This comprehensive implementation plan synthesizes battle-tested techniques from Lean4, Rust, Erlang, verified systems, and modern JIT compilers to deliver a production-ready agentic programming language achieving sub-100ms compilation, nanosecond-scale agent operations, and formal verification for critical paths.
What you’re building: A hybrid programming language combining Lean4’s formal verification with blazingly fast compilation, actor-based agent orchestration, AI-driven optimization, and vector-backed agent memory. The system targets sub-100ms development builds, nanosecond-scale agent message passing, and provably correct execution for security-critical kernels.
Why it matters: Current agent frameworks lack formal correctness guarantees, suffer from high latency (10-100ms message passing), and provide no cost optimization across heterogeneous AI providers. This language uniquely combines three critical properties—speed, safety, and intelligence—enabling trustworthy autonomous agents at scale.
Core innovation: A tri-layer architecture where formally verified kernels enforce safety boundaries while high-performance runtime delivers throughput, with AI optimization adapting execution strategy dynamically based on cost and performance profiles. The compiler itself learns from execution patterns to improve optimization decisions over time.
Production readiness: Every technique in this plan comes from proven systems—seL4’s verified microkernel patterns, Zig’s incremental compilation, Erlang’s actor scheduling, MLGO’s learned optimizations, and Qdrant’s sub-millisecond vector search. This isn’t research—it’s engineering synthesis.
The compiler must achieve sub-100ms compilation through aggressive incrementality while preserving Lean4’s proof-carrying capabilities. Build on Lean4’s self-hosted compiler architecture but replace the C backend with a dual-path system.
Compilation Pipeline Architecture:
SOURCE CODE (.ag files)
↓ (5-15ms)
┌─────────────────────────────────────┐
│ LEAN4 ELABORATION LAYER │
│ • Macro expansion, type checking │
│ • Proof term construction │
│ • Implicit argument resolution │
└─────────────┬───────────────────────┘
↓
┌─────────────▼───────────────────────┐
│ QUERY CACHE (Salsa-based) │
│ • 128-bit fingerprint (SHA-256) │
│ • Red-green dependency tracking │
│ • Memory cache (80-90% hit rate) │
│ • Disk cache (60-70% hit rate) │
└──────┬──────────────────┬───────────┘
[HIT]│ [MISS]│
│ ↓
│ ┌──────────────▼──────────┐
│ │ IR GENERATION │
│ │ • LambdaPure IR │
│ │ • Proof erasure │
│ │ • FBIP optimization │
│ └──────────┬──────────────┘
│ ↓
│ ┌──────────▼──────────────┐
│ │ DUAL-PATH SPLIT │
│ └──┬────────────────┬─────┘
│ │ [DEBUG] [PROD]│
│ ↓ ↓
│ ┌────▼──────┐ ┌────▼──────┐
│ │ CRANELIFT │ │ LLVM │
│ │ BACKEND │ │ BACKEND │
│ │ 60-180ms │ │ 1-5 sec │
│ └────┬──────┘ └────┬──────┘
│ ↓ ↓
└───▶ WASM WASM
+ Native + Native
(Development) (Production)
Critical Path Optimizations:
Function-level granularity enables surgical recompilation. When a developer changes one function, the system recompiles only that function and its direct dependents—typically completing in 10-50ms. Rust’s query-based approach with red-green marking provides the foundation: changed queries turn red, propagating to dependents, while unchanged queries remain green and serve cached results. LRU memory cache (200MB typical) handles hot compilations in 0.1-1ms, disk cache (2GB typical) serves cold starts in 2-5ms, and only cache misses trigger actual compilation at 5-20ms per function.
Cranelift provides the baseline compiler for debug builds. Unlike LLVM’s extensive optimization pipeline (requiring 300-1500ms), Cranelift generates code in 60-180ms with minimal optimization. Streaming compilation processes functions as they’re parsed, eliminating wait time. Position-independent code with Global Offset Tables enables Zig-style in-place binary patching—when only function bodies change but signatures remain stable, patch bytes directly into the binary within 1-3ms rather than relinking.
Implementation Milestones:
Week 1-2: Fork Lean4 compiler, implement Salsa query system wrapper around existing elaboration stage. Measure baseline compilation times.
Week 3-4: Integrate Cranelift backend for IR to machine code. Implement WASM target with streaming compilation APIs. Benchmark against Lean4’s C backend.
Week 5-6: Build function-level dependency tracking. Implement fingerprint-based caching with LRU + disk storage. Target 80% cache hit rate on typical workflows.
Week 7-8: Optimize hot paths—parallel parsing, work-stealing scheduler for compilation tasks (256 task local queues per thread). Validate sub-100ms incremental builds for single-function changes.
Security-critical components—ledger operations, policy enforcement, memory garbage collection—must provide mathematical correctness guarantees. Follow Lean4’s FBIP (Functional But In-Place) paradigm where pure functional code compiles to destructive updates when safe, achieving zero allocations for non-shared data structures.
Proof Surface Design:
The kernel maintains minimal trusted computing base following foundational proof-carrying code principles. Rather than verifying every line at runtime, prove correctness statically at boundaries and run unchecked optimized code in hot paths.
Ledger Module:
-- High-level specification (verified once)
structure Ledger where
balances : Map AccountId Balance
inv : BalanceConservation balances -- Σ balances = constant
-- Executable specification (verified refinement)
def transfer (l : Ledger) (from to : AccountId) (amount : Balance) :
Option Ledger :=
if l.balances.get from ≥ amount then
some { balances := l.balances
.adjust from (· - amount)
.adjust to (· + amount),
inv := by proof_of_conservation }
else none
-- Proof: refinement → executable preserves invariants
theorem transfer_safe : ∀ l, transfer l from to amt |>.isSome →
(transfer l from to amt).get.invMemory GC Module:
-- Reference counting with Perceus optimization
structure RcObject where
rc : UInt32 -- Reference count
tag : UInt32 -- Type tag for polymorphism
data : Array Byte -- Payload
-- Proof: RC operations maintain object graph integrity
def inc (obj : RcObject) : RcObject :=
{ obj with rc := obj.rc + 1 }
def dec (obj : RcObject) : Option RcObject :=
if obj.rc = 1 then
none -- Deallocate
else
some { obj with rc := obj.rc - 1 }
-- Uniqueness check enables in-place updates (FBIP)
def isUnique (obj : RcObject) : Bool := obj.rc = 1
-- Proof: Unique objects can be mutated safely
theorem unique_mutation_safe :
isUnique obj → ∀ f, mutate obj f ≡ pure_transform obj fPolicy Enforcement Kernel:
-- Capability-based security (seL4 pattern)
structure Capability where
resource : ResourceId
rights : Set Permission
proof : ValidCapability resource rights
-- Policy specification
def enforce_policy (cap : Capability) (action : Action) : Bool :=
action.required_perms ⊆ cap.rights
-- Runtime checker (small, verified)
def check_access (cap : Capability) (action : Action) :
Option (AuthorizedAction cap action) :=
if enforce_policy cap action then
some ⟨action, by proof_of_authorization⟩
else noneVerification Overhead Budget:
Based on seL4 (zero runtime overhead, 20 person-years initial proof effort) and CompCert (zero runtime overhead, proven correct compilation), target zero runtime overhead for verified components. Verification happens at compile time—generated code is identical to unverified equivalent. Budget 2-4 weeks per kernel module (ledger, GC, policy) for initial proof development, leveraging Lean4’s automation.
Proof maintenance overhead runs 12% of original time for subsequent changes (seL4 data). As the system matures, proof libraries accumulate and new proofs reuse existing lemmas, reducing effort to 1-2 person-days for typical modifications.
Implementation Milestones:
Week 1-2: Design proof kernel API surface. Identify minimal trusted computing base (target \u003c1000 lines for checker core).
Week 3-4: Implement ledger module with balance conservation proofs. Use Lean4’s tactics for proof automation.
Week 5-6: Build reference-counted GC with Perceus optimization. Prove memory safety properties.
Week 7-8: Implement capability-based policy enforcement. Integrate with runtime, measure zero overhead.
The agent runtime must achieve \u003c200ns message send latency and 100K+ messages/second per core. Draw from CAF’s flat message layout (168ns message creation), Tokio’s work-stealing scheduler (562ns ping-pong), and Pony’s zero-copy reference capabilities.
Runtime Architecture:
┌──────────────────────────────────────────────┐
│ AGENT RUNTIME SCHEDULER │
├──────────────────────────────────────────────┤
│ Work-Stealing Topology (per-core) │
│ ┌────────────────────────────────────────┐ │
│ │ LOCAL QUEUE (256 tasks, LIFO slot) │ │
│ │ • Fixed-size ring buffer │ │
│ │ • Zero atomic ops on fast path │ │
│ │ • LIFO slot for message-passing opt │ │
│ └────────────────────────────────────────┘ │
│ ↓ (overflow) │
│ ┌────────────────────────────────────────┐ │
│ │ GLOBAL QUEUE (unbounded, MPMC) │ │
│ │ • Checked every ~60 tasks │ │
│ │ • Crossbeam-style epoch reclamation │ │
│ └────────────────────────────────────────┘ │
│ ↑ (steal) │
│ ┌────────────────────────────────────────┐ │
│ │ STEAL PROTOCOL │ │
│ │ • Throttled: max stealers = workers/2 │ │
│ │ • Steal half of remote queue │ │
│ │ • Randomized victim selection │ │
│ └────────────────────────────────────────┘ │
└──────────────────────────────────────────────┘
Message Passing Implementation:
Use Pony-inspired reference capabilities to enable zero-copy sends. Capabilities tracked at compile time via Lean4’s type system prove data race freedom.
-- Reference capability types
inductive RefCap where
| iso : RefCap -- Isolated: unique read/write, sendable
| val : RefCap -- Value: immutable, freely shareable
| ref : RefCap -- Reference: local read/write, not sendable
| tag : RefCap -- Tag: identity only, for actor refs
-- Messages are iso or val only
structure Message (α : Type) (cap : RefCap) where
payload : α
proof : cap = .iso ∨ cap = .val
-- Agent mailbox (bounded with backpressure)
structure Mailbox where
queue : BoundedQueue Message -- Capacity 1000
high_water : UInt32 -- 800
low_water : UInt32 -- 200
-- Send operation (non-blocking)
def send {α : Type} (mb : Mailbox) (msg : Message α .iso) :
Result Unit BackpressureSignal :=
if mb.queue.len \u003e mb.high_water then
.error ⟨.mailbox_full, mb.queue.len⟩
else
mb.queue.push msg -- Zero-copy due to iso guarantee
.ok ()Orchestration Primitives:
Implement eight core primitives with minimal overhead targeting the latency budgets from research findings.
-- Spawn: \u003c500ns
def spawn (behavior : AgentBehavior) (mailbox_size : UInt32 := 1000) :
AgentRef :=
let agent_id := allocate_agent_id()
let mailbox := Mailbox.new mailbox_size
scheduler.submit_task ⟨agent_id, behavior, mailbox⟩
AgentRef.new agent_id
-- Signal: \u003c100ns
def signal (target : AgentRef) (msg : Message α .iso) : Result Unit :=
scheduler.local_queue.push_to_lifo_slot ⟨target, msg⟩
waker.wake target
.ok ()
-- Await: \u003c100ns setup
def await (future : Future α) : α :=
register_waker current_agent.waker
suspend_current_agent
-- Woken when future resolves
future.get
-- Channel: \u003c50ns enqueue
structure Channel (α : Type) where
sender : Sender α
receiver : Receiver α
capacity : UInt32
-- Quorum: coordinate N agents
def quorum (agents : List AgentRef) (threshold : UInt32)
(request : Message) : Future (List Response) :=
let counter := AtomicUInt32.new 0
let responses := ConcurrentVec.new
for agent in agents do
spawn_detached do
let resp ← send_and_wait agent request
responses.push resp
counter.fetch_add 1
await (counter.load ≥ threshold)
responses.take threshold
-- Shard: consistent hash distribution
def shard (key : ShardKey) (shards : Array AgentRef) : AgentRef :=
let hash := hash_key key
let idx := hash % shards.len
shards[idx]
-- Lease: distributed lease with TTL
structure Lease where
resource : ResourceId
holder : AgentRef
expires : Timestamp
renewal_channel : Channel RenewalRequestScheduler Design with Predictive Algorithms:
The scheduler must make intelligent decisions about task placement, preemption, and work distribution. Implement Go-style G-M-P model with enhancements from research.
-- Scheduler state (per-core)
structure SchedulerCore where
local_queue : FixedQueue Task 256
lifo_slot : Option Task -- Fast path for ping-pong
global_queue : MPMCQueue Task -- Overflow + stealing source
timer_wheel : TimerWheel -- Efficient timeout management
-- Predictive scheduling state
agent_profiles : Map AgentId Profile -- Historical execution patterns
load_predictor : LoadPredictor -- ML-based load forecasting
-- Agent execution profile
structure Profile where
avg_exec_time : Duration -- Exponential moving average
msg_rate : Float -- Messages processed per second
cpu_intensity : Float -- 0.0-1.0 scale
priority : Priority -- User-defined or learned
-- Predictive scheduling decision
def schedule_next_task (s : SchedulerCore) : Option Task :=
match s.lifo_slot with
| some task =\u003e
-- Fast path: message-passing optimization
s.lifo_slot := none
some task
| none =\u003e
if s.local_queue.len \u003e 0 then
-- Local work
s.local_queue.pop()
else if should_check_global s then
-- Global queue (every ~60 tasks)
s.global_queue.try_pop()
else if should_steal s then
-- Work stealing with prediction
let victim := select_victim_predictive s
steal_from victim
else
none
-- Predictive victim selection
def select_victim_predictive (s : SchedulerCore) : CoreId :=
-- Prefer cores with high queue depth but low CPU intensity
-- (more likely to have stealable work, less likely to be cache-hot)
all_cores
.filter (λ c =\u003e c.local_queue.len \u003e 128)
.max_by (λ c =\u003e c.local_queue.len / (1.0 + c.load_predictor.cpu_util))Implementation Milestones:
Week 9-10: Implement core scheduler with work-stealing. Benchmark spawn latency (target \u003c500ns) and message throughput (target 100K msg/s per core).
Week 11-12: Build reference capability system in type checker. Implement zero-copy message sends with compile-time data-race freedom proofs.
Week 13-14: Implement all eight orchestration primitives. Measure latency for each (spawn \u003c500ns, signal \u003c100ns, channel ops \u003c50ns).
Week 15-16: Add predictive scheduling with agent profiling. Integrate timer wheel for efficient timeout management. Load test with 100K+ concurrent agents.
For distributed coordination, implement Raft consensus for quorum operations and efficient broadcasting patterns for mesh communication.
Quorum Protocol Integration:
-- Raft-based quorum for strong consistency
structure RaftCluster where
leader : Option NodeId
members : Array NodeId
log : ReplicationLog
election_timeout : Duration -- 150-300ms randomized
-- Quorum operation with Raft
def quorum_raft (cluster : RaftCluster) (operation : Operation) :
Future Result :=
match cluster.leader with
| some leader_id =\u003e
-- Send to leader
let resp ← rpc leader_id ⟨.quorum_request, operation⟩
-- Leader replicates to majority before responding
resp
| none =\u003e
-- Election in progress, retry with backoff
await_leader_election cluster
quorum_raft cluster operation
-- Broadcasting for mesh (gossip protocol)
def broadcast_mesh (agents : Set AgentRef) (msg : Message) : Unit :=
let fanout := 3 -- Each agent forwards to 3 random peers
for agent in random_sample agents fanout do
send_async agent msg
-- Logarithmic propagation: reaches all agents in O(log N) roundsImplementation Milestones:
Week 15-16: Implement Raft consensus library (leader election, log replication). Target \u003c100ms quorum formation for 5-node clusters in same region. Integrate with orchestration primitives.
Integrate LLMs for automated code optimization, test synthesis, and witness generation. Follow Microsoft’s MLGO approach—embed models via XLA AOT compilation to eliminate runtime dependencies.
LLM Optimization Pipeline:
SOURCE CODE
↓
┌───────────────────────────────────┐
│ STATIC ANALYSIS │
│ • Extract AST features │
│ • Identify optimization targets │
│ • Hot loop detection │
└───────────┬───────────────────────┘
↓
┌───────────▼───────────────────────┐
│ LLM ANALYSIS (Batch Mode) │
│ • Meta LLM Compiler (13B) │
│ • Input: LLVM-IR + context │
│ • Output: Optimization suggestions│
│ • XLA AOT compiled (no runtime) │
└───────────┬───────────────────────┘
↓
┌───────────▼───────────────────────┐
│ VALIDATION LAYER │
│ • SMT solver verification (Z3) │
│ • Semantic equivalence check │
│ • Performance regression testing │
└───────────┬───────────────────────┘
↓
┌───────────▼───────────────────────┐
│ SELECTIVE APPLICATION │
│ • Apply validated optimizations │
│ • Track success/failure │
│ • Update model via feedback │
└───────────────────────────────────┘
Auto-Vectorization with ML:
-- ML-guided vectorization decision
structure VectorizationConfig where
vectorization_factor : UInt32 -- VF: 2, 4, 8, 16
interleave_factor : UInt32 -- IF: 1, 2, 4
cost_estimate : Float -- Predicted speedup
-- Graph neural network input
structure LoopGraph where
nodes : Array GraphNode -- Instructions
edges : Array DataFlowEdge -- Dependencies
features : LoopFeatures -- Static properties
def ml_vectorizer (loop : Loop) : VectorizationConfig :=
let graph := extract_loop_graph loop
let embedding := gnn_encoder.encode graph
let (vf, if) := vectorization_policy_network.predict embedding
let cost := cost_model.estimate loop vf if
⟨vf, if, cost⟩
-- Apply if cost_estimate \u003e 1.2 (20% speedup threshold)
def apply_vectorization (loop : Loop) : Loop :=
let config := ml_vectorizer loop
if config.cost_estimate \u003e 1.2 then
vectorize_loop loop config.vectorization_factor config.interleave_factor
else
loop -- Keep originalTest Synthesis Pipeline:
Follow MuTAP’s mutation-guided approach achieving 93.57% mutation score.
-- LLM-based test generation
def synthesize_tests (function : Function) : List Test :=
-- Phase 1: Generate initial tests
let initial_tests := llm_generate_tests function
-- Phase 2: Syntax/semantic repair
let repaired_tests := initial_tests.filter_map repair_test
-- Phase 3: Mutation testing
let mutants := generate_mutants function
let mutation_score := calculate_mutation_score repaired_tests mutants
-- Phase 4: Augment prompt with surviving mutants
if mutation_score \u003c 0.9 then
let surviving := mutants.filter (λ m =\u003e survives m repaired_tests)
let targeted_tests := llm_generate_killing_tests function surviving
repaired_tests ++ targeted_tests
else
repaired_tests
-- Invariant generation (automated witness)
def generate_invariants (function : Function) : List Invariant :=
let loop_invariants := infer_loop_invariants function
let pre_conditions := infer_preconditions function
let post_conditions := infer_postconditions function
loop_invariants ++ pre_conditions ++ post_conditionsImplementation Milestones:
Week 17-18: Integrate Meta LLM Compiler (13B model) via XLA AOT. Implement feature extraction from LLVM-IR. Benchmark inference latency (target \u003c100ms for batch mode).
Week 19-20: Build ML-guided auto-vectorization. Train GNN+DRL model on loop dataset. Validate 10-30% speedup on vectorizable code.
Week 21-22: Implement mutation-guided test synthesis. Integrate MutPy-style mutant generation. Target 90%+ mutation score.
Week 23-24: Add automated invariant generation with Z3 SMT solver. Implement validation layer that rejects incorrect optimizations.
Implement tiered JIT compilation with profile-guided optimization and dynamic lane selection for multi-provider inference.
Tiered JIT Architecture:
-- Four-tier compilation strategy (V8-inspired)
structure JITState where
tier0 : Interpreter -- 0ms startup, 1x speed
tier1 : BaselineJIT -- 1-5ms compile, 5-15x speed
tier2 : OptimizingJIT -- 10-50ms compile, 20-50x speed
tier3 : MaxOptJIT -- 100-500ms compile, 50-200x speed
-- Profiling state
call_counts : Map FunctionId UInt32
loop_iterations : Map LoopId UInt32
type_feedback : Map CallSiteId TypeProfile
deopt_counts : Map FunctionId UInt32
-- Optimization triggers
def should_optimize (state : JITState) (func_id : FunctionId) :
Option JITTier :=
let calls := state.call_counts.get func_id
let deopts := state.deopt_counts.get func_id
if calls \u003e 1000 ∧ deopts \u003c 3 then
some .tier3 -- Max optimization
else if calls \u003e 100 ∧ state.has_stable_types func_id then
some .tier2 -- Mid-tier optimization
else if calls \u003e 10 then
some .tier1 -- Baseline compilation
else
none -- Keep interpreting
-- On-stack replacement (OSR) for hot loops
def osr_compile_loop (loop : Loop) (tier : JITTier) : Unit :=
let optimized_code := tier.compile loop
-- Transfer interpreter state to compiled code
stack_replace current_frame optimized_codeDynamic Lane Selection for Multi-Provider Inference:
-- Provider lanes (onnx_local, anthropic, openrouter)
structure InferenceLane where
provider : Provider -- Local, Anthropic, OpenRouter
latency_p50 : Duration -- Historical median
latency_p99 : Duration -- Historical P99
cost_per_token : Float -- USD per 1K tokens
availability : Float -- 0.0-1.0
rate_limit : RateLimit
-- Cost model for lane selection
def select_lane (request : InferenceRequest) (budget : CostBudget)
(latency_req : Duration) : InferenceLane :=
let candidates := all_lanes.filter (λ l =\u003e
l.cost_per_token * request.estimated_tokens ≤ budget.remaining ∧
l.latency_p99 ≤ latency_req ∧
l.availability \u003e 0.95)
-- Multi-objective scoring
candidates.max_by (λ l =\u003e
let cost_score := 1.0 / l.cost_per_token
let latency_score := 1.0 / l.latency_p50.to_float
let availability_score := l.availability
-- Weighted combination (tunable)
0.4 * cost_score + 0.4 * latency_score + 0.2 * availability_score)
-- Adaptive lane routing with learning
structure LaneRouter where
lanes : Array InferenceLane
performance_history : TimeSeriesDB
predictor : CostLatencyPredictor -- ML model
def route_with_prediction (router : LaneRouter) (req : InferenceRequest) :
InferenceLane :=
-- Update predictions based on recent performance
for lane in router.lanes do
let recent_perf := router.performance_history.get_recent lane 100
lane.latency_p50 := exponential_moving_average recent_perf
select_lane req router.cost_budget router.latency_slaCost Tracking and Prediction:
-- Real-time cost tracking
structure CostTracker where
total_cost : Float -- Running total (USD)
cost_by_lane : Map Provider Float
quota : Quota
alerts : Array CostAlert
-- Predictive cost model
structure CostPredictor where
model : NeuralNetwork -- Trained on historical data
-- Predict cost for request
predict (req : InferenceRequest) : Float :=
let features := extract_features req
model.forward features
-- Train on actual outcomes
update (req : InferenceRequest) (actual_cost : Float) : Unit :=
let features := extract_features req
model.backprop features actual_cost
-- Quota enforcement
def enforce_quota (tracker : CostTracker) (req : InferenceRequest) :
Result Unit QuotaExceeded :=
let predicted_cost := tracker.predictor.predict req
if tracker.total_cost + predicted_cost \u003e tracker.quota.limit then
.error ⟨.quota_exceeded, tracker.quota.limit⟩
else
.ok ()Implementation Milestones:
Week 17-18: Implement interpreter tier (tier0) and baseline JIT (tier1). Measure compilation latency (\u003c5ms for tier1) and speedup (5-15x).
Week 19-20: Add optimizing JIT tiers (tier2, tier3) with inline caching and speculative optimization. Implement OSR for hot loops.
Week 21-22: Build multi-lane routing system for inference providers. Implement cost tracking and prediction. Test dynamic lane selection under varying load.
Week 23-24: Integrate reinforcement learning for JIT triggers and lane selection. Train on production workload data. Validate cost savings (target 30-50%).
Integrate high-performance vector database for agent episodic and semantic memory with sub-millisecond retrieval latency.
AgentDB Architecture:
┌─────────────────────────────────────────────┐
│ AGENT MEMORY SYSTEM │
├─────────────────────────────────────────────┤
│ ┌────────────────────────────────────────┐ │
│ │ SHORT-TERM MEMORY (Working Memory) │ │
│ │ • FIFO Buffer (last 50 interactions) │ │
│ │ • Token limit: 8K-128K │ │
│ │ • Latency: \u003c1ms (in-memory) │ │
│ └────────────────────────────────────────┘ │
│ ↓ │
│ ┌────────────────────────────────────────┐ │
│ │ LONG-TERM MEMORY │ │
│ │ ┌──────────────┬──────────────────┐ │ │
│ │ │ Semantic │ Episodic │ │ │
│ │ │ Memory │ Memory │ │ │
│ │ │ (Facts) │ (Events) │ │ │
│ │ │ │ │ │ │
│ │ │ Vector DB │ Time-indexed │ │ │
│ │ │ (Qdrant) │ Event Log │ │ │
│ │ │ HNSW Index │ + Graph │ │ │
│ │ │ M=16 │ (Causal Edges) │ │ │
│ │ │ Latency: │ Latency: │ │ │
│ │ │ 2-10ms │ 5-15ms │ │ │
│ │ └──────────────┴──────────────────┘ │ │
│ └────────────────────────────────────────┘ │
│ ↓ │
│ ┌────────────────────────────────────────┐ │
│ │ PROCEDURAL MEMORY (Skills) │ │
│ │ • Compiled functions │ │
│ │ • Learned policies │ │
│ │ • Cached in agent code │ │
│ └────────────────────────────────────────┘ │
└─────────────────────────────────────────────┘
Vector Database Integration (Qdrant):
-- Qdrant client via FFI (N-API bindings)
structure QdrantClient where
collection_name : String
embedding_dim : UInt32 -- 1536 for ada-002
distance_metric : DistanceMetric -- Cosine, Euclidean
-- Episode storage with causal tracking
structure Episode where
id : EpisodeId
timestamp : Timestamp
context : String -- What was happening
action : String -- What agent did
outcome : String -- What resulted
embedding : Vector Float -- 1536-dim embedding
entities : List EntityId -- Referenced entities
causal_links : List EpisodeId -- Previous episodes that influenced this
-- Store episode
def store_episode (db : QdrantClient) (episode : Episode) : Future Unit :=
let point := QdrantPoint.new
episode.id
episode.embedding
{ timestamp := episode.timestamp
, context := episode.context
, action := episode.action
, outcome := episode.outcome
, entities := episode.entities
, causal_links := episode.causal_links }
db.upsert point
-- Retrieve relevant episodes (sub-millisecond)
def retrieve_episodes (db : QdrantClient) (query : String)
(limit : UInt32 := 10) : Future (List Episode) :=
let query_embedding := embed query -- 20-50ms (cached)
let results ← db.search
query_embedding
limit
{ hnsw_ef := 64 -- Tune for speed vs accuracy
, metric := .cosine
, filter := none } -- Optional metadata filter
results.map decode_episodeHNSW Configuration for Sub-Millisecond Search:
-- HNSW parameters (tuned for speed)
structure HNSWConfig where
m : UInt32 := 16 -- Connections per layer
ef_construction : UInt32 := 200 -- Build-time quality
ef_search : UInt32 := 64 -- Query-time vs recall tradeoff
-- Memory usage: ~1.2-1.4x base vector size
-- 1M vectors × 1536 dims × 4 bytes = 6.1 GB
-- With HNSW overhead: ~7.3-8.5 GB
-- Performance targets
-- Dataset: 1M vectors, 1536 dimensions
-- Recall@10: 95%+
-- Latency P99: \u003c10ms
-- Throughput: 1K+ QPS per nodeIncremental Learning and Memory Consolidation:
-- Background memory update (async)
structure MemoryConsolidator where
update_queue : Channel MemoryUpdate
consolidation_policy : Policy
-- Runs in background thread
run : Unit :=
loop do
let update ← update_queue.recv()
match update with
| .store_episode ep =\u003e
-- Extract facts from episode
let facts := extract_facts ep
for fact in facts do
store_semantic_memory fact
-- Store episode with causal links
infer_causal_links ep -- Graph analysis
store_episode ep
| .consolidate =\u003e
-- Merge similar episodes
cluster_and_summarize recent_episodes
-- Decay old memories
apply_temporal_decay threshold := 0.3
| .prune_low_relevance =\u003e
-- Remove memories with low access frequency
delete_if (λ m =\u003e m.access_count \u003c 3 ∧ m.age \u003e 90_days)
-- Explainable recall
def explain_recall (query : String) (episodes : List Episode) :
List Explanation :=
episodes.map (λ ep =\u003e
{ similarity_score := cosine_similarity query ep.embedding
, matching_entities := query.entities ∩ ep.entities
, causal_chain := trace_causal_path ep
, timestamp := ep.timestamp
, reasoning := "Retrieved because: high similarity (" ++
show ep.similarity ++ ") and shares entities: " ++
show matching_entities })Implementation Milestones:
Week 25: Set up Qdrant cluster, configure HNSW index. Implement N-API bindings for Node.js FFI. Benchmark search latency (target \u003c10ms P99).
Week 26: Build episode storage with causal graph. Implement time-indexed event log with graph edges. Test retrieval with complex queries.
Week 27: Implement memory consolidation pipeline (extract facts, cluster episodes, decay scoring). Run background consolidator.
Week 28: Add explainable recall mechanism with similarity scores and reasoning traces. Validate with user studies.
Comprehensive benchmark suite covering all performance targets with statistical analysis and regression detection.
Benchmark Categories:
-- 1. Agent Coordination Benchmarks
structure CoordinationBenchmark where
spawn_latency : Benchmark -- Target: \u003c1ms (local), \u003c10ms (remote)
message_throughput : Benchmark -- Target: 100K-1M msg/s per core
message_latency_p99 : Benchmark -- Target: \u003c10ms
quorum_formation : Benchmark -- Target: \u003c100ms (5 nodes, same region)
run : BenchmarkResults :=
{ spawn_latency := measure_spawn_1M_agents
, message_throughput := measure_ping_pong_throughput
, message_latency := measure_request_response_p99
, quorum := measure_raft_consensus_latency }
-- 2. Compilation Speed Benchmarks
structure CompilationBenchmark where
incremental_single_fn : Benchmark -- Target: \u003c100ms
incremental_10_fn : Benchmark -- Target: \u003c500ms
cache_hit_rate : Benchmark -- Target: \u003e80%
cold_compilation : Benchmark -- Full project (baseline)
run : BenchmarkResults :=
{ incremental_single := edit_one_function_compile
, incremental_10 := edit_ten_functions_compile
, cache_hit := measure_cache_effectiveness
, cold := clean_build_full_project }
-- 3. Proof Verification Overhead
structure VerificationBenchmark where
ledger_operation : Benchmark -- Target: \u003c10% overhead
policy_check : Benchmark -- Target: \u003c5% overhead
gc_cycle : Benchmark -- Target: zero overhead (FBIP)
run : BenchmarkResults :=
{ ledger := measure_transfer_with_vs_without_proofs
, policy := measure_capability_check_overhead
, gc := measure_perceus_vs_standard_gc }
-- 4. Cost Efficiency Metrics
structure CostBenchmark where
cost_per_1k_tasks : Benchmark -- Target: $0.10-$1.00
spot_vs_ondemand_savings : Benchmark -- Target: 40-70% savings
lane_selection_accuracy : Benchmark -- Target: \u003e90% optimal
run : BenchmarkResults :=
{ cost_per_1k := run_1k_agent_tasks_measure_cost
, spot_savings := compare_spot_vs_ondemand_tco
, lane_accuracy := measure_lane_selection_vs_oracle }
-- 5. Chaos Engineering Tests
structure ChaosBenchmark where
pod_termination : Benchmark -- Recovery \u003c5min
network_partition : Benchmark -- Availability \u003e95%
resource_exhaustion : Benchmark -- Graceful degradation
run : BenchmarkResults :=
{ pod_term := inject_pod_delete_measure_recovery
, partition := inject_network_split_measure_availability
, resource := inject_cpu_hog_measure_degradation }Statistical Analysis and Regression Detection:
-- Change point detection (MongoDB approach)
structure PerformanceMonitor where
historical_samples : TimeSeriesDB
detector : ChangePointDetector
-- Check for regression
check_regression (metric : Metric) (new_samples : List Float) :
Option Regression :=
let historical := historical_samples.get_recent metric 1000
let p_value := mann_whitney_u_test historical new_samples
let delta := (mean new_samples - mean historical) / mean historical
if p_value \u003c 0.05 ∧ delta \u003e 0.10 then
some { metric := metric
, degradation := delta
, confidence := 1.0 - p_value
, commit := current_commit() }
else
none
-- Continuous benchmarking pipeline
def run_continuous_benchmarks : Unit :=
on_commit (λ commit =\u003e
-- Quick smoke tests (pre-commit, \u003c1 min)
run_smoke_tests commit
-- Full benchmark suite (post-commit, 5-30 min)
spawn_detached do
let results := run_all_benchmarks commit
-- Detect regressions
for (metric, samples) in results do
match check_regression metric samples with
| some regression =\u003e
alert_regression regression
assign_to_author commit
| none =\u003e
update_baseline metric samplesPerformance Targets Summary:
| Category | Metric | Target | Stretch Goal |
|---|---|---|---|
| Agent Coordination | Spawn latency (local) | \u003c1ms | \u003c500ns |
| Message throughput | 100K msg/s | 1M msg/s | |
| Message latency P99 | \u003c10ms | \u003c5ms | |
| Quorum formation (5 nodes) | \u003c100ms | \u003c50ms | |
| Compilation | Incremental (1 fn) | \u003c100ms | \u003c50ms |
| Cache hit rate | \u003e80% | \u003e90% | |
| Verification | Ledger overhead | \u003c10% | zero |
| Policy overhead | \u003c5% | zero | |
| GC overhead | zero | zero | |
| Cost | Per 1K tasks | $0.10-$1.00 | \u003c$0.10 |
| Spot savings | 40-70% | \u003e70% | |
| Resilience | Recovery time | \u003c5min | \u003c2min |
| Chaos availability | \u003e95% | \u003e99% |
Implementation Milestones:
Week 29: Implement all benchmark categories. Set up continuous benchmarking infrastructure (GitHub Actions, dedicated benchmark servers).
Week 30: Integrate change point detection and regression alerting. Configure thresholds for warnings (5% degradation) and failures (10% degradation).
Week 31: Conduct chaos engineering tests with LitmusChaos. Validate recovery time, availability, and graceful degradation under faults.
Week 32: Document benchmark results, publish performance dashboard, and create runbooks for performance investigation.
// File: trading_agent.ag
agent TradingAgent {
// Skills: declarative capabilities
skills {
analyze_market : (Symbol) -\u003e MarketAnalysis
execute_trade : (Order) -\u003e TradeResult
risk_assessment : (Portfolio) -\u003e RiskScore
}
// Tools: external integrations
tools {
market_data : MarketDataAPI
broker : BrokerAPI
database : PostgreSQL
}
// Memory policies
memory {
short_term : FIFO(capacity: 1000, ttl: 1h)
long_term : VectorDB(
collection: "trading_memories"
index: HNSW(m: 16, ef: 64)
decay: temporal(half_life: 30d)
)
}
// Cost guards
cost_policy {
max_cost_per_decision : $0.10
lane_preference : [onnx_local, anthropic, openrouter]
quota : {
daily: $100.00
on_exceed: alert("quota_exceeded")
}
}
// Behavior definition
behavior trade_decision(signal : MarketSignal) -\u003e Decision {
// Retrieve relevant past trades
let history := @recall("similar trades to $signal", limit: 10)
// Analyze current market
let analysis := @skill(analyze_market, signal.symbol)
// Risk check
let risk := @skill(risk_assessment, current_portfolio)
require risk.score \u003c 0.7
else return Decision.NoTrade("risk too high")
// Execute with cost-aware lane selection
@with_cost_limit($0.05) {
let decision := @llm_call(
provider: auto, // Dynamic lane selection
prompt: "Based on $analysis and $history, should we trade?"
)
// Store decision in memory
@remember(Episode {
context: signal
action: decision
outcome: pending // Updated later
})
return decision
}
}
}
// Multi-agent coordination
orchestration MarketMonitoring {
// Spawn agent pool
let analyzers := @shard(
count: 10,
behavior: PriceAnalyzer,
topology: ring
)
// Distribute symbols across shards
for symbol in watchlist {
let analyzer := @shard_for(symbol, analyzers)
@signal(analyzer, MarketDataUpdate(symbol, latest_price))
}
// Quorum-based consensus
decision ConsensusDecision(trade : Trade) -\u003e bool {
let votes := @quorum(
agents: analyzers,
threshold: 7, // 7 out of 10 must agree
request: VoteRequest(trade),
timeout: 5s
)
return votes.count(v =\u003e v == Vote.Approve) \u003e= 7
}
// Lease-based resource control
critical_section ExecuteTrade(trade : Trade) {
@with_lease(resource: "trading_engine", ttl: 30s) {
let result := broker.execute(trade)
database.record(result)
return result
}
}
// Mesh broadcast
alert AlertAll(message : Alert) {
@broadcast(analyzers, message, fanout: 3)
// Gossip protocol: O(log N) propagation
}
}
// Hot-path specialization
@hot_path
@inline(always)
function fast_distance(a : Vector, b : Vector) : Float {
@simd(avx512) // Explicit SIMD hint
sum := 0.0
for i in 0..a.len {
sum += (a[i] - b[i]) * (a[i] - b[i])
}
return sqrt(sum)
}
// Profile-guided routing
@profile_guided
function adaptive_inference(prompt : String) : Response {
@measure_cost {
// Runtime learns which lane is optimal
@auto_lane_select(
latency_budget: 100ms,
cost_budget: $0.05
) {
return llm_call(prompt)
}
}
}
// Predictive scheduling
@schedule(strategy: predictive)
agent HighPriorityAgent {
@priority(high) // Scheduler gives preference
@cpu_intensive // Hint for core assignment
behavior compute_intensive_task() {
// ...
}
}
// Speculative execution with rollback
@speculative
function maybe_expensive_operation() {
@checkpoint current_state
let result := expensive_call()
if is_invalid(result) {
@rollback current_state
return fallback_result
}
return result
}
Lane Selection Scoring:
lane_score(L) = w₁ × (1 / normalized_cost(L)) +
w₂ × (1 / normalized_latency(L)) +
w₃ × availability(L)
where:
w₁ + w₂ + w₃ = 1 (weight normalization)
normalized_cost(L) = cost_per_token(L) / max_cost_across_lanes
normalized_latency(L) = latency_p50(L) / max_latency_across_lanes
availability(L) = 1 - interruption_rate(L)
Select lane L* = argmax_L lane_score(L)
Dynamic Weight Adjustment:
w₁(t) = base_cost_weight + urgency_penalty(t)
w₂(t) = base_latency_weight - urgency_penalty(t)
urgency_penalty(t) = min(0.3, deadline_pressure(t))
deadline_pressure(t) = (deadline - current_time) / total_time_budget
// As deadline approaches, prioritize latency over cost
Cost Per Task Calculation:
cost_per_task = (compute_cost + network_cost + storage_cost + llm_cost)
where:
compute_cost = (instance_hourly_rate / 3600) × execution_time_seconds
network_cost = (data_transfer_gb × $0.01)
storage_cost = (data_stored_gb × $0.023 / 720) × duration_hours
llm_cost = (tokens / 1000) × provider_rate_per_1k_tokens
Example (typical agent task):
compute: $0.10/hr × 0.001 hr = $0.0001
network: 1MB × $0.01/GB = $0.00001
storage: 10MB × $0.023/GB-mo × (1/720) = $0.0000003
llm: 500 tokens × $0.0001/1K = $0.00005
Total: ~$0.00016 per task
For 1M tasks: ~$160
Total Cost of Ownership:
TCO = infrastructure + operational + hidden_costs
infrastructure = (
reserved_instances × baseline_load_% +
on_demand × peak_spillover_% +
spot_instances × fault_tolerant_%
) × time_period
operational = staffing + tools + training + incidents
hidden_costs = (
downtime_cost × outage_hours +
security_incidents × avg_incident_cost +
performance_degradation × opportunity_cost
)
Target savings: 40-70% vs all on-demand
Spot Instance Optimization:
expected_cost_spot = spot_price × (1 + interruption_rate × overhead_factor)
where:
overhead_factor = checkpoint_cost / task_cost
Example:
spot_price = $0.02/hr (vs $0.10 on-demand)
interruption_rate = 0.05 (5% chance per hour)
overhead_factor = 0.2 (20% overhead to checkpoint/resume)
expected_cost_spot = $0.02 × (1 + 0.05 × 0.2) = $0.0202/hr
Savings: ($0.10 - $0.0202) / $0.10 = 79.8%
-- Real-time cost tracking
structure CostTracker where
total_spent : Float
quota_limit : Float
spend_by_lane : Map Provider Float
predictions : CostPredictor
def can_afford (tracker : CostTracker) (req : Request) : Bool :=
let predicted := tracker.predictions.predict req
tracker.total_spent + predicted ≤ tracker.quota_limit
def select_lane_cost_aware (tracker : CostTracker)
(req : Request) (latency_sla : Duration) : Provider :=
let affordable_lanes :=
all_providers.filter (λ p =\u003e
let cost := estimate_cost p req
tracker.total_spent + cost ≤ tracker.quota_limit ∧
p.latency_p99 ≤ latency_sla)
if affordable_lanes.is_empty then
// Fallback to cheapest
all_providers.min_by (λ p =\u003e p.cost_per_token)
else
// Select best cost/performance in affordable set
affordable_lanes.max_by (λ p =\u003e
lane_score p
(cost_weight := 0.6) // Emphasize cost when quota-constrained
(latency_weight := 0.3)
(availability_weight := 0.1))This implementation plan synthesizes proven techniques from the world’s most successful high-performance systems. Lean4 provides the formal verification foundation for security-critical kernels with zero runtime overhead. Zig and Cranelift deliver sub-100ms compilation through query-based incrementality and aggressive caching. Erlang’s actor model and Tokio’s work-stealing scheduler enable nanosecond-scale agent coordination. MLGO and Meta’s LLM Compiler bring AI-driven optimization to production. Qdrant’s HNSW indexes provide sub-millisecond vector search for agent memory.
The phased approach prioritizes deliverables: Weeks 1-8 establish the compiler foundation and formal verification kernels. Weeks 9-16 build the agent runtime with nanosecond message passing and distributed coordination. Weeks 17-24 integrate AI optimization for both compile-time and runtime adaptation. Weeks 25-28 add vector-backed agent memory with episodic storage and causal tracking. Weeks 29-32 implement comprehensive benchmarking, chaos engineering, and production deployment.
Every target in this plan is grounded in measured performance data from production systems—not aspirational research. The compiler will achieve sub-100ms builds because Zig, Cranelift, and Rust have already demonstrated these speeds. Agents will achieve nanosecond-scale message passing because CAF, Tokio, and Pony have proven the algorithms. Cost optimization will save 40-70% because E-NSGA-III and spot instance strategies deliver these savings in practice.
The result is a production-ready agentic programming language combining three properties rarely seen together: blazing fast compilation for developer productivity, formally verified correctness for security-critical paths, and intelligent runtime optimization for cost efficiency. This isn’t theoretical—it’s engineering synthesis of battle-tested techniques, ready for implementation.