Last active
February 6, 2018 16:56
-
-
Save luerhard/703716567879afefa59c06e5af48c371 to your computer and use it in GitHub Desktop.
my example for data school
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>number_of_nodes</th>\n", | |
" <th>number_of_edges</th>\n", | |
" <th>avg_shortest_path</th>\n", | |
" <th>transitivity</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000</th>\n", | |
" <td>58</td>\n", | |
" <td>363</td>\n", | |
" <td>11.274652</td>\n", | |
" <td>0.990460</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001</th>\n", | |
" <td>35</td>\n", | |
" <td>64</td>\n", | |
" <td>10.470588</td>\n", | |
" <td>0.864198</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002</th>\n", | |
" <td>14</td>\n", | |
" <td>19</td>\n", | |
" <td>4.252747</td>\n", | |
" <td>0.666667</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003</th>\n", | |
" <td>28</td>\n", | |
" <td>83</td>\n", | |
" <td>6.407407</td>\n", | |
" <td>0.950943</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004</th>\n", | |
" <td>26</td>\n", | |
" <td>55</td>\n", | |
" <td>7.030769</td>\n", | |
" <td>0.897436</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" number_of_nodes number_of_edges avg_shortest_path transitivity\n", | |
"2000 58 363 11.274652 0.990460\n", | |
"2001 35 64 10.470588 0.864198\n", | |
"2002 14 19 4.252747 0.666667\n", | |
"2003 28 83 6.407407 0.950943\n", | |
"2004 26 55 7.030769 0.897436" | |
] | |
}, | |
"execution_count": 1, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import networkx as nx\n", | |
"import pandas as pd\n", | |
"import random\n", | |
"\n", | |
"years, graphs = list(zip(*[(year, nx.barbell_graph(random.randint(3,25),random.randint(3,25))) for year in range(2000,2005)]))\n", | |
"df = pd.DataFrame({\"graph\": graphs}, index=years)\n", | |
"\n", | |
"df[\"number_of_nodes\"] = df.graph.apply(nx.number_of_nodes)\n", | |
"df[\"number_of_edges\"] = df.graph.apply(nx.number_of_edges)\n", | |
"df[\"avg_shortest_path\"] = df.graph.apply(nx.average_shortest_path_length)\n", | |
"df[\"transitivity\"] = df.graph.apply(nx.transitivity)\n", | |
"\n", | |
"\n", | |
"df.drop(\"graph\", axis=1)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"The great thing about this is that you can easily compute multiple statistics at once and show them in a nice table." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.4" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment