Created
October 12, 2020 07:23
-
-
Save mocurin/8ab47c8e2f90a5684a4252f697fea682 to your computer and use it in GitHub Desktop.
Tf custom layers & train loops
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import tensorflow as tf\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Train images number: 60000, images size: (28, 28), number of classes: 10\n", | |
"Test images number: 10000\n" | |
] | |
} | |
], | |
"source": [ | |
"# Скачивание датасета\n", | |
"(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()\n", | |
"x_train = x_train / 255.\n", | |
"x_test = x_test / 255.\n", | |
"\n", | |
"print(f\"Train images number: {x_train.shape[0]}, \"\n", | |
" f\"images size: {x_train.shape[1:3]}, \"\n", | |
" f\"number of classes: {tf.unique(y_train)[0].shape[0]}\")\n", | |
"print(f\"Test images number: {x_test.shape[0]}\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Формирование двух пакетов данных, шаффл, создание батчей\n", | |
"BATCH_SIZE = 10\n", | |
"SHUFFLE_BUFFER_SIZE = 2500\n", | |
"SEED = 42\n", | |
"\n", | |
"train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", | |
"test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))\n", | |
"\n", | |
"train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE,\n", | |
" seed=SEED, reshuffle_each_iteration=True)\n", | |
"test_dataset = test_dataset.shuffle(SHUFFLE_BUFFER_SIZE,\n", | |
" seed=SEED, reshuffle_each_iteration=True)\n", | |
"\n", | |
"train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=True)\n", | |
"test_dataset = test_dataset.batch(BATCH_SIZE, drop_remainder=True)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Организация слоев сети\n", | |
"# Нужны полносвязные слои, а так же чтобы работали все примочки\n", | |
"# Параметры оригинального денcа:\n", | |
"# units, activation=None, use_bias=True, kernel_initializer='glorot_uniform',\n", | |
"# bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None,\n", | |
"# activity_regularizer=None, kernel_constraint=None, bias_constraint=None,\n", | |
"\n", | |
"\n", | |
"class Dense(tf.keras.layers.Layer):\n", | |
" def __init__(self, units,\n", | |
" activation=None,\n", | |
" use_bias=True,\n", | |
" kernel_initializer='glorot_uniform',\n", | |
" bias_initializer='zeros',\n", | |
" kernel_regularizer=None,\n", | |
" bias_regularizer=None,\n", | |
" activity_regularizer=None,\n", | |
" kernel_constraint=None,\n", | |
" bias_constraint=None,\n", | |
" *args, **kwargs):\n", | |
" super(Dense, self).__init__(activity_regularizer=activity_regularizer, *args, **kwargs)\n", | |
" self.units = int(units) if not isinstance(units, int) else units\n", | |
" self.activation = activations.get(activation)\n", | |
" self.use_bias = use_bias\n", | |
" self.kernel_initializer = tf.keras.initializers.get(kernel_initializer)\n", | |
" self.bias_initializer = tf.keras.initializers.get(bias_initializer)\n", | |
" self.kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)\n", | |
" self.bias_regularizer = tf.keras.regularizers.get(bias_regularizer)\n", | |
" self.kernel_constraint = tf.keras.constraints.get(kernel_constraint)\n", | |
" self.bias_constraint = tf.keras.constraints.get(bias_constraint)\n", | |
" \n", | |
" def build(self, input_shape):\n", | |
" self.kernel = self.add_weight(name='kernel',\n", | |
" shape=[input_shape[-1], self.units],\n", | |
" dtype=self.dtype,\n", | |
" initializer=self.kernel_initializer,\n", | |
" regularizer=self.kernel_regularizer,\n", | |
" constraint=self.kenrel_constraint,\n", | |
" trainable=True)\n", | |
" self.bias = None\n", | |
" if self.use_bias:\n", | |
" self.bias = self.add_weight(name='bias',\n", | |
" shape=[self.units,],\n", | |
" dtype=self.dtype,\n", | |
" initializer=self.bias_initializer,\n", | |
" regularizer=self.bias_regularizer,\n", | |
" constraint=self.bias_constraint,\n", | |
" trainable=True)\n", | |
" self.built = True\n", | |
" \n", | |
" @tf.function\n", | |
" def call(self, inputs):\n", | |
" outputs = tf.matmul(inputs, self.kernel)\n", | |
" if self.bias: outputs += self.bias\n", | |
" if self.activation: outputs = self.activation(outputs)\n", | |
" return outputs\n", | |
" \n", | |
" def get_config(self):\n", | |
" config = super(Dense, self).get_config()\n", | |
" config.update({\n", | |
" 'units': self.units,\n", | |
" 'activation': activations.serialize(self.activation),\n", | |
" 'use_bias': self.use_bias,\n", | |
" 'kernel_initializer': initializers.serialize(self.kernel_initializer),\n", | |
" 'bias_initializer': initializers.serialize(self.bias_initializer),\n", | |
" 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),\n", | |
" 'bias_regularizer': regularizers.serialize(self.bias_regularizer),\n", | |
" 'activity_regularizer': regularizers.serialize(self.activity_regularizer),\n", | |
" 'kernel_constraint': constraints.serialize(self.kernel_constraint),\n", | |
" 'bias_constraint': constraints.serialize(self.bias_constraint)\n", | |
" })\n", | |
" return config" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Обучение, валидация" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"# Тестирование" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.9" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment