Skip to content

Instantly share code, notes, and snippets.

@npbool
Last active November 15, 2016 17:12
Show Gist options
  • Save npbool/2b06146730d8d74e51809c6a8f7dd796 to your computer and use it in GitHub Desktop.
Save npbool/2b06146730d8d74e51809c6a8f7dd796 to your computer and use it in GitHub Desktop.
Create SciPy sparse matrix from pandas SparseDataFrame
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import scipy.sparse as sps"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>A_a</th>\n",
" <th>A_b</th>\n",
" <th>A_c</th>\n",
" <th>A_d</th>\n",
" <th>B_x</th>\n",
" <th>B_y</th>\n",
" <th>B_z</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" A_a A_b A_c A_d B_x B_y B_z\n",
"0 1 0 0 0 1 0 0\n",
"1 0 1 0 0 1 0 0\n",
"2 0 1 0 0 0 1 0\n",
"3 1 0 0 0 0 1 0\n",
"4 0 0 1 0 0 0 1\n",
"5 0 0 0 1 0 0 1\n",
"6 0 0 1 0 1 0 0"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.get_dummies(pd.DataFrame(dict(A=list('abbacdc'), B=list('xxyyzzx'))), sparse=True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"pandas.sparse.frame.SparseDataFrame"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(df)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"all_series = [df[col] for col in df]\n",
"# Each column is a SparseSeries\n",
"data = np.concatenate([s.sp_values for s in all_series])\n",
"indices = np.concatenate([s.sp_index.indices for s in all_series])\n",
"indptr = np.cumsum([0] + [s.sp_index.indices.shape[0] for s in all_series])\n",
"M = sps.csc_matrix((data, indices, indptr))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(7, 7)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"M.shape"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"14"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"M.nnz"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"matrix([[1, 0, 0, 0, 1, 0, 0],\n",
" [0, 1, 0, 0, 1, 0, 0],\n",
" [0, 1, 0, 0, 0, 1, 0],\n",
" [1, 0, 0, 0, 0, 1, 0],\n",
" [0, 0, 1, 0, 0, 0, 1],\n",
" [0, 0, 0, 1, 0, 0, 1],\n",
" [0, 0, 1, 0, 1, 0, 0]], dtype=uint8)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"M.todense()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment