"""This script is made from pieces of the example in examples/00-classification.ipynb""" import caffe import os import numpy as np # This should be run from the caffe distribution root. caffe_root = './' model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt' model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' net = caffe.Net(model_def, # defines the structure of the model model_weights, # contains the trained weights caffe.TEST) # use test mode (e.g., don't perform dropout) # load the mean ImageNet image (as distributed with Caffe) for subtraction mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy') mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values print 'mean-subtracted values:', zip('BGR', mu) # create transformer for the input called 'data' transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255] transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR # set the size of the input (we can skip this if we're happy # with the default; we can also change it later, e.g., for different batch sizes) net.blobs['data'].reshape(1, # batch size 3, # 3-channel (BGR) images 227, 227) # image size is 227x227 image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg') transformed_image = transformer.preprocess('data', image) # copy the image data into the memory allocated for the net net.blobs['data'].data[...] = transformed_image caffe.set_device(0) caffe.set_mode_gpu() ### perform classification # Crashes here with message: # ViennaCL: FATAL ERROR: Kernel start failed for 'fill_float'. # ViennaCL: Smaller work sizes could not solve the problem. # Crashes with a different kernel failure elswhere in the example. output = net.forward() output_prob = output['prob'][0] # the output probability vector for the first image in the batch print 'predicted class is:', output_prob.argmax()