Document Version: 1.0.0 Created: 2025-10-30 Status: Planning Phase Compliance: HIPAA, GDPR, FDA 21 CFR Part 11
Integration plan for incorporating psycho-symbolic reasoning capabilities into AIMDS for medical behavior prediction, patient risk assessment, and clinical decision support while maintaining strict privacy, security, and regulatory compliance.
Key Objectives:
- Predict patient behavioral patterns using symbolic reasoning
- Detect early warning signs of mental health deterioration
- Support clinical decision-making with explainable AI
- Maintain HIPAA compliance and patient privacy
- Provide real-time risk scoring for patient safety
┌─────────────────────────────────────────────────────────────┐
│ Medical Psycho-Symbolic Layer │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Symbolic │──▶│ Behavioral │──▶│ Clinical │ │
│ │ Reasoning │ │ Prediction │ │ Decision │ │
│ │ │ │ │ │ Support │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │ │ │ │
│ └───────────────────┼───────────────────┘ │
│ ▼ │
│ ┌──────────────────────────┐ │
│ │ AIMDS Integration │ │
│ │ Layer (Secure PHI) │ │
│ └──────────────────────────┘ │
│ │ │
└─────────────────────────────┼────────────────────────────────┘
▼
┌─────────────────────────────────────────────────────────────┐
│ AIMDS Core Platform │
├─────────────────────────────────────────────────────────────┤
│ Detection (<10ms) │ Analysis (<100ms) │ Response │
│ - Pattern Match │ - Behavioral │ - Mitigation │
│ - PII Sanitize │ - Temporal Attract │ - Audit │
│ - Anomaly Detect │ - Policy Verify │ - Meta-Learn │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Midstream Platform Components │
├─────────────────────────────────────────────────────────────┤
│ AgentDB │ Temporal Attractor │ Strange Loop │
│ (Vector Search) │ (Chaos Analysis) │ (Meta-Learning) │
└─────────────────────────────────────────────────────────────┘
Patient Data → PHI Sanitization → Symbolic Encoder → AIMDS Detection
│
▼
Clinical Context → Feature Extraction → Behavioral Analysis (Temporal)
│
▼
Historical Patterns → Vector Search (AgentDB) → Risk Prediction
│
▼
Decision Rules → LTL Policy Verification → Clinical Recommendations
│
▼
Audit Trail → Compliance Logging
Mental State Encoding:
// Symbolic mental state representation
pub struct MentalState {
// Cognitive dimensions (0.0-1.0 normalized)
pub affect: f64, // Emotional valence
pub arousal: f64, // Activation level
pub cognition: f64, // Cognitive clarity
pub social: f64, // Social engagement
pub behavioral: f64, // Behavioral activation
// Temporal context
pub timestamp: DateTime<Utc>,
pub session_id: String,
pub patient_id_hash: String, // Anonymized
// Symbolic markers
pub risk_factors: Vec<RiskSymbol>,
pub protective_factors: Vec<ProtectiveSymbol>,
}
pub enum RiskSymbol {
IsolationPattern,
SleepDisruption,
SubstanceUse,
CognitiveImpairment,
EmotionalVolatility,
SelfHarmIndicators,
MedicationNonCompliance,
}
pub enum ProtectiveSymbol {
SocialSupport,
CopingSkills,
TreatmentEngagement,
RoutineStability,
InsightAwareness,
}Symbolic Inference Rules:
pub struct PsychoSymbolicReasoner {
// Rule-based reasoning
inference_rules: Vec<InferenceRule>,
// Probabilistic reasoning
bayesian_network: BayesianNet,
// Temporal reasoning
temporal_logic: LTLChecker,
// Integration with AIMDS
aimds_analyzer: BehavioralAnalyzer,
}
pub struct InferenceRule {
// IF condition THEN conclusion
pub condition: Vec<SymbolicPredicate>,
pub conclusion: ClinicalHypothesis,
pub confidence: f64,
pub evidence_base: String, // Research citation
}
pub enum SymbolicPredicate {
StateEquals(MentalDimension, f64),
StateGreaterThan(MentalDimension, f64),
TemporalPattern(TemporalPattern),
RiskFactorPresent(RiskSymbol),
ProtectiveFactorAbsent(ProtectiveSymbol),
}Integration with AIMDS Temporal Attractors:
pub struct BehaviorPredictor {
// AIMDS behavioral analyzer
temporal_analyzer: BehavioralAnalyzer,
// Psycho-symbolic state tracker
state_tracker: MentalStateTracker,
// Prediction model
predictor: NeuralPredictor,
// Risk assessment
risk_calculator: ClinicalRiskCalculator,
}
impl BehaviorPredictor {
pub async fn predict_trajectory(
&self,
patient_history: Vec<MentalState>,
current_state: MentalState,
) -> Result<BehaviorPrediction, PredictionError> {
// 1. Convert to temporal sequence for AIMDS
let temporal_sequence = self.state_tracker
.to_temporal_sequence(&patient_history);
// 2. Analyze with AIMDS behavioral analyzer
let anomaly_score = self.temporal_analyzer
.analyze_behavior(&temporal_sequence)
.await?;
// 3. Apply psycho-symbolic reasoning
let symbolic_analysis = self.state_tracker
.analyze_symbolic_patterns(¤t_state);
// 4. Generate prediction
let prediction = self.predictor.predict(
&anomaly_score,
&symbolic_analysis,
).await?;
// 5. Calculate clinical risk
let risk_score = self.risk_calculator
.calculate_risk(&prediction);
Ok(BehaviorPrediction {
predicted_trajectory: prediction.trajectory,
risk_level: risk_score.level,
confidence: prediction.confidence,
recommended_interventions: risk_score.interventions,
explainability: symbolic_analysis.explanation,
})
}
}Early Warning System:
- Depression relapse prediction
- Suicide risk assessment
- Anxiety disorder progression
- Psychosis early detection
- Substance abuse relapse prediction
Implementation:
pub struct MentalHealthMonitor {
predictor: BehaviorPredictor,
risk_threshold: f64,
alert_system: ClinicalAlertSystem,
}
impl MentalHealthMonitor {
pub async fn monitor_patient(
&self,
patient_id_hash: String,
assessment_data: AssessmentData,
) -> Result<RiskAssessment, MonitorError> {
// Convert assessment to mental state
let mental_state = MentalState::from_assessment(assessment_data);
// Load patient history (anonymized)
let history = self.load_patient_history(&patient_id_hash).await?;
// Predict behavior trajectory
let prediction = self.predictor
.predict_trajectory(history, mental_state)
.await?;
// Check if intervention needed
if prediction.risk_level >= self.risk_threshold {
self.alert_system.send_alert(AlertType::HighRisk {
patient_id_hash: patient_id_hash.clone(),
risk_level: prediction.risk_level,
recommended_actions: prediction.recommended_interventions,
explanation: prediction.explainability,
}).await?;
}
Ok(RiskAssessment {
risk_score: prediction.risk_level,
confidence: prediction.confidence,
trajectory: prediction.predicted_trajectory,
interventions: prediction.recommended_interventions,
explanation: prediction.explainability,
})
}
}Predicting Treatment Efficacy:
pub struct TreatmentPredictor {
behavior_model: BehaviorPredictor,
treatment_db: TreatmentDatabase,
}
impl TreatmentPredictor {
pub async fn predict_response(
&self,
patient_profile: PatientProfile,
proposed_treatment: Treatment,
) -> Result<TreatmentPrediction, PredictionError> {
// Find similar cases using AgentDB vector search
let similar_cases = self.treatment_db
.find_similar_cases(&patient_profile)
.await?;
// Analyze historical outcomes
let outcomes = self.analyze_outcomes(&similar_cases);
// Predict response using behavioral model
let prediction = self.behavior_model
.predict_treatment_response(
&patient_profile,
&proposed_treatment,
&outcomes,
)
.await?;
Ok(prediction)
}
}Non-Compliance Detection:
pub struct ComplianceMonitor {
pattern_detector: PatternDetector,
aimds_detector: DetectionService,
}
impl ComplianceMonitor {
pub async fn detect_non_compliance(
&self,
patient_data: PatientData,
) -> Result<ComplianceReport, MonitorError> {
// Extract behavioral patterns
let patterns = self.pattern_detector
.extract_patterns(&patient_data);
// Use AIMDS to detect anomalies
let anomalies = self.aimds_detector
.detect_behavioral_anomalies(&patterns)
.await?;
// Identify non-compliance markers
let non_compliance_risk = self.calculate_risk(&anomalies);
Ok(ComplianceReport {
compliance_score: non_compliance_risk.score,
detected_patterns: anomalies.patterns,
recommended_interventions: non_compliance_risk.interventions,
})
}
}PHI Protection:
pub struct PHISanitizer {
aimds_sanitizer: PiiSanitizer, // Use AIMDS PII detection
encryption: Aes256Gcm,
anonymizer: PatientAnonymizer,
}
impl PHISanitizer {
pub async fn sanitize_input(
&self,
clinical_data: ClinicalData,
) -> Result<SanitizedData, SanitizationError> {
// 1. Remove PII using AIMDS
let pii_removed = self.aimds_sanitizer
.remove_pii(&clinical_data.text)
.await?;
// 2. Anonymize patient identifiers
let anonymized = self.anonymizer
.anonymize_patient_data(&clinical_data);
// 3. Encrypt sensitive fields
let encrypted = self.encryption
.encrypt_sensitive_fields(&anonymized)?;
Ok(SanitizedData {
data: encrypted,
pii_removed: pii_removed.removed_items,
anonymization_map: anonymized.mapping_hash,
})
}
}Audit Trail:
pub struct ComplianceAuditor {
audit_log: AuditLogger,
aimds_auditor: AuditLog, // Use AIMDS audit system
}
impl ComplianceAuditor {
pub async fn log_access(
&self,
access_event: DataAccessEvent,
) -> Result<(), AuditError> {
// Log to AIMDS audit system
self.aimds_auditor.log_event(AuditEvent {
timestamp: Utc::now(),
event_type: "phi_access",
user_id: access_event.user_id,
action: access_event.action,
resource: access_event.resource,
context: json!({
"purpose": access_event.purpose,
"approval": access_event.approval_id,
}),
}).await?;
// Additional medical-specific logging
self.audit_log.log_phi_access(access_event).await?;
Ok(())
}
}De-identification Strategy:
- Replace patient IDs with cryptographic hashes
- Remove direct identifiers (names, addresses, SSN)
- Use AIMDS PII detection for automated scrubbing
- Apply differential privacy for aggregate statistics
- Implement k-anonymity for data sharing
Role-Based Access:
pub enum MedicalRole {
Physician,
Psychiatrist,
Psychologist,
Nurse,
SocialWorker,
Researcher,
DataAnalyst,
}
pub struct AccessController {
rbac: RoleBasedAccessControl,
aimds_policy: PolicyVerifier, // Use AIMDS policy verification
}
impl AccessController {
pub async fn authorize_access(
&self,
user: User,
resource: MedicalResource,
action: Action,
) -> Result<bool, AuthError> {
// Check RBAC permissions
let rbac_allowed = self.rbac
.check_permission(&user.role, &resource, &action)?;
if !rbac_allowed {
return Ok(false);
}
// Verify with AIMDS policy engine
let policy_allowed = self.aimds_policy
.verify_policy(&user, &resource, &action)
.await?;
Ok(policy_allowed)
}
}- Integrate AIMDS core libraries
- Implement PHI sanitization layer
- Build symbolic representation framework
- Create mental state encoding system
- Develop audit logging infrastructure
- Implement inference rule engine
- Build Bayesian reasoning network
- Integrate temporal logic checker
- Create behavioral prediction model
- Develop risk assessment algorithms
- Build clinical decision support API
- Implement treatment predictor
- Create compliance monitoring system
- Develop alert and notification system
- Build clinician dashboard
- Clinical validation studies
- HIPAA compliance audit
- Performance optimization
- Documentation and training
- Pilot deployment
Patient Risk Assessment:
POST /api/v1/medical/assess-risk
Content-Type: application/json
Authorization: Bearer {token}
{
"patient_id_hash": "sha256_hash",
"assessment_data": {
"mental_state": {
"affect": 0.3,
"arousal": 0.7,
"cognition": 0.5,
"social": 0.4,
"behavioral": 0.6
},
"risk_factors": ["IsolationPattern", "SleepDisruption"],
"protective_factors": ["TreatmentEngagement"],
"clinical_context": {
"diagnosis": "major_depressive_disorder",
"medications": ["sertraline_100mg"],
"last_assessment": "2025-10-15T10:30:00Z"
}
}
}
Response:
{
"risk_assessment": {
"risk_score": 0.72,
"risk_level": "moderate_high",
"confidence": 0.85,
"predicted_trajectory": [...],
"recommended_interventions": [
{
"type": "increase_monitoring",
"priority": "high",
"rationale": "Isolation pattern detected with declining affect"
},
{
"type": "medication_review",
"priority": "medium",
"rationale": "Current treatment may need adjustment"
}
],
"explanation": {
"symbolic_reasoning": "Patient shows isolation pattern...",
"temporal_analysis": "Behavioral trajectory indicates...",
"similar_cases": 127
}
},
"audit_id": "audit_xyz789"
}Treatment Response Prediction:
POST /api/v1/medical/predict-treatment
Content-Type: application/json
{
"patient_profile": {
"patient_id_hash": "sha256_hash",
"demographics": {
"age_range": "35-44",
"gender": "female"
},
"clinical_history": {
"diagnoses": ["major_depressive_disorder"],
"prior_treatments": ["citalopram", "cbt"],
"response_history": [...]
},
"current_state": {...}
},
"proposed_treatment": {
"type": "medication",
"medication": "venlafaxine",
"dosage": "75mg",
"adjunct_therapy": "mindfulness_based_cbt"
}
}
Response:
{
"prediction": {
"response_probability": 0.68,
"response_type": "partial_remission",
"time_to_response": "6-8 weeks",
"confidence": 0.73,
"similar_cases": 243,
"evidence_base": [
{
"study": "Meta-analysis PMID:12345678",
"relevance": 0.85
}
]
}
}Latency Targets:
- Risk assessment: < 200ms (leveraging AIMDS <10ms detection + <100ms analysis)
- Treatment prediction: < 500ms
- Compliance monitoring: < 100ms
- Real-time alert generation: < 50ms
Throughput:
- Support 10,000+ concurrent patients
- Process 1,000 assessments/second
- Handle 100 real-time alert evaluations/second
Accuracy:
- Risk prediction AUC > 0.85
- Treatment response prediction AUC > 0.75
- False positive rate < 10%
- Sensitivity for high-risk cases > 90%
Vector Database (AgentDB):
pub struct PatientVectorStore {
agentdb: AgentDBClient,
}
impl PatientVectorStore {
pub async fn store_patient_embedding(
&self,
patient_id_hash: String,
embedding: Vec<f64>,
metadata: PatientMetadata,
) -> Result<(), StorageError> {
self.agentdb.insert(
collection: "patient_states",
vector: embedding,
metadata: json!({
"patient_id_hash": patient_id_hash,
"timestamp": Utc::now(),
"diagnosis": metadata.diagnosis,
"risk_level": metadata.risk_level,
}),
).await
}
pub async fn find_similar_patients(
&self,
query_embedding: Vec<f64>,
k: usize,
) -> Result<Vec<SimilarPatient>, StorageError> {
// Use AgentDB's 150x faster HNSW search
let results = self.agentdb.search(
collection: "patient_states",
query: query_embedding,
top_k: k,
).await?;
Ok(results)
}
}Time-Series Storage:
- Patient behavioral sequences
- Treatment response timelines
- Medication compliance history
- Clinical assessment longitudinal data
Clinical Transparency:
- All predictions must provide human-readable explanations
- Symbolic reasoning traces must be accessible to clinicians
- Confidence scores must be clearly communicated
- Similar case references for evidence-based reasoning
Clinician Oversight:
- AI provides recommendations, not decisions
- High-risk predictions require clinician review
- Override mechanisms for clinical judgment
- Feedback loops for model improvement
Fairness Considerations:
- Regular bias audits across demographic groups
- Balanced training data representation
- Fairness metrics monitoring (demographic parity, equal opportunity)
- Transparent reporting of model limitations
Patient Safety:
- Conservative thresholds for high-risk alerts
- Escalation protocols for critical predictions
- Failsafe mechanisms for system errors
- Regular clinical validation
Validation Studies:
- Retrospective validation on historical data
- Prospective validation with clinical outcomes
- Inter-rater reliability with clinician assessments
- Sensitivity analysis for edge cases
Test Metrics:
- Prediction accuracy (AUROC, AUPRC)
- Calibration curves
- Precision-recall at various thresholds
- Latency measurements
- Throughput stress testing
Regulatory Validation:
- HIPAA Security Rule compliance
- GDPR Article 22 (automated decision-making)
- FDA 21 CFR Part 11 (if applicable)
- State medical privacy laws
Cloud Deployment:
# Kubernetes deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: psycho-symbolic-medical-api
spec:
replicas: 3
selector:
matchLabels:
app: medical-reasoning
template:
spec:
containers:
- name: api-server
image: aimds/medical-reasoning:latest
env:
- name: AIMDS_ENDPOINT
value: "http://aimds-service:3000"
- name: AGENTDB_ENDPOINT
value: "http://agentdb-service:8080"
resources:
requests:
memory: "4Gi"
cpu: "2"
limits:
memory: "8Gi"
cpu: "4"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10Observability Stack:
- Prometheus metrics (via AIMDS metrics system)
- Grafana dashboards for clinical metrics
- ELK stack for audit log analysis
- Alert Manager for critical notifications
Business Continuity:
- Multi-region deployment
- Automated backups (encrypted)
- Point-in-time recovery
- Failover procedures
- Data replication strategy
- Multi-modal data integration (text, speech, wearables)
- Causal inference for treatment effects
- Federated learning across institutions
- Real-time EEG/physiological monitoring integration
- Natural language understanding for clinical notes
- Clinical trial matching
- Personalized medicine protocols
- Population health analytics
- Epidemiological modeling
- DSM-5 diagnostic criteria encoding
- ICD-10/11 classification systems
- Clinical prediction rule development
- Behavioral psychology research
- Temporal dynamics in mental health
- HL7 FHIR for healthcare interoperability
- SNOMED CT clinical terminology
- LOINC for laboratory observations
- IEEE 11073 for medical device communication
- FDA guidance on clinical decision support
- HIPAA Security Rule
- GDPR Article 9 (health data processing)
- ISO 27001 information security
MentalState {
affect: 0.25, // Low positive affect
arousal: 0.35, // Low energy
cognition: 0.40, // Impaired concentration
social: 0.30, // Social withdrawal
behavioral: 0.35, // Reduced activity
risk_factors: vec![
RiskSymbol::IsolationPattern,
RiskSymbol::SleepDisruption,
RiskSymbol::CognitiveImpairment,
],
protective_factors: vec![
ProtectiveSymbol::TreatmentEngagement,
],
}MentalState {
affect: 0.40, // Negative valence
arousal: 0.85, // High arousal
cognition: 0.55, // Racing thoughts
social: 0.50, // Avoidance
behavioral: 0.65, // Restlessness
risk_factors: vec![
RiskSymbol::SleepDisruption,
RiskSymbol::SubstanceUse,
],
protective_factors: vec![
ProtectiveSymbol::CopingSkills,
ProtectiveSymbol::SocialSupport,
],
}See implementation examples in:
/plans/examples/risk-assessment.rs/plans/examples/treatment-prediction.rs/plans/examples/compliance-monitoring.rs
Document Control:
- Version: 1.0.0
- Last Updated: 2025-10-30
- Next Review: 2025-11-30
- Owner: Medical AI Integration Team
- Approvers: Clinical Lead, HIPAA Officer, Technical Lead