/Pz59++Rcm0lJgjjFGm/7XiC/bl9t2A0ADAq1YFNNYa+jecWtjynaBzeTs1g0wlqQvhEkQTAnQp2vmutGSSIaPGRCBiKKCGcqoQiIiQtu2vb6+qRZgkaSwXA2TtKyfiKtFPIMDVvy0cK1QnIYCYbPPlDiHj/CsBJtQTqmc5MSWPoc7V0ShFKfE9NCdihbv8Xgcc8x52fZSiNEzRrfH2Vj4z//4x3F/VCK7Xi77xfbt+vKWCa2NczRE4j7S8zjP1pvTROXIBMI5PShLVZ+RkMfZjrNFRq2yqQ6LIEibmdE+z7BxVZHi6tUNGWCYR6YUxRsYRB9uEMhYhFHrtJHmDEq+8ItPirWvFSUAZUHkx3H89ccfm/D1dlNRt+6zZzggPKalOUVUFsKiGEXXlgfcgwAEF3s0PQMww+xxhJuNOVfdj7mb2XHcwSNiFqLM5Q4okCBFgYQwlQHWqE2kt5e3n38575+jd2Sp+yXML9cXJGznETFitvT47COkVF3jBIZnAEBiJKCZzAEspBWQQFgiSrjVfcaq2Ag3ExUzX0F20ZIJ9fZaYRn+vagQiapu+2VV6dl0Rty2TbQc98fj8xERorXuGwImErKW3QmhbDtHbky3/XY/jzlnG9bMuU4IzyevYOHOhYiRyDJSqm5X1CsSm831OE9zzkyRMW060AIcsMAytGMyEUndLxe/XM/jMXtjlgDsfTBR62OvDOmZGYm9NRFCom3fL6+3bAd5Lyq//PR19vbnt8/2+ABMWOtXmxfF676n+fth0y0miYhKISREYiJESnA3YwEpNZFGb4xZa/2xC885DWRdqBcbz4iYFleW1SPKkrFQ2xiJIcQsjMgogGmCNVYjtQetPzORuxOmKttzSkrrA3n9Ss9GX2K2OcFnZlq3WhlY3CZAinJRLbXoVb99UO/DzBMlAMzHpYpqTSpznNYH7Btt1ZEvl8uL7vbnX9MGAqqWul9aa+0806YJlbIRgmoFZmB2JAJHAPcMM5sGSHO0J41zTf4BvBwKuP4xymp0Qry9vn75+lWIuJbezj6WqS1pzDEsIoqSanFPRDo+vn1uBS9lq5qjB2tkYjTFSKnmcwKG+V62674zkw8f/USzObidJyEji6nspQTK2aeGzTkSiNMR8jgnEk2HTbb//hucvf/1cX4+HkRcS1m37mFDcoW/Ytu2cHt+OpjuvgZXZvII8/SnCsmWCctmD5AE3Z1YVlAFnh6+QCSPycwsunpOxuhzjLLq0iOmrRgKmDs//4/526+/XPbLtOkeq9dvDaIZngC8XH74zKcBMQJ6LLhNINF/1ajjMzQAEUlMRFzqtqrlExCdlsZBhLxKpAEyAohhaVGZ5i4MKwfEEIgohEC4bF9ubmMi5ABgJmasBIzhEZhBCMPd3dMX4x2BcPVjRvqyj5hlQGLk9JkJhGvSJxVBJHNL/1HC4LYqllk051xfB0ISkYQkIiRUkfW5LfqaljKnI0J4epgKu//I9wGWuoloRKw3eCAAwBoRkamdkJlEyKspOUOYWMVsYhiCTzNkIRGkiSRMpMzBHu5MHG4TYCmAq9lsgaKLqkcw//+zvbTokki0PgDEXOXlAWGRlAhAWkbrjIES4IGIwmTugfF0fGS6hbuFR4YvkkumKFOMbqMD8WqpJyRRQaKyhKQIyCTCOSf6ihiBP3kuqyMOkSgSVAvCgs8+e4wiE8LhSUteRdoUMcMTn4ysWGEYouW7pSQBUogRbphPtSxztTslEAgw/Iji5dIyEREFgCLczCOCkJNyLc8SnizcFX1btrjlCsGkJR89H2okVYEVpQEkoqIVnpWXvU/AFeLBwCBiWkXlEWb+vHesEm0gJHoO4AjILNtWigggjNHO0T1MSFZnwrJ5M+M09xmwQPjrm4DPMNeyyywNjHBZaRZYn4jY3cbpAJZJi1Fm3QETMo5+IFJGiqwvMGgRBDIzgIQnAyeXjLv0aAIE5IyVlyIAAoWASA9M+FGwhRmrKotLuXqAWSaYPyu0ABLT02ASYcbKxC6SGGu5JkT6dA9eIcZ1d4uEXJZZJ8ii4uCWnomYdN2vX29ffn5906Lv98df92+RtjTPTLAMIHc3z1ymQ8yFGFrozFwxrlKIEWIGIAqzxVyY58zMAAh6Ev0ZAGDlv8KTmHgxiSwy8lmRjkAIgphI6ylfz1lEZiSzsqBbhjsS0nK7RwAAAQjTihFCQi4tlCDcPVOIltcMnj5tWJw45uVuJwAACsQUAGDCSB+917LCbr6Ia+bBhB7JQkKU4W5jfbhhEyBRCiBidPcwi8X9Yi2ewEqqqmsDYLa2EIBLNMQEZOJ1OyJEYIAggEAHfPZcJCKYea11vWzGeYqqiCDLul+GzUUvYylmJsIReYx5dWtuIuyJuQ5fLT5HWGPdMw+bY5q5jdvterndWvfPzzsh//Lzz9tlD492nLfbrT0ux8dH7z2Byn6LRiy1lHrZdwSImHphv3u93F5++olU//rzzwi/P+7X15+ul9eC3oteinj4tHx//5y97SpBDKLbhf769u39+5/XLz8n8jmGn42o3EJfXzZiOPsQppe3r8qEAQE8hvGFLQwhtr14s97GjCxMSApAhOCAhEhaR+vgoerAlcGAM8xRCq3Vpg9M7x2pXJXQ5zpUETL2bQMkNyu12pxtDBUQzARiYQoaY2AMLLcAyphK5FLadAE421iM80jeGXIr98epakiUpRJoBJCouaMPeX0lESbJJVkiAWK9XPv9OyhPz8/397evlJG0fwEhSxGWWmWam81FSUPZgHR4nxbkM6apbLq/IFEh11LPT6wXuZ/9PjM9vuziZkECIOapT1fqnEaQEYaWGCgsRICJZONcOknrXreLqCLE2ToBTnFC5FIxBgGWouv0R+LhEwJFghAIEog942hD615rjcxat+EebkxIBGPOBO7no53n7IN8MtaXl9dt29OGux+PIyOVYVMhRGBxYCKcZsNzTssExpz9nOZclJGpcDtOQiqFGbnoW933OefZTJRJpI35oyIDwXJTyXJb5ZmYeL3sQuATfMQm0j3XlUVLlUIJqAsrSJKQQFi2nQitt8+P92F2Ub5cX0gLzRgRZbs6IaezXX6+le89gIqZIwYRwNpdKyeS6O5hZoeICLMgFOH3z48tMMNXey88Nwq4366369UC/vo8lWWtQDHyODoJvf306/9xufzjP//+f/2vvzeftIlU/euf32wOQMqEoqRFImDmcDNhvl5qH2AmRAiEy364XS+OGSQoCJmX23W/Xm4vtzbn73/98e2vT3JcFxWbo/d2uVyZZVlGLbu7bLKT0OD8/PwLA69vPwlgUQW9jRnZ77PNsl9lnNRauEEmZAAJAQnDtLRIj6mMiJSZFuABGUEr2cwFZSIpEqvqvu8RLiq6X6j3WlS3rffD3IFSkQMmoiIrIIYfkXutL5hApMTESuc80VbvJOq+J6JciAjOsyNSvVbdGNiTnAACUzcEiwyfx4wAiDilI5InLEg/etz/+jb6kOtltBbmo7f9ciPE+/1+b5/1dsOB/d6mGSJorQlUtgKYY8ycubzISGhh4U7ENv2jdc8s102UDMJHxwgAkEBObcPC7fNxAKFWKUBSZLtFa91wEpYqhQmdHA1HTx9OCMrskd6nKBAgOLR2tD++l+uX3xKU8u12m6MvyHhVnXNOxKqVmaQUILpqZcIkHtPG6GPE0YbZMm7EmKOPYXNAPpt5V1Fu2IRcc9WaBJhKQXOyYcJcVH12QMjY9+3y+lV0Ixl2nCosusmuL9erCP81J3z8hQgjAUm0SNk2IsSViV9YyASGLIgpSkzu4YHJalrRhpbq4W4uSKu4cxVE75eLlhrIhCjMbga9OfTeyK3vdWu9LeqqEL9cr6+32xjjzz//6q1lBBIBIGtxs3QbbW2PsNTyquxmfcyjT3ic08xsYoBN08oshZ8TBaLomCk4kDgjnktFAKJFJYnZT1HBsu+Xfb9czKwdn+5mHlut++UiQv1UYp5zFpEvby/v7+9zDEoPjJmpipROlG7j8/N+3N919mvlbSs/f3mZ5n999s/PZCJhEZXgsm31y7W8fj7+41trNj1BiIjFAWNmVWGWPocZ5ByICO4O0Y8HYgaEiNaCTkzC6bF4DolocwyISuiJTDhn9DndnZgCYJgjGUAg0bQRFrQgLFrS5nKLAyJEMqGH2zhFK6GaeWZw2YtWJDwe98ggUuKAzHacvoQ6qYy4qra3oqN3wFUhhOb+8X68XDeuGICQOAJei+b0abCXAl/e4o+/bLUTuG91G+YW7n0OoFJqqRUQDVAhEXGaTRuLNxph7hYLMpy5ZO41SQNgqcVs5nOC4S9f3vZt27YtXL5Afvv+/vH5iUTluRbPNYOZTWA5zv7XP/+z7/p2u6AUGA2kIAkLGikI9P5eGWSvlFb54ptAWN228Pj4eP/4eH+TYg4zEgE77hkzgKe5MmOsZGwhTAdL0K3iv/3L1kf85x/v7hORifDpziNy8wQXkTktEljEzFdFutkkVhGK8NEHMS03mWVmZq1bIprZam4yG4gERIQoqiKcie7T3XtrTNTHqLVEZC0SCWZWt+08jgW50FJYGBEGPI3JCYmxQhsRiCtvsxp4lPGH4SIRVqPwesaWNAcIuLrY+UddVEasX2wlUQKAiFQ1M90WjdPXTFFEPQMRCNDNnz98WQfW7p+pqKwWCICEtH7OaeGZkWlmkWkR5TnT5xKZlljAAIgTY0VMgJgQMexZQAaIYAtjDB65GBeQMOdcKwEzo0RiAsAli7Os3ZGqaut9pXXnGISY4WaZ7uHBwj///GtmLLI1IpKI2QRYLJsQhLptOAZkYCYB1m1PCAwHC3dLLFQl3TMgABmylEKIMZbeNN0TAHrLcF9AEDcHRF3X2MwfszYCIotg5jIwPlV1M3NnYkwEQi11EX/cYwXVE9LM6MnCTSYIm+6ekW7z8fGuRSBh9tbOg0SFWJhEFAFYREUWS9wjlFfQTDMDPH3Ba5lJlDA9gll+DIXP9FssMnbaM+gkzMjrkSCkRfmNBFg8DqF1QDFREuGFwProBzEncXpgIhdFomdci9TTBRgWJgefZCpEECEzMF/cIVzp3QXZXQmfiHgCdxcLONesDREphSPXJLR0I4z1iLr50liJIDEyR5+izOv1jADAqrL6zldPQLovci8keUwMyOkR0Weba0NKYB4etjjirIIELExroqP1Cy9pASgx1x4KEZMykxBVeYkPGUwgkZ4OQIGEkDhnLnYkYmKSVFl/yoQA4IhEBBEldLOlYAMCMTIiMBIEllKulysKna09zoelj9k+Pv4s5VLKFhGllLABJFvdtUh4n+NE8gyc4OCLBQmJy52NAESyE2sfn25OJEtbWeZHs0jP4VOD23zKgrz2SFpU1CMeo7GNz/v9OM7AUZ4PFWGSBYajEoEQMVdWQRpmCTHTMQHo2bi+IjZOC60XqLw+fUhAplznJwAFhqcnLL8XAAijKi+Jeik/T7H7aW8DZhZ5mndRWJQc85lb0jSyOT3DZw8WYcCAwESAZyButVTLMqcpjSdi+4nXQkik+CF7prTW3Y0JinC6ZaYIh89F70s3Qgij9T5exiIiTgAWyQyziQhmNuZQkX2/sKgQA0DazHagMJgL+PTB5TbWQjbBAcljRaxh4Zk8EFcoabqZm/c5ipUEDJu9nZl5e3l5HmXEEb2UEu42Wzv7XMiCMTK8j3G5vVDGwsdp3ZklBgCRMGxVRzsZ8ZdffmK9TP+IEb2fx9lev/4iIr39vdZye/vpn7//fny+P95/V1EmdjN42jsDAIqyIUySy+WNLPirHcm9Hf08bvullF+LfNfrNdsxZjgkEjuiz/w8zWN+HO3f//67/vm9lG17+WrAtaIlAnEiJCqSv73clPjz/hEjiwpiEiuCP/XRJYcT5fPvkiEzgATSpzE4zRlSp81auFuwshlChJkFQPKmUggiRCGBELToEjWFKaVYH5tgn/ZWkZkM0N2mhY+2v24AaHMwE4DcLuXs3p57I4iIE4ljCnJvnRndx5efv7pBIDgUdz+Ha45pgwjD+uW6e2S97H/aCOuQxpcbbS84T3cTn2W7UgZ6J6qqDOqUzswWOS1nUvDmszuecqn1cikwYjz2l5c3mY/j848//vz69ad/+9/+tVxesVyYSSg///H/1CJjTE9kBORtxb8Zc/TuJD6tqHpg2eq+qYNo0aRRq66zj1VyRru/O+jl5cYsKNw+ziyKZqMfhKRKkalaI1y3TaSUonn/OMcc5/l5fxDhZd9onSvgRPh60aIEPlsf7ZyPo+3b9vF5vL297Fvp0wEMuHaL0Q4hYsrhGQFSipZCJKVUQgaCJInw8CzMPntRBuZNJcLTHAiAWCtKldaaubU+kVitS6nX6xX3cLc+H+7uAfvlOvrx/v0b9bxeb6X06TZnENFVyHtTwq3w7XqlUnuAUN4fD3MT5gTelLbrrRI8uoX1WhSBofAyGM8xWEpR4uu+jOjrtvj29iWQPWAcvnT99KBSbtsrIgOyqlA4I4LKwlIwooi+/fY3KdqB/3j/9tfHhw8TxhRcJshtq9PMp0EE/egaEN7aMPcQ0aoy+2l91E09wrHE2j4xKQAxb7WKHqKyQ40wALzfP2vdkGHwMelk5z79z+P9I+/p+FrebvVWSl320OFpbok4eo/A2UZGEKNbmKelVeH1RkmAWJM3BHkyYi7aFwAChLsHWKYBmjkjqTAtxhtzAorymGLjjAGZUZQW7oSQpPBC2REV2hSFg3xkMD8rjLZrxSL1Wma3uAggalVmnJyJvl4sBMIIIF4FErBNh+lF1T08gjAQsjBe9nq93r58eXu53UrdVNXc9m3/HB+oDJDExAGqer3clsblEGW30++998SIcEwkRmYEAvcAJRQgTgZODlUVphwAjJ7ZLC3A3EOwMquya0mPxNXsM1kUGN1i2ujnKUBBbO7TDQHO3trZ55yA+Nvj+Dza2+3KxFDqZjuLi+q6fW51V2FSQeLkdPMxo7V5HL0NO8+DINemD9wT0gEAqN6u/bx7O/fra/36FcwAINzW5S+IIBLmkLKJiMyWkQghQpg+ziMiWQsLIyRZHw1guxBiusE4Yc5ojl9+vlxfCTNiPkEYEehTIUvacFuwQkASFhAFFilamDPCjscC7s45IWFVbrR2JjISyug5GmVi3Vvr/TyJmVkXLXWhSa/Xq4qO0c7WEzFiyWUYmehemLhuNBsHOrGKioyEvJ9jUUBK3bSUz/udLldiqbWUWgDSx0gAQEpJsxmAa/ZjplKrRwZQ3a9fv349z2O2Y44+53iH99e4CPO+b5kQZrXqNFulHm5uNh1h3wWQexuE7Y/7PUevaZ+EP399fXu9/u23r9N+/370VCUmRlRVFybin39iZvz923nOAIMkYkLPmOG0BpZMm3PdZzNzpEHGTL+IvL7egsgizDxJwyZEmIVbP08HJENerrFl/VmzaAAKl8S1A0gGSkJIQpEYfQVzg0qShAMTzDkwkpghn4CGH+0piBCMmYBmniKIywZijwiiHGNEhMpSD0MAJsC3j8frC3OtQDgs2uNgkUVB745YKvTmbtMmlSqqwmhjIiIxa6nH/c7koVD2sobwZyY/zMZYqUqzaeERPm0u+7aIRIaqjt6XEWXbr0iCyfuevbfjOBOQmCkdGc2Bw7VUQLTzk+rWkr/9/U+wjhBSb5sypU94fJ6e4QaYHnNaHx9lux69+xxLgIjZbZzoO0eJ5ABPZtJC0AkJ0rmU/XLlsBzHoGrTFbDu+vWnL304ZFoEANicyQyQ7kGETOy2EPsy51L0cIxBxKsBhxDMHJXX4MhMiZQRZnOtzdydFkEKntBoJgKAUmq4W9jj/rherwnIjABCSHXb5hjMPAeM3uFpfUy3sWJBP6pRAJk8IhOIaIXLmEhEADEjaq0AOM3mHIy4mCMQifR0tUwPArKIZahcoZeFOAUmCsii8Zz8xebAHy1SmZnhqyNsL0VVMI2QZtLoPQDG9DkGIBJLuI8xKwGjMJFnhlsiAhAzJ2RmbrV4xJo01p+XmDJiRCwJMjPdbI6hKsK0ADREGCrmjog2zdONeMdtCToAsdXa+ziOIzyq6u3lBoC9d4wklbptROQJ64cX1SU1mBmxsHBksohEjDHcrEhdBeELrsa0BUkpxUfrI9w9zlNLtXBCtB8Kw/o6r8LHpdcxEpGUCrP352iOGBFuvlJ7FgZupezL1hIRSAhBokQkYTMiWJSFl2YR6bjMBjZtGoafj8eYU2urdVNh6z0Sat0yYilOsEJe4RROkARABITosbCnS0sEZYElgOBzSbCiJwyICKOfa7RZuk94JAQvKFPmUoWU6EeoFuAH9ngZaAKEBq8jd0Yikq6YUjry6lsOVIBVGujxo6oBYoF0PRaVCX6EKyGWgyFXaGzFRpDXjXLplfmc5J/tUZDpxzEQYOEYEREZIZOR67oSPJFGQILAuEw/KwrabDWOY0ak+Qwj5ATICASMJRAtXYQJAsKdFZKXxQ0gAWgBuwkDiGEVOBD+4EkjrsJyCFCpK2A4YqSbRRKRFM2M3gdkEqYNT0wgf0pzNolov+xCHDlFLEdkRAICExBuddu2HYl58a6QgZMQbczZ3v1qhOh+2jDVqjurZoaIvpL03oadXQTNVhCBkAhZmTctZY5DKC7X675dLZZ71/psACsBmsLFpln4M8xH6BBoFhH93jNidPN0QPRMhGQkIQUILnnZN0Rwz8u2baV8+/wco+27QKDDBHBaPy8NGXAVcC2LGcKC0BFhIixbGeSSi2LGkxlOGQiY+GzKcfcf4iMzMwMRg+t0HwEOAQCrMrRngs0nGmpJ7/R8noGetQCIHgFo5D/AT08BeHl9Ejx/iJaRIAnBjELsZonJosTsEZDm+aSII6IyL8MeAqxdBzLjMJjtPPswL0X2y1VYiDFhaSXm/RGTUracgwnmGMNzUbueBEHVmHO6rz1PRC4nqnkk4MvthkjH4xHhNqeozDG2KutkYZZSdIxxfr733jNplWVu+66qqs9WMmHNcMxA8H4eMacQZebldtkvt+Fw2feO8Hg8Xt/s4/377fXt5euXtHwco5aKPvw8xnlX5m/3P6+bbvoLQDAETieImEPLTl9x27etj4k0zkded58+pW5lE6FHmwNgmqNuNuzzGGc/+jBL/P3f/11J/u3/vRUgD2jtbKekPqnvQopSX9++fn5+FtWF2YsM82jHGQBaqqA56ZzBkgiEBHO6z4FcPDqGz2BwAiI3y7DpiyESgIQ2gpEwgGS17TgLJqQbr2wnkhIAwsfj2H95M69jNJI6zBEFiYlZWdo5dw0IeKAIodTajvMc41Kw6BUy3PP8vO/XK7nVreyvP3+8HzZ6Ap59PtV4xoy4vb4+3v/klALu/U4Imt0sKD95u4zWdUPg6sERIT7ZJ3kTpftB3UB2FaaYfWix+bD7n8aXMUJYrtfL5fbldrno7Y1Lzf6QY//7vzuwQGRIKUKJxDlnO9okLlRUSpHHMYXREq+XisycE5bDFWGMPj+/ffv28fXX32bvl41iGrqpcMwukAwGpKQ1I6noGC5FzUY/7o/39//8xz8B4G//8lskJCILecCLwv76FYmnRx8OCLfbdd/279/f25ha676Vfd+DecxPimkpHhPmvL2+btvuZtOcIFjZgYkFYe6cHx8fPl21aOHpox9HQY+oqLhmDUbY97oAY+3saIYRtayeVyIEKksGHT3p8e19zjnDS9ngBu0E2SuLbkVHO87eR5/DYtt3xujngy43s/n29tV4n9DcDNLDwCOVyROaBTOTqs1pw0VFCys/Z8rpMc0ciREYMpWlbEQ8rUcGsaJojkGYkBhhhapnfr8/zhG1br/9+itk3gNi3hLysm1b3WrdHuf5/fsHEarI/fGYZu554RLurTdimtM+vv8lX78cwg5AIhADiUYff//7f/z7P/5OLILKwpd9G3MiessPh8EiO7xMMmc7o41vFO6yi9x0tCHCZb9GwJgzwglgPB7j8YkREWgBHkmZ9vR7AkISc2RSAlBE0jrN1/Ko2xw2W5/n2WcAMd1ur6VeAtHMudbh4RE5RyTZcHQq9YbIxFRrxUxrB+2kZc9IJFUpJl7rphTECUpECkh6BfB8DgaABMzJwLRzwXC1xD0/2/LYybTM9HDvo0fYb798ebldL/uOxBaw06qM5MvtqmclonIp1ix6IuAKFLOiEqHg00aaYWPoptttVxVK6iaOQZWRU5KNFksqA0IFq+rHMT08wjPRE90iPbeyLR52G+fOwihzjlrL7bIVVG+j9Z4dPXwO+/7xGeG//vqrqFqSJZnZyjUzAJAGMPlkwkTu3cZs5+jncT5ae5wN14Rmc79ctG4sMqZvHiV8mP3827+N/nh8fLx9/Wnf6mwPIh79sN67RUZMTy+1EEGYmZUwhUymdtw9gbTs287MNBuc9yY6X39OzCw1Z1sNm+44ZyiGXi6i4WbzeHCfMhr3B5mN7RZ1IxJiTqJlE8eV6fbJx0cgJKtxOY+HjEZjWLmGFApPYgNMKUSM4aKlVhUiQjhbP85z9W/aNIiQuououROxI3H6rQpoPe5GlFCLiLyFX/bHP799fNwh3Ka79/PXX38hxEhYXnVmWhmxQI5FkDVrfQQgsYiq9dH6PI/HXcjnQvaQxbDHp6Jd9ouIuvtC0tzvj/TJCJiJCQjee7vebhJz9DZaUx9OGAHfP89ay23f/vbzrc9v5xjOQu6QwCwoxOEbxyYwLZPIzBEHs2Z4N1+1O6uAL9IoMxw8YauVXt7efv6tt/vLXjM9gVX4+P7HaPfWjvNss5uhJPKSgc2dAfdaqFZfCeFI95izrzo93TbkiAii4h6I4DYCQkQYA1FRaNFqETFsQBj6FG/d0JPSIwGFbY2GCZBuEdl7FC0ASER12938OB4vGEGMzICYia2dKTzntNYiwyIhIsYQLYmEIqyKRGP0YRNnu/10RaQiwstsQowAFjhHC09zWzglEVkRQDOrZR3f2+PxePvp122/ZEak27SMZH4Go5JYWZ3XVSrnnK3P27S//evf+svbH3/8fv/8bo9vSlBqFdUxLMJH4P04v+y7TT8fnxBrao4kBKR+HGO/aFUVhaA5QgXTs9u5So6YkIja54lSZ4iNk6EQ8UJ3SAQirOv74j2YeSmKjsvVCJm9z8u+qUrvU0W0FBsTMVfp+OgtAYQZfLWWLX5IWgRmEpFbIDgSL5Its+hVPj8+5hgkvNp1E1JEludh0JmJK+XEaxYiNDMkJCJeTTlY3C0ilvkLAEVES1lUByJm4XA3MxICx1hAQOJlw1nImAXCZSKANDcCFEYDgAQWEVYiJCzwrDl7cmZUqKjcrrswT7Nhz3Baa/1ZjxBBkm62GtCGOfbOpT43E4gJOVpfdgh3z2dOY/3bRVCK3g0yibmUUkpZFqfFHmUSTGBmFVamPqGPQQjr+rxYIMJ0tp4JZ2soslpTSWjb9rqtW8GTnQSQc87lbPNwDIowSFCVzFjvdERkZg8UVWaeSSpCUPp5pE+bkbf11wal1DkN055eqXQktdEjkzf2hfaHnHP0MQGw1oJISMhEBkiIc3YEEC0rsEaImSGq4bZuHW4WKzcc4W5pSDHd/fPzLqqlVq11f3lVggjHqirsQeE+x1AtiTEtlLDUDd3BJ2AisTAQkM2BS25BBExCfrog1syMmaMDgG57JrKQezx5wJnmP3pm1992PKs2ASDCV2xwgTRk2zPMp7EoJNgcSM8nAYFqEREaY85piCCsIos0HYDAsnxHAEQZaZaEyQwsiLBiauSeSIsBDc+ACzksdAvCOhDCI5dqFEscilX+FRzPlNvSw5AQwSwgF5wHkRidwgMAPRIzUYKZgDgCIIF4PYOUT0sA2LT1kqFEoBV4yyf+Z83yRE+6CxICzOERISuM8KMuJH9glaSyGURfPZViRssq5dMiJwtnru5CAgxirEVW3aSZJ0PP4c3dAwHNfI7h6YuLg5BzHpgYa7/pc0ZwlVJ3LTSnjUbW6XLZCXtGMGsmeVAE9t7ce2FU3QBxq9fR5xyOKUXK08cUQCIl2Rw5zGCOOR1MRSHTzRBYZPWG5QgDACVApCfxMCIczucOcDw58BgQubjJ8OMAWFbbVYpITMwEgLUUT1+M7IgId6R1FfRVybXabAgBCd2DhMEBmUT3Uqolfvv+Rx8WkUTEiBGQ4RErLwsAQATTJiDBs+o9wdMjE1GFVCjWw4Ww0pRPVhxiYnq6TXBP2UtZvYsL2AyAoSyMEZCGxEzgjEtBAwRE4kAkQOvd23G/nxPwct2EmSHBWkJZOTYzQ4SI5HAgApZpwaLpQUQ2Z0RoKe6Ai3uxHj3IlbTb9809juPRziYiUjQTzvNk2rh3keJmze2JtAAYo2XY68vrtu3mxixATB5tGDoUBusGPiFsGgjl7fVt4a1rkQw9HtF7n+Mf75/fL9dXAtrq5fX1bViPsNnuI4HAt21X5d56UYqYRej19TaczQVV96u1SAa08x1684T9di0iswAg9eOsdQcYfYw5AgBq3S+Xi0+f/RQt55if79+VcQje9m1VC11u1zH6L/vFbPaznfdHpM/pAVyqpk9jLsLTwT2KUACFO6QBbaEvkUyFzCcChg9b9OFtt9GVE7Wke8EMZlUOm+08X291Zc5ZmQE8Iq3fz+kf97e3t3p5G6PPfiYpEQhDLWSNNB7T8fZ6ezQHIpQiiDNDEBJZtLinjU7E/vhw4arSRmpRIG6Phwoj6+xtyaXL4K05idRXNHP6tjtR2uwQND1znr3DzoAxE/D2ejsefPS4vW3EMvroE+bjfG+fZp7AZbu+ff2p1IrumanbnvtuuKtusEiH4SLQ27QQEhZIJZi9MUAAF2YHgmmkOxIzWFiH9vnnt3ug9j5lDkqvDJwuMd0HlW00o4CLCDCP4Uzus337/R+f37/N0b6+XV9e34j1GNPHmGMyRlGtilLqMA+3YXF7udk0Ityvl1pkTns8jmRmkpMrYUrZgfl2uQqRsSDbx/3OTKrcWyPIOc772fuYL1rmsMeYEZaMKmxhywqx1QKZCCSl+GhOEsTC7O7dniwgYdm3y+3aWh8f9/uc8/byqkVtrxawqwJmQx3tpLJttRKkinrMtPly2biWz57TyYHCAcGZxdxnaykbCbp1CIBV9Jthcwivsk/Zd76/f/c+ZqbWWomC0gGUcI5OxGOO6FD33XpDgAC87Cv/tBX3/9ff/kb/7V++38/by0vRstXN3N/f3799+25upV4+vn//89u34zi1lMfngwU94jiO/5h29vbT1y9vry9E8PsffzHL4/H45x9/hADHqLpd9otexR8fKQN5r3wJyhENiNQVJ7VHa8dx0MP/JT1i2/Z6NlyljBmIOc57WodcVbmhTMzLLJx9mi+y4IqVA0REH14FCSB8UszFre1jmNvry5sUrZfLDKJpNmyG9dHBncAZ1N1674oMyIUZPSBH9Ie5m3t4MtdtR+WNAMNtjsMskwAF2/eB5rwRVEcSSK2q17KDBcG47ft2b9/eP9v0CIs0iFywmDkckGspW1FitgBeTQgBGNyOj0liwxHxctlLrZHh6CJEpFJ3vfYipT94jrmVnRUBiK61zYOFkQKAGIOYok9UBEqb5u5VqU3PcO/UDxvdb5c9BqwdtDuRqsdp5+BbCaIZ3vpYMR3LEGXm+tu//Mv1el3QTh8DAVCZkIOEFOYc7x+P4fb98/2vv7713kV0v16ZmYhaO9xs9tOvNylbJJCUCI85Pj++M5GUsvTkul8v1xfC7Ofxz9//OR6PJMK6I+D8+IgMZmI7Q15IFdohM1lLZuLjIz//HHpJLojoxLDdPDAcE2FYWJjTREiGxHQHOEm5vCgS7S/mlokzGMEgHEggBvRWxnGd9xT91NIBilu1c0a8IyVAkgCmr7HBLcPRKUOc6LONzG7mEU4Ia5fLCU8gCDMwb6Ivr69J5GZjjLrt276tWeV22Y4+Z6S7+4zL5UJEc44IOPvYa9mqAkCbpkQkuuDIq+V6rS0tsls+2qQIQmIpONwzpuHj7JgnJK5Zq1Cc05avEDIgItyP46TZPGORMgwIEbzPf377+I1e315f/3vg//cff607y5zTYw+f3Wb3nImG5GMiOYeVqwRSpuMPEDWz9Am9NwAiLfX2ClLvZ4MUkGKtUVpAXl9eMWbMEzTiPO4NUndAsjEJxnpmCo/Rp7szJQMsVSsz3SYkoKwhfrWmUHgACXIJSPCJyJlhwyMsfTIy65ZzZsKyeLtNiwUaWzkc8mkjUkQggEhWkcjjcdRaZH+Rsn15ezlaPz8/fPbWz9VzF5k5RniQqtZtxYIex2O2c1daaJU5JoYBBPLaREIERCYRRwQxrZwLMwnxXrUqRyLRy5cvX4lo9NH7gLCIIOZpkxlpKS4BATlGP7rbsN//+LPul11Emcp2m9Mf/egWX7/W28vr8XgMs6OP6/HgcpkQi0RSBMMomMzdbYa5AWdMUYlEWCAGAGGimP08AEApsNbTxnH/CN6W+f7JliZ6wpU5Pfw8m6rSMjMUPVv7fDz2WpFwzFnq5pre2uhDmUut4d7MPQJhEUKfBNmMENU5Z0YKOCF7OISPESLyOI9aakSISFFcldg25r7vNm1CzDnXb5i53kuxpALIBAwRjiAPVxEAyMiMjMjeBzMBoseTwVprHX1JHGljLGIIwtPTg0T5DLrCtCdEevmNIiAzfY7poSIEqcKlFiTp08OsjdktVxHm4ovnwhVNAIRSdCFlWVgEmSQBgGgxZhh4zIEAPx5pTMSghAQW1aIL7isqRJQRqwT5aF1vIoTJvPxN+7Z7ZB8zV7ucCrNsW50eY9qckzISqYi8vrxI2XJVOUUSrUgWARJm1FogAfFJuhHRjCjKOTqkL8AYg6E7gfoc8myCn+/vD1/z9mrtJiSQRMxpRLzMTbRCb09fD6vWtbIyMxFZBhUidpsZScLbUppsrgXyQsak2wRwXF1jEG7tPIqwEBDLy5cvqxVn23YqG4XVbaOkBWhmYhRZSQ0VJgAkVuJpI0UEnlQ8xkRREc1lSARYwV5c8Ck3j5C6EUss7snaQwLT4qQhEAAyhdny1CISQCzaUT6fBmVEDEsYHktWDFxo3ycxxfuYCLg0uEQzj1XXi8ilPJNxkOArB4mJiMKYCWPEj2ozeLLVfnh5VngLnmVnGRnhnoiZiECUuEBY5omImLjudcsZp0xPSA4hIQaH+7OEHTCJkilWxwH8ECASYHXnISaEJIRFEK+TJgEIAjFhuUeLakR6+HKRZERmAkHrB1K6Q3o8n1XKpX8DAOSzagoBIzAhkEJV3XwMWxHtgEhwzB/mTTeiucToRWDyDAJkQkZe7OgIIJbI9PScmeisk5B7iwwqtUZk66sQwCNWoEcIg5c9eo4ZdsHi5v3swM9yZLNsvZdSSykeau5j9jBwGBkABKvpPhGeuEHCDPBc/HF44YKZp51zPICCCEUqZAbY0l58gV2e3t4EAA+f05mEL1WEEWnX4mG99fBkZCJe9GfIzKSACA+HXCIJzojEVEXyMY4+RphjMITnsrcBIaKKEoaZRdhyea3HJAEiPSEjHZGX3k0M02Mpy8sv1toADFaGpHCgBWmPzBFNtAjzkqOUsYiGO8S0OYKf8XtEXDeMPv1xHHMMIL5c9k0FrAGskjCXUkY6avURy/0Rgcy84JgJFM9vZ04zZoxY3CeIXExxWDHO9+/vy3u8crvTh8/ciiyXEKkiQnvcMYNpGfDg7cubz2kRSJIehLjv+0KxmNTMc6lndbvcrlctch49ws7jbrayLH6+f79/flxvX/b9+vL17f3P35kwzZLYzO/3x75XAJS6WQvI2LcqwK2lQRYQtKksbgNyzDHZGJKEwAHrviVkqWJzFKVt3y/XLfzL7CeKeLj18fH5cbnWHHC7bKI63a6X64oR9YaYmZHtsLBWNq1lixFU9kioe23Hffn2MqLWkqxcNo90974s4qyeqzrO674z2ML4LYIVIqBqzIGZgFwFLcrGM4fbsHCbiUdrX15uwRhSpgcjH32iNdpePr59tuOu+4VLdbfbbe9dYp6QwSwomAkL3kRaHFhY45ytNQB4HG30o2wvSJTwnGpa4G27pLVJOuf0gHocijP01XwAiXnCPA5V3S5aOUe/XLZ2nDZ9L/X68oZSIJzscf/8C1WKSJvOlS/XnaWM84Gi+vLzyyZm1npH0eE2k5ARw92zJ2YEkGopCUyqEAzg1j4ibbb21/sRuteiUlSJvD9G//bd9i/CWhW2vYj244gEISYYMD//+s+/7vfHl59/Zv5pesaYfRojdbNMJ8CrZqVEWf5tLoK9jTEnC9mcn5FhBpln61++3AolIBOiJ1LED1gGPBDD4nF+B1QRAi5vXzYGL6V83u9gc6Wu3QwBVVSY11fDIcCNy0aqZxuzNXPPyFprnzanqXAt5brv74/Ho1vyqfx9U54itEiqpSpyKZwJrQ8AXJkVoO1bY3NbLyJw6K0jNEBKN1ZEVkqcYUwaFgTr5EpghaezbE83mC2tu5d22jAr63HaGKXM1sQj3M7jEZkq/DjOOYbNuW9Vi/5vL19fXq9ukIjmRkzbvn0eDwAWFWS6f34u1P18WFE5xjzb3WwipAg9jvv3j8/2aI/7w9z3LxcH7L3tl52r7LUGZGoadg7ec18b2uPz8dd//h6RgOEWl+stpvUDquDtut+ul9mPByVsu4g8Pj+8RwJkKiFk5pj22ee1aFEFZQRkpQIk6LQ6Od1g8WQWr1NIa9VSfTgS+7T1/KC7UiJqArXzsWJ3JMJI1sxaG9lG+EjLAiJMKOEuwFBqQM+5cB/u1tB2VgznRFbclC+JAPZg2WqJrYhH9LBFhttr+dtvv5RSt33fr9f9cgFi1dLb+fn+OcOZuD3MaPpAYdFSVcvZz5kORt7m/fFpNLWSOl+3l72+BMxMRyUBAgog8mlznHp5GcOkigN2syVAQEQa+pne3M0+74+YeX25VC12jvv97K3j8OPus9h5b70NFn6cZyJqLV9ev/z008+1FEz3iLMPgAjXMfPo4/P+/vh8b8cdiCOjHQcSM3OGc6mZzzalDGujX0SA2Kz382Apn9/+klJjnOrTL7d2Hvt+37ZtExQzcF9J/ucyMZN9JPFsx0gsMYudPs4BxO1ugSeQthMAzJ21jJpx9oxIhG5z3IcwVeZsDeaQDGD1badSoEWE22gCKVrEjCHCDAGg1JAqCJRGIgYvgy2YAwkWqAUJ3W1OQGREDMBI9wT3tBmZieAIAMgwIoIAhncbfbte6u21qELG5+cnCzOt6Or2kvnHX9/dfNurCId7UYWgZBpjkDAzjd5zDt42EUkoe2RrPSMIpRSJbn1EKaHMjgpM5cILGeThPrswXi8vssdWhSCOZkt5XZn0ObpAAlJhBGZzn7Oz6KPbnx/tv/385evby9Han58j3NypPT6FjozZnWaAewYmRq7aTcvM9GmoiMA8EyzSAZX5dr0si9RMiIT//MeJORiilO123V/evmC02Q4idGvdUlQxUZTRp/WAsB97XQYAAnObCUQMtBI2GQRSiKgUc0LRbb/M3scc8ESA5mL6egYTihRIsGEkTAgScy12bUxLAKRwG+HCknEgiZYSWJpZnf3s5Wq+7/v9/jnGWOkkIPZELiXDvffFGpw2bUyfQy4vSZrIidh7hzkCJdzDjZgR0d0AyTyAQJhJuNZaixTl3qPWwkwqywhmYD36acOmJ3HabLm4yYRMxDBIUIi+/fGHXXcGYIxt34kwbJ7neeFa9p3OxwyY7XypNZE7iZPkbAgpRDMy3GY/V9be7VBKT1BGrCpgHgpIkwp4AExi+TgJybdNV+AFKFvrmcnM5r6iEc9VMAIBXrbN3I+zIVLZtshQKS3a5/0TCVRVRVY98jKMrFwOE0bEimqau3mqJBF5+JPXQ3y2xpOKlnAV5pWBOo6Hqq7ipDU1RMYzR0NEqrOPCF9KzXMmJcyEPgckZHg7rWw7IgJB2ExcxW0Y7nMOcvKJWoRWOieTiX8AKQASiZGQETlzAiLRMxejWrVuWy1m0ec4Zh+9J9KKDiBRuiOCMBOxqizaKRFn5pymWoglM1fvkkeMOVdsLSIQgZEhE5kAkhK0aESEB0KaOSK4GwB6uiBkuGUQseUSX4QKrzgnQgpzKWoW7oYQe91eX9+kVHeHH0xXd6tFpVRWtWml6KI40cLEZqQbFxqzE/r39/c5hhLulwuXbRyPxYp63B+AoMJLRU13RARIBGChDHCzZX5ZJfNohiI5BoYDrmrgVWW10uOU6PEDc7MSQ+GRaZE+5oA5CTHC3F2ZfYzUnepFVIQFEdNNt30tQ4mZfAkXKVoWE5dFCHElmIbNRFbmZW318FIqEkGuyBjG0n1+gJ8CAESX5EPMz2cScV2KIIkxF3d8dd7hj//0aWFBzIw1TI7WpodFatHMyPUEEiGxuQOQKvMqz0aIDAhYhCv4ryICTFyxrFUxAJQZRIEIz142ouVcXrPu+trR8jOaZSYrA6IHLAeaeTIiJoEv6m34Ex8DiE9aTIInZoZn5iJWryuVURIRAAOSuVEuqx4CAyQwEAqzJoCnZwQgAgunpyqvkKhHLPx3ZlhGuM8Bq0l+saICkigzwwemg3JRymfZFBIAZiAiZUAYGHp4aJXMHOa0SteY3YKYlpy2lDFEUmFRWR+zLfjrOjsYiJmFMeG/nHpauJ9uI8cwGwMw60Xp+XQRZJzjEOEGOHoEACZMm5DuYOGgrCCEABggWAvj2RORLrz//4j6lzW5kSzNEt03EQGgamYknXHJqqyq7Jqc0+f9X6Z7kt3VkRHh7nTSLqoARPbtDESZPeHAP6e7mRoMgOz9/2t5DlWNxGu7trqq+/vtXe0sTYSKpyVwZnbrRNDaXDJlRCQyEIFPq30SOGQ+yN2AHj56x0wH084AYWoJwGWOBzHnpMnT/T/J5RkJRBKRCd3REyDUwx0SMSAykWES7ZZ1BcB+nud5zFieDpeSkxM3jWUigsA6HXkE8y0MEiEQgIASHOaFzIxiHnMmxSxJE80+f2WzCtpp6gZJVEpkuups27693wKhtraty7o2QkxGUzV3ZkmkDDNPD0oP4pnpYcKEiCycKAlwnkbgBPMSxYAgIhF0t9F7JngECwswzleboQjYHcRj9MEijMgiw5RFAhSI3CP8niQegUjby2ciTtXwQUTEUpl6t2VbwL3v99E1Yo57HzRt97jfPkZX+LPwcgH8A5GSSISHju/ff1yv69Pz836coLqISCnMjQn/8ccfXFfOrI2GZaQLJrpqQAK7ngg5xkCC7fJEdTn6WEqJpydfW90ux364mbnvR2/PK4gEQpi5aimNeQ4qsxS+DyXmWkoVCmx1XdRRShljhJ7uOnQsrdQi9/tNdUhbZwkZuQIoIrHwIo6BQQlUmRrm8AB0BakeILVl4tPT9Xj9TfQeBp9fPmmRSHp7/V7aquZVuNRCRu+3fr2eSMylKLAwjzGOfS+tgYFl4qN8SOqwXmrbLgZynB0QQgdC3j8+3n7/7elPZTqKhuoqoPt+q3S5POX5B9sIoOTNsRmUKSYYY7j6p+snkvLl5UVd319f2wrA3JbNAS71877fAW8vnz5RW6NuOifTHYRo2S6qf7pcX4my1SoFj324B2C6aT/PCFjWVcqyXi5ze933exFK3e08Scp9P3vK5emJiYAZGFitd81yPbB1hcZKEOvTVSDJuvjxz99/fbuN7eWzU1WNVgsVqQH72WMuEjCfGhUuFH4OJSaNpIwqRFiWbatM6f72/mGm//Efv3390y/LWvW8uUcgSSk6zmO/z02j1AXc+7DrZd1aoTTVYao+TmRR9YJcW21F1nXR0TOTIl0HMbtqJtyHZjgR5xhEXGqN8KXWl0+fNHLfj/1+B9eh43Y/v/zyy+W6UcKwvr/dRlBb2tJKIvbbx8iybAwJTACMQBTMAmmj8+QXACRhGvg4IxymyQJIIBNoDOOymPQ+OgXk7Sal6Bi9j7puJVthdAQdPQFMFYiHqenIiLR+HGkBcF0+vXz59u3b6+vb64/vkXA7PxKwlrWrq1lbFwK4Pl328/SwWaDNhLcfP8KGVM70zGAmWZgFyalcClwcLlS5QrfsvdVrpcXDiGh0ffvj7du3P/7rf/3XbV0ys59Hql5XWb982pZSJDillheWgoQJ4PqdaRK9EACKcDEvtUipLJLw2D1SJLpN7DFEujszX7ZtWZa6rICkfo7ee9d9P89jF06+tIRk5kTItLDx+va+1QuEm9txnl17lqxYCWooOVhlKdTUfTrXkZBKReC0CIWU8FMPOz0S+tDJGUGolRNTCMzg0+fPn77+udZFpCzbumxrqYsn7Mc5lcCuPnYlxgwklo/7QcfRdU9KPR0snZ0XrHVZ2tb4QkSmp9qh54GVAiNTkXC5rLWUjkdphYJGRKaPYaouVRKYiTJCw60HYvqwgLT00NhaO49+34/7x7nWpud5nr1eG1L98uXLsiyIMbT/+u1burlpZLhD1zHG6dbDHUlaa08vn7hURkRMd0WSGRBnaUSAzLUuo5+QgeOw/RyjcviBuffhpv24L6VurY5+sqm5GSJwybaJDfG71Bbtgm48jhRBN0wEFhFqbaFaEQn6nOhoeMdwyBUxx3lkKVSYIzhMEDsiI9Tj5mbRVnEXHwDA3qkU5zJgAd6cBBPIzbkM5EECGQgzc8W
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment