Skip to content

Instantly share code, notes, and snippets.

@ruvnet
Created October 30, 2025 17:29
Show Gist options
  • Save ruvnet/f5ed127e9500e20b62a082844257f43a to your computer and use it in GitHub Desktop.
Save ruvnet/f5ed127e9500e20b62a082844257f43a to your computer and use it in GitHub Desktop.
Psycho-Symbolic Reasoning Integration with AIMDS

Psycho-Symbolic Reasoning Integration with AIMDS

Medical Behavior Prediction & Analysis

Document Version: 1.0.0 Created: 2025-10-30 Status: Planning Phase Compliance: HIPAA, GDPR, FDA 21 CFR Part 11


Executive Summary

Integration plan for incorporating psycho-symbolic reasoning capabilities into AIMDS for medical behavior prediction, patient risk assessment, and clinical decision support while maintaining strict privacy, security, and regulatory compliance.

Key Objectives:

  • Predict patient behavioral patterns using symbolic reasoning
  • Detect early warning signs of mental health deterioration
  • Support clinical decision-making with explainable AI
  • Maintain HIPAA compliance and patient privacy
  • Provide real-time risk scoring for patient safety

1. Architecture Overview

1.1 Integration Points with AIMDS

┌─────────────────────────────────────────────────────────────┐
│                 Medical Psycho-Symbolic Layer                │
├─────────────────────────────────────────────────────────────┤
│                                                              │
│  ┌──────────────┐   ┌──────────────┐   ┌──────────────┐   │
│  │  Symbolic    │──▶│  Behavioral  │──▶│   Clinical   │   │
│  │  Reasoning   │   │  Prediction  │   │   Decision   │   │
│  │              │   │              │   │   Support    │   │
│  └──────────────┘   └──────────────┘   └──────────────┘   │
│         │                   │                   │           │
│         └───────────────────┼───────────────────┘           │
│                             ▼                                │
│              ┌──────────────────────────┐                   │
│              │   AIMDS Integration      │                   │
│              │   Layer (Secure PHI)     │                   │
│              └──────────────────────────┘                   │
│                             │                                │
└─────────────────────────────┼────────────────────────────────┘
                              ▼
┌─────────────────────────────────────────────────────────────┐
│                    AIMDS Core Platform                       │
├─────────────────────────────────────────────────────────────┤
│  Detection (<10ms)  │  Analysis (<100ms)  │  Response       │
│  - Pattern Match    │  - Behavioral       │  - Mitigation   │
│  - PII Sanitize     │  - Temporal Attract │  - Audit        │
│  - Anomaly Detect   │  - Policy Verify    │  - Meta-Learn   │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│              Midstream Platform Components                   │
├─────────────────────────────────────────────────────────────┤
│  AgentDB          │  Temporal Attractor  │  Strange Loop    │
│  (Vector Search)  │  (Chaos Analysis)    │  (Meta-Learning) │
└─────────────────────────────────────────────────────────────┘

1.2 Data Flow Architecture

Patient Data → PHI Sanitization → Symbolic Encoder → AIMDS Detection
                                                           │
                                                           ▼
Clinical Context → Feature Extraction → Behavioral Analysis (Temporal)
                                                           │
                                                           ▼
Historical Patterns → Vector Search (AgentDB) → Risk Prediction
                                                           │
                                                           ▼
Decision Rules → LTL Policy Verification → Clinical Recommendations
                                                           │
                                                           ▼
                                    Audit Trail → Compliance Logging

2. Psycho-Symbolic Reasoning Framework

2.1 Symbolic Representation

Mental State Encoding:

// Symbolic mental state representation
pub struct MentalState {
    // Cognitive dimensions (0.0-1.0 normalized)
    pub affect: f64,           // Emotional valence
    pub arousal: f64,          // Activation level
    pub cognition: f64,        // Cognitive clarity
    pub social: f64,           // Social engagement
    pub behavioral: f64,       // Behavioral activation

    // Temporal context
    pub timestamp: DateTime<Utc>,
    pub session_id: String,
    pub patient_id_hash: String, // Anonymized

    // Symbolic markers
    pub risk_factors: Vec<RiskSymbol>,
    pub protective_factors: Vec<ProtectiveSymbol>,
}

pub enum RiskSymbol {
    IsolationPattern,
    SleepDisruption,
    SubstanceUse,
    CognitiveImpairment,
    EmotionalVolatility,
    SelfHarmIndicators,
    MedicationNonCompliance,
}

pub enum ProtectiveSymbol {
    SocialSupport,
    CopingSkills,
    TreatmentEngagement,
    RoutineStability,
    InsightAwareness,
}

2.2 Reasoning Engine

Symbolic Inference Rules:

pub struct PsychoSymbolicReasoner {
    // Rule-based reasoning
    inference_rules: Vec<InferenceRule>,

    // Probabilistic reasoning
    bayesian_network: BayesianNet,

    // Temporal reasoning
    temporal_logic: LTLChecker,

    // Integration with AIMDS
    aimds_analyzer: BehavioralAnalyzer,
}

pub struct InferenceRule {
    // IF condition THEN conclusion
    pub condition: Vec<SymbolicPredicate>,
    pub conclusion: ClinicalHypothesis,
    pub confidence: f64,
    pub evidence_base: String, // Research citation
}

pub enum SymbolicPredicate {
    StateEquals(MentalDimension, f64),
    StateGreaterThan(MentalDimension, f64),
    TemporalPattern(TemporalPattern),
    RiskFactorPresent(RiskSymbol),
    ProtectiveFactorAbsent(ProtectiveSymbol),
}

2.3 Behavioral Prediction Model

Integration with AIMDS Temporal Attractors:

pub struct BehaviorPredictor {
    // AIMDS behavioral analyzer
    temporal_analyzer: BehavioralAnalyzer,

    // Psycho-symbolic state tracker
    state_tracker: MentalStateTracker,

    // Prediction model
    predictor: NeuralPredictor,

    // Risk assessment
    risk_calculator: ClinicalRiskCalculator,
}

impl BehaviorPredictor {
    pub async fn predict_trajectory(
        &self,
        patient_history: Vec<MentalState>,
        current_state: MentalState,
    ) -> Result<BehaviorPrediction, PredictionError> {
        // 1. Convert to temporal sequence for AIMDS
        let temporal_sequence = self.state_tracker
            .to_temporal_sequence(&patient_history);

        // 2. Analyze with AIMDS behavioral analyzer
        let anomaly_score = self.temporal_analyzer
            .analyze_behavior(&temporal_sequence)
            .await?;

        // 3. Apply psycho-symbolic reasoning
        let symbolic_analysis = self.state_tracker
            .analyze_symbolic_patterns(&current_state);

        // 4. Generate prediction
        let prediction = self.predictor.predict(
            &anomaly_score,
            &symbolic_analysis,
        ).await?;

        // 5. Calculate clinical risk
        let risk_score = self.risk_calculator
            .calculate_risk(&prediction);

        Ok(BehaviorPrediction {
            predicted_trajectory: prediction.trajectory,
            risk_level: risk_score.level,
            confidence: prediction.confidence,
            recommended_interventions: risk_score.interventions,
            explainability: symbolic_analysis.explanation,
        })
    }
}

3. Medical Use Cases

3.1 Mental Health Risk Assessment

Early Warning System:

  • Depression relapse prediction
  • Suicide risk assessment
  • Anxiety disorder progression
  • Psychosis early detection
  • Substance abuse relapse prediction

Implementation:

pub struct MentalHealthMonitor {
    predictor: BehaviorPredictor,
    risk_threshold: f64,
    alert_system: ClinicalAlertSystem,
}

impl MentalHealthMonitor {
    pub async fn monitor_patient(
        &self,
        patient_id_hash: String,
        assessment_data: AssessmentData,
    ) -> Result<RiskAssessment, MonitorError> {
        // Convert assessment to mental state
        let mental_state = MentalState::from_assessment(assessment_data);

        // Load patient history (anonymized)
        let history = self.load_patient_history(&patient_id_hash).await?;

        // Predict behavior trajectory
        let prediction = self.predictor
            .predict_trajectory(history, mental_state)
            .await?;

        // Check if intervention needed
        if prediction.risk_level >= self.risk_threshold {
            self.alert_system.send_alert(AlertType::HighRisk {
                patient_id_hash: patient_id_hash.clone(),
                risk_level: prediction.risk_level,
                recommended_actions: prediction.recommended_interventions,
                explanation: prediction.explainability,
            }).await?;
        }

        Ok(RiskAssessment {
            risk_score: prediction.risk_level,
            confidence: prediction.confidence,
            trajectory: prediction.predicted_trajectory,
            interventions: prediction.recommended_interventions,
            explanation: prediction.explainability,
        })
    }
}

3.2 Treatment Response Prediction

Predicting Treatment Efficacy:

pub struct TreatmentPredictor {
    behavior_model: BehaviorPredictor,
    treatment_db: TreatmentDatabase,
}

impl TreatmentPredictor {
    pub async fn predict_response(
        &self,
        patient_profile: PatientProfile,
        proposed_treatment: Treatment,
    ) -> Result<TreatmentPrediction, PredictionError> {
        // Find similar cases using AgentDB vector search
        let similar_cases = self.treatment_db
            .find_similar_cases(&patient_profile)
            .await?;

        // Analyze historical outcomes
        let outcomes = self.analyze_outcomes(&similar_cases);

        // Predict response using behavioral model
        let prediction = self.behavior_model
            .predict_treatment_response(
                &patient_profile,
                &proposed_treatment,
                &outcomes,
            )
            .await?;

        Ok(prediction)
    }
}

3.3 Medication Compliance Monitoring

Non-Compliance Detection:

pub struct ComplianceMonitor {
    pattern_detector: PatternDetector,
    aimds_detector: DetectionService,
}

impl ComplianceMonitor {
    pub async fn detect_non_compliance(
        &self,
        patient_data: PatientData,
    ) -> Result<ComplianceReport, MonitorError> {
        // Extract behavioral patterns
        let patterns = self.pattern_detector
            .extract_patterns(&patient_data);

        // Use AIMDS to detect anomalies
        let anomalies = self.aimds_detector
            .detect_behavioral_anomalies(&patterns)
            .await?;

        // Identify non-compliance markers
        let non_compliance_risk = self.calculate_risk(&anomalies);

        Ok(ComplianceReport {
            compliance_score: non_compliance_risk.score,
            detected_patterns: anomalies.patterns,
            recommended_interventions: non_compliance_risk.interventions,
        })
    }
}

4. Privacy & Security

4.1 HIPAA Compliance

PHI Protection:

pub struct PHISanitizer {
    aimds_sanitizer: PiiSanitizer, // Use AIMDS PII detection
    encryption: Aes256Gcm,
    anonymizer: PatientAnonymizer,
}

impl PHISanitizer {
    pub async fn sanitize_input(
        &self,
        clinical_data: ClinicalData,
    ) -> Result<SanitizedData, SanitizationError> {
        // 1. Remove PII using AIMDS
        let pii_removed = self.aimds_sanitizer
            .remove_pii(&clinical_data.text)
            .await?;

        // 2. Anonymize patient identifiers
        let anonymized = self.anonymizer
            .anonymize_patient_data(&clinical_data);

        // 3. Encrypt sensitive fields
        let encrypted = self.encryption
            .encrypt_sensitive_fields(&anonymized)?;

        Ok(SanitizedData {
            data: encrypted,
            pii_removed: pii_removed.removed_items,
            anonymization_map: anonymized.mapping_hash,
        })
    }
}

Audit Trail:

pub struct ComplianceAuditor {
    audit_log: AuditLogger,
    aimds_auditor: AuditLog, // Use AIMDS audit system
}

impl ComplianceAuditor {
    pub async fn log_access(
        &self,
        access_event: DataAccessEvent,
    ) -> Result<(), AuditError> {
        // Log to AIMDS audit system
        self.aimds_auditor.log_event(AuditEvent {
            timestamp: Utc::now(),
            event_type: "phi_access",
            user_id: access_event.user_id,
            action: access_event.action,
            resource: access_event.resource,
            context: json!({
                "purpose": access_event.purpose,
                "approval": access_event.approval_id,
            }),
        }).await?;

        // Additional medical-specific logging
        self.audit_log.log_phi_access(access_event).await?;

        Ok(())
    }
}

4.2 Data Anonymization

De-identification Strategy:

  • Replace patient IDs with cryptographic hashes
  • Remove direct identifiers (names, addresses, SSN)
  • Use AIMDS PII detection for automated scrubbing
  • Apply differential privacy for aggregate statistics
  • Implement k-anonymity for data sharing

4.3 Access Control

Role-Based Access:

pub enum MedicalRole {
    Physician,
    Psychiatrist,
    Psychologist,
    Nurse,
    SocialWorker,
    Researcher,
    DataAnalyst,
}

pub struct AccessController {
    rbac: RoleBasedAccessControl,
    aimds_policy: PolicyVerifier, // Use AIMDS policy verification
}

impl AccessController {
    pub async fn authorize_access(
        &self,
        user: User,
        resource: MedicalResource,
        action: Action,
    ) -> Result<bool, AuthError> {
        // Check RBAC permissions
        let rbac_allowed = self.rbac
            .check_permission(&user.role, &resource, &action)?;

        if !rbac_allowed {
            return Ok(false);
        }

        // Verify with AIMDS policy engine
        let policy_allowed = self.aimds_policy
            .verify_policy(&user, &resource, &action)
            .await?;

        Ok(policy_allowed)
    }
}

5. Implementation Roadmap

Phase 1: Foundation (Months 1-3)

  • Integrate AIMDS core libraries
  • Implement PHI sanitization layer
  • Build symbolic representation framework
  • Create mental state encoding system
  • Develop audit logging infrastructure

Phase 2: Reasoning Engine (Months 4-6)

  • Implement inference rule engine
  • Build Bayesian reasoning network
  • Integrate temporal logic checker
  • Create behavioral prediction model
  • Develop risk assessment algorithms

Phase 3: Clinical Integration (Months 7-9)

  • Build clinical decision support API
  • Implement treatment predictor
  • Create compliance monitoring system
  • Develop alert and notification system
  • Build clinician dashboard

Phase 4: Validation & Deployment (Months 10-12)

  • Clinical validation studies
  • HIPAA compliance audit
  • Performance optimization
  • Documentation and training
  • Pilot deployment

6. Technical Specifications

6.1 API Design

Patient Risk Assessment:

POST /api/v1/medical/assess-risk
Content-Type: application/json
Authorization: Bearer {token}

{
  "patient_id_hash": "sha256_hash",
  "assessment_data": {
    "mental_state": {
      "affect": 0.3,
      "arousal": 0.7,
      "cognition": 0.5,
      "social": 0.4,
      "behavioral": 0.6
    },
    "risk_factors": ["IsolationPattern", "SleepDisruption"],
    "protective_factors": ["TreatmentEngagement"],
    "clinical_context": {
      "diagnosis": "major_depressive_disorder",
      "medications": ["sertraline_100mg"],
      "last_assessment": "2025-10-15T10:30:00Z"
    }
  }
}

Response:
{
  "risk_assessment": {
    "risk_score": 0.72,
    "risk_level": "moderate_high",
    "confidence": 0.85,
    "predicted_trajectory": [...],
    "recommended_interventions": [
      {
        "type": "increase_monitoring",
        "priority": "high",
        "rationale": "Isolation pattern detected with declining affect"
      },
      {
        "type": "medication_review",
        "priority": "medium",
        "rationale": "Current treatment may need adjustment"
      }
    ],
    "explanation": {
      "symbolic_reasoning": "Patient shows isolation pattern...",
      "temporal_analysis": "Behavioral trajectory indicates...",
      "similar_cases": 127
    }
  },
  "audit_id": "audit_xyz789"
}

Treatment Response Prediction:

POST /api/v1/medical/predict-treatment
Content-Type: application/json

{
  "patient_profile": {
    "patient_id_hash": "sha256_hash",
    "demographics": {
      "age_range": "35-44",
      "gender": "female"
    },
    "clinical_history": {
      "diagnoses": ["major_depressive_disorder"],
      "prior_treatments": ["citalopram", "cbt"],
      "response_history": [...]
    },
    "current_state": {...}
  },
  "proposed_treatment": {
    "type": "medication",
    "medication": "venlafaxine",
    "dosage": "75mg",
    "adjunct_therapy": "mindfulness_based_cbt"
  }
}

Response:
{
  "prediction": {
    "response_probability": 0.68,
    "response_type": "partial_remission",
    "time_to_response": "6-8 weeks",
    "confidence": 0.73,
    "similar_cases": 243,
    "evidence_base": [
      {
        "study": "Meta-analysis PMID:12345678",
        "relevance": 0.85
      }
    ]
  }
}

6.2 Performance Requirements

Latency Targets:

  • Risk assessment: < 200ms (leveraging AIMDS <10ms detection + <100ms analysis)
  • Treatment prediction: < 500ms
  • Compliance monitoring: < 100ms
  • Real-time alert generation: < 50ms

Throughput:

  • Support 10,000+ concurrent patients
  • Process 1,000 assessments/second
  • Handle 100 real-time alert evaluations/second

Accuracy:

  • Risk prediction AUC > 0.85
  • Treatment response prediction AUC > 0.75
  • False positive rate < 10%
  • Sensitivity for high-risk cases > 90%

6.3 Data Storage

Vector Database (AgentDB):

pub struct PatientVectorStore {
    agentdb: AgentDBClient,
}

impl PatientVectorStore {
    pub async fn store_patient_embedding(
        &self,
        patient_id_hash: String,
        embedding: Vec<f64>,
        metadata: PatientMetadata,
    ) -> Result<(), StorageError> {
        self.agentdb.insert(
            collection: "patient_states",
            vector: embedding,
            metadata: json!({
                "patient_id_hash": patient_id_hash,
                "timestamp": Utc::now(),
                "diagnosis": metadata.diagnosis,
                "risk_level": metadata.risk_level,
            }),
        ).await
    }

    pub async fn find_similar_patients(
        &self,
        query_embedding: Vec<f64>,
        k: usize,
    ) -> Result<Vec<SimilarPatient>, StorageError> {
        // Use AgentDB's 150x faster HNSW search
        let results = self.agentdb.search(
            collection: "patient_states",
            query: query_embedding,
            top_k: k,
        ).await?;

        Ok(results)
    }
}

Time-Series Storage:

  • Patient behavioral sequences
  • Treatment response timelines
  • Medication compliance history
  • Clinical assessment longitudinal data

7. Ethical & Clinical Considerations

7.1 Explainability

Clinical Transparency:

  • All predictions must provide human-readable explanations
  • Symbolic reasoning traces must be accessible to clinicians
  • Confidence scores must be clearly communicated
  • Similar case references for evidence-based reasoning

7.2 Human-in-the-Loop

Clinician Oversight:

  • AI provides recommendations, not decisions
  • High-risk predictions require clinician review
  • Override mechanisms for clinical judgment
  • Feedback loops for model improvement

7.3 Bias Mitigation

Fairness Considerations:

  • Regular bias audits across demographic groups
  • Balanced training data representation
  • Fairness metrics monitoring (demographic parity, equal opportunity)
  • Transparent reporting of model limitations

7.4 Safety Mechanisms

Patient Safety:

  • Conservative thresholds for high-risk alerts
  • Escalation protocols for critical predictions
  • Failsafe mechanisms for system errors
  • Regular clinical validation

8. Validation & Testing

8.1 Clinical Validation

Validation Studies:

  1. Retrospective validation on historical data
  2. Prospective validation with clinical outcomes
  3. Inter-rater reliability with clinician assessments
  4. Sensitivity analysis for edge cases

8.2 Performance Benchmarks

Test Metrics:

  • Prediction accuracy (AUROC, AUPRC)
  • Calibration curves
  • Precision-recall at various thresholds
  • Latency measurements
  • Throughput stress testing

8.3 Compliance Testing

Regulatory Validation:

  • HIPAA Security Rule compliance
  • GDPR Article 22 (automated decision-making)
  • FDA 21 CFR Part 11 (if applicable)
  • State medical privacy laws

9. Deployment Architecture

9.1 Infrastructure

Cloud Deployment:

# Kubernetes deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: psycho-symbolic-medical-api
spec:
  replicas: 3
  selector:
    matchLabels:
      app: medical-reasoning
  template:
    spec:
      containers:
      - name: api-server
        image: aimds/medical-reasoning:latest
        env:
        - name: AIMDS_ENDPOINT
          value: "http://aimds-service:3000"
        - name: AGENTDB_ENDPOINT
          value: "http://agentdb-service:8080"
        resources:
          requests:
            memory: "4Gi"
            cpu: "2"
          limits:
            memory: "8Gi"
            cpu: "4"
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10

9.2 Monitoring

Observability Stack:

  • Prometheus metrics (via AIMDS metrics system)
  • Grafana dashboards for clinical metrics
  • ELK stack for audit log analysis
  • Alert Manager for critical notifications

9.3 Disaster Recovery

Business Continuity:

  • Multi-region deployment
  • Automated backups (encrypted)
  • Point-in-time recovery
  • Failover procedures
  • Data replication strategy

10. Future Enhancements

10.1 Advanced Features

  • Multi-modal data integration (text, speech, wearables)
  • Causal inference for treatment effects
  • Federated learning across institutions
  • Real-time EEG/physiological monitoring integration
  • Natural language understanding for clinical notes

10.2 Research Integration

  • Clinical trial matching
  • Personalized medicine protocols
  • Population health analytics
  • Epidemiological modeling

11. References

Academic Literature

  • DSM-5 diagnostic criteria encoding
  • ICD-10/11 classification systems
  • Clinical prediction rule development
  • Behavioral psychology research
  • Temporal dynamics in mental health

Technical Standards

  • HL7 FHIR for healthcare interoperability
  • SNOMED CT clinical terminology
  • LOINC for laboratory observations
  • IEEE 11073 for medical device communication

Regulatory Guidance

  • FDA guidance on clinical decision support
  • HIPAA Security Rule
  • GDPR Article 9 (health data processing)
  • ISO 27001 information security

Appendix A: Symbolic Encoding Examples

Depression State Encoding

MentalState {
    affect: 0.25,              // Low positive affect
    arousal: 0.35,             // Low energy
    cognition: 0.40,           // Impaired concentration
    social: 0.30,              // Social withdrawal
    behavioral: 0.35,          // Reduced activity
    risk_factors: vec![
        RiskSymbol::IsolationPattern,
        RiskSymbol::SleepDisruption,
        RiskSymbol::CognitiveImpairment,
    ],
    protective_factors: vec![
        ProtectiveSymbol::TreatmentEngagement,
    ],
}

Anxiety State Encoding

MentalState {
    affect: 0.40,              // Negative valence
    arousal: 0.85,             // High arousal
    cognition: 0.55,           // Racing thoughts
    social: 0.50,              // Avoidance
    behavioral: 0.65,          // Restlessness
    risk_factors: vec![
        RiskSymbol::SleepDisruption,
        RiskSymbol::SubstanceUse,
    ],
    protective_factors: vec![
        ProtectiveSymbol::CopingSkills,
        ProtectiveSymbol::SocialSupport,
    ],
}

Appendix B: Integration Code Templates

See implementation examples in:

  • /plans/examples/risk-assessment.rs
  • /plans/examples/treatment-prediction.rs
  • /plans/examples/compliance-monitoring.rs

Document Control:

  • Version: 1.0.0
  • Last Updated: 2025-10-30
  • Next Review: 2025-11-30
  • Owner: Medical AI Integration Team
  • Approvers: Clinical Lead, HIPAA Officer, Technical Lead
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment