Created
April 23, 2019 17:10
-
-
Save shotahorii/68e523d2afa6f4ddb19581ae990c1ec9 to your computer and use it in GitHub Desktop.
Eigen Vector
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Eigen Vector and Eigen Value\n", | |
"**ๅบๆใใฏใใซใจๅบๆๅคใฎๅฎ็พฉ**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ไปปๆใฎ่กๅ$${\\bf A}$$ใซๅฏพใใฆไปฅไธใๆใ็ซใค$${\\bf 0}$$ใงใชใใใฏใใซ$${\\bf u}$$ใ่กๅ$${\\bf A}$$\n", | |
"ใฎๅบๆใใฏใใซใ$$\\lambda$$ใใใฎๅบๆๅคใจๅผใถใ\n", | |
"<br><br>\n", | |
"$${\\bf A}{\\bf u} = \\lambda {\\bf u}$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ไปปๆใฎ่กๅ$${\\bf A}$$ใซๅฏพใใฆไปฅไธใๆใ็ซใค$${\\bf 0}$$ใงใชใใใฏใใซ$${\\bf u}$$ใ่กๅ$${\\bf A}$$\n", | |
"ใฎๅบๆใใฏใใซใ$$\\lambda$$ใใใฎๅบๆๅคใจๅผใถใ\n", | |
"<br><br>\n", | |
"$${\\bf A}{\\bf u} = \\lambda {\\bf u}$$" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"**่กๅAใๅฏพ็งฐ่กๅใฎๅ ดๅ**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 99, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"็นใซใ่กๅ$${\\bf A}$$ใ$$n ร n$$ๅฏพ็งฐ่กๅใฎใจใใ$${\\bf A}$$ใฏ$$n$$ๅใฎๅฎๆฐใฎๅบๆๅค$$\\lambda_1, \n", | |
"\\lambda_2,...,\\lambda_n$$ใๆใกใๅฏพๅฟใใๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$\n", | |
"ใฏ่ฆ็ด ใๅ จใฆๅฎๆฐใฎไบใใซ็ดไบคใใๅไฝใใฏใใซใจใชใใใใซ้ธในใใ\n", | |
"๏ผใใชใใกใๅฏพๅฟใใๅฎๆฐใฎๅบๆใใฏใใซใใใชใๆญฃ่ฆ็ดไบค็ณป$$\\{{\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n\\}$$\n", | |
"ใๅญๅจใใใ๏ผ\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"ใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$ใไบใใซ็ดไบคใใๅไฝใใฏใใซใงใใใใจใๅผใง่กจใใจไปฅไธใ\n", | |
"<br><br>\n", | |
"$$({\\bf u}_i,{\\bf u}_j) = \\delta_{ij}$$\n", | |
"<br><br>\n", | |
"ใใใงใ$$\\delta_{ij}$$ใฏใฏใญใใใซใฎใใซใฟใจๅผใฐใ$$i=j$$ใฎใจใ$$1$$,$$i \\neq j$$ใฎใจใ$$0$$ใงใใใ\n", | |
"<br>-----" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"็นใซใ่กๅ$${\\bf A}$$ใ$$n ร n$$ๅฏพ็งฐ่กๅใฎใจใใ$${\\bf A}$$ใฏ$$n$$ๅใฎๅฎๆฐใฎๅบๆๅค$$\\lambda_1, \n", | |
"\\lambda_2,...,\\lambda_n$$ใๆใกใๅฏพๅฟใใๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$\n", | |
"ใฏ่ฆ็ด ใๅ จใฆๅฎๆฐใฎไบใใซ็ดไบคใใๅไฝใใฏใใซใจใชใใใใซ้ธในใใ\n", | |
"๏ผใใชใใกใๅฏพๅฟใใๅฎๆฐใฎๅบๆใใฏใใซใใใชใๆญฃ่ฆ็ดไบค็ณป$$\\{{\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n\\}$$\n", | |
"ใๅญๅจใใใ๏ผ\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"ใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$ใไบใใซ็ดไบคใใๅไฝใใฏใใซใงใใใใจใๅผใง่กจใใจไปฅไธใ\n", | |
"<br><br>\n", | |
"$$({\\bf u}_i,{\\bf u}_j) = \\delta_{ij}$$\n", | |
"<br><br>\n", | |
"ใใใงใ$$\\delta_{ij}$$ใฏใฏใญใใใซใฎใใซใฟใจๅผใฐใ$$i=j$$ใฎใจใ$$1$$,$$i \\neq j$$ใฎใจใ$$0$$ใงใใใ\n", | |
"<br>-----" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ไธใฎๅบๆใใฏใใซ(ใจๅบๆๅค)ใฎๅฎ็พฉๅผใฏไปฅไธใฎใใใซๆธใๆใใใใใ\n", | |
"<br><br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$\n", | |
"<br><br>\n", | |
"ใใฏใใซ$${\\bf u}$$ใๆช็ฅๆฐใจใใ้ฃ็ซไธๆฌกๆน็จๅผใฏๆใใใซ$${\\bf u} = {\\bf 0}$$ใ่งฃใซใใคใใ\n", | |
"ๅฎ็พฉใใๅบๆใใฏใใซใฏ้ถใใฏใใซใงใฏใชใใฎใงใๅบๆใใฏใใซใๅญๅจใใใใใซใฏไฟๆฐ่กๅใฎ่กๅๅผใ0ใงใชใใใฐใชใใชใใ\n", | |
"ใคใพใไปฅไธใงใใใ\n", | |
"<br><br>\n", | |
"$$|\\lambda {\\bf I} - {\\bf A}|=0$$\n", | |
"<br><br>\n", | |
"ใใใฏ$$\\lambda$$ใฎnๆฌกๆน็จๅผใงใใใใใใๅบๆๆน็จๅผ(ใใใใฏ็นๆงๆน็จๅผ)ใจๅผใถใ\n", | |
"ใใใ่งฃใใใจใงnๅใฎๅบๆๅค$$\\lambda_1,\\lambda_2,...,\\lambda_n$$ใๅพใใ(ใใใคใใฎ้่งฃใๅซใพใใๅ ดๅใใใ)\n", | |
"ใๅ$$\\lambda_i$$ใไธใฎ้ฃ็ซไธๆฌกๆน็จๅผใซไปฃๅ ฅใใฆ่งฃใใฐnๅใฎๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$\n", | |
"ใๅพใใใใ" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ไธใฎๅบๆใใฏใใซ(ใจๅบๆๅค)ใฎๅฎ็พฉๅผใฏไปฅไธใฎใใใซๆธใๆใใใใใ\n", | |
"<br><br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$\n", | |
"<br><br>\n", | |
"ใใฏใใซ$${\\bf u}$$ใๆช็ฅๆฐใจใใ้ฃ็ซไธๆฌกๆน็จๅผใฏๆใใใซ$${\\bf u} = {\\bf 0}$$ใ่งฃใซใใคใใ\n", | |
"ๅฎ็พฉใใๅบๆใใฏใใซใฏ้ถใใฏใใซใงใฏใชใใฎใงใๅบๆใใฏใใซใๅญๅจใใใใใซใฏไฟๆฐ่กๅใฎ่กๅๅผใ0ใงใชใใใฐใชใใชใใ\n", | |
"ใคใพใไปฅไธใงใใใ\n", | |
"<br><br>\n", | |
"$$|\\lambda {\\bf I} - {\\bf A}|=0$$\n", | |
"<br><br>\n", | |
"ใใใฏ$$\\lambda$$ใฎnๆฌกๆน็จๅผใงใใใใใใๅบๆๆน็จๅผ(ใใใใฏ็นๆงๆน็จๅผ)ใจๅผใถใ\n", | |
"ใใใ่งฃใใใจใงnๅใฎๅบๆๅค$$\\lambda_1,\\lambda_2,...,\\lambda_n$$ใๅพใใ(ใใใคใใฎ้่งฃใๅซใพใใๅ ดๅใใใ)\n", | |
"ใๅ$$\\lambda_i$$ใไธใฎ้ฃ็ซไธๆฌกๆน็จๅผใซไปฃๅ ฅใใฆ่งฃใใฐnๅใฎๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,...,{\\bf u}_n$$\n", | |
"ใๅพใใใใ" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"**็ดไบคๅ** \n", | |
"ๅฏพ็งฐ่กๅใฎ็ฐใชใๅบๆๅคใซๅฏพๅฟใใๅบๆใใฏใใซใฏๅฟ ใ็ดไบคใใใใใฎใใใๅฏพ็งฐ่กๅใซใใใฆๅบๆๆน็จๅผใฎ่งฃใซ้่งฃใใชใnๅใฎ็ฐใชใๅบๆๅคใๅพใใใๅ ดๅใๅ็ดใซๅๅบๆๅคใ้ฃ็ซไธๆฌกๆน็จๅผใซไปฃๅ ฅใใฆ่งฃใใฐ็ดไบค็ณปใๅพใใใใ \n", | |
"ใใใใ้่งฃใใใๅ ดๅใซใฏใใไธใคใฎๅบๆๅคใฎๅคใไปฃๅ ฅใใ้ฃ็ซไธๆฌกๆน็จๅผใใใ่คๆฐใฎ็ดไบคใใๅบๆใใฏใใซใ้ธใณๅบใๅฟ ่ฆใใใใ \n", | |
"ใใฎๆใ็ดไบคใใ่คๆฐใฎใใฏใใซใๅพใใใใซ**ใฐใฉใ ใทใฅใใใใฎ็ดไบคๅ**ใจใใๆๆณใ็จใใใใใฎใใๆนใใใใใชใๅใใๆ้ฉๅๆฐๅญฆใp26ใฎไพ้ก1.24ใๅใฟ็ ใใฆ่จใใ" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ไปฅไธใฎ่กๅใฎๅบๆๅคใจๅไฝๅบๆใใฏใใซใๆฑใใใใ\n", | |
"<br><br>\n", | |
"$$\n", | |
"{\\bf A} = \n", | |
" \\left(\n", | |
" \\begin{array}{ccc}\n", | |
" 4 & -1 & 1 \\\\\n", | |
" -1 & 4 & -1\\\\\n", | |
" 1 & -1 & 4\\\\\n", | |
" \\end{array}\n", | |
" \\right)\n", | |
"$$\n", | |
"<br><br>\n", | |
"ๅฎ็พฉใใใไปฅไธใฎๅบๆๆน็จๅผใ่งฃใใ\n", | |
"<br><br>\n", | |
"$$|\\lambda {\\bf I} - {\\bf A}|=0$$\n", | |
"<br><br>\n", | |
"ใใใฎ่จ็ฎใฏใใ ใฎ่กๅๅผใฎ่จ็ฎ($$\\lambda$$ใฎไธๆฌกๅผใฎ่จ็ฎ)ใชใฎใง็็ฅใใใใ่งฃ$$\\lambda = 6,3,3$$(3ใฏ้่งฃ)ใๅพใใ" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ไปฅไธใฎ่กๅใฎๅบๆๅคใจๅไฝๅบๆใใฏใใซใๆฑใใใใ\n", | |
"<br><br>\n", | |
"$$\n", | |
"{\\bf A} = \n", | |
" \\left(\n", | |
" \\begin{array}{ccc}\n", | |
" 4 & -1 & 1 \\\\\n", | |
" -1 & 4 & -1\\\\\n", | |
" 1 & -1 & 4\\\\\n", | |
" \\end{array}\n", | |
" \\right)\n", | |
"$$\n", | |
"<br><br>\n", | |
"ๅฎ็พฉใใใไปฅไธใฎๅบๆๆน็จๅผใ่งฃใใ\n", | |
"<br><br>\n", | |
"$$|\\lambda {\\bf I} - {\\bf A}|=0$$\n", | |
"<br><br>\n", | |
"ใใใฎ่จ็ฎใฏใใ ใฎ่กๅๅผใฎ่จ็ฎ($$\\lambda$$ใฎไธๆฌกๅผใฎ่จ็ฎ)ใชใฎใง็็ฅใใใใ่งฃ$$\\lambda = 6,3,3$$(3ใฏ้่งฃ)ใๅพใใ" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ใใฎๅบๆๅค$$\\lambda_1=6,\\lambda_2=3,\\lambda_3=3$$ใ็จใใฆๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,{\\bf u}_3\n", | |
"$$ใๆฑใใฆใใใ\n", | |
"<br><br>\n", | |
"ใพใใ$$\\lambda=6$$ใฎๅ ดๅใฏ็ฐกๅใๅฎ็พฉใใใไปฅไธใฎๅผใซ$$\\lambda=6$$ใไปฃๅ ฅใใฆ้ฃ็ซๆน็จๅผใ่งฃใใฐใใใ\n", | |
"<br><br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$\n", | |
"<br><br>\n", | |
"ๅพใใใใใฏใใซใๆญฃ่ฆๅ(ๅไฝใใฏใใซใซๅคๆ)ใใไปฅไธใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}_1 = (\\frac{1}{\\sqrt{3}},-\\frac{1}{\\sqrt{3}},\\frac{1}{\\sqrt{3}})^T$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ใใฎๅบๆๅค$$\\lambda_1=6,\\lambda_2=3,\\lambda_3=3$$ใ็จใใฆๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,{\\bf u}_3\n", | |
"$$ใๆฑใใฆใใใ\n", | |
"<br><br>\n", | |
"ใพใใ$$\\lambda=6$$ใฎๅ ดๅใฏ็ฐกๅใๅฎ็พฉใใใไปฅไธใฎๅผใซ$$\\lambda=6$$ใไปฃๅ ฅใใฆ้ฃ็ซๆน็จๅผใ่งฃใใฐใใใ\n", | |
"<br><br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$\n", | |
"<br><br>\n", | |
"ๅพใใใใใฏใใซใๆญฃ่ฆๅ(ๅไฝใใฏใใซใซๅคๆ)ใใไปฅไธใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}_1 = (\\frac{1}{\\sqrt{3}},-\\frac{1}{\\sqrt{3}},\\frac{1}{\\sqrt{3}})^T$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ๆฌกใๅ้กใงใใใ$$\\lambda=3$$ใฎๅ ดๅใใใใใไบใคใฎ็ดไบคใใๅบๆใใฏใใซ$${\\bf u}_2,{\\bf u}_3$$ใๅพใใใ\n", | |
"<br><br>\n", | |
"ใพใใๅฎ็พฉใใ้ฃ็ซๆน็จๅผ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$ใซ$$\\lambda=3\n", | |
"$$ใไปฃๅ ฅใใใ$${\\bf u} = (u_1,u_2,u_3)^T$$ใจใใใจใไปฅไธใฎๆน็จๅผใๅพใใใใ\n", | |
"<br><br>\n", | |
"$$u_1-u_2+u_3=0$$\n", | |
"<br><br>\n", | |
"ใพใใฏใใใใซ้ฉๅฝใชๅคใๅ ฅใใฆไธใค็ฎใฎๅบๆใใฏใใซใ็ฎๅบใใใไพใใฐใ$$u_3=0,u_1=1$$ใจใใใจ$$u_2=1\n", | |
"$$ใจใชใไปฅไธใๅพใใใใ\n", | |
"<br><br>\n", | |
"$${\\bf u} = (1,1,0)^T$$\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"ใใใงใใๅฏพ็งฐ่กๅใฎ็ฐใชใๅบๆๅคใซๅฏพๅฟใใๅบๆใใฏใใซใฏๅฟ ใ็ดไบคใใใใฎใงใใใฎๅพใใใ$${\\bf u}$$ใจไธใงๅพใ$${\\bf u}_1\n", | |
"$$ใ็ดไบคใใใใจใฏใใใฃใฆใใใ(่ฉฆใใซๅ ็ฉใ่จ็ฎใใใจ0ใซใชใใ)\n", | |
"<br>-----\n", | |
"<br><br>\n", | |
"ๆฌกใซใใพใๅฅใฎ้ฉๅฝใชๅคใๆน็จๅผใซๅ ฅใใฆๆฌกใฎๅบๆใใฏใใซใ็ฎๅบใใใไพใใฐ$$u_3=1,u_2=0$$ใจใใใจ$$u_1=-1\n", | |
"$$ใจใชใไปฅไธใๅพใใใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}' = (-1,0,1)^T$$\n", | |
"<br><br>\n", | |
"ใใฎใใฏใใซใใ$${\\bf u}_1$$ใจ็ดไบคใใใใจใฏใใใฃใฆใใใใใใใไธใงๆฑใใ$${\\bf u} = (1,1,0)^T\n", | |
"$$ใจ็ดไบคใใใจใฏ้ใใชใใๅฎ้ใซใๅ ็ฉใ่จ็ฎใใฆใฟใใจ-1ใจใชใใ็ดไบคใใชใใใจใใใใใ" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ๆฌกใๅ้กใงใใใ$$\\lambda=3$$ใฎๅ ดๅใใใใใไบใคใฎ็ดไบคใใๅบๆใใฏใใซ$${\\bf u}_2,{\\bf u}_3$$ใๅพใใใ\n", | |
"<br><br>\n", | |
"ใพใใๅฎ็พฉใใ้ฃ็ซๆน็จๅผ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$ใซ$$\\lambda=3\n", | |
"$$ใไปฃๅ ฅใใใ$${\\bf u} = (u_1,u_2,u_3)^T$$ใจใใใจใไปฅไธใฎๆน็จๅผใๅพใใใใ\n", | |
"<br><br>\n", | |
"$$u_1-u_2+u_3=0$$\n", | |
"<br><br>\n", | |
"ใพใใฏใใใใซ้ฉๅฝใชๅคใๅ ฅใใฆไธใค็ฎใฎๅบๆใใฏใใซใ็ฎๅบใใใไพใใฐใ$$u_3=0,u_1=1$$ใจใใใจ$$u_2=1\n", | |
"$$ใจใชใไปฅไธใๅพใใใใ\n", | |
"<br><br>\n", | |
"$${\\bf u} = (1,1,0)^T$$\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"ใใใงใใๅฏพ็งฐ่กๅใฎ็ฐใชใๅบๆๅคใซๅฏพๅฟใใๅบๆใใฏใใซใฏๅฟ ใ็ดไบคใใใใฎใงใใใฎๅพใใใ$${\\bf u}$$ใจไธใงๅพใ$${\\bf u}_1\n", | |
"$$ใ็ดไบคใใใใจใฏใใใฃใฆใใใ(่ฉฆใใซๅ ็ฉใ่จ็ฎใใใจ0ใซใชใใ)\n", | |
"<br>-----\n", | |
"<br><br>\n", | |
"ๆฌกใซใใพใๅฅใฎ้ฉๅฝใชๅคใๆน็จๅผใซๅ ฅใใฆๆฌกใฎๅบๆใใฏใใซใ็ฎๅบใใใไพใใฐ$$u_3=1,u_2=0$$ใจใใใจ$$u_1=-1\n", | |
"$$ใจใชใไปฅไธใๅพใใใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}' = (-1,0,1)^T$$\n", | |
"<br><br>\n", | |
"ใใฎใใฏใใซใใ$${\\bf u}_1$$ใจ็ดไบคใใใใจใฏใใใฃใฆใใใใใใใไธใงๆฑใใ$${\\bf u} = (1,1,0)^T\n", | |
"$$ใจ็ดไบคใใใจใฏ้ใใชใใๅฎ้ใซใๅ ็ฉใ่จ็ฎใใฆใฟใใจ-1ใจใชใใ็ดไบคใใชใใใจใใใใใ" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 77, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ใใฆใใใใใใใฐใฉใ ใทใฅใใใใฎ็ดไบคๅใฎๅบ็ชใงใใใ<br>\n", | |
"ใใใพใงใฎ็ถๆณใๆด็ใใใไปๆๅ ใซใใใฎใฏใไบใคใฎๅบๆใใฏใใซ$${\\bf u},{\\bf u}'\n", | |
"$$ใงใใใใใฏ็ดไบคใใฆใฏใใชใใ็ทๅฝข็ฌ็ซใงใฏใใใ<br>\n", | |
"ใงใใใใใไฝใๅพใใใใ<br>\n", | |
"ไธใค็ฎใฎๅบๆใใฏใใซ$${\\bf u}$$ใฏใใฎใพใพไฝฟใใจใใฆใไปๆๅ ใซใใใใฎใ็จใใฆใใใจ็ดไบคใใๅบๆใใฏใใซ$${\\bf u}''\n", | |
"$$ใๅพใใใ<br><br>\n", | |
"ใงใฏใใใฎใใฏใใซ$${\\bf u}''$$ใฏใฉใใชใใฏใใซใงใชใใใฐใชใใชใใใใพใใๅคงๅๆใจใใฆ$${\\bf A}\n", | |
"$$ใฎๅบๆใใฏใใซใงใใๅฟ ่ฆใใใใฎใงใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}\n", | |
"$$ใฏๆบใใใชใใใฐใชใใชใใ(<b>่ฆไปถ1</b>)<br>\n", | |
"ใพใใ$${\\bf u}''$$ใฏ$${\\bf u}$$ใจ็ดไบคใใฆใใชใใใฐใชใใชใใใใชใใก$$({\\bf u},{\\bf u}'')=0\n", | |
"$$(<b>่ฆไปถ2</b>)\n", | |
"<br><br>\n", | |
"ใพใใ่ฆไปถ1ใๆบใใใใใ$${\\bf u}''$$ใ$${\\bf u}$$ใจ$${\\bf u}'$$ใฎ็ทๅฝข็ตๅใง่กจใใใจใซใใใ<br>\n", | |
"ใใใใใฐ$${\\bf u}''$$ใฏๅฟ ใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}\n", | |
"$$ใๆบใใใใใงใใใ็็ฑใฏไปฅไธใ\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}$$<br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A})(c_1{\\bf u}' + c_2{\\bf u}) = {\\bf 0}$$<br>\n", | |
"ใใใงใ$$c_1,c_2$$ใฏไปปๆใฎๅฎๆฐใ<br>\n", | |
"$$c_1(\\lambda {\\bf I} - {\\bf A}){\\bf u}' + c_2(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$<br>\n", | |
"$$c_1{\\bf 0}+c_2{\\bf 0} = {\\bf 0}$$<br>\n", | |
"ใจใชใใๅฟ ใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}$$ใๆบใใใใจใๅใใใ\n", | |
"<br>-----\n", | |
"<br><br>\n", | |
"ใใใงใฏไปฅไธใจใใใ<br><br>\n", | |
"$${\\bf u}'' = {\\bf u}' - c{\\bf u}$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ใใฆใใใใใใใฐใฉใ ใทใฅใใใใฎ็ดไบคๅใฎๅบ็ชใงใใใ<br>\n", | |
"ใใใพใงใฎ็ถๆณใๆด็ใใใไปๆๅ ใซใใใฎใฏใไบใคใฎๅบๆใใฏใใซ$${\\bf u},{\\bf u}'\n", | |
"$$ใงใใใใใฏ็ดไบคใใฆใฏใใชใใ็ทๅฝข็ฌ็ซใงใฏใใใ<br>\n", | |
"ใงใใใใใไฝใๅพใใใใ<br>\n", | |
"ไธใค็ฎใฎๅบๆใใฏใใซ$${\\bf u}$$ใฏใใฎใพใพไฝฟใใจใใฆใไปๆๅ ใซใใใใฎใ็จใใฆใใใจ็ดไบคใใๅบๆใใฏใใซ$${\\bf u}''\n", | |
"$$ใๅพใใใ<br><br>\n", | |
"ใงใฏใใใฎใใฏใใซ$${\\bf u}''$$ใฏใฉใใชใใฏใใซใงใชใใใฐใชใใชใใใใพใใๅคงๅๆใจใใฆ$${\\bf A}\n", | |
"$$ใฎๅบๆใใฏใใซใงใใๅฟ ่ฆใใใใฎใงใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}\n", | |
"$$ใฏๆบใใใชใใใฐใชใใชใใ(<b>่ฆไปถ1</b>)<br>\n", | |
"ใพใใ$${\\bf u}''$$ใฏ$${\\bf u}$$ใจ็ดไบคใใฆใใชใใใฐใชใใชใใใใชใใก$$({\\bf u},{\\bf u}'')=0\n", | |
"$$(<b>่ฆไปถ2</b>)\n", | |
"<br><br>\n", | |
"ใพใใ่ฆไปถ1ใๆบใใใใใ$${\\bf u}''$$ใ$${\\bf u}$$ใจ$${\\bf u}'$$ใฎ็ทๅฝข็ตๅใง่กจใใใจใซใใใ<br>\n", | |
"ใใใใใฐ$${\\bf u}''$$ใฏๅฟ ใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}\n", | |
"$$ใๆบใใใใใงใใใ็็ฑใฏไปฅไธใ\n", | |
"<br><br>\n", | |
"-----<br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}$$<br>\n", | |
"$$(\\lambda {\\bf I} - {\\bf A})(c_1{\\bf u}' + c_2{\\bf u}) = {\\bf 0}$$<br>\n", | |
"ใใใงใ$$c_1,c_2$$ใฏไปปๆใฎๅฎๆฐใ<br>\n", | |
"$$c_1(\\lambda {\\bf I} - {\\bf A}){\\bf u}' + c_2(\\lambda {\\bf I} - {\\bf A}){\\bf u} = {\\bf 0}$$<br>\n", | |
"$$c_1{\\bf 0}+c_2{\\bf 0} = {\\bf 0}$$<br>\n", | |
"ใจใชใใๅฟ ใ$$(\\lambda {\\bf I} - {\\bf A}){\\bf u}'' = {\\bf 0}$$ใๆบใใใใจใๅใใใ\n", | |
"<br>-----\n", | |
"<br><br>\n", | |
"ใใใงใฏไปฅไธใจใใใ<br><br>\n", | |
"$${\\bf u}'' = {\\bf u}' - c{\\bf u}$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 97, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"ๆฌกใซใ่ฆไปถ2ใๆบใใใใใ$$({\\bf u},{\\bf u}'')=0$$ใๆบใใใใใช$$c$$ใ็ฎๅบใใใใใชใใก\n", | |
"<br><br>\n", | |
"$$({\\bf u},{\\bf u}'') = ({\\bf u},{\\bf u}'-c{\\bf u}) = ({\\bf u},{\\bf u}') - c({\\bf u},{\\bf u})=0$$\n", | |
"<br><br>\n", | |
"่จ็ฎใใฆใไปฅไธใๅพใใ\n", | |
"<br><br>\n", | |
"$$-1-2c=0$$<br>\n", | |
"$$c=-\\frac{1}{2}$$\n", | |
"<br><br>\n", | |
"ใใใ$${\\bf u}'' = {\\bf u}' - c{\\bf u}$$ใซไปฃๅ ฅใใฆ$${\\bf u}''$$ใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}'' = (-\\frac{1}{2},\\frac{1}{2},1)^T$$\n", | |
"<br><br>\n", | |
"ๆๅพใซใ$${\\bf u}, {\\bf u}''$$ใใใใใๆญฃ่ฆๅใใฆไปฅไธใฎๅไฝๅบๆใใฏใใซใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}_2 = (\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}},0)^T$$<br>\n", | |
"$${\\bf u}_3 = (-\\frac{1}{\\sqrt{6}},\\frac{1}{\\sqrt{6}},\\frac{2}{\\sqrt{6}})^T$$\n", | |
"<br><br>\n", | |
"ใใใงใไธใคใฎ็ดไบคใใๅไฝๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,{\\bf u}_3$$ใๆฑใพใฃใใ" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"ๆฌกใซใ่ฆไปถ2ใๆบใใใใใ$$({\\bf u},{\\bf u}'')=0$$ใๆบใใใใใช$$c$$ใ็ฎๅบใใใใใชใใก\n", | |
"<br><br>\n", | |
"$$({\\bf u},{\\bf u}'') = ({\\bf u},{\\bf u}'-c{\\bf u}) = ({\\bf u},{\\bf u}') - c({\\bf u},{\\bf u})=0$$\n", | |
"<br><br>\n", | |
"่จ็ฎใใฆใไปฅไธใๅพใใ\n", | |
"<br><br>\n", | |
"$$-1-2c=0$$<br>\n", | |
"$$c=-\\frac{1}{2}$$\n", | |
"<br><br>\n", | |
"ใใใ$${\\bf u}'' = {\\bf u}' - c{\\bf u}$$ใซไปฃๅ ฅใใฆ$${\\bf u}''$$ใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}'' = (-\\frac{1}{2},\\frac{1}{2},1)^T$$\n", | |
"<br><br>\n", | |
"ๆๅพใซใ$${\\bf u}, {\\bf u}''$$ใใใใใๆญฃ่ฆๅใใฆไปฅไธใฎๅไฝๅบๆใใฏใใซใๅพใใ\n", | |
"<br><br>\n", | |
"$${\\bf u}_2 = (\\frac{1}{\\sqrt{2}},\\frac{1}{\\sqrt{2}},0)^T$$<br>\n", | |
"$${\\bf u}_3 = (-\\frac{1}{\\sqrt{6}},\\frac{1}{\\sqrt{6}},\\frac{2}{\\sqrt{6}})^T$$\n", | |
"<br><br>\n", | |
"ใใใงใไธใคใฎ็ดไบคใใๅไฝๅบๆใใฏใใซ$${\\bf u}_1,{\\bf u}_2,{\\bf u}_3$$ใๆฑใพใฃใใ" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"ไธใง่กใฃใใใใซใ็ทๅฝข็ฌ็ซใช่คๆฐใฎใใฏใใซใใ็ดไบคใใ่คๆฐใฎใใฏใใซใๅพใๆนๆณใใฐใฉใ ใทใฅใใใใฎ็ดไบคๅใจใใใใไธ่ฌๅใใ่ชฌๆใฏๅฅใฎ่จไบใง่ฉณใใ่จใใใจใซใใใ" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment