Created
December 5, 2019 14:26
-
-
Save kmader/2c5883d476bba37056276b56f1c259e3 to your computer and use it in GitHub Desktop.
How to freeze parameters in a model using pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import torch\n", | |
"from torch import nn\n", | |
"class PreModel(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(PreModel, self).__init__()\n", | |
" self.c1 = nn.Conv1d(1, 2, 3, bias=False)\n", | |
" def forward(self, x):\n", | |
" return self.c1(x)\n", | |
"class PostModel(nn.Module):\n", | |
" def __init__(self, train_eye_net=True):\n", | |
" super(PostModel, self).__init__()\n", | |
" self.pre = PreModel()\n", | |
" for k in self.pre.parameters():\n", | |
" k.requires_grad = train_eye_net\n", | |
" self.c2 = nn.Conv1d(2, 3, 4, bias=False)\n", | |
" def forward(self, x):\n", | |
" eye_out = self.pre(x)\n", | |
" return self.c2(eye_out)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"post = PostModel()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def get_param(in_model):\n", | |
" return {\n", | |
" tuple(k.size()): k.detach().numpy().copy()\n", | |
" for k in in_model.parameters()\n", | |
" }\n", | |
"old_param = get_param(post)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"criterion = torch.nn.MSELoss(reduction='sum')\n", | |
"optimizer = torch.optim.SGD(post.parameters(), lr=1e-1)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Normal training" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"x = torch.randn(2, 1, 10)\n", | |
"y_pred = post(x)\n", | |
"y_true = torch.zeros_like(y_pred)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for _ in range(10):\n", | |
" x = torch.randn(2, 1, 10)\n", | |
" y_pred = post(x)\n", | |
" loss = criterion(y_pred, y_true)\n", | |
" optimizer.zero_grad()\n", | |
" loss.backward()\n", | |
" optimizer.step()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def check_match(in_model, in_param):\n", | |
" for k in in_model.parameters():\n", | |
" dim = tuple(k.size())\n", | |
" new_val = k.detach().numpy()\n", | |
" old_val = in_param[dim]\n", | |
" if np.allclose(new_val, old_val):\n", | |
" print(dim, 'matches')\n", | |
" else:\n", | |
" print(dim, 'doesnt match', np.mean(np.abs(new_val-old_val)))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(2, 1, 3) doesnt match 0.20992236\n", | |
"(3, 2, 4) doesnt match 0.101107724\n" | |
] | |
} | |
], | |
"source": [ | |
"check_match(post, old_param)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Disable require_grad on the first module" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"post_fix = PostModel(train_eye_net=False)\n", | |
"old_param = get_param(post_fix)\n", | |
"optimizer = torch.optim.SGD(post_fix.parameters(), lr=1e-1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"for _ in range(10):\n", | |
" x = torch.randn(2, 1, 10)\n", | |
" y_pred = post_fix(x)\n", | |
" loss = criterion(y_pred, y_true)\n", | |
" optimizer.zero_grad()\n", | |
" loss.backward()\n", | |
" optimizer.step()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"(2, 1, 3) matches\n", | |
"(3, 2, 4) doesnt match 29.820532\n" | |
] | |
} | |
], | |
"source": [ | |
"check_match(post_fix, old_param)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment