Last active
November 20, 2017 14:51
-
-
Save rmitsch/4cbadc4be22cdd86751abd85d0ee5db5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Exercise 5-1: PCA" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 60, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[-3, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, 3],\n", | |
" [-2, -1, 0, 1, 2, 3, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2]])" | |
] | |
}, | |
"execution_count": 60, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"x = np.array( [ (-3,-2), (-2,-1), (-1,0), (0,1), (1,2), (2,3), (-2,-2), (-1,-1), (0,0), (1,1), (2,2), (-2,-3), (-1,-2), (0,-1), (1,0), (2,1), (3,2)]).T\n", | |
"x" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"*(a)* Compute the covariance matrix M." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 61, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([[ 3. , 2.625],\n", | |
" [ 2.625, 3. ]])" | |
] | |
}, | |
"execution_count": 61, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cov_m = np.cov(x, rowvar=True)\n", | |
"cov_m" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"*(b)* Compute the eigenvalues and eigenvectors of M ." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 62, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"[ 0.375 5.625]\n", | |
"[[-0.70710678 0.70710678]\n", | |
" [ 0.70710678 0.70710678]]\n" | |
] | |
} | |
], | |
"source": [ | |
"eigenvalues, normalized_eigenvectors = np.linalg.eigh(cov_m)\n", | |
"print(eigenvalues)\n", | |
"print(normalized_eigenvectors)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"*(c)* Find the smallest eigenvalue and find the related eigenvector as well. The resulted eigenvector builds the\n", | |
"basis for the new subspace.\n", | |
"Note: Shouldn't we pick the biggest eigenvalue(s) for PCA?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 63, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0" | |
] | |
}, | |
"execution_count": 63, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"min_eigenvalue_index = np.argmin(eigenvalues)\n", | |
"min_eigenvalue_index" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"*(d)* Transform vectors of X in this new subspace. $y = W^T \\times x$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([-0.70710678, 0.70710678])" | |
] | |
}, | |
"execution_count": 64, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"W = normalized_eigenvectors[min_eigenvalue_index]\n", | |
"W" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"array([ 0.70710678, 0.70710678, 0.70710678, 0.70710678, 0.70710678,\n", | |
" 0.70710678, 0. , 0. , 0. , 0. ,\n", | |
" 0. , -0.70710678, -0.70710678, -0.70710678, -0.70710678,\n", | |
" -0.70710678, -0.70710678])" | |
] | |
}, | |
"execution_count": 65, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"W.T.dot(x)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 @ /development/datamining", | |
"language": "python", | |
"name": "datamining" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment