Skip to content

Instantly share code, notes, and snippets.

@kmader
Created December 5, 2019 14:26
Show Gist options
  • Save kmader/2c5883d476bba37056276b56f1c259e3 to your computer and use it in GitHub Desktop.
Save kmader/2c5883d476bba37056276b56f1c259e3 to your computer and use it in GitHub Desktop.
How to freeze parameters in a model using pytorch
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import torch\n",
"from torch import nn\n",
"class PreModel(nn.Module):\n",
" def __init__(self):\n",
" super(PreModel, self).__init__()\n",
" self.c1 = nn.Conv1d(1, 2, 3, bias=False)\n",
" def forward(self, x):\n",
" return self.c1(x)\n",
"class PostModel(nn.Module):\n",
" def __init__(self, train_eye_net=True):\n",
" super(PostModel, self).__init__()\n",
" self.pre = PreModel()\n",
" for k in self.pre.parameters():\n",
" k.requires_grad = train_eye_net\n",
" self.c2 = nn.Conv1d(2, 3, 4, bias=False)\n",
" def forward(self, x):\n",
" eye_out = self.pre(x)\n",
" return self.c2(eye_out)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"post = PostModel()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def get_param(in_model):\n",
" return {\n",
" tuple(k.size()): k.detach().numpy().copy()\n",
" for k in in_model.parameters()\n",
" }\n",
"old_param = get_param(post)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.MSELoss(reduction='sum')\n",
"optimizer = torch.optim.SGD(post.parameters(), lr=1e-1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Normal training"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"x = torch.randn(2, 1, 10)\n",
"y_pred = post(x)\n",
"y_true = torch.zeros_like(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"for _ in range(10):\n",
" x = torch.randn(2, 1, 10)\n",
" y_pred = post(x)\n",
" loss = criterion(y_pred, y_true)\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def check_match(in_model, in_param):\n",
" for k in in_model.parameters():\n",
" dim = tuple(k.size())\n",
" new_val = k.detach().numpy()\n",
" old_val = in_param[dim]\n",
" if np.allclose(new_val, old_val):\n",
" print(dim, 'matches')\n",
" else:\n",
" print(dim, 'doesnt match', np.mean(np.abs(new_val-old_val)))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 1, 3) doesnt match 0.20992236\n",
"(3, 2, 4) doesnt match 0.101107724\n"
]
}
],
"source": [
"check_match(post, old_param)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Disable require_grad on the first module"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"post_fix = PostModel(train_eye_net=False)\n",
"old_param = get_param(post_fix)\n",
"optimizer = torch.optim.SGD(post_fix.parameters(), lr=1e-1)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"for _ in range(10):\n",
" x = torch.randn(2, 1, 10)\n",
" y_pred = post_fix(x)\n",
" loss = criterion(y_pred, y_true)\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 1, 3) matches\n",
"(3, 2, 4) doesnt match 29.820532\n"
]
}
],
"source": [
"check_match(post_fix, old_param)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment