Created
May 11, 2022 23:44
-
-
Save jdpm93/51aca3ebabd86f0bbb5d24f7a243918c to your computer and use it in GitHub Desktop.
Análisis exploratorio de Datos - Precios Vivienda.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/jdpm93/51aca3ebabd86f0bbb5d24f7a243918c/an-lisis-exploratorio-de-datos-precios-vivienda.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4b3dc7cf-8e76-4527-8096-1f118ffda9ef", | |
"metadata": { | |
"id": "4b3dc7cf-8e76-4527-8096-1f118ffda9ef" | |
}, | |
"source": [ | |
"# Analisis Exploratorio de Datos" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from google.colab import drive\n", | |
"drive.mount('/content/drive')" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "xL_jn1ThDfar", | |
"outputId": "ee3fb530-42a9-404c-d42b-c495be2e79c5" | |
}, | |
"id": "xL_jn1ThDfar", | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Mounted at /content/drive\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "891c7cf8-e68d-47b2-bd7e-a099da41b7f1", | |
"metadata": { | |
"id": "891c7cf8-e68d-47b2-bd7e-a099da41b7f1" | |
}, | |
"source": [ | |
"## 1.- Introducción muuuuy rapida a Data Frames" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "6e75c129-efe6-4a59-a392-919a6bdb88df", | |
"metadata": { | |
"id": "6e75c129-efe6-4a59-a392-919a6bdb88df" | |
}, | |
"source": [ | |
"Puedes pensar en un **dataframe** como una variablesota donde puedes guardar tablas enteras (en vez de números o palabras sencillos).\n", | |
"\n", | |
"Los dataframes no son nativos de Python, vienen de una libreria llamada **Pandas**\n", | |
"\n", | |
"Lo primero que se necesita para trabajar con susodichos dataframes es... importar Pandas" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "d6147ea7-bffe-4100-91b9-5c9f491e033e", | |
"metadata": { | |
"id": "d6147ea7-bffe-4100-91b9-5c9f491e033e" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "cb301b02-48db-44e8-92a3-ab535fad4a0b", | |
"metadata": { | |
"id": "cb301b02-48db-44e8-92a3-ab535fad4a0b" | |
}, | |
"source": [ | |
"Ok, ahora vamos a crear un Dataframe que almacene todos los datos que vienen en nuestro archivo de Excel CSV" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "e06df6c5-4f86-476c-a5ac-58e21a13c158", | |
"metadata": { | |
"id": "e06df6c5-4f86-476c-a5ac-58e21a13c158" | |
}, | |
"outputs": [], | |
"source": [ | |
"df_train=pd.read_csv(\"/content/drive/MyDrive/BIADAS/Muestras BI/train.csv\")" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e789b004-d035-4c65-819e-8302d0bb9947", | |
"metadata": { | |
"id": "e789b004-d035-4c65-819e-8302d0bb9947" | |
}, | |
"source": [ | |
"Veamos como se importo nuestra base de datos a df" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "5ad5d0f8-e72d-4242-8dcf-95cf9db6e532", | |
"metadata": { | |
"id": "5ad5d0f8-e72d-4242-8dcf-95cf9db6e532" | |
}, | |
"source": [ | |
"Ok, veamos códigos útiles para analizar Dataframes. El primer método es **head**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "ade01b31-07ed-4e17-b9ab-941d5a65e6fd", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 770 | |
}, | |
"id": "ade01b31-07ed-4e17-b9ab-941d5a65e6fd", | |
"outputId": "43d36b7a-b3ba-4a7f-de4a-34c95b2e1006" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n", | |
"0 1 60 RL 65.0 8450 Pave NaN Reg \n", | |
"1 2 20 RL 80.0 9600 Pave NaN Reg \n", | |
"2 3 60 RL 68.0 11250 Pave NaN IR1 \n", | |
"3 4 70 RL 60.0 9550 Pave NaN IR1 \n", | |
"4 5 60 RL 84.0 14260 Pave NaN IR1 \n", | |
"5 6 50 RL 85.0 14115 Pave NaN IR1 \n", | |
"6 7 20 RL 75.0 10084 Pave NaN Reg \n", | |
"7 8 60 RL NaN 10382 Pave NaN IR1 \n", | |
"8 9 50 RM 51.0 6120 Pave NaN Reg \n", | |
"9 10 190 RL 50.0 7420 Pave NaN Reg \n", | |
"10 11 20 RL 70.0 11200 Pave NaN Reg \n", | |
"11 12 60 RL 85.0 11924 Pave NaN IR1 \n", | |
"12 13 20 RL NaN 12968 Pave NaN IR2 \n", | |
"13 14 20 RL 91.0 10652 Pave NaN IR1 \n", | |
"14 15 20 RL NaN 10920 Pave NaN IR1 \n", | |
"15 16 45 RM 51.0 6120 Pave NaN Reg \n", | |
"16 17 20 RL NaN 11241 Pave NaN IR1 \n", | |
"17 18 90 RL 72.0 10791 Pave NaN Reg \n", | |
"18 19 20 RL 66.0 13695 Pave NaN Reg \n", | |
"19 20 20 RL 70.0 7560 Pave NaN Reg \n", | |
"\n", | |
" LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal \\\n", | |
"0 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"1 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"2 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"3 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"4 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"5 Lvl AllPub ... 0 NaN MnPrv Shed 700 \n", | |
"6 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"7 Lvl AllPub ... 0 NaN NaN Shed 350 \n", | |
"8 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"9 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"10 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"11 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"12 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"13 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"14 Lvl AllPub ... 0 NaN GdWo NaN 0 \n", | |
"15 Lvl AllPub ... 0 NaN GdPrv NaN 0 \n", | |
"16 Lvl AllPub ... 0 NaN NaN Shed 700 \n", | |
"17 Lvl AllPub ... 0 NaN NaN Shed 500 \n", | |
"18 Lvl AllPub ... 0 NaN NaN NaN 0 \n", | |
"19 Lvl AllPub ... 0 NaN MnPrv NaN 0 \n", | |
"\n", | |
" MoSold YrSold SaleType SaleCondition SalePrice \n", | |
"0 2 2008 WD Normal 208500 \n", | |
"1 5 2007 WD Normal 181500 \n", | |
"2 9 2008 WD Normal 223500 \n", | |
"3 2 2006 WD Abnorml 140000 \n", | |
"4 12 2008 WD Normal 250000 \n", | |
"5 10 2009 WD Normal 143000 \n", | |
"6 8 2007 WD Normal 307000 \n", | |
"7 11 2009 WD Normal 200000 \n", | |
"8 4 2008 WD Abnorml 129900 \n", | |
"9 1 2008 WD Normal 118000 \n", | |
"10 2 2008 WD Normal 129500 \n", | |
"11 7 2006 New Partial 345000 \n", | |
"12 9 2008 WD Normal 144000 \n", | |
"13 8 2007 New Partial 279500 \n", | |
"14 5 2008 WD Normal 157000 \n", | |
"15 7 2007 WD Normal 132000 \n", | |
"16 3 2010 WD Normal 149000 \n", | |
"17 10 2006 WD Normal 90000 \n", | |
"18 6 2008 WD Normal 159000 \n", | |
"19 5 2009 COD Abnorml 139000 \n", | |
"\n", | |
"[20 rows x 81 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-f0d3f375-132b-4edc-a051-678f31f65ed3\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Id</th>\n", | |
" <th>MSSubClass</th>\n", | |
" <th>MSZoning</th>\n", | |
" <th>LotFrontage</th>\n", | |
" <th>LotArea</th>\n", | |
" <th>Street</th>\n", | |
" <th>Alley</th>\n", | |
" <th>LotShape</th>\n", | |
" <th>LandContour</th>\n", | |
" <th>Utilities</th>\n", | |
" <th>...</th>\n", | |
" <th>PoolArea</th>\n", | |
" <th>PoolQC</th>\n", | |
" <th>Fence</th>\n", | |
" <th>MiscFeature</th>\n", | |
" <th>MiscVal</th>\n", | |
" <th>MoSold</th>\n", | |
" <th>YrSold</th>\n", | |
" <th>SaleType</th>\n", | |
" <th>SaleCondition</th>\n", | |
" <th>SalePrice</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>60</td>\n", | |
" <td>RL</td>\n", | |
" <td>65.0</td>\n", | |
" <td>8450</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>208500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>80.0</td>\n", | |
" <td>9600</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>5</td>\n", | |
" <td>2007</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>181500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>3</td>\n", | |
" <td>60</td>\n", | |
" <td>RL</td>\n", | |
" <td>68.0</td>\n", | |
" <td>11250</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>9</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>223500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>4</td>\n", | |
" <td>70</td>\n", | |
" <td>RL</td>\n", | |
" <td>60.0</td>\n", | |
" <td>9550</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>2006</td>\n", | |
" <td>WD</td>\n", | |
" <td>Abnorml</td>\n", | |
" <td>140000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>5</td>\n", | |
" <td>60</td>\n", | |
" <td>RL</td>\n", | |
" <td>84.0</td>\n", | |
" <td>14260</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>12</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>250000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td>6</td>\n", | |
" <td>50</td>\n", | |
" <td>RL</td>\n", | |
" <td>85.0</td>\n", | |
" <td>14115</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>MnPrv</td>\n", | |
" <td>Shed</td>\n", | |
" <td>700</td>\n", | |
" <td>10</td>\n", | |
" <td>2009</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>143000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6</th>\n", | |
" <td>7</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>75.0</td>\n", | |
" <td>10084</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>8</td>\n", | |
" <td>2007</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>307000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>8</td>\n", | |
" <td>60</td>\n", | |
" <td>RL</td>\n", | |
" <td>NaN</td>\n", | |
" <td>10382</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Shed</td>\n", | |
" <td>350</td>\n", | |
" <td>11</td>\n", | |
" <td>2009</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>200000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8</th>\n", | |
" <td>9</td>\n", | |
" <td>50</td>\n", | |
" <td>RM</td>\n", | |
" <td>51.0</td>\n", | |
" <td>6120</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>4</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Abnorml</td>\n", | |
" <td>129900</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9</th>\n", | |
" <td>10</td>\n", | |
" <td>190</td>\n", | |
" <td>RL</td>\n", | |
" <td>50.0</td>\n", | |
" <td>7420</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>1</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>118000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td>11</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>70.0</td>\n", | |
" <td>11200</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>129500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>11</th>\n", | |
" <td>12</td>\n", | |
" <td>60</td>\n", | |
" <td>RL</td>\n", | |
" <td>85.0</td>\n", | |
" <td>11924</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>7</td>\n", | |
" <td>2006</td>\n", | |
" <td>New</td>\n", | |
" <td>Partial</td>\n", | |
" <td>345000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>12</th>\n", | |
" <td>13</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>NaN</td>\n", | |
" <td>12968</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR2</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>9</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>144000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>13</th>\n", | |
" <td>14</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>91.0</td>\n", | |
" <td>10652</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>8</td>\n", | |
" <td>2007</td>\n", | |
" <td>New</td>\n", | |
" <td>Partial</td>\n", | |
" <td>279500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>14</th>\n", | |
" <td>15</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>NaN</td>\n", | |
" <td>10920</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>GdWo</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>5</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>157000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>15</th>\n", | |
" <td>16</td>\n", | |
" <td>45</td>\n", | |
" <td>RM</td>\n", | |
" <td>51.0</td>\n", | |
" <td>6120</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>GdPrv</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>7</td>\n", | |
" <td>2007</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>132000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>16</th>\n", | |
" <td>17</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>NaN</td>\n", | |
" <td>11241</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>IR1</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Shed</td>\n", | |
" <td>700</td>\n", | |
" <td>3</td>\n", | |
" <td>2010</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>149000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>17</th>\n", | |
" <td>18</td>\n", | |
" <td>90</td>\n", | |
" <td>RL</td>\n", | |
" <td>72.0</td>\n", | |
" <td>10791</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Shed</td>\n", | |
" <td>500</td>\n", | |
" <td>10</td>\n", | |
" <td>2006</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>90000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>18</th>\n", | |
" <td>19</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>66.0</td>\n", | |
" <td>13695</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>6</td>\n", | |
" <td>2008</td>\n", | |
" <td>WD</td>\n", | |
" <td>Normal</td>\n", | |
" <td>159000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>19</th>\n", | |
" <td>20</td>\n", | |
" <td>20</td>\n", | |
" <td>RL</td>\n", | |
" <td>70.0</td>\n", | |
" <td>7560</td>\n", | |
" <td>Pave</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Reg</td>\n", | |
" <td>Lvl</td>\n", | |
" <td>AllPub</td>\n", | |
" <td>...</td>\n", | |
" <td>0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>MnPrv</td>\n", | |
" <td>NaN</td>\n", | |
" <td>0</td>\n", | |
" <td>5</td>\n", | |
" <td>2009</td>\n", | |
" <td>COD</td>\n", | |
" <td>Abnorml</td>\n", | |
" <td>139000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>20 rows × 81 columns</p>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f0d3f375-132b-4edc-a051-678f31f65ed3')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-f0d3f375-132b-4edc-a051-678f31f65ed3 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-f0d3f375-132b-4edc-a051-678f31f65ed3');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 6 | |
} | |
], | |
"source": [ | |
"df_train.head(20)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "5c0ffdb2-93ed-4a22-a98a-08c357c47aef", | |
"metadata": { | |
"id": "5c0ffdb2-93ed-4a22-a98a-08c357c47aef" | |
}, | |
"source": [ | |
"Ahora conozcamos **shape**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"id": "e802c048-8e02-4fe8-9f05-9e6b00d49cdb", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "e802c048-8e02-4fe8-9f05-9e6b00d49cdb", | |
"outputId": "92c6b7cd-979b-4dad-b608-5acefc64cff3" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(1460, 81)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
], | |
"source": [ | |
"df_train.shape" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "39466be7-8be3-4f7d-97bf-6977f9bec80a", | |
"metadata": { | |
"id": "39466be7-8be3-4f7d-97bf-6977f9bec80a" | |
}, | |
"source": [ | |
"Que al si quieremos ver una columna en especifico? ponemos el nombre de la columna entre corchetes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "3b0a1209-43c5-4e46-8b46-c858c4554c56", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "3b0a1209-43c5-4e46-8b46-c858c4554c56", | |
"outputId": "2ee13200-2bc6-4bab-9e0a-c256005952a6" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0 1\n", | |
"1 2\n", | |
"2 3\n", | |
"3 4\n", | |
"4 5\n", | |
" ... \n", | |
"1455 1456\n", | |
"1456 1457\n", | |
"1457 1458\n", | |
"1458 1459\n", | |
"1459 1460\n", | |
"Name: Id, Length: 1460, dtype: int64" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 9 | |
} | |
], | |
"source": [ | |
"df_train['Id']" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "61468c0d-6835-498b-ab44-78239b46cd65", | |
"metadata": { | |
"id": "61468c0d-6835-498b-ab44-78239b46cd65" | |
}, | |
"source": [ | |
"Ok, ahora vamos viendo 2 columnas a la vez" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "3c905c17-f03d-49b4-8bb3-b4a44422dbdf", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 424 | |
}, | |
"id": "3c905c17-f03d-49b4-8bb3-b4a44422dbdf", | |
"outputId": "8734a600-734d-460d-b409-f6914451ae17" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Id SalePrice\n", | |
"0 1 208500\n", | |
"1 2 181500\n", | |
"2 3 223500\n", | |
"3 4 140000\n", | |
"4 5 250000\n", | |
"... ... ...\n", | |
"1455 1456 175000\n", | |
"1456 1457 210000\n", | |
"1457 1458 266500\n", | |
"1458 1459 142125\n", | |
"1459 1460 147500\n", | |
"\n", | |
"[1460 rows x 2 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-ad377864-b1da-44db-941e-b23be4cf1e56\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Id</th>\n", | |
" <th>SalePrice</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>208500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2</td>\n", | |
" <td>181500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>3</td>\n", | |
" <td>223500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>4</td>\n", | |
" <td>140000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>5</td>\n", | |
" <td>250000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1455</th>\n", | |
" <td>1456</td>\n", | |
" <td>175000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1456</th>\n", | |
" <td>1457</td>\n", | |
" <td>210000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1457</th>\n", | |
" <td>1458</td>\n", | |
" <td>266500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1458</th>\n", | |
" <td>1459</td>\n", | |
" <td>142125</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1459</th>\n", | |
" <td>1460</td>\n", | |
" <td>147500</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>1460 rows × 2 columns</p>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ad377864-b1da-44db-941e-b23be4cf1e56')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-ad377864-b1da-44db-941e-b23be4cf1e56 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-ad377864-b1da-44db-941e-b23be4cf1e56');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 10 | |
} | |
], | |
"source": [ | |
"df_train[['Id','SalePrice']]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "04772114-c227-4ace-9dad-81c10e443eda", | |
"metadata": { | |
"id": "04772114-c227-4ace-9dad-81c10e443eda" | |
}, | |
"source": [ | |
"Por último, vamos pégandole a la estádistica descriptiva. El método **mean** te da los promedios que quieres saber del DF" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "a151fd48-5f73-4035-94e2-cbc5029039c7", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "a151fd48-5f73-4035-94e2-cbc5029039c7", | |
"outputId": "612b055e-e6e7-4cf8-8e83-42c109e73c60" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"180921.19589041095" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 11 | |
} | |
], | |
"source": [ | |
"df_train['SalePrice'].mean()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7dce9ffe-f6f4-4bd7-86ff-b5019c36c1fe", | |
"metadata": { | |
"id": "7dce9ffe-f6f4-4bd7-86ff-b5019c36c1fe" | |
}, | |
"source": [ | |
"Y el método **Describe** te da un resumen de todo en el Dataframe" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"id": "6f2f9a87-ad3e-4580-a46c-be88c0fcd3f9", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 394 | |
}, | |
"id": "6f2f9a87-ad3e-4580-a46c-be88c0fcd3f9", | |
"outputId": "be6478ac-7e72-4724-c662-70c612f0c7a5" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Id MSSubClass LotFrontage LotArea OverallQual \\\n", | |
"count 1460.000000 1460.000000 1201.000000 1460.000000 1460.000000 \n", | |
"mean 730.500000 56.897260 70.049958 10516.828082 6.099315 \n", | |
"std 421.610009 42.300571 24.284752 9981.264932 1.382997 \n", | |
"min 1.000000 20.000000 21.000000 1300.000000 1.000000 \n", | |
"25% 365.750000 20.000000 59.000000 7553.500000 5.000000 \n", | |
"50% 730.500000 50.000000 69.000000 9478.500000 6.000000 \n", | |
"75% 1095.250000 70.000000 80.000000 11601.500000 7.000000 \n", | |
"max 1460.000000 190.000000 313.000000 215245.000000 10.000000 \n", | |
"\n", | |
" OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... \\\n", | |
"count 1460.000000 1460.000000 1460.000000 1452.000000 1460.000000 ... \n", | |
"mean 5.575342 1971.267808 1984.865753 103.685262 443.639726 ... \n", | |
"std 1.112799 30.202904 20.645407 181.066207 456.098091 ... \n", | |
"min 1.000000 1872.000000 1950.000000 0.000000 0.000000 ... \n", | |
"25% 5.000000 1954.000000 1967.000000 0.000000 0.000000 ... \n", | |
"50% 5.000000 1973.000000 1994.000000 0.000000 383.500000 ... \n", | |
"75% 6.000000 2000.000000 2004.000000 166.000000 712.250000 ... \n", | |
"max 9.000000 2010.000000 2010.000000 1600.000000 5644.000000 ... \n", | |
"\n", | |
" WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch ScreenPorch \\\n", | |
"count 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 \n", | |
"mean 94.244521 46.660274 21.954110 3.409589 15.060959 \n", | |
"std 125.338794 66.256028 61.119149 29.317331 55.757415 \n", | |
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", | |
"25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", | |
"50% 0.000000 25.000000 0.000000 0.000000 0.000000 \n", | |
"75% 168.000000 68.000000 0.000000 0.000000 0.000000 \n", | |
"max 857.000000 547.000000 552.000000 508.000000 480.000000 \n", | |
"\n", | |
" PoolArea MiscVal MoSold YrSold SalePrice \n", | |
"count 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 \n", | |
"mean 2.758904 43.489041 6.321918 2007.815753 180921.195890 \n", | |
"std 40.177307 496.123024 2.703626 1.328095 79442.502883 \n", | |
"min 0.000000 0.000000 1.000000 2006.000000 34900.000000 \n", | |
"25% 0.000000 0.000000 5.000000 2007.000000 129975.000000 \n", | |
"50% 0.000000 0.000000 6.000000 2008.000000 163000.000000 \n", | |
"75% 0.000000 0.000000 8.000000 2009.000000 214000.000000 \n", | |
"max 738.000000 15500.000000 12.000000 2010.000000 755000.000000 \n", | |
"\n", | |
"[8 rows x 38 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-ac0431da-e35d-44d5-b979-a73a770fa932\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Id</th>\n", | |
" <th>MSSubClass</th>\n", | |
" <th>LotFrontage</th>\n", | |
" <th>LotArea</th>\n", | |
" <th>OverallQual</th>\n", | |
" <th>OverallCond</th>\n", | |
" <th>YearBuilt</th>\n", | |
" <th>YearRemodAdd</th>\n", | |
" <th>MasVnrArea</th>\n", | |
" <th>BsmtFinSF1</th>\n", | |
" <th>...</th>\n", | |
" <th>WoodDeckSF</th>\n", | |
" <th>OpenPorchSF</th>\n", | |
" <th>EnclosedPorch</th>\n", | |
" <th>3SsnPorch</th>\n", | |
" <th>ScreenPorch</th>\n", | |
" <th>PoolArea</th>\n", | |
" <th>MiscVal</th>\n", | |
" <th>MoSold</th>\n", | |
" <th>YrSold</th>\n", | |
" <th>SalePrice</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>count</th>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1201.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1452.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>...</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" <td>1460.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>mean</th>\n", | |
" <td>730.500000</td>\n", | |
" <td>56.897260</td>\n", | |
" <td>70.049958</td>\n", | |
" <td>10516.828082</td>\n", | |
" <td>6.099315</td>\n", | |
" <td>5.575342</td>\n", | |
" <td>1971.267808</td>\n", | |
" <td>1984.865753</td>\n", | |
" <td>103.685262</td>\n", | |
" <td>443.639726</td>\n", | |
" <td>...</td>\n", | |
" <td>94.244521</td>\n", | |
" <td>46.660274</td>\n", | |
" <td>21.954110</td>\n", | |
" <td>3.409589</td>\n", | |
" <td>15.060959</td>\n", | |
" <td>2.758904</td>\n", | |
" <td>43.489041</td>\n", | |
" <td>6.321918</td>\n", | |
" <td>2007.815753</td>\n", | |
" <td>180921.195890</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>std</th>\n", | |
" <td>421.610009</td>\n", | |
" <td>42.300571</td>\n", | |
" <td>24.284752</td>\n", | |
" <td>9981.264932</td>\n", | |
" <td>1.382997</td>\n", | |
" <td>1.112799</td>\n", | |
" <td>30.202904</td>\n", | |
" <td>20.645407</td>\n", | |
" <td>181.066207</td>\n", | |
" <td>456.098091</td>\n", | |
" <td>...</td>\n", | |
" <td>125.338794</td>\n", | |
" <td>66.256028</td>\n", | |
" <td>61.119149</td>\n", | |
" <td>29.317331</td>\n", | |
" <td>55.757415</td>\n", | |
" <td>40.177307</td>\n", | |
" <td>496.123024</td>\n", | |
" <td>2.703626</td>\n", | |
" <td>1.328095</td>\n", | |
" <td>79442.502883</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>min</th>\n", | |
" <td>1.000000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>21.000000</td>\n", | |
" <td>1300.000000</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>1872.000000</td>\n", | |
" <td>1950.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>2006.000000</td>\n", | |
" <td>34900.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>25%</th>\n", | |
" <td>365.750000</td>\n", | |
" <td>20.000000</td>\n", | |
" <td>59.000000</td>\n", | |
" <td>7553.500000</td>\n", | |
" <td>5.000000</td>\n", | |
" <td>5.000000</td>\n", | |
" <td>1954.000000</td>\n", | |
" <td>1967.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>5.000000</td>\n", | |
" <td>2007.000000</td>\n", | |
" <td>129975.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>50%</th>\n", | |
" <td>730.500000</td>\n", | |
" <td>50.000000</td>\n", | |
" <td>69.000000</td>\n", | |
" <td>9478.500000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>5.000000</td>\n", | |
" <td>1973.000000</td>\n", | |
" <td>1994.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>383.500000</td>\n", | |
" <td>...</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>25.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>2008.000000</td>\n", | |
" <td>163000.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>75%</th>\n", | |
" <td>1095.250000</td>\n", | |
" <td>70.000000</td>\n", | |
" <td>80.000000</td>\n", | |
" <td>11601.500000</td>\n", | |
" <td>7.000000</td>\n", | |
" <td>6.000000</td>\n", | |
" <td>2000.000000</td>\n", | |
" <td>2004.000000</td>\n", | |
" <td>166.000000</td>\n", | |
" <td>712.250000</td>\n", | |
" <td>...</td>\n", | |
" <td>168.000000</td>\n", | |
" <td>68.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>0.000000</td>\n", | |
" <td>8.000000</td>\n", | |
" <td>2009.000000</td>\n", | |
" <td>214000.000000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>max</th>\n", | |
" <td>1460.000000</td>\n", | |
" <td>190.000000</td>\n", | |
" <td>313.000000</td>\n", | |
" <td>215245.000000</td>\n", | |
" <td>10.000000</td>\n", | |
" <td>9.000000</td>\n", | |
" <td>2010.000000</td>\n", | |
" <td>2010.000000</td>\n", | |
" <td>1600.000000</td>\n", | |
" <td>5644.000000</td>\n", | |
" <td>...</td>\n", | |
" <td>857.000000</td>\n", | |
" <td>547.000000</td>\n", | |
" <td>552.000000</td>\n", | |
" <td>508.000000</td>\n", | |
" <td>480.000000</td>\n", | |
" <td>738.000000</td>\n", | |
" <td>15500.000000</td>\n", | |
" <td>12.000000</td>\n", | |
" <td>2010.000000</td>\n", | |
" <td>755000.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>8 rows × 38 columns</p>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ac0431da-e35d-44d5-b979-a73a770fa932')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-ac0431da-e35d-44d5-b979-a73a770fa932 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-ac0431da-e35d-44d5-b979-a73a770fa932');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 12 | |
} | |
], | |
"source": [ | |
"df_train.describe()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "d698680a-4d87-429a-994e-f5e38133e30f", | |
"metadata": { | |
"id": "d698680a-4d87-429a-994e-f5e38133e30f" | |
}, | |
"source": [ | |
"## 2.- Primeros pasos - traer todo lo importante" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "2cb0e420-7010-4c8d-8f12-a728ec8427bb", | |
"metadata": { | |
"id": "2cb0e420-7010-4c8d-8f12-a728ec8427bb" | |
}, | |
"source": [ | |
"Importa todas las librerías que vas a necesitar\n", | |
"\n", | |
"- pandas como pd\n", | |
"- matplotlib.pyplot como plt\n", | |
"- seaborn como sns\n", | |
"- numpy como np\n", | |
"- scipy.stats traer norm\n", | |
"- sklearn.preprocessing traer standardscaler\n", | |
"- scipy traer stats\n", | |
"- warnings\n", | |
"\n", | |
"y %matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"id": "e72d3a15-5024-440f-a6aa-cb8dae0dc911", | |
"metadata": { | |
"id": "e72d3a15-5024-440f-a6aa-cb8dae0dc911" | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns\n", | |
"import numpy as np\n", | |
"from scipy.stats import norm \n", | |
"from sklearn.preprocessing import StandardScaler\n", | |
"from scipy import stats\n", | |
"import warnings\n", | |
"\n", | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7fb7a0a0-a72b-4a2c-a11b-ba4965a780d3", | |
"metadata": { | |
"id": "7fb7a0a0-a72b-4a2c-a11b-ba4965a780d3" | |
}, | |
"source": [ | |
"Importa el csv de train.csv para poder tener los datos" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "1d924520-a26a-4400-9b7e-336d7a343298", | |
"metadata": { | |
"id": "1d924520-a26a-4400-9b7e-336d7a343298" | |
}, | |
"source": [ | |
"La idea es identificar cuales columnas creemos que van a tener el mayor impacto sobre el precio de la vivienda. \n", | |
"\n", | |
"Al final veremos que las columnas con mayor impacto son:\n", | |
"\n", | |
"Variables de Construcción\n", | |
"- CalidadTotal\n", | |
"- AñoConstruccion\n", | |
"\n", | |
"Variables de Espacio\n", | |
"- AreaSotano\n", | |
"- AreaVivienda" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "839536b8-8e7d-4848-be6d-9ef032b87cc8", | |
"metadata": { | |
"id": "839536b8-8e7d-4848-be6d-9ef032b87cc8" | |
}, | |
"source": [ | |
"## 3.- Analisis de Precio de Ventas" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e7bc2e6a-6be6-40f7-8d45-a63027499b14", | |
"metadata": { | |
"id": "e7bc2e6a-6be6-40f7-8d45-a63027499b14" | |
}, | |
"source": [ | |
"Lo primero es conocer a \"PrecioVenta\". Vamos viendo su **describe**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"id": "4efbfc14-e74a-4e49-8b6b-59ec250854a0", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "4efbfc14-e74a-4e49-8b6b-59ec250854a0", | |
"outputId": "4c948498-e8cc-4f8e-bb78-514f822640a5" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"count 1460.000000\n", | |
"mean 180921.195890\n", | |
"std 79442.502883\n", | |
"min 34900.000000\n", | |
"25% 129975.000000\n", | |
"50% 163000.000000\n", | |
"75% 214000.000000\n", | |
"max 755000.000000\n", | |
"Name: SalePrice, dtype: float64" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 14 | |
} | |
], | |
"source": [ | |
"df_train['SalePrice'].describe()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "cf34bbb4-c774-492c-9ef0-1f3b0af04095", | |
"metadata": { | |
"id": "cf34bbb4-c774-492c-9ef0-1f3b0af04095" | |
}, | |
"source": [ | |
"Ahora vamos pidiendole una foto - hagamos una gráfica de **distplot**\n", | |
"\n", | |
"Veremos que\n", | |
"- Se desvía de la distribucion normal\n", | |
"- Tiene Skew positivo (oblicuidad)\n", | |
"- Muestra Peakedness (kurtosis??)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"id": "96fe5977-90ee-4cdb-9c65-c0852739ec02", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 362 | |
}, | |
"id": "96fe5977-90ee-4cdb-9c65-c0852739ec02", | |
"outputId": "3298cd81-b182-433c-8f6c-c2b3824e2664" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", | |
" warnings.warn(msg, FutureWarning)\n" | |
] | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1f8a08ebd0>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 16 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAERCAYAAABxZrw0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhdd33n8fdXV/ti7bbkRV7iLXvsKCsEspGNQBdoC4ECLdN0KC3QzgwT2hlo+0xnOqUPA2U3DUuB0EAIFEIgQBZCSOLES7Dj2I63WLYs25IlWft273f+uEe2YrTaOrpHR5/X89xHV+ece35fHR9/9dPv/BZzd0REJH6yMh2AiIiEQwleRCSmlOBFRGJKCV5EJKaU4EVEYkoJXkQkpiKX4M3sy2Z23MxenKbz1ZnZT81sp5m9ZGbLpuO8IiJRF7kED3wVuG0az/dvwMfd/XzgSuD4NJ5bRCSyIpfg3f1JoHXkNjM7z8x+YmabzeyXZrZ2MucyswuAbHf/WXDuLnfvmf6oRUSiJ3IJfgwbgL9w98uB/wp8bpKfWw20m9mDZrbVzD5uZonQohQRiZDsTAcwETMrBq4FvmNmw5vzgn2/C/z9KB9rdPdbSf981wHrgAbgfuA9wL3hRi0iknmRT/Ck/8pod/fLztzh7g8CD47z2cPAC+6+H8DMvg9cjRK8iMwBkW+icfcO4ICZ/R6ApV06yY8/D5SZWXXw/Y3ASyGEKSISOZFL8Gb2LeAZYI2ZHTaz9wLvAN5rZr8GdgC/NZlzuXuSdJv9o2a2HTDgS+FELiISLabpgkVE4ilyNXgREZkekXrIWlVV5cuWLct0GCIis8bmzZtb3L16tH2RSvDLli1j06ZNmQ5DRGTWMLODY+1TE42ISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITEVqJKucdt/GhlG333VV3QxHIiKzlWrwIiIxpQQvIhJToSZ4M/tLM9thZi+a2bfMLD/M8kRE5LTQEryZLQI+ANS7+0VAAnhbWOWJiMirhd1Ekw0UmFk2UAgcCbk8EREJhJbg3b0R+GegAWgCTrr7T888zszuNrNNZrapubk5rHBEROac0LpJmlk56cWxlwPtwHfM7J3u/o2Rx7n7BmADQH19vRaIncBo3SfVdVJERhNmE83NwAF3b3b3QeBB4NoQyxMRkRHCTPANwNVmVmhmBtwE7AyxPBERGSHMNviNwAPAFmB7UNaGsMoTEZFXC3WqAnf/GPCxMMsQEZHRaSSriEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEryISEwpwYuIxJQSvIhITCnBi4jElBK8iEhMKcGLiMSUEvwsMzCUorV7INNhiMgsEOp88DJ93J3vv3CELQfbSLpzw5r53Hz+fNKLZYmI/KYwF91eA9w/YtMK4KPu/smwyoyzl5o6eP6VVtYtKcOBx3cfJ5Fl3Lh2fqZDE5GICi3Bu/tu4DIAM0sAjcD3wiovzgaGUvxoWxM18/L53fWLMYNkynli93EuX1qe6fBEJKJmqg3+JmCfux+cofJiZUtDG+29g9x5aS2JLCPLjNsuqsEdHtt1PNPhiUhEzVSCfxvwrdF2mNndZrbJzDY1NzfPUDizy44jJ6kuzmNFVfGpbeWFuVyxvJzNB1s51NqTwehEJKpCT/Bmlgu8GfjOaPvdfYO717t7fXV1ddjhzDo9A0McaOnmgoXzfmPf61fPxx3uf/5QBiITkaibiRr87cAWdz82A2XFzq6mTlIOF46S4EsLcli9oIQHNh8mmfIMRCciUTYTCf7tjNE8IxPb0dRBaUEOi8oKRt1/+dJyjnb08cs9at4SkVcLNcGbWRHwBuDBMMuJq2TK2Xe8i7U1JWP2d19bW0JFUS7f2XR4hqMTkagLNcG7e7e7V7r7yTDLiavjnX0MJFMsrSwa85jsrCzuvKSWn+88Rnf/0AxGJyJRp5GsEdYQ9I6pqygc97g7Lq7l3545yOO7j3PnJQtPbb9vY8NvHHvXVXXTG6SIRJbmoomwQ629FOUmKC/MGfe4K5ZVUFWcy4+3H52hyERkNlCCj7BDrT0sqSiccL6ZRJZx64U1PLbrOL0DyRmKTkSiTgk+onoHkjR39U/YPDPsjotr6R1M8ouX1ZtGRNKU4CPqUFu6/X3JJBP8lcsrKMnP5rFdGm4gImlK8BHV2N4LMGb/9zPlJLJ4/epqHtvVTEqDnkQEJfjIOtbRR3lhDvk5iUl/5ubzF9DS1c+2RvVKFREl+Mg61tHHgnn5U/rM61dXk2Xw2E4104iIEnwkDQylaO7sn3KCLy/K5fKl5TyqKYRFBCX4SHrlRDcphwXz8qb82RvXLmDHkQ6OnuwLITIRmU2U4CNo19FOgCnX4AFuOj+9hJ8WAhERJfgIevloJ1kG1cVTr8Gvml/MkooCdZcUESX4KNp9rJPK4jyyE1P/5zEzblq7gKf2tjCYTIUQnYjMFkrwEfTysc6zap4ZduPa+fQNptjX3DWNUYnIbKMEHzF9g0kaWnuYXzL15plhV62oID8niz3HleBF5jIl+IhpaO3B/eza34flZSe4ankle48pwYvMZWGv6FRmZg+Y2S4z22lm14RZXhzsb+4GoOocEjzAdauqaO7qp71nYDrCEpFZKOwa/KeAn7j7WuBSYGfI5c16B1rSCb6yOPecznPdqmoA9qqZRmTOCi3Bm1kp8DrgXgB3H3D39rDKi4sDLV1Ul+RNaQ6a0axeUExJfrba4UXmsDCX7FsONANfMbNLgc3AB929e+RBZnY3cDdAXZ2WkzvQ0s3yqrHXYB3NaEvzAaysLmb3sU5S7mRNsGiIiMRPmE002cB64PPuvg7oBu458yB33+Du9e5eX11dHWI4s8OBlm6Wj7PI9lSsWlBMz0CSpnZNWyAyF4WZ4A8Dh919Y/D9A6QTvoyho2+Qlq4BlldPT4I/r7oYgD3HO6flfCIyu4SW4N39KHDIzNYEm24CXgqrvDh4JXjAOtUmmrGU5OdQW5qvB60ic1TYvWj+AvimmW0DLgP+d8jlzWrDPWhWTFOCh3Q7/METPQwMadoCkbkmzIesuPsLQH2YZcTB8EPSR3cew4Cn950g5yzmoRnNygXF/HJvCwdaulhTM29azikis4NGskZIa/cA8wpypi25AyyrLCKRZexv6Z74YBGJFSX4CGntGaC88NwGOJ0pJ5HF4vKCU+37IjJ3KMFHSFv3ABVF05vgIV2Lb2zvVTu8yByjBB8Rg8kUHX1DlBflTPu5l1cVkfL0RGYiMncowUdEe88gABXT3EQDUFdRiJFe61VE5g4l+Iho7U7P+hhGE01+ToLasny1w4vMMUrwEdEaTOtbHkKCB1heWURDq/rDi8wlSvAR0dY9QHaWUZIXztCEpZVFDKWc7Y2a0FNkrlCCj4jW7gHKi3KxkGZ9XBaMjn3uQFso5xeR6FGCj4i2noFQHrAOK87Lprokj+cOnAitDBGJFiX4CHD3UzX4MC2rLGLTwTaSKQ+1HBGJBiX4COgdTNI/lAqlB81Iy6sK6ewbYtfRjlDLEZFoUIKPgFNdJAunf5DTSMsqh9vhW0MtR0SiQQk+AtqCQU5hN9GUFeaysDSfLQ3qSSMyFyjBR8DpGny4CR5gXV05Ww6qJ43IXKAEHwGt3QMU5ibIy0mEXta6ujIa23s53qF1WkXiLtQEb2avmNl2M3vBzDaFWdZs1tYTziySo1lXVw6gZhqROWAmavA3uPtl7q6VncbQ2j3988CP5aJF88hNZLH1kJppROJOTTQZlkw57TNYg8/LTnDBwnlsPagavEjchZ3gHfipmW02s7tHO8DM7jazTWa2qbm5OeRwoqfpZC8pn5kHrMPW15WzrbGdwaQmHhOJs0kleDN70MzeaGZT/YXwWndfD9wOvN/MXnfmAe6+wd3r3b2+urp6iqef/Q619gLhd5EcaV1dGX2DKXY1dc5YmSIy8yabsD8H3AXsMbN/NLM1k/mQuzcGX48D3wOuPKsoY+xQsMrSTDXRAKxfmn7QqnZ4kXibVIJ395+7+zuA9cArwM/N7Gkz+yMzG3X4pZkVmVnJ8HvgFuDF6Qk7Phpae8gyKC0IdxTrSAtL85lfkqf+8CIxN+kmFzOrBN4D/CdgK/Ap0gn/Z2N8ZAHwlJn9GngO+JG7/+Scoo2hQ209lBbkkMgKZ5rg0ZgZ6+vK2XpID1pF4mxSq0uY2feANcDXgTe5e1Ow6/6x+re7+37g0mmJMsYaWntmtP39vo0Np94fPNHDhif3c/frVsxY+SIycya7fNCX3P3hkRvMLM/d+9W//dwcau1lWWXhjJdbV1EYlN8z42WLyMyYbBPN/xpl2zPTGchc1DMwREtX/4w+YB22qLyALEv/BSEi8TRuDd7MaoBFQIGZrQOGG4rnATNf7YyZw21BF8kZ7AM/LCeRRW1pgWrwIjE2URPNraQfrC4GPjFieyfw1yHFNGc0nJj5LpIj1VUUsvlgG0PJFNkJDWoWiZtxE7y7fw34mpm9xd2/O0MxzRmH2tIJfiYfso60pKKQZ/afYPexTi5cWJqRGEQkPBM10bzT3b8BLDOzvzpzv7t/YpSPySQ1tPZQmJugKDf8aYJHM/ygdWtDuxK8SAxN9Hd5UfC1GCgZ5SXn4FBrD3UVhZjNXB/4kcoLcyjKy2ZLgwY8icTRRE00Xwy+/t3MhDO3HGrtZUlF5p5Vmxl1FYW8oLnhRWJpspON/ZOZzTOzHDN71MyazeydYQcXZ+5OQ1CDz6S68gL2t3TTFiwbKCLxMdmuE7e4ewdwJ+m5aFYC/y2soOaClq4BegeTLKkoyGgcS4JBVi9o2gKR2Jlsgh9uynkj8B13PxlSPHPG8ACjpRkYxTrS4rJCElmmdniRGJpsgn/IzHYBlwOPmlk1oFWbz0FDazdAxptocrOzWFtTwla1w4vEzmSnC74HuBaod/dBoBv4rTADi7uGE72YweLyzA8IXl9XzguH2kmmPNOhiMg0msrwxbXAH5jZu4C3kp7fXc7SwdZuaublk5+TmT7wI62rK6Orf4i9x7syHYqITKPJThf8deA84AUgGWx24N9Ciiv2DrX2ZLSL5Ejr69IrPG1paGNNjYY3iMTFZKcLrgcucHf9DT9NDp7o4fWro7EG7dLKQiqKctna0Mbbr6zLdDgiMk0m20TzIlBzNgWYWcLMtprZQ2fz+TjqHUhyvLM/4w9Yh5kZ65aUsUUPWkViZbI1+CrgJTN7Dugf3ujub57EZz8I7CQ9xbBwepKxugx3kRxpXV0Zj+46zsnewRldH1ZEwjPZBP+3Z3NyM1tMuu/8PwC/MVnZXHUwmCY4KjV4ON0O/8Kh9sg0HYnIuZlsN8lfkB7BmhO8fx7YMomPfhL4MJAa6wAzu9vMNpnZpubm5smEM+udHuRUNMGRM+eSJWVkGWw5qAFPInEx2blo/gR4APhisGkR8P0JPnMncNzdN493nLtvcPd6d6+vrp4bNceGE92U5GVTXhidppDivGxWLyhhq6YsEImNyT5kfT/wGqADwN33APMn+MxrgDeb2SvAvwM3mtk3zjLOWGkIukhmaprgsayrK2drQxspDXgSiYXJJvh+dz813aCZZZPuBz8md/+Iuy9292XA24DH3F0zUAIHW3syPgfNaC5fWk5n3xB7NOBJJBYmm+B/YWZ/TXrx7TcA3wF+GF5Y8ZVKOYdbeyP1gHXY1SsqAHhmX0uGIxGR6TDZBH8P0AxsB/4UeBj4H5MtxN2fcPc7px5e/Bzt6GMgmYpUF8lhi8sLqaso5Ff7TmQ6FBGZBpPqJunuKTP7PvB9d58bXV1CMtyDJoo1eIBrz6vkR9ubSKacRFa0nhGIyNSMW4O3tL81sxZgN7A7WM3pozMTXvw0BH3gl1ZEp4vkSNeurKKzb4gdRzTlv8hsN1ETzV+S7g1zhbtXuHsFcBXwGjP7y9Cji6GDrd0ksoyFZfmZDmVU16yoBOBpNdOIzHoTJfg/BN7u7geGN7j7fuCdwLvCDCyuGlp7WVRWQHZiKjM1z5zqkjzWLCjhl3vUEicy202UZXLc/Te6VATt8NEZpTOLNJzojmQXyZGuX1PNcwda6e4fynQoInIOJkrwA2e5T8bQEKF54Mdy/Zr5DCadX+1Vd0mR2WyiBH+pmXWM8uoELp6JAOOko2+Qtp5BlkY8wdcvK6c4L5vHd6uZRmQ2G7ebpLtnfj25GHmlJb3QdtSbaHISWVy3qoondh/H3SM3pYKITE40n/TF1IEgwa+oLs5wJBO7Yc18mk728VJTR6ZDEZGzpAQ/g/Y1d5Nl0a/BA9x4/nyyDB558WimQxGRs6QEP4P2N3exuLyQvOzot3xVFedx1fJKHlaCF5m1lOBn0P7mblZUR3ME62juuLiGvce72HOsM9OhiMhZUIKfIamUc6ClmxVV0W9/H3brhTWYwcPbVYsXmY0muyarnKNjnX30DiZZHsEa/H0bG0bdftdVdVyxrIIfbjvCB25aqd40IrOMavAzZH9zugfNeVXRS/Dj+Z11i9h7vIvtjZp8TGS2UQ1+huxvTq+SNBu6SI50x8W1fOwHO3hwSyOXLC4btbZ/11V1GYhMRCYSWoI3s3zgSSAvKOcBd/9YWOVFzZmJ8OEXj5KbncWCeXkZiujslBbk8IYLFvCDXx/hr+84P9PhiMgUhNlE0w/c6O6XApcBt5nZ1SGWF2ktnf1UFefOynbst6xfRGv3AI/uPJbpUERkCkKrwbu7A8OrN+cEr3EX6o6zlq5+llQUjvlAM8pev3o+i8oK+PqzB7nzkoWZDkdEJinUNngzSwCbgZXAZ9194yjH3A3cDVBXF8+23MFkivaeQdbVza7mmZG/jC5aOI9HXjrGFcsqWDAvmouViMirhdqLxt2T7n4ZsBi40swuGuWYDe5e7+711dXVYYaTMSe6B3Cgunh2JfiRLl9WQSLL2HhAKz2JzBYz0k3S3duBx4HbZqK8qGnp7AegqmT2JvjivGwuWVTK1oZ2+geTmQ5HRCYhtARvZtVmVha8LwDeAOwKq7woa+kKEnxxboYjOTdXr6ikfyjF1kPtmQ5FRCYhzBp8LfC4mW0Dngd+5u4PhVheZDV39jMvP3tWTDI2nsXlBSwqK+DZ/SdIP0MXkSgLsxfNNmBdWOefTVq6+qmaxe3vw8yMq1dU8t0th9nX3M3K+bNr0JbIXKOpCkLm7rR0Dczq9veRLllcSnFeNk/t1XJ+IlGnBB+y7oEkvYPJWd2DZqScRBbXnlfJy8e6aDrZm+lwRGQcSvAhax7uQROTBA9w1fJKcrOzePJl1eJFokwJPmTHOvoAZt0cNOMpyE1w5bIKtjeepK17INPhiMgYlOBDdryzj7zsLEoLcjIdyrR6zcoqDOOpvS2ZDkVExqAEH7JjHf3ML8mblZOMjae0IIdLl5Sx6WArrarFi0SSEnzIjnX0xXbulutWVTGYdL729CuZDkVERqEEH6Ku/iF6BpKxTfAL5uWztqaEf3vmFXoGhjIdjoicQQk+RKcfsMYzwQO8blU1bT2DfPv5Q5kORUTOoAQfouEEPz9GPWjOtKyqiMuXlvOlXx5gMJnKdDgiMoISfIiOd/RTkJOgJC/eS9++/4bzaGzv5XtbGjMdioiMoAQfoqMdfSyYF78eNGe6Yc18Llo0j888vpch1eJFIkMJPiQpd4529FFTWpDpUEJnZnzgxlU0tPbwHy8cyXQ4IhJQgg9JW/cAA0Mpakvj+4B1pDdcsIDza+fx2cf3kkxpKmGRKFCCD0nTyfQD1rmS4NO1+JXsb+nmoW2qxYtEgRJ8SI529GHEu4vkmW69sIbVC4r59GOqxYtEQZhL9i0xs8fN7CUz22FmHwyrrChqau+lqjiPnMTc+R2alWV88KbV7D3exfe3qkeNSKaFmX2GgP/i7hcAVwPvN7MLQiwvUpo6+qiZI80zI91+UQ0XLyrlEz97mf4hLc4tkkmhJXh3b3L3LcH7TmAnsCis8qLkZO8g7T2Dc6b9faSsLOPDt62hsb2X+zY2ZDockTltRtoPzGwZ6fVZN85EeZm2q6kDmDsPWM/02pVVXHteJZ95bC9d/ZqjRiRTQk/wZlYMfBf4kLt3jLL/bjPbZGabmpvjsULQ9saTACwsi38f+NGYGR++bS0nuge495cHMh2OyJwVaoI3sxzSyf2b7v7gaMe4+wZ3r3f3+urq6jDDmTHbG09SWpBDSX68FvmYisuWlHHbhTVseHLfqWULRWRmhdmLxoB7gZ3u/omwyomi7Y0n52ztfaQP37aGgWSKf35kd6ZDEZmTwpwF6zXAHwLbzeyFYNtfu/vDIZaZcZ19g+xv7ubm8xdkOpSMe3Z/K1ctr+Tbmw5RVZLHorIC7rqqLtNhicwZYfaiecrdzd0vcffLgleskzvAjiPpxwyLy1WDB7hx7XwKcxM8tO0I7hr8JDKT4j2PbQZsPzz3HrCO1x0yPyfBLRfU8L0XGk89fBaRmTF3hlnOkO2NJ1lUVkBxzOeAn4rLl5VTW5rPT148Su+ABj+JzBQl+Gn268PtXLyoNNNhREqWGXdespD23kE2PLk/0+GIzBlK8NOopaufgyd6WL+0LNOhRM7yqiIuWlTK53+xlyPtvZkOR2ROUIKfRlsOtgGwvq48w5FE0+0X1uAO//vhnZkORWROUIKfRlsa2slJGBepiWZU5UW5vO/683hoWxNP7WnJdDgisacngdNoS0MbFywsJT8nkelQIqu8MJeKolw+dP9WPnDjKrKD6ZTVP15k+qkGP00Gkym2HW5nfZ3a38eTk8jizZcupKVrgKf2qhYvEiYl+Gmyq6mTvsEU69T+PqHVC0q4cOE8Htt1nNbugUyHIxJbSvDT5PlXWgGoX6oEPxlvvLiWLDN+8OtGjXAVCYkS/DR5dv8JllYWzqkRrOeirDCXWy5cwMvHutgc9D4SkemlBD8NUiln44FWrl5emelQZpWrV1SyvKqIH21volF940WmnRL8NNh1tJOTvYNcfV5FpkOZVbLMeMv6xbjDPd/dpqYakWmmbpLT4Nn9JwC4SjX4KasoyuX2i2v4jxeO8M2NDbzz6qXjHj/WxGbqZinym1SDnwZqfz83Vy6r4LpVVfz9Qy+dmo1TRM6dEvw5GkymeGb/Ca5Zodr72TIzPvkHl1FdnMd//sZmLfEnMk2U4M/RloNtdPYNcf2aeKwnmymVxXl84Z2Xc6K7n3d/+Tk6+gYzHZLIrBfmmqxfNrPjZvZiWGVEwRMvN5OdZbxmZVWmQ5n1Ll5cyhf/sJ49xzt5173PaRCUyDkKswb/VeC2EM8fCU/sbubypeWU5OdkOpRYeP3qaj5713p2NnXwls8/zZ5jnZkOSWTWCnNN1ieB1rDOHwVHT/axs6mDG9bOz3QosXLLhTXc9ydX0dE7yJ2ffoqv/OoAyZS6UIpMVcbb4M3sbjPbZGabmpubMx3OlDy26ziA2t9DcPnSCn78oeu45rxK/u6HL/GmTz91ajoIEZmcjCd4d9/g7vXuXl9dPbsS5Y9fbGJZZSFrFpRkOpRYml+Sz1fecwWfvWs97T0D/N4XnuHbmw7pAazIJGU8wc9Wrd0DPL3vBHdcXIuZZTqc2DIz3nhJLT//L6/nz29YyfbGk3ziZy/z5MvNDKVSmQ5PJNI0kvUsPbLjKMmU88ZLajMdypxQmJvNf711DXnZWfxoexM/2XGULQ1t/MEVS6gt1QAzkdGEluDN7FvA9UCVmR0GPubu94ZV3kx7eHu6eeaC2nmZDiUWRpuCYLTpByqL83jXNcvYdbSD721p5PNP7OO3LlukqQpERhFagnf3t4d17kxrbO/lV3tbeP8NK9U8E6Kx5p0BWFszj7+4qZBvP3+I7245TG1pPn/1htVkZenfQ2SY2uDPwrefP4QDv1+/JNOhzGnFedm8+9pl1C8t5zOP7+WD979A32Ay02GJRIYS/BQlU863Nx3iulXVLKkozHQ4c14iy/iddYv48G1r+OGvj/Cue5/jZI962YiAEvyUPbH7OE0n+7jrStXeo8LM+LPrV/Ivb1/H1kNt/P4Xn6HppBYQEVGCn6Iv/mI/taX53HT+gkyHImd486UL+eofXUljey9v+dzTvKxpDmSOUzfJKdi4/wTPvdLK377pAnISp383jvcwUGbGyH+D91y7jK89/Qq/+7mn+cTvX8otF9ZkMDKRzFENfgo+8/heqopzeduV6pIXZQvLCnjf9eexorqIu7++mY/+x4v0DAxlOiyRGaca/CT94uVmfrmnhdsvquHBLY2ZDkcmUFaYy7f/9Bo+/shu7n3qAD/dcYwP3byK3163iPycxG8cP9l++CKziRL8JAwMpfi7H+5geVWRVm6aRfJzEvzPOy/g9otq+IeHd3LPg9v5Pz/exW0X1nDNeZWcV13M4vICygo11bPEkxL8JGx4ch/7m7v5ynuuoOlkX6bDkSmqX1bBg++7ll/tPcH9mw7x8ItN3L/p0Kn9RbkJ8nMSFOdnU5KfQ3VxHrWl+bzS0s3SykINZpNZSwl+Alsa2vh/P9/DnZfUcsPa+XqgOkuZGa9dVcVrV1XxjWcPcqyjj7buAVp7BmnrGaCrb4iu/iGa2nvZ0XgSB+57roGFQY+pmy9YwDUrKsnN1mMrmT2U4MfR3NnPB761ldrSfP7hdy7OdDgyTbLMqC0tGHOSssFkimMdfSwqL+CJ3c08sPkwX3/2IGWFOdxxcS2/fdki6peWa1oEiTwl+DF09Q/xx199npaufu6/+xpKC9ROO1fkJLJYXJ4epXzDmvm8dmUVe493se1wO9/ZdIj7NjawqKyAN126kN9et5C1NZpwTqJJCX4U7T0DvPdrm3ipqYMvvetyLl1SlumQ5CxMV3NaTiKL82vncX7tPPqHklQU5fL9rY186Zf7+cIv9rGsspDXra7mdauquXJFBfO0Pq9EhLlHZ63L+vp637RpU0Zj2HOsk//8jc0cPNHD79cv4aJFpRmNR6Krq3+IFxtPsvtoJw2tPfQGE52dV13EpUvKuGxJGZcsLmPNghIKcn+za6bIdDCzze5eP+o+Jfi0oWSKbzx7kOLyAB8AAArgSURBVH/8yS6KcrP5nfWLWFFVnJFYZPYZSqZ45UQPDa3dHG7r5XBbL1396cFVBpQX5bJgXj418/L43fWLWVNTwvKqoleNiBY5G+Ml+DnfRJNKOY/sOMqnHt3DrqOdvG51Nf/81kv4+c7jmQ5NZpHsRBYr5xezcn66UuDunOwd5HBbL8c6+zjW0c+xjj52H+3g8d3pxeVzEsbSyiKWVhTSO5hu+qkoyqWiMJfyolxyElkabCXnJNQEb2a3AZ8CEsC/uvs/hlneZLk7O5s6+elLR3lg82EOt/WyrLKQz79jPbddVKN+z3LOzIyywlzKCnO5iNPNfEPJFFcsr2D30U52H+tk3/EuGlp72N/czUDy1WvMFuUm+ObGg9SW5lNTmk9taQE18/KpLTv9fjqaftydrz9zkGTKMTPM0j2NsgzecfXScz7/bDbWc5zZ8os3zCX7EsBngTcAh4HnzewH7v5SWGUOJVMMJp2BoRT9ySQDQylO9g5yvLOf5o5+9jV3seNIBzuOnKStZxAzuPa8Su65fS23X1RLQt3eJGTZIx7YjvTNZw/SPZCktauf1p4BWrsH6egdpDg/m8b2PjYdbKN9lHnu83OyKCvIpawwh/LCXIryEiSyjOxEFtlZRsKMvqEkPQPpV+9Akp6BIXoHkvQOJukbTNE3lGSsltqP/WAHudlZ5GVnBV8Tp74/c1si+OWQfhlG+hfF8C8MgxG/QCA3O4ui3GwKchOnvhbmJijMzaYwN0FRXoKCnPT7wrxge05iyt1T3Z2Uw1AqRTLlDKWcZNLpG0qeGv/Q1T/0qvfd/UP0DiZ5oaGdgaQzmEx/NhFc0+2NJ8lNGPk56biK8k7HnY49+4yfJf01LztrRiuQYdbgrwT2uvt+ADP7d+C3gGlP8Jf9/U/p6B0kNcHjhNxEFmtqSrj1whrW15Vz/dpq5pfkT3c4IuMarVZoZhTnZVOcl01dZdGonxsYStHRN8jJ3vSro3fwVNIuL8rlZO8AR9oHgyR2Opmlk1CCgpwEVcW5NHdBaUEuOQkjJ5F16msiy3CHVJAQU+6cX1tC/2CKgWTq1Nc9xzoZSjkdfUMMJVMMpZyhpFNakEPKHSedVN3hZO8gw/8t/dS+9PuhVLoyNjTRf9xRDOfIU780gm2GpTcGUsE1OBuJLCM76/Q1SmQZyVT62hxs7WEwmaJvMEn/UGrik50hy9Lnt+AvpariPJ767zeeVZzjCTPBLwIOjfj+MHDVmQeZ2d3A3cG3XWa2O4RYqoAWgD3AQyEUEBOnrpOMSddoYrpGE3vVNdoN2D1nfa4x29Ey/pDV3TcAG8Isw8w2jfWUWU7TdZqYrtHEdI0mNlPXKMw+Wo3AyHXtFgfbRERkBoSZ4J8HVpnZcjPLBd4G/CDE8kREZITQmmjcfcjM/hx4hHQ3yS+7+46wyptAqE1AMaLrNDFdo4npGk1sRq5RpEayiojI9NE4aRGRmFKCFxGJqdgneDO7zcx2m9les3PoaRphZrbEzB43s5fMbIeZfTDYXmFmPzOzPcHX8mC7mdm/BNdkm5mtH3GudwfH7zGzd4/YfrmZbQ8+8y8WDMcbq4yoMrOEmW01s4eC75eb2cbg57o/6BCAmeUF3+8N9i8bcY6PBNt3m9mtI7aPeq+NVUYUmVmZmT1gZrvMbKeZXaP76NXM7C+D/2cvmtm3zCw/svdResRZPF+kH+7uA1YAucCvgQsyHVcIP2ctsD54XwK8DFwA/BNwT7D9HuD/Bu/vAH5Meszf1cDGYHsFsD/4Wh68Lw/2PRcca8Fnbw+2j1pGVF/AXwH3AQ8F338beFvw/gvA+4L3fwZ8IXj/NuD+4P0FwX2UBywP7q/EePfaWGVE8QV8DfhPwftcoEz30auuzyLgAFAw4t/2PVG9jzJ+wUL+x7gGeGTE9x8BPpLpuGbg5/4P0nMA7QZqg221wO7g/ReBt484fnew/+3AF0ds/2KwrRbYNWL7qePGKiOKL9JjMR4FbiQ9oNlIjybMPvN+Id3765rgfXZwnJ15Dw0fN9a9Nl4ZUXsBpUHysjO26z46HfPwCP2K4L54CLg1qvdR3JtoRpsuYVGGYpkRwZ+A64CNwAJ3bwp2HQUWBO/Hui7jbT88ynbGKSOKPgl8GBiePKQSaHf3oeD7kT/XqWsR7D8ZHD/VazdeGVGzHGgGvhI0Y/2rmRWh++gUd28E/hloAJpI3xebieh9FPcEP6eYWTHwXeBD7t4xcp+nf+2H2id2Jso4W2Z2J3Dc3TdnOpYIywbWA59393VAN+nmklN0H1k56UkTlwMLgSLgtowGNY64J/g5M12CmeWQTu7fdPcHg83HzKw22F8LDK9iMtZ1GW/74lG2j1dG1LwGeLOZvQL8O+lmmk8BZWY2POBv5M916loE+0uBE0z92p0Yp4yoOQwcdveNwfcPkE74uo9Ouxk44O7N7j4IPEj63orkfRT3BD8npksIeiLcC+x090+M2PUDYLgHw7tJt80Pb39X0AviauBk8OfxI8AtZlYe1FRuId3O1wR0mNnVQVnvOuNco5URKe7+EXdf7O7LSN8Hj7n7O4DHgbcGh515jYZ/rrcGx3uw/W1B74jlwCrSDw5HvdeCz4xVRqS4+1HgkJmtCTbdRHp6b91HpzUAV5tZYfAzDF+jaN5HmX5oMQMPRe4g3atkH/A3mY4npJ/xtaT/pN0GvBC87iDdbvco6VmSfw5UBMcb6cVY9gHbgfoR5/pjYG/w+qMR2+uBF4PPfIbTo6BHLSPKL+B6TveiWRH8x9oLfAfIC7bnB9/vDfavGPH5vwmuw26CXiDj3WtjlRHFF3AZsCm4l75PuheM7qNXX6O/A3YFP8fXSfeEieR9pKkKRERiKu5NNCIic5YSvIhITCnBi4jElBK8iEhMKcGLiMSUErzEjpn9TTDb3zYze8HMrhrn2K+a2VvH2j/imAPBubaY2TVjHPf3ZnbzucYvMl1CW7JPJBOC5Hsn6dk1+82sivSsfOfqv7n7A2Z2C+nJsy45o9yEu390GsoRmTaqwUvc1AIt7t4P4O4t7n7EzD5qZs8Hc3hvGJ6HfKRgrvJfmNlmM3tkeOj8GZ4EVgbHv2Jm/9fMtgC/N/KvATO7wsyeNrNfm9lzZlZi6bnoPx7Esc3M/jS8yyCiBC/x81NgiZm9bGafM7PXB9s/4+5XuPtFQAHpWv4pwVw+nwbe6u6XA18G/mGU87+J9KjNYSfcfb27//uIc+UC9wMfdPdLSc9f0gu8l/Rw/iuAK4A/CYapi4RCTTQSK+7eZWaXA9cBNwD3B6vidJrZh4FC0nN57wB+OOKja4CLgJ8FlfsE6elgh33czP4H6el03zti+/2jhLEGaHL354OYOgCC5p1LRrT5l5Keg+TA2f/EImNTgpfYcfck8ATwhJltB/6UdJt5vbsfMrO/JT1HyEgG7HD3UR+gErTBj7K9ewqhGfAX7v7IFD4jctbURCOxYmZrzGzViE2XkZ7MCaAlmDN/tF4zu4Hq4R4yZpZjZheeZRi7gVozuyI4V0kwzesjwPuC5iDMbLWlF9QQCYVq8BI3xcCnzawMGCI9897dQDvp2f+Okp6S9VXcfSBoOvkXMysl/X/jk6SbcqYkONcfBHEUkG5/vxn4V2AZsCV4yNsM/PaUf0KRSdJskiIiMaUmGhGRmFKCFxGJKSV4EZGYUoIXEYkpJXgRkZhSghcRiSkleBGRmPr/4O6gRz5sCkIAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"sns.distplot(df_train['SalePrice'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7f53cfbb-1259-4053-bd0c-76bab3b89497", | |
"metadata": { | |
"id": "7f53cfbb-1259-4053-bd0c-76bab3b89497" | |
}, | |
"source": [ | |
"Podemos conocer el skewness y la kurtosis de la gráfica usando los métodos **skew** y **kurt**" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"id": "8b9a86a8-9cd8-45eb-ba7f-ae3ae477b19d", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "8b9a86a8-9cd8-45eb-ba7f-ae3ae477b19d", | |
"outputId": "8aa68dd7-d5ef-4975-936c-8eaf786447d6" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"1.8828757597682129" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 17 | |
} | |
], | |
"source": [ | |
"df_train['SalePrice'].skew()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"id": "2bd16ae1-6ca7-46dc-bdec-11c88d963813", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "2bd16ae1-6ca7-46dc-bdec-11c88d963813", | |
"outputId": "f4a24fda-5bd7-409a-dd7b-e110f1283d07" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"6.536281860064529" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 18 | |
} | |
], | |
"source": [ | |
"df_train['SalePrice'].kurt()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "767cf9d0-de8d-43c0-af45-13bf58ce06fe", | |
"metadata": { | |
"id": "767cf9d0-de8d-43c0-af45-13bf58ce06fe" | |
}, | |
"source": [ | |
"Vamos viendo que sucede con las amigas de \"PrecioVenta\" - dibujemos un ScatterPlot de PrecioVenta vs AreaVivienda. Nota como vamos a reducir el dataframe a solo 2 columnas para no tener que usar todo\n", | |
"\n", | |
"Primero declara una variable var que contenga el area vivible" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"id": "3c1ec18b-af2c-4e87-addf-ab3244a2cbd5", | |
"metadata": { | |
"id": "3c1ec18b-af2c-4e87-addf-ab3244a2cbd5" | |
}, | |
"outputs": [], | |
"source": [ | |
"var = 'GrLivArea'" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "a4553b02-a0bd-431b-b401-bfc530d6c593", | |
"metadata": { | |
"id": "a4553b02-a0bd-431b-b401-bfc530d6c593" | |
}, | |
"source": [ | |
"Luego vamos a usar pd.concat para crear una tabla de solo 2 columnas con area vivible (var) y Precio de venta que se llame data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"id": "f5048d35-60c7-4fc2-8a44-b62088cfa1ae", | |
"metadata": { | |
"id": "f5048d35-60c7-4fc2-8a44-b62088cfa1ae" | |
}, | |
"outputs": [], | |
"source": [ | |
"data= pd.concat([df_train['SalePrice'],df_train[var]],axis=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"id": "9b44153a-a8d8-461f-88e0-f37aa4df4e8d", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
}, | |
"id": "9b44153a-a8d8-461f-88e0-f37aa4df4e8d", | |
"outputId": "5e8a5c05-db37-4455-ca5f-aab2b05487c1" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" SalePrice GrLivArea\n", | |
"0 208500 1710\n", | |
"1 181500 1262\n", | |
"2 223500 1786\n", | |
"3 140000 1717\n", | |
"4 250000 2198" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-d84bf4c8-5459-4977-85e5-65fc527ecd62\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>SalePrice</th>\n", | |
" <th>GrLivArea</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>208500</td>\n", | |
" <td>1710</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>181500</td>\n", | |
" <td>1262</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>223500</td>\n", | |
" <td>1786</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>140000</td>\n", | |
" <td>1717</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>250000</td>\n", | |
" <td>2198</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d84bf4c8-5459-4977-85e5-65fc527ecd62')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-d84bf4c8-5459-4977-85e5-65fc527ecd62 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-d84bf4c8-5459-4977-85e5-65fc527ecd62');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 22 | |
} | |
], | |
"source": [ | |
"data.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e7a343e3-d7fe-4d49-901c-63369df862e5", | |
"metadata": { | |
"id": "e7a343e3-d7fe-4d49-901c-63369df862e5" | |
}, | |
"source": [ | |
"y ahora vamos a terminar con un data.plot.scatter para crear una grafica de scatterplot. " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"id": "5a18b734-fda0-4e91-9c3d-88ee9832ce64", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 300 | |
}, | |
"id": "5a18b734-fda0-4e91-9c3d-88ee9832ce64", | |
"outputId": "dcc0814c-987e-4b52-960e-068f2c0a9635" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1f87a20950>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 23 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZiU5ZXw/++pqq5ik0UkKJvLgHGACQQ7ooOaBKLiBs4vblFHJjH6vhNNMokKGi9jlHdmNJpkYnQ0jprIRGMQkoBbDBEToxG00QYBo7QapRvXBhoboZeq8/vjuat5quqppburqrurz+e6+uqqu54V2+fUvZ1bVBVjjDGmmEI9fQHGGGMqjwUXY4wxRWfBxRhjTNFZcDHGGFN0FlyMMcYUnQUXY4wxRVfS4CIi3xKRTSKyUUR+KSIDRORQEVkrInUi8isRibptY+59nfv8EN9xrnblr4rISb7yua6sTkSu8pUHnsMYY0x5lCy4iMhY4BtAtapOBcLAucBNwI9UdSKwA7jI7XIRsMOV/8hth4hMdvtNAeYC/y0iYREJA7cDJwOTgS+5bclxDmOMMWVQ6maxCDBQRCLAIOAdYDawzH1+H3CGez3fvcd9PkdExJU/qKotqvomUAcc5X7qVPUNVW0FHgTmu32yncMYY0wZREp1YFVtEJFbgLeBPcDvgXXATlVtd5vVA2Pd67HAVrdvu4g0ASNd+Rrfof37bE0rn+n2yXaOFCJyCXAJwODBg4884ogjunazxhjTT61bt+5DVR2VXl6y4CIiI/BqHYcCO4GH8Jq1eg1VvQu4C6C6ulpramp6+IqMMaZvEZG3gspL2Sz2BeBNVf1AVduAXwOzgOGumQxgHNDgXjcA493FRoBhQKO/PG2fbOWNOc5hjDGmDEoZXN4GjhaRQa4fZA6wGXgKONNtswBY4V6vdO9xn69WL6vmSuBcN5rsUGAS8DzwAjDJjQyL4nX6r3T7ZDuHMcaYMihZcFHVtXid6i8CL7tz3QUsAr4tInV4/SP3uF3uAUa68m8DV7njbAKW4gWm3wGXqmrc9alcBjwBvAIsdduS4xzGGGPKQCzlvsf6XIwxpvNEZJ2qVqeX2wx9Y4wxRWfBxRhjTNFZcDHGGFN0FlyMMcYUnQUXY0zFaGxuYf3WnTQ2t/T0pfR7JZuhb4wx5bSitoFFyzdQFQrRlkjw/S9+innTAzM/mTKwmosxps9rbG5h0fIN7G1L8FFLO3vbEixcviFrDcZqOKVnNRdjTJ9Xv2MPVaEQe0l0lFWFQtTv2MPIIbGUba2GUx5WczHG9HnjRgykLZFIKWtLJBg3YmBKWWdrOKbrLLgYY/q8kUNifP+Ln2JAVYj9YhEGVIX4/hc/lVFrSdZw/JI1HFNc1ixmjKkI86aPZdbEA6jfsYdxIwZmBBYovIZjus9qLsaYijFySIxp44cHBpbk54XUcEz3Wc3FGNOvFFLDMd1nwcUY0++MHBKzoFJi1ixmjDGm6Cy4GGOMKToLLsYYY4rOgosxxpiiK1lwEZFPikit72eXiPybiOwvIqtEZIv7PcJtLyJyq4jUicgGEZnhO9YCt/0WEVngKz9SRF52+9wqIuLKA89hjDGmPEoWXFT1VVWdrqrTgSOBj4HfAFcBT6rqJOBJ9x7gZGCS+7kEuAO8QAFcB8wEjgKu8wWLO4CLffvNdeXZzmGMMaYMytUsNgd4XVXfAuYD97ny+4Az3Ov5wBL1rAGGi8hBwEnAKlXdrqo7gFXAXPfZUFVdo6oKLEk7VtA5jDHGlEG5gsu5wC/d69Gq+o57/S4w2r0eC2z17VPvynKV1weU5zqHMcaYMih5cBGRKDAPeCj9M1fj0FKeP9c5ROQSEakRkZoPPviglJdhjDH9SjlqLicDL6rqe+79e65JC/f7fVfeAIz37TfOleUqHxdQnuscKVT1LlWtVtXqUaNGdfH2jDHGpCtHcPkS+5rEAFYCyRFfC4AVvvIL3aixo4Em17T1BHCiiIxwHfknAk+4z3aJyNFulNiFaccKOocxxpgyKGluMREZDJwA/B9f8Y3AUhG5CHgLONuVPwacAtThjSz7MoCqbheRxcALbrsbVHW7e/014OfAQOBx95PrHMYYY8pAvC4JU11drTU1NT19GcYY06eIyDpVrU4vtxn6xhhjis6CizHGmKKz4GKMMaboLLgYY4wpOgsuxhhjis6CizHGmKKz4GKMMaboLLgYY4wpOgsuxhhjis6CizHGmKKz4GKMMaboLLgYY4wpOgsuxphOaWxuYf3WnTQ2t/T0pZherKQp940xlWVFbQOLlm+gKhSiLZHg+1/8FPOmj82/o+l3rOZijClIY3MLi5ZvYG9bgo9a2tnblmDh8g1WgzGBLLgYYwpSv2MPVaHUR0ZVKET9jj09dEWmN7PgYoyP9SdkN27EQNoSiZSytkSCcSMG9tAVmd7M+lyMcaw/IbeRQ2J8/4ufYmHav9HIIbGevjTTC1lwMYbU/oS9eN/OFy7fwKyJB9jD02fe9LHMmngA9Tv2MG7EQPu3MVmVtFlMRIaLyDIR+auIvCIix4jI/iKySkS2uN8j3LYiIreKSJ2IbBCRGb7jLHDbbxGRBb7yI0XkZbfPrSIirjzwHMZkY/0JhRs5JMa08cMtsJicSt3n8mPgd6p6BDANeAW4CnhSVScBT7r3ACcDk9zPJcAd4AUK4DpgJnAUcJ0vWNwBXOzbb64rz3YOYwJZf4IxxVWy4CIiw4DjgXsAVLVVVXcC84H73Gb3AWe41/OBJepZAwwXkYOAk4BVqrpdVXcAq4C57rOhqrpGVRVYknasoHMYEyjZnzCgKsR+sQgDqkLWn2BMN5Syz+VQ4APgZyIyDVgHfBMYrarvuG3eBUa712OBrb79611ZrvL6gHJynCOFiFyCV0tiwoQJnbw9U2msP8GY4ills1gEmAHcoaqfBnaT1jzlahxawmvIeQ5VvUtVq1W1etSoUaW8DNNHlLM/wYY9m0pWyppLPVCvqmvd+2V4weU9ETlIVd9xTVvvu88bgPG+/ce5sgbgc2nlf3Tl4wK2J8c5jOkVbNizqXQlq7mo6rvAVhH5pCuaA2wGVgLJEV8LgBXu9UrgQjdq7GigyTVtPQGcKCIjXEf+icAT7rNdInK0GyV2Ydqxgs5hTI+zNCqmPyj1PJevA/eLSBR4A/gyXkBbKiIXAW8BZ7ttHwNOAeqAj922qOp2EVkMvOC2u0FVt7vXXwN+DgwEHnc/ADdmOYcxPS457Dk5nwb2DXu2fh5TKUoaXFS1FqgO+GhOwLYKXJrlOPcC9waU1wBTA8obg85hTG9gw55Nf2C5xYwpMxv2bPoDS/9iTA+wYc+m0llwMaaHjBwSs6BiKpY1ixmTRbnmodh8F1OJrOZiTIByzUOx+S6mUlnNxZg05ZqHYvNdTCWz4GJMmnKl37c0/6aSWXAxJk255qHYfBdTySy4GJOmXPNQynUeGzBgeoJ4E+NNdXW11tTU9PRlmF6ksbmlLPNQSnkeGzBgSk1E1qlqRiYWGy1mTBblmodSqvP4Bwwk85gtXL6BWRMPsPk1puSsWcyYCmUDBkxPsuBiTIWyAQOmJ1lwMaZCWYJM05Osz8WYCmYJMk1PseBiTIWzBJmmJ1izmDHGmKKz4GL6HZtUaEzplTS4iMjfRORlEakVkRpXtr+IrBKRLe73CFcuInKriNSJyAYRmeE7zgK3/RYRWeArP9Idv87tK7nOYcyK2gZm3bSaC+5ey6ybVrOytqGnL8mYilSOmsvnVXW6bwbnVcCTqjoJeNK9BzgZmOR+LgHuAC9QANcBM4GjgOt8weIO4GLffnPznMP0Y5aF2Jjy6YlmsfnAfe71fcAZvvIl6lkDDBeRg4CTgFWqul1VdwCrgLnus6Gquka9HDZL0o4VdA7Tj9mkQmPKp9TBRYHfi8g6EbnElY1W1Xfc63eB0e71WGCrb996V5arvD6gPNc5UojIJSJSIyI1H3zwQadvzvQtNqnQmPIpdXA5VlVn4DV5XSoix/s/dDWOkmbOzHUOVb1LVatVtXrUqFGlvAzTC1TqpEIboGB6o5LOc1HVBvf7fRH5DV6fyXsicpCqvuOatt53mzcA4327j3NlDcDn0sr/6MrHBWxPjnOYfq7SJhVa1mPTW5Ws5iIig0Vkv+Rr4ERgI7ASSI74WgCscK9XAhe6UWNHA02uaesJ4EQRGeE68k8EnnCf7RKRo90osQvTjhV0DmMYOSTGtPHD+3xgsQEKpjcrZc1lNPAbNzo4Ajygqr8TkReApSJyEfAWcLbb/jHgFKAO+Bj4MoCqbheRxcALbrsbVHW7e/014OfAQOBx9wNwY5ZzGFMxkgMUkun0Yd8AhVIFznKtcWP6vpIFF1V9A5gWUN4IzAkoV+DSLMe6F7g3oLwGmFroOYypJOUeoGBNcKYzbIa+qSg93bldzvOXc4CCNcGZziq45iIiBwOTVPUPIjIQiKjqR6W7NGM6p6e/WffE+cs1QKEnmuBM31ZQzUVELgaWAT91ReOA35bqoozprJ7+Zt2T5y/HAAWbI2Q6q9BmsUuBWcAuAFXdAnyiVBdlTGf19Oz7nj5/qVXqHCFTOoU2i7Woaqsb+YWIRCjx5EdjOqM736yLMQKqP3yzr7Q5Qqa0Cq25/ElEvgMMFJETgIeAh0t3WcZ0Tle/WRcrS3J/+WZfKXOETOmJNwI4z0YiIeAivAmMgjex8W4tZOc+orq6Wmtqanr6Mkw3daYW0tjcwqybVrO3bV+NY0BViGcXze7ywzP9/DYvxFQ6EVnny3rfodBmsYHAvar6P+5gYVf2cfEu0ZjCZXtod2ZJ31KMgPKfv6dHrxnTkwptFnsSL5gkDQT+UPzLMSa/YjVllbKfJGj02JXLCh891tPzdYzprkKDywBVbU6+ca8HleaSjMmumEN+S9lPEjR6rKU9wQNr3867r62WaSpBoc1iu0Vkhqq+CN7ywkBljLE0fUqxm7JKNQJq3IiBtMYTGeW3PbWF82ZOyHoef/BM3uPC5RuYNfGATl2b9fWYnlZocPk34CER2YbXoX8gcE7JrsqYLErRlJXsJ0k2RRXjgTxySIzLPj+RH6x6LaU8Gg53BMKgAFCM4Gl9PaY3KCi4qOoLInIE8ElX9KqqtpXusowJlmzKWpj28PQ/eLvyrb0UD+TzZk7gtqe20NK+b1BlMhBmO193g2exaj7GdFfO4CIis1V1tYj8f2kfHS4iqOqvS3htxgTK1ZTVlSBRqgfyyCExbj5zWkYgBHKeL1/wzMVygJneIl/N5bPAauD0gM8UsOBiekTQkOOgIHHFsg1MPmgoE0fvl/VYpXwgBwXC9Vt35jxfd/qB+kOmANM35Awuqnqdm0D5uKouLdM1GdMlQUGitT3BKbf+mVvOmpa1BlOKB3J605w/QBRyvs7M1/Hz13zCIrTFE1x76mSrtZiyyzsUWVUTwMIyXIsx3RL00AZojWvO4crFHpKcbyhxqVPFzJs+lmtPnUxbQolGQix+dLMNZzZlV2j6lxuBD4FfAbuT5b7lhvs8S//Sd/lrCc/WfcgVyzbQ2p4aZPaLRfjFV2cybfzwgo7TnfQv+VLKJM8zOBpmd2u86MOFS5HWxphssqV/KXQS5Tl4afefBta5n4KexCISFpGXROQR9/5QEVkrInUi8isRibrymHtf5z4/xHeMq135qyJykq98riurE5GrfOWB5zCVJ72WAPDY148lGpaU7Qpp5sqWlLEzs+Xzpd73X+9ptz3DW427i/7Ar/T0/6ZvKCi4qOqhAT+HFXiObwKv+N7fBPxIVScCO/ASYuJ+73DlP3LbISKTgXOBKcBc4L9dwAoDtwMnA5OBL7ltc53D9HHJB33dex/x9Gvvs3DZ+ozZ+iMGR7nlrGlFaXbq7Gz5XP0p5VpQzDr1TW+QbyjyTOAu4O+Al4GvqOorufZJ238ccCrw78C3xVsQZjZwntvkPuB7wB3AfPcavFUvb3PbzwceVNUW4E0RqQOOctvVqeob7lwPAvNF5JUc5zBF0tUmpM5mLfZvu6K2gYXL1qPq9aNUhYW2eGqzbvIbejFm3ndliHKuocT5RokVS3eHMxtTDPmGIt8OXIHXHDYP+C/gpJx7pPovvMEAyXGgI4Gdqtru3tcDySE8Y4GtAKraLiJNbvuxwBrfMf37bE0rn5nnHClE5BLgEoAJEyZ04rb6t65OOOzMfunbXnvqZK5buRF/V0p6YIHUb+hdHXGV1NUhytkCWzlrFLawl+lp+ZrFQqq6SlVbVPUhYFShBxaR04D3VXVdt66whFT1LlWtVtXqUaMKvrV+ratNO53ZL2jb76UFlnSDqsIMqApx7amTqd+xp9tNTY3NLTTtacvID1ZoMBg5JMa4EQNTrqXcC4rZwl6mJ+WruQxPm52f8j7PDP1ZwDwROQUYAAwFfuyOEXE1i3FAshG7ARgP1LtllIcBjb7yJP8+QeWNOc5huqmr3+Y7s19gx7NkFiXFIiHu/Ocj2br9YxY/urnbKVz8taZ4IkFVWBgQCXeqeSlbLa031ygs2aUppnzB5U+kzs73v885Q19VrwauBhCRzwFXqOr5IvIQcCbwILAAWOF2WeneP+c+X62qKiIrgQdE5IfAGGAS8Dze42aSiByKFzzOBc5z+zyV5Rymm7ratJOvo9v/UBscDacMowVoi0MkJLQnUpvCYhHhu6dNBpQbHtlES7t2O5twej9LLAK3n/9ppowZVlA/0aZtTSxctj7rtXS3ua4ULNmlKbZ8M/S/XIJzLgIeFJH/B7wE3OPK7wH+13XYb8cLFqjqJhFZCmwG2oFLVTUOICKX4S25HMZbKXNTnnOYbupqZ3G2/Z6p+zC1b+W0ycTCIaIhaPXFl7CAf05WJCR8c84k9h8cZfGjmxFISRAJXessD6phRcNhhg2M5j1O8gEdEinKtZSLJbs0pVBQVmQRGQ38BzBGVU92Q36PUdWCHtqq+kfgj+71G+wb7eXfZi9wVpb9/x1vxFl6+WPAYwHlgecwxdHVpp30/XbsbuWUnzxDa/u+h9o1v9nI4GgoJbAApPfdh0Nw8tQDOe22ZzJqOUld6Szvas3M/4Au1rWUiyW7NKVQ6CTKn+PVEMa496/hrfFi+qmudhYn9/vdxneZ++OnM2bSA+z2RZbB0TDRsDCgKvVPNRoOU7t1J9kSTMQiXess72qne9DERdg30KA3DwW2eTGmFApdLOwAVV0qIldDx1DheAmvy1Sw+9e8xTW/3Zh3u8GxMNefPoXp44dz2m3PpHzWlkhwyMhBtGQZQvaDs6Zx2rQxgZ/l09mamTeyrJXWeOr/EsmBBlPGDO21gQVsXowpjc4sczwSrxMfETkaaCrZVZmK1djcwvWPbC5o23hC+fwRn0jN9BvyJk5ee9pkqiJhqkIQ1BI1dGChf9rBCu1093eEJxQiIRhYFel4QB9/eHmHuHd1xFdvHsVm+qZC/w/8Nt5orr8TkWfx5rucWbKrMhWrfsceomGhtT33drGIpHx7njd9LB/tbef6hzdRFQ6x+JHNXHvqZEIhgbQRZFVhYcqYYaW6hQ7BI8tC3H7+jB6prXR3xFdvHMVm+q5Clzl+UUQ+i7fMsWDLHJsuGjdiYMZwYtj3jb81nuCyz0/kvJkTMpYuXvzoZlrj2tH8tPjRzXz39Clct2LfBMuqsPCDs6YV/SFZ6Hr30XCIYQOryv6QthFfprfJl1ssfXnjJFvm2HRJUBPXdadPZu6UA3M2yWQb0TR1zDDWfucLbNq2C9COuSjZmocKbTbyb5c+XLpY690Xk434Mr1NvppL0PLGSbbMsemSbO37uR6CuR7kI4fEUvo2sjUP5Wo2yhZMWuMJ4okE7Qm6tN59uWa996ZAZwz0zCRKYzrdvl/oiKa69z7iSrdYmD8YTD5oaNZmo9RgEiehXlJMfy3AL2i9+03bmgBhypihHduVc9a7jfgyvU3BQ2pE5FS8NVUGJMtU9YZSXJTpHzr7rT7fiKYVtQ1c+dB6WgPS8NdmSXe/aVtTRtDJZ09be0qNIBmckmvWX3f6FOZOPbDsfSA24sv0JoXO0L8TGAR8Hrgbb6TY8yW8LlPhOvut3h+IgpYqTnZopwcW8M+JiWeUg2QEnXxUYdO2po4Raekz86/57Ubqd3zcI30gNuLL9BaF1lz+UVU/JSIbVPV6EfkB8HgpL8xUrs6ObCokEAV1aANEIyHOPnIcF9z7vDdsOa7EwoKEvKHOU8YMzeiryCeu8H9/8SIJVS793EQSAaPf7nnmb4ikllsfiOlPCk3/ksyB/rGIjMFLIHlQaS7JVLLG5hae+uv7KUkok9JT7Tc2t/D0ax+wcFn+dWCCOrSjYeGBi47iVzX1XiBztQsV4RdfOYqDRw4G6Ej3MqgqXPB9fNwaZ29bgp+s3hJYW4qE4bLPT8pIIwOwfuvOoi9tbExvU2jN5RERGQ58H0gu/nV3aS7JVKpkDSQckDV4b1uCwdFwxrYhJCPFS1DzUrYO7b+8sT1jf1HlvHueJxbet92zi2azadsuLrrvhcAVLrOJhEJAIiPAtLQlOG/mBM6bOSFlFNqsm1ZbWnvTL+Sb5/IZYKuqLnbvhwAvA38FflT6yzOVIl/W4BCwrWkPE0fvR2NzS8d6KEGyNS+ld2gDXLnsyYztWuIKaEfSzIXLN/DsotlMGTM0o0YVFvjxudN5t2kv//n4XzOyM7cnEogILjNSB3GLmyX7QMo9ydEW/jI9LV/N5afAFwBE5HjgRuDrwHTgLiwFjCnQpm1NhCT7cpIJ4Ms/e4EfnTOdvzV+nDWwAJxdPQ7wmpfSH57+Du2nX/uAsISA1I78aDiUsnxxsiYEXpaAj1r25aYZUBXmjQ8/5rbVWzICC8DXZ08C4AerXkspj1WFO2pXyabASCj1/kvVwW8Lf5neIF9wCavqdvf6HOAuVV0OLBeR2tJemqkUK2obctZEkuIKly+tDUxE6Xf/mrd58Pl6ohFvZcqgh6d3zg0ZTWLR8L5aRZK/JpTeb7O7Nc6P//BaYGCJRYTzZk4A4LantqTc3+6WOBsbmvhb4+6OpsDdrZmj1YrdwW9pYExvka9DP+zWsweYA6z2fda9tLOmX0g+7PIFlqR8gQW8INQaT9Dc4nWqX/HQeure+yjgnKkHCwvcctZ0bj4zeL2WkUNiXHvq5MDzBbn8xE927Pfd06dkfH7DI5tZuGw9e9sSKYFlcKx0a7wErSvjr5kZUy75AsQvgT+JyId4I8b+DCAiE7GU+6YA2YYIF1NrXDnl1j9zy1nTmDd9LPU79hAOaIILh6TjG3y2WfVTxw5jSCxMc0v+5Ypu+f1rHDh0APOmj2XqmGEMqgrxsS86hkMCKvib5QZHvTVqkksJFJulgTG9Rc6ai1te+HK8lSiP1X29nSG8vpesRGSAiDwvIutFZJOIXO/KDxWRtSJSJyK/EpGoK4+593Xu80N8x7ralb8qIif5yue6sjoRucpXHngOU35BD7uuioaz/7m2xpXLH1pPY3OLd8545jmrIvu+wT9T9yGX/O86Lr3/RWbdtJqVtQ0d1xuUtTnwnO37hkVvbGhKCSzgrUcT17Qy9daogdIMSe7qSprGFFveeS6qukZVf6Oqu31lr6nqi3l2bQFmq+o0vAEAc90iYzcBP1LVicAO4CK3/UXADlf+I7cdIjIZOBcv9cxc4L9FJCwiYeB24GRgMvAlty05zmHKLPmwi0WEQVVhqsJCNJy9Yz/IqVMP5A/fOp67FxxJLJJ937a4smlbEyOHxLguoJkqnlDGjRiY0i+RPnfG/3AeFM0/7yWZQmbxo5kLoH33tMl85pD9U8o+c/CIjiHJF9y9NiWwFcu86WN5dtFsfvHVmTy7aLZ15pseUegkyk5TT7N7W+V+FJgNLHPl9wFnuNfz3Xvc53PEG+M5H3hQVVtU9U2gDjjK/dSp6huq2go8CMx3+2Q7h+kBXj1AUPeqPUsnxhfcN3q/WCTEDWdMZeLo/Tj+8E9w85nTcgYYb7khOP/og/n3f5pKNBJiUDRENCxce+pkRg6J5e2XSD6c77xgRp5zpaaQ8RscCzNsYBXP1DWmlP+5rrGgSaHdNXJIjGnjh3epxtLY3GITPU23lSy4ALgaRi3wPrAKeB3YqarJsZ71QPJr1VhgK4D7vAkY6S9P2ydb+cgc50i/vktEpEZEaj744IPu3KrJwt+5vqctQVtcs/a+nPHpsSkTKcFrCvN3Rs+bPpb/ubCagQGz6cNCSv/J+TMP5rrTJtOe8NLALH50MytrGwrql/DS+HvBzN/EdOExE4hFQgyIhIiE4NsnHB6YQiaeUD7M8nBOD1e9qcN9RW1DSWtVpv8oaXBR1biqTgfG4dU0jijl+TpLVe9S1WpVrR41qrxrnfcHjc0tPLy+IX1+YaABVSE2bmsqaLjulDHDOmpBfjfMnxq8emX7vpFlC5dvAPbNlUk6u3pcx77+b+7pTUxHHry/l86/3Vvj5T8e+ys/fvK1wH6OYyceEHiv6VfelvCyEzz92vs8/doHPVZjyNVcaExnlWU4saruFJGngGOA4SIScTWLcUDyq1EDMB6od8OfhwGNvvIk/z5B5Y05zmFKIGg2+IraBq54aH3BqVRUlXufeTOj/NrTJmc07SSHDF//8CYiYaE9AVeccDhTxw7r6DeB7KszbtrWxANr30455gNr3+abcw7PuurkyCEx6t77iMuX1mYEhyXPvc2FRx/Cs4tmZ/w7XHjMBJY8t+9cFx4zgeqD909JU3N29ThOvvXPHf9WkRD88OzpZe8rsdUsTTGVLLiIyCigzQWWgcAJeB3tT+HN7H8QWACscLusdO+fc5+vVlUVkZXAAyLyQ2AMMAkv3b8Ak0TkULzgcS5wntsn2zlMkflng7fGE1z2+Ykcc9j+nQossYgw54jRPLbx3ZTyAZEQ40cM6nifDGIbG7wO9GgkRGtcOWP6GH74h9cKXoZ415520qbA0J6A515vzLmg2JXLNmTsl1S7dSdnVo/PeAjfMP8fuPDoQ6jdupPp44czcfR+AB1pagZHw5z6k2dS/q3aE3DlsvVln/how5hNMZWy5nIQcJ8b1RUClqrqIyKyGXhQRP4f8BJwj93e+i8AAB8gSURBVNv+HuB/RaQO2I4XLFDVTSKyFNiMl435UlWNA4jIZcATQBi4V1U3uWMtynIOU0RBs8HT06DkEw0LV5z4SW5+4tWMz/a2J7h4SQ03n/kpPtrb7tVUQpIx5HdpTb23vbuGy5fWsn13C8dOHMW8aWM6PgeYfcQosrXTfdi8N0tNZ5e3Vky2yAIcMnJQ1s8mjt6vI6gkJSdfrt+605sPkyYs5a8x2GqWppgkKPV5f1RdXa01NTU9fRl9yvqtO7ng7rUpubhKoSosncpUnE80HKI9kcA/naUqLDz+jeM47bZnUpJrDqgKcdc/H8ml97+U8z5jEeHmM6d1uimrsbmFf7xxdUY2gVhE+MtVc3rkwW5JL01niMg6Va1OLy9ph76pbMWcIJlLMQMLeKljBG++zcCqMNGw8L15UxgxOMqln5tILCIpHfNjhg2kJWBSpl9Lu3ap83vkkBjnfCZ1cEFI4OYzp/XYg707w5iNSbLgYrps3wTJvvdnFFdl5mH7E08kqAqHuG7FRo7+zye540+vA8Ilxx/Gs4tmo8Bptz2DuBp+rntNNqF1Zo5IY3NLSrMdeLWoWVlGmhnTV/S9p4LpVeZNH8uXZx1SkmMPjoaJRUJ0ckJ/wf68pZHWuLK7NU57wqshfdwap6U9wa2rt/DmB81c6SY8trjak6rynVOOCAwye9rauXhJDeffvYZjblzN/WvfynsNQRM6o+Fwr5n3YkxXWXAx3dLY3MLPnv1b0Y43oCrEgKoQ3zn5CE6aciDxRIJIqaJLDm1x5ayfrsnoxI9Fwsw8dCR/uWo2l59weEcTWiwiiHirZja3xGltT3DNbzZy/5rMAOOfR2MjtEylsrT5Jq9cHbz1O/YEjnbqqlvOnEbTnja+u2JjR6r7QhJJhoBT/mE0T/71A/YUkre/AEFnTT74Rw6J8fU5kzqWMW7a08rX7n+RtnjqJNDrH97E3KkHpsz/SZ9HYyO0TCWy4GJySn8YXnvqZKaOHdbxgB03YiDxArMIF+LD5hb+8/FXsq6hkk0CWP3X99nTln/HARFhb4Hry/hFI14HP6SugplcbbI14KKrwqGUFSmD5tE8u2h24ARMY/oyaxYzWdW991FHn0MyHcg1v93I+Xev6cg75S2UNblo/SIHDIlmXQ453yk+9gWWqpA3h+bs6nEdTW3J8ra40tkxCNGw8NjXj0UhMPeWl4k5c6GxlvZ4RxNX/Y49aFog1oR2BB8boWUqiQUXE2hFbQOn3PrnwImD/jxd9695i8WPbC5K09jZ1eM45u8OCFyLBaD64OEFH6st4dUaVq7fxv857jDa3THbEt7KkjnmQxIWbziw37lHjWfE4GjO3FtzpxxIVVqUFV+gHBwNdwwMSGqJa0ayTj/LUGz6KgsuJkOy+SaomccvHBKuf3gTe9sSebfN54xpYzh/5sG8+UEzx00KHoY7fFDn1nzb3eoFwR+vrssZTJJCAl/+x4P59gmHU5W2MNnSmno2bWvKmar/udcbM1bAHBDZN/Jrd2u8owbV8XlVKCNZZ5JlKDZ9mfW5mAybtjVlbZrya2v35oi0xvMvCZzPyvXbeHj9NnId6Y+vvt/t8+SSUPjZX4KHD3tBRbKO7Prub19myZq3M/bzj/zKNgIsqDxb/4w/35jNpDe9mdVcTIoVtQ1cvKSGj7N8m/a76NhDiRcpfVACcgYW8Jq0ekpbIsGUMUMDU+vv2N0aGFhikdQlhjuzBHG+Bc2sVmN6O6u5mA77FvbKHzBiEeGLM8YxKBrhR6tey7oAWF83KBomodoRBOZNH9uR0ThZY1hWszVw36tPPiIj11jQ/kFyzX8ppFZjTE+z4GI6BK3nkW5AWFCBc6rHc9ptzxAW6XOBJRLK3aGfFA3DnRfMYMqYYSkP7eTw46Tp44MHGmRbLCx9/2zbZJv/sn7rTlt3xfR6FlxMh0ISUcaBEMIDz79d0AO6NyrkuiMhuOWs6Rx/+Cfybjtx9H6Bi4Klp9nvrGy1HJvVb/oCS7nvWMp9z8raBhYu30AikaCAbpeKc+M/TWXMiEFMGTO007WAuvc+ylgUrFSS/53SF0gzptyypdy3motJMW/6WCYfNJRTbv0z2RbVqlSxsPD3Y4YxLUszVz5Bi4KVSqF9N8b0FAsupkNyaGvTnjZikTCt8dIuAtbbSEj6VNNSIX03xvQUCy4GgPvXvMX1D2+iKhyiPaHE8/S9hENS1JxipRYLC9+YM5Hmljh3/OmNjM+jYbGEkcYUUcnmuYjIeBF5SkQ2i8gmEfmmK99fRFaJyBb3e4QrFxG5VUTqRGSDiMzwHWuB236LiCzwlR8pIi+7fW4Vl2sj2zlMsPvXvMU1v93YsbZJS3uCfF1xfSmwgFcrOfeog/nqcYcRi6ROEK0KC49947iC+yxypWQpV7qWYp3H0suYUillzaUduFxVXxSR/YB1IrIK+BfgSVW9UUSuAq4CFgEnA5Pcz0zgDmCmiOwPXAdU43UCrBORlaq6w21zMbAWeAyYCzzujhl0DpOmsbmF6x/ZnFFe5JWFe9y3Tzi8o1Zy85nT+PbS2pRRY5vf2VVQf0lQyvxkUMr1WTGtqG1g4bINHbXHm8/s2nnKdb2mfypZzUVV31HVF93rj4BXgLHAfOA+t9l9wBnu9XxgiXrWAMNF5CDgJGCVqm53AWUVMNd9NlRV16g35G1J2rGCzmHS1O/YQ7QHFuMqN/89zpp4AGHf7Pe2uKYkoMzGP3kxPXFlrs+KqbG5hSseWk9Le6Jj1czLH1rf6fOU63pN/1WW9C8icgjwabwaxmhVfcd99C4w2r0eC/inOte7slzl9QHl5DhH+nVdIiI1IlLzwQcfdP7GKsDgaJg9bZU/5vg/HnulI0WKF1Czp1bJJiglSwhh07ZdbNq2K2NJgEKO2VmbtjXRllatbIsrm7Y1deo4+dLLGNNdJe/QF5EhwHLg31R1lz8FuaqqiJS0ASbXOVT1LuAu8Oa5lPI6eqNkJ36WDPcVpTW+L0VKVychBu33cVuci+57gXhCSe+GKs3Exmy1zM7VPm0ipim1ktZcRKQKL7Dcr6q/dsXvuSYt3O9kqtsGYLxv93GuLFf5uIDyXOcwjr8Tv7/wp0gpNIGkX3K/9AEBbfHMwAJw7WmTiz76bMqYoRkLnUVCXnlndPXfoD+yQQ9dU7Kaixu5dQ/wiqr+0PfRSmABcKP7vcJXfpmIPIjXod+kqu+IyBPAf/hGfJ0IXK2q20Vkl4gcjdfcdiHwkzzn6DdyzRZvbG7h+oc39dCV9ZyW9jgvvb2DwdFwlychzps+luGDqvi/v3gxZ+boAZEQU8cMK9aldxg5JMYPz57OlcvWE5YQcU1w85nTuhQUbCJmfjbooetK2Sw2C/hn4GURqXVl38F74C8VkYuAt4Cz3WePAacAdcDHwJcBXBBZDLzgtrtBVbe7118Dfg4MxBsl9rgrz3aOfiF9bZELj5nADfP/oeP9pm27+txQ4mJojSvfe9gbGZf8N+nKA3XKmGEk8ozVVrRkTUzFDAo2ETM7yz7dPSULLqr6DNkbgucEbK/ApVmOdS9wb0B5DTA1oLwx6Bz9Qd17H2WsLbLkube58OhDmDh6P1bUNvDNB2uz7N13eaPBFEUyOryD+P9NOis9Y/He9nhKn0skRJdrE525BnvAlVZQlnDLPl04m6FfYWq37gwsf6buQwD+rQIDSwj4zil/z7ETD2DzO7u4ctn6gtakqd26syO45FrVMeiz9NoD4EZsSZeSXprexwY9dI9lRXYqJStyzZuNnPnTNRnlkZCQ0OCO50owsCqM4i3qNWviATyw9m1ue6qOaDhEazxBS0Ce/T986/iO2lxPT4w0vZNln84vW1ZkCy5OJQSX5IOwrT1RUTPsIwIFVEQAGFAV4tlFsxk5JJZS4/jxk69lrLdyw/x/oLG5hVk3rWavbw3l5DF27G7llJ88Q2t75mfpx7eaSuWq5P/Oxbg3S7lfYfx/FOA1ySwssDmorzlhymge3/heQdv6JwL6/6e5Yf4/cOHRh2SMoMvWrn7/2re5bfWWjKHayeM/U/eh1Wj6iUrt3yp1rdyCSx/k/6PY2x5HVYlGwhUZWACOnDCi4ODSlkiwsaGJc+56LuN/mvT1VhqbW2ja00prPHVIcWs8we1PZQaW5PEHR8M2isj0aeUYCVeW9C+meNJzQrXFlfYEOedc9HXPvdmYd5vB0TADqkJce9pkFj+6OW/OrBW1Dcy6aTWX3v8SCfVGeCUnE172+YlEw+GMc0Qj3kTDbU17CaUNhLTUKaYvKUf6H6u59DH1O/bQ3h/ytfg8+coHhCUzU/OgaJh4QvnKrEM45u9GMmXMsJzDR8H79wuqecQiIW4/f0bHTPfb/1iXcq5oWHjs68ey6Z1dXLykJmOAgI0iMn1JOUbCWc2lj2lrjxMw8KninfOZ8cQi0pHdOBryZty3xxP875q3+OqSdfxu07tZ/6fZ2NDErJtWc8Hdaznl1j9nTCKNhkMMG1jV0b6enhrllrOmMWJwlEXLN2QElljEFhozfUs50v9YzaWP2bhtV09fQo8YNSTGD86azrd+9RIArb7ne3OL1yR4zW82gtIxwTEsQls8wbe/cHhHU5m/RuOX/q0taBb8+q07M2pFg6Jh7rxgBscf/okS3LUxpVPq9D8WXPqA5MiwjQ1N3PBw5sJe/cGPV9cRi4Roy1Nr+97Dm7hnwWf41hcO5werXiMaCXHLqteQHEPuo+FQYJLJ9FFCQbWieCLBlBLkEDOmHEo5Es6CSy+3oraBKx9ajyC09LO+lnRBEyHTtcWV/7Okhj1u29b2/McNCyx+ZDP7xSI5h2ImmxL8q1gmFJ6t+9CGIRuTxvpcerHG5ha+9ataWuPa7wNLZ+wJCEIDqkJUZVlxc097ImNVyWwp1ru6iqUx/Y3VXHqx517/sGLTtRRbGMg3GPvxbxzH4xvf5banthAOhTKGbycnT/73H+uyTixLrmLpr0VZMkNjMlnNpRd7fOO7PX0JfYaEgmslg2PhjpEwE0fvx9fnTOIvV83hzgtmZCz61RqPc9vqLTnnyFgyQ2MKY8GlF2psbuHp197ndxZcChIOec1e6f71s4fxwFeP5tlFsztqH43NLR3Zi+en9ZP8/YFDs6Z7SbIVHI0pjDWL9SKNzS3cv/ZtbnfNNpWUfLKzQuJlci5kGeZLjjuMn/3lbyllsUiIrx53WMpDf0VtA1c8tD7rei+19U0ZZa3xeEatxFZwNCY/Cy69xIraBhYu80/Qq9x0LvmcUz2Oi487jFNu/XPebWMR4avHHcbfHzQ0IzW6/6Hf2NzCwmUbClpIzO+yz08KDB6VmszQmGKx4NILNDa35PxG3d/8qqaeT40bznWnT+Ga324M3GZwNExctSOIBNUm/Jmj63fsIZylXyabWCTEeTMnFOOWjOl3StbnIiL3isj7IrLRV7a/iKwSkS3u9whXLiJyq4jUicgGEZnh22eB236LiCzwlR8pIi+7fW4VEcl1jt5s07amfhlY/vWzh2VdB/v6hzcxd+qB/OtnD8v4bHAszPXzpqT0pYBXm5g2fjgjh8Q6ElNecPdaZt20mo0NTRkpX/zHG1AV4sJjJqQMV44nEjzrVvA0xnROKTv0fw7MTSu7CnhSVScBT7r3ACcDk9zPJcAd4AUK4DpgJnAUcJ0vWNwBXOzbb26ec/RinftG3VcI3gTFIGGBL84YRzQS/CdYFfY60r963GEZo7riCeXzR3wia7NUeubovW0JFj+6me+ePjmj9nJ29diOTv9vzjkc/8ftCWwOizFdVLLgoqpPA9vTiucD97nX9wFn+MqXqGcNMFxEDgJOAlap6nZV3QGsAua6z4aq6hr1ltJcknasoHP0WlPGDCXLM7ZPU7IHFxH42bN/yzqxMa7a0bx185nTOjU6K1s68fEjBmb8O69c/07Hebw5LOGM/SyVvjGdV+4+l9Gq+o57/S4w2r0eC2z1bVfvynKV1weU5zpHr/bNOYfzk9WvEQqFUpbc7etas9xKewLuf/7twM/Sswx3dnRWtrkoIETDYVra9+WE8U+AHBwNZ2RCsDksxnRNj3Xoq6qKSEk7GvKdQ0QuwWuGY8KEnum4/emfXufmJ14lEhZEQsz+5Cf4/eZ3O3JXhSBLHt++IRYRVCESCvFxW/YRcINjYdrjyhdnjOUrsw5NWTESOjc6KzkXJX302JQxQ7NOgEyu7plMcJmcN2NzWIzpmnIHl/dE5CBVfcc1bb3vyhuA8b7txrmyBuBzaeV/dOXjArbPdY4MqnoXcBdAdXV12XvUFz5Uy9J13mW3u87mx9ImTvblwAIgIjz69WPZ1rQ3cJEt8EZ+zZ82luUvbuXh9e/w65caur2ed7baTlDQATr6aJISCeWxbxyXEeSMMYUpd0v/SiA54msBsMJXfqEbNXY00OSatp4AThSREa4j/0TgCffZLhE52o0SuzDtWEHn6FXq3vuoI7D0BlWdHKYbeIywpPxBVYWlI+3K8YeP4uYzP5XROQ9eYF3+4lZa2jXn0sSd5R89ljRv+lieXTSbX3x1Zsdos6A+mlgkzO4KXjramFIr5VDkXwLPAZ8UkXoRuQi4EThBRLYAX3DvAR4D3gDqgP8BvgagqtuBxcAL7ucGV4bb5m63z+vA46482zl6ldqtO3v6ElK05cmQGRHyDjpoi2tKTSskXhbhpHnTx/KXq+Zw+QmHE4uEcq5ZX8qO9PSgY/nCjCm+kjWLqeqXsnw0J2BbBS7Ncpx7gXsDymuAqQHljUHn6G2mjx/e05fQKRISvnTUeB58oZ7WLOuqRMOp6Vqi4XBGtuCRQ2J8fc4kzps5oaPJCjLXrC/nwz1bH431tRjTdTZDv4z8M8Ynjt6PT48bxksB+ax6g2hYiCe0I79ZW1xZWlPPAxcdxbl3r6U9bdLnwCohfcmZXAEivYO+px/uli/MmOKy4FImydFI/ofnRccdymW/rC3L+cNCwYkwIyHhh2dP5+pfv8xHLanDdqsi3uz4a36TmpZFEa47fTKLH93cpQDRGx7uli/MmOKx4FIi/loK7BuNtNf1SixcvoFHLjuWkJCyIJgAg6IhdmebIFIgwevziFWFiSeU+dPHsLSmPu9+ANfPn8IRB+5HS3tqh3ayJjJt/HBQL0VLVTjUkeNr3vSxzJ16YJcDhD3cjakcFlxKIL2WcunnJlIVCnUEFvBqAbtb4/zXOdO54qH1iAiqynWnT2Hxo5s7fc5oKHXCogKRcIg7LziSMcMGcNptz+TdXwW+d/pUhsQinHbbM4RCXnUnFhYklDqx8fyjDw4MJBYgjDFgwaXo/HmtksHktqfq8B73+/hrAenNQfsNiHT0P+xtj5Pw9X1kE1TRiYZDDBtYxbamvYTy5C/7zqmTOX3aGABm3bQ6Zc6HivDoZcd2a2KjMaZ/seBSZMk5E/5aSjQc4pLjD+P2tLXZs33bnzXxAO765yPZtaeNoQOj7NrTyreWdj4lf1siwcaGJm54ZHPg5MWkSAhOnzaGkUNirN+6M+P6Y+GQzfkwxnSKBZciyzZn4ryZE1KG32b7xp9sUgPY25YgFhYUOhVYBse8fpZrT5vM4jyBJRoWbjlrms35MMYUlQWXIss3ZyJXM5K/SS2ppcCgklw869pTJzN17LCOBbLSayF+g6rC3PnPR3L84aMKvn5jjCmEBZdu8o8K62oW36R8wSDdwKowCVW+e/pkpo4Z1lG7SM5sD6qF+CVQpowZmlHuv/7BUS8NSmNziwUYY0zBLLh0Q9DclWSyxWQ/SmNzC+u37uxyqvikSAjCoRDRsHcufw0ledyg6/HXQva2x1FVBlZF8tZIRg6J8Uzdh1nvzxhjchHV/re8bpDq6mqtqakpePvG5paMUVUDqkI8u2h2zod9vofzytoGLn8otfO+Kiz84KxpOWtDua4HSJlzU0iNqpD7M8YYEVmnqtXp5VZz6aKgJiz/wlNBQ5IXLt/ArIkH5Hw4z5p4AOkJipMJIHMN/c11PemZgQsJDvnuzxhjcqnAxXXLI9+oqmxL7ebL9Bu01G4yAWR3rqezbNSYMaY7LLh0UXJUVba13bv6cO7qfvmup7OKfTxjTP9ifS5OZ/tckoJGiyWtrG3IGNJbSId4V/fLdz1dUezjGWMqS7Y+FwsuTleDSz5dfTjbQ90Y0xdYh34P6Wr+LcvbZYzpy6zPxRhjTNFZcDHGGFN0FRtcRGSuiLwqInUiclVPX48xxvQnFRlcRCQM3A6cDEwGviQik3v2qowxpv+oyOACHAXUqeobqtoKPAjM7+FrMsaYfqNSR4uNBbb63tcDM9M3EpFLgEvc22YRebUM11ZOBwAf9vRFlEF/uE+7x8pRafd5cFBhpQaXgqjqXcBdPX0dpSIiNUHjzytNf7hPu8fK0V/us1KbxRqA8b7341yZMcaYMqjU4PICMElEDhWRKHAusLKHr8kYY/qNimwWU9V2EbkMeAIIA/eq6qYevqyeULFNfmn6w33aPVaOfnGfllvMGGNM0VVqs5gxxpgeZMHFGGNM0Vlw6WNE5F4ReV9ENvrK9heRVSKyxf0e4cpFRG51KXA2iMgM3z4L3PZbRGRBT9xLNiIyXkSeEpHNIrJJRL7pyivmPkVkgIg8LyLr3T1e78oPFZG17l5+5QakICIx977OfX6I71hXu/JXReSknrmj7EQkLCIvicgj7n0l3uPfRORlEakVkRpXVjF/r12iqvbTh36A44EZwEZf2feBq9zrq4Cb3OtTgMcBAY4G1rry/YE33O8R7vWInr433/0cBMxwr/cDXsNL41Mx9+mudYh7XQWsdde+FDjXld8J/Kt7/TXgTvf6XOBX7vVkYD0QAw4FXgfCPX1/aff6beAB4BH3vhLv8W/AAWllFfP32pUfq7n0Mar6NLA9rXg+cJ97fR9whq98iXrWAMNF5CDgJGCVqm5X1R3AKmBu6a++MKr6jqq+6F5/BLyCl3WhYu7TXWuze1vlfhSYDSxz5en3mLz3ZcAcERFX/qCqtqjqm0AdXvqjXkFExgGnAne790KF3WMOFfP32hUWXCrDaFV9x71+FxjtXgelwRmbo7zXcU0jn8b7Zl9R9+mai2qB9/EeJK8DO1W13W3iv96Oe3GfNwEj6eX3CPwXsBBIuPcjqbx7BO+Lwe9FZJ1LKwUV9vfaWRU5z6U/U1UVkYoYXy4iQ4DlwL+p6i7vS6ynEu5TVePAdBEZDvwGOKKHL6moROQ04H1VXScin+vp6ymxY1W1QUQ+AawSkb/6P6yEv9fOsppLZXjPVatxv9935dnS4PT69DgiUoUXWO5X1V+74oq7TwBV3Qk8BRyD10SS/NLnv96Oe3GfDwMa6d33OAuYJyJ/w8tMPhv4MZV1jwCoaoP7/T7eF4WjqNC/10JZcKkMK4HkyJIFwApf+YVudMrRQJOrpj8BnCgiI9wIlhNdWa/g2tnvAV5R1R/6PqqY+xSRUa7GgogMBE7A61t6CjjTbZZ+j8l7PxNYrV4v8ErgXDfS6lBgEvB8ee4iN1W9WlXHqeoheB30q1X1fCroHgFEZLCI7Jd8jfd3tpEK+nvtkp4eUWA/nfsBfgm8A7ThtclehNcu/SSwBfgDsL/bVvAWTXsdeBmo9h3nK3gdo3XAl3v6vtLu8Vi8NuwNQK37OaWS7hP4FPCSu8eNwHdd+WF4D8464CEg5soHuPd17vPDfMe6xt37q8DJPX1vWe73c+wbLVZR9+juZ7372QRc48or5u+1Kz+W/sUYY0zRWbOYMcaYorPgYowxpugsuBhjjCk6Cy7GGGOKzoKLMcaYorPgYkwRiMhoEXlARN5wKUCeE5F/CtjuEPFltPaV3yAiXyjgPNNFREWkz+acMv2DBRdjuslN+vwt8LSqHqaqR+JNGhyXtl3WdEuq+l1V/UMBp/sS8Iz7HXgtImL/X5seZ3+ExnTfbKBVVe9MFqjqW6r6ExH5FxFZKSKr8SbUBRKRn4vImSIyV0Qe8pV/TvatgyLAWcC/ACeIyABXfohb52QJ3oTM8SJypYi84NYLud53vN+6mtUmX4JFY4rOgosx3TcFeDHH5zOAM1X1swUc6w/ATJdGBOAcvLxcAP8IvKmqrwN/xEtlnzQJ+G9VnQJ80r0/CpgOHCkix7vtvuJqVtXAN0RkZAHXZEynWXAxpshE5HbxVph8wRWtUtX0NXgCqZdq/nfA6a4Z7VT25aT6EvsCzYOkNo29pd7aIODlpDoRL73Mi3jZlie5z74hIuuBNXhJEidhTAlYyn1jum8T8MXkG1W9VEQOAGpc0e5OHu9B4DK8ReFqVPUjEQm7c8wXkWvw8lONTCZMTDuHAP+pqj/1H9Slvf8CcIyqfiwif8TL52VM0VnNxZjuWw0MEJF/9ZUN6sbx/oTXlHYx+2oqc4ANqjpeVQ9R1YPxliTIGJGGl0n3K249HERkrFtnZBiwwwWWI/CW2DWmJCy4GNNN6mV/PQP4rIi8KSLP4y1ruyjLLp8UkXrfz1lpx4sDjwAnu9/gNYH9Ju04ywkYNaaqv8dbs/45EXkZb8ng/fCa2yIi8gpwI17TmDElYVmRjTHGFJ3VXIwxxhSdBRdjjDFFZ8HFGGNM0VlwMcYYU3QWXIwxxhSdBRdjjDFFZ8HFGGNM0f3/edaWLsbe9/EAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "a63abcdb-17bb-4ee1-89b4-4b643e13cf30", | |
"metadata": { | |
"id": "a63abcdb-17bb-4ee1-89b4-4b643e13cf30" | |
}, | |
"source": [ | |
"Ahora que pasa con \"PrecioVenta\" y \"AreaSotano\"? Son amigas pero su relación no es lineal. Sin mencionar que a veces, el AreaSotano se va en su onda y evita el PrecioVenta" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"id": "437797dd-a3a3-427d-9820-c098c19715ac", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 300 | |
}, | |
"id": "437797dd-a3a3-427d-9820-c098c19715ac", | |
"outputId": "4cd487e2-1213-4a38-c57e-4e368013d0c9" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7f1f879576d0>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 26 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEKCAYAAADenhiQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5zUddn4/9c1swdOIrgiAguKARpwC+kmGEaKqWiK3j+VTFN+ZnJ/SzvcmWL1K1Pv+nkoK2/LbjLvpCxDqEDTCAUzLcjFAAEVNjywiwquyJndnZnr+8fnPctnZz4zOzs7h53hej4e286853PE7XPN+3S9RVUxxhhjcilU7AswxhhTfiy4GGOMyTkLLsYYY3LOgosxxpics+BijDEm5yy4GGOMybm8BhcR+U8RWS8i60TkNyLSS0RGishKEWkQkd+KSJXbttq9b3CfH+s7ztdc+asico6vfLoraxCRm33lgecwxhhTGHkLLiIyDPgiUKeq44EwcBlwJ/ADVR0F7ACucbtcA+xw5T9w2yEiY91+44DpwE9EJCwiYeDHwLnAWOBTblvSnMMYY0wB5LtZrALoLSIVQB/gLWAasMB9/hBwkXt9oXuP+/xMERFX/oiqtqjqa0ADcIr7aVDVzaraCjwCXOj2SXUOY4wxBVCRrwOrapOIfA94E9gP/BlYBbyvqhG3WSMwzL0eBmxx+0ZEZCdQ48pX+A7t32dLQvkkt0+qc3QgIrOB2QB9+/Y9+YQTTsjuZo0x5hC1atWqd1V1UGJ53oKLiAzEq3WMBN4HHsVr1uoxVHUuMBegrq5O6+vri3xFxhhTWkTkjaDyfDaLfRx4TVW3q2ob8DtgCjDANZMB1AJN7nUTMNxdbAVwONDsL0/YJ1V5c5pzGGOMKYB8Bpc3gcki0sf1g5wJbACWA5e4bWYBi9zrxe497vNl6mXVXAxc5kaTjQRGA/8AXgBGu5FhVXid/ovdPqnOYYwxpgDyFlxUdSVep/qLwEvuXHOBOcBXRKQBr3/k526XnwM1rvwrwM3uOOuB+XiB6U/AdaoadX0q1wNLgJeB+W5b0pzDGGNMAYil3PdYn4sxxnSdiKxS1brEcpuhb4wxJucsuBhjjMk5Cy7GGGNyzoKLMcaYnLPgYkwGmve0sGbL+zTvaSn2pRhTEvI2Q9+YcrFodRNzFq6lMhSiLRbjrotPZMbEwIxCxhjHai7GpNC8p4VnN27jpgVrONAWY3dLhANtMW5auNZqMMZ0wmouxgSI11ZCIrREOs4FqwyFaNyxn5p+1UW6OmN6PgsuxiRo3tPCnIVrOdAWC/y8LRajdmDvAl+VMaXFgosxCRp37KcyFOIAHYNLn8owMZS7Lj7Rai3GdMKCizEJagf2pi3WMbBUV4T46ZUnM25ofwssxmTAOvSNSVDTr5q7Lj6RXpUhDquuoFdliLsvOZGpYwZZYDEmQ1ZzMSbAjInDmDLqSBp37Kd2YG8LKsZ0kQUXY1Ko6VdtQcWYLFmzmDHGmJyz4GKMMSbnLLgYY4zJOQsuxhhjci5vwUVEjheR1b6fXSLyZRE5QkSWisgm93ug215E5F4RaRCRtSJyku9Ys9z2m0Rklq/8ZBF5ye1zr4iIKw88hzHGmMLIW3BR1VdVdaKqTgROBvYBvwduBp5W1dHA0+49wLnAaPczG7gfvEAB3AJMAk4BbvEFi/uBa337TXflqc5hjDGmAArVLHYm8C9VfQO4EHjIlT8EXOReXwjMU88KYICIDAHOAZaq6nuqugNYCkx3n/VX1RWqqsC8hGMFncMYY0wBFCq4XAb8xr0erKpvuddvA4Pd62HAFt8+ja4sXXljQHm6cxhjjCmAvAcXEakCZgCPJn7mahyatFMOpTuHiMwWkXoRqd++fXs+L8MYYw4phai5nAu8qKrvuPfvuCYt3O9trrwJGO7br9aVpSuvDShPd44OVHWuqtapat2gQYOyvD1jjDGJChFcPsXBJjGAxUB8xNcsYJGv/Co3amwysNM1bS0BzhaRga4j/2xgiftsl4hMdqPErko4VtA5jDHGFEBec4uJSF/gLOA/fMV3APNF5BrgDWCmK38COA9owBtZdjWAqr4nIrcDL7jtblPV99zrzwO/AHoDT7qfdOcwxhhTAOJ1SZi6ujqtr68v9mUYY0xJEZFVqlqXWG4z9I0xxuScBRdjjDE5Z8HFGGNMzllwMcYYk3MWXIwxxuScBRdjjDE5Z8HFGGNMzllwMcYYk3MWXIwxxuScBRdjjDE5Z8HFGGNMzllwMcYYk3MWXExJa97Twpot79O8p6XYl2KM8clryn1j8mnR6ibmLFxLZShEWyzGXRefyIyJwzrf0RiTd1ZzMSWpeU8Lcxau5UBbjN0tEQ60xbhp4VqrwRjTQ1hwMSWpccd+KkMd/3wrQyEad+wv0hUZY/wsuJiSVDuwN22xWIeytliM2oG9u3Vc68MxJjesz8WUpJp+1dx18YnclNDnUtOvOutjWh+OMbljwcWUrBkThzFl1JE07thP7cDe3Qos/j6cA3g1opsWrmXKqCO7dVxjDlV5bRYTkQEiskBEXhGRl0XkVBE5QkSWisgm93ug21ZE5F4RaRCRtSJyku84s9z2m0Rklq/8ZBF5ye1zr4iIKw88hyk/Nf2qmTB8QLcDgPXhGJNb+e5z+RHwJ1U9AZgAvAzcDDytqqOBp917gHOB0e5nNnA/eIECuAWYBJwC3OILFvcD1/r2m+7KU53DmED56sMx5lCVt+AiIocDU4GfA6hqq6q+D1wIPOQ2ewi4yL2+EJinnhXAABEZApwDLFXV91R1B7AUmO4+66+qK1RVgXkJxwo6hzGB4n04vSpDHFZdQa/KULf7cIw5lOWzz2UksB34XxGZAKwCvgQMVtW33DZvA4Pd62HAFt/+ja4sXXljQDlpztGBiMzGqyUxYsSILt6eKTe57MMx5lCXz2axCuAk4H5V/RCwl4TmKVfj0DxeQ9pzqOpcVa1T1bpBgwbl8zJMFxVrSHCu+nCMOdTls+bSCDSq6kr3fgFecHlHRIao6luuaWub+7wJGO7bv9aVNQGnJ5Q/48prA7YnzTlMCbAhwcaUvrzVXFT1bWCLiBzvis4ENgCLgfiIr1nAIvd6MXCVGzU2GdjpmraWAGeLyEDXkX82sMR9tktEJrtRYlclHCvoHKaHs7QuxpSHfM9z+QLwsIhUAZuBq/EC2nwRuQZ4A5jptn0COA9oAPa5bVHV90TkduAFt91tqvqee/154BdAb+BJ9wNwR4pzmB4uPiQ4PtcEDg4JtqYqY0pHXoOLqq4G6gI+OjNgWwWuS3GcB4EHA8rrgfEB5c1B5zA9nw0JNqY8WG4x06PYkGBjyoOlfzE9jg0JNqb0WXAxPVJNv2oLKsaUMGsWM2WjnNPll/O9mfJkNRdTFsp5bkw535spX1ZzMSWvnOfGlPO9mfJmwcWUvHJOl1/O92bKmwUXU/LKeW5MOd+bKW8WXEyP0J0O63KeG1PO92bKm3gT401dXZ3W19cX+zIOSbnqsG7e01K2c2PK+d5MaRORVaqalInFRouZosrl2vXlPDemnO/NlCdrFjNFZR3WxpQnCy6mqKzD2pjyZMHFFJV1WBtTnqzPxRSdJao0pvxYcDE9gnVYG1NerFnMGGNMzllwMYckyzJsTH7lNbiIyOsi8pKIrBaReld2hIgsFZFN7vdAVy4icq+INIjIWhE5yXecWW77TSIyy1d+sjt+g9tX0p3DGPAmbU65cxmffmAlU+5cxuLVTcW+JGPKTiFqLmeo6kTfDM6bgadVdTTwtHsPcC4w2v3MBu4HL1AAtwCTgFOAW3zB4n7gWt9+0zs5hznEWZZhYwqjGM1iFwIPudcPARf5yuepZwUwQESGAOcAS1X1PVXdASwFprvP+qvqCvVy2MxLOFbQOcwhziZtGlMY+Q4uCvxZRFaJyGxXNlhV33Kv3wYGu9fDgC2+fRtdWbryxoDydOfoQERmi0i9iNRv3769yzdnSo9N2jSmMPIdXE5T1ZPwmryuE5Gp/g9djSOvmTPTnUNV56pqnarWDRo0KJ+XYfKkqx3zNmnTmMLI6zwXVW1yv7eJyO/x+kzeEZEhqvqWa9ra5jZvAob7dq91ZU3A6Qnlz7jy2oDtSXMOU0ayzaZskzaNyb+81VxEpK+IHBZ/DZwNrAMWA/ERX7OARe71YuAqN2psMrDTNW0tAc4WkYGuI/9sYIn7bJeITHajxK5KOFbQOUyZ6G7HfE2/aiYMH2CBxZg8yWfNZTDwezc6uAL4tar+SUReAOaLyDXAG8BMt/0TwHlAA7APuBpAVd8TkduBF9x2t6nqe+7154FfAL2BJ90PwB0pzmG6oCevIRLvmI+n6YeDHfM97VqNORTlLbio6mZgQkB5M3BmQLkC16U41oPAgwHl9cD4TM9hMperBbzyxTrmjenZbIa+SVIKc0Ey6Zgv9Cx8m/VvzEEZ11xE5BhgtKo+JSK9gQpV3Z2/SzPFUipNTuk65gtd8+rpNT1jCi2jmouIXAssAP7HFdUCf8jXRZniKqUmp6CO+ULXvEqhpmdMoWXaLHYdMAXYBaCqm4Cj8nVRprhKfS5IoWfh26x/Y5Jl2izWoqqtbuQXIlJBnic/muIq9lyQ7oxUK3TNq5RqesYUSqY1l7+IyNeB3iJyFvAo8Fj+Lsv0BMWaC9LdrMWFrnmVek3PmHwQbwRwJxuJhIBr8CYwCt7Exgc0k51LRF1dndbX1xf7MspOV2sgzXtamHLnMg60HawJ9KoM8fycaV1+WBd6nk5PnhdkTL6IyCpf1vt2mTaL9QYeVNWfuYOFXdm+3F2iKTfZjKDKdqRa0IO90Esn21LNxhyUabPY03jBJK438FTuL8eUi4Z3dnPjgq6PoOqs/yJoLokt/mVMz5NpcOmlqnvib9zrPvm5JFPqFq1u4rx7/0prpGOQyGQEVbr+i6AgYsOAjemZMm0W2ysiJ6nqi+AtLwzYOEuTJP6wb40md8dlOoIqaKSaP4jEm8xuWriWuVeeXBITPvPB+nhMT5ZpcPky8KiIbMXr0D8a+GTersqUrKA+E4CKsPDNT4zt9CHof2BOGD4g7XG9uSVySA4DtowApqfLKLio6gsicgJwvCt6VVXb8ndZplQF9ZkAVIdD3P7HDRzWqyLlQzDdAzNVX8y4of256+ITuSlhv3gQK8dv96lqcVNGHVk292hKX9rgIiLTVHWZiPw/CR+NERFU9Xd5vDZTguJ9JjctXEtYhL2tUYD236kegp09MP3HTQwiqSZ8luu3+1LJ/WYObZ3VXD4GLAMuCPhMAQsuJkn8Yb/8lW18+7H17GmJtn+W6iGYyQMzXdaAxGHAQcHqqwvWMnZIf0YNPiwv910olhHAlIK0o8VU9RY3gfJJVb064eczBbpGU4Jq+lVzxglHEYl17NiPPwQThxRn+sDMJGtA854Wlr+yjbBLVxTXGolx3r1/LfmhypYRwJSCTGfo1wfNwCwnNkM/PxavbkpqylIIbK4K2rarzVjxprCKkHSoMfllO+O/pynH/iRTero7Q/8pEfkq8Ftgb7zQt9ywMYFmTBzG2CH9Wb3lfSYOH8DAvlXt6V0S+1a6myyzeU8LNy1YS0skeUCBX7n0T1hGANOTZRpc4sOO/csQK3BcZzu6VDH1QJOqni8iI4FHgBpgFXCly7hcDcwDTgaagU+q6uvuGF/Dy20WBb6oqktc+XTgR0AYL9fZHa488BwZ3qvJocRO9etOH5XUtxIWYfkr2zjjhKO69cB8eOWbSYGlT1WY1kgUf7H1TxiTfxnN0FfVkQE/nQYW50vAy773dwI/UNVRwA68oIH7vcOV/8Bth4iMBS4DxgHTgZ+ISNgFrR8D5wJjgU+5bdOdwxRQ0Oz5+5Y30Brt2Fy1tzXKtx9bn1XqloZ3drOgfgv1rzXz4+Wbkj6PxpRbZ4y3/gljCqyzociTgLnAB4CXgM+o6svp9knYvxb4BPAd4CviLQgzDbjcbfIQ8G3gfuBC9xq8VS/vc9tfCDyiqi3AayLSAJzitmtQ1c3uXI8AF4rIy2nOYQpo/dZdhOjYqV4VDjF76nH8+JmGDkOV4/0jnc3X8Pcz/Oipjcxb8Wb7Z2FJ3v76M0ZxxeRjmD7+aOufMKaAOmsW+zHwVeBZYAbwQ+CcLhz/h8BNQHzsZw3wvqpG3PtGIN5jOwzYAqCqERHZ6bYfBqzwHdO/z5aE8kmdnKMDEZkNzAYYMWJEF27LdGbR6qbA/o+2WIzLJ43g8kkj+P6fX+XX/9jS4fN0/SH+JraWSITWhP76xIwz1RXC5ZO8/67WP2FMYXXWLBZS1aWq2qKqjwKDMj2wiJwPbFPVVd26wjxS1bmqWqeqdYMGZXxrxgnKUBwvn7MwObBUV0iHJqmFLyY3gbVGo4H9IYlNbImBJS4stDd/3X3JBIDAa+zO/RljOtdZzWVAwuz8Du87maE/BZghIucBvYD+eJ3vA0SkwtUsaoH4E6YJGA40umWUD8fr2I+Xx/n3CSpvTnOOsleo4anpZr8HTYjsUxXmp58+ialjjmrfpiocSgpA158xOvC6M12P/jsXjeeDQw+ndmBvnmt4lyl3LstqaHO5zu43plA6q7n8BW92fvzH//78dDuq6tdUtVZVj8XrkF+mqlcAy4FL3GazgEXu9WL3Hvf5MrfS5WLgMhGpdqPARgP/AF4ARovISBGpcudY7PZJdY6yVqh1TTpLcx80ITKmyrihh7e/D9qmuiLU3owVP0+85tC3Ktxhdcog4ZBQd+wRAOzY25p0jTcuWMuzG7d3WhOxNP7GdF/amouqXp2Hc84BHhGR/wL+Cfzclf8c+KXrsH8PL1igqutFZD6wAYgA16lqFEBErsdbcjmMt1Lm+k7OUbYKmcyws1Qt6fKAxXW2jb/m0BqNcfFJw6gKQasvvgjeePi4jxx3BOff95zXJxONIQkThFsiMf7jl/UopK2JWO4uY7ovo3kuIjIY+C4wVFXPdUN+T1XVjB7aqvoM8Ix7vZmDo7382xwALk2x/3fwRpwllj8BPBFQHniOclbIB2ImqVoymRCZapv4KpatkYOBMrHjHzoGFoC/NjQDJKX799vf1nngtdxdxnRfpitR/gKvhjDUvd+It8aL6SEK+UDMNLdVJnnAErdZtLqJc+99NmkVy1wLhyRlP47l7jKm+zKdoX+kqs53M+XjQ4VTjNcxxZBJU1QuTRl1JHOvPBkQxg3tn5PzNO9p4Yb5q8lzXAGgLappA293U9EYc6jryjLHNbiWCBGZDOzM21WZrGTzQMxmdFm+RlKt37orq8DSpzJMDGVmXS2PvNCYUa3nlgs6XxXT5sYYk71Mg8tX8EZtfUBEnseb73JJ+l1MMXTlgZhNkMjvwIHOM3RXhEgKQLM+cgyf/ehx1PSr5qrJx3LevX+l1TejsjIshAQqQiHaojFuuWAcV0w6ppvXaoxJJ9Nljl8UkY/hLXMs2DLHJa8rQcJfu8nnwIFxQw+nMiy0JUy171MVIhLzahsA3/j9ug6f/+/fXuezH/VS3Y0afBjfu3RCUvOgNXEZU1id5RZLXN44zpY5LnGZBonE2s03PzE2o4ED/oAUP19nD/aaftV8/9IJ3LhgLeGQEI0p37pgLOPdpMiaftWs2fI+favC7TnJgq47sXkw0/MbY3Kns5pL0PLGcbbMcQnLZHRZUO3m1sc38NWzxnDPUxtTDhzwB6QDkSiqSu/Kioya3jrrN6od2JtowvyV1miUnftbad7T0r59vHnQZtobUxwZrUR5KDgUV6IMWvnR/2Bv3LGfTz+wkt0tkQ77VYWFr559PEf0reLYmj7sa4sSHzUGtC8GFsS/CmS2qWr8172/LYKI0KsinBQ8mve0JF1LuaxCaUxP0d2VKBGRT+CtqdIrXqaqt+Xm8kwxJNYSEnNxffP85CYwgNao8t0nX6FCIOL7blIRgi+dOSapuc0v3oT1XMO7KWsUnQWd+HWv37qLa+fV0xKJ0Rb1AqC/38hm2htTPJnO0P8p0Ac4A3gAb6TYP/J4XaZA4s1HQU1gtz22ns9MGckDz72W1MkOHQMLeKO4/nvZRiBgYRWnLRajb1U45WCCdEEn8brBW8XSzx88bKa9McWT6Qz9j6jqVXgrRd4KnAqMyd9lmUKLf8v3a4koD/39DUIigQtxBVGFmC/oeEOA6TDTfW9rNOlclaEQ67fuyjhh5KLVTVw7r941yR3kDx42096Y4sm0WSyeJ2OfiAzFSyw5JD+XZIoh6Fs+wD43KqsiJF7k6ITXveGfYxLi4WtO4fXmfUwcPoBRgw+jeU9L0rlao1E2b99NUB9gvCYSby6L13w6Wy8GbKa9McWSaXB5XEQGAHcB8cW/HsjPJZli8KePCSFJNYJILLOBH4nzVETg8gdWUp3Q4T6zrpZ5fz+4RHEkBncv2UhLQlvbgTavGa3jKpRRQqGOVanE9WIS782CijGF1dk8lw8DW1T1dve+H/AS8Arwg/xfnimkoI7yrkrsm4mP1Gr1dbiPHdKf+fWNHbaLxrTD3BW/X618g9/8401aInqwcz7hPInrxRhjiquzPpf/AVoBRGQqcIcr2wnMze+lmVzLZNnemn7VTB0ziOvPGJXVOSpC6d+HRHiu4d2kPpd0fvG3N5JqNIlm1tUC2S9pbIzJrbTzXERkjapOcK9/DGxX1W+796tVdWJBrrIAynWeS7yfYl3TTm7/44aMJxM272nhI3c83elDPRtVYSGmmtPsxxUhCIdCVIVtsqQxhZRqnktnXx/Dbj17gDOBZb7PMp4jY4ojvuzxFQ+s4Bt/WNfpKCx/zaamXzXfumBc4HFn1tW2j8CqCHn9LIdVV1CZ4ZCy1qgiIlSFu32L7SIxb6VJW5bYmJ6hswDxG+AvIvIu3oixvwKIyCgs5X6P5p+3EiRxMmFQmpTmPa1J+/WqDHH+iUOZM/2EDrm7Hl75Jv/99MaMr69XRZgbzh7NXUs2to9Iy6X4YmDWkW9McaStubjlhW/AW4nyND3YhhYCvpBuXxHpJSL/EJE1IrJeRG515SNFZKWINIjIb0WkypVXu/cN7vNjfcf6mit/VUTO8ZVPd2UNInKzrzzwHIeSoHkrfv75IP5AFP/mf+OCtdy3LDlYHGiLce28ep5veLfDCpI/eaaBFHEs5flPGzWIWDfTD1VXhKiukKRa096WKOua7PuPMcXSaa+qqq5Q1d+r6l5f2UZVfbGTXVuAaa7PZiIw3S0ydifwA1UdBewArnHbX4M3SXMU3ki0OwFEZCxwGV7qmenAT0QkLCJh4MfAucBY4FNuW9Kc45CRat5K36pw0mTCoEAUDgkVoeB2q5ZIx2anzgJZkBkThjBq8GHcdfGJSZ3+mQgBXz/vBOb/x6n87eYz+fcPJfev3P7HDdY0ZkyRZPF/68yoZ497W+l+FJgGLHDlDwEXudcXuve4z88UEXHlj6hqi6q+BjQAp7ifBlXdrKqtwCPAhW6fVOc4ZATNTv/Ov4/n19dO5vk50zp0dgcFomhMicRSN1fFm9VS7V8ZFm/iZQp/+OdWmve0sPtApNOO/U+MP5pelSH6VoepCguf+9hxvPD/fZzZUz/AhOEDvOOt3pq0X1ik/RqNMYWV1055V7tYBYzCq2X8C3hfVeNpdhuB+FNuGLAFQFUjIrITqHHlK3yH9e+zJaF8ktsn1TkSr282MBtgxIgR2d1kD5bp7HT/BEp/n8sbzfv4/tLgfpR9rZEOaVa+ef5Ybn1sA5Vhbx2W604fxdxnNydlVI6rDHvpXm59fEOn9/GfZ43htovGp7yPxh37qQoLrQmnaotaHjFjiiWvwUVVo8BEN7v/98AJ+TxfV6nqXNx8nbq6urJceyDT2en+QBRfjGvskP7cu2xTYNLKqMKf1r3NFZOPYdHqJm5/fAOVIaEt4i0jPH380dy3vCHl+fa3Rvnz+rc7TSnTqzLE3tYoowanvo/agb0DMwjccsE469A3pkjy1izmp6rvA8vxEl4O8A1vrgWa3OsmYDiA+/xwoNlfnrBPqvLmNOcwKfjnw5x/33Nc/rMVTP/Rs4GBJe7Wx9bT8M7u9sEAe1ujtEaV2//o1UbSTcSMAb9a+WaHte6DqGqntQ9/E2Df6jBVFV4T4BWTj0m7XznIZGKsMcWQt5qLiAwC2lT1fRHpDZyF19G+HC9l/yPALGCR22Wxe/939/kyVVURWQz8WkTuAYYCo/HS/QswWkRG4gWPy4DL3T6pzmECxIchh0VSpmAJUhESVm95P+WaKZdPGsF9yzd1ayJmTOH5hnc7Xeul0Akqs13oLJdslU3Tk+WzWWwI8JDrdwkB81X1cRHZADwiIv8F/BP4udv+58AvRaQBL+vyZQCqul5E5gMbgAhwnWtuQ0SuB5YAYeBBVV3vjjUnxTnKWmcPvKDPO5sPk04kpkwcPiDlmik1/aq54ezj+e4Tr2R3Q3i5ym5ckNlaL4VKUNkTHupB6+/4F0ozptjyFlxUdS3woYDyzXgjvRLLDwCXpjjWd4DvBJQ/ATyR6TnKWWcPvFSfB63WmKmvnn18+3DiGxesISwhohprH+a8aHUTdy95tdv31hKJMWfhWp5reLfbD9Pu1jh6ykPdVtk0PZ2lcCkDqR54Y4f0Z29rNO3Kj7UDe9Ma7foM+eqKEPc8tZGjD+/lVm8Rr6FSpcM1peuz6YqnXt5G36rkBca68jD1B9jWaIzrzxjF5ZNGdOlh3FMe6rbKpunpCtKhb/Ir1STG8+79K59+YCXn3vssifMpQyKs37qTmn7VXH/G6C6fsyUS40BbjBseXcONj66hJRJjX2u0fYLl+q27ujyxstNzJgSqrjxME7MQtERifH/pRj5yx9MsXp35eI+e8lC3VTZNT2fBpQwEPfAOtMVojSq7WyK0RaE12vHzfa1Rrp1Xz+LVTZw7/uisz90W1aQRX+GQABqYIaA7bjrn+KwfpqkCcEtEu5Tksic91GdMHMbzc6bxq89OSpoYa0yxWbNYGUicBNkSjSGqSd/0E8UfrHOvrKMiRM5S4O9tifLKW7u56+IT+eqjq8lFXsqrTh3B7KkfYNrxR7F6y/vtSyZnKlU6HOh6s1ZPWjrZVtk0PZXVXNDun0sAABvUSURBVMqE/1vsE184DUmTesWvMhRi6459GQeWDA/Ld598hd0tEe6ZmTSmIytXTT6WRaubOP++57j1sQ2cf99zaZuzEud/xANwdUAis2yatWr6VXdI3GmM6ciCSxmJP/DiI7iqKzqPBPtao3z9D+syPocAlRn+1Xx78Xp2H2jL+NjpxIchd7YmDRxcx+bTD6xkyp3L2oPQjInD+NvN07jhrDFUV0jRm7WMKWfWLFam4k03D/x1M/f/ZXPK7aJZpLxXb1hYp9u1RZX6N3Z0+fhBjuxXndEoraCRczcuWMOAPpWMG3o4Nf2q+cKZo7l80gjWb90JCOOG9s/JNRpjDrLgUoJSzdVILK/pV82ccz9I7cA+3PrYesIhYX8WkyX9okqn+cD8grIVd9XMulpO/UBNRqO0goYKt0SU//OrF4mpts/v6WxCpjGmeyy4lJhUkyHTTaK8YvIxTB9/NOu37uTaefXdSsfSVdGAhJJd8ckP13LnxRNo3tPCtOOP4ol1b7d/NrOuNqk5K1XHfXy1y/j8n54wEdKYcmZ9LiUkaMXImxau7ZA8MrE/It6xDTB1zFF8+NgjinwXXROJKA+veIOP3LGsQ2ABmF/fmNTn4h8q3KcyebGzylCoPR9aYrmt/WJM7ljNpYSkmh2eKnnkz/66mQefe43KcIioKl/5+Biea2guxqVnbeE/m1j4z+BRYamGEMf7m9Zv3eVqagf/XdpisbT50IwxuWE1lxKSanZ40MNyX2uEn/5lM61RZW9rlANtMe5ckn0CyZ4oXUCo6VfN1DGDuPuS5AmP8dF0PWEipDHlSjSL0ULlqK6uTuvr64t9GZ1avLopacXIGROHsXh1EzcuWEs4JESiMWJK4AJa5aIqDN+7dGJGnfCZDoAwxnSdiKxS1brEcmsWKzGpZodr/H9VUJSQZDjbsQRVhgXpwv2lmsVus9uNyR8LLiUo8aEY7+j3RoHFc62Ub63Fy7R8cJ0XCxDG9DzW51IGUiVlLHXVFcLnPnYc4RSVlJZIjF+vfLOwF2WMyUj5PZEOQemSMpaqqjDcfckEPvvR46gIp/4zvW/5Jls/3pgeyIJLGTiYlLF8+llEvD/Nxh37qUoTXKrCYZufYkwPlLfgIiLDRWS5iGwQkfUi8iVXfoSILBWRTe73QFcuInKviDSIyFoROcl3rFlu+00iMstXfrKIvOT2uVdcL2+qc5Qbf+bfGROH8bOr6uiVaVbJHi6+6FjfqnDaWlnQcOTEjMjGmMLL55MoAtygqmOBycB1IjIWuBl4WlVHA0+79wDnAqPdz2zgfvACBXALMAk4BbjFFyzuB6717Tfdlac6R84V8kHmP1dQ5t9xQw9PWnGylGnMm6Pjn5NSEfJGi6Wan5IqI7IxprDyNlpMVd8C3nKvd4vIy8Aw4ELgdLfZQ8AzwBxXPk+9iTcrRGSAiAxx2y5V1fcARGQpMF1EngH6q+oKVz4PuAh4Ms05cipdPq98nqs1GiMaixGJ0SE31vNzpnH5pFp+8bfy6ORuiSp9q8JJw6+BlPNWLGeYMT1DQdpQRORY4EPASmCwCzwAbwOD3ethwBbfbo2uLF15Y0A5ac6ReF2zRaReROq3b9/epXtKlecrHzWYoPXfExf3qgyFeHjlmzy8ojwCS9zWnQeAg2vVQHBgiZdbzjBjeoa8z3MRkX7AQuDLqrrLP/lNVVVE8johI905VHUuMBe8GfpdOW6qPF9dWS63K+eq6GQJyH2tEX64dCNl1CoGwK79Bxcb66ymmCo9juUMM6bw8lpzEZFKvMDysKr+zhW/45q7cL+3ufImYLhv91pXlq68NqA83TlyJl8PsqA+nHVNO9nTkn4h+qhSdoEF4IZHV7N4dVNGNUV/RuRyzRlmgxVMqchbzcWN3Po58LKq3uP7aDEwC7jD/V7kK79eRB7B67zfqapvicgS4Lu+Tvyzga+p6nsisktEJuM1t10F/Hcn58iZ+IMsMc9Xdx5kD694g1sf30BVWIjEvIWtpow6ktv/uCGHV941FSEpao6ylohy08K1zL2yLmVNEQ42laVKj1MOCtnHZ0x35bNZbApwJfCSiKx2ZV/He+DPF5FrgDeAme6zJ4DzgAZgH3A1gAsitwMvuO1ui3fuA58HfgH0xuvIf9KVpzpHTuXyQfbwijf4hlvLvjXilaV6qBZSMQJLrwrhgG9BM68fRQNriuuadvLJuX9PeuCWU1ABG6xgSk8+R4s9B6TqKDgzYHsFrktxrAeBBwPK64HxAeXNQefIh1wkP2ze08Ktj61PKg+HvLXqD0TSN4mVk4+fMIjn/tWMPzdaWyzGuKGHJ9UUv3LWGG59bD2tUS37B24h+/iMyQVLXNlNuUjb3rhjP5XhEK3RjkGkLaoMPbw3h8qyCBUhuPOSCTzf8G57EGmNRrnu9FFAx5riuqad3Pr4BlqjHf9tyvWBa4MVTKkpj+ncRZKrCXu1A3uztzW5dnLLBWPZuvMAVeHk5XrL0U3nnEDjjv1MGXUkz8+ZxrVTjwOEuc9ubv/3relXTe3A3tz+xw20Jo7HpnwfuIfCYAVTXqzmkqVctoG/tn1PYPm2nQe47bENHZbpLTd9qkJEYnDRxKHc89TG9iavb54/lp8800BLJNZ+//F/36AmIoCqsJT1A7ecByuY4sjngnkWXLKUyzbwJRveCSy/75l/ES3j1ST7Voe59YJxTBw+gPPve65DoL71sQ1UJsztif/7BjURVVWEeOILpzFq8GEFu/5isAXOTK7ke/ShNYtlKZdt4IMPC35YdDZxstS1RWJMHD6Ava3R5Jn1YaEtGvzvG9RE9L1LTiz7wGJMrhQiw4jVXLKUy3kuY47uH1he7v34oZBw/n3P8c1PjE0K1JGocs1pI3nw+deoCoeT/n2ticiY7BVi9KEFl27I1QNu3ND+VITokC+sIgS3zBjLtxevd8v6lp8Dbd4N3/b4ej4zZSQPPv86VeEQByJRorEYv1rxJiB8evIITv1ADeOGHt5hf2siMiY7hRh9aM1i3bRjbyub3tnNjr2tWR+jpl8198ycSHWF0KcyTHWFcM/MiUwfdzRl3jIGeLPwH3z+dVRjfHryCELiBdp4ks77/7KZz/3qRU69YxkPr3yj2JdrTMkrxOhDq7l0w7f+8BLzfFmIrzp1BLdd+G9ZHWvKqCP5/qUTeHdPK6eNOpJRgw9jzZb3qQqHaYlEcnXJPVZ8RNjcZze7ZY071tbiQ7W/8ft1oHDF5GO6dPx8jooxphTlu2nZgkuWGt7Z3SGwAMz7+5tcNfnYLncsL1rdxFcfXdPe/FURgntmTmTKqCPTrsJY6nqFhQMJTX5RhWgnQ69vfWw908cfnfH/GSwnlzHB8tm0bM1iWXqu4d0ulfv5M9s272nhpgVrO/SrRGJw44I1ANx18YlUlFHTWGVY6FUZ4jv/Pp6bz/tglsfIfI2WQq67Y4w5yGouWepVERyXU5XHJX6Lvu70US6HWEeq3oiOGROHseW9fdz95405ue5iqgrDA7PqGDf0cGr6VdO8p4XvPPFylwcsRFUz7ni0nFzGFIfVXLI0dGCfLpVD8Lfo+5Y3EIkmNwO1uiV+F61u4kdPl2ZgSQyZl50ygqljjurwUP/itNF0Eo87qKroWsej5eQypjgsuGRp3ND+SQ9PceWpBC3DWxUOcenJw5O2rQ4LW3ceYM7CtQSkHetx+laFueKUEVRXCH2rwlSGIZzw1zW/vrG9OSqel23us5sJh0KEM2j6qwoLT3zhtC71l1hOLmOKw5rF8iDVyKRU36KvnnIsC17cQotvDRNx6fZLJfpHVfnK2WMYO7Q/tz6+gYpQiP1tHe/Vv7hXYl62yrAgqqTqy6+uEO6+ZEJWs/BtwqUxhVcqz64eZ+n6t0nsKVDgrj+9kjJTcvxbdHVFiD5VYapdE8+owYdx9yUTkr5dP772Lfa19ezRYn2qwu3XC7RnK04MLAAHIlFqB/YOrMH1qgjz4P/7YW48e0zgeb5/6YRujfCq6VfNhOEDLLAYUyBWc8lSw/a9geWPrmokpqTMlKzx/1XBP5cj8dv1a9v3ML++Mb830U3VFcJPP31Sewf9mi3vp101M74uTaoaXOIMfL/+vStzd+HGmLyzmkuWxg8Nbp6pSvgX9TcFxTv0WyLKvrZo+/rw8X6I+Lfr5xre5bKfrcjr9efCKcce0aGDvnZgb/a3pZ7w2buyon2U1sy62g6fzayrpaZfNeOGHk5lQgdMZVjSBh5jTM+Tt+AiIg+KyDYRWecrO0JElorIJvd7oCsXEblXRBpEZK2InOTbZ5bbfpOIzPKVnywiL7l97hURSXeOXNu0LXgNlsTWIP/IpKDmIH/wgYMBqBSWcPlrQzMN7+zuUOb+MwSK/1s072lJqpXFO/tr+lXz/UsndGg6/P6lE6w5y5gSk8+ayy+A6QllNwNPq+po4Gn3HuBcYLT7mQ3cD16gAG4BJgGnALf4gsX9wLW+/aZ3co6c2pTwUI374JB+KUcmZTIsNigA9WTPNWxvf924Yz+9KpJXzexTGe7wb9FZkJ0xcRh/u3kav7l2Mn+7eZrNpjemBOWtz0VVnxWRYxOKLwROd68fAp4B5rjyeeo1yq8QkQEiMsRtu1RV3wMQkaXAdBF5Buivqitc+TzgIuDJNOfIqeqAhyjAyJp+PPSZyYEjkzJJ0x8UgHqy7z7xMkf0rWbGxGGB115dEeKnV57MuKH9uxRkLeOxMaWt0F+RB6vqW+7128Bg93oYsMW3XaMrS1feGFCe7hw5dUTfqpTlQSOT4ilf4uvD/+qzk3h+zjSmjDqyPRUMHAxAlSVSeWmN0t5vFDSn5O5LTmTqmEGBQdbmnhhTvoo2WkxVVUTyulBJZ+cQkdl4zXCMGDGiS8feliI3VVB5qsSJqcoVKPbqxhUhQVVJzMzSq0KIxqDNd4H+dCqZzimxuSfGlLdCfz9+xzV34X5vc+VNgH+aeq0rS1deG1Ce7hxJVHWuqtapat2gQYO6dCOHVQXH5cTyVIkTG97ZnbL8xkfXJD3UC+3aj45MmmEPoAiJXULZplOxuSfGlK9CB5fFQHzE1yxgka/8KjdqbDKw0zVtLQHOFpGBriP/bGCJ+2yXiEx2o8SuSjhW0DlyaldL8JDbxPJUnder3ZyQxPIHn3+N1mJHFuCnf9kcmHbmkx+uDZzwGQ8Q8bQuQZNIjTGHjrw1i4nIb/A61o8UkUa8UV93APNF5BrgDWCm2/wJ4DygAdgHXA2gqu+JyO3AC2672+Kd+8Dn8Uak9cbryH/Slac6R06NOCI4QWViearO64nDBySVt0ajLFjVMx7GqcLb/PpGvnTmGJ6fMy2pSctfS0s1idQYc2jI52ixT6X46MyAbRW4LsVxHgQeDCivB8YHlDcHnSPXgjIZB5WnGiE2avBhSeXXnT6K+//yrx6dqDLevxLUnGXp7Y0xcZb+JUupmq6CylN1XieWA9y3vCF/F51CVVgCr7sylH5SaCJLb2+MiSuRAa89zxnHBw8ASFWeqvPaX17Tr5q7LzkxKf1JvgWFyZl1w1jx9Y9zw1ljqK7IbMiwDTE2xsRZzSVLRx7Wi7DQYVRXWLzyzjTvaWH91l2Atid9jIvXZtZv3cmu/W28tfMAdzz5SrdHj4UFwqEQkViswzBn4eA3jOqKEDFVbjz7eGZ/7AMAfOHM0Vw+aUTKIcOJywvYEGNjDFhwyVrtwN5UVoSI+tqNKitCnTYBLVrdxA3zV7fnDqsMS1I6+Zp+1UwdcxQAa7a8T5+qCnanGJ2WTligT1UFrdEokRi0+vqDQuJ93haDFhe5VJUnv/jRpDVTUs2WTzVPx2bXG2OsWSxLqdZmSfdQbd7Twk0L1nRIStkWVW5ccDAzcqKgfoyqMDz1n1P59gVjqQqajIIXtJZ8eSo/vuIkvjhtNNGEWZkx9WoyftUVYfZmOJog1fydVPdhjDm0WHDphoNrsxx8l07jjv2EJfmfPBySDpmR/eJBzL/OvCJseGsXF0wYmvJcnz1tJOvf2sXsX9bz38uCBwkkjmzrSud7JhmejTGHLgsuWepsbZYgtQN70xJJrhlEY5r2oT5l1JEdahltUe9cALfMGBu4z8A+VQfnnKTI33/t1OOy7ny3kWHGmHSszyVL2c7pCIWEaELv/LcuGJt2n8Yd+6kKh2iJJJ/riknHsPdAhO8++UqHfb63dCOVodSjzirDwmc/ehyf/ehxWXW+Z5Lh2Rhz6LLgkqVsvrnH1ztpix7snO9bFWZ8J6ssBp2rNRpl5/5WGt7ZzRF9q+hb1bG/pDIstAXUWHpXhompcvclBwNBtgHBRoYZY1Kx4JKl+FK98/7+ZntZfKneVIKCRFTTN4nFh/p+8xNjuf2PG6gMhdjfFiGmMPuXqzjQFqMqBK0JcSQSVW65YFz7Pm2xGN/8xFjGDzs8p4HARoYZY4JYcMlSqqV6v3TmmE4nGWbalJQ41Peb549l+MA+XDuvnpZIjDbXvJYYWACisRiH9aoIzAFmjDH5ZsElS9n2uWTalBSUBPL2xzcw98qTk/pfgkRiXtLI5+dMY8LwAVncoTHGZM+CS5a6M1oqk6akVMELJONlkC1ppDGmWGwocpbynUcrVfAaN7R/+3l7ubWQq8NCdYUk5SSzocHGmGKxmks35HO0VLr+Gf9546PEagf25vmGd21osDGmRxBvKRVTV1en9fX1xb6MJImJIXO9vTHGdIeIrFLVusRyq7n0cF0d6mtDg40xPYH1uRhjjMk5Cy7GGGNyrmyDi4hMF5FXRaRBRG4u9vUYY8yhpCyDi4iEgR8D5wJjgU+JSHD6YGOMMTlXlsEFOAVoUNXNqtoKPAJcWORrMsaYQ0a5jhYbBmzxvW8EJiVuJCKzgdnu7R4ReTXL8x0JvJvlvj2J3UfPUQ73AHYfPU0+7uOYoMJyDS4ZUdW5wNzuHkdE6oPGeZcau4+eoxzuAew+eppC3ke5Nos1AcN972tdmTHGmAIo1+DyAjBaREaKSBVwGbC4yNdkjDGHjLJsFlPViIhcDywBwsCDqro+j6fsdtNaD2H30XOUwz2A3UdPU7D7sNxixhhjcq5cm8WMMcYUkQUXY4wxOWfBpZt6cpoZEXlQRLaJyDpf2REislRENrnfA125iMi97j7WishJvn1mue03icisItzHcBFZLiIbRGS9iHypFO9FRHqJyD9EZI27j1td+UgRWemu97duEAoiUu3eN7jPj/Ud62uu/FUROaeQ9+HOHxaRf4rI4yV8D6+LyEsislpE6l1ZSf1NufMPEJEFIvKKiLwsIqf2iPtQVfvJ8gdvsMC/gOOAKmANMLbY1+W7vqnAScA6X9ldwM3u9c3Ane71ecCTgACTgZWu/Ahgs/s90L0eWOD7GAKc5F4fBmzES+tTUvfirqefe10JrHTXNx+4zJX/FPice/154Kfu9WXAb93rse5vrRoY6f4GwwX+b/IV4NfA4+59Kd7D68CRCWUl9TflruEh4LPudRUwoCfcR8H+AcrxBzgVWOJ7/zXga8W+roRrPJaOweVVYIh7PQR41b3+H+BTidsBnwL+x1feYbsi3dMi4KxSvhegD/AiXuaId4GKxL8pvNGOp7rXFW47Sfw7829XoGuvBZ4GpgGPu2sqqXtw53yd5OBSUn9TwOHAa7jBWT3pPqxZrHuC0swMK9K1ZGqwqr7lXr8NDHavU91Lj7pH16zyIbxv/SV3L645aTWwDViK9439fVWNBFxT+/W6z3cCNRT/Pn4I3ATE3PsaSu8eABT4s4isEi8VFJTe39RIYDvwv66Z8gER6UsPuA8LLocw9b6ilMxYdBHpBywEvqyqu/yflcq9qGpUVSfiffs/BTihyJfUJSJyPrBNVVcV+1py4DRVPQkve/p1IjLV/2GJ/E1V4DV936+qHwL24jWDtSvWfVhw6Z5STDPzjogMAXC/t7nyVPfSI+5RRCrxAsvDqvo7V1yS9wKgqu8Dy/GakAaISHxCs/+a2q/XfX440Exx72MKMENEXsfLNj4N+BGldQ8AqGqT+70N+D1esC+1v6lGoFFVV7r3C/CCTdHvw4JL95RimpnFQHwkyCy8/ot4+VVuNMlkYKerVi8BzhaRgW7EydmurGBERICfAy+r6j2+j0rqXkRkkIgMcK974/UbvYwXZC5JcR/x+7sEWOa+hS4GLnMjsUYCo4F/FOIeVPVrqlqrqsfi/b0vU9UrSukeAESkr4gcFn+N97ewjhL7m1LVt4EtInK8KzoT2NAj7qOQHWjl+IM3+mIjXtv5N4p9PQnX9hvgLaAN7xvONXjt3U8Dm4CngCPctoK3wNq/gJeAOt9xPgM0uJ+ri3Afp+FV69cCq93PeaV2L8CJwD/dfawDvuXKj8N7sDYAjwLVrryXe9/gPj/Od6xvuPt7FTi3SH9fp3NwtFhJ3YO73jXuZ338/7ul9jflzj8RqHd/V3/AG+1V9Puw9C/GGGNyzprFjDHG5JwFF2OMMTlnwcUYY0zOWXAxxhiTcxZcjDHG5JwFF2MyJCI1LoPuahF5W0SafO+rErb9soj0yeCYz4hInXvtz9L7kohcmINrPlZELve97yMiD7vjrxOR51zmA0Qk6ruf1eLLYGxMV5XlMsfG5IOqNuPNKUBEvg3sUdXvpdj8y8CvgH1dPM0ZqvqumxT3Zw5OfsvWscDleBmMAb4EvKOq/wbgztPmPtuvXmoaY7rNai7GdIOInOkSBr4k3vo51SLyRWAosFxElrvt7heRevGt49KJ/sAOt29fEfmjeOvArBORT7ry10Xk/3e1jHoROUlElojIv0Tk/7jj3AF81G3zn3gZcNvTeqjqq6rakrt/EWM8VnMxJnu9gF8AZ6rqRhGZh7eOyQ9F5Cu4Wojb9huq+p6IhIGnReREVV0bcMzlLt3NccBMVzYd2KqqnwAQkcN927+pqhNF5AfuWqa461qHt67KzcBXVfV8t+9EvEzAl+DN4H5IVTe5Y/UWL2MzwGuq+u/d+ccxhzaruRiTvTDeQ3ije/8Q3gJtQWaKyIt46V/G4S2WFeQMVR0P/Btwn+sPeQk4S0TuFJGPqupO3/bxXHYv4S38tFtVtwMt8Txmfqq6Gi9w3Y23MNQLIvJB9/F+VZ3ofiywmG6x4GJMnrnEjF/Fq+GcCPwRr3aRkqr+C3gHb2XTjXiZbl8C/ktEvuXbNN6kFfO9jr8PbJlQ1T2q+jtV/Txev9B5Xb8rY9Kz4GJM9qLAsSIyyr2/EviLe70bb0lm8PpP9gI7RWQw3vohaYnIUXgLQb0hIkOBfar6K7wax0lpd+7Ifx2IyBQ5uJ56FV4N6o0uHM+YjFifizHZOwBcDTwq3lolL+D1cwDMBf4kIltV9QwR+SfwCt5qf8+nOeZyEYkClXhroL8jIucAd4tIDG9k1+e6cI1rgaiIrMHrk2kG7nf9OiG8WtTCLhzPmIxYVmRjjDE5Z81ixhhjcs6CizHGmJyz4GKMMSbnLLgYY4zJOQsuxhhjcs6CizHGmJyz4GKMMSbn/i8e7Bn63Cr+YwAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"var ='TotalBsmtSF'\n", | |
"data = pd.concat([df_train['SalePrice'],df_train[var]],axis=1)\n", | |
"data.plot.scatter(x=var, y='SalePrice', ylim=(0,800000))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "c5e3af43-23e9-44fa-a5ad-f058c5a58637", | |
"metadata": { | |
"id": "c5e3af43-23e9-44fa-a5ad-f058c5a58637" | |
}, | |
"source": [ | |
"#### Relaciones categóricas" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "a563d760-8bd7-42a5-aab8-5540ea936bd5", | |
"metadata": { | |
"id": "a563d760-8bd7-42a5-aab8-5540ea936bd5" | |
}, | |
"source": [ | |
"Vamos ahor a armar una gráfica de boxplot para verificar el efecto de la Calidad sobre el precio de ventas. \n", | |
"\n", | |
"Comenzamos igual, declara una variable var = \"CalidadTotal\"\n", | |
"\n", | |
"Y una data donde concatenes el precio de ventas con var" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"id": "4c924040-28c7-487d-8984-e48d284f1d8c", | |
"metadata": { | |
"id": "4c924040-28c7-487d-8984-e48d284f1d8c" | |
}, | |
"outputs": [], | |
"source": [ | |
"var = 'OverallQual'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 44, | |
"id": "e93aee68-8166-46a5-8379-95146103d207", | |
"metadata": { | |
"id": "e93aee68-8166-46a5-8379-95146103d207" | |
}, | |
"outputs": [], | |
"source": [ | |
"data = pd.concat([df_train['SalePrice'],df_train[var]],axis=1)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"id": "ff628a8a-1c6e-41fc-99fc-2d3638f1a01e", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
}, | |
"id": "ff628a8a-1c6e-41fc-99fc-2d3638f1a01e", | |
"outputId": "f8b0feb8-1c3e-4cfe-8de0-c78992c49da5" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" SalePrice OverallQual\n", | |
"0 208500 7\n", | |
"1 181500 6\n", | |
"2 223500 7\n", | |
"3 140000 7\n", | |
"4 250000 8" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-5356c3fd-9141-4570-8da1-bc7cb85aec23\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>SalePrice</th>\n", | |
" <th>OverallQual</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>208500</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>181500</td>\n", | |
" <td>6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>223500</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>140000</td>\n", | |
" <td>7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>250000</td>\n", | |
" <td>8</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5356c3fd-9141-4570-8da1-bc7cb85aec23')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-5356c3fd-9141-4570-8da1-bc7cb85aec23 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-5356c3fd-9141-4570-8da1-bc7cb85aec23');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 31 | |
} | |
], | |
"source": [ | |
"data.head(5)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "476d316c-45bd-45f1-90aa-bc4cd0d236b2", | |
"metadata": { | |
"id": "476d316c-45bd-45f1-90aa-bc4cd0d236b2" | |
}, | |
"source": [ | |
"Ahora viene lo dificl, en dos variables f y ax, vas a guardar el resultado de un plt.subplots - donde se define la nueva figura donde existirá la gráfica que se va a crear. F y ax es la figura y los ejes que devuelve la instruccion" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"id": "1b896e51-7416-417f-b7fd-de205a050373", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 508 | |
}, | |
"id": "1b896e51-7416-417f-b7fd-de205a050373", | |
"outputId": "d8be3ed1-86b9-45d4-dc01-0dfd122f5428" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(-0.5, 9.5, 0.0, 800000.0)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 46 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1584x576 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAHkCAYAAABPO6PiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5DmV10n+vfpmQ4OPzShewgknTVcJ8hFy3VDLuKugbtAN2n3RyxcFe8teYpCkypxxr2zW7vopSRBveVuXXXp0WXDBfSJ5d2IEC9xK226BVS4dSGEiM0v3enFYdORJPNMJiEhY9KTPveP/g72hJ6eZ6bn6W//eL2qnurvOd8f5/MwzGTyzjnfU2qtAQAAAADox1DbBQAAAAAAW4dAEQAAAADom0ARAAAAAOibQBEAAAAA6JtAEQAAAADom0ARAAAAAOjbQAPFUsr/Vkr5Qinl86WU/1xK+ZZSyotLKZ8qpcyXUn6vlHJRc+2zmvZ8c/7KFc/5uab/r0opr1/Rf13TN19KeduK/lXHAAAAAADWZ2CBYinl8iQHklxTa/3uJLuSvDHJv0vy67XWfUmOJ3lLc8tbkhxv+n+9uS6llJc1931XkuuS/MdSyq5Syq4kv5lkMsnLkvx4c23WGAMAAAAAWIdBL3nenWRPKWV3kmcn+WqS1yT5YHO+m+SHmuPrm3aa868tpZSm/7Za65O11r9OMp/kFc1nvtb65VrrU0luS3J9c8+ZxgAAAAAA1mFggWKt9f4k/2eS/57lIPHRJJ9J8kit9WRz2UKSy5vjy5Pc19x7srl+ZGX/M+45U//IGmMAAAAAAOuwe1APLqVckuXZhS9O8kiS38/ykuVNo5RyQ5IbkuQ5z3nOy1/60pe2XBEAAAAAtO8zn/lMr9a6d7VzAwsUk7wuyV/XWo8mSSnl9iT/KMnFpZTdzQzCsST3N9ffn+SKJAvNEulvS3JsRf8pK+9Zrf/YGmOcptb6niTvSZJrrrmm3nPPPev7xgAAAACwDZRSvnKmc4N8h+J/T/LKUsqzm/cavjbJF5N8LMm/aK7pJPlwc3xH005z/qO11tr0v7HZBfrFSa5KcneSTye5qtnR+aIsb9xyR3PPmcYAAAAAANZhkO9Q/FSWN0a5N8nnmrHek+TfJjlYSpnP8vsO39fc8r4kI03/wSRva57zhSQfyHIY+UdJ3lprfbqZffgzSe5K8qUkH2iuzRpjAAAAAADrUJYn9GHJMwAAAAAsK6V8ptZ6zWrnBrnkGQAAAADYZgSKAAAAAEDfBIoAAAAAQN8EigAAAABA3wSKAAAAAEDfBIoAAAAAQN8EigAAAABA3wSKAAAAAEDfBIoAAAAAQN8EigAAAABA3wSKAAAAAEDfBIoAAAAAQN8EigAAAABA3wSKAAAAAEDfBIoAAAAAQN8EigAAAABwBr1eL/v378+xY8faLmXTECgCAAAAwBl0u93Mzc2l2+22XcqmIVAEAAAAgFX0er1MT0+n1prp6WmzFBsCRQAAAABYRbfbTa01SbK0tGSWYkOgCAAAAACrmJ2dzeLiYpJkcXExMzMzLVe0OQgUAQAAAGAV4+PjGR4eTpIMDw9nYmKi5Yo2B4EiAAAAAKyi0+l847iUclp7JxMoAgAAAMAqRkdHc/nllydJLrvssoyMjLRc0eYgUAQAAACAVfR6vfzN3/xNkuRv/uZv7PLcECgCAAAAwCpW7vJca7XLc0OgCAAAAACrsMvz6gSKAAAAALAKuzyvTqAIAAAAAKvodDoppSRJhoaG7PLcECgCAAAAwCpGR0czOTmZUkomJyft8tzY3XYBAAAAALBZdTqdHDlyxOzEFQSKAAAAAHAGo6OjOXToUNtlbCqWPAMAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0bWKBYSvnOUspnV3y+Vkr5l6WU55dSZksph5uflzTXl1LKVCllvpQyV0q5esWzOs31h0spnRX9Ly+lfK65Z6qUUpr+VccAAAAAANZnYIFirfWvaq3fW2v93iQvT/JEkj9I8rYkH6m1XpXkI007SSaTXNV8bkjy7mQ5HEzyjiTfl+QVSd6xIiB8d5KfWnHfdU3/mcYAAAAAANZho5Y8vzbJf6u1fiXJ9Um6TX83yQ81x9cnubUu+2SSi0spL0ry+iSztdaHa63Hk8wmua4596211k/WWmuSW5/xrNXGAAAAAADWYaMCxTcm+c/N8aW11q82xw8kubQ5vjzJfSvuWWj61upfWKV/rTFOU0q5oZRyTynlnqNHj57zlwIAAACAnWbggWIp5aIk/zzJ7z/zXDOzsA5y/LXGqLW+p9Z6Ta31mr179w6yDAAAAADYFjZihuJkkntrrQ827Qeb5cppfj7U9N+f5IoV9401fWv1j63Sv9YYAAAAAMA6bESg+OP5u+XOSXJHklM7NXeSfHhF/5ua3Z5fmeTRZtnyXUkmSimXNJuxTCS5qzn3tVLKK5vdnd/0jGetNgYAAAAAsA67B/nwUspzkownuXFF968k+UAp5S1JvpLkR5v+O5P8YJL5LO8I/eYkqbU+XEr5xSSfbq57Z6314eb4p5P8dpI9Saabz1pjAAAAAADrUJZfMcg111xT77nnnrbLAAAAAIDWlVI+U2u9ZrVzG7XLMwAAAACwDQgUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvgkUAQAAAIC+CRQBAAAAgL4JFAEAAACAvu1uuwAAAAAAOB9TU1OZn58f6BgLCwtJkrGxsYGOs2/fvhw4cGCgY1woAkUAAAAAOIMTJ060XcKmI1AEAAAAYEvaiBl9p8aYmpoa+FhbhXcoAgAAAAB9EygCAAAAnKNer5f9+/fn2LFjbZcCG06gCAAAAHCOut1u5ubm0u122y4FNpxAEQAAAOAc9Hq9TE9Pp9aa6elpsxTZcQSKAAAAAOeg2+2m1pokWVpaMkuRHUegCAAAAHAOZmdns7i4mCRZXFzMzMxMyxXBxhIoAgAAAJyD8fHxDA8PJ0mGh4czMTHRckWwsQSKAAAAAOeg0+mklJIkGRoaSqfTabki2FgDDRRLKReXUj5YSvnLUsqXSinfX0p5filltpRyuPl5SXNtKaVMlVLmSylzpZSrVzyn01x/uJTSWdH/8lLK55p7pkrzu/lMYwAAAACs1+joaCYnJ1NKyeTkZEZGRtouCTbUoGcovivJH9VaX5rk7yf5UpK3JflIrfWqJB9p2kkymeSq5nNDkncny+Fgknck+b4kr0jyjhUB4buT/NSK+65r+s80BgAAAMC6dTqdfM/3fI/ZiexIAwsUSynfluRVSd6XJLXWp2qtjyS5Psmp7Y+6SX6oOb4+ya112SeTXFxKeVGS1yeZrbU+XGs9nmQ2yXXNuW+ttX6yLm+tdOsznrXaGAAAAADrNjo6mkOHDpmdyI40yBmKL05yNMlvlVL+vJTy3lLKc5JcWmv9anPNA0kubY4vT3LfivsXmr61+hdW6c8aYwAAAAAA6zDIQHF3kquTvLvW+g+SfD3PWHrczCysA6xhzTFKKTeUUu4ppdxz9OjRQZYBAAAAANvCIAPFhSQLtdZPNe0PZjlgfLBZrpzm50PN+fuTXLHi/rGmb63+sVX6s8YYp6m1vqfWek2t9Zq9e/ee15cEAAAAgJ1kYIFirfWBJPeVUr6z6Xptki8muSPJqTeWdpJ8uDm+I8mbmt2eX5nk0WbZ8l1JJkoplzSbsUwkuas597VSyiub3Z3f9IxnrTYGAAAAALAOuwf8/P1JfreUclGSLyd5c5ZDzA+UUt6S5CtJfrS59s4kP5hkPskTzbWptT5cSvnFJJ9urntnrfXh5vink/x2kj1JpptPkvzKGcYAAAAAANZhoIFirfWzSa5Z5dRrV7m2JnnrGZ7z/iTvX6X/niTfvUr/sdXGAAAAAADWZ5DvUAQAAADYlnq9Xvbv359jx461XQpsOIEiAAAAwDnqdruZm5tLt9ttuxTYcAJFAAAAgHPQ6/UyPT2dWmump6fNUmTHESgCAAAAnINut5vlrSCSpaUlsxTZcQSKAAAAAOdgdnY2i4uLSZLFxcXMzMy0XBFsLIEiAAAAwDkYHx/P8PBwkmR4eDgTExMtVwQbS6AIAAAAcA46nU5KKUmSoaGhdDqdliuCjSVQBAAAADgHo6OjmZycTCklk5OTGRkZabsk2FC72y4AAAAAYKvpdDo5cuSI2YnsSAJFAAAAgHM0OjqaQ4cOtV0GtMKSZwAAAACgbwJFAAAAAKBvAkUAAAAAoG8CRQAAAACgbwJFAAAAgHPU6/Wyf//+HDt2rO1SYMMJFAEAAADOUbfbzdzcXLrdbtulwIYTKAIAAACcg16vl+np6dRaMz09bZYiO45AEQAAAOAcdLvd1FqTJEtLS2YpsuMIFAEAAADOwezsbBYXF5Mki4uLmZmZabki2FgCRQAAAIBzMD4+nuHh4STJ8PBwJiYmWq4INpZAEQAAAOAcdDqdlFKSJENDQ+l0Oi1XBBtLoAgAAABwDkZHRzM5OZlSSiYnJzMyMtJ2SbChdrddAAAAAMBW0+l0cuTIEbMT2ZEEigAAAADnaHR0NIcOHWq7DGiFJc8AAABwAfV6vezfvz/Hjh1ruxSAgRAoAgAAwAXU7XYzNzeXbrfbdikAAyFQBAAAgAuk1+tleno6tdZMT0+bpQhsSwJFAAAAuEC63W5qrUmSpaUlsxSBbUmgCAAAABfI7OxsFhcXkySLi4uZmZlpuSKAC0+gCAAAABfI+Ph4hoeHkyTDw8OZmJhouSKAC0+gCAAAABdIp9NJKSVJMjQ0lE6n03JFABeeQBEAAAAukNHR0UxOTqaUksnJyYyMjLRdEsAFt7vtAgAAAGA76XQ6OXLkiNmJwLYlUAQAAIALaHR0NIcOHWq7DICBseQZAAAAAOibQBEAAAAA6JtAEQAAAADom0ARAAAAAOibQBEAAAAA6JtAEQAAAADom0ARAAAAAOibQBEAAAAA6JtAEQAAAADom0ARAAAAAOibQBEAAADgHPV6vezfvz/Hjh1ruxTYcAMNFEspR0opnyulfLaUck/T9/xSymwp5XDz85Kmv5RSpkop86WUuVLK1Sue02muP1xK6azof3nz/Pnm3rLWGAAAAAAXQrfbzdzcXLrdbtulwIbbiBmK/7jW+r211mua9tuSfKTWelWSjzTtJJlMclXzuSHJu5PlcDDJO5J8X5JXJHnHioDw3Ul+asV9151lDAAAAIB16fV6mZ6eTq0109PTZimy47Sx5Pn6JKfi+26SH1rRf2td9skkF5dSXpTk9Ulma60P11qPJ5lNcl1z7ltrrZ+stdYktz7jWauNAQAAALAu3W43y1FEsrS0ZJYiO86gA8WaZKaU8plSyg1N36W11q82xw8kubQ5vjzJfSvuXWj61upfWKV/rTEAAAAA1mV2djaLi4tJksXFxczMzLRcEWysQQeKP1BrvTrLy5nfWkp51cqTzczCOsgC1hqjlHJDKeWeUso9R48eHWQZAAAAwDYxPj6e4eHhJMnw8HAmJiZargg21kADxVrr/c3Ph5L8QZbfgfhgs1w5zc+HmsvvT3LFitvHmr61+sdW6c8aYzyzvvfUWq+ptV6zd+/e8/2aAAAAwA7S6XTS7AuboaGhdDqds9wB28vAAsVSynNKKc87dZxkIsnnk9yR5NTvtE6SDzfHdyR5U7Pb8yuTPNosW74ryUQp5ZJmM5aJJHc1575WSnlls7vzm57xrNXGAAAAAFiX0dHRTE5OppSSycnJjIyMtF0SbKjdA3z2pUn+oEnsdyf5v2utf1RK+XSSD5RS3pLkK0l+tLn+ziQ/mGQ+yRNJ3pwktdaHSym/mOTTzXXvrLU+3Bz/dJLfTrInyXTzSZJfOcMYAAAAAOvW6XRy5MgRsxPZkQYWKNZav5zk76/SfyzJa1fpr0neeoZnvT/J+1fpvyfJd/c7BgAAAMCFMDo6mkOHDrVdBrRi0JuyAAAAAADbiEARAAAAAOjbIN+hCAAAANCKqampzM/PD+z5CwsLSZKxsbGBjZEk+/bty4EDBwY6BpwrgSIAAADAOTpx4kTbJUBrBIoAAADAtjPoWX2nnj81NTXQcWAz8g5FAAAAAKBvAkUAAAAAoG8CRQAAAACgbwJFAAAAAKBvNmUBAAAAYCCmpqYyPz/fdhnrcvjw4SSD3+hn0Pbt23fBvoNAEQAAAICBmJ+fz59/8Ut5eu+lbZdy3oaaBb73HH245UrO366jD17Q5wkUAQAAABiYp/demq//8E+0XcaO9pwP/c4FfZ53KAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAAAAfRMoAgAAAAB9EygCAAAAAH0TKAIAAMAF1Ov1sn///hw7dqztUgAGQqAIAAAAF1C3283c3Fy63W7bpQAMhEARAAAALpBer5fp6enUWjM9PW2WIrAtCRQBAADgAul2u6m1JkmWlpbMUgS2JYEiAAAAXCCzs7NZXFxMkiwuLmZmZqbligAuvL4DxVLKt5dSXtcc7ymlPG9wZQEAAMDWMz4+nt27dydJdu/enYmJiZYrArjw+goUSyk/leSDSW5pusaS/D+DKgoAAAC2ok6nk6WlpSTLS547nU7LFQFceLv7vO6tSV6R5FNJUms9XEp5wcCqAgAAAGDLW1hYyK6vPZbnfOh32i5lR9t19MEsPPnEBXtev0uen6y1PnWqUUrZnaResCoAAABgG+h2uymlJElKKTZlAbalfmco/mkp5eeT7CmljCf56SR/OLiyAAAAYOuZnZ3N008/nSR5+umnMzMzk4MHD7ZcFbRnbGwsDxx9OF//4Z9ou5Qd7Tkf+p2M7X3+BXtevzMU35bkaJLPJbkxyZ1J3n7BqgAAAIBt4Nprrz2t/apXvaqlSgAGp98ZinuSvL/W+n8lSSllV9N34RZfAwAAwBb35JNPrtkG2A76naH4kSwHiKfsSfLHF74cAAAA2Lo+8YlPnNb++Mc/3lIlAIPTb6D4LbXWx081muNnD6YkAAAA2JpqrWu2AbaDfgPFr5dSrj7VKKW8PMmJwZQEAAAAW9PrXve609rj4+MtVQIwOP0Giv8yye+XUj5eSvlEkt9L8jODKwsAAAC2nhtvvDFDQ8v/qj00NJQbb7yx5YoALry+NmWptX66lPLSJN/ZdP1VrXVxcGUBAADA1jM6Oprx8fHcddddmZiYyMjISNslAVxwawaKpZTX1Fo/Wkp5wzNOvaSUklrr7QOsDQAAALacG2+8MQ888IDZicC2dbYZiq9O8tEk/2yVczWJQBEAAABWGB0dzaFDh9ouA2Bg1gwUa63vKKUMJZmutX5gg2oCAACAgZiamsr8/PxAx1hYWEiSjI2NDWyMffv25cCBAwN7PsBazropS611Kcm/2YBaAAAAYMs7ceJETpw40XYZAAPT16YsSf64lPKvs7y789dPddZaHx5IVQAAADAAGzGr79QYU1NTAx8LoA1nnaHY+LEkb03yZ0k+03zu6efGUsquUsqfl1L+S9N+cSnlU6WU+VLK75VSLmr6n9W055vzV654xs81/X9VSnn9iv7rmr75UsrbVvSvOgYAAAAAsD59BYq11hev8vkf+hzjZ5N8aUX73yX59VrrviTHk7yl6X9LkuNN/68316WU8rIkb0zyXUmuS/Ifm5ByV5LfTDKZ5GVJfry5dq0xAAAAAIB1WDNQLKV8XynlL0opj5dS/r9Syv94Lg8vpYwl+SdJ3tu0S5LXJPlgc0k3yQ81x9c37TTnX9tcf32S22qtT9Za/zrJfJJXNJ/5WuuXa61PJbktyfVnGQMAAAAAWIezzVD8zST/OslIkl9L8h/O8fn/Icsbuiw17ZEkj9RaTzbthSSXN8eXJ7kvSZrzjzbXf6P/GfecqX+tMU5TSrmhlHJPKeWeo0ePnuNXAwAAAICd52yB4lCtdbaZHfj7Sfb2++BSyj9N8lCt9TPrqnCAaq3vqbVeU2u9Zu/evr8aAAAAAOxYZ9vl+eJSyhvO1K613r7Gvf8oyT8vpfxgkm9J8q1J3tU8Y3czg3Asyf3N9fcnuSLJQilld5JvS3JsRf8pK+9Zrf/YGmMAAAAAAOtwthmKf5rkn634rGz/07VurLX+XK11rNZ6ZZY3VflorfV/TfKxJP+iuayT5MPN8R1NO835j9Zaa9P/xmYX6BcnuSrJ3Uk+neSqZkfni5ox7mjuOdMYAAAAAMA6rDlDsdb65gGM+W+T3FZK+aUkf57kfU3/+5L8TillPsnDWQ4IU2v9QinlA0m+mORkkrfWWp9OklLKzyS5K8muJO+vtX7hLGMAAAAAAOtwtiXPSZJSyqVJ/o8kl9VaJ0spL0vy/bXWvoK6WuufJPmT5vjLWd6h+ZnX/G2SHznD/b+c5JdX6b8zyZ2r9K86BgAAQFt6vV5uvvnm3HTTTRkZGWm7HGjV1NRU5ufn2y5jXQ4fPpwkOXDgQMuVrM++ffu2/Hdg4/UVKCb57SS/leR/b9r/Ncnvxcw/AACAvnS73czNzaXb7ebgwYNtlwOtmp+fzxe/+OcZ3VvbLmUdSpLkoaP3tlzH+esdLW2XwBbVb6A4Wmv9QCnl55Kk1nqylPL0AOsCAADYNnq9Xqanp1NrzfT0dDqdjlmK7Hije2ve8Ian2i5jR7v99ovaLoEt6mybspzy9VLKSJKaJKWUVyZ5dGBVAQAAbCPdbjfL+0cmS0tL6Xa7LVcEAOev30DxYJZ3W/6OUsr/m+TWJPsHVhUAAMA2Mjs7m8XFxSTJ4uJiZmZmWq4IAM5fX4FirfXeJK9O8g+T3Jjku2qtc4MsDAAAYLsYHx/P7t3Lb5zavXt3JiYmWq4IAM7fmu9QLKW84QynXlJKSa319gHUBAAAsK10Op384R/+YZLlJc+dTqfligDg/J1tU5Z/tsa5mkSgCAAAAAA7yJqBYq31zRtVCAAAwHbV7XYzNDSUpaWlDA0Npdvt5uDBg22XBQDnpd9NWVJK+SellH9TSvmFU59BFgYAALBdzM7O5uTJk0mSkydP2pQFgC2tr0CxlPKfkvxYlnd2Lkl+JMm3D7AuAACAbWN8fDzDw8NJkuHhYZuyALCl9TtD8R/WWt+U5Hit9eYk35/kJYMrCwAAYPvodDoppSRJhoaGbMoCwJbWb6B4ovn5RCnlsiQnk7xoMCUBAABsL6Ojo5mcnEwpJZOTkxkZGWm7JAA4b2fb5fmU/1JKuTjJv0/ymabvvYMpCQAAYPvpdDo5cuSI2YkAbHlrBoqllP8pyX211l9s2s9N8rkkf5nk1wdfHgAAwPYwOjqaQ4cOtV0GAKzb2ZY835LkqSQppbwqya80fY8mec9gSwMAAAAANpuzLXneVWt9uDn+sSTvqbV+KMmHSimfHWxpAAAAAMBmc7YZirtKKadCx9cm+eiKc/2+fxEAAAAA2CbOFgr+5yR/WkrpZXmn548nSSllX5aXPQMAAAAAO8iagWKt9ZdLKR9J8qIkM7XW2pwaSrJ/0MUBAAAAAJvLWZct11o/uUrffx1MOQAAAADAZna2dygCAAAAAHyDjVUAAAAAGJhdRx/Mcz70O22Xcd6GHjmeJFm6+JKWKzl/u44+mOx9/gV7nkARAABgA/R6vdx888256aabMjIy0nY5ABti3759bZewbocfOZYkueoCBnIbbu/zL+ivhUARAABgA3S73czNzaXb7ebgwYNtlwOtWlhYyNe+VnL77Re1XcqO1jta8tSTCwMd48CBAwN9/kY49R2mpqZarmTz8A5FAACAAev1epmenk6tNdPT0zl27FjbJQHAeTNDEQAAYMC63W5qrUmSpaUlsxTZ8cbGxvLQ0Yfyhjc81XYpO9rtt1+UF+wda7sMtiAzFAEAAAZsdnY2i4uLSZLFxcXMzMy0XBEAnD+BIgAAwICNj4+f1p6YmGipEgBYP4EiAADAgF177bWntV/96le3VAkArJ9AEQAAYMB+4zd+47T2u971rpYqAYD1EygCAAAM2JEjR9ZsA8BWIlAEAAAYsCuuuGLNNgBsJQJFAACAAfuO7/iO09r79u1rqRIAWD+BIgAAwIDdfffdp7U/9alPtVQJAKyfQBEAAGDAxsfHMzS0/K9fQ0NDmZiYaLkiADh/AkUAAIAB63Q6qbUmSWqt6XQ6LVcEAOdPoAgAADBgDz/88GmB4vHjx1uuCADO3+62CwAAANjufumXfum09jvf+c7ceuutLVUDm0PvaMntt1/Udhnn7dFHSpLk2y6uLVdy/npHS16wt+0q2IoEigAAAAN25MiRNduw02yHnc4ffeRwkuQFe69quZLz94K92+PXgo0nUAQAABiw5z73uXn88cdPa8NOduDAgbZLWLdT32FqaqrlSmDjeYciAADAgD311FOntRcXF1uqBADWT6AIAAAwYBdddPp74oaHh1uqBADWT6AIAAAwYCuXO6/WBoCtRKAIAAAwYFdeeeWabQDYSmzKAgAAMGBvf/vb85M/+ZPfaP/CL/xCi9VsXlNTU5mfn2+7jHU7fHh599+tvvHIvn37tvx3AAZjYIFiKeVbkvxZkmc143yw1vqOUsqLk9yWZCTJZ5L8RK31qVLKs5LcmuTlSY4l+bFa65HmWT+X5C1Jnk5yoNZ6V9N/XZJ3JdmV5L211l9p+lcdYwVl0rAAACAASURBVFDfFQAAYC0veclLcuWVV+bIkSO58sors2/fvrZL2pTm5+fz+c9/fsvvgn1q050jR460W8g6WJYPrGWQMxSfTPKaWuvjpZThJJ8opUwnOZjk12utt5VS/lOWg8J3Nz+P11r3lVLemOTfJfmxUsrLkrwxyXcluSzJH5dSXtKM8ZtJxpMsJPl0KeWOWusXm3tXGwMAAKAVb3/72/OzP/uzZieexXOf+9xcffXVbZex4917771tlwBsYgMLFGutNcmp/6Qx3Hxqktck+V+a/m6Sm7Ic9l3fHCfJB5P8RimlNP231VqfTPLXpZT5JK9orpuvtX45SUoptyW5vpTypTXGAAAA+CYbsdR2YWEhe/bsydTU1MDGsEQVgI0w0E1ZSim7SimfTfJQktkk/y3JI7XWk80lC0kub44vT3JfkjTnH83ykuVv9D/jnjP1j6wxBgAAQCtOnDiREydOtF0GAKzbQDdlqbU+neR7SykXJ/mDJC8d5HjnqpRyQ5IbkuTv/b2/13I1AABAWzZiVt+pMQY5QxEANsJAZyieUmt9JMnHknx/kotLKaeCzLEk9zfH9ye5Ikma89+W5c1ZvtH/jHvO1H9sjTGeWdd7aq3X1Fqv2bt377q+IwAAAADsBAMLFEspe5uZiSml7Mny5ilfynKw+C+ayzpJPtwc39G005z/aPMexjuSvLGU8qxm9+arktyd5NNJriqlvLiUclGWN265o7nnTGMAAAAAAOswyCXPL0rSLaXsynJw+YFa638ppXwxyW2llF9K8udJ3tdc/74kv9NsuvJwlgPC1Fq/UEr5QJIvJjmZ5K3NUuqUUn4myV1JdiV5f631C82z/u0ZxgAAAAAA1mGQuzzPJfkHq/R/OX+3S/PK/r9N8iNneNYvJ/nlVfrvTHJnv2MAAAAAAOuzIe9QBAAAAAC2B4EiAAAAANA3gSIAAAAA0DeBIgAAtKjX62X//v05duxY26UAAPRFoAgAAC265ZZb8hd/8Re55ZZb2i4FAKAvAkUAAGhJr9fL7OxskmRmZsYsRQBgSxAoAgBAS2655ZYsLS0lSZaWlsxSBAC2BIEiAAC05I//+I9Pa5+arQgAsJkJFAEAAACAvgkUAQCgJZdddtmabQCAzWh32wUAAMBO1ev11mzDTrOwsJDHHnss9957b9ul7HiPPfZYFhYW2i4D2KTMUAQAgJZMTEyklJIkKaXk9a9/fcsVAQCcnRmKAADQkk6nkzvvvDOLi4sZHh5Op9NpuyRo1djYWE6ePJmrr7667VJ2vHvvvTdjY2NtlwFsUmYoAgBAS0ZHR/Oa17wmSfKa17wmIyMjLVcEAHB2AkUAAGjRk08+edpPAIDNTqAIAFtIr9fL/v37c+zYsbZLAS6AXq+XP/3TP02S/Mmf/Inf2wDAliBQBIAtpNvtZm5uLt1ut+1SgAvglltuSa01SVJrzS233NJyRQAAZydQBIAtotfrZXp6OrXWTE9Pm8kE28Ds7Oxp7ZmZmZYqAQDon0ARALaIbrf7jZlMS0tLZinCNnDq9/SZ2gAAm5FAEQC2iNnZ2SwuLiZJFhcXzWSCbWBoaGjNNgDAZuRvLACwRYyPj2d4eDhJMjw8nImJiZYrAtbr2muvPa39qle9qqVKAAD6J1AEgC2i0+mklJJkeRZTp9NpuSJgvZ71rGet2QYA2IwEigCwRYyOjmZycjKllExOTmZkZKTtkoB1+vjHP35a+8/+7M9aqgQAoH8CRQDYQjqdTr7ne77H7ETYJix5BgC2ot1tFwAA9G90dDSHDh1quwwAAGAHEygCAMAZTE1NZX5+fmDPn5ubO609MzOTBx54YCBj7du3LwcOHBjIswGAncWSZwAAaMkll1yyZhsAYDMyQxEAAM5g0DP6er1efviHfzi11jzrWc/Ke9/7XhsuAVwgg55lfvjw4SSD/2eFGeZsRmYoAgBAS0ZHR/P85z8/SezeDrDF7NmzJ3v27Gm7DGiFGYoAAJtQr9fLzTffnJtuuknItM298IUvzN/+7d/avR0ajz/+eO699962y1iXJ554Ikny7Gc/u+VKzt/jjz/edgnrZlYfDI5AEQBgE+p2u5mbm0u3283BgwfbLocBGh4ezlVXXSU4hiwv7dwOTi2FvfLKK9stZJ22y68HcOEJFAEANpler5c777wztdbceeed6XQ6wiZ2vEG/C20jbNT71gZtkO9z2+r/25xy6ntMTU21XAnAYAgUAQA2mW63m8XFxSTJU089ZZYiJJmfn89fff5LueJ5L2y7lPM2fHL5FfZPfOV4y5Wcv/see6DtEgDYBASKAACbzMzMzGntu+66S6AISa543gvzr17x5rbL2NF+9e7farsEADYBuzwDAGwyz1zebLkzAACbiUARAGCT+epXv7pmGwAA2iRQBADYZEopa7YBAKBNAkUAgE3mB37gB05rX3vttS1VAgAA30ygCAAAAAD0TaAIALDJfOITnzit/fGPf7ylSgAA4JsJFAEANpla65ptAABok0ARAGCTed3rXndae3x8vKVKAADgmwkUAQA2mRtvvHHNNgAAtEmgCACwCZVSTvsJAACbhUARAGCT6Xa72bVrV5Jk165d6Xa7LVcEAAB/Z2CBYinlilLKx0opXyylfKGU8rNN//NLKbOllMPNz0ua/lJKmSqlzJdS5kopV694Vqe5/nAppbOi/+WllM8190yV5j/hn2kMAICtYHZ2NidPnkySnDx5MjMzMy1XBAAAf2eQMxRPJvlXtdaXJXllkreWUl6W5G1JPlJrvSrJR5p2kkwmuar53JDk3clyOJjkHUm+L8krkrxjRUD47iQ/teK+65r+M40BALDpPXMTlomJiZYqAQCAbzawQLHW+tVa673N8WNJvpTk8iTXJzm1bqeb5Iea4+uT3FqXfTLJxaWUFyV5fZLZWuvDtdbjSWaTXNec+9Za6ydrrTXJrc941mpjAABsetdee+1p7Ve/+tUtVQIAAN9s90YMUkq5Msk/SPKpJJfWWr/anHogyaXN8eVJ7ltx20LTt1b/wir9WWMMAIBN713vetdp7V/7tV/L7/7u77ZUDWwOCwsL+fpjj+VX7/6ttkvZ0e577IE8Z+HrbZcBQMsGvilLKeW5ST6U5F/WWr+28lwzs7AOcvy1xiil3FBKuaeUcs/Ro0cHWQYAQN/uu+++NdsAANCmgc5QLKUMZzlM/N1a6+1N94OllBfVWr/aLFt+qOm/P8kVK24fa/ruT/I/P6P/T5r+sVWuX2uM09Ra35PkPUlyzTXXDDTYBAAAzt/Y2FieePp4/tUr3tx2KTvar979W3n2mD0vAXa6Qe7yXJK8L8mXaq2/tuLUHUlO7dTcSfLhFf1vanZ7fmWSR5tly3clmSilXNJsxjKR5K7m3NdKKa9sxnrTM5612hgAAJveC17wgjXbAADQpkHOUPxHSX4iyedKKZ9t+n4+ya8k+UAp5S1JvpLkR5tzdyb5wSTzSZ5I8uYkqbU+XEr5xSSfbq57Z6314eb4p5P8dpI9SaabT9YYAwBg0zt27NiabQAAaNPAAsVa6yeSlDOcfu0q19ckbz3Ds96f5P2r9N+T5LtX6T+22hgAAFvB8uKLM7cBAKBNG7LLMwDAdjM1NZX5+fmBPPt5z3tejh8/flr7wIEDAxlr3759A3s2AADb08B3eQYA4Nxcdtlla7YBAKBNZigCAJyHQc/qu/7663P8+PFcd911+fmf//mBjgUAsFUNctXIKYcPH04y+L//baWVIwJFAIBN6LLLLstTTz2VG2+8se1SAAB2tD179rRdwqYjUAQA2ISGh4dz1VVXZWRkpO1SNrWNmJUwaBs162HQttKsCgC2D//saYdAEQCALWt+fj6f/4u/yPMu2rp/rT158ukkyVe+9IWWKzl/jz11ckPGue+xB/Krd//Whow1CA898XCS5AXPfn7LlZy/+x57IN+ZS9ouA4CWbd2/eQEAQJLnXbQ7r7hUwNGmux88fvaL1mnfvn0DH2PQFg/3kiTP/vat+//X78wl2+LXAoD1ESgCwAU06OWXCwsLSZKxsbGBjZFYughsPtvhz6RT32FqaqrlSgBgfQSKALCFnDhxou0SAACAHU6gCAAX0KBn0JjdAgAAtG2o7QIAAAAAgK1DoAgAAAAA9E2gCAAAAAD0TaAIAAAAAGfQ6/Wyf//+HDt2rO1SNg2BIgAAAACcQbfbzdzcXLrdbtulbBoCRQAAAABYRa/Xy/T0dGqtmZ6eNkuxsbvtAgAA4HwtLCzksadO5u4Hj7ddyo722FMns7Cw0HYZAHDBdbvd1FqTJEtLS+l2uzl48GDLVbXPDEUAAAAAWMXs7GwWFxeTJIuLi5mZmWm5os3BDEUAALassbGxPP3Yo3nFpZe0XcqOdveDxzM2NtZ2GQBwwY2Pj+fOO+/M4uJihoeHMzEx0XZJm4IZigAAAACwik6nk1JKkmRoaCidTqflijYHgSIAAAAArGJ0dDSTk5MppWRycjIjIyNtl7QpWPIMAAAAAGfQ6XRy5MgRsxNXECgCAAAAwBmMjo7m0KFDbZexqQgUAYBtZ2pqKvPz822XsS6HDx9Okhw4cKDlStZn3759W/47ANvLRvwzYiP+DPfnK9AmgSLANtHr9XLzzTfnpptu8l4Pdrz5+fl84XNfysXPfkHbpZy3paeWX/59/3871nIl5++RJx5quwSAVuzZs6ftEgAGSqAIsE10u93Mzc2l2+3m4MGDbZcDrbv42S/IP37pG9suY0f72F/e1nYJAN/ErD6A9bPLM8A20Ov1Mj09nVprpqenc+zY1p3RBAAAwOZmhiLANtDtdlNrTZIsLS2ZpQjsKI89dTJ3P3i87TLO2xMnn06SPHv3rpYrOX+PPXWy7RIAgA0kUATYBmZnZ7O4uJgkWVxczMzMjEAR2BH27dvXdgnrdmrzhm+/6qqWK1mf7fBrAQD0R6AIsA2Mj4/nzjvvzOLiYoaHhzMxMdF2SQAbYju8C+3Ud5iammq5EgCA/niHIsA20Ol0UsryjrBDQ0PpdDotVwQAAMB2ZYYiwDYwOjqaycnJ3HHHHZmcnMzIyEjbJUGrFhYW8ugTj9lluGWPPPFQ6sKJtssAAOACEygCbBOdTidHjhwxOxEAAICBEigCbBOjo6M5dOhQ22XApjA2Npby5LH845e+se1SdrSP/eVtuXzMjGlg5+n1ern55ptz0003WTkCbEsCRYANMDU1lfn5+YGOsbCwkGQ5SBmUffv2bYsNEAAABqnb7WZubi7dbjcHDx5suxyAC06gCLBNnDjhPWVnsxHB7qAdPnw4yfbY2VZADcB21Ov1Mj09nVprpqen0+l0zFIEth2BIsAG2IjQ5NQYU1NTAx9rq5qfn89ffvazeWHbhazDUPPzkc9+ttU61uuBtgsAgAHpdruptSZJlpaWzFIEtiWBIgA7yguTvCWl7TJ2vPeltl0CAAzE7OxsFhcXkySLi4uZmZkRKALbztDZLwEAAAD6MT4+nuHh4STJ8PBwJiYmWq4I4MIzQxEA2JYeeeKhfOwvb2u7jPP2+N/+/+3dfZBddX3H8fd3IUIi1WhWY5pVcdyoRccnMqhVqZUSs5QR7QPFqfUqjtRHVDp11HEGqNaxM22nbsZxhkrkOlWRopYdm8VEFPEfHwJoEDTualdYTEg2EDEEkoX99o97FhdINpvdnP3t3vt+zezce3733HM+d35zd5Lv/h7uAeCkE59UOMns7d2/i9W4bpgWh/lYZ3c+1sF1fdryGo0Gg4ODAHR1ddFoNAonkqRjz4KiJElqO729vaUjzNnQ0N0ArH724i3IrWZFW/SFdKwsXbq0dATNg+7ubvr6+hgYGKCvr88NWSS1JQuKkiSp7bTD6Bw3WpLmVzv83tDC0Wg0GBkZcXSipLZlQVGSJEmSpGOou7ubDRs2lI4hSbVxUxZJkiRJkiRJM+YIRUlSxxgdHeV3wOVk6Sgdbwewb3S0dAxJkiRJs+AIRUmSJEmSJEkzVtsIxYjYCJwN7MrMF1RtTwa+ApwMjADnZuY9ERHAp4GzgP3AWzPzpuo9DeBj1WU/kZnNqv1U4ApgKbAJeH9m5uHuUdfnlCQtHj09PewdG+PtROkoHe9ykuU9PaVjSJIkSZqFOkcoXgGsf1Tbh4HrMnMNcF11DNAHrKl+LgA+Cw8XIC8GXgacBlwcEU+q3vNZ4B1T3rf+CPeQJEmSJEmSNEe1FRQz8wbg7kc1nwM0q+dN4A1T2r+QLd8HlkfEKuB1wJbMvLsaZbgFWF+99oTM/H5mJvCFR13rUPeQJEmSJEmSNEfzvYbiyszcUT3fCaysnq8G7phy3mjVNl376CHap7vHY0TEBRGxNSK27t69exYfR5IkSZIkSeosxXZ5rtY7rHWbzSPdIzMvAy4DWLt2rVt+Sh2sv7+f4eHh0jHmZGhoCIALL7ywcJK56e3tXfSfQZIkSZLa2XwXFO+KiFWZuaOatryrar8TePqU83qqtjuB1zyq/fqqvecQ5093D0k6rOHhYW6+9WZYXjrJHEy0Hm6+8+ayOeZib+kAkiRJkqQjme+C4gDQAD5VPV4zpf29EXElrQ1YflsVBL8JfHLKRizrgI9k5t0RcW9EvBz4AfAWYMMR7iFJ01sOE6+ZKJ2io3VdP98rcUiSJEmSjlZtBcWI+DKt0YXdETFKa7fmTwFXRcTbgV8D51anbwLOAoaB/cDbAKrC4ceBH1Xn/VNmTm708m5aO0kvBQarH6a5hyRJkiRJkqQ5qq2gmJlvOsxLZxzi3ATec5jrbAQ2HqJ9K/CCQ7TvOdQ9JEmSJEmSJM1dsU1ZJEkqYSdwOYt3H6491eOKoinmbieLe8lSSZqNsbExLr30Ui655BJWrFjsv8klSZ3MgqIkAaOjo/Bb1/Arbi+M5mhtl+/t7a3t2vNld7Wb9/I1awonmZvltEd/SNLRaDabbNu2jWazyUUXXVQ6jiRJs2ZBUZLUMS688MLSEeZs8jP09/cXTiJJOhpjY2MMDg6SmQwODtJoNBylKElatCwoShLQ09PD7tjtLs+FdV3fRc/qntIxJGlejY+PMzIywp49eywwtbFms0lr6XiYmJhwlKIkaVFzbp8kSZJU0M6dO7nvvvtoNpulo6hGW7ZsYXx8HGgVkTdv3lw4kSRJs+cIRUmSpFno7+9neHi4tutv376dAwcO8K53vYslS5bUdp/e3t62WA6gLnX38/j4OHv2tLZbuuaaaxgaGqqtv+3rss4880w2bdrE+Pg4S5YsYd26daUjSZI0a45QlCRJWoAmJiaYmJhg586dpaOoRlP7NzPt7zbWaDSICAC6urpoNBqFE0mSNHuOUJSkSXsX+S7P+6rHk4qmmJu9wOrSIaSZqXOk19jYGOeddx4A+/bt4+KLL3ZtvULqHtG3fv36Rxzff//9brrUprq7u+nr62NgYIC+vj6/05KkRc2CoiTRmga22A0NDQGwZvWawknmYHV79IU0V81mk4mJ1iZRDz30kJs3tDGnwXaWRqPByMiIoxMlSYteTO401unWrl2bW7duLR1DkmZtchSNI1vam/3cGdavX8/+/fsfPl62bBnXXnttwUSqy+Ro1IMHD3LCCSdw5ZVXOnJNkiQtCBFxY2auPdRri3hunyRJUnt69atf/Yjj008/vVAS1W1yGmxEOA1WkiQtGk55liRJWmAOHDgw7bHai9NgJUnSYmNBUZIkaYH53ve+94jjG264oVASzYfu7m42bNhQOoYkSdKMOeVZkiRJkiRJ0oxZUJQkSVpgnvrUpz7ieOXKlYWSSJIkSY/llOcFqr+/n+Hh4dquPzo6CkBPT09t9wDo7e19eEfSxej8889nx44dtV3/wIEDTExM1Hb9+dTV1cUJJ5xQ2/VXrVrFxo0ba7u+JC0ku3btesTxXXfdVSiJJEmS9FgWFDvU/fffXzrCorB3717uv28fJxyX9dxgIqCmS8+7fIiJBw7WcukDDwV79+6t5dqStBBl5rTHkiRJUkkWFBeoukf1TV6/v7+/1vssdj09PXQ/uIOPrd1XOkpH+8TWkzix5tG0krSQrF69mjvuuOMRx5IkSdJCYUFxFuqejjwfhoaGgPoLl3Vb7FOqJUk6lLGxsWmPJUmSpJIsKM7C8PAwN99yGxPLnlw6yqzFwdbUqRt/ubNwktnr2n936QiSJNVi3bp1DAwMkJlEBK973etKR5IkSZIeZkFxliaWPZkHTjm7dIyOduJt3ygdQZqx+RjZPB8jjx0VLM2PRqPB4OAgBw8eZMmSJTQajdKRJEmSpIdZUJyF0dFRuvb/1oJWYV379zA6+mDpGNKCsXTp0tIRJB0j3d3d9PX1MTAwwFlnncWKFStKR5IkSZIeZkFROoLb9x3HJ7aeVDrGrN21vwuAlcsmCieZvdv3HcdzSoeYI0f1STpajUaDkZERRydKkiRpwbGgOAs9PT3svufe0jHmJB5o5c8Tn1A4yVwEPTXv/Nvb21vr9efDwWoa7IknrymcZPaeQ3v0hSQdje7ubjZs2FA6hiRJkvQYFhRnoR0KG0NDvwNgzbOfVjjJXDyt9r5oh1Flk5+hv7+/cBLVbWxsjEsvvZRLLrnE6ZGSJEmSpNpYUJwFi0ySFqJms8m2bdtoNptcdNFFpeNIkiRJktqUBcUFqu4dYedjN1hwR1hpvoyNjTE4OEhmMjg4SKPRcJSiJEmSJKkWXaUDqIylS5e6I6zURprNJpkJwMTEBM1ms3AiSZIkSVK7coTiAuWoPklHY8uWLYyPjwMwPj7O5s2bnfYsSZIkSaqFBUWpoLqntoPT2zvFmWeeyaZNmxgfH2fJkiWsW7eudKSO5ZIVkiRJktqdU56lNuf09s7QaDSICAC6urpoNBqFE6kufqclSZIkleYIRakgR//oWOnu7qavr4+BgQH6+vrckKUgv9eSJEmS2p0FRUlqE41Gg5GREUcnSpIkSZJqZUFRktpEd3c3GzZsKB1DkiRJktTmXENRkiRJkiRJ0oxZUJQkSZIkSZI0YxYUJUmSJEmSJM2YBUVJkiRJkiRJM2ZBUZIkSZIkSdKMWVCUJEmSJEmSNGMWFCVJkiRJkiTNmAVFSZIkSZIkSTNmQVGSJEmSJEnSjFlQlCRJkiRJkjRjFhQlSZIkSZIkzVjbFhQjYn1EbI+I4Yj4cOk8kiRJkiRJUjtoy4JiRBwHfAboA04B3hQRp5RNJUmSJEmSJC1+bVlQBE4DhjPzV5l5ELgSOKdwJkmSJEmSJGnRa9eC4mrgjinHo1WbJEmSJEmSpDk4vnSAkiLiAuCC6nBfRGwvmaeAbmCsdAjNC/u6c9jXncF+7hz2deewrzuHfd057OvOYD93jk7s62ce7oV2LSjeCTx9ynFP1fYImXkZcNl8hVpoImJrZq4tnUP1s687h33dGeznzmFfdw77unPY153Dvu4M9nPnsK8fqV2nPP8IWBMRz4qIxwHnAQOFM0mSJEmSJEmLXluOUMzMByPivcA3geOAjZl5a+FYkiRJkiRJ0qLXlgVFgMzcBGwqnWOB69jp3h3Ivu4c9nVnsJ87h33dOezrzmFfdw77ujPYz53Dvp4iMrN0BkmSJEmSJEmLRLuuoShJkiRJkiSpBhYUO1BEbIyIXRHx09JZVK+IeHpEfCcibouIWyPi/aUz6diLiBMj4ocR8ZOqny8tnUn1iojjIuLmiPhG6SyqT0SMRMQtEfHjiNhaOo/qExHLI+LqiPh5RPwsIl5ROpOOrYh4bvVdnvy5NyI+UDqX6hERH6z+TfbTiPhyRJxYOpPqERHvr/r5Vr/T7eVQdZOIeHJEbImIoerxSSUzlmZBsTNdAawvHULz4kHgHzLzFODlwHsi4pTCmXTsHQBem5kvAl4MrI+IlxfOpHq9H/hZ6RCaF3+amS/OzLWlg6hWnwauzcznAS/C73fbyczt1Xf5xcCpwH7g64VjqQYRsRq4EFibmS+gtUnoeWVTqQ4R8QLgHcBptH53nx0RvWVT6Ri6gsfWTT4MXJeZa4DrquOOZUGxA2XmDcDdpXOofpm5IzNvqp7/jtZ/UFaXTaVjLVv2VYdLqh8XyG1TEdED/DnwudJZJM1dRDwROB24HCAzD2bm3rKpVLMzgF9m5q9LB1FtjgeWRsTxwDLgN4XzqB5/BPwgM/dn5oPAd4G/KJxJx8hh6ibnAM3qeRN4w7yGWmAsKEodIiJOBl4C/KBsEtWhmgL7Y2AXsCUz7ef29R/Ah4CJ0kFUuwQ2R8SNEXFB6TCqzbOA3cDnq6UMPhcRjy8dSrU6D/hy6RCqR2beCfwrcDuwA/htZm4um0o1+Snw6ohYERHLgLOApxfOpHqtzMwd1fOdwMqSYUqzoCh1gIg4Cfgq8IHMvLd0Hh17mflQNY2qBzitmoKhNhMRZwO7MvPG0lk0L16VmS8F+mgtWXF66UCqxfHAS4HPZuZLgPvo8ClU7SwiHge8Hvjv0llUj2pNtXNo/bHgD4HHR8Sby6ZSHTLzZ8C/AJuBa4EfAw8VDaV5k5lJh88Ks6AotbmIWEKrmPjFzPxa6TyqVzVN7ju4Tmq7eiXw+ogYAa4EXhsR/1U2kupSjXIhM3fRWmvttLKJVJNRYHTKyPKraRUY1Z76gJsy867SQVSbPwP+LzN3Z+Y48DXgjwtnUk0y8/LMPDUzTwfuAX5ROpNqdVdErAKoHncVzlOUBUWpjUVE0FqT6WeZ+e+l86geEfGUiFhePV8KnAn8vGwq1SEzP5KZPZl5Mq0pc9/OTEc9tKGIeHxE/MHkc2AdralVajOZuRO4IyKeWzWdAdxWMJLq9Sac7tzubgdeHhHLqn+Ln4EbLbWtiHhq9fgMWusnfqlsItVsAGhUzxvANQWzFHd86QCafxHxZeA1QHdEjAIXZ+blZVOpJq8E/g64pVpfD+CjmbmpYCYde6uAZkQcR+sPRVdl5jcKZ5I0NyuBr7f+aDtLFAAAA4lJREFUL8rxwJcy89qykVSj9wFfrKbD/gp4W+E8qkH1x4Ezgb8vnUX1ycwfRMTVwE3Ag8DNwGVlU6lGX42IFcA48B431Wofh6qbAJ8CroqItwO/Bs4tl7C8aE37liRJkiRJkqQjc8qzJEmSJEmSpBmzoChJkiRJkiRpxiwoSpIkSZIkSZoxC4qSJEmSJEmSZsyCoiRJkiRJkqQZs6AoSZKkaUVET0RcExFDEfHLiPh0RDyu5nvuqx5PjoifTml/VUT8MCJ+HhHbI+Ldx+I+kiRJmjkLipIkSTqsiAjga8D/ZOYa4DnAScA/z/G6x8/iPU8DvgS8MzOfB7wSeHtEvHEuWSRJknR0LChKkiRpOq8FHsjMzwNk5kPAB4Hzq5GCz588MSKuj4i1EfH4iNhYvX5zRJxTvf7WiBiIiG8D10XESRFxXUTcFBG3TJ43jfcAV2TmTVWWMeBDwD9W178iIv5qSp7JUY5Hex9JkiRN46j/MixJkqSO8nzgxqkNmXlvRNwO/C9wLnBxRKwCVmXm1oj4JPDtzDw/IpYDP4yIb1Vvfynwwsy8uxql+Mbqet3A9yNiIDNzmizNR7VtBU45wmd44CjvI0mSpGk4QlGSJEmzdT0wOSLwXODq6vk64MMR8ePqnBOBZ1SvbcnMu6vnAXwyIrYB3wJWAytryDlf95EkSeoIjlCUJEnSdG7j90VDACLiCbQKhD8C9kTEC4G/Ad45eQrwl5m5/VHvexlw35SmvwWeApyameMRMUKr+DhdllOBa6a0nUprlCLAg1R/MI+ILmBy45ijvY8kSZKm4QhFSZIkTec6YFlEvAUgIo4D/o3WWob7ga/QWsfwiZm5rXrPN4H3VRu6EBEvOcy1nwjsqop8fwo88whZPgO8NSJeXF13Ba3NYT5evT5Cq8AI8HpgySzvI0mSpGlYUJQkSdJhVesMvhH464gYAn5Ba03Cj1anXA2cB1w15W0fp1XM2xYRt/L7gt+jfRFYGxG3AG8Bfn6ELDuANwOXRcR24DdAf2Z+tzrlP4E/iYifAK/g96Mhj+o+kiRJml64FrUkSZIWo4h4N/Au4PTMvKd0HkmSpE5hQVGSJEmSJEnSjDnlWZIkSZIkSdKMWVCUJEmSJEmSNGMWFCVJkiRJkiTNmAVFSZIkSZIkSTNmQVGSJEmSJEnSjFlQlCRJkiRJkjRjFhQlSZIkSZIkzdj/A7iYHCnIndPbAAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"f, ax = plt.subplots(figsize=(22,8))\n", | |
"fig = sns.boxplot(x=var, y='SalePrice', data = data)\n", | |
"fig.axis(ymin= 0, ymax=800000)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "25bcfec9-3439-4561-baa7-c732884f22ff", | |
"metadata": { | |
"id": "25bcfec9-3439-4561-baa7-c732884f22ff" | |
}, | |
"source": [ | |
"por ultimo, definimos fig como una variable donde haremos un sns.boxplot (para guardar la grafica)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "eba25dba-6d64-4251-9d1a-470f9a49dbb9", | |
"metadata": { | |
"id": "eba25dba-6d64-4251-9d1a-470f9a49dbb9" | |
}, | |
"source": [ | |
"y definiremos el eje fig.axis de 0 a 8000000" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e7f9ee13-9f23-44cc-808b-6647311692a4", | |
"metadata": { | |
"id": "e7f9ee13-9f23-44cc-808b-6647311692a4" | |
}, | |
"source": [ | |
"Hagamos lo exacto mismo pero con Precio de Venta vs Año Construida" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 47, | |
"id": "ec8116d5-6fff-41fb-b133-1eb00a8a0ec5", | |
"metadata": { | |
"id": "ec8116d5-6fff-41fb-b133-1eb00a8a0ec5" | |
}, | |
"outputs": [], | |
"source": [ | |
"var = 'YearBuilt'" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"id": "a86a0ea4-8fe6-4fcb-b012-369a93d2bb64", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 206 | |
}, | |
"id": "a86a0ea4-8fe6-4fcb-b012-369a93d2bb64", | |
"outputId": "ffef46c7-b0c5-48ae-8e52-47855665b875" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" SalePrice YearBuilt\n", | |
"0 208500 2003\n", | |
"1 181500 1976\n", | |
"2 223500 2001\n", | |
"3 140000 1915\n", | |
"4 250000 2000" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-4934da91-a141-4df1-b53a-edd7b9e1419a\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>SalePrice</th>\n", | |
" <th>YearBuilt</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>208500</td>\n", | |
" <td>2003</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>181500</td>\n", | |
" <td>1976</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>223500</td>\n", | |
" <td>2001</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>140000</td>\n", | |
" <td>1915</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>250000</td>\n", | |
" <td>2000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4934da91-a141-4df1-b53a-edd7b9e1419a')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-4934da91-a141-4df1-b53a-edd7b9e1419a button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-4934da91-a141-4df1-b53a-edd7b9e1419a');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 48 | |
} | |
], | |
"source": [ | |
"data = pd.concat([df_train['SalePrice'], df_train[var]], axis = 1)\n", | |
"data.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"id": "8f62e3ba-ae69-47ea-a4bb-680370c42810", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 678 | |
}, | |
"id": "8f62e3ba-ae69-47ea-a4bb-680370c42810", | |
"outputId": "826040b1-e5d5-41d8-9938-6bfc771e929d" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,\n", | |
" 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,\n", | |
" 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,\n", | |
" 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,\n", | |
" 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,\n", | |
" 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,\n", | |
" 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,\n", | |
" 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,\n", | |
" 104, 105, 106, 107, 108, 109, 110, 111]),\n", | |
" <a list of 112 Text major ticklabel objects>)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 52 | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1584x576 with 1 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABRQAAAHzCAYAAABR6JHBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5TcZ3kn+O/bbgTG+IIaY9w2YjgNSSajOZMJHi6BQNJKJAJJnJnJhXHtQrI+8YySMJuNtJkEO8vZwXYyO63JhNlMZzjjbGC2N4SQsDjYWA0SAUJCgkmyWLG5qMnIl+ZiSlgGIxDtfvePqpZbSnerWurquujzOadO1+9S9XtbLVWrvvW871NqrQEAAAAA6MRIrwcAAAAAAAwOgSIAAAAA0DGBIgAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAADQsa4GiqWU/6WU8jellEOllN8tpTyllPLcUsqfl1IOl1J+r5SypX3uk9vbh9vH/96y5/nl9v5PlVJ2Ldv/yva+w6WUX1q2f8VrAAAAAADnpmuBYinlqiT/Osk1tdbtSS5I8pok/y7Jr9dan5fky0mubz/k+iRfbu//9fZ5KaV8e/tx/yDJK5P851LKBaWUC5L8ZpIfSPLtSf5F+9yscQ0AAAAA4Bx0e8rzaJILSymjSZ6a5HNJJpO8s338rUl+pH3/2vZ22sd3lFJKe//ba63fqLX+bZLDSV7Yvh2utX621noiyduTXNt+zGrXAAAAAADOwWi3nrjW+lApZSrJ/UmOJ5lN8vEkj9RaF9qnPZjkqvb9q5I80H7sQinlWJKx9v6PLnvq5Y954LT9L2o/ZrVrnKKUckOSG5LkoosuesG3fdu3nd03CwAAAABD5OMf//iXaq2Xr3Ssa4FiKeXpaVUXPjfJI0l+P60py32j1vqWJG9JkmuuuabefffdPR4RAAAAAPReKeXIase6OeX5+5L8ba314VrrN5P8YZKXJrmsPQU6Sa5O8lD7/kNJnp0k7eOXJmku33/aY1bb31zjGgAAAADAOehmoHh/kheXUp7aXtdwR5J7k3wgyY+2z3ldkne379/e3k77+MFaa23vf027C/Rzkzw/yV8k+ViS57c7Om9Jq3HL7e3HrHYNAAAAAOAcdC1QrLX+eVqNUf4yyT3ta70lyb9J8gullMNprXd4W/shtyUZa+//hSS/1H6ev0nyjrTCyLuS/Gyt9fH2Gok/l2R/kvuSvKN9bta4BgAAAABwDkqroA9rKAIAAABASynl47XWa1Y61s0pzwAAAADAkBEoAgAAAAAdEygCAAAAAB0TKAIAAAAAHRMoAgAAAAAdEygCAAAAAB0TKAIAAAAAHRMoAgAAAAAdEygCAAAAAB0TKAIAAAAAHRMoAgAAAAAdEygCAAAAAB0TKAIAAAAAHRMoAgAAAAAdEygCAAAAAB0TKAIAAACco2azmT179uTo0aO9Hgp0nUARAAAA4BzNzMzk0KFDmZmZ6fVQoOsEigAAAADnoNlsZnZ2NrXW7N+/X5UiQ0+gCAAAAHAOZmZmsri4mCRZXFxUpcjQEygCAAAAnIODBw9mYWEhSbKwsJADBw70eETQXQJFAAAAgHMwOTmZ0dHRJMno6Gh27NixIc+r0Qv9SqAIAAAAcA4ajUZGRloRy8jISBqNxoY8r0Yv9CuBIgAAAMA5GBsby86dO1NKya5du7J169Zzfk6NXuhnAkUAAACAc9RoNLJ9+/YNrU7U6IV+JVAEAAAAOEdjY2PZt2/fhlQnJhq90N8EigAAAAB9pluNXmAjCBQBAAAA+ky3Gr3ARhAoAgAAAPSZbjR6gY0y2usBAAAAAPB3NRqNHDlyRHUifUegCAAAANCHlhq9QL8x5RkAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6FjXAsVSyreWUv562e3RUsrPl1K2llLeV0r5TPvr09vnl1LKm0sph0spnyilfOey53pd+/zPlFJet2z/C0op97Qf8+ZSSmnvX/EaAAAAAMC56VqgWGv9VK31O2qt35HkBUm+luRdSX4pyYFa6/OTHGhvJ8kPJHl++3ZDkumkFQ4meWOSFyV5YZI3LgsIp5P89LLHvbK9f7VrAAAAAADnYLOmPO9IMldrPZLk2iRvbe9/a5Ifad+/NsnbastHk1xWSrkyya4k76u1Hq21fjnJ+5K8sn3sklrrR2utNcnbTnuula4BAAAAAJyDzQoUX5Pkd9v3r6i1fq59//NJrmjfvyrJA8se82B731r7H1xh/1rXOEUp5YZSyt2llLsffvjhdX9TAAAAAHC+6XqgWErZkuSHk/z+6cfalYW1m9df6xq11rfUWq+ptV5z+eWXd3MYAAAAADAUNqNC8QeS/GWt9Qvt7S+0pyun/fWL7f0PJXn2ssdd3d631v6rV9i/1jUAAAAAgHOwGYHiv8gT052T5PYkS52aX5fk3cv2v7bd7fnFSY61py3vT7KzlPL0djOWnUn2t489Wkp5cbu782tPe66VrgEAAAAAnIPRbj55KeWiJN+f5F8u2/1rSd5RSrk+yZEkP97ef2eSVyU5nFZH6J9Kklrr0VLKm5J8rH3ev621Hm3f/5kkv5PkwiTvbd/WugYAAAAAcA5Ka4lBrrnmmnr33Xf3ehgAAAAA0HOllI/XWq9Z6dhmdXkGAAAAAIaAQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAAAA6JhAEQAAAADomEARAAAAAOiYQBEAAABgEzWbzezZsydHjx7t9VDgrAgUAQAAADbRzMxMDh06lJmZmV4PBc6KQBEAAABgkzSbzczOzqbWmv3796tSZCAJFAEAAAA2yczMTBYXF5Mki4uLqhQZSAJFAAAAgE1y8ODBLCwsJEkWFhZy4MCBHo8I1k+gCAAAALBJJicnMzo6miQZHR3Njh07ejwiWD+BIgAAAMAmaTQaGRlpxTEjIyNpNBo9HhGsn0ARAAAAYJOMjY1l586dKaVk165d2bp1a6+HxBBqNpvZs2dP15r+CBQBAAAANlGj0cj27dtVJ9I1MzMzOXToUNea/ggUAQAAADbR2NhY9u3bpzqRrmg2m5mdnU2tNfv37+9KlaJAEQAAAACGxMzMTBYXF5Mki4uLXalSFCgCAAAAwJA4ePBgFhYWkiQLCws5cODAhl9DoAgAAAAAQ2JycjKjo6NJktHR0ezYsWPDryFQBAAAAIAh0Wg0MjLSivxGRka60vynq4FiKeWyUso7SymfLKXcV0p5SSllaynlfaWUz7S/Pr19bimlvLmUcriU8olSyncue57Xtc//TCnldcv2v6CUck/7MW8upZT2/hWvAQAAAADDbGxsLDt37kwpJbt27epK859uVyj+RpK7aq3fluQfJbkvyS8lOVBrfX6SA+3tJPmBJM9v325IMp20wsEkb0zyoiQvTPLGZQHhdJKfXva4V7b3r3YNAAAAABhqjUYj27dv70p1YtLFQLGUcmmSlye5LUlqrSdqrY8kuTbJW9unvTXJj7TvX5vkbbXlo0kuK6VcmWRXkvfVWo/WWr+c5H1JXtk+dkmt9aO11prkbac910rXAAAAAIChNjY2ln379nWlOjHpboXic5M8nOT/KqX8VSnlv5ZSLkpyRa31c+1zPp/kivb9q5I8sOzxD7b3rbX/wRX2Z41rnKKUckMp5e5Syt0PP/zw2XyPAAAAAHBe6WagOJrkO5NM11r/cZLHctrU43ZlYe3iGNa8Rq31LbXWa2qt11x++eXdHAYAAAAADIVuBooPJnmw1vrn7e13phUwfqE9XTntr19sH38oybOXPf7q9r619l+9wv6scQ0AAAAA4Bx0LVCstX4+yQOllG9t79qR5N4ktydZ6tT8uiTvbt+/Pclr292eX5zkWHva8v4kO0spT283Y9mZZH/72KOllBe3uzu/9rTnWukaAAAAAMA5GO3y878+yUwpZUuSzyb5qbRCzHeUUq5PciTJj7fPvTPJq5IcTvK19rmptR4tpbwpycfa5/3bWuvR9v2fSfI7SS5M8t72LUl+bZVrAAAAAADnoLSWGOSaa66pd999d6+HAQAAAAA9V0r5eK31mpWOdXMNRQAAAABgyAgUAQAAAICOdXsNRQAAAADgLE1PT2dubi7z8/NJkvHx8UxMTGT37t09G5NAEQAAAAD63PHjx3s9hJMEigAAAADQp5YqEffu3ZskmZqa6uVwklhDEQAAAABYB4EiAAAAANAxgSIAAAAA0DGBIgAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAACsodlsZs+ePTl69Givh9IXBIoAAAAAsIaZmZkcOnQoMzMzvR5KXxAoAgAAAMAqms1mZmdnU2vN/v37VSlGoAgAAAAAq5qZmcni4mKSZHFxUZViBIoAAAAAsKqDBw9mYWEhSbKwsJADBw70eES9J1AEAAAAgFVMTk5mdHQ0STI6OpodO3b0eES9J1AEAAAAgFU0Go2MjLQitJGRkTQajR6PqPcEigAAAACwirGxsezcuTOllOzatStbt27t9ZB6brTXAwAAAACAftZoNHLkyBHViW0CRQAAAABYw9jYWPbt29frYfQNU54BAAAAGArNZjN79uzJ0aNHez2UoSZQBAAAAGAozMzM5NChQ5mZmen1UIaaQBEAAACAgddsNjM7O5taa/bv369KsYsEigAAAAAMvJmZmSwuLiZJFhcXVSl2kUARAAAAgIF38ODBLCwsJEkWFhZy4MCBHo9oeAkUAQAAABh4k5OTGR0dTZKMjo5mx44dPR7R8BIoAgAAADDwGo1GRkZaUdfIyEgajUaPRzS8BIoAAAAADLyxsbHs3LkzpZTs2rUrW7du7fWQhtZorwcAAAAAABuh0WjkyJEjqhO7TKAIAAAAwFAYGxvLvn37ej2MoWfKMwAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAADQMYEiAAAAANAxgSIAAAAA0DGBIgAAAADQMYEiAAAAANCxrgaKpZT/Xkq5p5Ty16WUu9v7tpZS3ldK+Uz769Pb+0sp5c2llMOllE+UUr5z2fO8rn3+Z0opr1u2/wXt5z/cfmxZ6xoAAAAAwLnZjArF7621fket9Zr29i8lOVBrfX6SA+3tJPmBJM9v325IMp20wsEkb0zyoiQvTPLGZQHhdJKfXva4V57hGgAAAADAOejFlOdrk7y1ff+tSX5k2f631ZaPJrmslHJlkl1J3ldrPVpr/XKS9yV5ZfvYJbXWj9Zaa5K3nfZcK10DAAAAADgH3Q4Ua5LZUsrHSyk3tPddUWv9XPv+55Nc0b5/VZIHlj32wfa+tfY/uML+ta4BAAAAAJyD0S4//8tqrQ+VUp6Z5H2llE8uP1hrraWU2s0BrHWNdsh5Q5Js27atm8MAAAAAgKHQ1QrFWutD7a9fTPKutNZA/EJ7unLaX7/YPv2hJM9e9vCr2/vW2n/1CvuzxjVOH99baq3X1Fqvufzyy8/22wQAAACA80bXAsVSykWllIuX7ifZmeRQktuTLHVqfl2Sd7fv357kte1uzy9Ocqw9bXl/kp2llKe3m7HsTLK/fezRUsqL292dX3vac610DQAAAADgHHRzyvMVSd7VyvoymuT/qbXeVUr5WJJ3lFKuT3IkyY+3z78zyauSHE7ytSQ/lSS11qOllDcl+Vj7vH9baz3avv8zSX4nyYVJ3tu+JcmvrXINAAAAAOAcdC1QrLV+Nsk/WmF/M8mOFfbXJD+7ynP9dpLfXmH/3Um2d3oNAAAAAODcdLvLMwAAAAAwRASKAAAAAEDHBIoAAAAAQMcEigAAAABAxwSKAAAAAEDHBIoAAAAAQMcEigAAAABAx0Z7PQD60/T0dObm5jI/P58kGR8fz8TERHbv3t3jkQEAAADQSwJF1nT8+PFeDwEAAACAPiJQZEVLlYh79+5NkkxNTfVyOAAAAMAQaTabufXWW3PjjTdm69atvR4O62QNRQAAAAA21czMTA4dOpSZmZleD2XDNZvN7NmzJ0ePHu31ULpGoAgAAADApmk2m5mdnU2tNfv37x+64G2Yw9IlAkUAAAAANs3MzEwWFxeTJIuLi0MVvA17WLpEoAgAAADApjl48GAWFhaSJAsLCzlw4ECPR7RxhjksXU6gCAAAAMCmmZyczOhoq0/w6OhoduzY0eMRbZxhDkuXEygCAAAAsGkajUZGRlqR1MjISBqNRo9HtHGGOSxdTqAIAAAAwKYZGxvLzp07U0rJrl27snXr1l4PacMMc1i6nEARAAAAgE3VaDSyffv2oQvchjksXW601wMAAAAA4PwyNjaWffv29XoYXdFoNHLkyJGhC0uXEygCAAAAwAYZ5rB0iSnPAAAAAEDHBIoAAAAAQMcEigAAAABAxwSKAAAAALBBms1m9uzZk6NHj/Z6KF0jUAQAAACADXLbbbflnnvuyW233dbroXSNQBEAAAAA1tBp1WGz2czBgweTJAcOHBjaKkWBIgAAAACsYWZmJocOHcrMzMya5912221ZXFxMkiwuLg5tlaJAEQAAAABW0Ww2Mzs7m1pr9u/fv2bV4R//8R+fsv2BD3ygy6PrDYEiAAAAAKxiZmbmlKrDtaoUa61rbg+LjgPFUspzSinf175/YSnl4u4NCwAAAGDjnQ8deNlYBw8ezMLCQpJkYWEhBw4cWPXc7/3e7z1le3Jysqtj65WOAsVSyk8neWeS/9LedXWS/7dbgwIAAADohk7XwoMlk5OTGR0dTZKMjo5mx44dq557/fXXZ2SkFbeNjIzk+uuv35QxbrZOKxR/NslLkzyaJLXWzyR5ZrcGBQAAALDR1rMWHixpNBqnhISNRmPVc8fGxvLSl740SfKyl70sW7du3ZQxbrZOA8Vv1FpPLG2UUkaTDOckcAAAAGAorWctPFgyNjaWl7/85UmSV7ziFWcMCZ/85Cef8nUYdRoofrCU8oYkF5ZSvj/J7yf5o+4NCwAAAGBjrWctPDgbzWYzH/rQh5IkH/zgB4e2CrbTQPGXkjyc5J4k/zLJnUlu6tagAAAAADbaetbCgyXrCQk7rYKdnp7O3r17c9111+W6667L3r17Mz09vfGD75JOA8ULk/x2rfXHaq0/muS32/sAAAAABsJ61sKDJeuZKr/eKtjjx4/n+PHjGzfYTdJpoHggpwaIFyZ5/8YPBwAAAKA7xsbGsnPnzpRSsmvXrqFtmMHGWk9I2GkV7O7duzM1NZWJiYlMTExkamoqu3fv3vjBd8loh+c9pdb61aWNWutXSylP7dKYAAAAALqi0WjkyJEjqhPp2OTkZO66664sLCyccap8o9HI/v37k5x7Fez09HTm5uZObi/d37t378l9ExMTPQkiO61QfKyU8p1LG6WUFyQZvHpMAAAA4Lw2NjaWffv2qU4cUs1mM3v27NnQZijrmSo/NjaW8fHxJMmVV155Tn/P5ubmcvjeT+bEQ1/KiYe+lC2PJ1sez8ntw/d+8pTAcTN1WqH480l+v5Qyn6QkeVaSn+jaqAAAAABgnWZmZnLo0KHMzMzk9a9//YY859JU+TvuuOOMU+WbzWbm5+eTJPPz8zl69Og5hYrbLn1GbnrZP13x2M1/8q6zft5z1VGFYq31Y0m+LcnuJP8qyd+vtX68mwMDAAAAgE41m83Mzs6m1pr9+/dveJXi9u3bzziFeWZmJrXWJEmtdc0GLoNszUCxlDLZ/vrPkvxQkm9p336ovQ8AAAAAem493ZjXq9Op8uvt8jyozjTl+RVJDqYVJp6uJvnDDR8RAAAAwJBZ3mBjaUrs+Ph4z5pqDKOVwryNmvbcqfU0cBlka1Yo1lrfWEoZSfLeWutPnXb7nzZpjAAAAABD4/jx4zl+XK/bjTY5OZnR0VbtXK/CvPU0cOmmbjSnWe6MTVlqrYullF9M8o6ujAAAAABgyC2vQty7d2+SZGpqqlfDGUqNRiOzs7NJehfmraeBSzd1oznNch01ZUny/lLK3lLKs0spW5duGz4aAAAAADgLS2FeKaWnYV6nDVy6pZvNaZZ0Gij+RJKfTfKhJB9v3+7u5IGllAtKKX9VSnlPe/u5pZQ/L6UcLqX8XillS3v/k9vbh9vH/96y5/jl9v5PlVJ2Ldv/yva+w6WUX1q2f8VrAAAAADC8eh3mJZ03cOmWbjanWXLGKc9JUmt97jlc439Ocl+SS9rb/y7Jr9da315K+a0k1yeZbn/9cq31eaWU17TP+4lSyrcneU2Sf5BkPK1qyW9pP9dvJvn+JA8m+Vgp5fZa671rXAMAAABgQ2i00n+Wwrzz2WY0p1mzQrGU8qJSyv9XSvlqKeXPSil/fz1PXkq5Osmrk/zX9nZJMpnkne1T3prkR9r3r21vp318R/v8a5O8vdb6jVrr3yY5nOSF7dvhWutna60nkrw9ybVnuAYAAADAhtNohX4xOTmZVjyWlFK60pzmTBWKv5lkb1pTnX84yX9MsmvNR5zqPyb5xSQXt7fHkjxSa11obz+Y5Kr2/auSPJAktdaFUsqx9vlXJfnosudc/pgHTtv/ojNc4xSllBuS3JAk27ZtW8e3BQAAAJzvNFqhH73qVa/Ke97zniRJrTWvfvWrN/waZ1pDcaTW+r52deDvJ7m80ycupfxgki/WWj9+TiPsolrrW2qt19Rar7n88o6/NQAAAADoS3feeecpFYp33HHHhl/jTBWKl5VS/tlq27XWP1zjsS9N8sOllFcleUpaayj+Rvs5RtsVhFcneah9/kNJnp3kwVLKaJJLkzSX7V+y/DEr7W+ucQ0AAAAA2HBLa2r2ej3NgwcPptaapFWhePoaitPT05mdnc3Xvva1k+ctKaXkqU99anbu3LnmNc5UofjBJD+07LZ8+wfXemCt9ZdrrVfXWv9eWk1VDtZaG0k+kORH26e9Lsm72/dvb2+nffxgbX1Xtyd5TbsL9HOTPD/JXyT5WJLntzs6b2lf4/b2Y1a7BgAAAABDqtlsZs+ePTl69GjPxtDr9TQnJyczOtqqIRwdHd38NRRrrT+14VdM/k2St5dSbk7yV0lua++/Lcl/K6UcTnI0rYAwtda/KaW8I8m9SRaS/Gyt9fEkKaX8XJL9SS5I8tu11r85wzUAAAAAGFIzMzM5dOhQZmZmNryz8ZksVSL2ej3NRqOR2dnZJMnIyEgajcYpx3fv3t1R1eTP/MzPrHrsTBWKSZJSyhWllNtKKe9tb397KeX6Th6bJLXWP661/mD7/mdrrS+stT6v1vpjtdZvtPd/vb39vPbxzy57/C211ola67fWWt+7bP+dtdZvaR+7Zdn+Fa8BAAAAwHBqNpuZnZ1NrTX79+/vaZViL42NjWXnzp0ppWTXrl3ZunXrhl+jo0Axye+kVQk43t7+dJKf3/DRAAAAAMBZmJmZyeLiYpJkcXExMzMzPR5R7zQajWzfvv3vVCdulDM1ZVnyjFrrO0opv5wktdaFUsrjXRkRAAAAbLJ+aaYAnL2DBw9mYWEhSbKwsPB3mpGcT8bGxrJv376uPX+ngeJjpZSxJDVJSikvTnKsa6OiZ5Z+iS5Zur80/z+JX6oAAMDQ6mUjBeDcTE5O5q677srCwkLXmpHQ0mmg+AtpdVueKKV8JMnleaKLMkNkbm4uh+/7m2y79KIkyZbHv5kkOTH/35Mk9x97rFdDAxh6KiOAYdJsNnPrrbfmxhtv7MraTbDR+qWZAnD2ztSMhI3TUaBYa/3LUsorknxrkpLkU7XWb3Z1ZPTMtksvyhu++x+ueOzWD9+zyaMBOP+ojACGQS+7bAJwfhobG8vLX/7yvP/9788rXvEKH2h10ZqBYinln61y6FtKKam1/mEXxgQA5yWVEcCwOL3LZqPR8KYOgIFkFtHKztTl+YfWuP1gd4cGAAAMIl02AeiFZrOZD33oQ0mSD37wgzl69OiGPffx48cHaiZRs9nMnj17NvTPYLk1KxRrrT/VlasCAABDS5dNAHphpQ+0zvX3z6DOIur20iNnqlA8qZTy6lLKL5ZS/rel24aPBgAAGHiTk5MZHW3VLuiyCcBmWekDrfPR6UuPdKNKsaNAsZTyW0l+Isnr02rK8mNJnrPhowEAAAZeo9HIyEjrrYYumwBsFh9otWzG0iOdVih+V631tUm+XGv935O8JMm3bPhoAACAgTc2NpadO3emlJJdu3ZpyALApvCBVstmVGp2GigurTr5tVLKeJKFJFdu+GgAAICh0Gg0sn379vP2zRwAm88HWi2bUanZaaD4nlLKZUn+jyQfT/K3SX53w0cDAAAMhbGxsezbt++8fTMHQG/4QGtzKjXXDBRLKf+klPKsWuubaq2PJHlaknuS/H6SX9/w0QAAAADAWfKB1uZUap6pQvG/JDmRJKWUlyf5tfa+Y0nesuGjAQAAAADOSbcrNUfPcPyCWutSb+mfSPKWWusfJPmDUspfd2VEADBEpqenMzc3l/n5+STJ+Ph4JiYmsnv37h6PDAAAhof/d59qqVKzW84YKJZSRmutC0l2JLlhHY8FANqOHz9+5pMAAIBz4v/dm+NMoeDvJvlgKeVLaXV6/nCSlFKel9a0ZwBgDUufiO7duzdJMjU11cvhAADAUPL/7s21ZqBYa72llHIgyZVJZmuttX1oJMnruz04AAAAAM6s2Wzm1ltvzY033nheNyTphOnR5+5MTR/Mkm8AACAASURBVFlSa/1orfVdtdbHlu37dK31L7s7NAAAAAA6MTMzk0OHDmVmZqbXQxkYx48fN0X6LJ0xUAQAAKC7ms1m9uzZk6NHj575ZIDTNJvNzM7Optaa/fv3ey05g927d2dqaioTExOZmJjI1NSU6sR1EigCAAD0mMoi4FzMzMxkcXExSbK4uOi1hK4TKAIAAPSQyiLoX4NSPXzw4MEsLCwkSRYWFnLgwIEej4hhJ1AEAADoIZVF0L8GpXp4cnIyo6Otvrujo6PZsWNHj0fEsBMoAgAA9JDKIuhPg1Q93Gg0MjLSinhGRkbSaDQ27LkHpUqTzSVQBACADeSNF+ulsgj60yBVD4+NjWXnzp0ppWTXrl3ZunXriudNT09n7969ue6663Lddddl79692bt3b6anp1d97kGp0mRzCRQBAGADeePFenWzsgg4e4NWPdxoNLJ9+/aOXkOOHz+e48ePn/G8ZrOZ/fv3p9aau+66y4dlnCRQBACADTJI0+PoH51WFgGba9Cqh8fGxrJv3741X0N2796dqampTExMZGJiIlNTU5mamsru3btXPH9mZuaUUNWHZSwZ7fUAAABgWKw0Pe71r399j0fFIGg0Gjly5IjqRIbW9PR05ubmMj8/nyQZHx/PxMTEqkFWP2g0GpmdnU1y/lYPHzhwILXWJEmtNe9///v9XttE8/PzeezYo7n5T9614vEjx76Ui8qJTR5ViwpFAADYIIM2PY7+0UllEQyDTqfa9gPVw8kzn/nMNbc5f6lQBACADTI5OZm77rorCwsLAzE9DmCzLFUi7t27N0kyNTXVy+F07HyvHv7iF7+45jbdNT4+nhN1S2562T9d8fjNf/KubBl/xiaPqkWFIgAAbBDNNQAYJi996UtP2X7Zy17Wo5HQb1QoAgDABlmaHnfHHXect9PjAIbJzMxMDh06tOlr4q605mSSvl93kvOHCkUAANhAjUYj27dvV50IMOCazWZmZ2dTa83+/ftz9OjRTR9Dr9ec/NM//dNTtj/ykY/0aCT0GxWKnLXp6enMzs7ma1/72smuT0tKKXnqU5+anTt3+vQEADivLDXXAGCwzczMZHFxMUmyuLi4qVWK/bLm5OTkZN773vfm8ccfzwUXXGBtYE5SoQgAAABd1mw2s2fPnp5UuXF2Dh48mIWFhSTJwsJCDhw40OMRbb5Go5ELLrggSXLBBReovuckFYqctd27d6s+BAAA6ECv1uIbRCutH9iLtQMnJydz1113ZWFhIaOjo+dldZ61gVmNCkUAAADoon5Yi28Q9Xr9wEajkZGRVmwyMjJy3lbnWRuYlQgUAYBzYgoXAKxtpbX4WN3u3bszNTWViYmJTExMZGpqqiez45aq80op53V13tLawOfr98/KTHkGgHXql2k4/cIULgBY20pr8fmdORgajUaOHDmiOo8Ns/ReYsnS/aUGPEkG4r2FQBEAzlIvp+D0i9OncDUaDZ9eA8BprMU3uJaq81jbSh+4J+cejA3jB/lzc3M5fO8ns+3Sy5MkWx5v7T/xUDNJcv+xh3s1tHURKALAOi39B2bpU8SpqaleDqenVprCpeICAE7VaDQyOzub5Pxei4/h160P3Iftg/xtl16em176z1c8dvNH/mCTR3N2BIoAwFkzhQsAzkyn3MGyfErqMFXGdVO3PnD3QX7/0pQFADhrk5OTGR1tfT5pChfAqTStYjmdcgdTrztNQ78SKAIAZ63RaGRkpPXfCVO4AE61vGnVsBGWrl8/dMr1c+vMUpfpfug0Df2qa1OeSylPSfKhJE9uX+edtdY3llKem+TtScaSfDzJ/1hrPVFKeXKStyV5QZJmkp+otf739nP9cpLrkzye5F/XWve3978yyW8kuSDJf621/lp7/4rX6Nb3CgDnK1O4AFY27E2rloellroYHJv9czu9m20yuB1tgVN1s0LxG0kma63/KMl3JHllKeXFSf5dkl+vtT4vyZfTCgrT/vrl9v5fb5+XUsq3J3lNkn+Q5JVJ/nMp5YJSygVJfjPJDyT59iT/on1u1rgGALDBTOEC+LtWalo1LE4PS1W7DYZe/Nzm5uby6fsO56ufO3HydsHillywuOXk9qfvO/x3Qkeg/3UtUKwtX21vPql9q0kmk7yzvf+tSX6kff/a9nbax3eUUkp7/9trrd+otf5tksNJXti+Ha61frZdffj2JNe2H7PaNQCADdYPU7gA+s1KTat6oRtTXIc5LB1mvfq5jV+2Lbu/56aTt1/5wf+UX/nB/3Rye/yybZsyDmBjdXUNxXYl4V8n+WKS9yWZS/JIrXWhfcqDSa5q378qyQNJ0j5+LK0pyyf3n/aY1faPrXGN08d3Qynl7lLK3Q8//PC5fKsAAAAn9UvTqm6s49gvYSnr4+cGbKSuBoq11sdrrd+R5Oq0Kgq/rZvXW69a61tqrdfUWq+5/PLLez0cAABgSPRD06puTXHtl7CU9fFzAzbSpnR5rrU+kuQDSV6S5LJSylIzmKuTPNS+/1CSZydJ+/ilaTVnObn/tMestr+5xjV6Znp6Onv37s11112X6667Lnv37s309HSvhwUAwAbTRZXkiaZVpZSeNa3q1hTXfghLWT8/N2AjdS1QLKVcXkq5rH3/wiTfn+S+tILFH22f9rok727fv729nfbxg7XW2t7/mlLKk9vdm5+f5C+SfCzJ80spzy2lbEmrccvt7cesdo2eO378eI4fP97rYQAA0CXdmGLKYOp106puTXEdGxvLy1/+8iTJK17xCmvoDoh+CLmB4TF65lPO2pVJ3truxjyS5B211veUUu5N8vZSys1J/irJbe3zb0vy30oph5McTSsgTK31b0op70hyb5KFJD9ba308SUopP5dkf5ILkvx2rfVv2s/1b1a5Rs/s3r07SbJ3794kydTUVC+Hs6r5+fk89shjufXD96x4/Mgjj+WizG/yqAAABsPpU0wbjYY37eexpaZVvTI5OZm77rorCwsLpriSpBVyHzlyRHUicM66FijWWj+R5B+vsP+zaa2nePr+ryf5sVWe65Ykt6yw/84kd3Z6DQAA6KaVppi+/vWv7/GoOF81Go3Mzs4m2dgprs1mMx/60IeSJB/84Adz/fXXC84HRK9D7vPV9PR05ubmTtm3tL1UdJQkExMTJ4uR+sHSuOfnW0VF4+PjSfpvnPRGNysUGUDj4+M5kRN5w3f/wxWP3/rhe7Kl/SICAMCpVppiKlCkV5amuN5xxx0bOsVVcA7rMzc3l8P3fibbLn6iDcSWhSclSU488PUkyf1feaAnY+vERi/btlJQKaQcPAJFAADYIKaY0m/WM8W12Wzm1ltvzY033rhm+Cg4ZxAtrxLsRZC17eJn5w3X/K+rHr/17n/f9TGsV7eXbtNfYrBtSpdnAAA4H+iiSr9ZmuLaSXVipw2FJicnMzraqk0RnDOINEvtrd27d2dqaioTExOZmJjI1NSU6sQBJFAEAIAzaDab2bNnT44ePbrmebqoMqhObyi01t91wTmDaCnEEmTBxjDlGQAAzmB55daZpnbqorp+nU61pXvWsy5it9Zm5Oz499Mb62m0wvA7/e/DIDTdOVcCRQAAWMPplVuNRmPNN+26qK7fegJbumO96yJ2Y23GXhn0IMC/n95oNVo5nG1P23Zy35ZvbkmSnLj/RJLk/q/e35Oxsflafx8+lW2XXp4k2fJ4SZKceKhV7X3/sYd7NrZuESgCAMAadLTtrvUGtnTHehsKrSc47/fAa25uLp/85OGMjT0nSVJrKxR6+OFvJkmazSM9G9uZ9Prfz/nerXfb07bll1/wy6se/9WP/+omjoZe23bp5bnppT++4rGbP/KOTR5N9wkUAWCDrWcKzPnyH24YZDradpfAtj80Go3Mzs4m2dh1EXsdeHVqbOw5ufaHfmXFY+/+ozdt8mg61y//flZrcDI/P5+vHnss039886qPnX/kSJ5WL+rW0IAuESh2WSfl84k3lQDDZG5uLvd88hPZ8own9i20v37qS59Ikpz40uaPa9D0+xQ5zh/rrdxifQYxsB3G16durYvYL4HXsOr1v5+l97BL72+npqY27dpAbwkUu2xubi6H77svz7n0siTJlsdbv0y/Of+5k+ccOfZIT8YGQPdseUbyrGtHVj3++XcvbuJoBlO/T5Hj/NGtyi1aBjGwHdbXp240FOp14DXs+v3fz/j4eL5aTmT399y06jnTf3xznnbllk0cFbARBIqb4DmXXpabXv69qx6/+UMf2MTRAED/G5QpcpwfdLTtrkELbIf59akbDYX6PfAadIP27wfovs1a21SgCAD0HVPk6DfdqNyipZuBbTemJnt9Wh+BV3f5wGP4WDaNs7U8SDx+/PjJtU2PHz+e+fn5zM3NbejfG4EiANB3ujVFbhjXPWNzdKNyiyd0K7DtxtRkU3jXp18Cr2F+/R+WDzw0tWuZm5vL4Xs/k20XX50k2bLwpCTJiQeeaHxz/1ce7MnY6G+tvzufzLZLx5KnPClfeLwmSa54yiVJTQ7f+8kNvZ5AEQDoO92aIjes655xdoY5YBg03QhsuzU12RTe9euHwGuYX/+H5QOPubm5fPq+w7nq0m0n940+3lpb8bH5E0mSh47d35OxbbZtF1+dN/yTX1j1+K0f+w+bOJqNo/qy+7ZdOpabvvuHVzx284dv39BrCRQB1sGbT9gc3ZgiN8zrng2ifng9HeaAge5NTTaFd/16HXh5/R8cV126LT/38htXPf5/fuiWTRwNG61VQffpbLvkWUmSLQutBoYnHnz05Dn3P/r5noxtJesJQM9HAkWAdfDmEzZHN6bIWfesv/T69VTAMPy6NTW5X6bwns/W23DA6//wWh74dLsBBRtj2yXPyo0vuX7V47f82W2bOJq1tQLQT2Xbpc9Mkmx5vCRJTjz05ZPn3H/siz0ZWz8QKAJ0yJtPOvmU8nz9hLIbNnqKnHXP+kc/vJ4KGIZfN6cm98MUXnKy4cCZeP0/P3T69+F8Zbrx2dl26TNz03e9ZtXjN//p27s+hvuPfSk3/8m7kiRfeOxYkuSKiy49eex5Vz2j62NYiUARoEPefDI3N5dDn/xEnjLW2j7RWuc4hx/+RJLk683NH1M/TBvtlo2eImfds/7RD6+nAobh12g0sn///iQbPzW511N4h1knv9eWwo6lIGRqamrN5/T6P7yWB1+d/n04X52cbnzxVUmSLQutOOjEA4+dPOf+rzzUk7GxutOLFU7MtQLFLe0Q8XlXPaNnBQ0CRYAOefNJkjxlLHnOD4+seOzI7YubPJreTxsdJNY96x/98HoqYBh+Y2NjGR8fz5EjR3LllVcO3Ycuw6obv9e8/kPLtouvyhte9LOrHr/1z39zE0dDJ06vFu2n4Hzld0QA/B2Tk5MZHW19DuPNJ/3g9GmjR48e7fWQ+trSumelFOue9Vg/vJ42Go2MjLT+KyxgGE7NZvPkmmrz8/NeIwdAt36vef3vrflH7s/0H9988vam97w+b3rP609uzz9yfnRuhmGjQhGgQz7dpt/0w7TR9er1FG3rnvWHfng91Vhj+M3MzKTW1toUtdaBeI0833Xz95rX/95YaSrmF+ZOJEmeduWWJMm3XPm8TExMnLK+H6zHersx69y8MQSKAB3y5pN+0w/TRter11O0h3nds16HtevRL6+nAobhNoivkee7bv7Mhvn1v5+t1NxjtSmbpwc60KmT3ZgvuSJJsmWhNQPhxIOPnDzn/ke/cPJ+q3Nz+9zH2+c+tOzcY0+cy+oEigDr4M0n/WTQ1oDrh86+w6zXYe16vepVr8rBgwfz6le/umdj6IeAYZCC4H7R6Z/ZoL1G4mcGnL1tl1yRG7/rtasev+VP3/bEuZdekZu+a/X3czf/6cyGjm1YWUMRYB2W3nx600c/GLQ14FaaysbGGMT1NO+8884cP348d9xxR6+H0lPLg2A60+mf2aC9RnZLs9nMnj17BuJ1wc8MWDI9PZ29e/eevM3NzWVubu6UfXv37s309HSvh3reEigCwIAatEXmV5rKxsYYtLB2EAPQbvDnsH6d/JktvQn91V/91ZRSkiQXX3xxfu/3fm+zh7vhlr636667Ltddd11Hb6gHKbQetN9rQPcsTWM+8eCxnHjwWLYsjGTLwsjJ7RMPHsvhez9l7c0eEigCwABrNBrZvn37QFRx9ENn32E1aGHtoAWg3eLPYf3W+2c2MjKSkZGRPPOZz9yM4W2a48eP5/jx42c8bxBD60H6vQZ017ZLnpUbX/KTufElP5k3f98v5M3f9wsnt298yU9m2yXP6vUQz2vWUIQNstRZan5+PkkyPj6eiYmJFRcipntW+jkk8bPYYNb86h/9sAZcp/qhs++wGrR1xzTLaPHnsH6d/Jkt/32/WvOHQbX0vXX6fXWza3K3DNLvtWE1bO9rTu8AnKzc2XcYvkfvgXpnfn4+jx17NDd/5B0rHj9y7Iu5qHz9tHP/YJVzH85F5RtdG+tGESjCBuvk02K6z8+huwat+QP9oV86+w6jQQtrBy0A7ZbJycnccccdqbWmlHLe/jmsRy//7iwPJQYlaBFacy76+f/T6wkJ5+bm8pl7D+fqS7ad3P+khS1JkuMPnkiSPPjo/V0d7/z8fB77ymO59e5/v+o5R77yQC6av+hkGHg2evEzO/1nsdLPIWn9LBguAkXYIOv9xJju8HPovn7p1KtKcjDplN4dgxbWdjMAHaTXhle96lV5z3vekySptfa04/Wg6JfwvJ+DluWE95yNQfj/9FJIeNWlT4SEo4+3QsKvPdQKCR869kRIePUl27LnJW9Y9fn2/dmtSdYXVPaTXv7MWmsdfjrbLrkySbJl4YIkyYkHv3LynPsf/dymjadXxsfHc6I+JTe99MdXPH7zR96RLeNbl5375Nz00n++yrl/kC3jY10b60YRKAKwLv0yfUqV5GAyla17Bims7WYAOkivDXfeeWdKKScrFO+4446+H/N6dCPc7WV4PohTqXsdwA7b1Fn6y1WXbsvPv+zGVY//xz+5Zd3PuRRUbrv4iaByS7ua8RsPtILK+7+y/mrG8fHxnHj863nDNf/rqufceve/z5bxp6z7ufvBtkuuzI0vvmHV47d89C2bOBo2i6YsAKxLPzR/GMRF5qHblsLafq/KW9KNxguD9tpw8ODB1FqTtCoU+72Zznp1q7uwph2d65euyZ02kYF+sO3ibfnFF77h5G3qe34jU9/zGye3l4eNcD4TKAKwLv3QqVdnVAZZs9nMnj17+j7s6rZuBKCD9trQD6+n3dLNcHfQwvNe62UAu3v37kxNTWViYiITExOZmppSnQgwJEx5BmBdej19KundIvPz8/P5+qPJkdsXVzz+9WYy/835c1pMm+E3SFNyu6kb02EHrQFFP7yedku/LI+BpSY6MT8/n0cf/Vre/UdvWvF4s3kk3/zmUzd5VMNnaQr88jUJTYGHwSVQBGBd+qH5g0XmGVT90tSoH3QjWB2014Z+eD3tlk7C3UHsmgycuwsvvLDXQ6BH5ufn89ijX8ktf3bbquccefRzuWj+qz6gPwvz8/N57NijufnDt694/MixZi4q39yw6wkUAVi3Xjd/6FVVz/j4eL72pC/lOT+88oohR25fzPjl/vOzlkHqwNsNw1q1td7GC90KVgex4q/Xr6fdst5w1/p69NL4+Hie9KRv5tof+pUVj7/7j96Uyy9/0iaPqn+tpxPy8t8DPigYHKf/jFf6+Sb91+2azSVQBBgQ/dQpsdfTp4a5qmfYne/TfQdtSu56dRoKdStYHcTXhl6/nnZLJ+FuP3RNViUJ6zc3N5dP33c4V172RHOSCxZbnZC/8rlWJ+TPPbL+Tsj0j7m5uRy+99PZdknrg/ItCxckSU48+NWT59z/6Py6n3d8fDwnFh/NjS+5ftVzbvmz27Jl/JJ1PzftP9/6pNz03T+84vGbP3x7toxfvmHXEygCDBhVHC3DWtUzzEz3HbwpuZ1aCl46DYW6GawO2mvDsFbtDmK46/crdO7Ky7blhh03rXr8LQdu3sTRnL+6WUm47ZLx3Piif7Xq8Vv+/LfW/Zzr8cT06N9Z9Zwjj34+F80/Znp0jwgUgZ4b1jdTG229b9iH3bBW9QyzYZ3uux6DOCW3G7oZrA7aa8MwV+0OQrjbD1WSAGerVUn4mWy7+KokyZaFVsRz4oGvnTzn/q881JOxMfwEikDPDfObKeAJwz7dtxODWLXVDYLVlmGv2h20cJfO9NMSLECy7eKr8oYX/utVj9/6F2/exNFsnNb06GO58SU/ueo5t/zZ72TL+KWbNyhOIVAEemrY30wBTxjW6b7rNQhVW90mWG1Rtcsg69YUcTNXNtbyAPj0n9mFF14oEAbOmkAR6ClvpuD8oSqtRdVWi2BV1S6DqdtLsJi5srHm5ubyqfsOZ8vok7OwUE859o3Fx/Op+w73aGScr+5/9PO55c9uS5J84bFmkuSKi8ZOOf68aMoyCASKcA5OXwQ3WXkhXJ/6rW6j3kytZ0FiPwvoDVVpLNcPwWqvK6FU7cKpzFzpzHqrDp/19OfkdTtXbqDy1lnNU/rN/Px8HvvKY7n1Y/9h1XOOfOXBXDR/0cA1Izm9OcyJuYeTJFuufiJAfF4uycTExN95n03/ESjCOZibm8un7/tExi8tJ/dd8Hjrk7+vzt+TJJk/Vld8LC0b9WZqbm4un7zvExl7emu7tooe8/DnP3HynOaXz3W0sPHOtw8mVKXRT3pdCTXsVbu9DmwZPGaudOZk1eGTnpyFb55WdVhVHbKyVlD51dz657+56jlHvvJQLpp/WteCytP/L7tWpfPphSF05v5jzdz84duTJF947FiS5IqLLj157HlXXb5h1xIowjkav7TkX718y6rHf+tDJzZxNINnI99MjT09uXbHyKrH331g8ayfu5dUXw63ubm53PPJT+SCZzyx7/H213u/1ArEH//S5o+rW/qhKg2S/qiEGvaq3V4HtgweywB07oqtz8n/8MqVqw7/77vWX3W4ng846a7x8fGcePx43vBPfmHVc2792H/IlvELnwgJ12i80qpmfFo3hvr/s3fu8XGc5b3/vbo5smTL9mpleZw4Ads5HEgDJTmBpoQQO9hJIHZCCwXUcimFNrTAOU0ON9PDOSVxID3mUAqYpiFAPggCoSSS48SWI+dGTRISQnyJHZJNkWKPbUkraXWNpdW+5493dne0mlntrHZ2Lvv7fj770e77Pnrnmds7M888F+Iz5nqAjgAA6gwj4rrV0ZKewzQoEkI8JewPU6UgFovh6NGDWGZ4Xxov7nHS5H05TO/LQFPdDCy5zt4YPnpfMI3hQYfeVeHGL55QYfXajcfj2Lt3L6SU2LNnD0NXSUG4kQYgaFWpvdJXRV69hNblazJtVSnlNDFySjlInBrqdVUHXdcxNjyObz12i63MieEeNCJ4ob5+QBkqx/HFt/ytrcz2J7+NOq2hjFqVBl3XMT4yilsO3GUr0zNyGg36RKiPHSceoKXANYOiEOIcAHcBWAlAArhdSvnPQogVAH4K4DwAvwfwPinlkBBCAPhnANcAmADwESnlb4yxPgwg/frlZinlD432iwD8AEA9gAcAfEZKKe2W4da6EkIWRlgfpkrJsuXAFZuEbf/DXcWH1gftRttrXo0DPZ3KCDGloghQ15TtQ+miCIjH0Lsq3PjFEyqsXrvt7e2zti/PI1IIbqYBcKsqtVt4oW/r8jX4yyutvR4B4M6HmG/RTDrX4a3P3Gor0zPa42quQ2UknMAXL/m0rcz2p76JOm2xK8snlY2bHopJADdKKX8jhFgC4BkhxD4AHwHQLaX8qhDi8wA+D+BzAK4GsN74vAXATgBvMYyDXwZwMZRh8hkhRKdhINwJ4OMAnoQyKF4F4EFjTKtlEEJ8SFgfpoJG0G60vSA3RCA2okKB1kaN9iiYRDok+CEclrgLC6K4S3d3N6RUL7uklHjooYdKZlCk93B4cSNyxe2q1KUmaPqWEk3TMI4p/N3bt9nKfOuxW9Cg2aebIpWJpmmYSg1j26UfspW55cBdqNOWlVGr8OOaQVFKeRLASeP7qBDiKIDVALYCeIch9kMAj0AZ+7YCuEuqO48nhBDLhBCrDNl9UspBADCMklcJIR4BsFRK+YTRfheA66AMinbLIIQQkkMl37g6pdAwAiaRDj5+CYcl7pD2zE570M3MzGS+k9LQ0tKCnp6eWb9LBb2Hww0jV0hQ0DQNU8kpfOGiL9jK3PrMraijAZSElLLkUBRCnAfgD6E8CVcaxkYAOAUVEg0oY+Mrpn87brTlaz9u0Y48yyAF0JsYx/bHVYXi02OvAgBWNp6V6VsX3pQDxAJzguZKDom1CgsGWAiFkLDil3BY4h61tbWoqalBMpnEihUrcNZZZ3mtUqjo6+vL+7tY6D0cfhi5QkiwUPkLx3DLE7fbyvSMnESDPup47N6RU7jlVz8AAJweHwQArGxYMat/HZocj1souq5jPDGKmw/cbSvTk+hDg5gMdW5GO1w3KAohGgH8O4D/LqUcUakSFUa+w+ITfxVAvmUIIT4B4BMAsGbNGiuRimNuVSBlSKrTzgMArNNY2auSYUgstwEhlQLDYcNN+kXQZz7zGfT29uLb3/42jVIlZuPGjdi9ezeklBBC4MorryzJuGH0HuZLSxI0dF3HWGIct3fb51Q8OdyDURm84h7EP8y1TQwAAOrOzhoQ16GJ6YY8xFWDohCiFsqY2C6l/IXRfFoIsUpKedIIaU6/rjwB4BzTv59ttJ1ANnw53f6I0X62hXy+ZcxCSnk7gNsB4OKLL3bFsKnrOiaGE7j5sYdtZXqGh7EYrtpVC6bcVYGI/zEfE5V8PDAsmJDKws3CAMQ/1NbWYu3atTQmukBbWxv27t2L6elp1NbWluwcCrP3MF9aEkKCiMpfOIptb/2ErcwtT9yOOm2JUMAbhQAAIABJREFUo3Gd2CbcSjekaRqm5BC+dOn7bWVuPnA36rTljsfuTfTj5v/4dwDA6fFhAMDKhmWZvnWrI0VoXF7crPIsAHwPwFEp5ddNXZ0APgzgq8bfDlP73wkh7oYqypIwDIJ7AWwXQqT30CYAX5BSDgohRoQQb4UKpf4QgH+ZZxmEEEIIIfPiRmEAQiqJSCSCzZs3l/wcCqP3MF9aKqw8Neml6U80TcOomMInNtpXhL69+2YsWRW83IHpys23PbXdVqbX5crNJLgoI+HPANgZCdW1cK73pZKtM4yI61ZHAhEZ6qaH4h8D+AsAh4QQvzXavghl5PuZEOJjAHoAvM/oewDANQBeAjAB4KMAYBgOvwLg14bcP6YLtAD4JIAfAKiHKsbyoNFut4yyo2kapiHwpbdfYStz82MPo1ZbVUatCCF+gTfPhPgXFgYgZGG4cQ7Rezj80FOTEO/J5EV88ru2Mj0jOhr0xsAZVrN5EdttZXoSp9EgJhyt21wj4RAAoM4wIq5bvSIjE5bIUDerPP8SgLDpnvMq0aju/Lc2Y90J4E6L9qcBXGDRHrdaBiGE+BXePBPiP1gYwHv40sU/FLMv3DiHIpEI3v72t+Ohhx7C5Zdf7lvv4UrPi2gu6gcg8z03LNG8Peip6Q66rmM0MYEfdlnnOzw11IPx1OLAGYXcQtM0nJmZwmcv+aKtzG1PbcciVm4mOYTFSOiEslR5JoSQSsLJQwRvnsOJruuYGgFOdaRsZaYGAH1K5w08IQXAly7+gfvCGWHaXk6MhLFYDM8fewlLm1XhyySU8eX4wFRGbmSg122VA0Uh27dSDNKlRnnbjWPHr+zDmI+PBDeMuXf0BLY/9U0AwOmJfgDAysXRWf3rsN7RmCov4hi2veVvbGVuefK7qNMai9DYW1RexGF86VJ7D/ebD7SjTltWRq2CCQ2KhBDiEmF6iCCEEC/gSxd3ceJ16Jd9EY/H8dhjjwEAHn30UXzsYx/zpZeiX7ZXKUkbCRsNI+G0YSTsNRkJx0xGwqXNa3Dp1m224x3ouMUlTf2D+RzLvS+sr6+fdc7FYjG8cOwltKw4FwAgpNq+Q33TAIC+wZ6idNA0DYmqaXx4k3W+wx923Yym1tqixibeMzfMVhWtqjtncaZtHdazEjJxBRoUCSGhQNd1jCSAjm57j7D4EDCd0l3XJYwPEcQZmqZhtG4ArVurbGVOdaSgNQfvLTghxDvi8Ti2b9+Obdu2ldSIFqQXYO3t7Uil1LU+lUqhvb09NFWeS0U+IxYw15DlhMbmNbho6xds+5/puNWxvmEmbSSsrVmE6Wk5q0/IGbxw7KVZbS0rzsX7r7Y2/N39oHXIciGcGurJhDwPjp4CAKxY0prpa2pdV/TYQUDTNEympnDjH9mHMe/41XbUBzCM2Wkl5N7RE9j+5LcBAKcnBgAAKxc3Z2SUN+P5bqlLQgYNioQsAF3XMTYs8d3HpuxlhiUa4b4RixBCCCHBoZichO3t7Th8+HDJjGhBfAG2f/9+JJPKAyeZTKK7u5sGxRxisRgOH3sRVbVnITU990XrGcxg8NiLHmhWXpyEaANAPN6Djl1fAQAkEsro1tTUmumLRoszukVXnIv3vusfLPvu2f2VosZ0Qq4H28C4em5JeyU2ta6j95oP6R09ju2//joAuzDm447DmOd6M6rjvO6chkzbOpzvu+MhfS6bz2GG//sDGhQJIaFA0zTUVg1g60Z7j7CO7hSirVmPsEpPmE4qD7e8mwghxVOod2A8HkdXVxeklNi7dy/a2toq8jzesGED9uzZg2QyiZqaGmzcmK3DmGtAAio3D1198xq8duvnbPtf7vhaGbUpHU7zOB479hJWRFQIsTRCiPv6pzNyg/GejLyZkRFldItGa42/6+bIeEm60MqP9lh7LZ4e7MHEjAp5LdSDLXcbesWJRC++9Vg2HH5g7DQAoLlxZab/fM1dj8re0V7c9lQ232LfhNKhZfHKTP96uKfDXMOfOmbrzqnPtKXDmJ3g1JvRb9TX188vRMoKDYqELABN0zCGOP7m7fbu8d99bAqNAUzuW0kEKdSLkIVQSu8m80MdK/AS4hyn3oFBCvV1szp3W1sburq6AABVVVVoa8sm1Y/FYjh47HeojrRm2lJSvWg80j8CAJiJn1qwDmEkKC9ZY7EYjh57CcsNI2HKMBKeMhkJh+LZXIMrIufimi3W3oEA8ECn8hCsxOqsuSgj5TjufMg+tPrkUA/GUu4VLrEykJ2KKeNugxGOfL6mjLuPP/44xhLj+MYv7XNxHk/0oFE409dKhylDh0XnKB3Ww12vTh6Ps/HTHERmQ4MiIaRkBM3AEMRQr7Di5sMnUbjp3eSVUT5ocw4JJk7mJzfnsiCG+roxN0QiEWzatAm7d+/G5s2b58xj1ZFWLN7yV7b/P9F5BwB6M9oRhJesyyPn4p1brfMMAsC+juJzDQYFTdPwQuIlDI2ewtT0mVl9dbWLMjJOmUqewcmhrEE2OaMMtTXVtZl+oMHqX0uC1blmd5/++OOPe66DUy++3tFXsP3pf8r8Pj3RBwBYubgl0+80jNkv9I6cxC1P3A4AOD0eBwCsbIjM6l+HJZnfDGMOBzQoEkJcwc83pE7CZXhRKy9+Pm6CTqm9m8znRimN8sUaCXnsELdxcoy5cTzmC/U1U0qjZrFGt/le2C3UmNfW1oaenp5Z3olOyXozrsq0pWQ1AOBI/ygAYCZ+sujxgwZfsiqCYuRIe9Hpuo7UpJjVt6i+Gq/RnIdoX3bZZbOuv5OTk5ieVPcNNXVVRjGfbLXgk8O9uL07a7yNG6HJESM0+eRwL5asci8sWNM0TMgp/Pe32VcS/8Yvb8Fiw7Px+EgvdvwqG8bcP670jTaszPSXM4wZMIcynwWguDBmN+kd0XHLk98FAJweNwq4NDTP6k/nXDQzFVOG0rqzswbEdVhiuW6lDGPuHTmNWw7cZeg7ZOi7fFb/Oiwr2fIIDYqEkBLiloGh1MRiMRw7ehArjOuLNPKV9506mJEZHPJAsQqGDzLuE0bvpqDMOaS8lDpXqJP5yc25LF+orxWlMGoqo9sLqIq0ZNpSUhkvDverC2Uq3reAceeGJh/uTxjj2ocmRyIR7Nixw/Fyc6mOrELDlr+27R/v/NcFL8PvOC1cUin4PVebGwZO85jzvZjYuXPnnP/vM8KCl6yqM/76J++klR7Thr71Z88OY3YLJ56PfmCukVAZYOvObsy0pY2JxYRol/oYnquv8pKsOztrQFyHZUWFqvcm+nDzgbsB2BgqE31Yt3q55f+GHRoUCSEVyYrlwLvzFHC5v3tuVURCgkyh3k1eQyMhWSilroTsF+YL9U1TaqNmVaQFZ137Adv+V3f9pMhxW1G/5UO2/ZOddxU1LnFGLBbDkWMvoqF5DQBgGsq48vuBbBjt+ECvJ7p5gd88Eb1ivu0QNONY0PT1A0HL4+hWwZm5hspBAECdyYC4bvVy3xjPyw0NioSQikPXdSQS+Y2G8SEgmdLLqBXxmqDlcXSqr1PvJj8T1Nxnfip6ENaK32GvhFyKUF8SfnRdx+TIeN5KzpMDvdCnVLGKhuY1eMPWL9jKHum41Q01SZkJSjg3KQ6r/Qv4714oaATNsFpuaFD0ETt37kRXVxcmJiYgpZzVJ4TA4sWLAQCbNm3ipBBwgma4IKSSCFouvkL1LdS7KQiocMkjQHOjqVXlITo4YCSTHxgrv2IF4odjLKxefEGohFxIiGnuPUHufcP27dt530BCA8Ouy4vfw7nJwuD+JeWEBkVCPMQPD5WViKZpqKkamDfkuaXVeXU8ElyClsexGH1D5d3U3IiarW+y7U52/LaMyhSGX46xQr34gvjyKwi5QpVB/BhERCW2T79DPtSvEt7L+IDt/5b7vkHXdaRGRvOGNafifdCneT/jNk6MbpqmYbLuDF679XO2473c8TVozYvcUdYhsVgMR4+9hKaICruekSrsWu+fysgk4pUTdu0Wfp67ycLh/iVeQIOij7jhhhs4EVQIfnmoJMEgHaL9cJe0lRkeAiRDtMk8lKqQAZlLkEKInXrxldqI5aahMii5QkWkGYuuvd6y78yue+e08b7BW/yQZiEWi+HQsRdRFzkHAJCUtQCAF/pfzchMxV9xZdnloCmyBu/Y+iXb/kc6brbtI97CUGqShmHX/qFc5yUNiqQiSIeTA8gbUs5wckLCRRA9rMj86LoOjIzl90IcGIM+VT4je5BCiAv14nPbiOWGt12YcoU6wS2Dl6ZpGKwdmrcoixYNd3VL5VX6O1RHVmfaUlI9Rh3pHwcAzMRPuK5HXeQctGz9rG1/X8dtrutA3EPXdYwmJnD3g9bG0754DyaTi8usVeEw1Jak4bHgH9zeFzQoEt9CQ0C4MT/8hGUfOwlHcvpAJ6oGcMUmYSvzcJfEKoZo28L0At4SxvPdTNAKgXjtxeemoTJMuUKdoAxeL6AqEs20paS6ZhzuVxUpU/F+T3QrFV7PI9WR1Wjc8knb/rHO77iuQ5DQdR0jI+M40HGLrczIQE+mMAwJLl5ex08kevGNX2aPsf7x0wCAaMPKTP/61es80a0SCcM9nZ9x4nVYrn1Bg2IFEVQDXSkMAQwn9zdhMfbEYjEcPXoQKwxHDWkUkT596mBGZnDIA8UqGLcMFwzvKZ5SnO+apmGgbnreHIpac3keUr0uBOJlxW+3XqQsBC9yhRZTaKXUVEWiWHTte237z+y6p6hxU/G+WTkUUwl1IatqWp7pR5k9FMNy30CIGU3TMFQzjfdfbR36ffeDN2N5S22ZtfIvVkV6kjGVd3PxapWHc/3qda4X8+kd68Wtz2QroZ+eUEbNlYtXZvrXgUZNv9GbOI2bD7QDAE6Pq+vayobls/rXrV7miW7z4ScPUBoUK5Cg3IQVYggopDI2w5j9iXmfhCkn1IrlwKYr7T0Jux6yz4MYJLzIF2c2muTOY/X19Z68JPHTBd3PhPV8T+OXQiBeVPxWnnFHISLqJlwab1IO9Z/KyMh4ed+k5MsV6pbhbyGFVvyM1YN4bER5PK5NGxGjy7F27VpHYdfFUMg8ous6ZkZGMdF5h+04M/GT0KfH6BXnMpqmIVU3hUu3brOVOdBxC7TmujJqRcKE1Txd7nsMq/lsyjBq1q1Rx/Y6uG/UJM7I3R9TsTgAoM5kQFy3epnv9psfbRo0KFYQTOjtDnpC4ruPZavQDYypp4jmRpHpP5/3rCRklCpfnJOH+1gshiPHDqK6BpiZnj3OtBzH0LHyPbB7dUH3Q2EA3zCQk0MxYRjTmuoz/WgujypBDCEupRefiCxH7ZZ32vZPd+5b8DJKRdbwp4yo6ZeRh/r71O/4YNFji0gz6q7datk3tasj813XdciREcviK0qHAejTU5Z9pWCh84jdcXbTTTcZYdcrM20pWQUAONw/rH7HledOunr0ZOddtnqm4qegT48XvF6EEFJu/GDUdJswFlrJ1Tts+6yc0KBIAo3XocxWby1OG5Nto6b6zteKfxsfFGjkqCxKmS8uFovh+WMH0Wj8+7Th1dPbp8LEx3Ke7RtXAG98l7UH6HO7w+H9mQ9lDDkINFeZWpVH2MGBw+rnQKr8ipUZS6+phJpz1jafqxqayzf3BrEQSCVX/BaRFai99t2WfdO77i+zNuXHzXyLVZGVqN/y57b9k50/KmrcQtE0DUO1I1i85a9sZSY674AWXWp4M45hvPNfbWWVN+Ooa96MTlIGhBld1zE8Mp63kvNwvAeYZr5FQryCUTnEChoUKwA/5PUJK2F+K+XESBiLxfDC0YOImtJMCMOmMXhSGYYM5wQSAkqdL65xBXDRNdZGwmceCK6RcGoAONWRNe4lE+pvTVO2vygPuuYqVL9nkW33zC/OFDFosPDb3DtfCLEf8wyS+XHr/knTNMRr67Do2ust+8/suhda1F33WpVv8c9s+8/s+qmry1fVoxOo3/IhW5nJzrugRZtc1cNrYrEYDh17EdWRswEAM1Llx3u+P5u+YCZ+vKixJwd68XLH1wAAZxLKA3dRU8usfjSvdzSmrusYHRnHMx232sqMstAKIaGC9yUkHzQoVgCxWAwvHX0ea5oaAQB1RqzglN4LAOhNjHmmG/EvaSNhi4WRcMgwEvaZjITRZcD7NthPKT/bn3RDTeIBfskX52fye9AZfc1Zg3yQoEeyNflCiJVH2PMQEWUckXIGAHCo/0RGRsYT5VGUFEw2PDoCwBwerbz3ZDzumW5k4ShvxlE0bPlrW5nxzn+FFl3iqh7VkbOxZOvf2/aPdnzd8Zi516BYQoXQr202vYxqXu+ba5CmaUDtFN6x1boYCQA80nEztCjzLRJCiJ+gQbFCWNPUiG2XXWTZd8vjz5RZGxIUWpYBH7jCfpr4ycPOjYRhNkbouo5EIn/hlcEhYCall1Gr0uN1vrgg4DTvWJBQRpbDQLM59EV5RR4cMM7tgWAU/yol84UQi0gTarZeatuf7DjghlqBxS3vQJW/MGEb2izjcejT2WubiERQe+21lrLTu3Y5WjYpDreLvYQRJ/nBnFyDNE1Dsm4KF239gq3MMx23+qbQiq7rSIxM4IHOr9jKxOM9SE4vLqNWxEvM84l5HvHrc0cY8xeScEGDIiGkrMRiMRzLCY82UsAhzvDoslJsGGYp88Xpuo7RhH1o82gc0JPBNsCGkuZ61Fz3Wtvu5H0vl0UNtx4MzBXFAWRC98p5A+8HHbwkWz06t3iKKuqxkOIpQcFvhjSrB9tyHI/ZnI+tmbZssRfl2ZuKn7L8XxIcEvHeTA7FsYQ6zxubVs7q16LrPNGNhJMg5QQMkq7EGV5dW0sFDYqEkLITXQb86cZq2/6fd8+UUZvSoWkaqqsGsOlK63yAgPJeXNnqj7xCsVgMzx89iCYj3duMYdM7cfpgRiZh8cw+X764oME8s+5RTo9kN262Jye997T0gw5eoYqnXGXZN71rT1FjqvyFNXmLsmjRFsu+fKQrN5urOZsppnJzNuQ6WzzFsKviUH/cGLc/s/zUyAjO7LrHdrxUvA/69KsLzm3nxYNtVaQVi7d81LZ/ovP7ZdQmPyy0kmVkoBcHOm4BAIwbRsIGk5FwZKAXaF43N0R7RJ0r5hBnLbrOcYi2pmmoqZ3GNVv+wVbmgc6voCVaW/CYJNj44V7OyctQP+hLykNQjcY0KFYAuq5jfHjUNrS5Z3gUDaAHEKksBoeA+7uVa+TIqGpbumR2f0urxT+GjKYVwNs22xtAf7nX2nMwX744J2iahmTNQN6iLFqLuwbYWCyGI8cOol6lScOUscov9yvD6iTTpBWNMogcyQmPVg+KBwcML8YFhEe7daOdHtfLQi9+0KEQMiHEnftsZWR8CPp0+KuPu4GIRLHo2j+x7T+z69/Lpst855syao7mreScip+GPj0R6oIdat57EdWR1QCAlFSPW0f6JzIyM/ETlv/rBbquY3xkHEfyFFoZH+h1XGjFLo/j2eZwaMOY6CRE+4Mf/CASIxPYl6ci9FC8B6npxYE8zvoGe3D3g2rdhkaU5+3ypa2ZvuUt9NIsF+UIjw6qEYmUjqAbjWlQJIQsGF3XMZLIX3ilbxh4Veq+uLnLvckdHVc3CS2t2faW1srwHiiW+fLFBY36CLD+2irLvhd3BdMQYr4R1nV9jqdbfX09NE1z3/uyuR41173Otjt53zH3lm2ikBDioFVjduoJlV5/u2MhLevWugXNcyvtdWiXK1HlW1SF7tKVm+uu3WopO7WrY1blZhkfwJld96rvCRW2K5qaMn1wWOVZVU0+C4uufa+tzJld90CLrjB5M9pXck57M5LiqI6sxpItn7btH+38Zhm18QYnRkI3GYz3ZHIojiSUgW5pU+us/hafhFLnzn2Do8oIu7yl1vg715uTlIdSGv78cP9AnBP00GS3oEGxAtA0DVNI5i3KUucDIw8h5cIvN7mEuInykjkENNcCk0lgera36TgmMXCs8twv84UQZ6sxK3dlKdVLkkP9r2RkZHzUXQUdkM0zmFs9Oht1kK4eres6BuJxQIhs3KzB+OQkBkYSwHQSuq47ujlWhrQq1G55p63MdOc+aNHWefMiKn2Lz41oZTT2483+3PBOtY/Wpo2I0WasXbsWjz/+OOTISF4vRBnvhz59xhcv65RRcxj1W/7cVmay80fQZiVR9paZ+EmMd/5r5ncqoebEqqZIph8uV3n2Gk3TMFV3Bm/IU2jlSMet0MwVoj1E0zRU1U7jnXkqQu/ruBmt0dq5L5CNUGpziHNLtHgjXSFzjnrpPoF7dlsXhumL9+DVpCoKw/tTf+G3awfxB/QqnQ0NioSEhFxvJKB8D1OapuEsMYD3bbCfUn62P4kVq7x/4CGkomiuRfX1EdvumXsrx6BYaAixiCxBzdZLbMdJdjxVeuUWgIg0oWbL5bb9yc5Hsz9qayAi9sYcGXe/IpbKi7jJtn96V9eCl1GqvJPKWFqbt8qzFo1a9uWjUKPB448/7njsQsh6M/6ZrcyZXT+FFg1mftyZ+ClMdN6R+T3XSHgKiC61NCLFRvoAAGvTRsToEsd5+/xEpVeIdctAZzYkTk5OZuacyclJ6LqOWCxWMduYkEqB57M1NCgS3+F1gYSdO3dmKthOTExkPCjSCCGwePFibNq0ybcTi5+T+KfDo/MVXukfBs5If+T1DFqIHiFpdF0HRqbzGw0HpqFP+eNcIwq35hxN0zAwkoBMjAHJnPQUNTUQTY0ZuaBhVfwnTSwWC2xYkjJoLpo3h6IWtX9pUGlYGwlV4Zq10aWqwTAmWh0Pdgan3PPPC3Rdx9TIOPo6brOVmYq/An26YU47PWpKSywWw7FjL6E5ci7qagFIFUrdZOQ6PHbspYyspmk4q2Ya732XdWGYe3Z/BStaWBSGEBJMaFCsEHoTY5miLKfHVFLolY2LM33rfPT8EIvF8OLzh7CmSR2edTPK8HTmxFEAQG/CPk9fJWO+MWaIROmIxWI4dvQgVixXv6WRTq/vVLYS8uCQB4oVSDwex/bt27Ft27bAV2MmpBj88FIgXbgk2XHAVkbGE9CnVXEiFXadG8Z8YpasU9LrZ5tDMboKiK7yzcuRTLEXm2rOMj4IfVptm2w15NxQ6r6MbDmQ8YFMledS5EV0SireP6vKcyqhPE6rmpZl+mF4HSrZnxYkGyScGAkrATeM6GMDvXjGKOAyYVRuXmyq3DxmVG4OM+lIoDRNTXOr+Jll+gd7MiHPw0ahlWWG8bF/sAcrWGiFlJlK914mpYMGxQog9+Fgypg46rQ1AIB1mv+8q9Y01eCzl1qHZd12wN2QrBtuuMGVidTKg6Lc3pd+QNM0LBID+NON1bYyP++eQcRH4dErlgNXX2lfCfnBh6wrIfuB9vZ2HD58GO3t7fjUpz7ltToLQtd1jCWA53Zbb++xOKAn6W2XRtM0DNSNzBvyrDX741xza45M50VEc6PRoopoHBzozQoNjAFIG7FG84Y1y/go9Gl3jzMRaULN1sts+5MdzkNh/XBdyRoJ7cOazYZCJ+MC2XlBNC3NHXWOAaDUFJoXsVzLVzoMGToYhsHoClsdnMgSb9A0DaO1r6Jl62dtZfo6boMWPcs1HewqN6+xqNxMFLkvcyZfVS90pJhCfX09/svruL2Id4TRe5nFU8oLDYoVABP8+oNYLIbfHT2IVU1Zw1T1jHoAGtUPAQBOJtTvMIRdl4L0drDaBsDs7RA0yuE1FY/H0dXVBSkl9u7di7a2NnopWqDrOiZG7Ks5T8ThugGJpA1/R4Bmc7he2vj3e/VzYLy4wZsbUbPVujAZACQ7nilu3AJRoasSNVsvzaPDAWhRfxh3/YDaZtWovfYqy/7pXXugRVda9pUSGY9nqjzP9TqMA0YORbfutWS8f1ZRFml4EgrDk1DG+4FoZMGeeaXSNxU/jcnOH2V/J5ShsqppeaYfDouyqKrUo5jo/H6e5Z6CPl3k/OAhuq4jOTKO0Y6v28ok48ehTzf4Ih0BnykUmqZhZCQb1pwwqkebPRXT+yu9zYJSNIpUBpVw3BViLKXxceHQoEhIiShkQlrVJPBXl9fZDYE7Hp0qerlmSuHVo+s6RhPATx62DzHvGwYmpe6Lm9ygEYvFcPToQSw3QqlThi3rlCmUemiBodTt7e1IGQOnUqnAeylqmoahkYHM78kR9bc+7Ywkgpn/zQkqL2IKM784Yy80kII+FdDzsrkBNVsvsO1Odhx2dfHKiDUzb1EWNw1/2fBoey/EdHh00PZx1kiYvyiLU0Ohyg85ApkYAZLTsztragHM3lYyPojpXfer7wk1kaS9GmV8EIi2ALDyOlSya9OFWKJRD7wOhw0dDM/jaMQ33k3W+qocrmvTRsToskyRk1T8FCY778rIphIqNL2qKR2WfQqINrmsNSHOyT3WE0b16GajenSzReVoGigIKQ/FnGth9NQsFzQoVhC0wJeHUkxITsKub7rpJrxw9CBal2U9H6tSypsvcVJ5Pp4a9m9Ibj6cboegsXw5sPGd9v3d+xY2/v79+5E0ii8kk0l0d3cH2qA45+F+VM1l57YY7S3FeXRqmoZXawew/toqy/4Xd6UqynNsPi8KZdScRPK+l+0HGZgMrlGTBI5580Max7BZNk1sZFS1G0ZERFsyMl57YwUtH6ATfXfu3DlHNma8MFqbNiJGmzL7YrA2gcVbPmq77InO70Nz0fio6zpmRsYw1vkdW5mZ+Ano042O5j1N0zBcO4klW//eVma04+vQou4+7I4P9OKIkRfx1YTKPXpWU8usfjSvd1WHIOH13EAIKQ20gywcGhQrEFrg3cHLCal1mcCH3mFfIe6uR6Zt++zQNA1DYgAfuMJ+mvjJw0ks91Guw/gQ0NGtPPIS6hkRTUtm90fn5s0OLRs2bMCePXuQTCZRU1ODjRs3eq3SguANfDov4iCq37PIVmbmF2dKkhexFNXilfFxAskQFTQxAAAgAElEQVT7jtkLDUzQ+GgiGx6dP4eiFtUMb8ZhJDsftZWV8WHoDi8BN9xwA06dOpX5nT4Wrr/++llyra2taGiYW1G23Di5/nIeWTilKPbltMJyKn5qVsgzvRlLh11exPOaTdeZ5vVl8YQNmvND0PQl7mGOGOPxQCoJGhQN+vv7cf311+fNVwegqJx1PYlh3PzYwwCAU2Mq8XtrY+Os/nXaqqL0dpKPg5MZCTO5N7oj4+piHm3Ntkdb/VeAyE3a2toyuTirqqrQ1tbmsUbEr1ilTjATi8UyN8bKqDmJmuteayufvO9laM2a64UwiDskEgmMT0wAtbNvE8enTWk5ppNIJBK+MCiS8lLuYl/WodT23oxuoGkahmrH0bjlk7YyY53fgRZtyHgzjnZ+01Z2Jn7csTejW/jRyB4054eg6UvchccDqSRoUHQZuwrLtSYD4jpt1YJvgkrhSUJIkPHjDbHXRCIRbNq0Cbt378bmzZvneJLouo5EAvjlXvuQ+MQgIGbcNQqNDQLPPKB0mDDyIi5emu1Dy2z5QjwCCil6UxFvjQemMXNvPPs7YeREbarJ9KM5XRDlMGD2SIEyHh0ceNGQzZO30QZlfHwVNde9zlYmed8x31SadhMZTyDZcUB9T6jiEaKpYVY/oqsdjam8GYGaLZfbyiQ7H3Ucsq/GFajdYu/VPN3ZDS1a3MtQElzi8Tj27t0LKSX27NlTlmJfQQv9JsXj1jXZLU/CoOlL3IP7hlQqNCgaRKNR3HvvvSUfN7eyl5lSXsh4Y1W5qOIpMm9Y86lhiXHpH0+h/mHg590zmd/DynEXyxqz/RE+p5aEtrY29PT0LNg70ewNbZejDHA+r9nlRVxTQF7EfG+AY7EYjhw7iMXGc+6UYTP9zz5V9GZisGAVA4ulV09Cbd+1zUZfMzIFEtC8CNXXn2073sy9x13RM6ikw4LPnDmTKX5kpqqqCosWLUJraysuvPDCWX2xEWM/mA2I0dXZfUEWRClCcv2GXwwM7e3ts3LzBr3Ylxsob8YJLNnyaVuZ0c5vQouq6KeZ+PFMleeZRD8AoLopmpGdiR8HopWVv3C+c3go3oN9HTcDAEaNCstLTBWWh+I9aI2um/N/QfMcc6Iv5z1CiBfQoFhmSnUhK8T7BqgQDxwSKKyMHMPG8RtZtdb4G9zQ5MEhoOshZb0aNfI4Llkyu39lGfM4RiIR7Nixw7JP0zTI6gG8bbOw7AeU96K2UkMsFsPzRw+iuhaYybFdJ+U4jp8ewEgRRrpiPEsLndMWrwDe8G7rQitH7p9rAAobTnOUEWeosOBxQAhAzvXyTaUkkhPjSCQSjo5z7ossqhrzHvXdSIwrjMS4qhqzdTXocofklhOvDSLd3d2Z1EBSSjz00EOh28blZG6RIHWBXWsuwhJdX3EvG/Kdw7nbbNyosNwazeYSb82pshy0Z6Fi9OW8RwjxAhoUy0SpL2SxWAwvHX0ea5pUXGDdjHpbPKVnPUh6EyMlXSZZGLquY2xY4o5Hp2xlTg5LjMKZJ6GmaUiI+LxFWZp8UjzFT6FLVm8+geIN8bk3uWNGHseVpjyOK1sRyAeDdC68hiWFyQHOcryGmZK/YR9IYeYXpvDjhGEcbarK9KN5AQoXpENOleeEoU/Toky/6zp4jAoLTqFm61ttZZIdT1REhXAZH8J0pypLn2v4S/c7rYg119CiXNnXpo2I0ZWWL57i8Ti6urogpcTevXvLEpJbLE7mBr/Mmy0tLejp6Zn1mxQPXzbMZb5zmClu5hKkec8Jfpn3CCH20KAYYNY0LcWX3m7/IHPzY0+UURtS6fQPAz/bn8z8tgpjXlGGMOZijISlevPp5oPB8BDwcJfyChkzPB8bl8zuX2V6XveTMY85XhWlOM6chDG7heNQ6gJRFaHHkew4bC80MA59yj/pG4iV4U/lh1xrNiBGWzPHg/I6VMWirI2PyvOwWKNBe3t7JgQ9lUoFwlsnSN43fX19eX8TslCCeA57DbcZIcQraFAMKLquY3x4JK/RsGd4BA0Ovd2Ie2iahlHE8VeX19nK3PHoFJYUUfHv1PDsHIqDY8rwtKJRZPqbXDTmWRkYhgxDwgojjHlFmcOYC3lAC8qbzzkP7Ibn4yqT5+Mqw/MxN9dh2pg3OTkJXdczBh6n+0LTNKSqB/BHV9mHR/9qjwqPThOkHK+TceDFXepm/ExCtS1qyvYhav1/hVDK48wPHr5BC6VWhspRJDuesRcaGIU+pfui4mrQcGL427lz56zfc7wOAVvPw0LZv3//rBx/3d3dvn2wDso1yMzGjRuxe/duSCkhhMCVV17ptUokZATpHPYL3GaEEK+gQZGQgGP14DVgGI2aDGNek8vGPD8YOfLpshDSlZAffMi+EnJ8CEim3DPeO3lg/+AHP4h4fADVxuye1vrM1DjOTI1jODGAmaRaLxpPFHM9rNT589qo0R519/zRdR3JEWD0Pvu8jskBuOqZp4xuZ/IXXhk446oOqiL0FGq2XmArk+w47KuK0DI+gum7uoHkzNzOmmrVvgBjdGE6JJDsfFR9TygDnWhqnNUPn4RdlyNUccOGDdizZw+SySRqamqwcaN9pepCCXNhAKfr1tbWhr1792J6ehq1tbULLvjlB8x5ycO4jwul1GlgisWNczjscJsRQryCBsWAomkappCaN+S5rkiDQZhvnsOGn4x5pHDShsruffYyQ0NAqghDZXUNsCxP6pzhCqhw7ATmY3KZgUkk7zuW/V3mfIvKUJlEzdaLbGWSHc84NlSmjcxWlc+BbPXzcoafZ6tHm9Ylaq1DGCuCAsrg9cADDwBQoX+lNHgV4vke1PunQsOuI5EINm/ejN27d2Pz5s0LPnbcMuYVO26Qws/dwutt0NbWhq4ulRahqqoqFEZrt+E2I4R4BQ2KAaY3kQ15Pj2mchatbGyY1b9ugU4JpaxK3dXVhYmJiUx1wDRCCCxevBibNm3CDTfcoMK5E0ncdmDYcqzeRBINgqHcpDxomoaaqgFcfaV9qO+DD0m0tPrDA0jTNKB6AJdvstf30a7ZocnEWzRNw3DdAJZcZ12RGlDei2565imj2ziqrz/bVmbm3uNFG93MZPMtvlY1FJFv0Q/4wUC0EGN4mCuClppi9rXXRplCKWbd2tra0NPTU3KjhVvbbL5x/XAu+wG/bIdIJIJNmzaVzGhdCXCbEUK8wjWDohDiTgDvBtAnpbzAaFsB4KcAzgPwewDvk1IOCSEEgH8GcA2ACQAfkVL+xvifDwP4kjHszVLKHxrtFwH4AYB6AA8A+IyUUtotw6319Irch7Qp40GsTss+DK7Tig/T88tNBSkchuwEC03TUFU1gI3vtJfp3ge0umyoTAwCv9yrjPzjRrEXcyXnxCCweqXFPxJSAEHLtwgAMj6KZMdT6ntiAgAgmhbP6nc7jNltwloRFFCGUnVbqV5Ylttg6vb11g+epZFIBDt27CjJWG5tL973BBu3jNZhhtuMEOIFbnoo/gDAtwDcZWr7PIBuKeVXhRCfN35/DsDVANYbn7cA2AngLYZx8MsALoZKBfaMEKLTMBDuBPBxAE9CGRSvAvBgnmWEiqCF6N1www0F39xpmoYzMoHPXrrMsv+2A8NYxNxveQmKZwRxh8Sg8kIErCtCJwYBbaVFuOSYMkSvXpltX70y6z02MqgKrwDWxseRQQA0PhI/MjCWLcpiGAlhMhJiYMyyOnY2hPicbKPLOTXLQZgrgu7fvx8zMyqn5czMTOiKExTiWRrUsGtC0pTSaF0pcJsRQrzANYOilPIxIcR5Oc1bAbzD+P5DAI9AGfu2ArhLqljYJ4QQy4QQqwzZfVLKQQAQQuwDcJUQ4hEAS6WUTxjtdwG4DsqgaLeMUMKbRpKG+5wAc/O6Tb1qVHkW9Zmcbmlj4oKqsxrGx7NNxkdYGClJeAmKV/QcI2Em5HpNtrHZ+TkRZMJcEXTDhg2zqhCHqTiBU89Svlz0jpn4CYx2fhMAkEr0AwCqmqKz+hFd74luYYHPQIQQ4j3lzqG4Ukp50vh+CllfltUAXjHJHTfa8rUft2jPt4w5CCE+AeATALBmzRo7sUDAm0YSNIJijAga6W2X3r66rvKNpotDFLttK8XQUtEM5FR5Tkypv011mX674il+vgbx2J1LmCuCXnPNNbj//vsBAFJKvOtd7/JYo9JRqGcpr6HeMtfTWRnv10ZNXtHR9XwBVyL8fP0hhJCw41lRFiPfoZxf0r1lSClvB3A7AFx88cWu6uIWvGkMFicTEnc8OpX5HR9Th12kUWT6l/gomrtvGPjJw8nM76Ex9Xd5Y7Z/+aqFL4c3g6WHcwNxQv7iKUZfTkgwj7HgEuaKoA888ACEEBkPxd27d4fG+zLMnqVBYCZ+AmOd38n8TiUGAABVTc2ZfkTPd/UlxlT8FfR13AYASCb6AAA1TS2z+ivF85HXIEII8Z5yGxRPCyFWSSlPGiHNfUb7CQCmBEU422g7gWz4crr9EaP9bAv5fMsoGYVULAaQqVpMCGD9wN5neOYt0dYaf/0TMmqlx6Ch7/JVa42/LPxDSBhwUjyFBJ8wVwTdv39/5t5MShkqo1uQPEvDFo5q+dJl5JTqizaohuj5rt7DzfV8nDaWf1a2kZ6PpAJh1BMh3lFug2IngA8D+Krxt8PU/ndCiLuhirIkDIPgXgDbhRDLDblNAL4gpRwUQowIId4KVZTlQwD+ZZ5lEOIpQXtgD5q+xD+Yb+yA2Td3aXiTR4i3lLoiqBMDkpvGpiAZ3ZwSRM/SsEQg+OGeiOkbCJmfsMw5hAQF1wyKQoifQHkXNgshjkNVa/4qgJ8JIT4GoAfA+wzxBwBcA+AlABMAPgoAhuHwKwB+bcj9Y7pAC4BPQlWSrocqxvKg0W63jJLhpGIxKY7eRBK3HRgGAPSNq2qNLQ3Vmb71q23/leQhn3ctkPWwpXctWQixWAzPHzuIJYbTU9I41F7pOwgAGB20+ccSous6JhLAkftTlv0TcUBP6u4rEkA89SwaGEey43D2d+JV9bfprEy/XR7HIGC1bQFvDOxuVQR18jDnxoNfEI1uhRIkz1I3jmd6IRFCrOD5T4h3uFnl+QM2XXNeFRvVnf/WZpw7Adxp0f40gAss2uNWyyDBITdUY8q4aVy0WrWvX+2fsGBCrPCT0cArlqwALrlaWPY99WAgU9YGmmKMhOV+y58/j+N5qqE5HPP/fNtWxhNIdjyuvifGAQCiqWFWP6L+erPmZG5zcx4MktGtGErtWRpU6IVECCGEeI9nRVkIsYMhHe5B79rywgce79A0DUMjA5nfr46ov2ctNRqEkqk0CjkmvZoj/BBS6DaFbNu5edIMo6rZgBhdHQrDqluE2ejmlmdpEOD9CyGEEOIvaFAkhJQMhiMp3FrXYrzM4vE4tm/fjm3btoXOUycfc4wyo2qbvabFaG8Jh6dboVTS+VcKivEyLtW5xpdqC8cPRrdKnXtJljBHK4St6A4hhJSSSpojaVAkhLhCmLzzBoeABx9SYbojo6pt6ZLZ/S2tzscdGgK696nvo8a4S5bM7m+1GNfJtm1vb8fhw4fR3t4emkqnhUCjDCkFPNfCi9s3+zweSJpS3w/5yVBZyLpV0oM1IYSYCdPzsB00KBLiAWG9uQq6/lbkerGNjqt91tKabW9pde7tlis/bozbahq3NWdcp9s3Ho+jq6sLUkrs3bsXbW1t9JTxKTMDwOh92QIyMwn1t7op2x/kYiRBI2jnmhvXFBkfxnRnt/qeGAMAiKbGWf2IrlqA1oXh9vXSjZt9r48H4g/cvify8kG1mHWrhAdrQggBwvlMbAcNisS3hNXoZoY3V/7HLU+3cnjQtbe3I5VSRqpUKlUST5kwn5derVv+YiRGX0iKkXiJm149bpxrxVCqa4p9HkeTATG6qqzHZKmvl26e1345Hkg4Cdr1Nmj6EkIIKRwaFInvCaPRjTdXpBzs378fyWQSAJBMJtHd3V2yh9ownpdpyr1ulVCMxE+4sX/dPNcKodTXFD+lDAji9dLr44EQQgghpBzQoEh8SxAfIgjxExs2bMCePXuQTCZRU1ODjRs3LnhMPxWcKTWcc9zDDwWb3FyOG+caCS48HohT/JQXkRBCCCkUGhQJISSktLW1oaurCwBQVVWFtrY2jzWanzB7PhJFGPdxEM814h48HsKL2y9Hwjg/EkIICS80KBJCSEiJRCLYtGkTdu/ejc2bN9sWBaB3IHGbsO/fQs81UhnweKgMSmn8C/scSQghJJzQoEgIISGmra0NPT09BXnI0DOCkOJxcq6R8MPjIZzQ8EcIIYRkoUGREEJCTCQSwY4dO/LKlPoBSdd1jCaApx6Ulv2jcUBP6iVdJiFeU8i5RioHHg+KeDyO7du3Y9u2bfTUJIQQQkJGldcKEEIICR/JpDIcjsaB4T71Sf82ip8SQggJOe3t7Th8+DDa29u9VoUQQgghJYYGRUIIISXlsssuw4V/cCGWNTVjUV0DBKogUIVFdQ1Y1tSMC//gQlx22WVeq0kIIY6Ix+O48cYbMTg46LUqgSAej6OrqwtSSuzdu5fbjRBCCAkZDHkmhBBSUtIh1OliL7quwps1TSt7sRdCCCkVZm+7T33qU16r43va29uRSqUAAKlUituNEEIICRk0KBJCCHEFGg4JIWEh19uura2NOQHnYf/+/UgaOS6SySS6u7tpUCSEEEJCBA2KhJC8pL3MAGT+3nTTTfQ0I8Rj0ucmz0tC3Ifeds7ZsGED9uzZg2QyiZqaGmzcuNFrlQghhBBSQphDkRBSMPX19aivr/daDUKICZ6XhLiPlbcdyU9bWxuqqtSjRlVVFdra2jzWiBBCCCGlhB6KhJC80NvJXehl5i5h3r5hWAfib8J8/jiF3nbOiUQi2LRpE3bv3o3NmzczRJwQQggJGfRQJIQQH0AvM3fh9iWkeHj+0NuuWNra2nDBBRdwexFCCCEhhB6KhBDiIZXo6VNOgrZ96RHGvK1+gts7C73tiiMSiWDHjh1eq0EIIYQQF6BBkRBCCPEZle4NlobbgfiJtrY29PT00NuOEEIIIQQ0KBJCCCG+gR5h3AbEv9DbjhBCCCEkC3MoEkIIIYQQQgghhBBCCoYGRUIIIYQQC+LxOG688UYMDg56rQohhBBCCCG+ggZFQjyED6uEEOJf2tvbcfjwYbS3t3utCiGEEEIIIb6CBkVCPIQPq4QQ4k/i8Ti6urogpcTevXv54ocQQgghhBATNCgS4hF8WCWEEP/S3t6OVCoFAEilUnzxQwghhBBCiAkaFAnxCD6sEkKIf9m/fz+SySQAIJlMoru722ONCCGEEEII8Q81XitASKVi9bD6qU99ymOtiB07d+5ELBZDLBYDANx0000AgLVr1+KGG27wUjVCiAts2LABe/bsQTKZRE1NDTZu3FjW5XPOIYQQQgghfoYeioR4xIYNG1BTo2z6XjyskuKor69HfX2912oQQlymra0NVVXqNqmqqgptbW2e6ME5hxBCCCGE+BF6KBLiEW1tbejq6gLg7cMqKQx6BBFSWUQiEWzatAm7d+/G5s2bsWLFirIun3MOIYQQQgjxM/RQJMQj0g+rQghPHlYJIYTkp62tDRdccAFf+BBCCCGEEJIDPRQJ8ZC2tjb09PTwYZUQQnxIJBLBjh07vFaDEEIIIYQQ30GDIiEewodVQgghhBBCCCGEBA2GPBNCCCGEEEIIIYQQQgqGBkVCCCGEEEIIIYQQQkjB0KBICCGEEEIIIYQQQggpGBoUCSGEEEIIIYQQQgghBUODIiGEEEIIIYQQQgghpGBoUCSEEEIIIYQQQgghhBQMDYqEEEIIIYQQQgghhJCCoUGREEIIIYQQQgghhBBSMDQoEkIIIYQQQgghhBBCCoYGRUIIIYQQQgghhBBCSMHQoEgIIYQQQgghhBBCCCmY0BoUhRBXCSFeEEK8JIT4vNf6EEIIIYQQQgghhBASBkJpUBRCVAP4NoCrAbwewAeEEK/3VitCCCGEEEIIIYQQQoJPKA2KAC4B8JKU8mUp5RSAuwFs9VgnQgghhBBCCCGEEEICT43XCrjEagCvmH4fB/CWXCEhxCcAfML4OSaEeCFHpBnAQIHLpCxlKVseWa+XT1nKUjb4sl4vn7KUpWxlyXq9fMpSlrLBl/V6+ZStXNlzbaWllKH7APhTAHeYfv8FgG8VMc7TlKUsZf0l6/XyKUtZygZf1uvlU5aylK0sWa+XT1nKUjb4sl4vn7KUtfqENeT5BIBzTL/PNtoIIYQQQgghhBBCCCELIKwGxV8DWC+EeI0Qog7A+wF0eqwTIYQQQgghhBBCCCGBJ5Q5FKWUSSHE3wHYC6AawJ1SyiNFDHU7ZSlLWd/Jer18ylKWssGX9Xr5lKUsZStL1uvlU5aylA2+rNfLpyxl5yCMOGlCCCGEEEIIIYQQQgiZl7CGPBNCCCGEEEIIIYQQQlyABkVCCCGEEEIIIYQQQkjB0KBICCGEEEIIIYQQQggpGBoUCSGEEEIIIYQQQgghBRPKKs+EEEIIIYQQQgghxH2EEE0ArgKw2mg6AWCvlHLYwRjvlFLuy2lbCiAqpYzltF8opTyY09YKAFLKU0KIKIDLALwgpTxSwLK3Sym/WIDcawD8IYDnpZTHcvrWAOiTUr4qhBAAPgLgzQCeB/BvUsqkSXYLgC4p5avzLdOQfzuA01LKF4QQfwzgjwAclVLutpBthNoX5wCYAfA7Y1kpC9nXAdiK2futU0p5tCC9WOU5i7ExVwN4Uko5Zmq/Skq5J8//vQ3AJQAOSym7LPoLPrmcnDA5/bYHtmndCjpQnGwHIcQlAKSU8tdCiNcb63lMSvlAjlwdgPcD0KWUDwkhPgjgUgBHAdwupZwuVl8L/e+SUn6oADnb/SaEeAvUCToihKgH8HlkJ4PtUsrEAtZtM4DrctatI98xVkqMye29ACSAnwPYALWtjwH4rtVEk/P/+6WUG1xXtAiEECsA/B0AHcD3AHwRxmQLtd+GihyX+8wl3NpnxtgLukAaY3xUSvl9i3EdXysMmXLPT58GcK+U8pUClul0LnstgPdg9s3Kj6WUIxZj+2pf+H37Oty2nJ9cwuX5ifvNJbjfbP+3UveZ59efQp+XbJZdqfcNgT3XjP+vqPNNCPEhAF8G0AW1rwDgbADvBPB/pJR3FThOr5Ryjen3+wB8A0AfgFoAH5FS/tro+42U8s0m2b+GOrYFgK9BGfMOA3gbgNuklN8zyX4zd9EA/gLAXQAgpfy0SfY+KeV1xvethj6PQB3rt0opf2CSPQzgEinlhBDiawDWArgP6viBlPIvTbKTAMYBPAjgJ1D2oRmb7fINqPO7BsBeABuN/7scwLNSyv+Zs81uAnAQwBUADkBFJv8BgDYp5SGT7OcAfADA3QCOG81nQ53Xd0spv2qlzyzdaFBUGJPn30KdSG8C8BkpZYfRl3uwPiWlvMT4/nHj/+4FsAnALvOGd3JyOTxhnBzYBR8oDrfDlwFcDXVg7wPwFgAPG+u2V0p5i0m23ZBbDGAYQCOAX0CdDEJK+eEi9e3EbATUibMfAKSUW0yyTvbbEQBvlFImhRC3A5iAuphsNNrfU+S6fQPA+VCTlXndPgTgRSnlZ1AAQoj/JaX8x5y2zcZY3VLK35va/1JKeafp93cAtACoAzACYBGATgDvgnrr8RmTbK4RWxj6vwAAUsoLTbLNUsoB0+8/h3FjA/VGRpr6rgfwqJRyUKi3RztgGMQB3CilPG6S/TqAf5dS/kcB2+UBAIcALAXwX43vP4M6Jt8opdyaI38FgD/B7BubO6SUL5lkuM8QrH1myC34AmmMk3tj42SO9MP8lIC6WYlB3azcI6Xst1lXJ3PZpwG8G8BjAK4B8KzxP9cD+KSU8hGTrB/2RWC2r8Nty/kJgZyfuN/A/ZbTVtL9xn2WkfPD9cfJ8xLvGxCsc82QrfjzTQjxAoC3yByHKSHEciij+/mmttzjPNMFYIOUssEk+1sAV0spTwplmL8LwBeklPcKIZ6VUv6hSfYQ1PlVD6AHwDqpPBWXA3hYSvkmk+wrAB6FstEIo/n/QhniIKX8oUk2sxwhxAEoo9x/CiGaoY6jN5pkn5dSvt74/gyA/yYN47MQ4rkc2WehDI1/CjUnXQB1Dv9ESvloznY8YvTXQ9mUVktltKyFMiheYJI9COCtRn8zgHYp5WYhxIVQxvBLTbK/A/AGOdf4XwfgiJRy/Zy9lIuUkh913h4C0Gh8Pw/A01AXBxg7ySz7rOn7r6E8CgGgAcChHNkXACyzWN5yAL/LafstgFXG90ug3oBcX4AOBwC8xvjeDOC5HNnfAai10KEOalIudjscAlANdREZAbDUaK8HcDBH9qDxtwbAaQDVxm9hIetE398A+BGAd0BZ6N8B4KTx/fIF7Lej5mXk7qeFrJvN8Sdy122e47U35/d2qAv0N6BuAD6VR/9Dxt9aAHEAdSb9c/XtNLbv6wCcaxwTrxjfz83dF6bvX4J6e/JhAPcA+H85ss+bvv8UwP+Aurh/BMC+HNl+4zjsAXAbgD/Ms11+a9qeJ+bZb7cC+D6AP4e6qfonAB+HusF5L/dZcPdZer+h8HnkoM3nEIAzufsChc+RfpifnoV6K7kJ6i10P4A9xn5ekrsdTMfVfHPZIVP/YgCPGN/XWGwHP+yLwGxfp9vW5rzi/OTz+Yn7jfvNzf3GfZbdZ/D++uPkeYn3DQE713i+zTrXmiyW1ZS7zwAMQRlmL8/5vAPKWDtnP5h+rwLwDIBPW+wz87bNtYfkHmNLjOPgxwA0o+1lm+1lHvepecbdC2UUBYB/T+9/ABELnXL1bzXW61cAXsnpO2z8PcvYfvXG72rzcWI619KOg/WYPVcczpE9lnuMGu3nQoWKz3+eFXpChv0DZYE1/26Emjy/bnFiPQdlEIwAeHqeg8rJyVXsCTPfgV3wgbjBy/sAABVtSURBVOJwOzybZ5m5soehLt7LAYwCWGG0nwXTRa4IfaugJtd9AN5ktNlNBk722z0APmp8/z6Ai43v5wP49QLW7SDUm4pc3S6x2P8jNp9RAMncYwdAjfF9GYAHYFyULNbNvN/25NtvRtv1UBffLfNsX/O4vwHQYHyvtVi3F0zfn5nn2HnWtO3/AcAR4xj5MoDzLbbvcqibkwSA84z2CCwmW9P3GgD/YXxfDtNky30WvH1mtDmZR05DeRicm/M5DyqMp9g50g/zU+61oxbAFiivg/6cPidz2SEAi0zb/2nzOD7cF4HZvg63LecnGcj5ifuN+831/cZ95pvrj5PnJd43BPBc4/kmAWUUjQHYCRVC/UUA3zXaPpIz5oMArrDZPo/l/D4AYG1O2xIA3Zhr6H8GxgsEAGeb2s9CjjHP1HcRlMfwTQB+byMzYzqmppB1AKvDXOPyOcZ4jwHYBWX8exjKALsx33ma03duzu+vAXgc6uXBPxljb4PysPyuhexeo/9xAF802ldg7tx1FYCXjH1yu/HZY7RdZaffrDEKEaqED5Qr+Zty2mqg3Gpnctp/D+BlAP9p/E0fVI0WJ7eTk8vqhFlqc8I4ObALPlAcbocnASw2vleZ2psw92L0P4xt1QNlIO0G8G9QE/uXF3pgQ72tuQfAt5HzNqrI/dYE4AfGfnoSwLTxP49CuYIXu25vNsZ7HmoC6IIKl3gCwEU5sr0AVtqsS+5bi9yLdjXUW8V7MHfieBDGW9Wc9lbkGKdNfQ1QN0kdAI7byByDcsO/CHPfwORu338F8I9Qb012IOuJewWUa79Z9jcWy7oQ6o3ZSzntH4C6ITwN5Zr/ENRN2QkAn8iRfQ7ZG581AJ4w9R0xfec+C9g+M347mfe+B+BtNtvoxzm/C54jTf3p+elbKP/8lO9mZXHObydz2Wegbkj/zTiO0g8qUcy9GfR8XwRp+zrctpyfZCDnJ+638u+3h0qw3y4K2n4L+D4Lxb0AHDwvmfoq/b6Bc2Qwz7flUKG7Nxqf9wNYbnc8FfIB8EYA6y3aa6FCj81ta2DtkbwawJV5liGgUgb8yKFuywD8kU3ff4XKufknUGHYVRYy73C4vD+CCmUGVG7GmwC8z2bsa4z+d5raqmAY9XNkqwC81dD1T4zv1QXrtZAdHKYP1MTdatP3xwWOsRhG6HFOe0Enl5MTJo8Olgd2oQeKk+1gdUAa7c0A/sCiXUPWpXgZVL6AS2zGKOrAhnKf3u5w31vuN6NvqbFfLoLNxcrpuhkyrcaYF+XZ3jfn2T5fy/l9P3JCIUxjpArcDg0AWuaReSOAv7Hpezjnk76xsXpzWgvgf0PdBPQCSEEZx38MYE2OrO2NjY0e1ci+fawBcHFalxy5P4O6Adpn6PAuoz2KnBtH7rPA7rMFXSBtdC36WgEP5ifkvJUuYHlO5uk3GP2vK2BcX+0Lv29fJ9vWkOf8FLD5ifuN+62c+22effZImPcZPL7+wOHzUo5Mxd43GPKBO9cMmYqdIwGshDIIv9nuGKOs/2Rt/n+OQd3qw6IsBkKIZbLAkuZOZA35GmmUCBeqhPfroNygB8sla8hEoS6AM4bcmJWcH2SFEALKrd1c2espaXHABk3WDiHE66RFhe4C/7ceAKSUkxZ9q6WUJ+b+18J0KFRWCFENdTM1YdPfBHVBi9v0N+Y7pgrFSl+hqpy9FurNXd5zWghRK+cmrJ2VWNmhPo73mRMdFqKvF/usUH0d7rMqAJBSpozkwhdAhTNYzaeUdVHW4n8/KaX8znxylHUs1wgV7vSyk/sUi3GKvqY40aEYfb28psynb6Hzk3G+TKfvEYyE92+G8vYouoKpk/2WR4fnpZQPFqjvHNk8ulUBOKsc+82pvg7224VSytziCwvG4X4rSIdS6FrOc82pvg7vBdYAGJFSDgshzoMynByVUh4pUPaYlPIwZcsra8hfDFMhkGKfk0zjFXPvXbAOC9HXo3vvgvQt5HwTQrwJKgqzCaqQjoB65h+GKrrzG5PsH0JFbzZhdtFaK1nzuLmyN0gpn3VB1om+CxnXc9l8iJxiVLZIh5bKsH4AJKHcfT8GiyIqC5D9CFQi199BVfh6Gcod/BUAHyiT7OsNfV+CCo9+Eso9/gfIye9YZtmXbWQ3IRuecIfxSYcnbAqy7DzHimVIg41sQW/2ipB1ooMf9HVr3V5n+n4F1IVxACrk4jxTn12oipW7fXOxsk508IO+bq2bw3GvgwrlOAkVcvAk1Bx5HMC1lC2r7N9bfAbS3+eRvdEHsmXV1+GY3zF9fxuU98DDUPcC11idPyb5RigjS977mPlknejgB33dWjeH4z4HI1IFwP+ESnnzJSgPkFtzZOtgJFc3fl9hHBNXW4zrRNaJDn7Q1611czLuDIAXAXwFwOvn2f8XznfsFSlbkA4+0bXk61XEuJ+HejY5BuCvjL/fg8ovlzufUtY/spdDFRh5CCoH3f0A/gPKm/Ycm319MVQewy2Y5/mgEFknOvhBX7fWrdBxoYrLvsWi/a2wCO2mrG9kre550/eeg/mOtcwYhQhVwgcq18O7AbRDGeo6oEKT60sg2wzgNVA5D9ca7SthXf3KDdknAPwX4/slAH5ofP84gJ/7UPYoTEYFU/trMDf3RdBkv2nz+ReoN3aFHq9FG/6c6OAHfd1at0LHhUp++wbj+59C3fCm81fkJnB2xfDnUAc/6OvWujkZ91moUJn0HJmef86FRfJyyroqOwpVnfB/QSUH/zLUDeyXMTfHUsXLOhzTXKDtYQBvNr6/1mI/uGL4c6iDH/R1a92cjGtOZP80stUaraqH5jOOfdWBbK4hzYkOftDXrXVzou+zUJ7Yt0C9NH4OykhynlnOkHViIHMiW5AOPtG15OtVxLhHoPLPRaDmVnMl5NxCIJT1j+yzpv7XALjX+P5OAF05spfDBcOfQx38oK9b61bQuMhTfRtzczhS1j+yr0LNpV+2+AzbjTNrjEKEKuGD2TeN9VAJLn8BZTDMTcTrRPa3pu+5FcJyb2rckrUtUY65Bi8/yL4II6dDTnud1QkTMNlRAJ+AKtaT+xnIkXXF8OdQBz/o69a6FTSuxbH7BgAvQHlolcvw50QHP+jr1ro5GddcRS/3RnWO8ZGyrsqugUp4/jVkE9PbVT+seFmHY5qvpbkVIHP3g1uGv2J18IO+bq3bfOMeAHCB8X0PsgatszD3fHLL8OdEBz/o69a6ORk3d59fAlWA4TiAAzl9TgxkTmQL0sEnupZ8vYoY96DxtxpAH2YXRZlTWZiy/pI1yZvn19xCIG4Z/pzo4Ad93Vq3gsaFeobaDZVz8VLj82dG27dyxqSsf2QPIKfQkanvFav23E8NSBqR/iJVXoWfAfiZka/gugXI9gohboUqb35MCLEDyvh4JVSoWDlkY0KIf4CqSPYeKDdYCCFqoRIV+032TgC/FkLcDfVmH1D5Hd4P5RofZNlfQ100D+S0Qwjxv3OaPgrlbnwmVxaqOlexsk508IO+bq1boeNOCyFapZSnAEBKeUQIsRHqDd3anP+rk0ZOHinlz4UQRwH8QgjxOQByAbJOdPCDvm6tm5NxIYSoklKmAPylqa0aythP2TLJSil7AbxXCLEVwD4hxP/LHYuyxY0J4HVCiINQ9yXnCSGWSymHhMpXN2efmVgqjRw6UsqXDfliZZ3o4Ad93Vo3J+P+DYB2IcRzUA/WTwshHgPwBwC258iOCCEukCrH2ACUUWwSyuCVO64TWSc6+EFft9bNybjC/ENK+RSAp4QQNwJ4e46sNMbcBmCbEOISqPvCXxp5qS4tUrZQHfygqxvr5XTc3wghfgzlBdcN4IdCiD0ANkBVEAZlfSn7tBDie1DPjVugvOEghFgMZQAzUy2l7De+90JFSkBKuU8I8Y0FyDrRwQ/6urVuBY0rpfy0EOJqqDQ45poC35ZSPmAekLL+kYV6HrbLfX6xTftsCrE6VsIHwE0uyS4F8AWoN2eNUF419wP4DnIqKbkouwzAbUb/LQCWGO1NMLx7/CRrtL/eWLd/MT6fh01YQ5BkAayA4XFSwLGzH8ClNn3/uQBZJzr4QV+31q2gcaGM9G+0kFkGYFtO29PIqUIHlQT3twBGFyDrRAc/6OvWujkZ979BFQDIHfc8AH9O2fLJ5vQ3AvgnAI/ZyVC2cDmoG3vzp85obwbwnhzZCQAHoVKmjCLrtVWFud4hTmSd6OAHfd1at4LHNdqroXJgfwbq5dafwTrf4oVQHlh3GZ8YgO9DzYcfLFbWiQ5+0NetdXOow5zl5Dl3LSuuQhnOLl+AbEE6+ETXkq9XEePWQL0kfr/x/Y8BfAvAZwE0UNa3srUAPmn0fxxGVW6oyMBzc2TvhHLgaINKF/J1o30xVMGXYmWd6OAHfd1at4LH5acyP6zyTIhPEaqi1qvSptpXsbJu4Za+bq2bG+MKIa4E0C+lfC6nfRmAv5VS3lKMrFu4pa9b6+aHbUZIUBFCnJvTdFJKOSWEaAbwdinlL4qRDZq+bq2bm9tMKM/fTVAVpmugwkD3SutK0wXLuoVb+rq1bm6MK4T4oJTyx6WWdQO3dHVrvbzeXsRfCBXt9nEo547nANwppZwRqqJzi5SypxjZoOnr1roVOq5QkZr/v737C7WsLOM4/n1swglOZaIduhEhlMGmnAlvisDQQoNKoQy6yJm6DDQIYSwp+gNhdBVIEFRQSGF10Z+BsqSErIFJZkabMedCGg0UFZnEkSRmfLtYa2q75+xz1t5nv2c/7+zvBxbnnL1++93P+75rrXPOYu21v0B3Vdwq3TuHnqP7rIm7R4+nZlNmbwbeul52okWf0cyy0F3S+UfgXrq3q/4eeJHuLZS755z9V4Jsrb7NI7sCfI3u5r0vAs/TfajL3jXm7bzNVtzWm6q3Vt8W2aZzVr/eDPuwWbOzZGu9foZ9OEO9tfqWoV3nzXnLVGuGsV2n3T1mm8geTbCvbVhDhnpr9W2KNu8H9jHyTiK6D++7k3Pv4Wg2f3bfeHbi3C96g86yAAfp3hrxSbr74H28f/x64IDZLc3+EthL91bGzwNfAq4Afgh8Y4mytf6pba3eWn0b+kd5hjFwzvKMmVmzVbMVXz/DPpyh3taOTxn6lqHeDOObYRxqHEecM7MtZ6uc+Guw3lp9G9QucHz8dSatM9tmdmJuSGgZFl77iZVPTVpndkuy45/6+tf+6wWcew+I8zlb6xdZa/XW6tvQP8ozjIFzlmfMzJqtmq34+hn24Qz1tnZ8ytC3DPVmGN8M41DjOOKcmW05m2GbzFDvov9f+h3d/TBXRx5bpbvS7YGxNs02mJ20bBhYlgU4QHf/lFuAJ4Gb+8evBR42u6XZvwDv67//KN19bM6uGz+rfj5na/0ia63eWn0b+kd5hjFwzvKMmVmzVbMVXz/DPpyh3taOTxn6lqHeDOObYRxqHEecM7MtZzNskxnqXfT/S28Bvgk8Dpyk++Tgv/ePXTzWhtkGs5OWDQPLsgBX072H/DfADuDbdPckPMbYJ8GarZ59F91bpE8CDwFX9o9fCty+RNlav8haq7dW34b+UZ5hDJyzPGNm1mzVbMXXz7APZ6i3teNThr5lqDfD+GYYhxrHEefMbMvZDNtkhnoz7G87gA8AK2OP3zj6s9l2s2stGwZcCsCnzZrd6uyUB/vB2dbqrdW3ebTrnLU3Z5sdM7NmF5nNuL+3Vm9rx6cMfctQb4bxzTAO85g352zz27nZPNkM22SGehe9vwG3A8eBXwAngJtG1h0aa9Nsg9mJ28zQjWuZF8bu+WfWbIJsrV/SrdVbq29D/yjPMAbOWZ4xM2u2arbB/b21els7PmXoW4Z6M4xvhnGocRxxzsy2nM2wTWaot/r+BvyN/go34HLgYeBz/c/jn5dgtsHspCX68NKLiEcnraI7E3+hWbNbmV1PRDxVSrlslmxr9U6TrVFvhjFwzuq2a9Zspmxr+3tr9U6TzXB8mqbdWjVkqHearPOWo9ZpshnmzGyb2fV4jFw7W+n/pWOllHeMrFsBfg48BlxXStk1ss5sg9lJtm0UWCKrwA10l/OOCrp7B5g1u6XZDQ72q7NmW6u3Vt+maHfhYzBNDRnqTTBnU7Vr1myybFP7e2v1tnZ8ytC3DPVmGN9a7VaqYeG1Zhjbado122Y2wzaZod4E+9uzEbGrlHIEoJRyKiI+DPwAeOfYc822mV2TJxT/bz/d5Z5HxldExINmzS4gW+uXdGv11urb0HYzjIFzVrdds2YzZVvb31urt7XjU4a+Zag3w/hmGIcaxxHnzGzL2QzbZIZ6F72/3QqcHg2UUk4Dt0bEd8eea7bN7NrKwPfIu7i4bO0CfJ/+U7XWWPfjWbOt1VurbzXazdCvDPW2NGcuLsuyZNiHM9Tb2vEpQ98y1JthfDOMg3O2+PFyybVk2CYz1Ov+5rKoxXsoSpIkSZIkSRrsgkUXIEmSJEmSJKkdnlCUJEmSJEmSNJgnFCVJkjST6DwUER8aeeyWiPjtJts9ExFHIuKRiDgUEe8d8JzvRcRV/fcnIuKSiLgoIj67mVokSZJ0Lu+hKEmSpJlFxE7gZ8BuYBtwGLixlPLEDG1tK6WcjohTpZSV/rEbgC+WUq6dop0TwDXACrC/lLJz2lokSZI0mVcoSpIkaWallKPAr4F9wJeBe4G7IuJgRByOiJsAIuLyiPhTf8Xh/646jIj394//CnhsjZd4E3ByJLv/7IqIuCci9vbfPxgR14w9927g7f3Vjt+aa8clSZKW2LZFFyBJkqTmfRU4BPwH2A/8oZTymYi4CDgYEQ8AzwEfLKW8EhFXAD+hu4oQ4N3AzlLKP/qf3xARR4DtwNuA62as686+3V0zPl+SJElr8ISiJEmSNqWU8nJE3AecAj4BfCQi7uhXbwcuA54G7omIXcAZ4MqRJg6OnEwE+PfZk4AR8R7gR/1bqyVJkpSAJxQlSZI0D6/2SwAfK6UcH10ZEV8BngWuprvtzisjq1+e1Ggp5UBEXAJcCpzmtbfs2T6XyiVJkjQV76EoSZKkebofuC0iAiAidvePvxl4ppTyKvAp4HVDGouIHX32BeBJ4KqIuLB/O/X1Gzz9JeCN03dBkiRJ6/GEoiRJkubp68DrgUcj4lj/M8B3gD0R8Qiwg3WuSqS/h2J/H8X7gD2llDOllH8CPwWO9l8Pr1dIKeUF4M8RcdQPZZEkSZqfKKUsugZJkiRJkiRJjfAKRUmSJEmSJEmDeUJRkiRJkiRJ0mCeUJQkSZIkSZI0mCcUJUmSJEmSJA3mCUVJkiRJkiRJg3lCUZIkSZIkSdJgnlCUJEmSJEmSNNh/AQeGXEyiT0H9AAAAAElFTkSuQmCC\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"f, ax = plt.subplots(figsize=(22,8))\n", | |
"fig = sns.boxplot(x = var, y = 'SalePrice', data = data)\n", | |
"fig.axis(ymin=0, ymax = 800000)\n", | |
"plt.xticks(rotation = 90)\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "eddce995-ae25-4cfe-bb78-c269d30cb2fe", | |
"metadata": { | |
"id": "eddce995-ae25-4cfe-bb78-c269d30cb2fe" | |
}, | |
"source": [ | |
"#### En resumen" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "12b1f727-6e6a-41bb-a4fe-d525c6d50765", | |
"metadata": { | |
"id": "12b1f727-6e6a-41bb-a4fe-d525c6d50765" | |
}, | |
"source": [ | |
"¿Que es lo que observas de las variables númericas?" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "641780e5-7a7f-4b42-a822-f6db58b287b8", | |
"metadata": { | |
"id": "641780e5-7a7f-4b42-a822-f6db58b287b8" | |
}, | |
"source": [ | |
"¿Que es lo que observas de las variables catégoricas" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "31eb7e7b-1fe7-495b-9683-87b168cc3fd5", | |
"metadata": { | |
"id": "31eb7e7b-1fe7-495b-9683-87b168cc3fd5" | |
}, | |
"source": [ | |
"## 4.- Confirmando nuestra intuición" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ab75152c-2af2-4055-a89f-89d00acda5c8", | |
"metadata": { | |
"id": "ab75152c-2af2-4055-a89f-89d00acda5c8" | |
}, | |
"source": [ | |
"Hasta ahora decidimos a puro pulso que estas 4 eran las variables importantes, vamos confirmando con números si es verdad o no" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "a963054a-6736-4ac8-abd7-d27a45555ffc", | |
"metadata": { | |
"id": "a963054a-6736-4ac8-abd7-d27a45555ffc" | |
}, | |
"source": [ | |
"### 4.1.- Matriz de Correlación" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "26db1760-1106-45fd-9960-7732975d56b8", | |
"metadata": { | |
"id": "26db1760-1106-45fd-9960-7732975d56b8" | |
}, | |
"source": [ | |
"Lo primero es armar una matriz de correlación (mapa de calor) para ver cuales son las variables más correlacionadas\n", | |
"\n", | |
"Vamos declarando una variable corrmat = df_train.corr() con todas las correlaciones entre variables" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 55, | |
"id": "38093c3b-22df-4173-96b9-7780d5588b0f", | |
"metadata": { | |
"id": "38093c3b-22df-4173-96b9-7780d5588b0f" | |
}, | |
"outputs": [], | |
"source": [ | |
"Matriz_De_Correlacion = df_train.corr()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"id": "a3587314-7011-403d-80da-522106e2a54a", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000 | |
}, | |
"id": "a3587314-7011-403d-80da-522106e2a54a", | |
"outputId": "89366579-91f4-4749-cc7d-e2c43e498018" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
" Id MSSubClass LotFrontage LotArea OverallQual \\\n", | |
"Id 1.000000 0.011156 -0.010601 -0.033226 -0.028365 \n", | |
"MSSubClass 0.011156 1.000000 -0.386347 -0.139781 0.032628 \n", | |
"LotFrontage -0.010601 -0.386347 1.000000 0.426095 0.251646 \n", | |
"LotArea -0.033226 -0.139781 0.426095 1.000000 0.105806 \n", | |
"OverallQual -0.028365 0.032628 0.251646 0.105806 1.000000 \n", | |
"OverallCond 0.012609 -0.059316 -0.059213 -0.005636 -0.091932 \n", | |
"YearBuilt -0.012713 0.027850 0.123349 0.014228 0.572323 \n", | |
"YearRemodAdd -0.021998 0.040581 0.088866 0.013788 0.550684 \n", | |
"MasVnrArea -0.050298 0.022936 0.193458 0.104160 0.411876 \n", | |
"BsmtFinSF1 -0.005024 -0.069836 0.233633 0.214103 0.239666 \n", | |
"BsmtFinSF2 -0.005968 -0.065649 0.049900 0.111170 -0.059119 \n", | |
"BsmtUnfSF -0.007940 -0.140759 0.132644 -0.002618 0.308159 \n", | |
"TotalBsmtSF -0.015415 -0.238518 0.392075 0.260833 0.537808 \n", | |
"1stFlrSF 0.010496 -0.251758 0.457181 0.299475 0.476224 \n", | |
"2ndFlrSF 0.005590 0.307886 0.080177 0.050986 0.295493 \n", | |
"LowQualFinSF -0.044230 0.046474 0.038469 0.004779 -0.030429 \n", | |
"GrLivArea 0.008273 0.074853 0.402797 0.263116 0.593007 \n", | |
"BsmtFullBath 0.002289 0.003491 0.100949 0.158155 0.111098 \n", | |
"BsmtHalfBath -0.020155 -0.002333 -0.007234 0.048046 -0.040150 \n", | |
"FullBath 0.005587 0.131608 0.198769 0.126031 0.550600 \n", | |
"HalfBath 0.006784 0.177354 0.053532 0.014259 0.273458 \n", | |
"BedroomAbvGr 0.037719 -0.023438 0.263170 0.119690 0.101676 \n", | |
"KitchenAbvGr 0.002951 0.281721 -0.006069 -0.017784 -0.183882 \n", | |
"TotRmsAbvGrd 0.027239 0.040380 0.352096 0.190015 0.427452 \n", | |
"Fireplaces -0.019772 -0.045569 0.266639 0.271364 0.396765 \n", | |
"GarageYrBlt 0.000072 0.085072 0.070250 -0.024947 0.547766 \n", | |
"GarageCars 0.016570 -0.040110 0.285691 0.154871 0.600671 \n", | |
"GarageArea 0.017634 -0.098672 0.344997 0.180403 0.562022 \n", | |
"WoodDeckSF -0.029643 -0.012579 0.088521 0.171698 0.238923 \n", | |
"OpenPorchSF -0.000477 -0.006100 0.151972 0.084774 0.308819 \n", | |
"EnclosedPorch 0.002889 -0.012037 0.010700 -0.018340 -0.113937 \n", | |
"3SsnPorch -0.046635 -0.043825 0.070029 0.020423 0.030371 \n", | |
"ScreenPorch 0.001330 -0.026030 0.041383 0.043160 0.064886 \n", | |
"PoolArea 0.057044 0.008283 0.206167 0.077672 0.065166 \n", | |
"MiscVal -0.006242 -0.007683 0.003368 0.038068 -0.031406 \n", | |
"MoSold 0.021172 -0.013585 0.011200 0.001205 0.070815 \n", | |
"YrSold 0.000712 -0.021407 0.007450 -0.014261 -0.027347 \n", | |
"SalePrice -0.021917 -0.084284 0.351799 0.263843 0.790982 \n", | |
"\n", | |
" OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 \\\n", | |
"Id 0.012609 -0.012713 -0.021998 -0.050298 -0.005024 \n", | |
"MSSubClass -0.059316 0.027850 0.040581 0.022936 -0.069836 \n", | |
"LotFrontage -0.059213 0.123349 0.088866 0.193458 0.233633 \n", | |
"LotArea -0.005636 0.014228 0.013788 0.104160 0.214103 \n", | |
"OverallQual -0.091932 0.572323 0.550684 0.411876 0.239666 \n", | |
"OverallCond 1.000000 -0.375983 0.073741 -0.128101 -0.046231 \n", | |
"YearBuilt -0.375983 1.000000 0.592855 0.315707 0.249503 \n", | |
"YearRemodAdd 0.073741 0.592855 1.000000 0.179618 0.128451 \n", | |
"MasVnrArea -0.128101 0.315707 0.179618 1.000000 0.264736 \n", | |
"BsmtFinSF1 -0.046231 0.249503 0.128451 0.264736 1.000000 \n", | |
"BsmtFinSF2 0.040229 -0.049107 -0.067759 -0.072319 -0.050117 \n", | |
"BsmtUnfSF -0.136841 0.149040 0.181133 0.114442 -0.495251 \n", | |
"TotalBsmtSF -0.171098 0.391452 0.291066 0.363936 0.522396 \n", | |
"1stFlrSF -0.144203 0.281986 0.240379 0.344501 0.445863 \n", | |
"2ndFlrSF 0.028942 0.010308 0.140024 0.174561 -0.137079 \n", | |
"LowQualFinSF 0.025494 -0.183784 -0.062419 -0.069071 -0.064503 \n", | |
"GrLivArea -0.079686 0.199010 0.287389 0.390857 0.208171 \n", | |
"BsmtFullBath -0.054942 0.187599 0.119470 0.085310 0.649212 \n", | |
"BsmtHalfBath 0.117821 -0.038162 -0.012337 0.026673 0.067418 \n", | |
"FullBath -0.194149 0.468271 0.439046 0.276833 0.058543 \n", | |
"HalfBath -0.060769 0.242656 0.183331 0.201444 0.004262 \n", | |
"BedroomAbvGr 0.012980 -0.070651 -0.040581 0.102821 -0.107355 \n", | |
"KitchenAbvGr -0.087001 -0.174800 -0.149598 -0.037610 -0.081007 \n", | |
"TotRmsAbvGrd -0.057583 0.095589 0.191740 0.280682 0.044316 \n", | |
"Fireplaces -0.023820 0.147716 0.112581 0.249070 0.260011 \n", | |
"GarageYrBlt -0.324297 0.825667 0.642277 0.252691 0.153484 \n", | |
"GarageCars -0.185758 0.537850 0.420622 0.364204 0.224054 \n", | |
"GarageArea -0.151521 0.478954 0.371600 0.373066 0.296970 \n", | |
"WoodDeckSF -0.003334 0.224880 0.205726 0.159718 0.204306 \n", | |
"OpenPorchSF -0.032589 0.188686 0.226298 0.125703 0.111761 \n", | |
"EnclosedPorch 0.070356 -0.387268 -0.193919 -0.110204 -0.102303 \n", | |
"3SsnPorch 0.025504 0.031355 0.045286 0.018796 0.026451 \n", | |
"ScreenPorch 0.054811 -0.050364 -0.038740 0.061466 0.062021 \n", | |
"PoolArea -0.001985 0.004950 0.005829 0.011723 0.140491 \n", | |
"MiscVal 0.068777 -0.034383 -0.010286 -0.029815 0.003571 \n", | |
"MoSold -0.003511 0.012398 0.021490 -0.005965 -0.015727 \n", | |
"YrSold 0.043950 -0.013618 0.035743 -0.008201 0.014359 \n", | |
"SalePrice -0.077856 0.522897 0.507101 0.477493 0.386420 \n", | |
"\n", | |
" ... WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch \\\n", | |
"Id ... -0.029643 -0.000477 0.002889 -0.046635 \n", | |
"MSSubClass ... -0.012579 -0.006100 -0.012037 -0.043825 \n", | |
"LotFrontage ... 0.088521 0.151972 0.010700 0.070029 \n", | |
"LotArea ... 0.171698 0.084774 -0.018340 0.020423 \n", | |
"OverallQual ... 0.238923 0.308819 -0.113937 0.030371 \n", | |
"OverallCond ... -0.003334 -0.032589 0.070356 0.025504 \n", | |
"YearBuilt ... 0.224880 0.188686 -0.387268 0.031355 \n", | |
"YearRemodAdd ... 0.205726 0.226298 -0.193919 0.045286 \n", | |
"MasVnrArea ... 0.159718 0.125703 -0.110204 0.018796 \n", | |
"BsmtFinSF1 ... 0.204306 0.111761 -0.102303 0.026451 \n", | |
"BsmtFinSF2 ... 0.067898 0.003093 0.036543 -0.029993 \n", | |
"BsmtUnfSF ... -0.005316 0.129005 -0.002538 0.020764 \n", | |
"TotalBsmtSF ... 0.232019 0.247264 -0.095478 0.037384 \n", | |
"1stFlrSF ... 0.235459 0.211671 -0.065292 0.056104 \n", | |
"2ndFlrSF ... 0.092165 0.208026 0.061989 -0.024358 \n", | |
"LowQualFinSF ... -0.025444 0.018251 0.061081 -0.004296 \n", | |
"GrLivArea ... 0.247433 0.330224 0.009113 0.020643 \n", | |
"BsmtFullBath ... 0.175315 0.067341 -0.049911 -0.000106 \n", | |
"BsmtHalfBath ... 0.040161 -0.025324 -0.008555 0.035114 \n", | |
"FullBath ... 0.187703 0.259977 -0.115093 0.035353 \n", | |
"HalfBath ... 0.108080 0.199740 -0.095317 -0.004972 \n", | |
"BedroomAbvGr ... 0.046854 0.093810 0.041570 -0.024478 \n", | |
"KitchenAbvGr ... -0.090130 -0.070091 0.037312 -0.024600 \n", | |
"TotRmsAbvGrd ... 0.165984 0.234192 0.004151 -0.006683 \n", | |
"Fireplaces ... 0.200019 0.169405 -0.024822 0.011257 \n", | |
"GarageYrBlt ... 0.224577 0.228425 -0.297003 0.023544 \n", | |
"GarageCars ... 0.226342 0.213569 -0.151434 0.035765 \n", | |
"GarageArea ... 0.224666 0.241435 -0.121777 0.035087 \n", | |
"WoodDeckSF ... 1.000000 0.058661 -0.125989 -0.032771 \n", | |
"OpenPorchSF ... 0.058661 1.000000 -0.093079 -0.005842 \n", | |
"EnclosedPorch ... -0.125989 -0.093079 1.000000 -0.037305 \n", | |
"3SsnPorch ... -0.032771 -0.005842 -0.037305 1.000000 \n", | |
"ScreenPorch ... -0.074181 0.074304 -0.082864 -0.031436 \n", | |
"PoolArea ... 0.073378 0.060762 0.054203 -0.007992 \n", | |
"MiscVal ... -0.009551 -0.018584 0.018361 0.000354 \n", | |
"MoSold ... 0.021011 0.071255 -0.028887 0.029474 \n", | |
"YrSold ... 0.022270 -0.057619 -0.009916 0.018645 \n", | |
"SalePrice ... 0.324413 0.315856 -0.128578 0.044584 \n", | |
"\n", | |
" ScreenPorch PoolArea MiscVal MoSold YrSold SalePrice \n", | |
"Id 0.001330 0.057044 -0.006242 0.021172 0.000712 -0.021917 \n", | |
"MSSubClass -0.026030 0.008283 -0.007683 -0.013585 -0.021407 -0.084284 \n", | |
"LotFrontage 0.041383 0.206167 0.003368 0.011200 0.007450 0.351799 \n", | |
"LotArea 0.043160 0.077672 0.038068 0.001205 -0.014261 0.263843 \n", | |
"OverallQual 0.064886 0.065166 -0.031406 0.070815 -0.027347 0.790982 \n", | |
"OverallCond 0.054811 -0.001985 0.068777 -0.003511 0.043950 -0.077856 \n", | |
"YearBuilt -0.050364 0.004950 -0.034383 0.012398 -0.013618 0.522897 \n", | |
"YearRemodAdd -0.038740 0.005829 -0.010286 0.021490 0.035743 0.507101 \n", | |
"MasVnrArea 0.061466 0.011723 -0.029815 -0.005965 -0.008201 0.477493 \n", | |
"BsmtFinSF1 0.062021 0.140491 0.003571 -0.015727 0.014359 0.386420 \n", | |
"BsmtFinSF2 0.088871 0.041709 0.004940 -0.015211 0.031706 -0.011378 \n", | |
"BsmtUnfSF -0.012579 -0.035092 -0.023837 0.034888 -0.041258 0.214479 \n", | |
"TotalBsmtSF 0.084489 0.126053 -0.018479 0.013196 -0.014969 0.613581 \n", | |
"1stFlrSF 0.088758 0.131525 -0.021096 0.031372 -0.013604 0.605852 \n", | |
"2ndFlrSF 0.040606 0.081487 0.016197 0.035164 -0.028700 0.319334 \n", | |
"LowQualFinSF 0.026799 0.062157 -0.003793 -0.022174 -0.028921 -0.025606 \n", | |
"GrLivArea 0.101510 0.170205 -0.002416 0.050240 -0.036526 0.708624 \n", | |
"BsmtFullBath 0.023148 0.067616 -0.023047 -0.025361 0.067049 0.227122 \n", | |
"BsmtHalfBath 0.032121 0.020025 -0.007367 0.032873 -0.046524 -0.016844 \n", | |
"FullBath -0.008106 0.049604 -0.014290 0.055872 -0.019669 0.560664 \n", | |
"HalfBath 0.072426 0.022381 0.001290 -0.009050 -0.010269 0.284108 \n", | |
"BedroomAbvGr 0.044300 0.070703 0.007767 0.046544 -0.036014 0.168213 \n", | |
"KitchenAbvGr -0.051613 -0.014525 0.062341 0.026589 0.031687 -0.135907 \n", | |
"TotRmsAbvGrd 0.059383 0.083757 0.024763 0.036907 -0.034516 0.533723 \n", | |
"Fireplaces 0.184530 0.095074 0.001409 0.046357 -0.024096 0.466929 \n", | |
"GarageYrBlt -0.075418 -0.014501 -0.032417 0.005337 -0.001014 0.486362 \n", | |
"GarageCars 0.050494 0.020934 -0.043080 0.040522 -0.039117 0.640409 \n", | |
"GarageArea 0.051412 0.061047 -0.027400 0.027974 -0.027378 0.623431 \n", | |
"WoodDeckSF -0.074181 0.073378 -0.009551 0.021011 0.022270 0.324413 \n", | |
"OpenPorchSF 0.074304 0.060762 -0.018584 0.071255 -0.057619 0.315856 \n", | |
"EnclosedPorch -0.082864 0.054203 0.018361 -0.028887 -0.009916 -0.128578 \n", | |
"3SsnPorch -0.031436 -0.007992 0.000354 0.029474 0.018645 0.044584 \n", | |
"ScreenPorch 1.000000 0.051307 0.031946 0.023217 0.010694 0.111447 \n", | |
"PoolArea 0.051307 1.000000 0.029669 -0.033737 -0.059689 0.092404 \n", | |
"MiscVal 0.031946 0.029669 1.000000 -0.006495 0.004906 -0.021190 \n", | |
"MoSold 0.023217 -0.033737 -0.006495 1.000000 -0.145721 0.046432 \n", | |
"YrSold 0.010694 -0.059689 0.004906 -0.145721 1.000000 -0.028923 \n", | |
"SalePrice 0.111447 0.092404 -0.021190 0.046432 -0.028923 1.000000 \n", | |
"\n", | |
"[38 rows x 38 columns]" | |
], | |
"text/html": [ | |
"\n", | |
" <div id=\"df-18b10443-39d8-4f59-a8e1-417883528e00\">\n", | |
" <div class=\"colab-df-container\">\n", | |
" <div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Id</th>\n", | |
" <th>MSSubClass</th>\n", | |
" <th>LotFrontage</th>\n", | |
" <th>LotArea</th>\n", | |
" <th>OverallQual</th>\n", | |
" <th>OverallCond</th>\n", | |
" <th>YearBuilt</th>\n", | |
" <th>YearRemodAdd</th>\n", | |
" <th>MasVnrArea</th>\n", | |
" <th>BsmtFinSF1</th>\n", | |
" <th>...</th>\n", | |
" <th>WoodDeckSF</th>\n", | |
" <th>OpenPorchSF</th>\n", | |
" <th>EnclosedPorch</th>\n", | |
" <th>3SsnPorch</th>\n", | |
" <th>ScreenPorch</th>\n", | |
" <th>PoolArea</th>\n", | |
" <th>MiscVal</th>\n", | |
" <th>MoSold</th>\n", | |
" <th>YrSold</th>\n", | |
" <th>SalePrice</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>Id</th>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.011156</td>\n", | |
" <td>-0.010601</td>\n", | |
" <td>-0.033226</td>\n", | |
" <td>-0.028365</td>\n", | |
" <td>0.012609</td>\n", | |
" <td>-0.012713</td>\n", | |
" <td>-0.021998</td>\n", | |
" <td>-0.050298</td>\n", | |
" <td>-0.005024</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.029643</td>\n", | |
" <td>-0.000477</td>\n", | |
" <td>0.002889</td>\n", | |
" <td>-0.046635</td>\n", | |
" <td>0.001330</td>\n", | |
" <td>0.057044</td>\n", | |
" <td>-0.006242</td>\n", | |
" <td>0.021172</td>\n", | |
" <td>0.000712</td>\n", | |
" <td>-0.021917</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>MSSubClass</th>\n", | |
" <td>0.011156</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.386347</td>\n", | |
" <td>-0.139781</td>\n", | |
" <td>0.032628</td>\n", | |
" <td>-0.059316</td>\n", | |
" <td>0.027850</td>\n", | |
" <td>0.040581</td>\n", | |
" <td>0.022936</td>\n", | |
" <td>-0.069836</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.012579</td>\n", | |
" <td>-0.006100</td>\n", | |
" <td>-0.012037</td>\n", | |
" <td>-0.043825</td>\n", | |
" <td>-0.026030</td>\n", | |
" <td>0.008283</td>\n", | |
" <td>-0.007683</td>\n", | |
" <td>-0.013585</td>\n", | |
" <td>-0.021407</td>\n", | |
" <td>-0.084284</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>LotFrontage</th>\n", | |
" <td>-0.010601</td>\n", | |
" <td>-0.386347</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.426095</td>\n", | |
" <td>0.251646</td>\n", | |
" <td>-0.059213</td>\n", | |
" <td>0.123349</td>\n", | |
" <td>0.088866</td>\n", | |
" <td>0.193458</td>\n", | |
" <td>0.233633</td>\n", | |
" <td>...</td>\n", | |
" <td>0.088521</td>\n", | |
" <td>0.151972</td>\n", | |
" <td>0.010700</td>\n", | |
" <td>0.070029</td>\n", | |
" <td>0.041383</td>\n", | |
" <td>0.206167</td>\n", | |
" <td>0.003368</td>\n", | |
" <td>0.011200</td>\n", | |
" <td>0.007450</td>\n", | |
" <td>0.351799</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>LotArea</th>\n", | |
" <td>-0.033226</td>\n", | |
" <td>-0.139781</td>\n", | |
" <td>0.426095</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.105806</td>\n", | |
" <td>-0.005636</td>\n", | |
" <td>0.014228</td>\n", | |
" <td>0.013788</td>\n", | |
" <td>0.104160</td>\n", | |
" <td>0.214103</td>\n", | |
" <td>...</td>\n", | |
" <td>0.171698</td>\n", | |
" <td>0.084774</td>\n", | |
" <td>-0.018340</td>\n", | |
" <td>0.020423</td>\n", | |
" <td>0.043160</td>\n", | |
" <td>0.077672</td>\n", | |
" <td>0.038068</td>\n", | |
" <td>0.001205</td>\n", | |
" <td>-0.014261</td>\n", | |
" <td>0.263843</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>OverallQual</th>\n", | |
" <td>-0.028365</td>\n", | |
" <td>0.032628</td>\n", | |
" <td>0.251646</td>\n", | |
" <td>0.105806</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.091932</td>\n", | |
" <td>0.572323</td>\n", | |
" <td>0.550684</td>\n", | |
" <td>0.411876</td>\n", | |
" <td>0.239666</td>\n", | |
" <td>...</td>\n", | |
" <td>0.238923</td>\n", | |
" <td>0.308819</td>\n", | |
" <td>-0.113937</td>\n", | |
" <td>0.030371</td>\n", | |
" <td>0.064886</td>\n", | |
" <td>0.065166</td>\n", | |
" <td>-0.031406</td>\n", | |
" <td>0.070815</td>\n", | |
" <td>-0.027347</td>\n", | |
" <td>0.790982</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>OverallCond</th>\n", | |
" <td>0.012609</td>\n", | |
" <td>-0.059316</td>\n", | |
" <td>-0.059213</td>\n", | |
" <td>-0.005636</td>\n", | |
" <td>-0.091932</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.375983</td>\n", | |
" <td>0.073741</td>\n", | |
" <td>-0.128101</td>\n", | |
" <td>-0.046231</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.003334</td>\n", | |
" <td>-0.032589</td>\n", | |
" <td>0.070356</td>\n", | |
" <td>0.025504</td>\n", | |
" <td>0.054811</td>\n", | |
" <td>-0.001985</td>\n", | |
" <td>0.068777</td>\n", | |
" <td>-0.003511</td>\n", | |
" <td>0.043950</td>\n", | |
" <td>-0.077856</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YearBuilt</th>\n", | |
" <td>-0.012713</td>\n", | |
" <td>0.027850</td>\n", | |
" <td>0.123349</td>\n", | |
" <td>0.014228</td>\n", | |
" <td>0.572323</td>\n", | |
" <td>-0.375983</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.592855</td>\n", | |
" <td>0.315707</td>\n", | |
" <td>0.249503</td>\n", | |
" <td>...</td>\n", | |
" <td>0.224880</td>\n", | |
" <td>0.188686</td>\n", | |
" <td>-0.387268</td>\n", | |
" <td>0.031355</td>\n", | |
" <td>-0.050364</td>\n", | |
" <td>0.004950</td>\n", | |
" <td>-0.034383</td>\n", | |
" <td>0.012398</td>\n", | |
" <td>-0.013618</td>\n", | |
" <td>0.522897</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YearRemodAdd</th>\n", | |
" <td>-0.021998</td>\n", | |
" <td>0.040581</td>\n", | |
" <td>0.088866</td>\n", | |
" <td>0.013788</td>\n", | |
" <td>0.550684</td>\n", | |
" <td>0.073741</td>\n", | |
" <td>0.592855</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.179618</td>\n", | |
" <td>0.128451</td>\n", | |
" <td>...</td>\n", | |
" <td>0.205726</td>\n", | |
" <td>0.226298</td>\n", | |
" <td>-0.193919</td>\n", | |
" <td>0.045286</td>\n", | |
" <td>-0.038740</td>\n", | |
" <td>0.005829</td>\n", | |
" <td>-0.010286</td>\n", | |
" <td>0.021490</td>\n", | |
" <td>0.035743</td>\n", | |
" <td>0.507101</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>MasVnrArea</th>\n", | |
" <td>-0.050298</td>\n", | |
" <td>0.022936</td>\n", | |
" <td>0.193458</td>\n", | |
" <td>0.104160</td>\n", | |
" <td>0.411876</td>\n", | |
" <td>-0.128101</td>\n", | |
" <td>0.315707</td>\n", | |
" <td>0.179618</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.264736</td>\n", | |
" <td>...</td>\n", | |
" <td>0.159718</td>\n", | |
" <td>0.125703</td>\n", | |
" <td>-0.110204</td>\n", | |
" <td>0.018796</td>\n", | |
" <td>0.061466</td>\n", | |
" <td>0.011723</td>\n", | |
" <td>-0.029815</td>\n", | |
" <td>-0.005965</td>\n", | |
" <td>-0.008201</td>\n", | |
" <td>0.477493</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BsmtFinSF1</th>\n", | |
" <td>-0.005024</td>\n", | |
" <td>-0.069836</td>\n", | |
" <td>0.233633</td>\n", | |
" <td>0.214103</td>\n", | |
" <td>0.239666</td>\n", | |
" <td>-0.046231</td>\n", | |
" <td>0.249503</td>\n", | |
" <td>0.128451</td>\n", | |
" <td>0.264736</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>...</td>\n", | |
" <td>0.204306</td>\n", | |
" <td>0.111761</td>\n", | |
" <td>-0.102303</td>\n", | |
" <td>0.026451</td>\n", | |
" <td>0.062021</td>\n", | |
" <td>0.140491</td>\n", | |
" <td>0.003571</td>\n", | |
" <td>-0.015727</td>\n", | |
" <td>0.014359</td>\n", | |
" <td>0.386420</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BsmtFinSF2</th>\n", | |
" <td>-0.005968</td>\n", | |
" <td>-0.065649</td>\n", | |
" <td>0.049900</td>\n", | |
" <td>0.111170</td>\n", | |
" <td>-0.059119</td>\n", | |
" <td>0.040229</td>\n", | |
" <td>-0.049107</td>\n", | |
" <td>-0.067759</td>\n", | |
" <td>-0.072319</td>\n", | |
" <td>-0.050117</td>\n", | |
" <td>...</td>\n", | |
" <td>0.067898</td>\n", | |
" <td>0.003093</td>\n", | |
" <td>0.036543</td>\n", | |
" <td>-0.029993</td>\n", | |
" <td>0.088871</td>\n", | |
" <td>0.041709</td>\n", | |
" <td>0.004940</td>\n", | |
" <td>-0.015211</td>\n", | |
" <td>0.031706</td>\n", | |
" <td>-0.011378</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BsmtUnfSF</th>\n", | |
" <td>-0.007940</td>\n", | |
" <td>-0.140759</td>\n", | |
" <td>0.132644</td>\n", | |
" <td>-0.002618</td>\n", | |
" <td>0.308159</td>\n", | |
" <td>-0.136841</td>\n", | |
" <td>0.149040</td>\n", | |
" <td>0.181133</td>\n", | |
" <td>0.114442</td>\n", | |
" <td>-0.495251</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.005316</td>\n", | |
" <td>0.129005</td>\n", | |
" <td>-0.002538</td>\n", | |
" <td>0.020764</td>\n", | |
" <td>-0.012579</td>\n", | |
" <td>-0.035092</td>\n", | |
" <td>-0.023837</td>\n", | |
" <td>0.034888</td>\n", | |
" <td>-0.041258</td>\n", | |
" <td>0.214479</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>TotalBsmtSF</th>\n", | |
" <td>-0.015415</td>\n", | |
" <td>-0.238518</td>\n", | |
" <td>0.392075</td>\n", | |
" <td>0.260833</td>\n", | |
" <td>0.537808</td>\n", | |
" <td>-0.171098</td>\n", | |
" <td>0.391452</td>\n", | |
" <td>0.291066</td>\n", | |
" <td>0.363936</td>\n", | |
" <td>0.522396</td>\n", | |
" <td>...</td>\n", | |
" <td>0.232019</td>\n", | |
" <td>0.247264</td>\n", | |
" <td>-0.095478</td>\n", | |
" <td>0.037384</td>\n", | |
" <td>0.084489</td>\n", | |
" <td>0.126053</td>\n", | |
" <td>-0.018479</td>\n", | |
" <td>0.013196</td>\n", | |
" <td>-0.014969</td>\n", | |
" <td>0.613581</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1stFlrSF</th>\n", | |
" <td>0.010496</td>\n", | |
" <td>-0.251758</td>\n", | |
" <td>0.457181</td>\n", | |
" <td>0.299475</td>\n", | |
" <td>0.476224</td>\n", | |
" <td>-0.144203</td>\n", | |
" <td>0.281986</td>\n", | |
" <td>0.240379</td>\n", | |
" <td>0.344501</td>\n", | |
" <td>0.445863</td>\n", | |
" <td>...</td>\n", | |
" <td>0.235459</td>\n", | |
" <td>0.211671</td>\n", | |
" <td>-0.065292</td>\n", | |
" <td>0.056104</td>\n", | |
" <td>0.088758</td>\n", | |
" <td>0.131525</td>\n", | |
" <td>-0.021096</td>\n", | |
" <td>0.031372</td>\n", | |
" <td>-0.013604</td>\n", | |
" <td>0.605852</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2ndFlrSF</th>\n", | |
" <td>0.005590</td>\n", | |
" <td>0.307886</td>\n", | |
" <td>0.080177</td>\n", | |
" <td>0.050986</td>\n", | |
" <td>0.295493</td>\n", | |
" <td>0.028942</td>\n", | |
" <td>0.010308</td>\n", | |
" <td>0.140024</td>\n", | |
" <td>0.174561</td>\n", | |
" <td>-0.137079</td>\n", | |
" <td>...</td>\n", | |
" <td>0.092165</td>\n", | |
" <td>0.208026</td>\n", | |
" <td>0.061989</td>\n", | |
" <td>-0.024358</td>\n", | |
" <td>0.040606</td>\n", | |
" <td>0.081487</td>\n", | |
" <td>0.016197</td>\n", | |
" <td>0.035164</td>\n", | |
" <td>-0.028700</td>\n", | |
" <td>0.319334</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>LowQualFinSF</th>\n", | |
" <td>-0.044230</td>\n", | |
" <td>0.046474</td>\n", | |
" <td>0.038469</td>\n", | |
" <td>0.004779</td>\n", | |
" <td>-0.030429</td>\n", | |
" <td>0.025494</td>\n", | |
" <td>-0.183784</td>\n", | |
" <td>-0.062419</td>\n", | |
" <td>-0.069071</td>\n", | |
" <td>-0.064503</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.025444</td>\n", | |
" <td>0.018251</td>\n", | |
" <td>0.061081</td>\n", | |
" <td>-0.004296</td>\n", | |
" <td>0.026799</td>\n", | |
" <td>0.062157</td>\n", | |
" <td>-0.003793</td>\n", | |
" <td>-0.022174</td>\n", | |
" <td>-0.028921</td>\n", | |
" <td>-0.025606</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>GrLivArea</th>\n", | |
" <td>0.008273</td>\n", | |
" <td>0.074853</td>\n", | |
" <td>0.402797</td>\n", | |
" <td>0.263116</td>\n", | |
" <td>0.593007</td>\n", | |
" <td>-0.079686</td>\n", | |
" <td>0.199010</td>\n", | |
" <td>0.287389</td>\n", | |
" <td>0.390857</td>\n", | |
" <td>0.208171</td>\n", | |
" <td>...</td>\n", | |
" <td>0.247433</td>\n", | |
" <td>0.330224</td>\n", | |
" <td>0.009113</td>\n", | |
" <td>0.020643</td>\n", | |
" <td>0.101510</td>\n", | |
" <td>0.170205</td>\n", | |
" <td>-0.002416</td>\n", | |
" <td>0.050240</td>\n", | |
" <td>-0.036526</td>\n", | |
" <td>0.708624</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BsmtFullBath</th>\n", | |
" <td>0.002289</td>\n", | |
" <td>0.003491</td>\n", | |
" <td>0.100949</td>\n", | |
" <td>0.158155</td>\n", | |
" <td>0.111098</td>\n", | |
" <td>-0.054942</td>\n", | |
" <td>0.187599</td>\n", | |
" <td>0.119470</td>\n", | |
" <td>0.085310</td>\n", | |
" <td>0.649212</td>\n", | |
" <td>...</td>\n", | |
" <td>0.175315</td>\n", | |
" <td>0.067341</td>\n", | |
" <td>-0.049911</td>\n", | |
" <td>-0.000106</td>\n", | |
" <td>0.023148</td>\n", | |
" <td>0.067616</td>\n", | |
" <td>-0.023047</td>\n", | |
" <td>-0.025361</td>\n", | |
" <td>0.067049</td>\n", | |
" <td>0.227122</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BsmtHalfBath</th>\n", | |
" <td>-0.020155</td>\n", | |
" <td>-0.002333</td>\n", | |
" <td>-0.007234</td>\n", | |
" <td>0.048046</td>\n", | |
" <td>-0.040150</td>\n", | |
" <td>0.117821</td>\n", | |
" <td>-0.038162</td>\n", | |
" <td>-0.012337</td>\n", | |
" <td>0.026673</td>\n", | |
" <td>0.067418</td>\n", | |
" <td>...</td>\n", | |
" <td>0.040161</td>\n", | |
" <td>-0.025324</td>\n", | |
" <td>-0.008555</td>\n", | |
" <td>0.035114</td>\n", | |
" <td>0.032121</td>\n", | |
" <td>0.020025</td>\n", | |
" <td>-0.007367</td>\n", | |
" <td>0.032873</td>\n", | |
" <td>-0.046524</td>\n", | |
" <td>-0.016844</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>FullBath</th>\n", | |
" <td>0.005587</td>\n", | |
" <td>0.131608</td>\n", | |
" <td>0.198769</td>\n", | |
" <td>0.126031</td>\n", | |
" <td>0.550600</td>\n", | |
" <td>-0.194149</td>\n", | |
" <td>0.468271</td>\n", | |
" <td>0.439046</td>\n", | |
" <td>0.276833</td>\n", | |
" <td>0.058543</td>\n", | |
" <td>...</td>\n", | |
" <td>0.187703</td>\n", | |
" <td>0.259977</td>\n", | |
" <td>-0.115093</td>\n", | |
" <td>0.035353</td>\n", | |
" <td>-0.008106</td>\n", | |
" <td>0.049604</td>\n", | |
" <td>-0.014290</td>\n", | |
" <td>0.055872</td>\n", | |
" <td>-0.019669</td>\n", | |
" <td>0.560664</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>HalfBath</th>\n", | |
" <td>0.006784</td>\n", | |
" <td>0.177354</td>\n", | |
" <td>0.053532</td>\n", | |
" <td>0.014259</td>\n", | |
" <td>0.273458</td>\n", | |
" <td>-0.060769</td>\n", | |
" <td>0.242656</td>\n", | |
" <td>0.183331</td>\n", | |
" <td>0.201444</td>\n", | |
" <td>0.004262</td>\n", | |
" <td>...</td>\n", | |
" <td>0.108080</td>\n", | |
" <td>0.199740</td>\n", | |
" <td>-0.095317</td>\n", | |
" <td>-0.004972</td>\n", | |
" <td>0.072426</td>\n", | |
" <td>0.022381</td>\n", | |
" <td>0.001290</td>\n", | |
" <td>-0.009050</td>\n", | |
" <td>-0.010269</td>\n", | |
" <td>0.284108</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>BedroomAbvGr</th>\n", | |
" <td>0.037719</td>\n", | |
" <td>-0.023438</td>\n", | |
" <td>0.263170</td>\n", | |
" <td>0.119690</td>\n", | |
" <td>0.101676</td>\n", | |
" <td>0.012980</td>\n", | |
" <td>-0.070651</td>\n", | |
" <td>-0.040581</td>\n", | |
" <td>0.102821</td>\n", | |
" <td>-0.107355</td>\n", | |
" <td>...</td>\n", | |
" <td>0.046854</td>\n", | |
" <td>0.093810</td>\n", | |
" <td>0.041570</td>\n", | |
" <td>-0.024478</td>\n", | |
" <td>0.044300</td>\n", | |
" <td>0.070703</td>\n", | |
" <td>0.007767</td>\n", | |
" <td>0.046544</td>\n", | |
" <td>-0.036014</td>\n", | |
" <td>0.168213</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>KitchenAbvGr</th>\n", | |
" <td>0.002951</td>\n", | |
" <td>0.281721</td>\n", | |
" <td>-0.006069</td>\n", | |
" <td>-0.017784</td>\n", | |
" <td>-0.183882</td>\n", | |
" <td>-0.087001</td>\n", | |
" <td>-0.174800</td>\n", | |
" <td>-0.149598</td>\n", | |
" <td>-0.037610</td>\n", | |
" <td>-0.081007</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.090130</td>\n", | |
" <td>-0.070091</td>\n", | |
" <td>0.037312</td>\n", | |
" <td>-0.024600</td>\n", | |
" <td>-0.051613</td>\n", | |
" <td>-0.014525</td>\n", | |
" <td>0.062341</td>\n", | |
" <td>0.026589</td>\n", | |
" <td>0.031687</td>\n", | |
" <td>-0.135907</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>TotRmsAbvGrd</th>\n", | |
" <td>0.027239</td>\n", | |
" <td>0.040380</td>\n", | |
" <td>0.352096</td>\n", | |
" <td>0.190015</td>\n", | |
" <td>0.427452</td>\n", | |
" <td>-0.057583</td>\n", | |
" <td>0.095589</td>\n", | |
" <td>0.191740</td>\n", | |
" <td>0.280682</td>\n", | |
" <td>0.044316</td>\n", | |
" <td>...</td>\n", | |
" <td>0.165984</td>\n", | |
" <td>0.234192</td>\n", | |
" <td>0.004151</td>\n", | |
" <td>-0.006683</td>\n", | |
" <td>0.059383</td>\n", | |
" <td>0.083757</td>\n", | |
" <td>0.024763</td>\n", | |
" <td>0.036907</td>\n", | |
" <td>-0.034516</td>\n", | |
" <td>0.533723</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Fireplaces</th>\n", | |
" <td>-0.019772</td>\n", | |
" <td>-0.045569</td>\n", | |
" <td>0.266639</td>\n", | |
" <td>0.271364</td>\n", | |
" <td>0.396765</td>\n", | |
" <td>-0.023820</td>\n", | |
" <td>0.147716</td>\n", | |
" <td>0.112581</td>\n", | |
" <td>0.249070</td>\n", | |
" <td>0.260011</td>\n", | |
" <td>...</td>\n", | |
" <td>0.200019</td>\n", | |
" <td>0.169405</td>\n", | |
" <td>-0.024822</td>\n", | |
" <td>0.011257</td>\n", | |
" <td>0.184530</td>\n", | |
" <td>0.095074</td>\n", | |
" <td>0.001409</td>\n", | |
" <td>0.046357</td>\n", | |
" <td>-0.024096</td>\n", | |
" <td>0.466929</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>GarageYrBlt</th>\n", | |
" <td>0.000072</td>\n", | |
" <td>0.085072</td>\n", | |
" <td>0.070250</td>\n", | |
" <td>-0.024947</td>\n", | |
" <td>0.547766</td>\n", | |
" <td>-0.324297</td>\n", | |
" <td>0.825667</td>\n", | |
" <td>0.642277</td>\n", | |
" <td>0.252691</td>\n", | |
" <td>0.153484</td>\n", | |
" <td>...</td>\n", | |
" <td>0.224577</td>\n", | |
" <td>0.228425</td>\n", | |
" <td>-0.297003</td>\n", | |
" <td>0.023544</td>\n", | |
" <td>-0.075418</td>\n", | |
" <td>-0.014501</td>\n", | |
" <td>-0.032417</td>\n", | |
" <td>0.005337</td>\n", | |
" <td>-0.001014</td>\n", | |
" <td>0.486362</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>GarageCars</th>\n", | |
" <td>0.016570</td>\n", | |
" <td>-0.040110</td>\n", | |
" <td>0.285691</td>\n", | |
" <td>0.154871</td>\n", | |
" <td>0.600671</td>\n", | |
" <td>-0.185758</td>\n", | |
" <td>0.537850</td>\n", | |
" <td>0.420622</td>\n", | |
" <td>0.364204</td>\n", | |
" <td>0.224054</td>\n", | |
" <td>...</td>\n", | |
" <td>0.226342</td>\n", | |
" <td>0.213569</td>\n", | |
" <td>-0.151434</td>\n", | |
" <td>0.035765</td>\n", | |
" <td>0.050494</td>\n", | |
" <td>0.020934</td>\n", | |
" <td>-0.043080</td>\n", | |
" <td>0.040522</td>\n", | |
" <td>-0.039117</td>\n", | |
" <td>0.640409</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>GarageArea</th>\n", | |
" <td>0.017634</td>\n", | |
" <td>-0.098672</td>\n", | |
" <td>0.344997</td>\n", | |
" <td>0.180403</td>\n", | |
" <td>0.562022</td>\n", | |
" <td>-0.151521</td>\n", | |
" <td>0.478954</td>\n", | |
" <td>0.371600</td>\n", | |
" <td>0.373066</td>\n", | |
" <td>0.296970</td>\n", | |
" <td>...</td>\n", | |
" <td>0.224666</td>\n", | |
" <td>0.241435</td>\n", | |
" <td>-0.121777</td>\n", | |
" <td>0.035087</td>\n", | |
" <td>0.051412</td>\n", | |
" <td>0.061047</td>\n", | |
" <td>-0.027400</td>\n", | |
" <td>0.027974</td>\n", | |
" <td>-0.027378</td>\n", | |
" <td>0.623431</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>WoodDeckSF</th>\n", | |
" <td>-0.029643</td>\n", | |
" <td>-0.012579</td>\n", | |
" <td>0.088521</td>\n", | |
" <td>0.171698</td>\n", | |
" <td>0.238923</td>\n", | |
" <td>-0.003334</td>\n", | |
" <td>0.224880</td>\n", | |
" <td>0.205726</td>\n", | |
" <td>0.159718</td>\n", | |
" <td>0.204306</td>\n", | |
" <td>...</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.058661</td>\n", | |
" <td>-0.125989</td>\n", | |
" <td>-0.032771</td>\n", | |
" <td>-0.074181</td>\n", | |
" <td>0.073378</td>\n", | |
" <td>-0.009551</td>\n", | |
" <td>0.021011</td>\n", | |
" <td>0.022270</td>\n", | |
" <td>0.324413</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>OpenPorchSF</th>\n", | |
" <td>-0.000477</td>\n", | |
" <td>-0.006100</td>\n", | |
" <td>0.151972</td>\n", | |
" <td>0.084774</td>\n", | |
" <td>0.308819</td>\n", | |
" <td>-0.032589</td>\n", | |
" <td>0.188686</td>\n", | |
" <td>0.226298</td>\n", | |
" <td>0.125703</td>\n", | |
" <td>0.111761</td>\n", | |
" <td>...</td>\n", | |
" <td>0.058661</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.093079</td>\n", | |
" <td>-0.005842</td>\n", | |
" <td>0.074304</td>\n", | |
" <td>0.060762</td>\n", | |
" <td>-0.018584</td>\n", | |
" <td>0.071255</td>\n", | |
" <td>-0.057619</td>\n", | |
" <td>0.315856</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>EnclosedPorch</th>\n", | |
" <td>0.002889</td>\n", | |
" <td>-0.012037</td>\n", | |
" <td>0.010700</td>\n", | |
" <td>-0.018340</td>\n", | |
" <td>-0.113937</td>\n", | |
" <td>0.070356</td>\n", | |
" <td>-0.387268</td>\n", | |
" <td>-0.193919</td>\n", | |
" <td>-0.110204</td>\n", | |
" <td>-0.102303</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.125989</td>\n", | |
" <td>-0.093079</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.037305</td>\n", | |
" <td>-0.082864</td>\n", | |
" <td>0.054203</td>\n", | |
" <td>0.018361</td>\n", | |
" <td>-0.028887</td>\n", | |
" <td>-0.009916</td>\n", | |
" <td>-0.128578</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3SsnPorch</th>\n", | |
" <td>-0.046635</td>\n", | |
" <td>-0.043825</td>\n", | |
" <td>0.070029</td>\n", | |
" <td>0.020423</td>\n", | |
" <td>0.030371</td>\n", | |
" <td>0.025504</td>\n", | |
" <td>0.031355</td>\n", | |
" <td>0.045286</td>\n", | |
" <td>0.018796</td>\n", | |
" <td>0.026451</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.032771</td>\n", | |
" <td>-0.005842</td>\n", | |
" <td>-0.037305</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.031436</td>\n", | |
" <td>-0.007992</td>\n", | |
" <td>0.000354</td>\n", | |
" <td>0.029474</td>\n", | |
" <td>0.018645</td>\n", | |
" <td>0.044584</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>ScreenPorch</th>\n", | |
" <td>0.001330</td>\n", | |
" <td>-0.026030</td>\n", | |
" <td>0.041383</td>\n", | |
" <td>0.043160</td>\n", | |
" <td>0.064886</td>\n", | |
" <td>0.054811</td>\n", | |
" <td>-0.050364</td>\n", | |
" <td>-0.038740</td>\n", | |
" <td>0.061466</td>\n", | |
" <td>0.062021</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.074181</td>\n", | |
" <td>0.074304</td>\n", | |
" <td>-0.082864</td>\n", | |
" <td>-0.031436</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.051307</td>\n", | |
" <td>0.031946</td>\n", | |
" <td>0.023217</td>\n", | |
" <td>0.010694</td>\n", | |
" <td>0.111447</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>PoolArea</th>\n", | |
" <td>0.057044</td>\n", | |
" <td>0.008283</td>\n", | |
" <td>0.206167</td>\n", | |
" <td>0.077672</td>\n", | |
" <td>0.065166</td>\n", | |
" <td>-0.001985</td>\n", | |
" <td>0.004950</td>\n", | |
" <td>0.005829</td>\n", | |
" <td>0.011723</td>\n", | |
" <td>0.140491</td>\n", | |
" <td>...</td>\n", | |
" <td>0.073378</td>\n", | |
" <td>0.060762</td>\n", | |
" <td>0.054203</td>\n", | |
" <td>-0.007992</td>\n", | |
" <td>0.051307</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>0.029669</td>\n", | |
" <td>-0.033737</td>\n", | |
" <td>-0.059689</td>\n", | |
" <td>0.092404</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>MiscVal</th>\n", | |
" <td>-0.006242</td>\n", | |
" <td>-0.007683</td>\n", | |
" <td>0.003368</td>\n", | |
" <td>0.038068</td>\n", | |
" <td>-0.031406</td>\n", | |
" <td>0.068777</td>\n", | |
" <td>-0.034383</td>\n", | |
" <td>-0.010286</td>\n", | |
" <td>-0.029815</td>\n", | |
" <td>0.003571</td>\n", | |
" <td>...</td>\n", | |
" <td>-0.009551</td>\n", | |
" <td>-0.018584</td>\n", | |
" <td>0.018361</td>\n", | |
" <td>0.000354</td>\n", | |
" <td>0.031946</td>\n", | |
" <td>0.029669</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.006495</td>\n", | |
" <td>0.004906</td>\n", | |
" <td>-0.021190</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>MoSold</th>\n", | |
" <td>0.021172</td>\n", | |
" <td>-0.013585</td>\n", | |
" <td>0.011200</td>\n", | |
" <td>0.001205</td>\n", | |
" <td>0.070815</td>\n", | |
" <td>-0.003511</td>\n", | |
" <td>0.012398</td>\n", | |
" <td>0.021490</td>\n", | |
" <td>-0.005965</td>\n", | |
" <td>-0.015727</td>\n", | |
" <td>...</td>\n", | |
" <td>0.021011</td>\n", | |
" <td>0.071255</td>\n", | |
" <td>-0.028887</td>\n", | |
" <td>0.029474</td>\n", | |
" <td>0.023217</td>\n", | |
" <td>-0.033737</td>\n", | |
" <td>-0.006495</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.145721</td>\n", | |
" <td>0.046432</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YrSold</th>\n", | |
" <td>0.000712</td>\n", | |
" <td>-0.021407</td>\n", | |
" <td>0.007450</td>\n", | |
" <td>-0.014261</td>\n", | |
" <td>-0.027347</td>\n", | |
" <td>0.043950</td>\n", | |
" <td>-0.013618</td>\n", | |
" <td>0.035743</td>\n", | |
" <td>-0.008201</td>\n", | |
" <td>0.014359</td>\n", | |
" <td>...</td>\n", | |
" <td>0.022270</td>\n", | |
" <td>-0.057619</td>\n", | |
" <td>-0.009916</td>\n", | |
" <td>0.018645</td>\n", | |
" <td>0.010694</td>\n", | |
" <td>-0.059689</td>\n", | |
" <td>0.004906</td>\n", | |
" <td>-0.145721</td>\n", | |
" <td>1.000000</td>\n", | |
" <td>-0.028923</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>SalePrice</th>\n", | |
" <td>-0.021917</td>\n", | |
" <td>-0.084284</td>\n", | |
" <td>0.351799</td>\n", | |
" <td>0.263843</td>\n", | |
" <td>0.790982</td>\n", | |
" <td>-0.077856</td>\n", | |
" <td>0.522897</td>\n", | |
" <td>0.507101</td>\n", | |
" <td>0.477493</td>\n", | |
" <td>0.386420</td>\n", | |
" <td>...</td>\n", | |
" <td>0.324413</td>\n", | |
" <td>0.315856</td>\n", | |
" <td>-0.128578</td>\n", | |
" <td>0.044584</td>\n", | |
" <td>0.111447</td>\n", | |
" <td>0.092404</td>\n", | |
" <td>-0.021190</td>\n", | |
" <td>0.046432</td>\n", | |
" <td>-0.028923</td>\n", | |
" <td>1.000000</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>38 rows × 38 columns</p>\n", | |
"</div>\n", | |
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-18b10443-39d8-4f59-a8e1-417883528e00')\"\n", | |
" title=\"Convert this dataframe to an interactive table.\"\n", | |
" style=\"display:none;\">\n", | |
" \n", | |
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
" width=\"24px\">\n", | |
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
" </svg>\n", | |
" </button>\n", | |
" \n", | |
" <style>\n", | |
" .colab-df-container {\n", | |
" display:flex;\n", | |
" flex-wrap:wrap;\n", | |
" gap: 12px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert {\n", | |
" background-color: #E8F0FE;\n", | |
" border: none;\n", | |
" border-radius: 50%;\n", | |
" cursor: pointer;\n", | |
" display: none;\n", | |
" fill: #1967D2;\n", | |
" height: 32px;\n", | |
" padding: 0 0 0 0;\n", | |
" width: 32px;\n", | |
" }\n", | |
"\n", | |
" .colab-df-convert:hover {\n", | |
" background-color: #E2EBFA;\n", | |
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
" fill: #174EA6;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert {\n", | |
" background-color: #3B4455;\n", | |
" fill: #D2E3FC;\n", | |
" }\n", | |
"\n", | |
" [theme=dark] .colab-df-convert:hover {\n", | |
" background-color: #434B5C;\n", | |
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
" fill: #FFFFFF;\n", | |
" }\n", | |
" </style>\n", | |
"\n", | |
" <script>\n", | |
" const buttonEl =\n", | |
" document.querySelector('#df-18b10443-39d8-4f59-a8e1-417883528e00 button.colab-df-convert');\n", | |
" buttonEl.style.display =\n", | |
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
"\n", | |
" async function convertToInteractive(key) {\n", | |
" const element = document.querySelector('#df-18b10443-39d8-4f59-a8e1-417883528e00');\n", | |
" const dataTable =\n", | |
" await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
" [key], {});\n", | |
" if (!dataTable) return;\n", | |
"\n", | |
" const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
" + ' to learn more about interactive tables.';\n", | |
" element.innerHTML = '';\n", | |
" dataTable['output_type'] = 'display_data';\n", | |
" await google.colab.output.renderOutput(dataTable, element);\n", | |
" const docLink = document.createElement('div');\n", | |
" docLink.innerHTML = docLinkHtml;\n", | |
" element.appendChild(docLink);\n", | |
" }\n", | |
" </script>\n", | |
" </div>\n", | |
" </div>\n", | |
" " | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 56 | |
} | |
], | |
"source": [ | |
"Matriz_De_Correlacion" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4b3e1609-c67c-4684-bcba-ef05e59b0b40", | |
"metadata": { | |
"id": "4b3e1609-c67c-4684-bcba-ef05e59b0b40" | |
}, | |
"source": [ | |
"Luego unas f,ax para declarar un plt.subplots" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3876930c-b1e2-4545-9bef-63f8331138f0", | |
"metadata": { | |
"id": "3876930c-b1e2-4545-9bef-63f8331138f0" | |
}, | |
"source": [ | |
"Y finalmente hacemos el sns.heatmap" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"id": "69c6237f-6f97-4c01-9fe7-311317d46970", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 553 | |
}, | |
"id": "69c6237f-6f97-4c01-9fe7-311317d46970", | |
"outputId": "5577aa9f-8491-4d7d-d7fa-f4c28ecd44f3" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1584x576 with 2 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKkAAAIYCAYAAACmBb9UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZxdRZ3//9c7nXQ6SSeArIEAQQxECKEJDcoeUBQ3BNldIKNjZFxm0AFlRn8YQVF/uOHgMsHBBEEWQTACEoQkgqwJZCUsYQkSlkBCWLJ3uj/fP261XJru9HqqO+n38/G4j5xTp0596ty+fe/Np6vqKCIwMzMzMzMzMzPrTn26uwNmZmZmZmZmZmZOUpmZmZmZmZmZWbdzksrMzMzMzMzMzLqdk1RmZmZmZmZmZtbtnKQyMzMzMzMzM7Nu5ySVmZmZmZmZmZl1OyepzMzMzMzMzMzsLSQdI+kxSU9IOreZ47tImi5ptqR5kj7c6ZgR0dk2zMzMzMzMzMxsMyGpAngcOBpYAswETouIhWV1JgKzI+JXkvYCbomI4Z2J65FUZmZmZmZmZmZW7kDgiYh4KiLWA1cDH29SJ4AhaXsL4PnOBu3b2QbMzMzMzMzMzGyzshPwbNn+EuA9TepMAG6T9BVgEPD+zgZ1kiqTumVPFT6v8op9zys6BABrMo2/W6c8cXINJxxSnydOjp9PpkthVaYfzpYNeeJsbjZkiDEg04z0XC+B1zK9prfKdEG5nre1GT4PqjK91nJ95gxsyHNBK/vk+bAekOnFtqIiT5zKDD+e/pvZih6vZfrZVGV6reV6L8jxmt4q0xfDrTfk+eG81C/PT2dgptdarv9T5fisBvjKs1dkitRzFJVLqNx29y8A48uKJkbExHY2cxowKSJ+LOkg4HeSRkVEh1/hTlK1g6SVEVHdTPkk4KaIuC5/r8zMzMzMzMzM2i4lpDaWlHoO2Llsf1gqK/c54JjU3r2SqoBtgJc62i+vSWVmZmZmZmZm1hM11BfzaN1MYISk3SRVAqcCU5rU+QfwPgBJ7waqgJc7c7keSdUBkgT8D6VV7p8F1ndvj8zMzMzMzMzMukZEbJD0ZWAqUAFcFhEPSzofmBURU4D/BC6V9FVKi6iPi4hOTU90kqpjjgf2BPYCtgcWApd1a4/MzMzMzMzMbPPS8eWdOh864hbgliZl55VtLwQO6cqYnu7XMYcDV0VEfUQ8D0zr7g6ZmZmZmZmZmW3KnKQqkKTxkmZJmvWby6/q7u6YmZmZmZmZ2aakoaGYRw/l6X4dcyfwBUmTge2AI4HfN61Uvlp+UbeNNDMzMzMzM7PNU3TjdL/u4CRVx9wAHEVpLap/APd2b3fMzMzMzMzMzDZtTlK1Q0RUp38D+HI3d8fMzMzMzMzMNmc9eGpeEbwmlZmZmZmZmZmZdTuPpMrkin3Pa71SJ3167vmFxwDYY8/js8T5yOCRWeIctL5fljj/yBOGneuKj1FBniXWtmhQljjP9N28loxbqg1Z4ixuWFl4jHry/OXod6NWZ4kzfc6wLHGqMq1d8GLfiixxKjP8iu61YW3xQYDBVeuyxPlb/RZZ4py8+5IscaY9vlOWOGv65Pnc2X1t8e/TC/vn+Zq/vE+e95ud6/P8bT3yvATI8HUNgD4Z3j9XZxr20Kfv5jW+YmWmy6nPE4aXKzav79M9Si9bk6rwXw1JIemKsv2+kl6WdFPa317STZLmSloo6ZZU3kfSzyUtkDRf0kxJu7USa5KkE1s4dqCkOyU9Jmm2pN9IGihpnKRLuvKazczMzMzMzMysfXL8iWUVMErSgIhYAxwNPFd2/HzgrxFxMYCk0an8FGBHYHRENEgaltpqN0nbA38ATo2Ie1PZicDgjrRnZmZmZmZmZla4hlzj4XqGXGMmbwE+krZPA64qOzYU+OdY8YiYV1b+QqT7LUbEkohYASDpn3NMJJ0oaVJZe++XNEvS45I+msq+BExuTFCl9q6LiKXlnZT0MUn3p5FWt6fkFpKOkDQnPWZLGixpaBqZNSeN9jqsw8+OmZmZmZmZmVlT0VDMo4fKlaS6GjhVUhUwGri/7NgvgP+TNF3SNyXtmMqvBT6WkkA/lrRfG2MNBw6klBT7dYo5CniwDef+HXhvROyX+vz1VH428KWIqAEOA9YAnwSmprJ9gTlt7J+ZmZmZmZmZmTWRZUXFiJgnaTilUVS3NDk2VdI7gWOADwGzJY2KiCWS9gSOSo87JJ0UEXe0Eu7aNPpqkaSngPasvj0MuEbSUKASeDqV3w38RNKVwB9T32YCl0nqB9wYEU5SmZmZmZmZmVnXaei5o56KkPMWCVOAH/HWqX4ARMQrEfH7iPgMMBM4PJWvi4i/RMQ5wIXAcY2nlJ1e1bS5ZvYfBvZvQx//B7gkIvYBvtDYdkT8APhXYABwt6SREXFn6udzwCRJpzdtTNL4NPVw1oxVi9oQ3szMzMzMzMysd8qZpLoM+E5EzC8vlHSUpIFpezCwO/APSWMap/5J6kNpmuAz6bSlkt6dyo9vEuekdGfA3YF3Ao8BlwBnSHpPWdxPNK45VWYL3lzU/YyyurtHxPyI+CGlJNpISbsCSyPiUuA3wJimFxwREyOiNiJqxw4a0bZnyczMzMzMzMwMiGgo5NFTZZnuB6WFz4GfN3Nof+ASSRsoJc1+ExEzJR0DXCqpf6r3AKVkE8C5wE3Ay8AsoLqsvX+kukOAMyNiLbBW0qnAjyRtBzQAdwK3NunLBOAPklYA04DdUvlZko5M5z0M/AU4FThHUh2wEnjbSCozMzMzMzMzsw7rZdP9Ck9SRUR1M2UzgBlp+yLgombq3Mrbk0iNx64DrmumfNxG+nEvpUXPm5qUHkTEn4A/NXPuV5o5b3J6mJmZmZmZmZlZJ2UbSWVmZmZmZmZmZu3Qg6fmFSHnmlRmZmZmZmZmZmbN8kiqTNZkSAfusWfTNeSL8fhjN2SJs+6is7PEWTFtWZY4V7w0NEucXRvWFh5jVeR569h1yOtZ4hw+qC5LnJlLt8sS531syBJnn+OL/6tOnx3eUXgMgBm/2DJLnA0VWcIw9qQ3ssS575pBWeI8Wdmv8BhbD1ldeAyABW9slSXOJ4Y/nyXODU8OyxLn1CPzXM/qp5veJLoYM58q/jvBZ3Z/tvAYAP13yPM37/umNb3fUTG27rsuS5x5yvP+uVNd8Z/Va6XCYwDUbPFKljh3rtw6S5z+ed5uaMjz4+Frh7yQJ1Bv1FDf3T3IKsuniqSV7ag7rvGufml/hqTHJM1JjxO7oD/HSdqrs+2YmZmZmZmZmRUmGop59FA9cSTVOGABUP4ns09FxKzmKkuqiIj2phaPo3R3wIUd6qGZmZmZmZmZmXWpbluTSlKNpPskzZN0g6St0iipWuDKNGpqQAvnLpb0Q0kPASdJOk3SfEkLJP2wrN5KSd+TNDfF2l7SwcCxwEUpxu6SPi9pZqp3vaSB6fzd03nzJX23fESYpHPSOfMkfafQJ8vMzMzMzMzMep+GhmIePVR3Lpx+OfCNiBgNzAe+HRHXAbMojZyqiYg1qW5j0mqOpMZJwssjYgxwJ/BD4CigBjhA0nGpziDgvojYN9X7fETcA0wBzkkxngT+GBEHpHqPAJ9L518MXBwR+wBLGjsu6QPACODAFHN/SYd39RNkZmZmZmZmZtZbdEuSStIWwJYR8bdUNBnYWJKnMWlVExHLU9k16d8DgBkR8XJEbACuLGtrPaVpfQAPAsNbaH+UpLskzQc+Beydyg8C/pC2f19W/wPpMRt4CBhJKWllZmZmZmZmZtY1etmaVN05kqqzVrWhTl1ENN43oZ6W1+CaBHw5jZj6DlDVSrsCvl+WOHtXRPzf2ypJ4yXNkjTr7ysXtaG7ZmZmZmZmZma9U7ckqSLiNWCFpMNS0WeAxlFVbwCD29HcA8ARkraRVAGcVtZWS5rGGAy8IKkfpZFUje4DTkjbp5aVTwU+K6kaQNJOkt52b/mImBgRtRFRe2i1B1qZmZmZmZmZWTv0sjWpct3db6CkJWX7PwHOAH6dFil/CviXdGxSKl9DabrdRkXEC5LOBaZTGuF0c0T8qZXTrgYulfTvwInA/wfcD7yc/m1MYJ0FXCHpm8CtwGsp5m2S3g3cKwlgJfBp4KXW+mtmZmZmZmZm1hYR9d3dhayyJKkioqURW+9tpu71wPVlRWObqTO8yf5VwFXN1Ksu274OuC5t3w3sVVb1V+nR1HPAeyMiJJ0K7FnW3sWUFlY3MzMzMzMzM7NOyjWSalO1P3CJSsOlXgU+2839MTMzMzMzM7Peogcvcl4EJ6k2IiLuAvbtirbWqSta2biPDB5ZfBBg3UVnZ4nT/5wfZYnz+KT/yhJnq8osYXiiorV1/zcd/V5vz/J0Hbdrv1ezxNm6oS5LnPn9BmSJs+vsFYXH6D9kSeuVusDqPsOyxFnZJ8OHAfD6zNVZ4mxdWZElzqsbiv+68vLrAwuPAfBGRZ7XwJNPb50lzoZ+WcLw/H153te2Gprnd2dxZfHLwu60aKvCYwD0X5xnGsoOVXl+Ns+vzfNesCbT98IVFcW/1gY0ROuVusATK7bMEqe6Is/15PpOUJcnDKufzvO85XkVWHfaZO/uJ2llO+qOk7Rjk7JtJNVJOrPre2dmZmZmZmZm1km9bOH0TTZJ1U7jgB2blJ1E6e59p7V0UrpboJmZmZmZmZlZftFQzKOH2qySVJJqJN0naZ6kGyRtJelEoBa4UtIcSY3jxU8D/hPYSdKwsjZWSvqxpLnAQZI+LemBdO7/NiauJP1K0ixJD0v6Tu5rNTMzMzMzMzPbnGxWSSrgcuAbETEamA98O93VbxbwqYioiYg1knYGhkbEA8C1wCllbQwC7o+IfYHl6dghEVED1AOfSvW+GRG1wGjgCEmjc1ygmZmZmZmZmfUSDfXFPHqozSZJJWkLYMuI+Fsqmgwc3kL1UyglpwCu5q1T/uqB69P2+yjd4W+mpDlp/53p2MmSHgJmA3sDe3XFdZiZmZmZmZmZ9Ua99e5+pwE7SGocFbWjpBERsQhYGxGNaUUBkyPiLbd/k7QbcDZwQESskDQJeNst1SSNB8YDnLTVgRxUPaKYqzEzMzMzMzOzzU8PXj+qCJvNSKqIeA1YIemwVPQZoHFU1RvAYABJewDVEbFTRAyPiOHA92l+AfU7gBMlbZfOfYekXYEhwCrgNUnbAx9qoU8TI6I2ImqdoDIzMzMzMzOzdulld/fblEdSDZS0pGz/J8AZwK8lDQSeAv4lHZuUytcAN6RHueuBa4DzywsjYqGkbwG3SeoD1AFfioj7JM0GHgWeBe7u0iszMzMzMzMzM+tlNtkkVUS0NArsvc3UvZ4315lqrq15wLvTdnWTY9dQSmA1PWdcO7prZmZmZmZmZtY+nu5nZmZmZmZmZmaW1yY7kmpTkyMbeND6fhmiwIppy7LEeXzSf7VeqQsc/vD3s8SZVvutLHG+9aM9iw+ydk3xMYD6uQuzxFk+I88tWO+vqswS5/N7PZslzqATDyg8RixbXngMgLENT2WJc8VjO2eJ846vfyBLnMfOfChLnGf6q/gYVPGlC4YVHuddl95feAyABYu2yxLn/j6rs8QZd2L/LHFiVWSJM/7zxb/W2PIdxccAeOO1LGFe+kme351h2+e5nmmP7JglTk19ReEx6iSqM6xvU6fiPwsAXuybJ8471+cZHbO4Ms+4lG1vnJglTq/Ug9ePKoJHUpmZmVmvlyNBZWa2OcqRoDKz3iNbkkrSMEl/krRI0pOSLpZU6LACSSvTv8MlLSgrP1TSA5IelfSYpC92RRwzMzMzMzMzsy7Ty+7ulyVJJUnAH4EbI2IEsAdQDXyvk+22e7qipB2A3wNnRsRI4BDgc5KO70xfzMzMzMzMzMy6UkR9IY+eKtdIqqOAtRHxW4AoPSNfBT6bRjTt3VhR0gxJtZIGSbosHZ8t6ePp+DhJUyRNA+6QVC3pDkkPSZrfWG8jvgRMioiHUl+WAV8HzkntT5J0Yll/GkdjtTeOmZmZmZmZmZm1Ua6F0/cGHiwviIjXJf0DuBk4Gfi2pKHA0IiYJelCYFpEfFbSlsADkm5Pp48BRkfEK2k01fGpvW2A+yRNiYiWVr7cG5jcpGwWsFcr17C2nXHMzMzMzMzMzDquB0/NK0JPWDh9BtA4culk4Lq0/QHgXElzUp0qYJd07K8R8UraFnChpHnA7cBOwPYF9DNXHDMzMzMzMzOzXidXkmohsH95gaQhlJJOM4HlkkYDpwDXNFYBToiImvTYJSIeScdWlTX1KWBbYP+IqAGWUkpotbkvaX9W2t5Ael4k9QEaF3dvbxwkjZc0S9Kse1Yu2lhVMzMzMzMzM7O3ioZiHj1UriTVHcBASacDSKoAfkxpbajVlBJTXwe2iIh56ZypwFfSoutI2q+FtrcAXoqIOklHAru20pdfAOMk1aR2t6a0gPsF6fhi3kxiHQv062AcImJiRNRGRO3B1SNaq25mZmZmZmZm9ibf3a/rpXWbjgdOkrQIeJzSGk//napcB5wKXFt22gWUEkTzJD3Mm0mkpq4EaiXNB04HHm2lLy8AnwYmSnoMeB74eUT8LVW5FDhC0lzgIN4ctdWuOGZmZmZmZmZm1na5Fk4nIp4FPtbCsaVN+xIRa4AvNFN3EjCpbH8ZpWRSc+1Wp38XA6PKyu8EDgSQ9EXgvyXdGhErUl/eW9bMN9oax8zMzMzMzMysy/TgqXlF6AkLp3eriPhlROwTESu6uy9mZmZmZmZmZr2VSjPxrGi/3enThT/RL2YbF5fHVpkSxs9W5Ak0YdZ3s8QZOfLE1it10s/67ll4DIDbq/K8P+0UeX55dq7Lcz13V27IEmc19YXHqMr0t5SD11e2XqkLNChLGJ7qm+e1VkWeCzp43brCY/y6f57fm70ZmCXOjhvy/Gye7JfnM3RQ5HkvqM703eO3GxYXHmPvyu0KjwEwUBVZ4ozZ0D9LnNWZ/oT/zvV5XmyvVRR/QQMb8nzmLK/I8762w4Y8P5sX++Z5sW1Zn+fn80ier1JMeObKTN+meo41t/2ykB/igA98sUc+l4X+ZkgaJulPkhZJelLSxZIKfflKWpn+HS5pQVn5gZLulPSYpNmSfiOp098UJU2QdHZn2zEzMzMzMzMzewvf3a9rpLvy/RG4MSJGAHsA1ZTupNeZdts95EHS9sAfgG9ExJ4RsR9wKzC4M30xMzMzMzMzM7OuUeRIqqOAtRHxW4CIqAe+CnxW0gOS9m6sKGmGpFpJgyRdlo7PlvTxdHycpCmSpgF3SKqWdIekhyTNb6y3EV8CJkfEvY0FEXFdRCyV9A5JN0qaJ+k+SaNTzAmpLzMkPSXp38v6+01Jj0v6O5Bn3pOZmZmZmZmZ9S4NDcU8eqgiF2LZG3iwvCAiXpf0D+Bm4GTg25KGAkMjYpakC4FpEfFZSVsCD0i6PZ0+BhgdEa+k0VTHp/a2Ae6TNCVaXmBrFDC5hWPfAWZHxHGSjgIuB2rSsZHAkZRGXD0m6VfAaODUVKcv8FDT6zQzMzMzMzMzs/bprqW2ZwC/BL5NKVl1XSr/AHBs2RpPVcAuafuvEfFK2hZwoaTDgQZgJ2B74MUO9OVQ4ASAiJgmaWtJQ9KxmyNiHbBO0kspxmHADRGxGkDSlA7ENDMzMzMzMzPbuB486qkIRU73WwjsX16Qkj+7ADOB5Wlq3SnANY1VgBMioiY9domIR9KxVWVNfQrYFtg/ImqApZQSWi15uGlf2qj8dkL1tDOpJ2m8pFmSZs1YtagD4c3MzMzMzMzM8pN0TLr53BOSzm2hzsmSFkp6WNLvOxuzyCTVHcBASacDSKoAfgxMSqOQrgG+DmwREfPSOVOBr6RF15G0XwttbwG8FBF1ko4Edm2lL5cAZ0h6T2OBpE+kBdXvopT0QtJYYFlEvL6Rtu4EjpM0QNJg4GMtVYyIiRFRGxG1YweNaKWLZmZmZmZmZmZluunufimH8wvgQ8BewGmS9mpSZwTwX8AhEbE3cFZnL7ewJFVaH+p44CRJi4DHgbXAf6cq11Fa2+nastMuAPoB8yQ9nPabcyVQK2k+cDrwaCt9WZpi/ShlAR8BPgi8AUwA9pc0D/gBcEYrbT1EKcE2F/gLpVFhZmZmZmZmZmZdq/sWTj8QeCIinoqI9cDVQNOb1n0e+EVErACIiJc6e7mFrkkVEc/SwkijlDjq26RsDfCFZupOAiaV7S8DDmqh3er072JKC6Y3lt9LaT2pplYDxzXTzoQm++VtfQ/4XnPxzczMzMzMzMw2cTsBz5btLwHe06TOHgCS7gYqgAkRcWtngnbXwulmZmZmZmZmZrYxbZia1xGSxgPjy4omRsTEdjbTFxgBjAWGAXdK2iciXu1ov5ykymRNkat/JTvXFR8DYNeGtVniPFGxsbXwu863frRnljgjR56YJc6jj17XeqVO2nDXta1X6gIHX/aXLHFWv5jnrfCql4ZmiXNG3foscUZ+vPj3gtUL1xQeA+CmJ4ZliTOjYnWWON/sn+d9esOGDB9uwNTKLQuPsX/058wvFH89y65/vvAYAJOXb58lznNvucdMcU5b2y9LnK365rmeM+dfXniMDX/6ZeExAGLZ8ixxXrziuSxx1q7O81r7yKolWeJ8t88+hcd4olKFxwDYuj5LGJ6qzPPZtmWm61neN8/P5+v/tXWWONZ1UkJqY0mp54Cdy/aHpbJyS4D7I6IOeFrS45SSVh1eFinPb6CZmZlZD5YjQWVmZmbWbt23JtVMYISk3SRVUlrne0qTOjdSGkWFpG0oTf97qjOX26O/kank75I+VFZ2kqROzXGUVC9pjqS5kh6SdHAbzvlN40r2khZL2kbSlpK+2Jm+mJmZmZmZmZk1q5vu7hcRG4AvA1OBR4BrI+JhSedLOjZVmwosl7QQmA6cExGdGmLbo6f7RURIOhP4g6TplPp7IXBMR9qT1Dc90WsioiaVfRD4PnBEK33512aKtwS+COQZT21mZmZmZmZmlkFE3ALc0qTsvLLtAL6WHl2iR4+kAoiIBcCfgW8A5wFXAN+U9ICk2ZI+DiBpuKS70siof46OkjQ2lU8BFjYTYgiwoqzuTY0HJF0iaVzaniGptsm5PwB2T6OyLurSCzczMzMzMzOz3q37pvt1ix49kqrMd4CHgPXATcC0iPispC2BByTdDrwEHB0RayWNAK4CGpNKY4BREfF02h8gaQ5QBQwFjupgv85N7dZ08HwzMzMzMzMzM2MTSVJFxCpJ1wArgZOBj0k6Ox2uAnYBngcukVQD1FNasKvRA2UJKnjrdL+DgMsljSr6OszMzMzMzMzM2qwHj3oqwiaRpEoa0kPACRHxWPlBSROApcC+lKYxlt9/e1VLjUbEvWkV+m2BDbx1CmRVZzosaTwwHuC0LQ/k0OoRnWnOzMzMzMzMzHqTiO7uQVY9fk2qZkwFviJJAJL2S+VbAC9ERAPwGaCiLY1JGpnqLgeeAfaS1D9NJXxfK6e/AQxu6WBETIyI2oiodYLKzMzMzMzMzKxlm9JIqkYXAD8D5knqAzwNfJTSHfaul3Q6cCsbGT3Fm2tSQWlk1hkRUQ88K+laYEFqd/bGOhIRyyXdLWkB8JeIOKczF2ZmZmZmZmZm9k+e7tczRcSEst0vNHN8ETC6rOgbqXwGMKNJ3RZHWUXE14GvN1M+tmx7eNn2JzfeczMzMzMzMzMza80mk6QyMzMzMzMzM+tVPJLKilCfIUYFeRZUWxWb2ctm7ZosYX7Wd88scTbcdW3hMfoednLhMQCe/9rdWeK8vqZ/ljjr+uf5Ha2q3JAlzprHVhceY+3r/QqPAbB3Q/HXAvBixYAscbbaaXmWOI89sl2WOANyvAxW5/kseOPVTt2Tpc0GhrLEqVKblgDttGHVb2SJ89LKgVnibJh7e+Ex6h99svAYAA2vrMwSp64uz/fPqoF1WeIctOGdWeL0XV/8d49+md5vci2mnOnrWtsWUO4CW+T4jyhAXZ7fHdv8tfq7rpK/S/pQWdlJkm7tTGBJ9ZLmSFog6c9pofIsJI2TdEmTsjmSrt7IOWMl3dTCscXpDoFmZmZmZmZmZl0jGop59FCtJqkiIoAzgZ9IqpJUDVwIfKkjASU1/hlkTUTURMQo4JWOttcVJL2bUjL7MEmDuqsfZmZmZmZmZmb/1NBQzKOHatOoyYhYAPyZ0mLk5wFXAN+U9ICk2ZI+DiBpuKS7JD2UHgen8rGpfAqwsJkQ9wI7pbq7S7pV0oPpnJGpfJKkX0m6T9JTqc3LJD0iaVJjQ5JOkzQ/jdD6YVn5v0h6XNIDwCFN4p8G/A64Dfh42TnHSHpU0kPAJ8rKt5Z0m6SHJf2G0h0CzczMzMzMzMysg9oztfc7wCeBDwFVwLSIOBA4ErgojUB6CTg6IsYApwA/Lzt/DPAfEbFHeaOSKoD3AVNS0UTgKxGxP3A28Muy6lsBBwFfTfV/CuwN7COpRtKOwA+Bo4Aa4ABJx0kamvp/CHAosFeTazsFuBq4ilLCCklVwKXAx4D9gR3K6n8b+HtE7A3cAOzS6rNnZmZmZmZmZtYeEcU8eqg2r0AYEaskXQOsBE4GPibp7HS4ilKi5nngEkk1lNYKL09IPRART5ftD5A0h9IIqkeAv6aphAcDf5D+OTipfEXjP0dESJoPLI2I+QCSHgaGA7sCMyLi5VR+JXB4Ore8/JrGvkmqBZZFxD8kPQdcJukd6XqejohFqd4VwPjU1uGkkVURcbOkFW19Hs3MzMzMzMzM7O3ae5uMhvQQcEJEPFZ+UNIEYCmwL6VRWmvLDq9q0taaiKiRNBCYSmlNqknAqxFR00L8dWX9WFdW3pCupSO3FDgNGClpcdofApwAzOxAW28haTwpsXXKlgdySPWIzjZpZmZmZmZmZr1FD14/qggdvZPnVOArSsOdJO2XyrcAXoiIBuAztOHOmhGxGvh34D+B1cDTkk5K7UrSvu3o1wPAEZK2SdMITwP+BtyfyreW1A9obL8PpVFh+0TE8IgYTmlNqtOAR4HhknZPbZ9WFudOSlMfSXc93KqFa5sYEbURUesElZmZmZmZmZm1ixdOb5MLgH7AvDTV7oJU/kvgDElzgZG8fSuSzNQAACAASURBVPRUsyJiNjCPUiLoU8DnUhsPU7aQeRvaeQE4F5gOzAUejIg/pfIJlBZov5vS9EKAw4DnIuL5smbupLRm1VaURkHdnBZOf6mszneAw9O1fwL4R1v7aGZmZmZmZmZmb9eu6X4RMaFs9wvNHF8EjC4r+kYqnwHMaFK3usn+x8p2j2mm7XFl24uBUS0cu4rSAuhNz/8t8Num5cB7m9Sr581F0l+glGxr2tZy4APNtGVmZmZmZmZm1jWi5456KkJHR1KZmZmZmZmZmZl1mfYunG4dtCpDOnCLBrVeqQvsOuT1LHH6vT44S5z6uQuzxLm9amCWOAdf9pfCYzz/tbsLjwEwcubFWeK8fOznssSJ53bMEmf56qoscXYZtrrwGJXb1BceA+C1Vzpy3432a4gBWeIMfHee95uVC1tderJLDMnwMrjht/15/7uWFB6nb988P5v9VuV5Tat/ZZY4Ww9/qfVKXWDwqrWtV+oCy869pvAYQ/YqPAQA6pvnb96rVuV5ra2q65clzrCqPHHW9Cn+/we7r88zymNFRZ7X2rpMwzj6bG7DRVav6e4ebLaiIbq7C1kV/qshKSRdUbbfV9LLkm7qQFvTJX2wSdlZkn7VgbYa+/GD9p5rZmZmm5ccCSozMzOzdvPC6V1uFTBKUuOfj48GnutgW1cBpzYpO5Vm1qBqSbrrX2M/HgdOarxL4UbqmpmZmZmZmZlZgXINMrwF+EjaPo2ypJKkAyXdK2m2pHsk7ZnK95b0gKQ5kuZJGgFcB3xEUmWqMxzYEbhL0lhJMyRdJ+lRSVc2Jp8kLZb0w3SXvpPK+nExpTvzHVTWn7fUlfSB1L+HJP1BUnWqd56kmZIWSJrYUqLLzMzMzMzMzKxDoqGYRw+VK0l1NXCqpCpKd/+7v+zYo8BhEbEfcB5wYSo/E7g4ImqAWmBJRLwCPAB8KNU5Fbg2Ihonae4HnAXsBbwTOKQszvKIGBMRV6d+vB/4M6WE2WlN+rs8IsYAtwPfAt6f9mcBX0t1LomIAyJiFDAA+GhHnhgzMzMzMzMzM8uUpIqIecBwSsmgW5oc3gL4g6QFwE+BvVP5vcB/S/oGsGtENK7EVj7lr+lUvwciYklENABzUsxG5StUfhSYntq8HjiuydS+xrrvpZTwulvSHOAMYNd07EhJ90uaDxxV1m8zMzMzMzMzs85riGIePVTOewpMAX7E29ePuoBSwmgU8DGgCiAifg8cC6wBbpF0VKr/J+B9ksYAAyPiwbK21pVt1/PWuxeuKts+DXi/pMXAg8DWlBJNTesK+GtE1KTHXhHxuTQS65fAiRGxD3BpY7/LSRovaZakWQ+sXNTiE2NmZmZmZmZm9jZeOL0wlwHfiYj5Tcq34M2F1Mc1Fkp6J/BURPycUmJqNEBErASmp/bavGB6WbtDgMOAXSJieEQMB77E26f8AdwHHCLpXencQZL24M2E1LK0RtWJzcWKiIkRURsRtQdWj2hvV83MzMzMzMzMeo1sSao0De/nzRz6/4HvS5rNW0c+nQwsSNPsRgGXlx27CtiXDiSpgOOBaRFRPurqT8DHJPVv0ueXKSXOrpI0j9IUxJER8Sql0VMLgKnAzA70w8zMzMzMzMysZb1sJFXf1qt0TkRUN1M2A5iRtu8F9ig7/K1U/gPgBy20eSOlqXjNtpn2v1y2PbxsezIwucm5rwDbpt3hTY5NAw5opg/fauyrmZmZmZmZmZl1TuFJKjMzMzMzMzMz64DouYucFyHnmlRmZmZmZmZmZmbN8kiqTLbMMOXzmb55MqyHD6rLEmfXfq9mibN8Rn2WODvFkCxxVr9Y/K/162v6t16pC7x87OeyxNl2yv9liVO5/3lZ4rx/xT1Z4rx+ULP3jOhS8fzSwmMATLw/z/vn0CxR4IXpea7nyGs+kCXObafeXniMex7fsfAYAMv75vn74KIBeT7bqsjzWpvx2E5Z4hw6/IUscV54tvjvBHVrVxceA2DwDutar9QFBg3K89+WV1fk+Y6j1qt0iUz/Pcji3ZHnNT2/YWCWOOsyvQgGZVp6qP7pPO+fvVIPXj+qCNlGUkmqlzRH0lxJD0k6uAvarJH04bL9cZJeTnHmSLpc0rGSzm2lnT6Sfi5pgaT5kmZK2i0dW5zKGts8OJXfKulVSTd19jrMzMzMzMzMzN6mIYp59FA5R1KtiYgaAEkfBL4PHNHJNmuAWuCWsrJryhdNT6a00s4pwI7A6IhokDQMWFV2/MiIWNbknIuAgcAX2t9tMzMzMzMzMzMr111rUg0BVgBIGirpzjRKaYGkw1L5SkkXSXpY0u2SDpQ0Q9JTaXRUJXA+cEo695TmAqXRVZek7UlpxNQ9qZ3GuSpDgRciogEgIpZExIqNXUBE3AG80RVPhpmZmZmZmZnZ20RDMY8eKudIqgGS5gBVlJJCR6XyTwJTI+J7kioojU4CGARMi4hzJN0AfBc4GtgLmBwRUySdB9Q2jpySNI5S0urQ1MbF8LbFEoYChwIjKY2wug64Fvh7SpDdAVwREbPLzpkuqR5YFxHv6Yonw8zMzMzMzMzM3tRd0/0OAi6XNAqYCVwmqR9wY0TMSfXXA7em7fmUEkR1kuYDwzcS5y3T/VLiqtyNacTUQknbQ2nklKQ9KSXOjgLukHRSGi0FzU/3MzMzMzMzMzMrTg9eP6oI3TLdLyLuBbYBto2IO4HDgeeASZJOT9XqIqLxp9EArEvnNtC55Fr5LUj+eU+FiFgXEX+JiHOAC4HjOhGj1Lg0XtIsSbPuWrmos82ZmZmZmZmZWS8SDQ2FPHqqbklSSRoJVADLJe0KLI2IS4HfAGPa0dQbwOAu6M8YSTum7T7AaOCZzrYbERMjojYiag+rHtHZ5szMzMzMzMzMNlvdsSYVlEYwnRER9ZLGAudIqgNWAqe31EAzpgPnpna/34m+bQdcKql/2n8AuGRjJ0i6i9K6VtWSlgCfi4ipneiDmZmZmZmZmdmbetl0v2xJqoioaKF8MjC5mfLqsu0JzR2LiFeAA5qcOqlJ3UmNZRExroV2buXN9a+a9mN4C+WHNVduZmZmZmZmZmbtl3MklZmZmZmZmZmZtVX03PWjiqA31ya3Iv16508X/kS/3CfPz3Lk+ixh2LqhLkuc+6sqs8QZXpfn5/NsP7VeqZPWkedacr07VVL8cwbwnw+enyXOJ/f/apY4Z66tKjxGro/kaQOaHezb5faoy7MU5JpMK06+lzeyxHm2blDhMWb3z/M+sEXkidMv0xvo2jyXk+ldGnbJ9Fk9t3/xcbZqyPNGkOFSANi5Ls8nwkt98zxv1Zmm77zYt/jfnnev21B4DIDX+uT5rH69Is87zrpMb2xb1eeJ81qeHw9ffPaKXB8JPcaq8z9VyBvGoPOu7JHPZbaF0yXVS5ojaa6khyQd3AVt1kj6cNn+OEkvpzhzJF0u6VhJ57bSTh9JP5e0QNJ8STMl7ZaOLU5ljW0enOLeK+lhSfMkndLZazEzMzMzMzMz681yTvdbExE1AJI+SGmh8yM62WYNUAvcUlZ2TUR8uUm9Ka20cwqwIzA6IhokDQNWlR0/MiKWNe5I2gM4PSIWpbsCPihpakS82uErMTMzMzMzMzMr19C7pvtlG0nVxBBgBYCkoZLuTKOUFkg6LJWvlHRRGq10u6QDJc2Q9FQaHVUJnA+cks5tdjRTGl11SdqelEZM3ZPaOTFVGwq8EFGa7BkRSyJiRUudj4jHI2JR2n4eeAnYtkueGTMzMzMzMzOzXijnSKoBkuYAVZSSQkel8k8CUyPie5IqgIGpfBAwLSLOkXQD8F3gaGAvYHJETJF0HlDbOHJK0jhKSatDUxsX8/ZlbYYChwIjKY2wug64Fvh7SpDdAVwREbPLzpkuqR5YFxHvKW9M0oFAJfBkR58YMzMzMzMzM7O3ybSGXU/RXdP9DgIulzQKmAlcJqkfcGNEzEn11wO3pu35lBJEdZLmA8M3Euct0/1S4qrcjWnE1EJJ20Np5JSkPSklzo4C7pB0UkTckc55y3S/sraHAr8DzmgchWVmZmZmZmZmZu3XLdP9IuJeYBtg24i4EzgceA6YJOn0VK0u3rz1YAOwLp3bQOeSa+vKtv+5mn1ErIuIv0TEOcCFwHEba0TSEOBm4JsRcV8LdcZLmiVp1l0rF3Wiy2ZmZmZmZmbW60RDMY8eqluSVJJGAhXAckm7Aksj4lLgN8CYdjT1BjC4C/ozJi2AjqQ+wGjgmY3UrwRuAC6PiOtaqhcREyOiNiJqD6se0dlumpmZmZmZmVlv0hDFPHqo7liTCkojmM6IiHpJY4FzJNUBK4HTW2qgGdOBc1O73+9E37YDLpXUP+0/AFyykfonUxr9tXXZdMJxZVMVzczMzMzMzMysHbIlqSKiooXyycDkZsqry7YnNHcsIl4BDmhy6qQmdSc1lkXEuBbauZU3179q2o/hzZRdAVzRXH0zMzMzMzMzs64QDT13al4RumW6n5mZmZmZmZmZWbmc0/3MzMzMzMzMzKytevD6UUVwkmozslQbssR5H3nizO83IEucz+/1bJY4Ex7ZIUucM+rWFx6jqjLPa2D56qoscd6/4p4scR7c/6tZ4vz+wZ9mibPuwrOKj7HotcJjACyevXOWOP0yfcc4atsXs8Q58MklWeJ8dqv23FOlY87aLc+1/O7JPK+1sXojS5yHN3T6/jVtcsROL2SJc/+SPJ/Vn6wo/r2tcmCez+q1a/tlifN3tswSZ5+6tVniLOib5zvOVvXFx3iqMs9/Kdeo9TpdoTLTZ/U7MvxsAF7I9D/+46pfzhOoN+plSaruurtfvaQ5kuZKekjSwV3QZo2kD5ftT5B0dpM6iyVt00o7I1PfZkvaXdI3JT0saV4qf0+qN0PSY6lsjqQTO3sNZmZmZmZmZma9VXeNpFoTETUAkj5I6c58R3SyzRqgFrilk+0cB1wXEd+VdBDwUWBMRKxLCa7KsrqfiohZnYxnZmZmZmZmZvZ24YXTcxsCrACQNFTSnWlk0gJJh6XylZIuSiOabpd0YBrJ9JSkYyVVAucDp6RzT9lYQEnDJT0i6dLU5m2SBqSRWGcB/yZpOjAUWBYR6wAiYllEPF/gc2FmZmZmZmZm1it1V5JqQEomPQr8BrgglX8SmJpGWe0LzEnlg4BpEbE38AbwXeBo4Hjg/IhYD5wHXBMRNRFxTRv6MAL4RWrzVeCEiLgF+DXw04g4ErgN2FnS45J+KanpaK8ry6b7bd2xp8LMzMzMzMzMrBkNUcyjDSQdk5Y5ekLSuRupd4KkkFTb2cvtCdP9DgIulzQKmAlcJqkfcGNENCap1gO3pu35wLqIqJM0HxjeQoyWnvXG8qfL2n+wuXYiYqWk/YHDgCOBaySdGxGTUhVP9zMzMzMzMzOzQkQ3LZwuqQL4BaUBQkuAmZKmRMTCJvUGA/8B3N8Vcbt9ul9E3AtsA2wbEXcChwPPAZMknZ6q1UVE40+mAWicftdAy4m25cBWTcoGUxo1RWMbSX1L7UREfUTMiIhvA18GTmjrtUkaL2mWpFl3rVzU1tPMzMzMzMzMzLrTgcATEfFUmr12NfDxZupdAPwQ6JLbo3Z7kkrSSKACWC5pV2BpRFxKaRpge+45/QalJFSjO4FjU1YPSZ8A5kZEm2/2KWlPSSPKimqAZ9p6fkRMjIjaiKg9rHpE6yeYmZmZmZmZmTXqvul+OwHPlu0vSWX/JGkMsHNE3NxVl9td0/0GSGqcaifgjIiolzQWOEdSHbASOL2lBpoxHTg3tfv9iLhG0iXA3yUF8BLwr+3sZzXwP5K2BDYATwDj29mGmZmZmZmZmVmPIWk8b81vTIyIie04vw/wE2BcV/arW5JUEVHRQvlkYHIz5dVl2xOaOxYRrwAHNDn2v8D/NtPeYmBU2f6Pmms/Ih4EDm6hr2ObKzczMzMzMzMz6xINDYU0mxJSG0tKPQfsXLY/LJU1GkwprzJDEsAOwBRJx3Zm7e5un+5nZmZmZmZmZmY9ykxghKTdJFUCpwJTGg9GxGsRsU1EDI+I4cB9QKcSVNB90/16nQ0ZYixuWJkhCuxzfDGZ3KZ2nb0iS5xBJx7QeqUusPqCxVnijPx4l6xXt1FrHltdeAyAXYblifP6QSdmiXPvt1/MEmfdhWdlidP/v39WfIzCI5TcU3tOljijGwZkibPNsdtmifPw/XVZ4lw/v/i/qfUbUngIABqUJ84T66tbr9QFnq7Mc8eho6tzfJOC9x36XOuVukCsL/55q9xrm8JjAPTZuul9ioox6HdtXha2Uyr65fmee8uy7bPEGbW++Ded7da3ecnfThmsPO8Dc/tVZYmT4UcDQFWmG8PtdNGH8gTqjbrp7n4RsUHSl4GplNYRvywiHpZ0PjArIqZsvIWOKSxJJWlr4I60uwOlO+i9nPYPTKvDN9Y9i9L8x43+j1TSDODsiJglaTGlxdLrKT1h34qIP3Wyz8OBgyPi92l/IHApMJrS2lmvAsdExEpJ9cD8stOPS9MIzczMzMzMzMw6r5uSVAARcQtwS5Oy81qoO7YrYhaWpIqI5ZTuhoekCcDK8rWfmjgLuAJo77CJIyNimaQ9gduATiWpgOHAJ4Hfp/3/oHS3wX2gdLc/oPHPxmsioqaT8czMzMzMzMzMjMxrUkl6n6TZkuZLukxSf0n/DuwITJc0PdX7laRZkh6W9J02ND0EWJHOHSTpZklzJS2QdEoqXyzp+5LmpLbHSJoq6UlJZ6Z2fgAclup8FRhK2cJgEfFYRKzrumfEzMzMzMzMzKx5EVHIo6fKuSZVFTAJeF9EPC7pcuDfIuJnkr5GGhWV6n4zIl6RVAHcIWl0RMxrps3pKi0j/07g5FR2DPB8RHwEQNIWZfX/ERE1kn6a+nJI6tcC4NfAuZSmE340nVsD3CbpREpTFydHxKLU1gBJc9L20xFxfGeeHDMzMzMzMzOz3iznSKoKSsmcx9P+ZODwFuqeLOkhYDawN7BXC/WOjIhRwD7AJZKqKa0TdbSkH0o6LCJeK6vfuLDXfOD+iHgjIl4G1knasmnjETGHUgLsIuAdwExJ706H10RETXo4QWVmZmZmZmZmXashinn0UFmn+7WFpN2AsymNuBoN3ExptFOLIuJJYCmwV0qCjaGUiPqupPJFvRqn6jWUbTfuNzuqLCJWRsQfI+KLlNbN+nA7rmV8mlo46+6Vi1o/wczMzMzMzMyskZNUhakHhkt6V9r/DPC3tP0GMDhtDwFWAa9J2h5o9V6WkrYDdgOekbQjsDoirqA0AmpMO/pY3g8kHSJpq7RdSWlEV5vvfxsREyOiNiJqD6ke0Y5umJmZmZmZmZn1LjnXpFoL/AvwB0l9gZmU1oECmAjcKun5iDhS0mzgUeBZ4O6NtDldUj3QDzg3IpZK+iBwkaQGSnfi+7d29HEeUC9pLqU1q5YDv0rrXvWhNKrr+na0Z2ZmZmZmZmbWIdGDRz0VIUuSKiImlO3u18zx/wH+p2x/XAvtjC3bHt5CnanA1GbKh5dtT6KUhGquraOanHp5C3Gqmys3MzMzMzMzM7P2yzmSyszMzMzMzMzM2sojqawIAzK8ruppKD4I0GeHd2SJ03/IkixxYtnyLHGqMi0Bt3rhmsJjrH29X+ExACq3qc8SJ55fmiVOnt9QWLfotdYrdYH+WaLksTryvNb6Z/qO0WfEu1qv1AVW3/RSljg53j2vf3BnTvnIy4XHeVEbCo8BcEjkiVO5rjJLnIH7DskSR32UJc6yacV/Vm87qsfdH6lTlOdHw9pVeb7jVEWeC+qX4XNndZ8KqhuK/xzN9YrOlQ6ozBSo+HebpD7P506vlOs/ET3E5vXpZWZmZtYBORJUZmaboxwJKjPrPTa5JJWkyyS9JGlBK/XGSjq4bH+CpOckzUmPH6TyGZJqW2jjo5JmS5oraaGkL2ysLTMzMzMzMzOzrhINUcijp9oUp/tNAi6hhQXNy4wFVgL3lJX9NCJ+1JYgkvpTuuvggRGxJO0P70hbZmZmZmZmZma2cZvcSKqIuBN4pbxM0r+nkU7zJF0taThwJvDVNNLpsLa0LWmlpB9Lmgu8h1ISb3mKuy4iHuvKazEzMzMzMzMza1FDFPPooTa5JFULzgX2i4jRwJkRsRj4NaXRTjURcVeq99WyKXofbKadQcD9EbFvSoZNAZ6RdJWkT0kqf75aa8vMzMzMzMzMzNpoU5zu15x5wJWSbgRu3Ei91qbo1QPXN+5ExL9K2gd4P3A2cDQwro1tmZmZmZmZmZl1nO/ut0n6CPALYAwwU1JHk29rI956H/KImB8RP6WUoDqhPY1JGi9plqRZf1u1qINdMjMzMzMzM7PeqLctnL7JJ6nSFLydI2I68A1gC6AaeAMY3Il2qyWNLSuqAZ5pTxsRMTEiaiOi9ohBIzraFTMzMzMzMzOzzd4mN91P0lWU7ty3jaQlwAXAZyRtAQj4eUS8KunPwHWSPg58pSOhgK9L+l9gDbCKN6f6mZmZmZmZmZkVq5dN99vkklQRcVozxf/bTL3HgdFlRXc1rZPqjS3bri7bfgP4cAvnTGhbb83MzMzMzMzMrC02uSSVmZmZmZmZmVlv0JPXjyqCk1SZ5Bih97tRqzNEgRm/2DJLnNV9hmWJM7bhqSxxDl6/c5Y4Nz1R/PO2d0Oe19prr9RliTPx/jxv/IMHVGSJs3h2ntfaPbXnFB5j9VvvZVGYKx78SZY4N4/6VpY42qMmS5wJyx75f+zdeZhdRbnv8e8vc0JIQOa5GYIxBAjQRmYCBA4oMsisIhE04gVRjyBeUYx4VISrHiAqJ6gnoDKIYYiigAwhzEkIIQOjkCCTQEiEzEP3e//Y1bDY7E53p/cuOunf53nW02vVqlVvrZ3d3bvfVNXKEmc31T5Gl359ah8E+OHooVnixHPPZIlz24/fzhKn2yEHZ4kz52t3ZInzzIKNah5j+2vz/NssXJrn5/TbDRtkibPN+m9libPzsjyfPV7sXvsliDdsyPP5pqEhwy8DYN21bGrVijwvG4uv/HOWOL2PPCdLnA5lLXtPtqTDL5wuaStJ90h6QtIsSV9t4/UTJNWn/TmSZkialra9JdVJmtnMtV0kXSZpZrpusqRtm2ur/XdrZmZmZmZmZtY5rQkjqVYC34iIqZLWBR6V9PeIeGI12zswIuY2HUiqq1RJUjfgeGBzYJeIaJS0JaUF1Cu2ZWZmZmZmZmZWLdHJRlJ1+CRVRLwKvJr2F0h6EthC0i+BR4ADgfWA0yPiPkm9gf8FdgWeAnq3NpakEcCngL5AV+AW4NWI0tsiIl6q1n2ZmZmZmZmZmdm7OnySqiiNetqNUnIKoFtEDJX0ceB7wHDgy8DiiPiIpF2AqWXN3COpAVgWER+rEGZ3SiOn5qWRU/dL2g+4C/h9RDzWhrbMzMzMzMzMzFaPR1J1TJL6AuOAr0XE25IAbkynHwXq0v7+wGUAETFd0vSyplqaovf3iJiXrn9J0oeBg9J2l6TjI+KuVrZlZmZmZmZmZrZaOtt0vw6/cDqApO6UElR/iIgbC6eWpa8NVC/hVlxziohYFhF/i4hzgR8BR7e2IUkjJU2RNGXiomer1D0zMzMzMzMzs7VPh09SqTRk6jfAkxHRmmeETwQ+na4dDOzSjti7S9o87XdJbb3Q2usjYkxE1EdE/f7rDFjdbpiZmZmZmZlZZ9RYo62DWhOm++0DnALMkDQtlX17FfV/BfxvWmD9SUpTAVfXxsCVknqm40nA6Ha0Z2ZmZmZmZmZmFXT4JFVE3A+owqm/FurMJa1JFRFLgJOaaauuQtkcYHDaHwuMLZy7DbittW2ZmZmZmZmZmVWL16QyMzMzMzMzMzPLTBHxQfehU/h/W3+25i/0Nivy/FuurDSurQYWdskTaGGmVO0GDXni/L3b4prHGEjvmseAfFOlc2XrN8/0zdM904/1NzKMxe2Z6V42X5Hn3faJmf+VJc7knc/NEuf+Hnl+FvTL9MNAGd5vSzP9wBm8bEWWOHO6d88SZ+DKpVniTO3eK0uc5Rl+Hczrkucbp1fk+d3WL1Oc/pk+r/VryPPv80a32v/QWSfTz+i+jXkCvZbhNYM8PwcAGjPFyeWr//z9WnZHLXv94ANq8gll47vu7ZCvZYef7mdmZmZWazkSVGZmZmZt5el+bSBpYbU6ktobKemptE2RNKwdbQ2T9Je0P0LSG5Kmpe1qSUdK+lYLbXSRdJmkmZJmSJosadt0bk4qa2pz79Xtq5mZmZmZmZlZZ9dhRlJJOgL4ErBvRMyVtDswXtLHIuLlKoS4PiLOKisb38I1JwKbA7tERKOkLYFFhfMHpkXbzczMzMzMzMyqK9N0546i6hNuJQ2R9LCk6ZJukrS+pI0lPZrO7yopJG2djp+T1Ac4Dzi3KekTEVOB/wXOTPXmSNow7ddLmpD2h0p6SNJjkh6U9OFW9nOEpNFpf2waMfWgpOclHZeqbQa8GlEaYBcRL0XE/Kq8UGZmZmZmZmZm9o5arAp3NXBeROwCzAC+FxGvA70k9QP2A6YA+0naBng9IhYDOwGPlrU1BRjUQryngP0iYjfgAuBHzdQ7sTA17/MVzm8G7AscAVyUyv4IfDJd81NJu5Vdc08690gLfTQzMzMzMzMza5NorM3WUVV1up+k/sB6EXFvKroKuCHtPwjsA+xPKZF0GCDgvnaG7Q9cJWkAEEBzj5l5z3Q/SSPKzt+cRkw9IWkTKI2cSiOzDkrbXZKOj4i70jWe7mdmZmZmZmZmNRFr2yMaW5DryesAEymNotoGuAXYldLIpaYk1RPAHmXX7EFpNBXASt7tb/H5wD8A7omIwcAny861xbLC/jvvgohYFhF/i4hzKSXXjm5tg2kh+CmSpjy88NnV7JaZmZmZmZmZ2dqvqkmqiHgLmC9pv1R0CtA0quo+4LPAs2nE0jzg48D96fzFwE8kbQClta2AY4D/Sefn+sFnYQAAIABJREFU8G4S69hC2P5A08LqI6p4O0jaXdLmab8LsAvwQmuvj4gxEVEfEfV79h1Qza6ZmZmZmZmZ2VrO0/3apo+klwrHPwNOBa5Ii6E/D3weICLmSBKlEVVQSk5t2bQQeUSMTwmhByR1AzYFdo2IN1L97wO/kfQDYEIh5sWUpvt9B7i1nfdTbmPgSkk90/EkYHSVY5iZmZmZmZmZdXrtSlJFRHMjsfZspv5Whf0fUbbIeURcQSnB1Y3Sk/0ulPTZKLkP2LFCmw+VlX8nlU8gJbMiYiwwtuy6d8oiYkTZub7p623Abc3cS12lcjMzMzMzMzOzaojoXGtSVXXh9GqJiJWUpgqamZmZmZmZmXVKHXlqXi10yCTV2mj9DG+sXpnevcOOX5AlztuTF2eJ86FvHpolzk++NiNLnPN7Lq15jPW3eLPmMQD6fKRPljiv3hNZ4ty5cMMscQ7a6F9Z4mx45EY1j9FlwA41jwGgHYdkiTN553OzxPnojEuyxJm9ywVZ4szvWvsYp/9279oHARruuD1LnC7bb50lTuOo17PEGTrr4ixxhlyR5z39+g2v1TzGxidsVvMYOb1508stV6qCdbdpyBLnxke2zBKnZ4aPOJs0rKh9EGCjXkuyxHmtoV+WOJuuzPP585/d84zCOfPPn84Sx9Z+OZ/u1yJJm0i6RtLzkh6V9JCkYyrUq5M0s0L5hZKGtyLOEEkh6bBq9d3MzMzMzMzMrJqiUTXZOqoOk6RKi6rfDEyMiO0iYg/gJGDLsnrNjv6KiAsi4s5WhDuZ0sLtJzfXl/Q0PzMzMzMzMzMzy6AjJWIOApanxdMBiIgXIuJySSMkjZd0N3BXcw1IGivpOEmHSbqhUD5M0l/SvoDjgRHAIZJ6pfI6SU9LuhqYCWwl6VxJkyVNl/T9Qns3p5FesySNrO7LYGZmZmZmZmYGEbXZOqqOlKTaCZi6ivO7A8dFxAGtaOtO4GOS1knHJwLXpf29gdkR8Rylp/99onDdAOCXEbET8OF0PBQYAuwhaf9U77Q00qseOFvSBq3ok5mZmZmZmZmZNaMjJaneQ9IvJD0uaXIq+ntEzGvNtenpgLcBn0zTAz8B3JJOn8y7CavreO+Uvxci4uG0f2jaHqOUPBtIKWkFpcTU48DDwFaFcjMzMzMzMzOzquhsa1J1pKf7zQKObTqIiDMlbQhMSUWL2tjedcBZwDxgSkQskNQ1xThK0vmAgA0krVshhoAfR8T/FBuVNAwYDuwVEYslTQB6VepAmgo4EuCU9YZywDrOZZmZmZmZmZlZ63TkhFItdKSRVHcDvSR9uVDWnufP30tpiuAXeXfk1MHA9IjYKiLqImIbYBzwvicIArcDp0nqCyBpC0kbA/2B+SlBNRDYs7kORMSYiKiPiHonqMzMzMzMzMzMmtdhklQREcDRwAGSZkuaBFwFnNfMJR+W9FJhO76svQbgL8Dh6SuUpvbdVNbOOCo85S8i7gCuAR6SNAP4E7AupWmE3SQ9CVxEacqfmZmZmZmZmVlVdbaF0zvSdD8i4lXgpGZOjy3UmwN0r1DnhuJBRJxFacpf0/HnK8QcD4xPh4PLzl0KXFohzuHN9NHMzMzMzMzMzFZDh0pSmZmZmZmZmZlZSWdbk0rRkcd5rUWu3PKza80LXbdiRZY4G/RYmiXOv5f3zBJnUq8eWeIc0fXfNY8xb3HvmscAWBhds8Q58PpDs8R58pRbWq5UBYe//XSWOLP23qTmMRa/kef/UkbNXT9LnIFR8TkbVbdFnh/TnDD9wixxzq7/VpY4W0alQdrV1SfyfNB8psvyLHG2b8zzu21lps/nw1YszhJnRWPtV9zItaZHv97LssTJ9SfL7KXrtlypCp7umedfqH9D7WP0zvRv07+hMUucf3bP82+TK+9QtzzP67bzRnOzxNluxh2dK2MDPDf4P2ryXbb9zNs75GtZte9ASQ2Spkl6XNJUSXtXoc0hkj5eOB4h6Y0UZ5qkq1u4foKk+rQ/Jz0tsM19lbSepP9TOB4m6S+rusbMzMzWHDkSVGZmZma2atX8L+olETEEQNJ/AD8GDmhnm0OAeuCvhbLr01pT7dHWvq4H/B/gl+2Ma2ZmZmZmZmbWKpFnMFyHUauxjP2A+QCSNpM0MY1cmilpv1S+UNIlkmZJulPS0DTy6XlJR0rqAVwInJiuPbFSoPJRTZJGSxqxmn3tK+muNLpqhqSjUp2LgO1TPy5JZX0l/UnSU5L+IKlDDpUzMzMzMzMzM1sTVHMkVW9J04BewGbAQan808DtEfFDSV2BPql8HeDuiDhX0k3AfwGHAIOAqyJivKQLgPqmkVMp+XSipH1TG5cCs6vY16XAMRHxdpoa+LCk8cC3gMGF0VfDgN2AnYBXgAeAfYD7V6MvZmZmZmZmZmbv05hpPctKJB1GKe/SFfh1RFxUdv4/gS8AK4E3gNMi4oX2xKzVdL+9gKslDQYmA7+V1B24OSKmpfrLgdvS/gxgWUSskDQDqFtFnPdM90sJo2r1VcCPJO0PNAJbAM2tDDwpIl5KbUxLfXaSyszMzMzMzMyqIj6gJFUaZPQLSoOJXgImSxofEU8Uqj1GaWDRYklfBi4GKs6Ca62aTPeLiIeADYGNImIisD/wMjBW0udStRXx7qMFG4Fl6dpG2pY8W8l776NNj04q9hX4TPq6R0pivbaK9oqPMmmgQp8ljZQ0RdKUiYuebUu3zMzMzMzMzMw+KEOBf0TE8xGxHLgOOKpYISLuiYimR+M+DGzZ3qA1SVJJGkhpONibkrYBXouIK4FfA7u3oakFQEvPgX0BGCSpp6T1gINXt69Af+D1NKLrQGCbNvTjfSJiTETUR0T9/usMaOvlZmZmZmZmZtaJRaNqsrXCFsCLheOXUllzTgf+1o5bBWqzJhWUps2dGhENaTreuZJWAAuBzzXXQAX3AN9K7f64UoWIeFHSH4GZlNaneqwdff0D8Oc05XAK8FSK8aakByTNpPSi39qGezAzMzMzMzMz6zAkjQRGForGRMSY1Wzrs0A9cEB7+1W1JFVEdG2m/CrgqgrlfQv7oyqdi4h5wEfLLh1boa1vAt+sUD6ssF/Xir7OBfZq5tyny4omFM6dhZmZmZmZmZlZFb2zSFLV240xwKqSUi8DWxWOt0xl7yFpOHA+cEBELCs/31Y1me5nZmZmZmZmZmZrrMnAAEnbSuoBnASML1aQtBvwP8CREfF6NYJWc7qfmZmZmZmZmZlVSSvXj6p+3IiVks4Cbqe0jvdvI2KWpAuBKRExHrgE6AvcIAngnxFxZHviKmo1dsze4/KtPlvzF7pHpn/KXE/A3GBlnht6oXueGxq6vN0jH1tlco+eNY/RO9N7rV9DnjjrNjbmCZTJw216xunqq1tZ+8G4uYb7Ls30c617njCszBRnVtflWeJcNuWimsf46R4X1DwGQL9MP242yvQ79J+Zfofm+oyzfqbfO//oXvsb2uAD+qOmVjZsyPMmeL1bntetZ6b39LqZ3tM5rMj0ll6a6cNHrn+blzN9+OiT6ffbWS/+fu364dYKM7c7oiY/MQY//5cO+Vq261tQUoOkaZIelzRV0t7t7ZCkIZI+XjgeIWl0WZ0JkupbaOedOpKOl/SkpHskDZP0Vur3dEl3Stq4jX0aJemc1btDMzMzMzMzMzMr19488ZKIGBIRuwL/l2aewNdGQ4CPt1irbU4HvhgRB6bj+1K/d6E0z/LMD6BPZmZmZmZmZmbNilBNto6qmoMZ+wHzASRtJmliGq00U9J+qXyhpEskzUojmIamEU/PSzoyLcZ1IXBiuvbEloJK+pWkKanN71c4fwGwL/AbSZeUnROwbqHfQyU9JOkxSQ9K+vAq+jSo0PezV/dFMzMzMzMzMzOz9i+c3lvSNKAXsBlwUCr/NHB7RPxQUlegTypfB7g7Is6VdBPwX8AhwCDgqogYn5JK9RFxFpSm+1FKEO1biLtDYf/8iJiX4twlaZeImN50MiIulHQQcE5ETJE0DNgv9XsDYBHw7VT9KWC/tEDYcOBHEXFshT6NAgYCB1JKcj0t6VcRsaIdr6WZmZmZmZmZ2Ts62zLi7U1SLYmIIQCS9gKuljSY0hS630rqDtwcEdNS/eXAbWl/BrAsIlZImgHUrSLO9U0JohRrQuHcCZJGpnvZjFLCazqrdl9EHJHaOg+4GDgD6A9cJWkAEKx6jdtbI2IZsEzS68AmwEstxDUzMzMzMzMza5XGDjw1rxaqNt0vIh4CNgQ2ioiJwP7Ay8BYSZ9L1VbEu48TbASWpWsbWY2EmaRtgXOAg9P6UrdSGtXVFuNTXwF+ANwTEYOBT7bQVvFRbQ1U6L+kkWkq4pQHFj7bxm6ZmZmZmZmZmXUeVUtSSRoIdAXelLQN8FpEXAn8Gti9DU0toDSFrjX6UZqu95akTYDD2xCnyb7Ac2m/P6XEGsCI1ezTOyJiTETUR0T9Pn0HrEbXzMzMzMzMzKyz6mwLp1drTSoAAadGRENa9+lcSSuAhcDnmmuggnuAb6V2V/m0wIh4XNJjlNaSehF4oJUxmtakEvAW8IVUfjGl6X7foTQqq819MjMzMzMzMzOztmtXkioiujZTfhVwVYXyvoX9UZXORcQ84KNll44tqzussD+imT4Ma2Z/AqURU5WueQjYsVD0nVX0qXjd4ObOmZmZmZmZmZmtDi+cbmZmZmZmZmZmH7jOtnC6k1SZ9MqQ/Ry0cmntgwAb9FucJc4bb/fJEueIH+yQJc7pFzydJc6VI3vXPsjiJbWPASy4740scR58ZvMscab3zPML5mvb5nnQaPd+tY/RbdO2Pgtj9XTpl+fnzR+uXSdLnNN/u3eWOD/7Ymtn2bfPT/e4oOYxvvHohTWPATB553OzxNnp0H9niTPrjvWyxNntJzu2XKkK3rhsUpY4nzpxm5rHiOUrax4DoPGN+VnivDA+z1CC9TfJ8zn3569ukiXObg0VJ75U1YLahwBgg5V53gOLu+T5vNYz0/CY3o157uf0H9f+55p1DlVbOD0HSQ2SphW2ulXUHSFpdNofJemctD9W0ux0/VOSvteKuCMkbV44niNpw/bfkZmZmZmZmZlZZV44vWNbEhFDqtDOuRHxJ0m9gCckXR0Rs1dRfwQwE3ilCrHNzMzMzMzMzKzMGjWSqpLiqCZJ9ZImtOHypnkki9L1F0iaLGmmpDEqOQ6oB/6QRl81zaX6iqSpkmZIGlit+zEzMzMzMzMzg9KaVLXYOqo1LUnVuzDV76Z2tHOJpGnAS8B1EfF6Kh8dER9NT+vrDRwREX8CpgCfiYghEdG0GM/ciNgd+BVwTjv6YmZmZmZmZmbW6a1pSaolKVE0JCKOaUc756Zpg5sCB0tqWmH2QEmPSJoBHATstIo2bkxfHwXq2tEXMzMzMzMzM7P3iRptHdWalqSqZCXv3kebHgMVEQuBCcC+aX2qXwLHRcTOwJUttLcsfW2gmbW9JI2UNEXSlImLnm1L18zMzMzMzMysk/N0vzXPHGCPtH9sWy6U1A34GPAc7yak5krqCxxXqLoAWLetHYuIMRFRHxH1+68zoK2Xm5mZmZmZmZl1GmtDkur7wKWSplAa1dQaTWtSTQdmADdGxL8pjZ6aCdwOTC7UHwtcUbZwupmZmZmZmZlZzUSoJltHVXGaWkcVEX0rlN0H7FihfCyl5BIRMapQPmIV7X8H+E6F8nHAuEJRXeHcFGBYS303MzMzMzMzM7PmrVFJKjMzMzMzMzOzzqLxg+5AZk5SmZmZmZmZmZl1QEHHnZpXC05SZZJj8a91ey1ruVIVzFywfpY4C7rm+Wbc4cpHssTZic2zxJk77pWax1jw7zY9SHO1devWJ0ucN7vlWZ6vf6Znvf7uua2yxGnM8C36L62sfRDgh6OHZomz9PqpWeI03HF7ljh9os3PFFktPTN870ze+dzaBwE+OuOSLHFePPCMLHHu6pHn98GgWx/OEmfJwjz388KYf9U8Ro+erV2qtX3efjvPazZ/Wc8scbq9mWfMQs9Mf3Qu6Fr7GFusyPNem981w80A3TN9XpvbLc97IM+rBm//5v4scXp/NksY+wCtEQunS1pYdjxC0ugWrnmnjqSNJD0i6TFJ+0maI2lGWgh9hqSjWtGHbxf26yTNXN37MTMzMzMzMzNrSWPUZuuo1ogkVRUcDMyIiN3SQusAB0bEEOA44LJWtPHtlquYmZmZmZmZmdnqWOOTVJI+WRgldaekTcrODwEuBo5KI6d6lzXRD5hfqH+zpEclzZI0MpVdBPRO1/8hVe0q6cpU744K7ZqZmZmZmZmZrbZGVJOto1pT1qTqLWla4fhDwPi0fz+wZ0SEpC8A3wS+0VQxIqZJugCoj4izACQB3KPSznbACYW2T4uIeSnpNFnSuIj4lqSz0sgrJNUBA4CTI+KLkv4IHAv8vup3bmZmZmZmZmadkhdO75iWNCWIoLTeFFCfDrcErpe0GdADmN3KNg+MiLmStgfukjQhIhYCZ0s6JtXZilIy6s0K18+OiKbE2aNAXVtuyMzMzMzMzMzM3rXGT/cDLgdGR8TOwJeANj1iJCKeA14DBkkaBgwH9oqIXYHHVtFe8VF6DVRI+EkaKWmKpCn3Lnq2Ld0yMzMzMzMzs06usUZbR7U2JKn6Ay+n/VPberGkjYFtgRdSW/MjYrGkgcCehaorJHVvS9sRMSYi6iOi/oB1BrS1a2ZmZmZmZmZmncbakKQaBdwg6VFgbhuuuyetc3UP8K2IeA24Degm6UngIuDhQv0xwPTCwulmZmZmZmZmZjUTqCZbR7VGrEkVEX3LjscCY9P+LcAtFa4p1nlnPx3XNRNnGXB4M+fOA84rFA0unPt/Ld2DmZmZmZmZmVlbdOSpebWwNoykMjMzMzMzMzOzNdwaMZJqbdCnMWoe496G/jWPAfCpuleyxHlu9gZZ4sx8duMscTbvlmdI5VVvblLzGH0iz73stmhFljjP9m7IEmfrhq5Z4gzTgixx/rG8b8uV2mmfWFnzGADx3DNZ4gxeluc93WX7rbPEeabLa1niHLSsTUtCrpadDv13zWMAvHjgGVnibHXPFVniHL/3WVni9Pp6ntft5aPGZYnzUK/av6d3ezvP77blyvN/3iu65PnssfKtflni7JLpfl7P8Nfe4kzvgf4NecaTzO2W537WW1n7vw8B/tk9z3vt1efz/C1a+790Oh6PpCojqUHSNEmPS5oqae+2BJA0StI5q9/F1SPpa5KWSupfKBshaXQb2xkg6S+SnpP0qKR7JO1f/R6bmZmZmZmZmXVerUkTL4mIIRGxK/B/gR9XI7CkWuf1TwYmA59a3QYk9QJuBcZExPYRsQfwFWC7CnU9Ks3MzMzMzMzMqqazLZze1rGM/YD5TQeSzpU0WdJ0Sd8vlJ8v6RlJ9wMfLpRPkPTfkqYAX5V0sKTHJM2Q9FtJPVO95srnSPpxGtk1RdLukm5Po5zOKMTZHugLfIdSsqpoq9SPZyV9L9W/SNKZheubRn99BngoIsY3nYuImWkh9qZ6v5P0APC7Nr6WZmZmZmZmZmaWtGb0T29J04BewGbAQQCSDgUGAEMBAePTNLhFwEnAkNT+VODRQns9IqI+jVJ6Fjg4Ip6RdDXwZUlXUHoS33vKgf9O1/8zIoZI+nmqt0/q20ygaQGGk4DrgPuAD0vaJCKaFs4YSunJfIuByZJuBa5P7f8i1TkB+A/g66n/qzII2DcilrRQz8zMzMzMzMys1Ro77qCnmmjLdL+BwGHA1ZIEHJq2xyglcgZSSlrtB9wUEYsj4m1gfFl716evHwZmR0TTarVXAfuvorxJU3szgEciYkFEvAEsk7ReOncycF1ENALjgOML1/89It5MSaUbKSWYHgM2lrS5pF2B+RHxYvkLIekmSTMl3VjsjxNUZmZmZmZmZlZtjagmW0fVpul+EfEQsCGwEaXRUz9OCawhEbFDRPymFc0sWo1+Fi1LXxsL+03H3STtTClZ9ndJcyiNqipO+St/jELT8Q3AccCJvJtImwXs/k7FiGOAEcCHCtc3ez+SRqZpiVPuWvyPFm/MzMzMzMzMzKyzalOSStJAoCvwJnA7cJqkvuncFpI2BiYCR0vqLWld4JPNNPc0UCdph3R8CnDvKspb62RgVETUpW1zYHNJ26Tzh0j6kKTewNHAA6n8ekoJreMoJawArgH2kXRkof0+re1IRIyJiPqIqD+4zw4tX2BmZmZmZmZmlkSNto6qLWtSQWn01KkR0QDcIekjwEOl2X8sBD4bEVMlXQ88DrxO6Ql77xMRSyV9HrghPRlvMnBFRCyrVN6GezoJ+HhZ2U2p/DVgEqUpgFsCv4+IKak/s1JS7eWIeDWVLZF0BPAzSf+drl8A/Fcb+mNmZmZmZmZmZi1oMUkVEV1Xce5S4NIK5T8EflihfFjZ8V3AbhXqNVdeV9gfS2nh9PJz21W47j8Lh2PLzxfq7Vyh7Cnen/RqOjequbbMzMzMzMzMzNqj8YPuQGatGUllZmZmZmZmZmaZNarjLnJeC05SZbKwS+3fWCds/1LNYwDc9NyWWeKs7J4lDI90WZwlzjZqdlBiVb38nucJ1EavTPeinj2yxOmVaVb20ky/X2atXDdLnNk9av+69ViW5z1w24/fzhJnfvc8P9gaR72eJc72mb5H/5nhZfv1PZux14raP6z3rh69ah4D4Pi9z8oSZ/sHR2eJ89onvpAlzp97b5wlDjTUPML0Xnk+5jdk+h26RHni9Gx+EklV7bAiS5gsXu8mFrVppePV068xzwepzVfkGbeysEuGFw3YdGWWMPy2R+8scS7LEsU+SE5SmZmZWaeXI0FlZrY2ypGgMuvMOvIi57XQrh8pkhYW9j8u6RlJ20g6Q9LnUvkISZu30M4ISVX9rzhJN0t6uKxsrKTj2tjOYZImSXpK0jRJ10vaupp9NTMzMzMzMzPr7KoykkrSwZRG3v1HRLzAe5/GNwKYCbxSjVit7M96wB7AQknbRcTzq9nOYOBy4MiIeDKVHQnUAf8sq9stIjINpjQzMzMzMzOztV1nWzi93YMzJe0PXAkcERHPpbJRks5Jo5bqgT+kUUi9JX1U0oOSHk8jlJoWT9lc0m2SnpV0caH9QyU9JGmqpBsk9U3lcyR9P5XPkDSw0K1PAX8GrgNOKuvycElT0qivI1JbD0vaqRBzgqR64DzgR00JKoCIGB8REwv1/lvSFOCr7X0tzczMzMzMzMyaNKo2W0fV3iRVT+Bm4OiIeKr8ZET8CZgCfCYihlBaJfJ64KsRsSswHGhaBGIIcCKwM3CipK0kbQh8BxgeEbuntv6zEGJuKv8VcE6h/GTg2rSdXNatOmAo8AngCkm9Up9OAJC0GbBZREwBdgKmtvAa9IiI+oj4aQv1zMzMzMzMzMysGe1NUq0AHgROb2X9DwOvRsRkgIh4uzBF7q6IeCsilgJPANsAewKDgAckTQNOTeVNbkxfH6WUfELSJsAA4P6IeAZYkabtNfljRDRGxLPA88BA4I9A01pVJwB/Ku+4pA3SaLBnJBUTYte38t7NzMzMzMzMzFqtEdVk66jam6RqpJTUGSrp2+1sa1lhv4HSelkC/h4RQ9I2KCJOr3BNU31Sf9YHZkuaQyl5VRxNVb44fkTEy8CbknahNJqrKfE0C9g9VXozjQYbA/QtXL+ouRuSNDJNLZwycdGzzd+5mZmZmZmZmVkn1+41qSJiMaWpc5+RVGlE1QKgad2pp4HNJH0UQNK6kla1ePvDwD6Sdkj115G0YwtdOhk4LCLqIqKO0gLqxXWpjpfURdL2wHapT1BKTH0T6B8R01PZxcD5kj5SuL5PC/HfERFj0lTA+v3XGdDay8zMzMzMzMzMiBptHVVVnu4XEfMkHQZMlPRG2emxlNZ+WgLsRWmk0uWSelNaj2r4Ktp9Q9II4FpJPVPxd4BnKtWXVEdpOuDDhTZmS3pL0sdS0T+BSUA/4Iw0vRBKU/wuBX5QuHaGpK8CV0vqB8xN13+v+VfDzMzMzMzMzMzaql1JqojoW9h/Edg2HY4vlI8DxhUum0xpramisWlruuaIwv7dwEcrxK4r7E8BhqXDLSrU3T3tPrKKe3mNCq9HRNwK3NrMNcMqlZuZmZmZmZmZtVdHfhJfLVRlJJWZmZmZmZmZmVVX4wfdgcycpMqkd4Z31t3PvG8QWU2cdOArWeK88nDvLHFGHNez5UpVcPl17V4CrlVOXtq95jG27Lug5jEANqh7PUucCU/n+d55qfb/NAAcsMWrWeIc0ndly5Xaqc+u/WoeA6DbIQdniTP19PuzxBk66+IscR7d44IscdbJ8Dt0t5+0tORldQy69eGWK1VBr6+fkSXOa5/4QpY4m9z66yxxvvvFz2eJ89ykD9U8xo7Dy1fgqI3GxQ1Z4sx5pH+WOOt/aHGWOH+fu0mWODk+euy4LM+f0L0iT5y53fL8idw98qwK9K9ueYbh/OQ7eT5P29qv1X81S9pA0rS0/UvSy4XjHmV1vyapT+F4jqQZkqZLulfSNtW6gRRrqaT+hbIRkka3sZ0Bkv4i6TlJj0q6R9L+rbx2jqQN29p3MzMzMzMzM7PmdLaF01udpIqINyNiSEQMAa4Aft50HBHLy6p/jfc/Be/AiNgFmEBp8fNqOZnSOlefWt0GJPWitO7UmIjYPiL2AL5C6el/5XU9+szMzMzMzMzM1mqSDpP0tKR/SPpWhfM9JV2fzj+SHmbXLu2afyTpYEmPpVFSv00dPBvYHLhH0j0VLnuItLi5pDpJT0kaK+kZSX+QNFzSA5KelTQ01TugMGrrMUnrpvLtgb6Ukl4nl8XZStKE1M73Uv2LJJ1Z6P8oSecAnwEeiojigu8zI2Jsod7vJD0A/C6NKrtD0ixJvwY62VJmZmZmZmZmZlZrjarN1hJJXYFfAIcDg4CTJQ0qq3Y6MD8idgB+DvykvffbniRVL0qmRq3qAAAgAElEQVRP5DsxInamtL7VlyPiMuAVSiOnDqxw3WHAzYXjHYCfAgPT9mlgX+Ac4NupzjnAmWkU137AklR+EnAdcB/wYUnFyd1DgWOBXYDjJdUD1wMnFOqckMp2Aqa2cL+DgOERcTLwPeD+iNgJuAnYuoVrzczMzMzMzMzapLFGWysMBf4REc+n2XPXAUeV1TkKuCrt/wk4WFK7BvG0J0nVFZgdEc+k46uAVa3hdI+klyll4a4tlM+OiBkR0QjMAu6KiABmAHWpzgPAz9IorfUiomm13pOB69K144DjC+3+PU1RXALcCOwbEY8BG0vaXNKulDJ+L5Z3VNJNkmZKurFQPD61RbrP3wNExK3A/FXct5mZmZmZmZnZmmQLoJgveSmVVayT8jRvARu0J2iex42VHAhsA0wDvl8oX1bYbywcN5KePhgRFwFfAHoDD0gaKGlnYADwd0lzKI2qKk75K18LrOn4BuA44ERKo6iglBzb/Z2KEccAI4Dio1cWte423yVppKQpkqbcvfjZtl5uZmZmZmZmZp1YrUZSFfMVaRuZ876a054kVQNQJ2mHdHwKcG/aXwCsW35Byqx9DficpFY/e1fS9mm01U8oLZI+kFJCalRE1KVtc2DzwpMDD5H0IUm9gaMpjcaCUmLqJEqJqhtS2TXAPpKOLIQtX/i9aCKlaYlIOhxYv1KliBgTEfURUX9QnwGtvV0zMzMzMzMzs5op5ivSNqasysvAVoXjLVNZxTrpIXP9gTfb06/2JKmWAp8HbpA0g1Iy7op0bgxwW6WF0yPiVUrT/c4sP7cKX0vT76YDK4C/UUo03VRW76ZUDjCJ0hTA6cC4iJiS4s+ilEB7OfWFNI3vCOAMSc9LeojSYuz/1Ux/vg/sL2kWpacK/rMN92JmZmZmZmZm1qJQbbZWmAwMkLStpB6Uci3jy+qMB05N+8cBd6flm1Zbt9W5KCJGFQ53q3D+cuDywnFd2fmvFA4HF8pHFPbnNJ0rq99kuwpx/7NwOLZi50v1dq5Q9hTw8Wbqjyo7fhM4tLn2zczMzMzMzMzaq5WLnFddRKyUdBZwO6U1yX8bEbMkXQhMiYjxwG+A30n6BzCPdwcNrbbVSlKZmZmZmZmZmdnaKyL+Cvy1rOyCwv5S3vsAu3ZzkiqT+V1rH2NJl3Y96bHVFs9u1+i9Vlt/s8VZ4sSiPPfTt3FVy5xVz/rdlrVcqZ1eX5jnXtZdtDRLnH3rXs0S58E5m2WJ88hLm2aJc/C+5VPSq0+Zfq7N+dodWeJM7d7q5RjbZcgVF7RcqQqGrcjzc/ofq1wmsjrGfetF9t+89j8LlizsVfMYAC8fNS5LnD/33jhLnO9+8fNZ4qx75f9miTNn5+/WPMa2/5pX8xgAKxbleQ5T714rssT59/zeWeIszvT4qn4NtY+xY5+3ax8EeGVR3yxxluX56EHvTMNjuuX5U4fG1+bmCdQJfVAjqT4oOZ/uZ2ZmZtYh5UhQmZmZmdmqdZgklaQGSdMKW52kB6vY/hxJG1arPTMzMzMzMzOzWooabR1VR5rutyQihpSV7V1eSVK3iFiZqU9mZmZmZmZmZpZBhxlJVYmkhenrMEn3SRoPPCGpq6RLJE2WNF3Slwr1Jkq6VdLTkq6Q9L57lHSzpEclzZI0slB+mKSpkh6XdFcqW0fSbyVNkvSYpKNS+U6pbFrqw4AsL4qZmZmZmZmZdQqNqs3WUXWkkVS9JU1L+7Mj4piy87sDgyNidkosvRURH5XUE3hAUtOqt0OBQcALwG3Ap4A/lbV1WkTMk9QbmCxpHKWE3ZXA/ilG0+q25wN3R8RpktYDJkm6EzgDuDQi/iCpB6VHMpqZmZmZmZmZVUVnWzi9IyWpKk33K5oUEbPT/qHALpKOS8f9gQHA8lTveQBJ1wL78v4k1dmSmpJgW6VrNwImNsWIiKZHohwKHCnpnHTcC9gaeAg4X9KWwI0R8Wyb79jMzMzMzMzMzICOlaRqyaLCvoCvRMTtxQqShvH+NcCiQp3hwF4RsVjSBEqJp+YIODYini4rf1LSI8AngL9K+lJE3F0WayQwEuDE9YayT1/PCDQzMzMzMzOz1ulsI6k69JpUq3A78GVJ3QEk7ShpnXRuqKRt01pUJwL3l13bH5ifElQDgT1T+cPA/pK2TW02Tfe7HfiKJKXy3dLX7YDnI+Iy4BZgl/JORsSYiKiPiHonqMzMzMzMzMzMmrcmjaQq+jVQB0xNyaM3gKPTucnAaGAH4B7gprJrbwPOkPQk8DSl5BQR8UYa+XRjSnC9DhwC/AD4b2B6Kp8NHAGcAJwiaQXwL+BHtblVMzMzMzMzM+uMyqeKre06TJIqIvo2VxYRE4AJhfJG4Ntpe0ca7PR2RBxRoa26wuHhzfThb8DfysqWAF+qUPci4KLKd2NmZmZmZmZm1j4d+Ul8tbCmTvczMzMzMzMzM7O1SIcZSVUN5SOuOpIeGcbobb90Ze2DAJOf3yxLnDk98uRQR35xyyxx/ndc+fJotXHGjKtrHmPl43fWPAbA3G9dnyXOqy/2yxLn8Z55But+uutbWeLE8trfz9y7l9Q8BsAzCzbKEmd5jyxheP2G17LEWdHYP0ucf2T43vnUidvUPAbAC2P+lSXOQ726Z4kDDVmiPDfpQy1XqoI5O383S5yjZ/yg5jFWTryu5jEAWJLn5/SSix7JEqdn7xVZ4vxx7sIscb7E5jWP8aeGPL8LNu6RZzjJsmyjVvIEyvF3KIB6ZvqQ0wl54fQqk7SJpGskPS/pUUkPSTqm1nEr9GMnSc9I6l0ou1XSyRXqDpP0lqRpkqZLulPSxuncCEmj0/7RkgbluwszMzMzMzMzs7VTTZNUaVHzm4GJEbFdROwBnAS0auiKpKqN9IqIWcCNwPmp7aOB7hFxbTMx74uIIRGxC6XF2M+s0OzRgJNUZmZmZmZmZlZ1UaOto6r1SKqDgOURcUVTQUS8EBGXS6qTdJ+kqWnbG94ZxXSfpPHAE6ns5jQKa1Z6Ah+p/PQ0OmqSpCsLI5w2kjRO0uS07ZMuuRA4XtIQSouen5nqj5L0O0kPAL8r3kBKtK0LzC8r3xs4Ergkjbjavoqvm5mZmZmZmZl1co1ETbaOqtZrUu0ETG3m3OvAIRGxVNIA4FqgPp3bHRgcEbPT8WkRMS9N1ZssaRzQE/huqrsAuBt4PNW/FPh5RNwvaWvgduAjEbFY0jnAROBnEfFsoT+DgH0jYomkYcB+kqYBGwCLKHuSYEQ8mBJpf4mIP63Ga2NmZmZmZmZmZknWhdMl/QLYF1gODAdGp1FNDcCOhaqTCgkqgLML61htBQwANgXujYh5qe0bCm0MBwaVBkEB0E9S34hYGBF/lvRv4Jdl3RsfEcWVH++LiCNS2+cBFwNnrO69m5mZmZmZmZm1RWdbOL3WSapZwLFNBxFxpqQNgSnA14HXgF0pTTtcWrhuUdNOGtU0HNgrjYSaAPRqIW4XYM+IWNrM+Ube/2+9qFLFZDwwroWY75OmJo4E+Mx6Q9lvnQFtbcLMzMzMzMzMrFOo9ZpUdwO9JH25UNYnfe0PvBoRjcApQNdm2ugPzE8JqoHAnql8MnCApPXTYufHFq65A/hK00EardUe+wLPVShfQGm9qooiYkxE1EdEvRNUZmZmZmZmZtYWXji9iiIiKD0B7wBJsyVNAq4CzqM03e5USY8DA2l+JNNtQDdJT1Ja7Pzh1PbLwI+AScADwBzgrXTN2UC9pOmSnmD1puntlxZEf5xSEu0bFepcB5wr6TEvnG5mZmZmZmZmtvpqviZVRLwKnNTM6V0K++el+hOACYXrlwGHN3P9NRExJo2kugm4OV0zFzhxFX2qKzseVXY8gdIIrkrXjgXGpv0HKC24bmZmZmZmZmZWVV6Tas0yStJwSmtU3UFKUpmZmZmZmZmZreka1XKdtckanaSKiHM+6D60Vs8Mkz6f6Jnnn/OU7V/MEmeLZ9fPEof1PpQlzE49Ns4SZ+Ut5Q+urL6Gpyot0VZ9/TKNU1yxdHGWOOu/1TdLnB59VuaJM2jDmsfYaHCtl04s2f7at7PEmdTYL0ucjU/YLEucVy7P872zQYZPZ7+5bDmnnVH791uPng01jwGw29t54kzvleezx47D38gSZ9t/zcsSZ+XE62oeo9v+zU1kWENd9EiWMA0r8vzeGdx9vSxxui6vfYydMsQAWJLnn4bFza2UXGV9G/OsCvRKtzwZDu02NEscW/tl+VaXtImkayQ9L+lRSQ9JOiZH7Gb6c7ikKZKeSOtJ/fSD6ouZmZl98HIkqMzMzMzaqpGoydZR1fwTmSRRmoY3MSK2i4g9KK1RtWUrr6/qf9FJGgyMBj4bEYOAeuAfbbh+jR59ZmZmZmZmZmbWEeX4b8ODgOURcUVTQUS8EBGXS6qTdJ+kqWnbG0DSsFQ+Hngild2cRmHNkjSyqS1Jp0t6RtIkSVdKGp3KN5I0TtLktO2TLvkm8MOIeCr1pSEifpWu+aSkR9LoqjslbZLKR0n6naQHgN9J2inFm5aeIDig5q+imZmZmZmZmXUqUaOto8oxKmgnYGoz514HDomIpSnRcy2lkU0AuwODI2J2Oj4tIuZJ6g1MljQO6Al8N9VdANwNPJ7qXwr8PCLul7Q1cDvwEWAw0Nz0vvuBPSMiJH2BUkLrG+ncIGDfiFgi6XLg0oj4g6QeQKaZy2ZmZmZmZmbWWfjpfjUm6RfAvsByYDgwWtIQoAHYsVB1UiFBBXB2YR2rrYABwKbAvRExL7V9Q6GN4cCg0mxDAPpJamnV4i2B6yVtBvQAivHHR8SStP8QcL6kLYEbI+LZVty6mZmZmZmZmZk1I8d0v1mURjoBEBFnAgcDGwFfB14DdqU0gqpH4bpFTTuShlFKOu0VEbsCjwG9WojbhdKoqCFp2yIiFqb+7NHMNZcDoyNiZ+BLZTHe6U9EXAMcCSwB/irpoEqNSRqZFmifMmGR81hmZmZmZmZm1npeOL367gZ6SfpyoaxP+tofeDUiGoFTaH7aXH9gfkQsljQQ2DOVTwYOkLR+WtD82MI1dwBfaTpIo7UALgG+LWnHVN5F0hmFOC+n/VObuyFJ2wHPR8RlwC3ALpXqRcSYiKiPiPph63jZKjMzMzMzMzOz5tQ8SRURARxNKZk0W9Ik4CrgPOCXwKmSHgcGUhitVOY2oJukJ4GLgIdT2y8DPwImAQ8Ac4C30jVnA/VpYfMngDPSNdOBrwHXpvZmAtula0YBN0h6FJi7its6AZgpaRqlNa6ubvULYmZmZmZmZmbWCl44vQYi4lXgpGZOF0chnZfqTwAmFK5fBhzezPXXRMSYNJLqJuDmdM1c4MRm+vMX4C8Vym+hNDKqvHxU2fFFlJJlZmZmZmZmZmY10dkWTs8x3a/WRqURTTMpLXR+8wfcHzMzMzMzMzMza6PsT/ertog454Pug5mZmZmZmZlZtXXkRc5rYY1PUtm73uySZyBgz03zDMDrOachSxwWvNVynSroo+aeC1BdMffNmsdonLew5jEA1C3Pe23dTZdlidPz31nCsHRp9yxxumywfpY4OSxcmufnTa/uyhInl36983zvsLKlB/q2X+Mb82seA+Dtt2t/LwDLlefnZ0OmD86Ni/N8j65YlGmSwZIleeJYm3Xvlee91mdxns+FOeT6zda3Ic/fOvO75vr5meeVy/YH/8rluSLZWi7Ld6CkTSRdI+l5SY9KekjSMTlir6JPN0t6+IPsg5mZmZmZmZlZczrbwuk1T1JJEqV1oiZGxHYRsQelRdS3bOX1VU/+SloP2APoL2m7Zup4lJmZmZmZmZmZWSY5RlIdBCyPiCuaCiLihYi4XFKdpPskTU3b3gCShqXy8cATqezmNAprlqSRTW1JOl3SM5ImSbpS0uhUvpGkcZImp22fQp8+BfwZuI7CUwcljZV0haRHgIslbS/pthT3PkkDU71PSnpE0mOS7pS0Sc1ePTMzMzMzMzPrlBprtHVUOUYL7QRMbebc68AhEbFU0gDgWqA+ndsdGBwRs9PxaRExT1JvYLKkcUBP4Lup7gLgbuDxVP9S4OcRcb+krYHbgY+kcycDFwKvAeOAHxX6tCWwd0Q0SLoLOCMinpX0MeCXlJJu9wN7RkRI+gLwTeAbq/XqmJmZmZmZmZlVEB16cl71ZZ/SJukXwL7AcmA4MFrSEKAB2LFQdVIhQQVwdmEdq62AAcCmwL0RMS+1fUOhjeHAoNJsQwD6SeoLrJOuvT8lmVZIGhwRM1O9G1KCqi+wN3BDoY2e6euWwPWSNgN6AMV+mpmZmZmZmZlZG+VIUs0Cjm06iIgzJW0ITAG+Tmk0066Uph4uLVy3qGlH0jBKSae9ImKxpAlAS4/H6UJptFOxTSR9HlgfmJ2ST/0ojaw6vyxuF+DfETGkQtuXAz+LiPGpb6MqdSBNSxwJcGr/oQxbZ0ALXTYzMzMzMzMzK+nIU/NqIceaVHcDvSR9uVDWJ33tD7waEY3AKUBzz2LtD8xPCaqBwJ6pfDJwgKT100LnxxauuQP4StNBGq0FpYTUYRFRFxF1lBZQP4kyEfE2pUTW8el6Sdq10J+X0/6pzd14RIyJiPqIqHeCyszMzMzMzMyseTVPUkVEAEdTSibNljQJuAo4j9IaT6dKehwYSGH0VJnbgG6SngQuAh5Obb9MaT2pScADwBzgrXTN2UC9pOmSngDOkFQHbNN0fWpjNvBWWnOq3GeA01P/ZgFHpfJRlKYBPgrMbcvrYWZmZmZmZmbWGo1ETbaOKsuaVBHxKhVGKyW7FPbPS/UnABMK1y8DDm/m+msiYkwaSXUTcHO6Zi5wYoX6W1To3+5p95Gy8tnAYRXq3wLc0kx/zMzMzMzMzMzareOmk2ojx3S/WhslaRowk9IC5jd/wP0xMzMz+//s3Xe8XFW5//HPNz0koVcFyaUrIYSQIKAgIHYQpBgRFCzEilz92a8icMVyEUVAQEA6IoIgRaUFKYJAEkijiVIUCL0nIeWc5/fHWkMmh1OSnL1XTnK+77zmlZk1e9az95w9e/asvdazzMzMzGwJFZ/dr2oR8fVlvQ6L46WOsm1VaIOWMm2Ot9+wTpE46w6aXSTO0z+/o+uFKjB6wbpF4jx5/uNdL9RN8+eXOXTMmjWgSJwhQ8pszwbzy6Q9/BurFokz5LxHa4+xcHLVer3cskaROCv3K7NBz11W/3EAIGKlrheqwJot9V9DfPSKMtcpX5g7sOuFKjC/T5l9bY7KvG+P3LFKkTiDB80vEmfOTwqce5SIUdAGfz21SJwrR3yvSJzWQWXOCZ4ucIrzSqHv6m3mljne9C/UbaW10Pu2WkuZOHNOvbhInMHv+3KROD1JTx6aV4dKWzUk/ULSfzc9vkbSGU2Pj5P0tW7Uv4ukq/L9QyQ9I+luSQ/mWDsuZb3DJc1op3wlSRdImi5phqS/SRqan2uRNKXpNnxpt8vMzMzMzMzMrLerum39VuCjwPGS+gBrAis3Pb8j8NUK410UEV8GkLQrcKmkXSPivorqPxx4KiK2yjE2BxqX2OZExKgOX2lmZmZmZmZm1g1l+l32HFWPD7sN2CHf35KUJ+oVSatJGgi8FVgl936aLunMXI6kd3dQ/n5J90u6C9ino8AR8VfgNGB8ft3Gkq6WNFnSLZK2yOXrSLpM0tR8W6T3laSN8nqMBdYDHm+K8UBO4m5mZmZmZmZmVquo6V9PVWkjVUQ8ASyQ9BZSr6m/k2bM2wEYAzwInAGMy72T+gFfkDQIOLuD8tOBPYFtga6S+twFbJHvnwYcFhHbAl8HTs7lJwA3RcTWwGjgnsaLc0+pPwCHRMRE4EzgW5L+LumHkjZtijW4aajfZUv0RpmZmZmZmZmZ2SLqSKV3G6mBakfg58Cb8/2XgMdIw+T+kZc9B/gS8Ffg4XbKb8zlDwJIOp/cU6oDyssNzTEv1sKsu41MpbsBnwSIiBbgJUmrAWsBlwP7RMS9+fkpkjYC3gvsDkyUtEMeTujhfmZmZmZmZmZWGw/3675bSQ1EW5GG+91O6km1I6nRqU7bAPeRtuvFiBjVdHtrF699Cfg38M7mwoh4NSIujYgvAucDH1zclZE0XtIkSZNue/XBJdsSMzMzMzMzM7NepI5GqtuAPYDnI6IlIp4HViU1VP0BGC5pk7zsJ4CbgAc6KL8/l2+cyw/oKKikd5F6WZ0eES8DD0vaPz8nSVvnRScAX8jlfSU15jSeB3wE+KSkj+fn35F7WSFpAPA2YLHnXI+I0yJiTESM2XHopl2/wMzMzMzMzMwsc06q7ptOmtXv9jZlL0XEY8CnSMPwppN6rp0aEa91Uj4e+FNOnP50m1jjck6ofwDfBfZtmtnvQOAzkqaS8k7tlcsPB3bNcSaTGp4AiIhZpAa2r0r6MLAxcFNe9m5gEqmhzczMzMzMzMzMKlR5Tqqc52nlNmWHNN2fQBqW1/Z1HZVfzcJk6M3lZ5OSrXe0Hg8D72+n/CkWNlg1G5GffxEY21R+bgf1D+0otpmZmZmZmZlZd/W2nFR1JE43MzMzMzMzM7Nuao2eOzSvDnUM9zMzMzMzMzMzM1si7klVyKACffRC9ccAWKPf3CJxnnhtpSJx1l/npSJxZj9bJAyvze5fe4xBK82vPQbArPn1bwvAiy8MLBLn6f5lrgtsNf+1InH69q//wPbarDL7wIarlTkOPPHKGkXiDNuwpUicux8bViTO0wPq/4JbbZ3ZtccA6PdcmU77C15aueuFKjAw+haJs9rqZf4+L74wuEicgYPr/x5tmV/mO6f/oDLHmytHfK9InD1n/LBInMljymzP4AIdMDaZV+a4Np8yP3ZKDa1apaVMpHsHljkWxIIiYXqlntiPStLqwEXAcOAR4KMR8UKbZUYBp5DSQbUAx0TERV3VXekeK2l9SZdLelDSvyT9Ms+KV2WMIyU9nhOmz8gJzrtb59mS9munvI+kE3Kc6ZImSvqv/NwjuWxKvu3Y3fUwMzMzMzMzM+vhvg1MiIhNgQn5cVuzgU9GxJakfOHHS1q1q4ora6SSJOBS4I95RTcDhgLHVBWjyS8iYhSwP3CmpMXaDklLerlvHPAmYGREbAV8BHix6fldI2JUvt22hHWbmZmZmZmZmXWolajl1k17Aefk++cAe7ddICL+EREP5vtPAE8Da3VVcZU9qXYDXouIs/JKtABfBT4t6Yu5h9WNuZfVDxovknSQpDtzb6RfNxqSJL0q6RhJUyXdLmmdtgEj4j5gAbCmpANyz6YZkn7aVP+rko6TNBXYQdInJU3L9Z7XVN3Okm6T9FBTr6r1gJkR0ZrjPda2C5uZmZmZmZmZWR2ipn/dtE5EzMz3nwTe0F7TTNJ2wADgX11VXGUj1ZbA5OaCiHgZ+Dcp99V2wL7ASGB/SWMkvZXUW+kduWdUC3BgfvkQ4PaI2Bq4GTi0bUBJbycNG+4P/JTUUDYKGCtp76Z67sj1vAB8D9gtPz68qbr1gHcCewA/yWW/B/bMDWjHSdqmzSr8NT93x+K+SWZmZmZmZmZmy5Kk8ZImNd3Gt3n++twJqO1tr+blIiLoJHWWpPWA84BPNToAdaZk4vTrIuI5AEmXkhqEFgDbAhPTaEEGk7qAAcwDrsr3JwPvaarrq5IOAl4hNXKNAW6MiGdy/RcAOwN/JDV8/SG/bjfg4oh4FiAinm+q84/5Dbu30WsrIh6TtHl+3W7ABEn7R8SE/JpdG3WZmZmZmZmZmVWprhT7EXEacFonz+/e0XOSnpK0XkTMzI1QT3ew3MrAn4D/iYjbF2e9quxJdS+pwantCr2F1BjVtmUtAAHnNOV12jwijszPz88tcpAampob1H6Rl98pIm7pYr1ey0MPu9I8Zd3rU0dExNyI+EtEfAP4Ee2MtexIc8vkLbMeXNyXmZmZmZmZmZn1VFcAB+f7BwOXt10gT6J3GXBuRFyyuBVX2Ug1AVhJ0ifzCvUFjgPOJmV1f4+k1SUNJjX03Jpfs5+ktfNrVpe04VLEvhN4l6Q1c9wDgJvaWe4G0lDDNRrxOqtU0mhJb8r3+5CGKj66uCsVEadFxJiIGLPTkE0X92VmZmZmZmZmZj01cfpPSG08DwK758fktE5n5GU+ShrhdkhOkzRF0qiuKq5suF9EhKSPACdL+j6pAezPwHdJjUZ3kobdrQ+cHxGT8kZ8D7g2NwLNB77EEjQE5dgzJX0b+CupF9SfIuINLXkRcY+kY4CbJLUAdwOHdFL12sDpkgbmx3cCJy3JupmZmZmZmZmZLY0KkpxXLqdyenc75ZOAz+b75wPnL2ndleakioj/AHu2Lc/5ph6LiPamJbwIuKid8qFN9y8BLsn3j+wg9oXAhZ3Vkx+fw8KpEhtlh7T3moi4Gri6g3jD2ys3MzMzMzMzM7MlVzJxupmZmZmZmZmZLaa6Eqf3VFqYm9zqdPr6B9X+Rs9X18tUYWChXWZOoe15pO/i5NXvvp1eK7NB/z3/ntpj7DB0o9pjAKyvQUXiFNrVGDWvyjSAHXu5T5kt+ne/+r8yB0WZbdlqbpkDW6mTjBf6ldnXnutbJAwrF3jj/lnou2BgoSPOyLll4rQWOoC+Wui4NrvMR4fftzxRe4wR/deoPQbASpQ5EJQ6fg6tNGVvx46c9MMicU4YfUTtMV7qU+Y7dOTcrpepQqnjzUuFvkP7F/rt9kDfBUXi/PKR35U6de8x9tnww7X8FS999Ioe+V4u8VFYUktT0qspORfUEpP0iKQ1l+a1i1H3cEkz8v1dJL2U1/U+ST+ooP5DJDk3lZmZmZmZmZnVJiJqufVUSzPcb05EdJmRvYe5JSL2kDQEmCLpyoi4q6sXSeoXEWWahM3MzMzMzMzMerHK+rPmnlFHSbpL0nRJW+TyoZLOymXTJO3bzmu/JmlGvv13Lhsi6U+Spubycbl8W0k3SZos6RpJ6zWVT5U0lTRD4BtExCxgMrCJpFGSbs/rdBemO+UAACAASURBVJmk1XI9N0o6XtIk4HBJYyXdluu+U9KwXN2bJF0t6UFJ/1fV+2hmZmZmZmZmBtBK1HLrqZamkWpwm+F+45qeezYiRgOnAF/PZd8HXoqIrSJiJHBDc2WStgU+Bbwd2B44VNI2wPuBJyJi64gYAVwtqT9wIrBfRGwLnAkck6s6CzgsIrbuaMUlrZFj3AOcC3wrr9N0oHkY4ICIGJNjXQQcnuvdHZiTlxkFjAO2AsZJ2mAx3jszMzMzMzMzs8XSWtOtp6p6uN+l+f/JwD75/u7AxxoLRMQLbV7zTuCy3MsJSZcCOwFXA8dJ+ilwVUTcImkEMAK4ThJAX2CmpFWBVSPi5lznecAHmmLsJOlu0t/iJ8Bjefmb8vPnABc3LX9R/n9zYGZETMzr/nJeR4AJEfFSfnwvsCHwnw7eFzMzMzMzMzMz68TSNFJ1pjHnQkt3646If0gaDXwQ+KGkCcBlwD0RsUPzsrmRqjO3RMQeTcuv0sXysxZjFZvnl2h3eyWNB8YDHLTqduw8ZNPFqNbMzMzMzMzMDKIHD82rQ4k5Vq+jKUdUI/dTk1uAvSWtlBObfwS4RdKbgNkRcT5wLDAaeABYS9IOua7+kraMiBeBFyW9M9d5YGcrlHtAvSBpp1z0CeCmdhZ9AFhP0tgcb5ikxW58i4jTImJMRIxxA5WZmZmZmZmZWceWprfTYElTmh5fHRHf7mT5HwK/kjSD1OPoKBYOCyQi7pJ0NnBnLjojIu6W9D7gWEmtwHzgCxExT9J+wAm5N1Q/4HhSjqlPAWdKCuDaxdiOg4FTJa0EPJRfv4gcbxxwoqTBpHxUuy9G3WZmZmZmZmZm3dKTk5zXYYkbqSKibwflw5vuTwJ2yfdfJTUIdbb8z4Gft3n+GuCadl43Bdi5nfLJQHPS9G/m8huBGzuoZ/t2yndp83hiO8udnW+NZfbAzMzMzMzMzKxCEb2rkarEcD8zMzMzMzMzM7NOqbe1yi0r/7fhQbW/0X0K/Sk3nVdmwsoX+pZpQ+1X6H1rVZk4fQtsT79Cx405fcq8aaX2gWeqnqqiA6u1lIkzsMB+0L/Q32ZmvzL72oBC2zOwUJy5hY5rQ3vyPMlL6JV2+6NXb36ZMMX0LxRnYKF9rcRuUOJ8oKSnC32HDi70vs0qdPz8yl1HF4lz0ugjao9R6m+jQnGGFDreLCi0rw1uLfPGjZt5QaEt6jnet8EHanlzr/nPX3rke+meVGZmZmZmZrZUSjRQmVnvscwbqSQNknSnpKmS7pF0VC7fQ9LdufxeSZ9byvofkTRd0jRJ10pat4J1frW7dZiZmZmZmZmZdSZq+tdTFeo426m5wG4R8aqk/sDfJF0PnAZsFxGPSRoIDO9GjF0j4llJPwK+C3ylqxdI6hcRC7oR08zMzMzMzMxsqfW22f2WeU+qSBo9k/rn2zxSA9pzeZm5EfEAgKT9Jc3IPaxuzmWHSLpU0tWSHpT0fx2EuxnYJPfeOiv3sLpb0q5N9Vwh6QZggqShTctNk7RvoyJJx+R1uF3SOnW8N2ZmZmZmZmZmvUVP6EmFpL7AZGAT4FcRcYekK4BHJU0ArgIujIhW4AjgfRHxuKRVm6oZBWxD6pn1gKQTI+I/bULtAUwHvkRqH9tK0hbAtZI2y8uMBkZGxPOSfgq8FBFb5fVcLS8zBLg9Iv4nN4gdCvywyvfEzMzMzMzMzHq33jbZ3TLvSQUQES0RMQpYH9hO0oiI+CzwbuBO4OvAmXnxW4GzJR3KopOjTIiIlyLiNeBeYMOm5/4qaQqwMvBj4J3A+Tn2/cCjQKOR6rqIeD7f3x34VdN6vpDvziM1nEFqXBvejc03MzMzMzMzM+v1ekQjVUNEvAj8FXh/fjw9In4BvAfYN5d9HvgesAEwWdIa+eVzm6pqYdFeYrtGxKiI+GSO0ZlZi7Gq82Nhc2bbWK+TNF7SJEmT7nj1wcWo1szMzMzMzMwsaSVqufVUy7yRStJajWF7kgaTGqTul7RL02KjSL2dkLRxRNwREUcAz5Aaq5bULcCBub7NgLcAD7Sz3HWkoYGNdV2tnWU6FBGnRcSYiBjz9qGbLsVqmpmZmZmZmZn1Dj0hJ9V6wDk5L1Uf4PfATcBFkn4NzCH1bjokL3+spE0BAROAqaRGrCVxMnCKpOnAAuCQiJgrqe1yPwR+JWkGqcfUUcClSxjLzMzMzMzMzGyJRQ/u9VSHZd5IFRHTSAnP2/pgB8vv007x2fnWWGaPpvvD26njNeBT7ZS3redV4OB2lhvadP8S4JL21tXMzMzMzMzMbGm1OnG6mZmZmZmZmZlZWcu8J1VvsVpL/TFmF2pyfO2NwyJrMbi1TIvxwEIt0wsKvW//HFB/nP5RZls2ntdaJE4pa84tsz0PDShzaF97Xv0HtlJXUtZs6dv1QhVoocxnZ52W+UXizOzXv0icEl4pswvw5vkFTgiA2Srz6Xm4wHcOwGaFjp+brfRykTiXtKxSe4wt59UeAqDQUQ1eKRRok0LnHhMHlfmMnjT6iNpjfPmuo2uPAXD5Vt8vEmduoXP2lkL7dKk4a7WWOffojXpXP6qaz/8l/Y+keyRNkzRF0tvrjNfBOtwo6QFJUyXdKmnzCup8RNKaVayfmZmZmZmZmZnV2JNK0g7AHsDonJR8TWDAYryuX0QsqHh1DoyISZLGA8cCH15G62FmZmZmZmZmtlhae1lfqjp7Uq0HPBsRcwEi4tmIeELSWEm35Z5Nd0oaJukQSVdIugGYIGmIpDPz83dL2gtAUl9Jx0qamHtnfS6X75J7TF0i6X5JF6idqfqAm4FNlBwraYak6ZLGNdVzi6QrgHtzvJ/l5aZJOqyprsMk3ZVfv0WN76OZmZmZmZmZ9UKtRC23nqrOxCXXAkdI+gdwPXAR8Pf8/7iImChpZWBOXn40MDIinpf0I+CGiPi0pFWBOyVdDxwIvBQRYyUNBG6VdG1+/TbAlsATwK3AO4C/tVmnPYHpwD7AKGBrYE1goqSbm9ZjREQ8LOkLwHBgVEQskLR6U13PRsRoSV8Evg58tpvvl5mZmZmZmZlZr1VbI1VEvCppW2AnYFdS49QxwMyImJiXeRkgd3q6LiKezy9/L/BhSV/PjwcBb8nlIyXtl8tXATYF5gF3RsRjub4ppMalRiPVBZLmAI8AhwFfAy6MiBbgKUk3AWOBl3M9D+fX7Q6c2hj217R+AJfm/yeTGr3MzMzMzMzMzCoThSb66ilqnQIqNwLdCNwoaTrwpU4Wn9V0X8C+EfFA8wJ5CN9hEXFNm/JdgLlNRS0sum0HRsSkpuU7W+1ZnT3ZpBGvbazm9RoPjAc4aNXt2HnIpotZtZmZmZmZmZlZ71JbTipJm0tqbpUZBdwHrCdpbF5mmKT2GniuIeV8Ul5um6byL0jqn8s3kzRkKVbvFmBczjm1FrAzcGc7y10HfK6xjm2G+3UpIk6LiDERMcYNVGZmZmZmZma2JJyTqjpDgRNzTqkFwD9JvYrOyuWDSfmodm/ntf8LHA9Mk9QHeJg0U+AZpGF8d+UGrGeAvZdi3S4DdgCmAgF8MyKebCcB+hnAZnk95gOnAyctRTwzMzMzMzMzsyUSPbhBqQ515qSaDOzYzlPPAtu3KTs73xqvnQN8rp06W4Hv5luzG/OtsdyXm+7v0k49AXwj35rL29azgJS/6mttlhvedH8S8IYYZmZmZmZmZma2+GrNSWVmZmZmZmZmZkvHidOtFmssaK09Rp9+taUYW8SoVZ7veqEK/POFVYvEmd95Iv3KPNe3TJw1WuqPUWZPgxf6lon01phdJM6jMbhInDlldjWGaUHtMUrtay0tZd60UsebtQbNKRJn9ty+ReKUOBYMaoUhrfWfBL7Qt8x7tkpL/ecdACu3ltmnB0WZ7Xli1tAicdYeUP/7NqfQAXRooX1tm7llfqTNp8w+PXJu18tU4dkCv/Yu3+r79QcB9pr+v0XiXDTyiCJxnivzdcBrhc4LN5hf6qzNVnRupDIzM7Ner0QDlZmZmdmS6slJzuvQ45s7JbVImiJphqSLJa20FHUcIumkNmVTJP2uujU1MzMzMzMzM6tORNRy66l6fCMVMCciRkXECGAe8PnuVijprUBfYCdJQzpYxr3MzMzMzMzMzMwKWR4aqZrdAmwiaXVJf5Q0TdLtkkYCdFTejgOA84Brgb0ahZJulHS8pEnA4ZK2lXSTpMmSrpG0Xl7uUEkTJU2V9Iel6d1lZmZmZmZmZtaZVqKWW0+13DRS5Z5NHwCmA0cBd0fESOC7wLl5sY7K2xoH/A64kNRg1WxARIwBTgBOBPaLiG2BM4Fj8jKXRsTYiNgauA/4TAWbaGZmZmZmZmbWay0PQ9oGS5qS798C/Aa4A9gXICJukLSGpJWBd3ZQ/jpJY4BnI+Lfkh4HzpS0ekQ0pqy7KP+/OTACuE5pNqa+wMz83AhJPwRWBYYC11S+1WZmZmZmZmbWq0UP7vVUh+WhkWpORIxqLlD3pvA+ANhC0iP58cqkhq3T8+NZjTDAPRGxQzt1nA3sHRFTJR0C7NJeIEnjgfEAnxs2lveutEl31tvMzMzMzMzMbIW13Az3a+MW4EAASbuQeka93Ek5uawP8FFgq4gYHhHDSTmp2g75A3gAWEvSDvm1/SVtmZ8bBsyU1L8Rrz0RcVpEjImIMW6gMjMzMzMzM7Ml0RpRy62nWh56UrXnSNIwvWnAbODgLsobdgIej4gnmspuBt7WSIreEBHzJO0HnCBpFdJ7dTxwD/B90pDDZ/L/w6rbNDMzMzMzMzMzD/frcSJiaDtlzwN7L0H52aQhegDbt3muBVg3P9ylzXNTgJ3bqe8U4JTFWH0zMzMzMzMzM1sMPb6RyszMzMzMzMysN+rJQ/PqoOhlG7ysnLrBQSvMG9230JYMbS0T6Ml+3UrEv9g2mtdaJM5DA+pPNTew0D4wt8yfhqFl/jTFvFbofSsRptSBc1ihfaDUPl3KvELb079AjFKHgf6FdupSSUfXWFDmnXu5b5ktKvUZfbXA5rTUHwIo8/mEcp+dUseCUuceJfbpUttS6pxg3LSji8T5zTZHFIlT6rdbqfPPw/5z/gp2NtW1t669XS1/xfuevrNHvpfLa+J0ACSFpPObHveT9Iykq/LjD0v69hLW+QNJP25TNkrSfZ285khJX1/S9TczMzMzMzMz60jU9K+nWt6H+80CRkgaHBFzgPcAjzeejIgrgCuWsM4LgauB7zSVfSyXm5mZmZmZmZkV0duG+y3XPamyPwMfyvcPoKkxSdIhkk7K9/eXNEPSVEk357K+kn6Wy6dJOiwi/gG8IOntTTE+Clwo6VBJE3Mdf5C0UplNNDMzMzMzMzNbsa0IjVS/Az4maRAwErijg+WOAN4XEVsDH85l44HhwKiIGAlckMsvJPWeQtL2wPMR8SBwaUSMzXXcB3ymhu0xMzMzMzMzM+t1w/2W+0aqiJhGamg6gNSrqiO3AmdLOhTom8t2B34dEQtyXc/n8ouA/ST1YdGhfiMk3SJpOnAgsGWV22JmZmZmZmZm1lst941U2RXAz+gkb1REfB74HrABMFnSGp0s+x/gYeBdwL6kRiuAs4EvR8RWwFHAoM5WStJ4SZMkTbrl1QcXf2vMzMzMzMzMrNdrjajl1lOtKI1UZwJHRcT0jhaQtHFE3BERRwDPkBqrrgM+J6lfXmb1ppdcCPwCeCgiHstlw4CZkvqTelJ1KiJOi4gxETFmp6GbLtWGmZmZmZmZmVnv5OF+y6GIeCwiTuhisWMlTZc0A7gNmAqcAfwbmCZpKvDxpuUvJg3na+6d9X1SzqtbgfurWn8zMzMzMzMzs96u37Jege6IiKHtlN0I3Jjvn00aokdE7NNOFQuAr+Vb23qeBfq3KTsFOKWdZY9csjU3MzMzMzMzM+tcROuyXoWiVoieVGZmZmZmZmZmVj9Jq0u6TtKD+f/VOll2ZUmPSTppceperntSLU9WKtD4+WqhJseBhYavvtpHReJsNK9My/ST/cr8gVZtqT9G364XqUSfQvv03DK7WjGrF9gHAOYVeN8G9Nzh8kvllUL79LoLyrxxT/Qv8+EZtqBIGAYWSCL6bL8y79mqhfaBVwsdqPsXSvA6uNjF6vr3g6GtZd6zlgLbAtBa6Lt6lZYyO8EjA8p8dtYocPxsKfS3ea7QCehvtjmiSJzP3H10kTiHj/l2kTi7zu3f9UK2VFp7Zv6obwMTIuInkr6dH3+rg2X/F7h5cSte7ntSSQpJ5zc97ifpGUlXdfG6dSRdJWmqpHsl/bmL5YfnfFbtPXejpDFLtwVmZma2rJVooDIzMzNbQewFnJPvnwPs3d5CkrYF1gGuXdyKV4SeVLOAEZIGR8Qc4D3A44vxuqOB6yLilwCSRta4jmZmZmZmZmZmSyR65oW0dSJiZr7/JKkhahGS+gDHAQcBuy9uxct9T6rsz8CH8v0DaJqRL4+V/KOkaZJub2qMWg94rLFcREzLy0vSsZJm5NkAx7UNJmmwpN9Juk/SZcDgujbMzMzMzMzMzHqnVqKWm6TxkiY13cY3x5V0fW4XaXvbq3m5SK1o7bWkfRH4c0Q81s5zHVoRelIB/A44Ig/xGwmcCeyUnzsKuDsi9pa0G3AuMAr4FXCRpC8D1wNnRcQTwD75+a2BNYGJktqOn/wCMDsi3pobve6qd/PMzMzMzMzMzKoREacBp3XyfIe9nyQ9JWm9iJgpaT3g6XYW2wHYSdIXgaHAAEmvRkSnidJWiJ5UuRfUcFIvqra5pd4JnJeXuwFYQ9LKEXENsBFwOrAFcLektfLyF0ZES0Q8BdwEjG1T587A+U2xp9WxXWZmZmZmZmbWe0VELbduugI4ON8/GLi8nfU+MCLeEhHDga8D53bVQAUrSCNVdgXwM5qG+nUlIp6PiN9GxCeAiaTGp8o0d5/766wHq6zazMzMzMzMzGxZ+AnwHkkPkvJN/QRA0hhJZ3Sn4hWpkepM4KiImN6m/BbgQABJuwDPRsTLknaTtFIuHwZsDPw7Lz9OUt/cs2pn4M42dd4MfDy/dgRpiOEbRMRpETEmIsbsOmTTKrbRzMzMzMzMzHqJ1ohabt0REc9FxLsjYtOI2D0ins/lkyLis+0sf3ZEfHlx6l5RclKRk3Gd0M5TRwJnSpoGzGZhl7RtgZMkLSA11p0RERMlTSKNnZxKSv71zYh4UtLwpjpPAc6SdB9wHzC5+i0yMzMzMzMzs94s2s1JvuJa7hupImJoO2U3Ajfm+88De7ezzLHAse2UB/CNfGsufwQYke/PAT7W3XU3MzMzMzMzM7NkuW+kMjMzMzMzMzNbEVWQ5Hy5siLlpDIzMzMzMzMzs+WUe1IVMlf1x2ipPwQArQW2BWB+oTiPDCjTVrvu/DIt4M/1q/+NW6XUzlbIkNYycQYUuggys9CRfVCB7ZlTfwig3PGmlH/3L7NBm8wr8+F5YGD9x+nBhb7c+haJUm4fWHdBkTA8WeC7DaBfoeN0ie+DJ0q9Z0WiwGqFzj3uLXC8AVil0LnHghK/QQp9h75WKM7QQn+bw8d8u0icX076SZE4J48+okic3qi1l+WkWqF6Uin5m6QPNJXtL+nqdpb9tKTpkqZJmiFpry7qPlvSfu2U7yLpqmq2wMzMzMzMzMwsiYhabj3VCtWTKiJC0ueBiyX9lbR9PwLe31hGkoANgP8BRkfES5KGAmsti3U2MzMzMzMzM7MVrJEKICJmSLoS+BYwBDgXaJH0AHAHsC3wReAV4NX8mlcb9yWNAk4FVgL+BXw6Il5ojiHp/cDxwGzgbwU2y8zMzMzMzMx6mdYe3OupDivUcL8mRwEfBz4A/F8u2xQ4OSK2JDUsPQU8LOksSXs2vfZc4FsRMRKYDvyguWJJg4DTgT1JDV7r1rkhZmZmZmZmZma9wQrZSBURs4CLgPMiYm4ufjQibs/Pt5CGAO4H/AP4haQjJa0CrBoRN+XXnAPs3Kb6LYCHI+LBSAM5z695c8zMzMzMzMysF+ptOalWyEaqrDXfGmY1PxnJnRHxY+BjwL5Vr4Ck8ZImSZp086wHq67ezMzMzMzMzGyFsSI3UnVI0pskjW4qGkXqafUS8IKknXL5J4Cb2rz8fmC4pI3z4wM6ihMRp0XEmIgYs/OQTatafTMzMzMzMzPrBVqJWm491QqXOH0x9Qd+JulNwGvAM8Dn83MHA6dKWgl4CPhU8wsj4jVJ44E/SZoN3AIMK7bmZmZmZmZmZtYr9OSheXVYYRupIuLIpvuPACOaHj8K7NbB66YA27dTfkjT/atJuanMzMzMzMzMzKwCK2wjlZmZmZmZmZnZ8qzVPamsDq+p/hjP9C2z837tHTOLxJn9cJntWeuPpxWJc8zYI4vE+eZ31qg/yPz59ccAmD2nSJiWh8vs0+f9ac0icfYe+kyROG8+9gP1B2lZUH8MYPbpVxaJc/7UDYrE+dKVHy8S54mDji8S5z8vrl17jM/8eMPaYwC8/Ju/FYkz86FVisQ5c8DgInF++r03F4nT+tSzReJo4ID6Y2yzXe0xAFgwr0iYOadeXCROlPna4ejp6xWJs+OCvrXHWKu1zHnhBvPLpFN+YECZn8i7zu1fJM7Jo48oEueLdx1dJI6t+Hp04nRJ/yPpHknTJE2R9PZOlj1b0n5d1He2pIdzXXdJ2qGD5Y6WtHt319/MzMzMzMzMbGlFTf96qh7bkyo3IO0BjI6IuZLWBKq47PSNiLhE0nuBXwMj28TtGxFlmpvNzMzMzMzMzDrQ24b79eSeVOsBz0bEXICIeDYinpB0hKSJkmZIOk3SGwbSSdpW0k2SJku6RlJ7/WlvBjbJyz8i6aeS7gL2b+6VJWmspNskTZV0p6RhkvpKOjavxzRJn6vvbTAzMzMzMzMzW/H15Eaqa4ENJP1D0smS3pXLT4qIsRExAhhM6m31Okn9gROB/SJiW+BM4Jh26t8TmN70+LmIGB0Rv2uqawBwEXB4RGwN7A7MAT4DvBQRY4GxwKGS/quCbTYzMzMzMzMzAyAiarn1VD12uF9EvCppW2AnYFfgIknfBl6R9E1gJWB14B6gOePt5sAI4Lrcyaov0JwV+VhJ3wOeITU2NVzUzmpsDsyMiIl5nV4GyEMFRzblwFoF2BR4eOm32MzMzMzMzMys9+qxjVQAEdEC3AjcKGk68DlSDqkxEfEfSUcCg9q8TMA9EdFuUnRyTqp2ymctwaoJOCwirul0IWk8MB5g3Krb8Y6hmy5BCDMzMzMzMzPrzXpykvM69NjhfpI2l9TcqjMKeCDff1bSUKC92fweANZqzNwnqb+kLZdyNR4A1pM0Ntc1TFI/4BrgC3loIZI2kzSk7Ysj4rSIGBMRY9xAZWZmZmZmZmZLwsP9eo6hwImSVgUWAP8k9Up6EZgBPAlMbPuiiJiXh+GdIGkV0jYeTxoWuERyXePyegwm5aPaHTgDGA7clRO3PwPsvcRbaGZmZmZmZmZmQA9upIqIycCO7Tz1vXxru/whTfenADt3tkyb8uGd1DUR2L6dl30338zMzMzMzMzMKteTez3VoccO9zMzMzMzMzMzs96jx/akMjMzMzMzMzPrzXpXPyrqS8LlWyWJzMY7Ts+L4TiOs6Jti+M4zoq2LY7Ts+OsSNviOI6zom2L4/TsOCvStpSM49vydfNwv55tvOP0yBiO4zilYjiO45SMsyJti+P07Dgr0rY4juOUiuE4jlMqxooYx5YjbqQyMzMzMzMzM7Nlzo1UZmZmZmZmZma2zLmRqmc7zXF6ZAzHcZxSMRzHcUrGWZG2xXF6dpwVaVscx3FKxXAcxykVY0WMY8sRRfS6XPFmZmZmZmZmZtbDuCeVmZmZmZmZmZktc26kMjMzMzMzMzOzZc6NVGa9kKSfLk5ZN+pfvbNbVXGs55L0lmW9DmbWO6yo3zmS/mtxyszMzFYkzknVQ0jap7PnI+LSiuO9A5gSEbMkHQSMBn4ZEY9WGSfHeiewaUScJWktYGhEPFxxjBHA24BBjbKIOLfKGHWT9LXOno+In1cY666IGN2mbFpEjKyo/oeBAAS8BXgh318V+HdE1HKSLelDwJYsuh8cXUesppjviYjrKqxvZWCtiPhXm/KRETGtohj7NI4pklaLiBeqqLdNjNf3MUl/iIh9q45RkqTtI+L2FS1WjrcasCmLfm5uriHOjsBwoF9TnMqP05L6Auu0ifPvquOUIGkgsC9vfN8qO67l9+vciDiwqjo7iPGViPhFTfUX/86RtDHwWETMlbQLMJL0Pr5YYYz2vqsnR8S2VcXIdda+LSVIekuJz3rpY3SO+WZgQxY9DlR+nLbFV+K8XdLozp6PiLsqiHEl6fjZUYwPdzdGB3E3JP0+vF7SYKBfRLxSRyxb/vTrehErZM/8/9rAjsAN+fGuwG1ApY1UwCnA1pK2Bv4fcAZwLvCuKoNI+gEwBtgcOAvoD5wPvKPiGLuQGqn+DHwA+Btpe6qo/xXaP3gLiIhYuYo4wLD8/+bAWOCK/HhP4M4qAkj6AvBFYCNJzQ0ew4Bbq4gB0PhBIOl04LKI+HN+/AFg76riNJN0KrAS6TNzBrAfFb1vXfgN6UdRt0n6KHA88LSk/sAhETExP302qTG5Ct9j4TFlQoX1NlPT/Y1qqH9hIOlHEfHdfL/SRsMmJ5PfJ0l/j4gdaohRPJakzwKHA+sDU4Dtgb8Du1Uc5zxg4xyjJRcHFR2nm+IcBvwAeApobYpTSQN8U5zNgG/wxh+Nlb5vwOXAS8BkYG7FdQMQES2SNpQ0ICLm1RjjAKCWRqpl8Z0D/AEYI2kT0uxUlwO/BT7Y3YolbUG64LJKm4uYK9PUmFyh2ralWb5Q+S3eeFGxqs/NH1l47Kzz4kjJ74NGT/dxwL0sevystJEq/30O5Y2N4p+uOE6R46ekQcBneOPFy6q2Z1jXi3Tbcfn/QaTfU1NJ51cjgUlAFfvez/L/+wDrkn6nUBT0VwAAIABJREFUARxA+i6tnKRDgfHA6qRzg/WBU4F31xHPlj9upOohIuJTAJKuBd4WETPz4/VIP06rtiAiQtJewEkR8RtJn6khzkeAbYC7ACLiCUlVH9T3A7YG7o6IT0lah4UH2G6LiBJfQkTEUQCSbgZGN64mSDoS+FNFYX4L/AX4MfDtpvJXIuL5imI02z4iDm08iIi/SPq/GuIA7BgRI3OPsKMkHUfa1m6TdEVHTwFrVBEj+y6wbUTMlLQdcJ6k70TEZSza6NNd6uB+laKD+3V4P+m9A/gpUEcjVfP7VMePxGUV63BSo/jtEbFr/nH8oxrijCF9t9W9LxwObB4Rz9Uc52LSCfXpLPzRWIf1I+L9Ndbf8BBwaz7WzWoUVtmDN9d/EnBRmxjd7gnQpOR3TmtELJD0EeDEiDhR0t0V1b05sAepJ9ieTeWvkBoRqlbntjS7gPT3/xDweeBg4JkK6y91caTkMRpSQ+vmEVFLQ3WTy4FbgOup97hW6vh5HnA/8D7gaOBA4L6qKm+ct9cpInYFkHQp6bfB9Px4BHBkRTFuynUeFxFjmp66UtKkKmK040vAdsAdeR0elLR2TbFsOeRGqp5ng0YDVfYUFfXSaOMVSd8BDgJ2ltSH1MupavNyY1gASBpSQ4w5EdEqaUEeKvU0sEENcQDIB9HmKzJVdy1fB2i+mj0vl1WhL/Ay6cthEZJWr6Gh6glJ32Nho+GBwBMVx2iYk/+fLelNwHPAehXVvRPps/Jqm3KRvmSr0rfx+Y+IOyXtClwlaQOqbegZLGkbUl7CQfn+6yfdFf1o3FrSy7newU33c4jKeiCW0icPi+vTdL/5Pavys1My1msR8ZokJA2MiPslbV5h/Q0zSFdoZ3a1YDf9h9TzqG4LIuKUAnFuk7RV44dJjf6Vb32or3fAqPx/81DFoNpeeyW/c+bn3mEHs7AhqZLzqIi4HLhc0g4R8fcq6uxCbdvSxhr5oujh+YfxTZImdvmqxVfq4kjJYzSkRuT+1NSbsslKEfGtmmNAuePnJhGxv6S9IuIcSb8lNcJVqkCPLUiNlK9/D0TEDElvrbB+gCGSNoqIh+D1/Hd1/G4DmBsR86T0sZHUj/ovaNpyxI1UPc8ESdcAF+bH40hXNKo2Dvg48JmIeFIpyfGxNcT5vaRfA6vmrp2fJl05qdIkSavmeieTGhIqP6mT9GFSt9s3kRrCNiRdkdmy4lDnAndKuiw/3hs4p6K6J7PwS6BtD5qg+iuPB5CG3jS25eZcVoer8n5wLKnnXpCG/VXhdmB242pTM0kPVBQDUuPxxo18VLlH1S6kIQxV7mdPAj9v5z5U9KMxIvp2t44lsHbODaGm+83rUkVvkFVIn5/G56a5Ia/qz07JWI/lz80fgeskvQBUlpuwKdfFMOBeSXfS9EOrqlwXTX/zh4AbJf2pTZxKegRpYRLuKyV9kXRsa45TyY9TSdNJ71s/4FOSHspxGsPMKx2+WLJHQM2av3Maw6Hq+s75FKk30DER8XD+QXdeFRVLOpH8XZ0bjxYREV+pIk6T2raljfn5/5lKOSSfIA33qUqpiyNFjtFN+8FsYIqkCSx6vKl6P7hK0gcbw2WrVur42aSxv72Yex49SUqrUrVae2xl0ySdwaIN8JXkKW3yVdL350OkfXtD4HMVx2i4SdJ3SZ/T95BSkVxZUyxbDjlxeg+U8w/slB/enIf6VB1jCOkKekseG74F8JeImN/FS5cm1nuA95IOeNfUlC+mEWs4sHJUlGC6Td1TST/er4+IbXIvl4MiovJhkpK2Bd6ZH94cEXV0u19hKSUbHhQRJXpUVEYpR9ysiPhnm/L+wEcj4oJls2ZLTtJKwPzGMSX3zvkg8EjVxzSlvHQdKvEDfEUg6V2kH19XV5WbKNfZofYafpcyTmf7QERFica1aILu9uJU9eN0w86ej4omOVGa2GSjyAnsJV3CwkaDH0bEDR2+ePFjrA8Mj4i/5cdfA4bmp3/b9njXjTi1J4BvJ+Zg4C0RUeXFCiQd3NnzEVHVhaui75ukPUg9WTYATiTl2DoqIjoaUt+rldoPtDD3qkg9Z+aSGngqzb1a6vjZFO+zpHxrI0l5cYcCR0TEqRXHuTv/LpiW0070B26JiO0rjDEI+AKwcy66GTglIl6rKkaOM5D0mxDg/rqGmOYRPJ+h6fchcEaBlAC2nHAjVS8laTKpIWw1UsLsiaShecVO7qqi1Ff0QNKJ9tG5V9i6EVFp0mxJkyJiTG6s2iYPMZwaEVtXGSfHqmV2Kklb5OE87SbKrio3iJbBTCG5UeT/kX4wHCppU1L36KsqqLvITD4F44wF/hMRT+bHnyTNIPYocGQVVzOVcqt9JucZ2ISUxP4CUsLciRHx7U4r6GFyo8GLjYbP3Ei9N/AI8KuqGnVKx8r1l5iB9adth5G0V1ZBnP0j4uKuyiqIM6jtj4P2yiqIc15EfKKrsm7UPwE4LCLuzY+nA4eQfqh+NyrIhyXpQuCCxrE49z49jTTRxRZVnndI+huwW9WfkQ5i7UlKODwgIv5L0ijg6Dq+3+pW8n2rU6mLI8vgGP36heX8uC8wMCJmVxnHlo6kOyNiu3ze80VSj607q250q4sKzzCfY3qftk71WdYrYImkVyS93M7tldxdufKQ+UCwD3ByROwPjKg8SPvb9R9Jl0mq6uB9Mml2i0aX+FeAX1VUd7MXJQ0lXb24QNIvaUr+WhWl2ameIiV/voqUNL3bDS1ZY0jMce3cftbRi5bCz3KdD5NyRZ2eb6+S8p7U4SzS1b/GTCePAz+sqO6TG3ck1ZkfpFScX5PznknaGfgJaZjpS6Qfj1VYLSIezPcPBi6MiMNIs29+qKIYAEhqNEqi5ExJL0mappRvqwq/J+dmyD9GLwb+Tcqzc3Inr+vRsXIPpG8B38lFjRlYq/aedso+UEOc7yxmWXfdtphl3bXIMN98Ir9thfWv3Gigyh6MiMmRpravKjdV24sFsyPiuIj4X6rPudlIAP99SV9r3CqO0XAkKSfhiwARMYXqhnmtKekHkr4iaaikUyTNkHR5bvSvWpH3TdJmkiZImpEfj1TKIVaVq0kz05Hfp7+T/iZflvSTCuOU/D6ANAvv4KbHg6khFYikj0hapenxqpIqnx1T0peUhpk3Hq+mNPyv6jjrSPqNpL/kx29TPZNEnaaUl+z7pJm57yVN4tJtkqbnc5l2b1XEIOWh6+i2R0Ux2iqyT9vyyzmpeogoNINcE0nagdQDqXHArqPR8njgMdKscgI+Rppq9C7gTGCXCmK8PSJGK89EExEvSBpQQb1t7QW8RhqzfSBpWEwlQ0jaqG12qogYn/+vNTdILJuZQjaOiHHK+TsiYrakqmauKzWTT6k4fZt6S40DTouIPwB/kDSlohjNPel2I+e8i5Qos7WiGA2Hs3AW1ANIs31uRJpZ9AQWDp/ujsER0UjAfBBwZkQcp9Rlvar3bFnEqnUGVklfIF1Z3qjNCfUwKmzUkfQBUo+JN0s6oemplYEFFcZZF3gzCycfaHxmVyb1DKoqzndIM1Y28uqQY82juoZkSLPHvS4imq+oVzVhR9tjWfMU42tWFKOhRAL4hvkR8VKbr5mqjm2/JU0vvympF+pZwC9Jx7IzqObcqVmp9+104BukCyVExDSlZNZVXVBq9+JIPieczKKzGndHyWM0pPQFr0/cEhGv5l5jVftBc4+ziHgxX8j4Y8VxDo2I1y8m5/P2Q6m+ge9s0mfnf/Ljf5Bml/xNFZVLupf0Wb0wIl4AbqL63K51NRK9LvIM84WV2qdtOeVGqt7rcNLV5csi4p7cq+mvNcT5cJvhcKdJmhIR31JKmFeF+fnqciPJ6FpUd6L4uoho7jVVWT6IdtQ+O5XS8K43aOQlqVDJmULmKeUHaewHG1PdTDilZvIpFaevpH4RsYD0g3F803NVfS9Mk/QzUmLcTYBrIV2Zraj+ZgtiYT69PUj5VZ4Drld10883/xLdjdw7Jw/7rSjEMolV9wysvwX+AvyYRX8gvlLh/gxpP5sEfJj0Y/T1OKQLC1V5H2k43PosOuHAK6RGpUpExI+BH0v6cUTU0ROs4X5JH4qIPzUXKuUOqirP0iuSNouIf8DC45ikLUjvW2WibP65eyR9nHQ83RT4CtU1vK4TEd/NF1oejYjGxDb3S3rD7LzdVfB9WynSzLXNZZU1IlPu4kjJYzTALEmjGykZlPKWzuniNUujvYvVdfxW7CtJEdH43ukL1HFxec2I+H1u9CciFkhqqbD+A0gX36+V9Bxp0qvfxaKztHdLNOUflLQOMDY/vDMinq4qTq5/FdLEE428VzeRhjDX8Zuk1D5tyyk3UvVSuSv/zU2PHyKdYFVttqSPApfkx/uReiNBdVONnkCaIWRtScfkGFV2HwcWSSwJ6cu0PynJdVWzxTTUOjtVNrbp/iBSQ8VdpCFfVSo5U8gPSF39N5B0AfAO0o/JKpSaba1UnAtJM6s8SzopuAVeHx5R1cnIoaTG8LcA723KM/A2qh1aCtAqaT3gBdK+fEzTc4Pbf8kSu0HS70m5JlYDbgDIcavO49KINbNArFpnYM0nty+Rh2NLWpt0zBkqaWhUkGsvx5kKTJX026hhApCmOOcA50jaN/c+rFVEfCc3Vm/KolOb39zxq5bIV4E/SdqPhcebbYEdqe4K/g9Is4Yd0ybGd0nHiG5TgQTw7TiM1ENjLqkx9hqq6xHUAimTdD5ON6v8Ily+uPdN0vDS5v2s2zO9tvFsvoDUaJzYj3Scq0rj4sjj1HtxpOQxGtLn5GJJT5DOD9Yl9YKu2iRJP2dhyowvsWijf1WuAS7K3z2QzguvriHOLElrsHB/254KLwI3vneA7+S6xwF3SPoXaVKIyr5L82+pY4EbSfvAiZK+ERGXdPrCJXMmMAP4aH78CVJPtE5zVi2l/6bMPm3LKSdO76VKnZDkHlq/JOUJCuB20knx48C2kWf76Ub9fYDtgedJP04FTIiIqqd+bRtXpOF/20fFCaDVwSxVdV7pzCdwv4sKkuS2U/ciM4UAq0bEUxXH6ENqnJxA2h8E3B4RbU/ujdd7tK0DrAdc2+glqDTT59CoKIF+rvPwiPhlV2XdjLEHafhIX+DKiDg0l78L+GZEdDsHVv7MjyOdSF0cEY/n8m2AtSPimu7GaCfWesDv64qV46xP+nzWOgOrUpLpnwNvAp4mNVjfFxFbdvrCJY+zKanX1ttY9Lut8gS2kj7EG79DKx0CrjQ71eGkv9MU0vHt71V+V+dj9IEszH91D+kHVmVJ4JWmf2+cc0D6IXRsRMyoqP7aE8CXJOlF0oVEkYb4NRolBbwzIlarON61pGFQXwc+Txoq90xUP7HBRqThqjuSLio8DBwY1c1WOZj0eVmPNARvai7fkZQS4LyK4hQ5Ruc6+5IuIp8EbJ6LH6ijMT73pP0+sDvpnP064Jg2IwmqiCNSw9Tuueg60sxuVfZyQmmSoBNJOXdnAGsB+0UNM4A3xdwF+AXwtogYWGG9U4H3NHpP5d9x10eFkzcpjXQZ1VVZhfH6U/M+bcsvN1L1UqVOSEpQnvp1RYutlKSd5jHbdclfFDMiYvMuF166+lclzR73ceCtEfGmGmJMikXzX1VZd5GZfArGmRwR20qaEBHv7voV3Yp1V0SMblNW+edGKefI2yPilqayIaTvuUo+Q/nHwvVRc063kiRNj4itCsSZShoWc32kqbp3BQ6KiEqT2CrNUvYD0o+EPYFPAX0i4oiK45xKykG1KylH0H6k4RdVb890Us/X2yNilNIQuR/FormjqojzNeCixo/tOjQP7aih7okRMbbp8aWN90jSrRHxjhpiXgfsHxEv5serkS72vK+Cut/V2fOR8z5Wpek7YVpEjMxli7ynFcToC/w0Ir6ej819IqLS4Z5NsbaNiMltyvaICmb7XRaUZ4+rOUaR77cc556I2KLLhbsf5yukRqrNSQ28dTXujSX1Ft6X1PD6O9LFrMpyy7b9rs4XZ6dW+f2tNGHPNxodCCS9A/hZROzQ+SuXKMZuEXGDOphRMGqYSdCWTx7u13utERG/yT0abiIN/ZlYdRBJg0iJ2dtebf50hWEmSNoXuDRqbHVtc0DtA4xh4dDFKuOMAM4jD1XIXf0/GRH3VBjjShYOXexD6nXw+6rqzzEGk3qbfZyUmHkYqcGlqmEqbV0v6eukxtfXr/pFNXlvfk9KMP2SFs7k82MWzuTz2QpilIzTRykn3GZqZwanKoaWKiWw/zjwX5KuaHpqGKnnY6Ui5Rw5gbSvNcoqvfobES2SWiWtEvXkaFhEPub8FFibdIKttBqVDjG+S9LYiKj8+N/G/Ih4TlIfSX0i4q+Sjq8hzuCImCBJuXfGkZImA5U2UgE7RsTI/KP+KEnHkXJvVe21iHhNEpIGRsT9kuq4mDCMlFfledIx9OKqe7wCxyklnr+E1CBWSS+qrEQC+LbWbDRQ5ZgvKA1n7baIuCn/yD43Ig6sos4uNH64z8w9BJ9g4XDJSuTj5zvz/cpnRm7jdEmfbOxj+fvov6lupmRyvSWO0ZBmXjyJN57fVNboW+r7Lcd5QNJboqLh3p3EOSAifkHqHVo5ST8i9ah7ntQw9Y6IeKyOWMDVkq4hpWsgx/1zxTE+D5yrlJtKpO06pOIY7yINj92znecCcCOVAW6k6s1qPyHJzuP/t3fm8bqN5f9/f8ykIyJDxmRMZqVSKSkaRKZEpPqhfIukgZKpUZKihKQ0KHNCp2QeM5+DkNJAkxIRUef4/P647nX22s959j7O2fe99tl73+/X67zOs9azn/vzrL2fZ611X/d1fa4o8XoD0QlvVyB3Kd7ewAHANElPUu4moX1CnUZkt7w1swZEKvwBti+DGanDJxPp8bloewJNI4xZs11YFd16Xkn4QRxHXJB+Y/vyXBp9aGrZ26ayuXycuurk05XO24mA4XyU6+R0LeHXsSTwpdb+x4BSqfZdBKz/Ddyesijak4USnn5HAW9x2fLllwK7SvoDcTzN+XPdzDqPpOzQK4HvS3qQ1u8vI0+l78u9kv6PKC1ftIBOY/D6hKTlgIeI0p/cPJAyUc8DLpb0MJClNKqNo5z8cEnrEufSKyQ9YPt1s3jp7Gi8JgWpdgJOlDSJCFbl8HHqwgC+l6fbE+2UCZvtvJMm2StJWiBXFu0wfDpNTD9MXLMnkbfhQMOtadHiTAafP3NPTHcAzlIY278S2J0oac5NF+doiIUqGNxR2kR2ak66ur4tTjQeuKFHZ5vMOqWDe08CW3mgo2QxbH8kBUU3S7tOcqsTYyaNKcB66dyM7Udn8ZI50Tg0XaN/ajvr4nhlfFHL/SYo6cbtKmAFBm5IDrd9/rAvnH2dW1Npx9S06jw/cJXtTXPqjCckTXFPjXm/fRn1lgQeyjmpl3QbkaF1GlH+8ICk+1zAF2YW7yPLzX07zVrSLcBBTp4T7fKIsaLT0tvadonsj35ak2gtjGTKcOvVeIzwoJlG3DxmD1hL2qPffoehdlZUqEypR2OlfvudySOmpfMsIrAzD7FYsRjw/ZzlEElnE2Ih5DnAkUnnKNvXZ9Y5hLh2bkGYDBs42ZnLCns0X00cz+RSQYsURNqRCGQ/u0CwstF5MeFRtbPtEXf1UjR9uJAIjs9kAO/UWTAnkrYiFpWuYMA7ai/n9SM6DVgLOJ/Bk+ycjVQ6Q9KpfXY7c3Z9o7U6Edz9I7Cd7eydw7o4R3dJV9c3DVHO6vxlrP26ltv5/Xf3Ja5n7dLfXWx/PadOGntJ4lzzR/eUtI5gzLcAU5vrvqRPEaWLfwD2s/27HDo9msUsOirjgxqkqhRFqY5e0pXA+4nOWDeUClYousbsQlwcshnySnorcUO9Vtp1E9GW9ercqdGSziVushuDz90Ik/ntMoy9KfB5IoX3yKSxJDFx3N12tu4qCu+UXYhV+X8QngDrFCgh6dUVsbr4DmJyMuJSD0lfIbIk/kK0uF/d9v8UnXx+kutC25VOS29B4kZkZQYHkLKZP0vai1j9fZLoStUEjjoNWI5F0udhGWKi1e70WSQdPgWStiPOnyM2mx9GJ3tgfDRJ36OFSpbISFqEKMv+g+2/Fxj//USG01JElssZTibkGTXWIq4HOxDXhB8BZztTG3V1YADfR3NJwsweCjTrUOFGKpK+SGQ5n9izf29gFWduDDPEe8hWbqzwcGufV55HdHN7CiDjglJTTvpqOjhHpyy3Q4FXpV1XEPeg2c85Cn/H1dNmMTNrSUsz0Gn6hlzngWeim/s+VP0Nx7N4b0q6APi47TvSveAtxBzkBcTCyIjL5iVNJRpBPZGSGI4h7t83IHz3Ruyz10fz8wxcB3JbdFTGATVINcGQdBzDpKPnTulVdCY6G3gx8G2i7OKQ3huiEWosR6z67pJ0PkeU+9yeafz3Eb5aHyUuDBB+VJ8mOhcenDPLKa3AHE6k9JrIeDvc9sMZxr6JaPu9GLECvLXt61NA6fQcF9QhdDcigkY7Ag/Yzlm62GhsmjS2JUpX9wXOz/R767LbWicdg9K4k4kb+JtJLc8BbH9pyBfNvsa9wMtyT956NDYc7vkcqf19Jj+9GtkzTrrIOkgTkjcR3503EOfrc2z/JNP4nQTGU7BgX6Jj2LeIVt2vBH4LfNj2b3LoJK2VgMdt/yMd32bERP+8jBrbAF8lfm+fJLK1/kYElD9WILPhc0TpXc6y4l6N6xgwFP7zrH5+DjWKG8D36C0OrMZgz80R+y5K2tn2j0Y6zjPQuRnYuDdgnMpxptpep5Du2qQFRaJZSK6Fnr6ZoQ25MkSHODe3ZPJmhkk6m+hO13zv3wms5/wNFDZPGr8nFpRWAPbI8Znu0dmJOEdfzkAW4kdsn5VTp6VXtHlPuj9Yt/keKfzkpuZYLJd0ZzOOwkt0Tdu7S3o2cE2Oe492tYakbxHByS+k7Zma3+RAUr/srLqAWZlBDVJNMIZK5W0ocOO7Sm+aaL99czj2XsQNzvMJw+kzgB/bXmWkY/fo3EWYIf6zZ/9zgQeAD9n+RgadhYjyir/37H8e8GiO1eD2ao+ku2yv1XqueJfEFIR5Zc4bHoVx5Y5ESv/pwLnATbk/B+MRSXeUmoS0NCYDb7P9REGNfin9DVlS+7ua/HSFpNcT58/XA5cRq5nH2V45s04ngXFFx9qbCI+1LYBTgZ8Qk59dbW+eSecQwkjWRMDldcRE66VEp6X9M+lMIc5rixF/n3Vt35euB5e4QEfGFOxtFkeuyRHc7aOxALBm0rjHmcsWU+bRTkRwr5QBfKP1XmA/YHnCM3BT4LpM55sLiOzW99u+b6TjDaMz5DWgPTnOpLUyA4Gp/wErEQGy3+fSaGltSnSQeyxtTyKCE7/MrdUFQ2TqzLQvg87NwDts35O2VyfO0xtl1pkCbNlkT0laiugsmHPBd8jmPbafzqWTtL5IfJ6bBfi9gfttfzjD2O379kuI7Kkf9j43Qo2pRGn0E0R3wu1t35Se+5XttUeqUanMLtU4feLxI/oHQpYiDI1zczbQG4E/i/CKGCnHA9cRF9TmZFok6tov/dTRqeoPOQJUia8Ck5m5s8UriInk+zJotC/Mvf4MOT2phs3YI2+Hv/cCvwZOIErinir1OVBHnXy60gGulfTiXFmHQ3BQ0vklg8shsmVtunDL7MSyzuxrNBSSPmr7qKG+R5l+d5OJLM3NmkUDRXlhbuaz/fM0/hHN79DRpS6nztK2D06B8D/Y/mLaf7fCLyQXuxBl34sQgfFlUonEfORtbvC0k4+SpN81gQrbD0qallGHpHEIEdxprj+nSjrTeUzNG403EpO43xLntFUk7e2MvnjuwAC+xX5EudL1DlP4NYHP5hjY9pslbQtcqGhEcgKt63e/e5I55D+SVnOP8bOk1Zj5HmGOSVl0k4jA7va2702f69/n0ujhBAbfe/67z74RI+k7hGdP24voS7kzqYi/02a2r046ryDj36fF/E2ACsD2rxVesrmZx4PL+x4ismuzoO6b93wM2IuB+/SLgW9mGvt+SR8gFsU3JK7dTRAu19/mWOL69ShwV2tOtQFhP5ENSS8lFqxWBW4H3u3yjQcqY5AapJp4DBUI2Yx8gRDSzdqLgMU0ULsPcZOyUP9XzTbLEivNTVvrM8h3wm7zqKT1HF0vZiBpPaJUKhcb2d6rd6ftcyXlmiisJ+lRYoKwcHpM2s71d4GBsshXED4qTdnCjkBWnxPic7AlMXk8NmXVLCxpPtu5J3NddfLpSmcz4F0p7fopKNLZ7UTiBvF2BgdJsyHps7YPTo+3tH1xAZmvkyY4kq6z/bICGg3Nd+SmYX9qZGxIlEn/QtJ9xORx3gI6nQTGSeWqti2pt7Q05+fuyZT9819Jv20yBG1Pk5QzK2ieNOGdh+gitzjx/YSMk7kWuxHlQ0/CDL+Q24iy9lwcA7zGqfRS4SF5IVCiecODhAfmQ0SwvwRP2n5SEpIWTIHXNXINbvu8dG6+krAcaL4vubrWAnwK+Gm6x2hMmDcmFheyZAUm/kZkvS9N+J7dS97vfy9qSq8AbD+dAsm5WbcJUCWdh9PEPjf7AKcpvKkgypqHrYyYQ26S9E3ge2l7V8pchyZL+hmR/Q4RUL4o4/hrE7+ju4igy/RSi5cQny/gG8A3JC0BLG97+ixe9kx5D+Hr+Tqi0UTzeduUyBgeMba/pejouApwdeupvwJ75tBo8TXgQOK8tg0RIMvueVUZ+9RyvwmGpJuHStvNmdqtMBrfljgBtTsGPkZ0e7s2h05Lb3niIrcL0d3r3GbSmmHszYDvExeD9k3cHsBuzcpWBp1B5XfP9Lm5GUnXE5ka09J20e6OCuPcNxOfg1cSZTHvyDh+J518OtQp3tlN3ZSRzvBMUDn/hBnHUfqYJH3b9rvS4z1coHNgj97Lie/M9sAU4vx5UqaxpxOmqAIWJsoJSNsL2c6ysCDpEeKmt/F69LMOAAAgAElEQVQ3abI1RZyDFs+kcx9xgy0imPyRls5RtlfNpPM7YhLfL93MzuzbkYL727UyQp5DeJNl64Il6Ubbm7S2RRgmbzLMy2ZXo7gBfEvrXGICtz/RrONhIhPljRnGXpDwItuB8Oq5YKRjDqO1DvE5bsr+7gCOzp1hmwIsbyPONasRHTjfYPuGnDpJ6xyiDPeEtOv9RIB028w6U4DNnbwvU4DiCmcsx5W0PvBCohHAnwBsPzrsi+Zca0HC22+ztOsq4Ou2nxr6VXOs9ba2ju1zM4/fWfMeSZcT8535iHnCg8C1tj9UQGtRANv/LjD27Tk/u0NoDLpHK3XPVhn71CDVBKPrQIikl9m+LueYfTQWbF9AFTX0O9s+MqPGMsRNThPE+xXwNdt/zahxBXEzekPP/k2I9PFX9X/lbOvMS3g1rJljvFlo3UOYZv8zbS9OlEZkW21O484D7GD7jNa+ScC2tk/LqNNJt7XSOulGuo0J89rsFwSFZ9jvCX+g9rFk6+DSUZBqCrA5kcVyaXo8I4Aw1o5nCN15iNXatxcoVymKhmhp3uBMrc01vGEytrOsOjelPZIWctnudE1J6YpE6drFaXtLIoA0YmPmVjb1loRvyxlJY0eijfr7R6rR0ipuAD+E7qsJ/7DJzuCzla6dZwNH2i5R1jWU7rNsPz7rnxyxzvOIYOIuwIq2Vygw/leJ4KGBS4D9nbmDnKTdCc+9M9OuHYHP2P7u0K+arfE/RWQ53kz43n3O9sk5xu7ReR5xHC8ksp4/VyIQpigjPZqBUq8D3UGTAxVu3tMsXCl86lawfaikqTmz0lMw+btEYyABfyeaj9yZUeM7wPHO1G1zCI1moafh6PZ27vvpytilBqkmGF0FQlrjLgX8P2ZucZ+zO9VMk7ixGJmX9BLi5v3bDM7Y2p2YNGYz/JT0Y+ADtv+Ya8whdPYEDiOMf0W0Tz6sRGaIpJucqUPQMBrFu611oTNElsaiRBbNe53RJ0QddHCR9ABRSiTgQ+lxW+yYfq+bTY3fE2VjxTNbugxSSfoJUXLx4xKT0z4B0UHkCu5JusT2FpK+YPtjOcYcTZqs5w7+/sOVDDlHkH8Wgb0S58+iBvBdfKYlrd3OAJO0iMs2n3gZcAqwqO0VFXYGe+cMIPbozTgeSSvlzN7tihTU3xR4hAiGAVyaM3NP0p3AJg7fu+cSQdBsmYctncnEfeeVRDb6orkC7j06VwGnJZ23AC/PEQifDf3szXvSuLcTlinfAT5h+8YCQapr09iXpe3Ngc/mDLhJupsIVP6BgQxoZz6OTq8HlbFLDVJNMLoMhCS9a4l04d4W92dnGHsZwuPge8QKSTN5nAR8I1emkIZuPV/i5L00kbHVpN3fSaxq5F79u5LodnIDcSECwPY2OXWS1jLECqCJlfls2Wc9Op8nUrp/xOBjypbhMt5JGQ972d5qtN/L7KDo6DUUtn1EZ28mA5IeJDyiRJQq/LD9vDOazqcMkJ2BNwE3Jq0LcmXvdFW2JulXRBOFUxh8PWiEsgQqJB0w3PM5AqJJ53pgKlE2/8Pe53N+BobQX4G4J/jiLH94ZDqb5Fy118wG8NsSHf5yGsB3VoqpKMX9JoWDR4rGFjsA53ugrDl799cOj2d1otRvadvrKIz0t8n5OUg6pUu/e0ujhrTsGKHOFLc66xXMSB7Uja6gzrDNe3KfPyXtCBwCXG37/ZJeAHzR9vYZNQb9jYbaN4djX0TMPfr+zsZiELky9qnG6RMM2zekQNW+RBttCP+Bl+YOhCQWKbiq/QbiGJZncObEY0Taci7enHGsYXHUyg834c7FIR1oNLyE8IiBuAD+pJDOzun/dievLAaz6qbbWmc6Q2H7HEmfzDlmunmbbPuxNPaGRAnLrbk0HB29kPQK29f06Gfx9krZGcO9h5zZGh9pPS5pnt6UwV2hKAN+LZH5+i0i2J9j/FVyjPMM+BRxXuu9HkB8l3J5Kz070ziz4s1E6eUbGFhQKkrKfN6RKMFaDsjqEdPSWTtp7EJkoeTMgC1uAN/hZxrgy8Rn4PykPUVS1oz3Btv3a3DHzVzGz226Op6TifPoiUlnqqLjW9YgFXCJpO0J/7YSq/4vkNT4ugpYtbWddWFRg5szzNvezrjYt5DCWL7RWbi9nfE6WvS62YvtMxko+cTRjTVbgCpxXwrCN6WkuwH3ZRr7VKIT4ncIb8X/ZRp3SNKi/GeB5Wxvna4LL7N9SmntytigBqkmICkYdaikBYhW2k8TN4oluEDSG23n7NoBQCoZ+46k7XNkZg2j08kKQpcZW87kzzIr0gRhE8J4HuCDCp+ynEFEoPjEoYtua13q9EVhyJm7c9ghts9UNCB4HfBFogvOSzPrQLSa7g0m9ds3J3wp/b8QMameQnw31yX+Xtm6/bmwUXovilbWbyECvRsSN6q5xu4kuGf7LOAsSYc4ox9hH53DS43do/MP4IcKr8gps3zBHCLp2YSZ9TuA1YkMpFVsL59ZZ2UGAlP/I7ypNnbG0uLEn4nvaJMJuCDJbLoEGjB/NmH+fF5ujY6CR/enLCcrGpzsR3RGy05Hx7NIWpRt78vd7Rdgb+AAYLqk5jNn21mC/MBbe7aPzjRuL4sRwfD2L6w5N+fsJvkXBi8i/LW1nW0xofcaqkJm4x0vLL4bOJyBLNGr0r4Rk+7Rfkos9Nwk6bu0uuLmyhDu4dtEcOwTafvXRCVEDVJVgBqkmrBIeiOxwvRb4qK0iqS9beduBb0fcLCiNXcTmc95AYdYyTqG8DsCuAI4wva/cgwu6TGGDx7lOpbOMrYkbUpM3tcCFiBazz+e+e8C8EZgfUd73saU8VbyZrrNIN1kr8xg/7Mcxuk7ECVQ31HZbmud6AxRsrQ40Z3m+MxyzQTkTcBJti9UtDvPhsJP5eXAUj3HNon4bI8Y269JWucAGzp1vlKYmR6WQ6NB4RM1XKlCztXzM4hsx8nE3/6K5vuaiS8N81y2SUkrGHZhv8BYxnK/rw73fMasyhmTnp6JdlYdogvVDUQnuattW9J2mcYGQNJ1xHfxh8D2tu+V9LucAarW7+tfwJ2KduozDOBz6fRofp3wbzk97dpH0pa29x3mZbNLV8GjfYCvEBYKfyKyKnIeR0NXx/MPSasy8B3agQiQZMV20czKrhYUba/ckc5rutBpUI/ZuKTcZuPNZ7f4wqKjg2TJbPr/ElYZCxIZwznvA/qxpO0zJB0EYHuaohtwpQLUINVE5hiiHe9vANLF/EIga5Cq9AU8cQpRsrhT2n4nEZ3PYsbY0TF0XfN9PPB2Ij258SRbvZDWc4AmVXyxQhqklZ9VidKO5kJnwqRzpLSz2PYjY6bJKOn0fqZNrGju5sxtx4E/STqRmCx+QdHiOne21gKE8ft8DD62R4nAX07WaP+ObN8hKWtXVMqtlvfjFGAX20VuDjuclHQSDKOj0ju6y6Y8iLgWfB04XdKPCmj8jQh+LA0sBdzLMEHYOaT5fd3M4DLFywtoNbwWWKsp80qLMNk6bSU6CR6lzL1dc4/bh66CYfsCJwFrSvoT8DsKHZ+kbRhYJL3c9gUZxx4qwx6AnBn2Lc3nE5mO7cW+rEbjSafUomKbk4ADPNhs/GRiUWvE2P5J+r9Y9nO7vHOI9zDiRStJWxHzwvOJRbhiTRpaPK5oBtCcPzclFhkqFaAap09YJN3oVocQxVLtDS7TNaTYBTyNP8iIcah9GfWeR5QTAOBMHfI6zNhCqROeWt1HVMAAVNIuwOcZ3N3v47azT4Qk3QWsXcIXQh11W+tKp6W3Y/JSGHbfCDUWAbYCbk8ZFMsCL7b981waLa2VmmCvovPSos7cRlvS6cRq4/fSrl2Tzi45dUoj6bW2L03lSjPhzG2gFa3a++nknpRU5gCF0e/biXK81QhvxHNt/zrT+IsRC0fN+M8B3uCeTsO5UUEDeEkXAPu2zjkrEY1O3pJbqzRDZAj+C7jJ9o+7fj+5kPQsYB7bjxUav9fSYBfid3ZQpvFXSg+bQF7bj8i2P55Dp6X3BaLs+1e0FvtyZu8mnb6LipnL44qajaexuggg/R24n8jY/CXM1BRkxNl2iq6L+2TMMHsmmhsSFR3rEIkGSwE72J7a1XuozN3UINUEozUh2ZJYKTmDCIzsCPzR+TusFL2AJ43rgI/YvjptvwI42nY2j5g07jbEav1yRInESsBdtl+UU6cLFN39Xkd02fkrkQb/rlwX7h6tZYnPAJTt7ncm8EHb2VP61VG3ta50WnozBcJKBcdSsGpt4A+2/557/KTxA2KlfjrRqW4S8JWcE1RJCwHvYyDwfiVwgjN1w+vRWg34HPF7awfGczQDONz2oerfDtrO3AY6lWM1LARsAdxiO3emW1Pi0fs7yxoMk3QZ/T1IcmVsNTpLAR9j5uPJqtOjuQ5xrd7Z9gsLjL80kfn8dmBF2ytkHn8mA3jbB+bUSDpXENe2G4jPwkuIjK5/QbYJaifBI0knAWsyYP68PZF99FzgPtv7Z9IpfjyS1gD2Io4HoiTrpFwB1x6tqQy2NJgXuDV3hlO/RcQS12pJ9wDr2n4q57h9dIotKvbonEt4a7WDexvZzlLS3FEAaV5izrYLkW1/IXB6lwGlUkiaD1iD+L3d4w4M2ytjhxqkmmAMMSGZge09M+sVv4ArWhifxkAp2cPAHrmj8ZKmEOn9v7C9gaTXEOVR78mp09IrkrGVxl6JKMFYAPgQ8bv7elP+mRNF6+eVGZzSnTVLI+lcBqxPTBhm3GBlmijsMdzzuVK9O9TZmvAL24kwqmyYRNw4viSDxjbAV4lSz08CXyM+cysDHyuRHt9kUEralTAA/zhwc4mSiC6QdDWR0fJlwth8TyIr4FOFdYs2o0gazwF+aHurzOMeCmxOBHUuArYmvJayBsMktdvAL0RM6qfZ/mhmnZ8T39EDiQDsHsDfXahrrqRJDD5X5+rqNZTejOzHEY7TzwB+Z2c2gO/RfPVwz2eaoHYVPLoeeIVT2W+aPF5FmMLfbnvtTDpFj0fhT3gO4bl6KzH53YDoWvo229ePZPw+elOBzZvviaQliIqB3EGq24isvWvS9suJe7asFQMK8+wdndlgvI9OsUXFHp3FCbPxzdKuq4DDHP5OOcbvNICksEvYhWhAc7jt3B6ixRkqe7uhxPygMjapnlQTjNxBqGdIUU8iR+ej9dLNNbYflbQ/kDtl9H+2H5I0j6R5bF8m6djMGkNmbAHZMrZs/0HR0WtZF+xWJelbxIX7TgZMGM1Ad5KcHFZgTGAgODRUedxY0yE6YN1EGKW3PXYeI4KWOTgSeD3xnb+MWJ29LwVfL6GM39b8CjPebYmym/+pj+n0SEiZmocxs2dHru5HbRa2fYkkpYn8YZJuBooGqYigWNEgFVEyWaIj5w7AesRiyJ4pa+d7s3jNbGO715vqGkklSteea/sUSfuloMcVkm7MLSJpb2Iy9yQDGWI5u3ohaXXgI/R8d8jjF1bcAL4X21ekBZ/VbP8iXVPny1xati6Dg0cn0AoeZdRZnPD1azxhngUsYXu6pJxZNaWP51OEx97lrX3nSbqUCPhvnUGjzeeAW9Mi2QxLg8waAO8BvqUom4XoyJ012zXxBHCbpEsYvNiX27B7SeBX6ZyZdVGxTQpGfTAFsZ07+JY+x5OBya0A0uUpUzlbACmN/aY0/srEAuC5w71mLma4cuhS84PKGKQGqSYoKaOqX6lC7oveZ+nmAo4He88cAOQOID2iaGN7JfD9VJr1eGYNiMn9pvRkbOUUkPQWwpx5AWAVSesTHRGz3iAAm+ZagR0KSV8DfpBj1foZcBADK8DD7ZurdVJgd4qkHxRMr366Ka9QdPK6L2k/KKlEK3CI1fPfA1OAK9MEMrcR5ylEIO9myrROb/OUwlvrXkn/RxgNL1pYE3pKFrIMOLhj4TxEptMZuXWA/9h+WtK0tHDxIJC1nAxmZEw0zANsRJnGEM338y+S3kQEmJcY5ufnlAOBdRwG2qU4E/gGYVyc+7vThQH8ICT9P6KsbAnCX2d54vi2yCjTVfDoKCI4cTkD92qfVXg6/SKjTunjWbUnQAXMCCielGH8Xi4mOkpvnLY/5gKWBikovl4TpHKm7tV9OD/9K81hHWgg6cVEpcUSafsfRKXFHRk1igaQJJ1G+DZdRGRPZXvvo8EoJUtUxiA1SDVxaZuXLwRsR9z8ZiNNrp4mAi6NJ1GRC3g/+QJjvhX4DzFB3ZWYkBxRQKeLjK3DCP+MywFs3yapRFbDdZLWtv2rAmM3/Bo4WuF9dQaRan1rToFWedzzNdhTYxKQLeDSlU6LN0g6koHMhpwm/fOkVPt5gKfT4+Z7mbu7HwC2v0rcIAIg6Y/k6e7Y5l+2s3ZBHYb9gEWIttNHEhknw5aEZqKED0C7Y+E0wpvsgQI6N6VSwpOJQOK/gesK6LQzqaYRJUslSr8/nSamHyZMZieRL9uxzW+JLIqSTLN9QomBbR8LHKsBA/jzgOUkfYyMBvA97EtcR3+Z3sO9KVM0J50Ej1K23kXE8QAcbLu5J/xILh3KH89wWWzZFhXTQt+3iO/+dKK09Jpc4/fRW5pY9F3O9taS1gZeZvuUnDrtMvx0zV4ht3VG0unNQlwEmDe3DrFw1dvd7yQydffrKIC0G/HZ3Y/ICpshT+amSl2TFl5exGBrkxLzqsoYpHpSVYAZAaWrbWc5cbfGvcn2xrP+ybxI+qPtFTOONy+R2VS8nbqkXxDlSp8jUqIfBDbJ+beRdL3tTdUy41Sr019GnVcTq3J/JVK6m4tqibbJKxGTk7cDCxNGlqfnmJwofM/WJ4KS7VKrx4DLMvobdKLT0vsN4eNyuzNfDCT9nghS9wsYu1B5XL/3kftc8HniZvocBpcp3JJLows0dGtzAavbXjCTzrdtvys93sMFW3X30V4ZmJRzkiVpRWf0B5xbkLQBcCoRcClS5iPpMOJ6dm6PRhHfK5U3gP+l7Zc211GFj9MtBa6jyzIQPLqxFTzKSgpKrMbgCeOVBXSKHY8Gmo/M9BSwk+2lM+lMTePdLemlwFG2h/UoG6HeT4nv5ydsr5c+a7fafnFmncsJG4D5iED8g8A1tg/IrDMjC9H2qoomId+wnTMLEZXv7vc0A8HP9vV0zAeQSiPpG8Qi3GuIJk47EM2Vivj8VsYeNUhVAWi6oVyY+0YuTej+QRi/zljFynFTKukxhp5kLWw7a6ZgqtF/W8E060bnWUTG1jwMZGx93/ZDGca+iFj9/SThC/Rxwrj0g8D8tvcZqUaP3m+I0svbGfCkwhmMcmehuwGxyrmu7Wyrc5LmL1geNxo6lwFbODU2GKukCUPfp8gYcElal/XZbRfotqaCHeQ00Nq8L7m+oz2B8CKdI9PYw46bK4jYPgZJZ9vePse4fXSOY5iMtpzBo6R3A3A1M5+rswUVJf2uz+6sAevm+plKPlcnTLon2/5vLo2W1lGEN9DuwAeA9wO/sv2JzDrFg0eS3ktkaiwP3EZkwF9X6LxW7HjUXfORQeeykue2NP6NtjfpOZ/e5vzG6U3A9b1EFtWhhRYwbyNlIbaO5/YCQbei3f0qc07zuWr9vyjwU9uvHO33Vpk7qOV+E5RWgEfp/78Sba5zs3P6f9/WvixmrLafPdIxZpN/A7dLupjBAbecK83zAhekjK2nyW8ufSrwM+KCvQ6xmv2DtO/IzFoQXai68DdouhFtTWRSbUGUMh6WWaZkedxo6HwUuEjRSr2d2XDMSAfuKmiQWBp4A9HZc9DbAK7NJSJpTeDTxI31v1v7c5vxNhzYejyjg1yOgR3NE7rIEO1qJexLrccbMbgcz+Qx54bBmYElswFvaj0+nDB9Lsn8ubMlerFdoqS8lyuBV6ZAyM+BG4kupll9HRMfA95LBPb2Jkp+vplTYKjgEfk+zw37EbYM19t+TTrXfTazRvHj6TBT83mSDhhqO8c1tIfHJT2XdD6VtCn5/RYB5kuZbjsBWYOtPTxl+79N6Vq6fytxrXg3cf48J41/FWUM5yuzz3/S/09IWo5osLXsKL6fylxGDVJNUEoHeCS9zfY5tleRtESpdP6OOYfCXScc5qFPS1qsRMaW7TNT2vghwFZEsKq5MdgXyH1jdaukHwA/YXAQJNvvUVLT/vdNRKnKD4G9bJcwtT+WQuVxo6TzGSL4uhBhop+TLw3zXM6gAYTH3qK2b+t9IpUvjBhJHyS+I3cBTbe1H6enPwNk96ly4Q5ypc83ieUV/mpqPW6/hyxB/nagLWUDlAq8eYjHeUUGe8Ps38Hk+6eS9mLmc3W2a7fCd+YAYEXbe6USnzVsXzCLl86WjO0nJL0H+LrtoyRNyTh+iESA907baxL+Z6XoJHgEPGn7SUlIWjCVsa1RQKfo8Whwg4aZcL7mMCcDzx5mOzcHENYJq0q6BliKKI/KzRHEouXVtm9UeLzdW0DnCkkHAwune7j3E+eeLEhaCNgHeCERRP5wF9npldniAoV/5FEMLCplDfJXxjY1SDXBSCUejzQTEkXnuG2Jjlhfy5gS/0kGAjq/AIqlQXeF7e8oWkyvaPueglKlM7b+m8ZdkOiyUzIIsjAx4Xl9a1/uFrMHEdlgH3Zmz6Y+3A/cUThw1KXOcrbXKTFw4eycXq0hPQxsvyOTzP8jygT+rfA6OkvSyra/QplGDV11kCt9vmmbLt805E/lpeT3Zj1Jj5LKytNjKOtB0kU22i7p/4N6dHNmi51KTEYaf8U/ER3/sgapJL2MKJVvzgvZGzWkAO89Ku9R1lXw6IE0YTwPuFjSw0CJsvzSx9M0aHgbsAzwvbS9C/C3XCK2D8811jPUu0Xh8bkGca65p0TQxfaZtLoIO7rylihp/jjx/SyVhfgdojPqVUSG/VrA/hnHr8whkjYB7rd9ZNpelPgc3A18eTTfW2XuogapJh5nEJ38/iVpfeJi9DnCrPnrROp6DjTE4zGLopvL0UTGySrp93dExpW5hmIZW5K2IrKlzgc2tF20m5M7aDXbeGZIWlXSE7afUnRwWRc4zfYjGeWKlceNks5Fkl5v++eZxx2EwsB4bQZ7kOTuuleaeZoSP9u/T5+xs1Lgv9Q5rosOcu3zTRMMyXY8TQaQpB3TBGgGknbMpdMVzuhxNzfRUSneqrZ3lrRL0nxCUu7vzv5EoO1c23emTJB+PnI5WBy4M2U3tgO8Oe8JOgketTx6DlN44S0GTM6tQ+HjsX0FgKQveXDTnp9Iyh4kl7QUsYCxMq05le2sJWXpXDk5faY/CWwo6dO5yuYVRuaXOzpUCjiFyNT6PbCHM3dMdnjGfQ+4stCi79qNv5WkU4BsGciVEXMi8DoASa8CPk94+q1PdF4skSFYGYPUINXEY2EPdFLZDfiW7S8puvvNVCozEh2FefU8wELp8Yyb0cx+NF1xGGH0eDmA7dvSDXBWCmdsfQLY0fadmcfti8K49gRgadvrSFoX2Mb2pwvInQ1sLOmFxIXux0SG1RszapQsjxsNnfcBB0p6ilh1zJ4NIulQYHMiSHURsap5NTDWglR/k7R+U1KYMqreTBj0ZzV7bSgZOJD0VmB5219L2zcQJSSmjD/hQbRW6IfZN0dowGi8aFlhV2hwY5BFSmdsSZqfOB+8Ku26HDgxc7bGf9O1rfHVWZVWED4HKUhxRWv7PqIxSAkOKTTuDLoIHvWULs4I9JSgw2DYsyS9IP39kbQK8KwCOj8msnV+AUwvMH7DIcmuYTPCc/No4t7qpZnG3w/4dnq8C7AesAqwAfBVIKuZtaRtgC9SbtF3xnnL9rT8sfDKCJi3VUa+M3CS7bOBsxWG+pUKUINUE5H2mfq1pNT+tKqRU+cvDPgb/ZXBXke5/Wi64n+2/9Xze8reFa1kxpa775pxMlHuc2LSn6rwqCoRpHo63YxsBxxn+zhJWVf/KFgeNxo67qb5wA7EDe+ttveUtDQDJRhjid3pMS23PQ3YXdKJucUU5rX7EsE9iFK5E52hy2fio0STgYYFiHLCRYmyrFzBo62JQPHzewJHk8hkAp+4aYjHY5KOvpttTgDmJzKqAd6Z9uXKroYwf58MrCDp+8ArgHdlHB9JGwMHM3NmS9buZGnMYsEc6C541FXpYpfBMOBDwOWS7iPue1cC9iqgs4jtEkH9XpoA2JuAk21fKCnnfdS0VkD6zUQW+kPALxRdLHNzKDMv+uZclGnKsmFwaXbJsuzKM2NeSfOl+6ctGPy9rHGJygzqh2HicamkM4gg0uLApTBjQpStRXPjRyNpIdtPtp9TGBqORe6U9A7iBLsasTqbrXNYi8PoIGOrIxaxfUNPYC/nxLTN/1IZyR7AW9K++TNrdFIe15WOpFcAt9l+XNJuhHfcsZknKk07+GmSJgEPAitkHL8TbD8wzHPX5NRK3iPfI4JF3067NyLO39sSQet3jlBmAdv3t7avTqub/5SUM+Pgz0TQaBsGly8+RkwkszDeygpHgU1sr9favlSZDcdtXyzpFqKjm4D9bP8jpwbwfWJh5HYKLCIBSLra9mY92W6QeQLcoe8VdFC62OXx2J6c7tPWTLvutp01ay9xgaQ32r6owNht/pQWQ7YEviBpQfJ6rT2d5gEPE4GDz7SeWzijTkO/Rd9s3nvjtSx7nHA6YZz/D6LD31UAqQqiVAOXyhikBqkmHvsT6ZXLApu1Vk6WoUy72WuZ2TS9376xwAeI39FTRBnZzyiTEdRJxlZH/COVdDTlHTsQAdIS7El0c/mM7d+lVbnvZtYoXh7Xsc4JxIrjesCHCePS7wKvzqhxU/IgOZkIUvybaDleGZovEmWx7UzA8yWdC0wBzs2gsXh7w/b/tTaXyjB+M+4UYIqkH2QuHRuKomWF45jpkla1/VuAtDBSonxpIWIiPB+wtiRsX5lx/L/bPj/jeP3YFTrLduvC9wo6KF1MdHI8qXx1b1rlq5Jyl69ClMkdLOm/xEJvqWv1TkRH5rMpWioAABVxSURBVKNtP5ICSh+ZxWtmh08RiwnzAuc3lhBpweS+jDoNXS36VuYybH9G0iXEPPTn9owGQfMQ86xKBYhWvaP9HiqjiKTnEhfxP3rmducjGXcZ4PlENsA7GCgznAR8o0n3HktI2rALL61k8ngJ0f1ke+LiPb/tfUpr5yZNdE4iujk9TBg/72q7RNegymwi6RbbG0r6FPAn26c0+wrprQxMsj21xPjjBUm/sr32EM/dC6xhe0SB61Rudbntk3v27w1sbnuX/q+cY703A0cSZTfzkXky1yor3An4UeupSYSJ7kty6IxXJG1BZO61y6P2tJ3NdFzSF4hFsjsZWHhxzgBFOo5diGtou+lEtmYk7XOkpLNtl+h+1mj1XTAoXWpYiq6OR9I3iUzq76Rd7wSm285ZvtopaTGpsWy4Ki0A5Bx/M+Ap2zdKWpsIit1NmJv/O7PWIsSib9P5+WfAp3srLyqVysSlBqkmGJIuAD5u+460EnMLsXqyKmFed2wmnT0Ir4mNGewP8hjw7Zw3jF2hMPlcBjgL+JHtOwrpjLuLdyofmgd4Ani77e8X0FiN6FTZ20UuW6lkR+VxXepcQXjE7EkEqx8Epjh1xcmkcYntLWa1rzKApLuAl9t+uGf/EsA1ttfKoPE8osPWU8R1AKKkcEFgW9vZ2rUnvd8QbeFvd4EbjzSBWx84gsgKaHgMuKz3d1mZmVRCtEbavCd3eZSke4B1C5VdNRrfI0q8egNh2bqtSbrV9ga9j8cykjYFjgPWIvzp5gUeH6vePZKm9JSv9t2XQUdEZt0qto+UtAKwrO2s3eQk7Ud0EWzunbcj7tmPyzT+oURTk/mAiwlD9suI8sKf2f7MMC+fXa15gV80tiCVSqXSjxqkmmBIutP2i9Ljg4E1be8u6dnE5Ceruaik7R1dG8YFKUNsJ2I1eBIRrMpa8tdVxlZJkvfQvkQ23Y+Jzjf7EiVlU22/tYDm1YQZ55cJT6o9gXlsf2rYF86exlTCBHxdwivom8BOtnOWx3WpswyR6Xij7askrUhk0Yy4857Ce24R4kZ3cwZnU04ei9mUXSFpL2JCciCDA0hfAE6xfVJGrdcCL0qbd9q+NNfYPTqXAVuMNAPsGejM31FZ4bhCHXT3k/RTorts1qyMHo17bK8x658ckUY7k6pY5mkav5PgkaSbiEYKZxKLi7sDq9s+KLNOV8dzC/FZa5evnpX7byXpBCIY+lrba0lanChh2iSzzlTgZbYfT9vPAq7Ldc8u6XYiyL8g0exoeduPKrpx/rLA3OAS4G22qwdRpVLpS/Wkmni0bzi3IHxisP2YpBKTh0skHcPAje8VhOnvmLww2f4r8NU04foosWKf25fqSyl4UDRjqzDfJcr7riMm258gghTb2S7VYnZh25dIUionPEzSzQzOqhgp02xb0luB41N53Hsyjt+pTvo8HwMgaUng/hwBqsTehAfecgwEWgAeBY7PpDEusX2SpD8T5XEzAkhERuVPMmtdSmqgUZiPEg0BrmBwGdYxQ79kjniDpGJlheOYYt39JB1H+BI+AdyWJqjtz8AHR6rR4lpJa9v+VcYxe2k6h7W7hkGZz9rx9AkeZRx/BrZ/I2le29OBUxXdcbMGqejueD4CXKbB3f32LKDz0lQyfyuA7YclLVBARwz2iJvO4G7dI2Va+rs/Iem3th8FsP2fQnODfwO3S7qYwd5kOc8FlUplDFODVBOP+yV9AHiAKCGaDJBWS3J3QgM4BbiDyD6CuPE9lSj7GFNIWovIoNoeeAg4g8gMyort17Qytk5MWUnZM7YK84KmZCx5Q/wFWLFwyeJTkuYB7pX0f8CfgEUzazwm6SBgN+BVSa/E96aoTlrN/jzwTyIQ8l1gSWAeSbvbnjxSDdtfAb4i6QO5ShImErYvkPSLsVzm28NniInJQkQGRSmOpWBZ4TimZHe/puT/ZqC0qfmmRCDsd0QgrAkcZcsEccedwzoKHj2RgitTJB1FXLNzdo+bQRfHkxasVqNg+Wrif6l8rWkOsxRlGt2cCvxS0TwDYFvi/joX/5W0iO0niKxdACQtRpnjOYeB0sVKpVKZiVruN8FIPiRHEF0VvubU4l7Sa4CNbB+dWe822+vPat9YQNL1wIVEGcSNXUweJb2YyEDY2XbJiV1WeksgSpdEJI1NgLuA5xCBl8WAo2xfn1GjWHlclzqptONg4nd0ErC17eslrQmcntNjJU189qFgGdF4Jfk4/Y1o0XwVcPVYzUKVdIftdTrQ6aSscLzRRXlUKlF6MgUnGm+aBdPEOJfGSv32e4w265B0JfA6IiDxl/TvXQW8lVYizjULAB8iyrJPsP2bzDpdHU/x8tWksyuxeLkRUZq/A/BJ29m7iUraENgsbV7lwd1fRzr2gv2CeCnDelnbt+fSSuMWPxdUKpWxTQ1SVYoi6TrgI7avTtuvIFrovmx039kzR9J8wGeBdwONcfUKxMrWJwrc9PTL2DrL9oM5dUoiaTqRwt2koy9MlHqMm9KbdPP2UOlsjRI67UCxpLvcMuJWZiNgjcMuS12SApSvBF5BdK97ZIwG+Y8izHJ/XlhnEyJIXbqscFyRvMm+TdnuftcDr2s8qSQtSvj3vDyXRh/N5wD7OqPxc5eUDh6lkvLlbX8tbf8SeB6RGfRR22fl0GnpdRUM6+y6kxZ3mkYgl9q+K+PYSwz3vO1/5tLqktE4F1QqlbFFLfebYEgaNtXeGVtBJ/YBTkspwxA+RXtk1ijNF4FnE91bHoMZxuBHp3/7ZdY7lcjYej8dZWzlpstyiC4+012Ux3Wpw+D0/f/0PJclGCZpPtvTKFtGNK6RtDwRnHolYaR/J3D1qL6pOed9wIGSniK8EUsFrLsqKxw3pCyG9YDS5VELuWWabvvfim62I0bRVe0QwgPvPOB0Imv8nenxmKJP8OgKBoJH1wG5gjofJTyiGhYksoIWJe5FsgSpOjyehi6vO4sQBvAmFuRycnMat1nwa67PSo+zdS/umGLngkqlMj6oQaqJx8uA+4mbtl+S13hxJmxPIUxGJ6XtRyXtD0wtqZuZNxNdbmZM3tNxvA+4m0xBqlbG1guJ9sLbAStIKpKxVZo08bnT5bu4dfGZPp6B8rhL6SmPI3m7jSGd4Yx/F8qkcQPhezdd0qo9ZUTTh31lpeGPwI3AZ23vM9pvZiTYfnZHUst1UVY4nrA9XdIutr9M2Wvz42p1r5W0ETMHyeeU04jsubOBrQgfrNuAdR0NIsYanQSPgAVs39/avjpl5/wzlWTloqvjaejkuiPpU8COxOdOhMfWmbk8RG2vkmOcuZDec8HG5DsXVCqVcUANUk08lgG2BHYhPG8uJDxo7iwp6tQpJHEAYW47VnC/Uqt0Y5+z1KvrjK2ipN/PPZJWtP3HWb9ijuniMz1fy7/tiMbnyvbdUtaYWCc6HWW6NW/4QAa6LAGsTJkuS+ORDQgPkndI+jhwL3CF7ZyGuZ2QSr1vs/24pN2IAOaxBc4NF0l6femywnHINZKOB37E4G5btwz9ktlmf+BMRedKEefutw//kmfMErYPS49/JmlHYNcx7E3WVfBo8faG7f9rbS6VUaeT40mLoNcCHyeyp36XnlqZsGzIza7Aek3Gu6TPE8HRrI1uJG1HlBL+K20/h/CpPC+nToe0zwUQPrk7j+L7qVQqcxk1SDXBSCaFk4HJkhYkJvaXSzrcdldt4YtmbxXgV6nUapBpdZpo3Z1Rp5OMrY5ZHLhT0g0MnvhkKyvt6DNdvDyuY50uWErSAenxiUQ5BMRq9gZANq+b8YrtKZJ+C/yWKPnbDXg1ebs6dcUJRAbfekRX1G8S5ayvzqzTVVnheKPxOTuitc/AazNqTAXWpFVSSMYOcpIWZ+D+4iFgMaXo/hj07ukqePRLSf/P9sntnZL2JrJhc9HV8SxPLIKuRQT1/0lca862/efhXjiH/JnIPm5sGRYkOgvn5lDbTWc/bD8i6VCitHXMkDwD77d9Y8oQ35voxjoZ+N2wL65UKhOKGqSagKSJ/JuIyfzKwFeBc4d7TWbG2mR7X+AcSe8m/AEANia8B7bLqNNVxlaXHNKFSAef6S7K47rU6YJ5iVKO3qD0fETGYGUWKLowLkhkBlwFvMpjtEsZMM22kzfN8bZPkfSe3CIdlhWOK2y/pgOZ6xzdAu9odii6CuboILgYcX1un2+aLLCx6N3TVfDoQ8B5kt7BwO9rI+K8s21GnU6Ox/aBadwFiPu0lwObAwdJesT22rm0Ev8iFuIuTtuvA26Q9NX0fj6YSadfMHcszuFOJH5HEFYNBwMfIILkJxHdESuVSmVMnuAqI0DSacA6wEXA4bbvmMVL5lTnMfoHo0R+Y8mi2P4T8NLU/ehFafdFti/JLNVVxlZn2L6itEYXn+mujOC7NJzvgL/YPmLWP1YZhq1t/32030QmHpN0EJEN9ipJ8xDdt7LSYVnhuKCV7dgXZ+iKKGkZ4PlE4H0DBgJJkwjT6RFje+Uc48xFdBI8cnQNfnnP/c2Fti/NpZHoKhjWsDDx+Vos/fszcHsBnZ8BlxD3u9MolyF8k6RjgK+l7X0ZWDQdS8zbymrcGTjJ9tnA2ZJuG8X3ValU5jLUJ3GjMo6R9DQDZVftP34tiRhlJD0fOIco85opYysFy8YUqVvdcUTq/QJEds3jOT9n9TM9dyLpVtsbjPb7GMsouqIeCrwq7boCOKLxJRlLpEDFO4iOpVdJWpHwVDltFi+dXZ2pRKe6dYFvE2WFO9nOXVY4LkglQxAleJsATbfUtwA32N4tg8YewLuI69lNraceA75t+5yRarS0LrG9xaz2jRV6gkd3FggedUrp45F0Uhr/MaKRyvXA9bYfzqzTNLp5N/AH4n5jRcIE/uDcjW6Sb9chDGQhXQx82vbjQ79q7kPSHcD6tqdJuhvYy/aVzXO16UWlUmmoQapKZS6j5ybuVwUytjojlSu9HTiTmKDsTvhuHTSqb6xSHElLjEEfmLkKSWcTpVHfSbveSZj0vm303tXIkbQk8FC/8uYMY99ie8PUdetPqazwllRmVhkCSVcCb2o17Xg2kVHzquFfOVsa26esiexIWgh4FtEVdXMGZ2tNdvkus5W5AEmTgSWJ8+a1wHXAHbnPNZK+TJStf6hPo5snbO+fU2+8IOkTwBuBfxBBvQ1TGfgLge/YfsWovsFKpTLXUINUlUqlGJJusr2xpKm21037aoZNpfIMkHSb7fVntW9uJmVTfp4wMD6SMEtfkvBY2d325Mx6VxAmvHsSGWgPAlNsvzinznhD0j3AurafStsLAlNtrzH8K5/R2LvZ/p6kD9PHBiBTSeF+RMew5YjSroZHgZM7bAxTGWWSWf6LCD+qlxN2AP8kPNEOHe61s6FxLz2NbtL+eYG7ba+WQ6c17upEp9yVaVm12M7Z2KAT0jVhWeDnTSZYOr5FnbebaKVSGcNUT6pKpVKSJ5KB6W2SjgL+QsZuTpXKOOc/kjazfTXM8Fvq7fo4t3M8YY67GJHlsrXt61Nnp9OJgFJOdibKCt9j+6+prPCLmTXGI6cRhs9Nw4ltGcjgGynPSv8v2ue5LCultr8CfEXSB2wfl2PMytgkBY7ukPQIYWz+L6J78kuI8ulcMl02ujkT+AZRvjy9wPidYfv6Pvt+PRrvpVKpzL3UTKpKpVIMSSsBfyP8qD5ETFS/bvs3o/rGKpUxgKT1iODBYmnXw8AetqeO3ruaPdqZX5Lusr1W67miWZUlywrHI5I2BF6ZNq+0fWumcVewff8Qz73Z9gU5dNJ4CwD7MODjdjlwYm6PoMrciaQPMpBB9T+i5K/5d7vtpzPpnAecM0Sjm51sb5NDpzXuzbY3yjlmpVKpzM3UIFWlUimKpIWBFW3fM9rvpVIZiySvE2w/Kml/28eO9nt6prT9oHq9oXJ6RXVdVjgekbQZsJrtUyUtRZTf/C7DuHcDW9n+fc/+PYFP2l51pBqtMb9JdI1s+7hNt/3eXBqVuZfUAe8a4Frbfymo02mjG0mHEaXL5wJPNfur72OlUhmv1CBVpVIphqS3EEaiC9heRdL6RHeyrKuMlcpEQdIfba842u/jmSJpOtF9U8QE7onmKWAh2/Nn0rmJgbLCk+gpK6w+eMOTuvxtDKxhe3VJywFn5jAylvRG4FjCmP3etO8goixza9sPZNCYL3UMm2J7vZ7nZtpXqeSgq0Y3kvoFi237BSX0KpVKZbSpnlSVSqUkhxE+EJcD2L5N0iqj+YYqlTGOZv0jcw+25+1Iaj7bPweQdETje2L77vBRrsyC7YANgFsAbP85dfgbMbYvkvQU8FNJ2wLvJa4Lr7L9cA4N4AZgQ2C6pFVt/xZA0gsY4x4+lbkX25cSXnuldep9U6VSmVBUA+NKpVKS/9n+V8++mr5Zqcw59fvTn7bXTK+5fP2dzZr/Ju8uA0h61ix+frZIGSZ7EgsWLwBemzFABQPB2wOByyRdLulyIoDw4Yw6lUpnSPpo6/GOPc99tvt3VKlUKt1Qy/0qlUp2JF0E7At8ErgE+DiwPfBBYH7b+4zi26tU5mokPUb/wIqAhW3XLOgeuiorHK9IOhBYDdgS+BzwbuAHOTrltT7PAhYkDK2np23bnpRB4wHgmLS5MNBk8E0H/mP7mL4vrFTmYrry9KtUKpW5jXqjW6lUSnAq8DPCvHgdwujzB2nfkaP4viqVuR7bWcqsJhIdlhWOS2wfLWlL4FFgDeBTti/ONHYXn+d5gUWZuRx2PqB+nypjFQ3xuN92pVKpjBtqJlWlUimCpEWBQ4CtiGBVc7JxXdWuVCqVuRNJSwIPeQzdINasksp4pGZSVSqViUr1pKpUKqX4L1F+syCxwt38q6valUqlMhcgadPk33SOpA0k3QHcAfxN0laj/f5mg5pVUhmPrCfp0VQyu2563Gy/eLTfXKVSqZSilvtVKpXspMnNMcD5wIa2n5jFSyqVSqXSPccDBwOLESbjW9u+XtKawOnA5NF8c7PBFqP9BiqV3NQy5kqlMlGp5X6VSiU7kq4C9rF952i/l0qlUqn0R9JtttdPj++yvVbruVttbzB6765SqVQqlcpEpGZSVSqV7Nh+5Wi/h0qlUqnMkqdbj//T81xdxaxUKpVKpdI5NZOqUqlUKpVKZQIiaTrhHShgYaApzRawkO35R+u9VSqVSqVSmZjUIFWlUqlUKpVKpVKpVCqVSmXUqd39KpVKpVKpVCqVSqVSqVQqo04NUlUqlUqlUqlUKpVKpVKpVEadGqSqVCqVSqVSqVQqlUqlUqmMOjVIValUKpVKpVKpVCqVSqVSGXVqkKpSqVQqlUqlUqlUKpVKpTLq/H8dzPq/SQYzagAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"f, ax = plt.subplots(figsize =(22,8))\n", | |
"fig = sns.heatmap(data= Matriz_De_Correlacion, vmax=.8)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "870a2177-936f-47d2-af45-77781881dc2b", | |
"metadata": { | |
"id": "870a2177-936f-47d2-af45-77781881dc2b" | |
}, | |
"source": [ | |
"### 4.2.- Matriz de Correlación con Números" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "563da05e-aaaf-4ad4-8935-8dee3fed87d4", | |
"metadata": { | |
"id": "563da05e-aaaf-4ad4-8935-8dee3fed87d4" | |
}, | |
"source": [ | |
"Ok, vamos haciendo lo mismo pero ahora con números - y vamos viendo quien se correlaciona más - sin llegar al punto que las 2 variables sean basicamente lo mismo claro\n", | |
"\n", | |
"Comenzamos declarando k=10" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 66, | |
"id": "83ccf34e-5561-41c3-90ba-652ec28a4b9e", | |
"metadata": { | |
"id": "83ccf34e-5561-41c3-90ba-652ec28a4b9e" | |
}, | |
"outputs": [], | |
"source": [ | |
"k = 10\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "6943a61a-76e1-49bc-9bb1-5413918950f5", | |
"metadata": { | |
"id": "6943a61a-76e1-49bc-9bb1-5413918950f5" | |
}, | |
"source": [ | |
"Luego cols = corrmat.nlargest(k, 'SalePrice')['SalePrice'].inde" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 67, | |
"id": "d1e3f134-862e-4393-b02a-8c7b26a5c304", | |
"metadata": { | |
"id": "d1e3f134-862e-4393-b02a-8c7b26a5c304" | |
}, | |
"outputs": [], | |
"source": [ | |
"cols = Matriz_De_Correlacion.nlargest(k, 'SalePrice')['SalePrice'].index" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 68, | |
"id": "1f6de44f-ee11-4969-bce0-a2465746cebe", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "1f6de44f-ee11-4969-bce0-a2465746cebe", | |
"outputId": "10982b13-e4d5-41d4-e8de-df2997843d33" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"Index(['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea',\n", | |
" 'TotalBsmtSF', '1stFlrSF', 'FullBath', 'TotRmsAbvGrd', 'YearBuilt'],\n", | |
" dtype='object')" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 68 | |
} | |
], | |
"source": [ | |
"cols" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "296af00f-06fe-40ef-b40b-8ce3087e9d66", | |
"metadata": { | |
"id": "296af00f-06fe-40ef-b40b-8ce3087e9d66" | |
}, | |
"source": [ | |
"A continuación vamos a cm = np.corrcoef(df_train[cols].values.T)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 69, | |
"id": "c4b3dacd-6dc6-4fb4-acee-e2271a91bf70", | |
"metadata": { | |
"id": "c4b3dacd-6dc6-4fb4-acee-e2271a91bf70" | |
}, | |
"outputs": [], | |
"source": [ | |
"MatrizRelevante = np.corrcoef(df_train[cols].values.T)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 70, | |
"id": "022b28f2-a96a-437e-94a8-e1f74fb2bb6e", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "022b28f2-a96a-437e-94a8-e1f74fb2bb6e", | |
"outputId": "df329a1d-43b4-4967-ceec-a6cf2817ace6" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array([[1. , 0.7909816 , 0.70862448, 0.6404092 , 0.62343144,\n", | |
" 0.61358055, 0.60585218, 0.56066376, 0.53372316, 0.52289733],\n", | |
" [0.7909816 , 1. , 0.59300743, 0.60067072, 0.56202176,\n", | |
" 0.5378085 , 0.47622383, 0.55059971, 0.42745234, 0.57232277],\n", | |
" [0.70862448, 0.59300743, 1. , 0.46724742, 0.46899748,\n", | |
" 0.4548682 , 0.56602397, 0.63001165, 0.82548937, 0.19900971],\n", | |
" [0.6404092 , 0.60067072, 0.46724742, 1. , 0.88247541,\n", | |
" 0.43458483, 0.43931681, 0.46967204, 0.36228857, 0.53785009],\n", | |
" [0.62343144, 0.56202176, 0.46899748, 0.88247541, 1. ,\n", | |
" 0.48666546, 0.48978165, 0.40565621, 0.33782212, 0.47895382],\n", | |
" [0.61358055, 0.5378085 , 0.4548682 , 0.43458483, 0.48666546,\n", | |
" 1. , 0.81952998, 0.32372241, 0.28557256, 0.391452 ],\n", | |
" [0.60585218, 0.47622383, 0.56602397, 0.43931681, 0.48978165,\n", | |
" 0.81952998, 1. , 0.38063749, 0.40951598, 0.28198586],\n", | |
" [0.56066376, 0.55059971, 0.63001165, 0.46967204, 0.40565621,\n", | |
" 0.32372241, 0.38063749, 1. , 0.55478425, 0.46827079],\n", | |
" [0.53372316, 0.42745234, 0.82548937, 0.36228857, 0.33782212,\n", | |
" 0.28557256, 0.40951598, 0.55478425, 1. , 0.09558913],\n", | |
" [0.52289733, 0.57232277, 0.19900971, 0.53785009, 0.47895382,\n", | |
" 0.391452 , 0.28198586, 0.46827079, 0.09558913, 1. ]])" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 70 | |
} | |
], | |
"source": [ | |
"MatrizRelevante" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "e6aaa719-a4fc-40bc-8942-96036f9767a4", | |
"metadata": { | |
"id": "e6aaa719-a4fc-40bc-8942-96036f9767a4" | |
}, | |
"source": [ | |
"Seguimos con sns.set(font_scale=1.25)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"id": "dfc0605a-442d-4607-a743-7646d6ff03d8", | |
"metadata": { | |
"id": "dfc0605a-442d-4607-a743-7646d6ff03d8" | |
}, | |
"outputs": [], | |
"source": [ | |
"sns.set(font_scale=1.25)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "7d0401a6-3425-4809-92a0-2e0cd1c88bde", | |
"metadata": { | |
"id": "7d0401a6-3425-4809-92a0-2e0cd1c88bde" | |
}, | |
"source": [ | |
"Armarmos el heatmap con hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 85, | |
"id": "eb68431c-ee5f-4a39-bd62-1229502a41fd", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 483 | |
}, | |
"id": "eb68431c-ee5f-4a39-bd62-1229502a41fd", | |
"outputId": "6f43bf18-a1e6-494e-9809-d42432d4d5bd" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1584x576 with 2 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAHSCAYAAACtsQFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wUdf7H8dd3dtMbIY1QLRQRpEgHFazgeYrl7kTvzi6K9SxYsB8/u569l/M8xXLnWUFERaQ3aYICIp2QSkJ6srvz/f2xMSEEEJFkw/p+Ph77YGfmM7OfyZeZ2f3O9/sdY61FRERERERERERkf3NCnYCIiIiIiIiIiIQnVTyJiIiIiIiIiEijUMWTiIiIiIiIiIg0ClU8iYiIiIiIiIhIo1DFk4iIiIiIiIiINApVPImIiIiIiIiISKPwhjqBcObLX2tDnYNAYOPyUKcggP1uXqhTEMD9fnWoU5AatqIq1CkIYCt9oU5BABtwQ52CANXrK0OdggCVRZ5QpyA1Aj6102gOOiz6woQ6h1BojPqEiNRDQvK31JEkIiIiIiIiIiKNQi2eRERERERERESaEzcQ6gz2G7V4EhERERERERGRRqEWTyIiIiIiIiIizYkNn/EP1eJJREREREREREQahVo8iYiIiIiIiIg0J274tHhSxZOIiIiIiIiISDNi1dVORERERERERERkz9TiSURERERERESkOQmjrnZq8SQiIiIiIiIiIo1CLZ5ERERERERERJqTMBrjSRVPIiIiIiIiIiLNiRsIdQb7jbraiYiIiIiIiIhIo1CLJxERERERERGR5iSMutqpxZOIiIiIiIiIiDQKtXgSEREREREREWlO3PBp8dTsKp6MMbcB5wIBwAUus9bO203sa8An1tr/7mF7rwFDge0127vSWjtnF3F/B6Zba7/4tftwILj9vn8wfdZ8Wia34IM3nm+w3FrL/Y8/z4w5C4iOjuLe227g8C4dAfhw0ue88K+3Abjs/FGM/N2JTZp7uJm1ZCUPvv4RrutyxrH9uXjkcfWWP/z6Ryz4bg0AFVU+CotLmfnKeAAemzCRGYu/B2D0mScwYlCvpk0+jMxak81Dny3BtZYzeh/MRUMOq7f84SlLWLA+D4BKX4BtZVXMvGkkAFdMmMGyzdvo3T6Fp0Yd1eS5hxNPp15EnnIhOA7+hV/im/5Bw5jug4g8/k9gLW72BqrefaJuYVQMMdc+RuD7BVR//EoTZh5+PIcdSdTpl4DjwTd3Cr6p7zWI8fYcQuTwc7CAm7WOqjcexWl9MFF/GAPRseC6+L54F/+SmU2/A2HCc3gfov94ORgH3+zJVE/5T4MY75FHE3nKX4LHxJa1VP7zIQBirhyP5+DDCPy4gorn7m7izMOLp1tfov90OcbxUD3zU6o/e7dBjLfPMUT9/i8AuJvXUvHKAwDEXnMvnoMPw79mBRXP3NmkeYebiL79ibv8aozHofLTiVS8O6He8qgTRxB3yRjcguD1uuKj96maPBEAJy2d+OtuwklLB2spvuNm3JzsJt+HcBE1sB8trr8K4ziUfTSJktffqrc89pThJF19GYG8fABK//MB5R9NwtMqg5QH/w6OwXi9lL77PmXvfxyKXQgL0YP70fLGK8DjUPr+pxS/9na95XGnnkTy30YTyA2WQ8k7H1L6wadEdD6UlHHXYuKC1+rtr0ygfMq0EOyB7IkNo652zariyRgzCPg9cKS1tsoYkwpE7odNj7XW/tcYcxLwAtBjp8/1WGt/U98ETv/diZx71mmMG//ILpfPmLOAjZuzmPTOKyxbsZLxjzzNWy89zvbiEp775wTeeeVJAM6++BqGHTWQpMSEpkw/bARcl/v++T4vjBtNRkoS5972JMP6dOPQthm1MWPPO632/YTJM1m5PguA6Yu+Z+W6Lbz7wHVU+wJcMv45jup5GPGx0U2+Hwe6gGu5f/Jinv/z0WQkxvLnl79kaOfWHJqWWBsz9qS6Sr235q9hZXZR7fT5gzpT6Qvw30VrmzTvsGMcIk+9mMp/jscWbyN6zP34v1+IzdtcF5LSioihZ1Dxwu1QWQZxifU2EXnCKNz13zd15uHHOESdeRkVz9+J3V5AzHWP4l8xH5uzqS4kNZOI4/9I+VM3Q0UZJj4JAOuronLCY9j8rZjElsRc/w/8KxcHy0t+GeMQffaVlD85DluUT+zNT+BfNg83e2NdSFprIoefTfkjN0BFaW05AFR/8R5ERhF51MmhyD58GIeYc66k7PFbsYX5xN36FP5lc3G31pWDk96aqBFnU/bw9VBeikmoK4eqKf/BREYRcfQpocg+fDgO8Vf+je233oCbn0eLp16geu4sAhs31Aurmj6VsmeeaLB6wthxlL/9Br5FCyE6JqzGTmlyjkPy2GvJu3osgdw80l97jooZs/Gvq18WFV9Mo+iRJ+vNC+QXkHvJVeDzYWKiyZjwKhUzZuPmFzTlHoQHx6HlzVeTe8XN+HPyyHzjGSq+no1v3cZ6YWVTplH44NP15tnKSvLveBD/pi14UlNo9eazVMxegC3VtVoaR3Mb4ykTyLfWVgFYa/OttVnGmDuNMQuMMcuNMS8aY8zOKxpj+hhjvjbGfGOM+cwYk7mL7U8HOtbErzfGPGiMWQT80RjzmjHmDzXL+hljZhtjlhpj5htjEowxHmPMwzV5LDPGXNZ4f4bG17fXEXusLPpq5lxOG3E8xhh6du9KSUkpefnbmDXvGwb1601SYgJJiQkM6tebWfO+acLMw8vyNRtp1yqVthkpRHi9jBjUi2kLV+w2fvLsJZw8OFgBsnZLDkd2PRivx0NsdCSd2mcya+mqpko9rCzP2ka75HjaJscT4XEY3q0d01Zl7Tb+0xUbGdG9Xe30gIMziI1sVvX4BySnbUfcbdnYwlwI+Aksm4W3a996Md6+J+CfN7muEqOsuG791odg4pMI/LC0KdMOS077Trj5W7HbciDgx794Bt7uA+rFRAwcjm/WRKgIloUt3R78Ny8Lm781+L54G7Z0Oya+fgWh7B3noM64eVnYguxgOXzzNd6eA+vFRB41At/XH0NFKVBXDgCBVUugsrxJcw5HnoO74OZmYfOD5eBbOA1vz0H1YiKOOpnqaR9DeU05lOxQDiuXYCsrmjTncOTt0pVA1hbc7K3g91M1bSqRg/aulbGnfQfweIKVTgCVFVBV1YjZhrfIww/Dv3kLgaxgWVR8PpWYYwbv3cp+P/h8AJiISHAa/KyTvRTZvQv+zVn4twTLoeyzacQMG7JX6/o3bsG/aQsQrAx0C4vwJLdozHRlX7ju/n+FSHOreJoCtDPGrDbGPGuMGVoz/2lrbT9rbXcghmCrqFrGmAjgKeAP1to+wKvAvbvY/qnAtztMF1hrj7TW1rZJNMZEAu8A11prewInABXAxcB2a20/oB9wqTHm4P2wz81STl4BrdJTa6cz0lPJycsnJy+fVulpdfPTgvNl3+QWFtMqpe4kn56SRE7h9l3GZuUVsiVvG/27B7s8du6Qyeylq6ioqqawuIwF3/1IdkHRLteVPcstrqBVYkztdEZiDLklu/6RkFVURlZROf0PSm+q9H4zTGJL7Pa6O562eBsmKaVejJOaiUlpTfTo8URfdi+eTjUt0Ywh8uTzqP709aZMOWyZpBRsUd253RblNyyLtNY4aW2IufpBYq59GM9hRzbYjtO+E8bjDVacyC/mtEjFLcyrnXYLG5aDSW+Dk9GG2BseIXbsY3gO79PUaYY90yKlXjnYwnycFqn1YpyMtsFyGPsPYm9+HE+3vjtvRn4lJyUVNy+3dtrNz8NJTW0QFzVkKC2ee5WE2+/BSQt+Z/W0aYctKyXhjvG0eOZlYi+5HJzm9jPowOFJTyWQU1cWgdx8PGlpDeJijj2a9DdeouX9d+HZ4feDJz2N9DdeotXHb1Py77fV2mkfedNS8WfvWA55eNJTGsTFHnc0me+8SOpDd+LJaFhOkd26YCK8+Dfv/qaryK/VrM641tpSoA8wGsgD3jHGXAAca4yZZ4z5FjgO6LbTql2A7sDnxpglwO1A2x2WP1wzfzTBCqSfvLOLNLoAW621C2pyKrbW+oGTgPNqtjMPSAE6/Zr9FfklJs9Zwgn9e+Cp+aI0uEcXjurVlfPveppbnnqTnp061C6TxvPZik2c0LUNHt2hCw3Hg5OaSeXLd1P17hNEnn4ZRMfiHTCcwOpF2OJtoc7wt8Px4KRlUvHMOCr//QhRf7wSouNqF5uEZKLPvY7Kt58Ea0OYaHgzjgeT1obyx26m4tUHiP7ztRAT9/Mryv7leHDS21D+6FgqXr6fmL/8TeUQAtVzZ7Pt/LMpGnMRvkULib9xXHCBx4O3ew/KXnqWoqsvw5PZmqgTR4Q22TBXOWMOW08/l9y/XErV/G9IvuuW2mWB3Dxy/3Ip2Wf9lbjfDcdpmRzCTMNbxfS5bPn9X9h69mgq531D6t9vqrfck9qS1PG3kH/3I7pWN0fW3f+vEGl2v1KttQFr7TRr7V3AVcCfgWcJtmY6AngJ2HkQGwOssNb2qnkdYa09aYflY2vmn2itXb7D/F/SidUAV+/wGQdba6c0CDJmtDFmoTFm4cs7DbJ3IMlISyE7t+5ud05uPhlpqWSkpZKdW3fXLycvOF/2TXpyYr1WSrkF28lITtpl7OTZSzh5SP3Bwy8943jefeB6XrhtNNZaOmSqLPZFemIM2cV1LZxyiitIT4jZZezkFZsZ0a3dLpfJr7NzC6edW0AFYwoIfL8A3AC2MBdbsBUnJRNPu854B55MzI3PEHnyX/H2OoaIk/7c1LsQNuz2AswOLTpMi9SGZbE9H//y+cGy2JaDm5eFk1bTyz0qhuhL76Rq0hu4G9QFeF+5Rfk4yXV3p53khuXgFuXjXzY3WA4FObg5W3DS2zR1qmHNFhXUKweTnIpbVL+1ty3cqRxyN6sc9jO3ID84MHgNJzUNN3+ncigpru3GVTl5It5OnYPr5ucR+HFNsJueG6B69ky8HTs3XfJhJpCbjyejriw86akE8vLqxbjFdWVR9uEkIg9reL/ezS/At3YdUb2OaNyEw5Q/Lx9vqx3LIY1A7k7XiO115VD6/qdEHlb3/97ExZL2xL0UPfMq1d9qfExpXM2q4skY08UYs+NZqRfw0zfWfGNMPPCHXay6CkirGZwcY0yEMWbnVlF7axWQaYzpV7OtBGOMF/gMGFPTrQ9jTGdjTINbWdbaF621fa21fS8575x9TCH0hh01kI8mf4m1lqXLvyc+Po601JYMGdCH2fMXsb24hO3FJcyev4ghA9Ssf191O7QdG7Pz2Zy7DZ/fz+Q5Sxja5/AGceu25FJSVkHPTh1q5wVcl6KSYN3p6g1ZrN64lUE99CVqX3RrnczGbaVsKSzDF3D5bMUmhnZuOEzcuvxiiiur6dm2YTNm+fXcLWtwUjIxyeng8eLpMQT/yoX1YgLfLcA5uOb0HpuAScnE3ZZD1X+epOLhMVQ8ciXVn/4b/5Lp+Ka8GYK9CA/uph9w0lpjWmaAx4u399EEltd/wKx/+Tw8HWt+LMQl4KS1xi3IAY+X6AvH4V/4FYFls0OQffhwN6zGSW+NSakphz5Dg5UbO/AvnYO3c/CZKSYuESejDW7NGFuyfwTWr8JJb1NbDhF9h+FfWr8cfEtn49mxHNLb1o51JvuHf9VKPG3a4mS0Aq+XqGHHUT13Vr0Y07Jl7fvIgUNqBx73r16JiY/HJAVv7kX0OpLAxvVNlnu4qf5+Jd52bfBkBssi5sTjqJhe/6HhTkpdWUQfPRjf+uCA1570VIgKPjvKJMQT2bM7vg2bkF+uesUqvO3a4G0dLIe44cOo+Lr+ddeTWlcOMUMH1ZYDXi9pj95N2cTPKf9yRlOmLb+EG9j/rxBpbqPhxgNPGWNaAH5gDcHucUXAciAbWLDzStba6pqBwZ80xiQR3K/Hgd2P0rwbNds6uyaPGILjO50AvAwcBCyqGdw8Dzj9F+9hMzH2rgdYsHgZRUXFHH/6X7ji4r/i9/sBOPuMUzhmUD9mzFnAyX+6iJjoaMaPuw6ApMQELrvgHEZdci0Al194rp5o9yt4PR5uveB0xtz/Eq7rcvqw/nRs14pn/vMZ3Q5uy7C+wR/Yk+csYfjgXuw4rr7fH+DCe54FIC4mmvuuPAevxxOS/TjQeR2HW0b0YsyEGbjWMrLnQXRMT+LZaSs4PDOZYV1aAzB5xSZGdGtXrxwALnztK9YXlFBe7eekxydy96l9GHxoq1DsyoHNdan++BWiL7gNjIN/0VfY3M1EHH827pYfCaxcSOCHJXg69iTm2seC8ZP/XTuosuxHrkvV/14gZvTd4Dj45n+Bm7OJyBHnEti0hsCK+QRWLsLTuRexNz2NtS7VH78G5SV4+wzDc2g3TFwC3n7HAVD11hO4WetCuksHJNel8p3niL3q/8Dx4JszBXfrRiJ//1cCG1YT+HYege++wdv1SGLveAHcAFX/ewXKSgCIuf5hnIx2mKho4u79N5VvPEbg+0Uh3qkDkOtS+fYzxF57H8ZxqJ41BXfrBqJOPY/AhtX4l80lsGIh3sOPJO6uF8G6VL73EramHGJvfBSnVVtMVAzxD7xBxeuPEfhOD2b5xdwApc88TtJ9j4DjUDllEoEN64k97yL8q1dSPXc2MSPPInLQEAgEcEtKKH30gZp1Xcpeeo6kBx4DY/D/sIrKTz8J7f4cyAIuRY88ReqTD2IcD2Uff4p/3XoSR19A9ferqZwxm/izzyTm6MHYQAC3uJjCvz8IgPegDqRcc3ntpkrffBf/j7o+7JOAy7YHnyL9mQfAcSj9aDK+tRtIuvx8qr9bTcX0OSSMOoOYoYOCx8T2EvLvegiAuJOGEt27B56kROJPDXYUyr/rYXyrfwzlHsnOwujpm8aqL2ej8eWv1R+3GQhsXP7zQdLo7Hfzfj5IGp37/epQpyA1bIWeqNQc2EpfqFMQwAbC58v1gax6fWWoUxCgskg3EpuLgK9ZdRD6zeqw6Ivf5OCqVd9/td/rE6K6Hvuzf0tjzAjgCcADvGytfWCn5e2BfwEtamJusdZO2tM2m1uLJxERERERERGR3za36W/KGGM8wDPAicBmYIEx5iNr7Xc7hN0OvGutfc4YczgwiWDvsN1SFa6IiIiIiIiIiPQH1lhr11prq4G3gZE7xVggseZ9EpD1cxtViycRERERERERkeYkNGM8tQF2HPF/MzBgp5i7gSnGmKuBOIJjYu+RWjyJiIiIiIiIiDQnrrvfX8aY0caYhTu8Ru9DZucAr1lr2wK/A/5tjNlj3ZJaPImIiIiIiIiIhDlr7YvAi3sI2QK022G6bc28HV0MjKjZ3hxjTDSQCuTubqNq8SQiIiIiIiIi0oxYG9jvr72wAOhkjDnYGBMJjAI+2ilmI3A8gDGmKxAN5O1po6p4EhERERERERH5jbPW+oGrgM+A7wk+vW6FMebvxpjTasJuAC41xiwF3gIusNbaPW1XXe1ERERERERERJqT0AwujrV2EjBpp3l37vD+O2DIL9mmKp5ERERERERERJoTNzQVT41BXe1ERERERERERKRRqMWTiIiIiIiIiEhzEqKudo1BLZ5ERERERERERKRRqMWTiIiIiIiIiEhz4gZCncF+o4onEREREREREZHmRF3tRERERERERERE9kwtnkREREREREREmhNXLZ5ERERERERERET2SC2eGlFg4/JQpyCAp333UKcgQPljT4Q6BQFMpO43NBfVWdWhTkGA6u06JpqD7E2JoU5BgDYdK0OdggCLN2SEOgWpMWRAVqhTkN8yjfEkIiIiIiIiIiKyZ2rxJCIiIiIiIiLSnITRGE+qeBIRERERERERaU7CqOJJXe1ERERERERERKRRqMWTiIiIiIiIiEgzYm0g1CnsN2rxJCIiIiIiIiIijUItnkREREREREREmpMwGuNJFU8iIiIiIiIiIs2JDZ+KJ3W1ExERERERERGRRqEWTyIiIiIiIiIizUkYdbVTiycREREREREREWkUavEkIiIiIiIiItKchNEYT6p4EhERERERERFpTtTVTkREREREREREZM/U4klEREREREREpDkJo652avEkIiIiIiIiIiKNolFbPBlj2gLPAIcTrOT6BBhrra1uxM8stdbGG2MOAj6x1navmX8U8A8gETDAE9baZ3/t5+yHlENm1pKVPPj6R7iuyxnH9ufikcfVW/7w6x+x4Ls1AFRU+SgsLmXmK+MBeGzCRGYs/h6A0WeewIhBvZo2+TBy+33/YPqs+bRMbsEHbzzfYLm1lvsff54ZcxYQHR3FvbfdwOFdOgLw4aTPeeFfbwNw2fmjGPm7E5s093DiPaIf0X+9EhwH37RJVH3ydr3lEUcPJ3rUaGxhPgBVn3+I7+tJAESffSneXgOC8z94A9+8aU2aezjxdO9L9DlXYIxD9YxPqf70nQYx3r7HEDXyPLAWd9NaKl66H4CIwScS+fs/A1D9yZv4Zn/epLmHm4g+/Ym7/GqM41A5eSIV/5lQb3nUCSOIu2QMbn4eABUfv0/VZxMBcNLSif/bTTip6YCl+I6bcXOzm3oXwkLUgH4k/e0q8Hgo/3gipf9+q97ymN8NJ/HKy3Hzguemsvfep/zjSbXLTWws6RNeo3L6TLb/48kmzT2cJA7rTdu7LwWPQ8Fbn5Pz7Hu7jGtx8iAOefEWVp5yA+XL1oDXQ4eHriL2iEMwHg8F731FzjO7Xld+XmS//iRcdTV4HComTqT8rfrnpejhI0i4fAyBn85L779PxaTgeSn9i6n4160FwM3Jpej2cU2bfJhJO7Yn3cefh/E4bHzzK9Y8/dEu4zJP6U/fV65j+vDb2L50LS16H0qPhy8JLjSG1Y/8l+xPFzZh5uElond/Yi+9GhyHqs8nUvle/WMi8rgRxF4wBrcgeExUTXqfqs8n4j2iN7EXXVkb52nbntJH/o5v3swmzV9+RhiN8dRoFU/GGAP8D3jOWjvSGOMBXgTuBcb+iu16rbX+X7hOK2ACcLq1dpExJhX4zBiz1Vr7/r7mciALuC73/fN9Xhg3moyUJM697UmG9enGoW0zamPGnnda7fsJk2eycn0WANMXfc/KdVt494HrqPYFuGT8cxzV8zDiY6ObfD/Cwem/O5FzzzqNceMf2eXyGXMWsHFzFpPeeYVlK1Yy/pGneeulx9leXMJz/5zAO68Ef0icffE1DDtqIEmJCU2ZfngwDtHnX0PZgzdht+UR//dn8S2ag5u1oV6Yb940Kl9/qt48b88BOAd1ovS20RARSdy4R/EtnQ+V5U25B+HBOMT8+WrKHr0ZW5hP3B1P418yB3frxtoQJ70NUaecQ9n9f4PyUkxCi+CCuASiTvsrpeOvBGuJv/NZfEvmQHlpiHbmAOc4xF/5N7aPuwE3P48WT7xA9bxZBDbWPyaqvp5K2XNPNFg94cZxlL/9Br7FCyE6JqyaijcpxyHpxmspuHYsgdw80l55nsoZs/Gvr18OlV9+tdtKpYTRF1G1ZFlTZBu+HId2/3cZP5x7F76tBXT55BG2fz6fyh821Q+LiyHt4lMpW7Sqdl7y74dgoiL4/sRrMdGRHD71aQo/nEH15tym3osDn+OQcO3fKBp7A4G8PFo+/wJVs2cR2LDT8fDVVEqebHhestVVbLv0kqbKNrw5hiPuv5C5f7qPiq0FHD35XrKnfEPp6i31wjxx0Rx8yQgKv/mhdl7Jyk3MGH4bNuASld6CoVMfIGfKImxA14lfzHGIvexvlNx1A25BHomPvED1/Fm4m+ofE9Uzp1L+Yv1jwv/tYoqvCx4PJj6BpOcn4Fu8oMlSl9+exuxqdxxQaa39J4C1NgBcB1xkjJlvjOn2U6AxZpoxpq8xJs4Y82rN8sXGmJE1yy8wxnxkjJkKfGmMiTfGfGmMWWSM+fanuD24EnjNWruoJpd84CZqKsCMMa8ZY/6wQz6lNf/+0s85YCxfs5F2rVJpm5FChNfLiEG9mLZwxW7jJ89ewsmDg62a1m7J4ciuB+P1eIiNjqRT+0xmLV2123Vlz/r2OmKPlUVfzZzLaSOOxxhDz+5dKSkpJS9/G7PmfcOgfr1JSkwgKTGBQf16M2veN02YefjwHHoYbs4WbN5WCPjxzf2KiD6D92pdp00HAiuXBe9IVFXiblpHRI9+jZxxePIc0gU3Nwubnx0sh/nT8PauXw4Rx5xM9dSPaiuUbEkRAN5uffGv+AbKSqC8FP+Kb/B2VznsK2/nrgSytuBmbwW/n6qvpxI58Ki9WtfTvgN4PMFKJ4DKCqiqasRsw1fE4Yfh35xFICtYDhVfTCX66CF7v36XznhaJlM1Xz8mfo24Xp2oWp9N9cYcrM9P4UczSDqpf4O41jeeS86z7+FW7dCw31o8MVHgcXCio7A+P4FS3ZjYFxGHBc9Lga3B46Fy6lSihuzdeUn2r+TeHSlbl035xlysL0DWB3NoNbxvg7jDbv4Ta575mECVr3ZeoKK6tpLJiY4A22Rphx1vp6642Vtwc4LHRPWMqUT2/+XHROTgYfgWzYNqXaubHdfd/68QacyKp25AvV/B1tpiYCMwEfgTgDEmE8i01i4EbgOmWmv7A8cCDxtj4mpWPxL4g7V2KFAJnGGtPbIm7tGaFlZ7nQuwkGAXwD35pZ9zwMgtLKZVSova6fSUJHIKt+8yNiuvkC152+jfPdi9q3OHTGYvXUVFVTWFxWUs+O5HsguKmiTv36KcvAJapafWTmekp5KTl09OXj6t0tPq5qcF58svZ5JTsdvyaqfdbXmY5NQGcRH9jib+3peIvfouTMvg397d+CPeHv0gMgoTn4i3a09MSnqT5R5OTItU3B3KwRbm47SoXw5Oq7Y4GW2IveVxYsc9iad78Iuuk5yCW7hDGRbm4ySnNE3iYchJTcXNq2uR4ebn4aQ0PCaijhpKi2dfJeG2e3BSg8eEp007bGkpCbePp8XTLxN78eXgaEjJfeFJSyWQU1cOgbw8PGkNyyF62DGkvf4yyffejfPTdcEYEq8ew/annmuqdMNWRKsUqrPqrq++rQVEtKp/fonpfggRrVMpnlr/62bhxNkEKqo44pvX6D7vZXJe+IBAkaCA+BwAACAASURBVFpi7gsnNRU3d4fzUl4entRdnJeOGUrLl18l6e57cNLqvieZyEhaPv8Cyc88qwqrXyk6M5mKrILa6cqtBURnJteLSTriIGJatyT3i8UN1m/R+1CGff0ww756iGU3vazWTvvIpKQSyN/hmCjY9bU6ctBQEp94lfib667V9ZYffRzV079s1FxlH1l3/79CJFRPtZsGPAvcRbAC6r81808CTjPG3FgzHQ20r3n/ubV2W817A9xnjDkGcIE2QAawvweQaKrPadYmz1nCCf174Kn54TC4RxdW/LiZ8+96muSEeHp26lC7TCRc+RfPoWTOVPD7iDz298RedjNl99+If/k3eA7pQvydT+KWbMe/5jtwA6FON3w5HpyMNpQ/fAMmOY24mx+l9M7Roc7qN6l63myqvv4SfD6iTz6V+BvGUXzrdeDx4O3eg6KrLsHNzSXh1ruIOmEEVVMm/fxG5RernDmHis+ngs9H7MhTSb7jFgquvoHYM0dSNWde7dhP0oiMoe2dF7Hh+obdHeN6dYKAy7d9L8SbFE/n9+6nZOZSqjfmhCDR8Fc1ZzaVU4PnpZhTTyXplnEU3nAdAPmjzsbNz8eTmUnyPx7Dv24tgaysEGccpozh8Hv+ypJrd13xXbT4R6YNHUt8p9b0enIMuVOX4u7QKkr2H9+C2RRN/xL8PqKGn0rcteMoueO62uUmuSWeDofgWzw/hFnKb0Fj1hZ8B/TZcYYxJpFgRdICoMAY0wM4G/hp9FgDnGWt7VXzam+t/b5mWdkOm/ozkAb0sdb2AnIIVlLtdS410z+NZOen5m9hjHGAyH38HIwxo40xC40xC1/532d7Cg2p9OTEeq2Ucgu2k5GctMvYybOXcPKQ+oOHX3rG8bz7wPW8cNtorLV0yGxYuy77R0ZaCtm5dT8ccnLzyUhLJSMtlezcuhYeOXnB+fLL2cL82hZMAE7LtNpBxGtjSovBH/xSVD1tEp6DOtUuq/poAqW3X0b5gzcBBjd7c5PkHW5sUT7ODuVgklNxi3Yqh8J8/EvmQiCAzc/GzdmCk9EGt7AAJ3mHMkxOxS0sQPaNm5+Pk1bXcs9JTcMt2KksSorBFzwmKj+biLdT55p18wisXRPspucGqJ4zE2/Hzk2XfBgJ5OXjyagrB09aGoGdKpJscV05lH88kYguwb91ZPduxJ51OunvvUXiVWOIOfkkEsZc2nTJhxFfdgGRreuurxGZKfiy684vTnwMMV060Ond/6Pb7BeJ692FQ169jdgeHWl5+lCKpy0CfwB/wXZKF35PbI+OodiNA56bn4+TvsN5KS2NQP7uj4eKiRPxdu5cb32AwNatVC9ZgrdjJ2TfVG4tJKZ1Xau/6MwUKrcW1k5746NJ7NKOwf+7k+MXPEnykR3p/68bSep5SL3tlP6QRaCsioTD2jVZ7uHEFuTjSd3hmEjZzbW65vtr1ecT8Rxa/3ocOeRYqufOgIBumjZL6mq3V74EYo0x5wHUDC7+KMGxlsoJVjbdBCRZa38a9fIz4OqfurMZY3rvZttJQK611meMORbo8DO5PANcYIzpVbPdFIKDnI+vWb6euoqp04CIffwcrLUvWmv7Wmv7Xnzm8J8LD5luh7ZjY3Y+m3O34fP7mTxnCUP7NOx5uG5LLiVlFfTsVLfrAdelqCRYD7h6QxarN25lUA/9qGgsw44ayEeTv8Ray9Ll3xMfH0daakuGDOjD7PmL2F5cwvbiEmbPX8SQATvXr8reCKxdiadVG0xaK/B4iRh4LL5Fs+vFmKSWte+9Rw4ikFUz4LVxMPGJADjtDsHT/hD83+rpLPsisG4VTkYbTGpNOfQfhn/JnHoxvsWz8HTpAYCJT8TJaIPN24p/xUK83fpAbDzExuPt1gf/CpXDvvKvXomndVucjFbg9RI19Diq586qF2OS646JyIFDCNQMZupfvRITF49JCt7MiOh5JIGN65ss93Di+34l3rZt8GQGyyHmhOOonFn/3OSk1JVD9FGD8a8PnpuK7rmX3DNHkXvWORQ//RwVn06h5LmXmjT/cFG29AeiDsoksl06JsJL8mlHs/3zutYBbkk5y3r+lRWDR7Ni8GjKFq9i7UX3Ur5sDdVb8kgYEjxnOTFRxPXuQtUa3ZzYF76VK/G0aYvTKng8RB93HFWz65+XnJZ1x0PU4CH4ax6IYOLjISL49d4kJhHR/Qj8G9Y3We7hpmjJj8Qd0oqY9mmYCA+tTx9E9pS6bqb+kgo+6zaaL/tdw5f9rqFw0Rrmn/8I25euDa7jCf4EjWmbSnzH1lRsytvdR8ke+H9YiZPZFic9eExEHn0cvvm7v1ZH9B+Cu7n+wONRxxxP9Qx1s5PG12hd7ay11hhzBvCsMeYOgpVck4Cfnl36X+AJ6ip/qHn/OLCspuXROuD3u9j8m8DHxphvCbZaWvkzuWw1xvwFeNEYkwQcBFxgrf26JuQl4ENjzFJgMnWtq37R5xxIvB4Pt15wOmPufwnXdTl9WH86tmvFM//5jG4Ht2VY3+DY75PnLGH44F7sOLSV3x/gwnueBSAuJpr7rjwHr8cTkv0IB2PveoAFi5dRVFTM8af/hSsu/it+f/DBjWefcQrHDOrHjDkLOPlPFxETHc34ccHmsUmJCVx2wTmMuuRaAC6/8Fw90W5fuS4Vrz9F3NgHwXHwTf8Ud8sGos68gMC6VfgXzyFy+BlE9B4MbgBbWkLFiw8F1/V6iLv9cQBsRRnlz90fVo8+bVKuS+WbTxN73f0Yx6F65me4WRuIGnk+gfWr8S+dQ2B5sIIpbvzLwfj/vIQtKwGg6pM3ib/96eD7j98MDjQu+8YNUPrc4yT93yPgcaicMonAxvXE/vUi/KtXUj1vNjEjzyJy4BAIBHBLSih99IGadV3KXn6OpPsfAwz+NauonPxJSHfngBVw2f6PJ0l57CHwOJR/8in+detJuORCqleuomrmbOL+eCbRR9WUQ3ExRfc+EOqsw0/AZdMdL9LxjbsxHoeCd76kcvUmMm84l/Jla+pVQu0s71+T6PDoNXT94ikwhoJ3v6Ri5YbdxsseuAFKnnyc5IceAceh8tNJBNavJ+7Ci/CvWknV7NnEnnkWUUOGYAMBbHEJxQ8Ejwdvhw4kXH9jcHwT41D21psNnoYne88GXJaPe42Bb92K8Thsemsapas20+WmP1C0ZB05U3b/sJuU/l3oePVIXJ8fXMu3t7xK9TZdr/eJG6D8xcdJuDt4TFR9OYnApvXEnHsR/jUr8c2fTfTvzyKif/AaYUtLKH2i7hrhpLfCSU3Hv3xJCHdC9iiMngpsrP3tPUrAGHMFMAY4xlpb+HPx+6py0Ue/vT9uM+Rp3z3UKQhQfp26eDQHJlLjsTUX1VnVPx8kja56u46J5iB7U2KoUxCgTUc9LKY5mP9961CnIDWGDNA4YM1Byw+/DosHfP1SFe8/sN/rE2LOuCUkf8vf5Lcta+2z1tojGrPSSURERERERETkty5UT7UTEREREREREZFdCaOudr/JFk8iIiIiIiIiItL41OJJRERERERERKQ5CaMHFqniSURERERERESkOQmjiid1tRMRERERERERkUahFk8iIiIiIiIiIs2JtaHOYL9RiycREREREREREWkUavEkIiIiIiIiItKcaIwnERERERERERGRPVOLJxERERERERGR5iSMWjyp4klEREREREREpDmx4VPxpK52IiIiIiIiIiLSKNTiSURERERERESkOQmjrnZq8SQiIiIiIiIiIhhjRhhjVhlj1hhjbtnF8seMMUtqXquNMUU/t021eBIRERERERERaU6sbfKPNMZ4gGeAE4HNwAJjzEfW2u/q0rLX7RB/NdD757ariicRERERERERkeYkNF3t+gNrrLVrAYwxbwMjge92E38OcNfPbVQVT43Ifjcv1CkIUP7YE6FOQYDYx14KdQoCLOpxY6hTEGlWqlxPqFMQoFuf3FCnIEDU4S1DnYIAw/95Q6hTkBpDBl8f6hQEWBDqBMKIMWY0MHqHWS9aa1/cYboNsGmH6c3AgN1sqwNwMDD15z5XFU8iIiIiIiIiIs1JI7R4qqlkevFnA/fOKOC/1trAzwVqcHEREREREREREdkCtNthum3NvF0ZBby1NxtViycRERERERERkebEhmSMpwVAJ2PMwQQrnEYB5+4cZIw5DEgG5uzNRlXxJCIiIiIiIiLSjFi36Z9qZ631G2OuAj4DPMCr1toVxpi/AwuttR/VhI4C3rZ27x69p4onERERERERERHBWjsJmLTTvDt3mr77l2xTFU8iIiIiIiIiIs1JIwwuHioaXFxERERERERERBqFWjyJiIiIiIiIiDQnoRlcvFGoxZOIiIiIiIiIiDQKtXgSEREREREREWlOQvBUu8aiiicRERERERERkeZEg4uLiIiIiIiIiIjsmVo8iYiIiIiIiIg0J2rxJCIiIiIiIiIismdq8SQiIiIiIiIi0pxYDS4uIiIiIiIiIiKNQV3tRERERERERERE9qxZtHgyxmQAjwEDgUKgGnjIWvv+TnEHAZ9Ya7vvNP/vwHRr7Rc/8zm9gMXAydbayfttBw5Qs9Zk89BnS3Ct5YzeB3PRkMPqLX94yhIWrM8DoNIXYFtZFTNvGgnAFRNmsGzzNnq3T+GpUUc1ee7hxHtEP6L/eiU4Dr5pk6j65O16yyOOHk70qNHYwnwAqj7/EN/XkwCIPvtSvL0GBOd/8Aa+edOaNPdwcvt9/2D6rPm0TG7BB28832C5tZb7H3+eGXMWEB0dxb233cDhXToC8OGkz3nhX8Fyu+z8UYz83YlNmns4SRrWmw7jL8I4DrlvfcHWp9/fZVzy7wbS+eWbWD5iLGXLfiTljGPIvGJk7fLYrh1YPvxGylesb6LMw4/KonlIPrYXh46/EONxyH7zSzY9/cEu41JPGcDhr9zIouE3U7p0LVHt0ug7/XEqfswCoPib1ay5+aWmTD2sRPTpT9zoq8FxqJwykcr/TKi3POqEEcReNAa3oOZ708fvUzVlIt4evYm79MraOE/b9pQ8+Hd8c2c2af7hwtOlN1GnXRz8zjT/C3xf/a9BjLfHYCJPGoW1FnfreqomPIZpkUb0+TeD44DjwTdrEv65nzX9DoSRmQuW8uDz/yYQcDnz5GFccvZp9ZZvzc3ntoefp6SsnIDr8reLRnFM/158u/JH7nniZSDYi+iKv57J8UP6hWIXwsKgYf25Yfw1OI7Dh29N5F9Pv1lv+bmj/8TIc39PwB+gqKCIv1//ANlbcgA45Y8juOja8wB49YnXmfif3/zP4+bHVVe7/cYYY4APgH9Za8+tmdcBOG2nuN3maq29cy8/7hxgZs2/DY6smlyMtTZ82rTtRsC13D95Mc//+WgyEmP588tfMrRzaw5NS6yNGXtSr9r3b81fw8rsotrp8wd1ptIX4L+L1jZp3mHHOESffw1lD96E3ZZH/N+fxbdoDm7WhnphvnnTqHz9qXrzvD0H4BzUidLbRkNEJHHjHsW3dD5UljflHoSN0393IueedRrjxj+yy+Uz5ixg4+YsJr3zCstWrGT8I0/z1kuPs724hOf+OYF3XnkSgLMvvoZhRw0kKTGhKdMPD47DQfddyspR91C9tYBukx6i6LMFVPywuX5YXDStLjmF0m9W184reH86Be9PByDmsPZ0fvUWVXT8GiqL5sFx6Hj/xXz7p/FUbd1G78n3UzBlIeWr65eDJy6aNpf8juIdygGgckM2i04Y25QZhyfHIW7M3yi+/Qbc/DySHnsB39xZBDbVv1ZXT59K2fNP1JvnX7aY7VdfAoCJT6DFyxPwLV7QZKmHFeMQdcZoKl68G7u9gJhrHsK/Yj42t+54MKmZRBx3FuXP3AoVZZi4JABsSSEVT98CAT9ERhN7wxMEvpuPLS4M1d4c0AIBl3ufeY0X77+VVqktGXX1HRw78EgO7dC2NuaFCR8w/JiBnH3qCfy4YTNX3PEwx7z+BB0PasvbT/8fXo+HvIJC/jBmHEMHHonX4wnhHh2YHMfhpvuu46pR15OzNY9/TXqR6Z/NZN0PdeemVct/4LyTL6WqooqzzhvJNXeMYdzld5PYIoFLr7+A806+FGst/578MtOnzKRke2kI90jCWXPoanccUG2trW1iYK3dYK19yhhzgTHmI2PMVODL3W3AGPOaMeYPxpgRxpj/7DB/mDHmk5r3BvgjcAFwojEmumb+QcaYVcaY14HlQDtjzFhjzAJjzDJjzD07bO8DY8w3xpgVxpjR+/fP0LSWZ22jXXI8bZPjifA4DO/WjmmrsnYb/+mKjYzo3q52esDBGcRGhrze8oDnOfQw3Jwt2LytEPDjm/sVEX0G79W6TpsOBFYuC/b9rarE3bSOiB66Y7Sv+vY6Yo+VRV/NnMtpI47HGEPP7l0pKSklL38bs+Z9w6B+vUlKTCApMYFB/Xoza943TZh5+Ijv3ZHK9Vup2piD9fnZ9uFMkof3bxDX9qZz2frMB7hV1bvcTsrpR1PwoVoT/Boqi+YhoXdHKtZlU7kxF+vzk/fBLFKG920Q1+HmUWx65kPcKl8Isgx/3s5dCWRtwc3eCn4/VdOnEjHwl7f2jjxqGL6F86CqqhGyDH9O+064+Vux23Ig4Me/ZCbebvXPSxEDTsQ3+1OoKAPAlm0PLgj4gy8AbwQY05Sph51vV/1I+9YZtMtMJyLCy8nDBvLVnPrffYwxlJZXAFBSVkFay2QAYqKjaiuZqnw+UFHss269u7Jp/Ra2bNyK3+fn8w+/ZOjw+uemb2YvpqoieM75dtF3pGemATBwWH/mTV9IcVEJJdtLmTd9IYOOHdDk+yA/w7r7/xUizaHiqRuwaA/LjwT+YK0duhfb+gIYYIyJq5k+G/ip39JgYJ219kdgGnDKDut1Ap611nYDutRM9wd6AX2MMcfUxF1kre0D9AWuMcak7EVOzVJucQWtEmNqpzMSY8gtqdhlbFZRGVlF5fQ/KL2p0vvNMMmp2G15tdPutjxMcmqDuIh+RxN/70vEXn0XpmXwguFu/BFvj34QGYWJT8TbtScmRWXUWHLyCmiVXlc2Gemp5OTlk5OXT6v0tLr5acH58stFtkqhOqugdrp6awERmS3rxcQecQhRrVMo+nL3lXsppw2h4ANVdvwaKovmISqzJVU7lEPV1m1EZtb/6hF/xMFEtU5h2xcNv0pFt0/nyM8fosf795A44LAGy2XvOCmpuPm5tdNufh6elIbX6sghQ0l6+lXib70HJzWtwfKoY46j6uvd3keVn2ESW2KL6q6vdnsBJqn+8eCktsZJa03MlfcRc9UDeLr0rls/KYWY6x8j7raX8E17X62dfoXcgm20Sqv722ektiQnv/7f84q/nMknU2dy/J+v4oo7HuLWK8+vXbZs5RpOv/QmzrzsFu685iK1dtpHaa1SycmqOzflbM0jLbPhuecnI885hdlT5wGQ3iqt3rq5W3NJb7X7dSVEXLv/XyHSHCqe6jHGPGOMWWqM+akd8ufW2m17s6611k+wC92pNV3zTgE+rFl8DnWVUG/XTP9kg7V2bs37k2peiwlWiB1GsCIKgpVNS4G5QLsd5oe1z1Zs4oSubfA4uiURCv7Fcyi57s+U3nYp/uXfEHvZzcH5y7/Bv3Qe8Xc+ScyVt+Nf8x24gRBnK9KIjKHDXRew4Z7XdhsS17sTbkUVFas2Nl1ev0Uqi+bBGA6553zW3vN6g0XVOYXM6zOGRSfexNq7/kXXZ6/FEx+zi43I/lA9bzaFF57N9qsuwrd4IfHXj6u33CS3xHPQIfgWzQ9Rhr8RjgcnNZOK5+6g8s1/EPWHKyA6FghWVFX84zrKHxyDt8+xmPikECcb3iZNm8PpJx7Dl28+zbPjb2LcQ8/i1jyhq8dhHfngpYd4+6nxvPz2R1RV77rVrOw/J595Il17dOHfz70V6lTkN6o5VDytINiqCQBr7ZXA8cBPVa5lv3B7bwN/ItiFb6G1tsQY4wHOAu40xqwHngJGGGN+6lez42cY4H5rba+aV0dr7SvGmGHACcAga21PghVT0Tt/uDFmtDFmoTFm4StTF//C1JtOemIM2cV1LZxyiitIT9j1F9LJKzYzolu7XS6TX8cW5te2YAJwWqbVDiJeG1NaDP5g94nqaZPwHFRX31n10QRKb7+M8gdvAgxudv1xP2T/yUhLITu3rmxycvPJSEslIy2V7Ny6Vms5ecH58stVZxcQ2bruDmpkZgq+rXX3HTzxMcQc1p7D3xtPr3nPE39kZzq/ditxPQ6tjUkZeZRa2OwHKovmoWrrNqJ2KIeozJZUb61rAeWJjyGuSzt6/u9u+i94hsQjO9HtXzcT3/MQbLUff2FwrI7SZWup2JBDzKGZTb4P4cAtyMdJrWtR7KSmESjY6VpdUnetrpoyEU/HzvWWRx19LNVzZkBAN4j2lS3ehmlRd301SSnY7QX1Y7YX4F+xANwAtjAXNy8LJ7X1TtspxM3eiHPw4U2SdzhKT2lJdl7d3z4nfxsZqcn1Yt6fPI3hxwwEoNfhnaiq9lFYXFIv5pD2bYiNiWbNen1/3Rd52flktK47N2VkppG3Na9BXP+j+3DhtedxwwW34qsOnqdys/PqrZuemU5udsN1JbSs6+73V6g0h4qnqUC0MWbMDvNif8X2viZYkXUpdS2cjgeWWWvbWWsPstZ2AN4DztjF+p8BFxlj4gGMMW2MMelAElBorS03xhxG8Al8DVhrX7TW9rXW9r34uN67CmkWurVOZuO2UrYUluELuHy2YhNDOzf8Qrouv5jiymp6tj1gexU2a4G1K/G0aoNJawUeLxEDj8W3aHa9GJNU173Fe+QgAlk1rQeMg4kPDgbvtDsET/tD8H+7sMly/60ZdtRAPpr8JdZali7/nvj4ONJSWzJkQB9mz1/E9uIStheXMHv+IoYM6BPqdA9IpUvWEH1wJlHt0jERXlqOPIrCKXWD8AZKylnU/QKWDLicJQMup3TRalZfcD9ly34MBhhDyqmDNabQfqCyaB5Klqwh5pBMotsHyyHt9CEUTKk7zwdKypnT7WLm97uS+f2upHjRD6w4/0FKl64lIiUx+AQvgl3uYg7OpHJD7u4+SvbAv3olnjZtcTJagddL1DHH4Zs3q16MSa67VkcOGNJg4PHIocerm92v5G76ASc1E5OcDh4v3l5HEfiu/kDt/hXz8Bxa8/Dr2ASctNa423KCXfK8kcH5MXF4Du6KzdvSxHsQPrp3OYQNW7LZnJ2Lz+fn02lzGTaw/nefVukpzF2yHIC1G7dQXe2jZVIim7Nz8ddUwGbl5LFuUxatM9TFa198t2Ql7Q9uS+t2mXgjvJw48nimT6l/burcvRO3PngjN1xwK4UFdQ+KmjttPgOG9iMhKZ6EpHgGDO3H3GlqkSmNJ+SjQ1trrTHmdOAxY8xNQB7BFkg3A7tqgtPFGLNjtfh1O20vUDOg+AXAT52JzwF2fg70e8AYYPpO608xxnQF5gTHI6cU+AvBLnyXG2O+B1YR7G53wPI6DreM6MWYCTNwrWVkz4PomJ7Es9NWcHhmMsO6BO8OTV6xiRHd2mF2GoTxwte+Yn1BCeXVfk56fCJ3n9qHwYe2CsWuHNhcl4rXnyJu7IPBRwNP/xR3ywaizryAwLpV+BfPIXL4GUT0Hhy8e1daQsWLDwXX9XqIu/1xAGxFGeXP3R8caFz2ydi7HmDB4mUUFRVz/Ol/4YqL/4rfHxyI9OwzTuGYQf2YMWcBJ//pImKioxk/LnjqSUpM4LILzmHUJdcCcPmF5+qJdvsq4LL+tpfpMuFOjMch7+0vqVi9iTZjR1G29EeKpuz5SVAJAw+nOquAqo05TZRwGFNZNA8BlzXjXqH7W7dhPA7Zb31F+arNdLjpbEqW/Mi2Kbu/2ZA0sCsdbjob6/t/9u47Popq///46+ymEwghjVCkF+kgTUDBqyDiBSw/FXtXuHbEhoooil4rKn5Bxd71qgheVKpK70WQ3iE9AdLb7vn9sUsK/SLJhvX9fDz2YWbmzOxn9rg7y2c/54wL63az+eF3KN6vuxWdFLeLnAnjqDHmZXA4KJgxDdeuHYRedwvFmzdQtHgBoYMuJ7BbT3B5rtXZr71QsrsjtjbO6FiK/1jlw5PwA243BZPfJfT2pzzfmZbMwp28m6B+V+PaswXXn0txbVyJs3kHwka8gXW7KfzxI8jNwtGsPUEDbwJrwRgKf5uMO0nDgE9WgNPJyLtuYujIf+Nyu7m0X2+aNqzH+I/+Q+vmjTjv7LN46I5rGT1uEp989zPGwLMj7sQYw8q1G3nvq6kEBDhxOBw8fs/NREboe9PJcLlcvPj4ON74/GWcTgdTvpzGtk07uPOhW1i/eiO/T5/PfU8OI7RaKC+847lfVtLeFB686TEy92fx3riP+GjaOwC899qHZO7POtbTiS/4cE6mU81Y6z8nU9Xkffq4XtwqoPCX0zpH6DfCXnvX1yEIsKLdCF+HIFKlFLg1qW1V0PosVWNVBcGtah2/kVS4oLse93UI4tWzx3BfhyDA0oTf/5aTDec8d8MpzydUe/xjn7yWPq94EhERERERERGRMqz/jGZR4klEREREREREpCrxo6F2VWFycRERERERERER8UOqeBIRERERERERqUr86MZRqngSEREREREREZEKoYonEREREREREZGqxI/meFLiSURERERERESkKvGju9ppqJ2IiIiIiIiIiFQIVTyJiIiIiIiIiFQlfjTUThVPIiIiIiIiIiJSIVTxJCIiIiIiIiJShVi3/8zxpMSTiIiIiIiIiEhVoqF2IiIiIiIiIiIix6aKJxERERERERGRqkQVTyIiIiIiIiIiIsemiicRERERERERkarE+s/k4qp4EhERERERERGRCqGKpwrkXr/J1yEIYIKUX60KVrQb4esQBOi05mVfhyBSpcxqPdLXIQiwQC1o4wAAIABJREFUfFm8r0MQIGJloa9DEGDeV+N8HYJ4/dDQ6esQ5O/Mj+Z4UuJJRERERERERKQKsX6UeFIpiIiIiIiIiIiIVAhVPImIiIiIiIiIVCWqeBIRERERERERETk2VTyJiIiIiIiIiFQlbrevIzhllHgSEREREREREalKNNRORERERERERETk2FTxJCIiIiIiIiJSlajiSURERERERERE5NiUeBIRERERERERqUKstaf8cSKMMf2NMRuNMVuMMY8epc2Vxpg/jTHrjDGfH++YGmonIiIiIiIiIlKV+GConTHGCbwF9AX2AEuNMVOstX+WadMMeAzoaa3dZ4yJPd5xVfEkIiIiIiIiIiJdgS3W2m3W2kLgS2DwIW1uB96y1u4DsNamHO+gSjyJiIiIiIiIiFQlbnvqH8dXF9hdZnmPd11ZzYHmxpj5xphFxpj+xzuohtqJiIiIiIiIiPg5Y8wdwB1lVr1jrX3nfzxMANAM6APUA343xrS11u4/1g4iIiIiIiIiIlJF2AqY48mbZDpWomkvUL/Mcj3vurL2AIuttUXAdmPMJjyJqKVHO6iG2omIiIiIiIiIyFKgmTGmkTEmCBgCTDmkzWQ81U4YY6LxDL3bdqyDVmjFkzEmDngN6A7sAwqBF62131fk8x4jnouAMUAYUADMttY+6ItYqgJnsw4EXXwzOBwUL5tF0e+TD2/T5myCzr8SrMWdtJOCr18v3RgcSuh9r+Fav5TCqe9VYuT+xdmmMyFX/wtjHBTO/YnCn746rE1A53MJHnyDpx92byPv3ecBCOzRl6B/XgtA4Y+fUbRgRqXG7k8i+nSkwZhbMA4HKV/MJHH8kT+mIgd0p/mkh1nb/yFy1mwl6tJzif9X6Xx7YWc2YO2FI8hdt6OSIvcvT4x9ld/nL6FWZE0mfzrxsO3WWp4fN5G5C5cSEhLMc48/SKsWTQH4YdoM3v7oSwDuvHEIgwf0rdTY/c28Rct4YdxEXG43lw/sz23XX1lue2JSCiOffYWs7GxcbjcPDL2Zc3t0pai4mKeeH8f6TVspdrkY1P98br/hKh+dxekv+rz2nPnsjeB0sOez2Wx/89Dvfh5xF3el4/vDWdBvJJmrtxHRsQmtX77ds9EYtrz0H1J+OuoPkXIcUee1p+WzN2K8/bDjKP0Qe3FXOrw/nEXefjgopG4UPea+wtaX/sPOCT9WVth+R9fqqqNh73acN/p6jNPB2i9/Zcn/TS23vd11/6DDDX2xLjdFuflMf/Q9MjYnABDdsj59n7+FoOqhWLfls4GjcBUU+eI0TnvB3boQcf/d4HSSO/W/ZH/yRbntoQMupMZdQ3GnpgGQ8+335E6dVrLdhIUR+/mH5P8+jwOvvlGpscsJ8MFd7ay1xcaYu4FfACfwvrV2nTHmGWCZtXaKd1s/Y8yfgAt4yFqbfqzjVljiyRhj8GTCPrLWXuNd1wAYdIL7B1hri09hPG2A8cDF1toN3tsE3nGc3SosHp8zDoIG3kr+B2OwmRmEDHue4vXLsKl7SptE1Saw96Xkvf0E5OdAtRrlDhF0wRDcO9ZXduT+xTgIvfYecl55BLsvjWpPjqd41ULcibtKmjhi6xJ88dXkPH8/5GZjqtf0bKhWneBB15M95i6wlvBR/0fRqoWQm+2jkzmNORw0HHs7G4Y8TWFiOq2nvcj+X5aSt3lP+WbVQqh928VkL99Usi79+99J//53AEJbnkHz9x/VF9m/4JIBfbnm8kGMHPPyEbfPXbiUXXsSmPbVe6xZt4ExL4/ni3fHcSAziwkffM5X73m+NF1167306dWdiBrVKzN8v+FyuXj2lbd4d9xYasdGc9Vt93Fer240adSgpM3bH33Bheefw5BL/8nW7TsZNmIU03t0ZfrsuRQWFfH9JxPIy89n8LV3MqBvH+rGx/nwjE5TDkOrF25h6ZXPkZ+Qztm/jCXll+XkbCpf8e6sFkKD2y9i//LNJeuyNuxmYb+RWJeb4Nia9Jjzb1KnL8e63JV9Fqc/h+HMF25hubcfuv8yltQT7IeDWjx9A2mzVlVWxP5J1+oqwzgM5z97I/+59gWyEjO4duozbJmxvCSxBLBh8kLWfDobgCZ9O9Hnyev47oYXMU4HA14fxk/3TyR1/S5CaobjLvKff2JVKoeDiBH3kX7fQ7hSUol5byL5cxdQvGNnuWb5s+YcNalU/Y5bKFi1pjKilZPho0u2tXYaMO2QdaPK/G2B4d7HCanIoXb/AAqttSU/WVtrd1pr3zTGNDTGzDXGrPA+egAYY/p4108B/vSum2yMWW6MWeedCAvv+luNMZuMMUuMMe8aY8Z718cYY741xiz1Pnp6d3kYeM5au8Ebi8taO8G7z0BjzGJjzEpjzExvpRbGmNHGmE+MMfOBT4wxrb3Pt8oYs8YY06wCX78K5ajXFHdGEnZfCriKca2ZT8CZncu1Ceh8AcWLf/YknQByMkv3r9MYEx6Ba/Pqygzb7zgbt8CdkoBNSwJXMUVLfiWgY49ybQLPvYjC2VNKEko2yzNnW0DrzhSvWw45WZCbTfG65QS06VLp5+APwjs2JX9HIgW7krFFxWT8MI/IC7se1q7ew9eQ+NZk3AWFRzxO1CXnkP7DvIoO16917tD2mMmiOfMWMaj/+RhjaN/mTLKysklNy2D+4uWc3aUjETWqE1GjOmd36cj8xcsrMXL/8sf6TZxRrw7168YTGBjIRef3ZvbcReXaGGPIyckFICsnl5joqJL1efn5FBe7KCgoJDAwkPBqYZV+Dv6gZqem5G5PIm9nCrbIRdLkBcT173xYu2aPXsn28VNw55dWDLjzCkuSTI6QQLCV/6upv4g4Qj/EHqEfmh6hHwBiLupM3q4UcjbuOWwfOXG6VlcdtTs0Yf+OZA7sSsVd5GLj1EU07XdWuTaF2XklfweGBpd8BjU8ty2p63eTut7zI2v+/uwKmcfm7yCwVUuK9yTgSkiE4mLyZs4m5Jyex9/x4P4tmuOsFUnBElXDSsWryMRTa2DFUbalAH2ttZ2Aq4CyKdhOwH3W2ube5VustWcBnYF7jTFRxpg6wJN4hvD1BFqW2f914DVrbRfgcmCSd30b4Gj/CpkHdLfWdgS+xJOkOqgVcIG19mpgKPC6tbaDN57T9huEqVELe6C0Gs5mZmAiosq1cUTHY6LqEHLHGELufA5nsw7enQ1BF91A4U8fV2bIfsnUjMadkVqybPel4agZXa6No3Y9HHF1CXt0HGEj38DZxvNl1xEZhXtf6b7ufWk4Isv3oZyYoNpRFCaUvh8KE9MJjK9Vrk1Y28YE14li/6yjJzOiBvUkfbK+zFak5NR0aseWvkfiYqNJTk0jOTWN2rExpetjPOvl5KQc+nrGRpOSWr6C+l+3XMePv8zh/Euu418jRjHygWEA9D2vF6EhIZw3+Br6XnYDN119mSrPTlJw7Vrklflsyk/IILh2+c+mGm0bElInitSZKw/bP6JTU3r+9hI9f32JdQ+9p2qnkxRSuxb5x+mH6t5+SDukH5xhwTS6exBbX/5PpcTqz3StrjrCa0eSlZBRspyVmEF4XORh7TrccAG3zn2Fc0cOYfZTnn83RDauDVgu/+Rhrvvvs3QZenFlhe13nDHRuJJTSpZdqak4Y6IPaxfS51xiPp5E5HOjcRy8thtDjXuGceDNCZUVrpwE67an/OErlXZXO2PMW0AvPPM8XQCMN8Z0wDMmsHmZpkustdvLLN9rjLnU+3d9PLOl1wZ+s9ZmeI/9TZljXAC08oz0A6CGMSb8OOHVA74yxsQDQUDZ559irT2Ysl8IPG6MqQd8Z609vJbanzicOKLjyZ80GhMRRchtT5P35oMEdDgX16YV2MyM4x9D/jqHE0dcXXJfehATGUO1R14he9QJjxKVU8EYGjx1E1vvf/OoTap1bIY7r4C8jbuO2kbEn0yb+SuDB1zATVdfzqq163lszEtM/mQif/y5EafDwewfPiMzK5sbh42ge+eO1K8b7+uQ/Y8xtHz6Bv6478j/cDiwYgvzez9EtWZ1aPvmv0ibvQq35lE59YyhxdM3sPYI/dDkoSvY+fY0XLkFPgjsb0bX6ipn1cczWfXxTFoOPpvu917Cz8PfxuF0Urdzcz4bOIqivEKu+OIxkv/Ywa7563wdrl/Kn7eQvBmzoaiIsMEDiXzyUdLveZCwywZTsHBxydxPIhWtIhNP6/BUHAFgrb3LO+P5MuABIBloj6fqKr/MfjkH/zDG9MGTSDrbWptrjPkVCDnO8zrwVC+VPSbGmHXAWcCRxoa9CbxqrZ3ifc7RR4rHWvu5MWYxcDEwzRhzp7V29iHPcwfeuaPeuKgTt3RsfJxwfePQCqdDK6A8bdJx794Mbhd2Xwo2PRFHVDzO+s1xNDyTgG4XYoJCwBmALcinaPpnlX0apz27Pw1HrdKqAhMZjXt/+QuA3ZeGa9sGcLmwaUm4k/fiiKuLe186AS3albRzREZTvFFjtE9GYVI6QXVK3w9B8VEUJZYmVp3hoYS2PINW344BIDCmJs0/fIxNNz1PzpqtAEQN7qVfUCtBXEwUSSml75HklDTiYqKJi4lm6crS//+TU9Po0rHdkQ4hJyA2JpqklNKKyuSUNGJjyldUfjf1Fya++iwAHdqcSWFhEfsOZDJtxq/07N6ZwIAAoiJr0qFdK9Zt2KzE00koSMogtMxnU0idWhQklX42BYSHEN6yHl2/80y7EBQbQaePR7DihpfLTWydszkBV04+4S3rl1svJyY/KYOQE+iHLmX6ocPHI1h1w8tEdGpK3D+70fzJawmICAO3xV1QxO73f6n08zjd6VpddWQn7aN6ndJqs+rxtchO3nfU9humLOKC524GPNVRe5ZsJG+fZwqJ7XNWE9umoRJPJ8GVmoYzLrZk2RkTg+uQRJLNLJ0qJXfqf6lxl+fH66A2rQlq35awywZjQkMxgQG48/LImvBu5QQvJ8aPhqFW5FC72UCIMWZYmXUHJ3mIABKttW7gejyzpR9JBLDPm3RqiWdoHXhu8dfbGBNpjAmgTIILmA7cc3DBW1UF8BIw0hjT3LveYYwZWuZ5Ds4QeePRTsgY0xjYZq19A/gBOOxfNdbad6y1na21natq0gnAvXcLjqh4TGQsOANwtutJ8YZl5dq4/lyKo1Frz0JYdUxUPO6MZAq+eYO8l4aR9/JdFP70CcWrflfS6SS5tm/EEVcXE10bnAEEdu1D8aqF5doUrZyP05tgMuE1cMTVxaYmUrxuGQGtz4KwcAgLJ6D1WRSvW3akp5HjyF61hZBG8QTXj8UEBlBrcC/2TS8d7+7KymVFm5tY1W0oq7oNJXvFpnJfZDGGqIE9NGdEJejTqztTfp6FtZbVa9cTHl6NmOha9Ox2FguWrOBAZhYHMrNYsGQFPbuddfwDyhG1admcXXsS2JOQRFFRET/N+o3zenUv1ya+diyLl3kmS966YxcFBYXUqhlBfFwMS5Z7fuPJzctnzboNNGpQv9LPwR8cWLmVsMa1CT0jBhPopPYlPUj5pXQIUXFWHrNb3cFvXe7hty73cGD5lpKkU+gZMRin52teSL1oqjWtQ97u1KM9lRxD5gn0w6+t7mBul3uY6+2HVd5+WDp4dMn6Xe/8xLbXJyvpdJJ0ra46klZvo2aj2tSoH4Mj0EmLgd3ZOqP8DCs1G5beUKLx+R3YtyMJgB2/ryG6RX0CQoIwTgf1urckfXP5ifrlxBSt30BAvbo442tDQAChF/yD/HkLyrVxRJUmCEN69aB4h6fab//Tz5Fy2RBSLr+azPETyPtpupJOVZG7Ah4+UmEVT9Zaa4y5BHjNGPMwkIqneugRPHM/fWuMuQH4mTJVRYf4GRhqjFkPbAQWeY+91xgzFlgCZAAbgAPefe4F3jLGrMFzfr8DQ621a4wx9wNfGGPCAAscvJ/taOAbY8w+PAmzRkeJ50rgemNMEZAEjP0fX5aqw+2mcOp7hNz0OBgHxSvmYFP2EHj+Vbj3bsW1YRmuzatwNm1P6H2vedr//Ank6Y5pp5TbTf5n4wl74HmMw0HhvF9wJ+wkePCNuHZsonj1QlxrPQmmamMmedp/8y42JwuAgh8/I/yJ8Z6/p37mmWhc/ncuNzsen0SLz0dhnA5Sv5xF3qbd1H1oCDmrt7J/+rEnXazevRWFCekU7EqupID910NPvcDSlWvYvz/TM3fQrddTXOy5281Vl17MuWd3Ye7CpVx05S2EhoQwZuQDAETUqM6dN13NkNvuA2DozddoXqG/ICDAycgHhnHn8CdwuVxc+s9+NG3cgPHvfkzrls0575zuPHT3bTz17zf4+OvvMRiefXw4xhiuvmwgT4x9lcHX3onFcsmAfrRoerTLqhyLdbn587EP6PzlSIzTwZ4v5pC9cQ9NH76CA6u3kfrL0eexiezakkb3DMIWu7Buy5+Pvk9Rhq4RJ8O63Gx47AM6efth7xdzyNm4hyYPX0HmcfpBTiFdq6sM63Iz+8mPuPyTh3E4Haz96jfSN+2lx/DLSf5jO1tnrKDjTf04o1dr3EUu8g/k8PPwtwEoOJDL8kk/ce2Pz4C1bJ+zmu2zdcfHk+Jyc+DVN4h67UVwOsj98SeKt++g+m03U7hhIwXzFlDtissI6dUTXC7cmZnsf+4FX0ctf1PGnqZ3OTHGhFtrs70VT98D71trv/d1XGXlPH7F6fni+hlX0n5fhyDA+p+UBKgKOq152dchiFQps1qP9HUIQsWW4MuJi3Ae+U5wUrnmBehOoFXF1fVUjVUV1Fkwxxy/lf/Zd0WfU55PiPzmV5+8lqfzdX60MWYVsBbPZOCTfRyPiIiIiIiIiIiUUWl3tTvVrLUjfB2DiIiIiIiIiMgp58M5mU610zbxJCIiIiIiIiLij6zuaiciIiIiIiIiInJsqngSEREREREREalK/GionSqeRERERERERESkQqjiSURERERERESkCrF+VPGkxJOIiIiIiIiISFXiR4knDbUTEREREREREZEKoYonEREREREREZEqxJ+G2qniSUREREREREREKoQqnkREREREREREqhJVPImIiIiIiIiIiBybKp5ERERERERERKoQf5rjSYknEREREREREZEqxJ8STxpqJyIiIiIiIiIiFUIVTyIiIiIiIiIiVYg/VTwp8VSBbF6Br0MQoDCh0NchiIhIFVUnNMfXIQhgjK8jEIC1BTV8HYIAWcb6OgTxSt6j90RVUMfXAchfpsSTiIiIiIiIiEhVYv3nVxklnkREREREREREqhB/GmqnycVFRERERERERKRCqOJJRERERERERKQKsW7/GWqniicREREREREREakQqngSEREREREREalC/GmOJyWeRERERERERESqEOtHd7XTUDsREREREREREakQqngSEREREREREalC/GmonSqeRERERERERESkQqjiSURERERERESkCrFuzfEkIiIiIiIiIiJyTKp4EhERERERERGpQqz1dQSnjhJPIiIiIiIiIiJViIbaiYiIiIiIiIiIHIcqnkREREREREREqhBVPImIiIiIiIiIiBxHhVU8GWPigNeA7sA+oBB40Vr7fUU95wnENBmoba3t7qsYqhJny04EX3IbOJwULZpO0exvD2sT0L4nQRdejQXcCdsp+PQVHHUaEfz/hkFIGLjdFM38muJV8yr/BPxE4FldqTb0HozDQf7P/yXvm8/LbQ++oD/VbhuGOy0VgLyp31Pwy38BcMTEEn7/wziiYwFL5pOP4E5JquxT8AsRfTrSYMwtGIeDlC9mkjj+yB9VkQO603zSw6zt/xA5a7YSdem5xP9rcMn2sDMbsPbCEeSu21FJkfufeYuW8cK4ibjcbi4f2J/brr+y3PbEpBRGPvsKWdnZuNxuHhh6M+f26EpRcTFPPT+O9Zu2UuxyMaj/+dx+w1U+OovT2xNjX+X3+UuoFVmTyZ9OPGy7tZbnx01k7sKlhIQE89zjD9KqRVMAfpg2g7c/+hKAO28cwuABfSs1dn8T3rsTdUfdDk4HGV/NIHXCf47Yrkb/HjSc+BibBz5A3h9bMIEB1B17F6Ftm4K1JDz9DjmL1lZy9P4j/NxO1HnqdnA42PfVDFInHr0fGkx4jC2DSvuhznN3Eda2KdZaEp9+h5zF6oeTFd+nHZ3GXI9xONj6xa+sHz/1iO3qDejCOZPu55f+T5CxZjtBkeH0euc+anVozPavf2f54x9VcuT+p2nvdvR/6nocTgcrvvyVeRPK90Xna8+nyw19sS43hbn5TH3sPVI37y3ZHlEnirtmvsiv475lwTvTKjt8v1G9d0fqjb4d43SQ/uUMkv/v8H/PAURcdDaN336UDf98kLw1WyDAyRkv3k1Ym8YYp5OM7+aQ/NaR9xXf0eTix2GMMcBk4CNr7TXedQ2AQSe4f4C1tvgUx1QTOAvINsY0ttZuq4znrbKMg+DL7iRv4ijsgXRCH3iF4nVLsMm7S5tExxN4/hXkvvkI5OVgwiMAsEUF5H/+GjYtEVOjFqHDX6V4w0rIz/HV2Zy+HA7C77qfAyMfxJ2WSs3X36Zw8Xxcu3aWa1bw22xyJrx+2O7VR4wk98tPKVq5DEJCwborK3L/4nDQcOztbBjyNIWJ6bSe9iL7f1lK3uY95ZtVC6H2bReTvXxTybr0738n/fvfAQhteQbN339USae/wOVy8ewrb/HuuLHUjo3mqtvu47xe3WjSqEFJm7c/+oILzz+HIZf+k63bdzJsxCim9+jK9NlzKSwq4vtPJpCXn8/ga+9kQN8+1I2P8+EZnZ4uGdCXay4fxMgxLx9x+9yFS9m1J4FpX73HmnUbGPPyeL54dxwHMrOY8MHnfPXeGwBcdeu99OnVnYga1SszfP/hcFD3maFsv+5JipLSaTrlVTJnLKZgy+7yzaqFEn3zQHJWbihZV2tIPwA2978HZ1QEjT4czZZBw/3rW2xlcTio88xQtl//JMVJ6TT54VUyZx69H3LL9EPkwX64yNsPH4xmy2D1w8kwDsNZY29izpDnyUvMoN+0Mez9ZQWZZZIZAAHVQmhxW3/Slm8pWefKL2LNS99Qs0V9IlrWq+zQ/Y5xGAaMuYlPrn2ezKQMbp8yho0zV5RLLP3xwwKWfTYLgBYXdOLCJ67l0xtfLNl+4ZPXsfnX1ZUdun9xOKj/7J1sufYpihLTaTH1ZQ7MWEL+5sM/m2JvGUjOio0l6yIv7okjKJAN/e7DhARx5qzx7PthLoV7Uir7LOQYNNTu+P4BFFprS34mtdbutNa+aYxpaIyZa4xZ4X30ADDG9PGunwL86V032Riz3Bizzhhzx8FjGWNuNcZsMsYsMca8a4wZ710fY4z51hiz1PvoWSamy4CpwJfAkDLH+tAYM9EYsxh40RjTxBjzs/d55xpjWnrbDTTGLDbGrDTGzPRWdJ22HGc0w52WiM1IBlcxxSvnEtCmW7k2gd0vpGj+fyHPk1Cy2Qc8/01NwKYlev7OzMBmH8CE16jcE/ATAc3PxJWwF3dSIhQXU/DbbIK69zqhfZ1nNACn05N0AsjPg4KCCozWf4V3bEr+jkQKdiVji4rJ+GEekRd2PaxdvYevIfGtybgLCo94nKhLziH9B1X//RV/rN/EGfXqUL9uPIGBgVx0fm9mz11Uro0xhpycXACycnKJiY4qWZ+Xn09xsYuCgkICAwMJrxZW6efgDzp3aHvMZNGceYsY1P98jDG0b3MmWVnZpKZlMH/xcs7u0pGIGtWJqFGds7t0ZP7i5ZUYuX8J69CMwp2JFO72fDbtn/o7Nfp1O6xd3IPXkjrxW2xBUcm64GZnkL1gDQCu9AO4MnMIbde00mL3J2HtPf1Q5O2HA1N/p0bfI/TDcE8/uMv0Q0izM8hZqH44FWp1bEL2jmRydqXiLnKx64dF1LvwrMPatXv4/7H+ram4ylyrXXkFpC3ZhKtM38jJq9uhCRk7ktm3OxVXkYu1UxfRom/5vijIziv5OzAsmLKp1pb9zmLf7hRSN5X/gU/+N2EdmlGwI4lC7/fXfVPnEtHv8O+v8SOuIXnCt+W/v1qLIywYnA4cIcHYomJcWbmVGL383VRU4qk1sOIo21KAvtbaTsBVwBtltnUC7rPWNvcu32KtPQvoDNxrjIkyxtQBnsQzhK8n0LLM/q8Dr1lruwCXA5PKbLsa+ML7uPqQmOoBPay1w4F3gHu8zzsC+D9vm3lAd2ttRzzJq4eP/zJUXSYiCrs/rWTZ7k/DRESVa+OIqYMjpi6h9/yb0Ptewtmy02HHcZzRDOMMwKZreNfJcERH404t/WXBnZaKIyr6sHbBvXpT8//ep/rjT+OIjgHAWbc+Njub6k+Moeb4SYTdOhQcmrbtZATVjqIwIb1kuTAxncD4WuXahLVtTHCdKPbPOvo/oqMG9SR9shJPf0VKahq1Y2NKluNio0lJTS/X5l+3XMePv8zh/Euu418jRjHygWEA9D2vF6EhIZw3+Br6XnYDN119mSptKkhyajq1Y0s/q+Jio0lOTSP50P6L8ayXkxMYF0VRQunrV5SYTmBc+Wt1aOsmBMXHkDVnWbn1+eu3U+OCruB0EFgvjrC2TQiMj0H+dwG1oyhKLNMPSekE1i7fDyGtPa/vof2Qd0g/hKofTlpY7VrklrlW5yZmEBofWa5NZNuGhNWJImHWqsoO72+lRu1aZCaW9kVmYgY1akce1q7LDX259/dX6fvY1fz0lGd4Y1BYMD2HDeS3cd9VWrz+yvP9tfSzqfBI14g2jQmKjyZzdvnvr/umLcCdW0CbZR/SetEkUt6ZjOtAdqXELSfOWnPKH75SKXe1M8a8BfTCM8/TBcB4Y0wHwAU0L9N0ibV2e5nle40xl3r/rg80A2oDv1lrM7zH/qbMMS4AWnlG+gFQwxgTDlTz7jvPWmuNMUXGmDbW2oOD7L+x1rq8bXsA35Q5RrD3v/WAr4wx8UAQUDZO/+TpfhX3AAAgAElEQVRw4oiJJ++tkZia0YTeNZbcl+4tGVJnqkcScs0D5H/xukrGK1Dh4gUU/DYLiooIuWgg4Q+OJPOxB8DpJKBNO/bffRvulBSqP/YUwRf0p2C6xsmfcsbQ4Kmb2Hr/m0dtUq1jM9x5BeRt3FWJgf09TZv5K4MHXMBNV1/OqrXreWzMS0z+ZCJ//LkRp8PB7B8+IzMrmxuHjaB7547Urxvv65BFKoYxxD95K7tHjDtsU8bXMwhuWp9mU1+jcG8KOcs3gFvDsSuEMcQ/cSt7jtAP+76eQUiT+jSd8hpFe1PIXb4BXOqHCmEMHZ+6lsX3v+3rSMRr6cczWPrxDNoO7sG591zC5Affps8Dl7No0k8U5qpKv8IZQ90nb2HXg28ctqlah2ZYl5u1XW4mICKcZv95nqx5qyncleyDQOXvoKIST+vwVBwBYK29yxgTDSwDHgCSgfZ4Kq7yy+xXMkmQMaYPnkTS2dbaXGPMr0DIcZ7XgacqqewxMcbcDEQC270JpRp4qp4eP+R5HcB+a22HIxz7TeBVa+0Ub2yjjxSAd0jgHQCvn9+OW9o1OFIzn7MH0jE1S3+tNjWjsQfSD2mThmvnJnC7sBnJuFMTcMTE4969BYJDCbl9FAXTPsW9c+Ohh5cT5E5LwxETW7LsiI7BnV6+OsBmZZb8nf/Lfz2VTXiqo1zbtniG6QGFC+cR0LKVEk8noTApnaA6pb8QBcVHUZSYUbLsDA8ltOUZtPp2DACBMTVp/uFjbLrpeXLWbAUganAvVTudArEx0SSlpJYsJ6ekERtT/te776b+wsRXnwWgQ5szKSwsYt+BTKbN+JWe3TsTGBBAVGRNOrRrxboNm5V4qgBxMVEkpZR+ViWnpBEXE01cTDRLV64pXZ+aRpeO7XwRol8oSk4nsE7ptTowPoqi5NJrtSM8lJDmDWjy5VgAAmIiaTjpCXbc9ix5f2whcUxp4XeTb1+kYFv5uXDkxBQnpRMYX6YfakdRlHR4PzQu0w8N3n2Cnbd7++HZ0n5o/J8XKdiufjgZuUkZhJW5VofF1yIvcV/JcmB4CDVb1ucf3z4BQGhMBOd8+CBzb3qFjDX+/3txZcpMyqBGfGlf1IivRWbSvqO2XztlIRc/ezPwNnU7NKHVRV3p+9jVhNQIw1pLcUERSz6aUQmR+xfP99fSz6agI1wjQls0oOlXnu9MgTGRNHnvcbbe+hyRg3uT+dsKKHZRnH6AnGXrCWvXVImnKsafpu+tqHE5s4EQY8ywMusOTrQRASRaa93A9YDzKMeIAPZ5k04t8QytA1gK9DbGRBpjAiiT4AKmA/ccXPBWVYEnydTfWtvQWtsQzyTjQziEtTYTT3LqCu/+xhjTvkw8B78p3Hi0E7fWvmOt7Wyt7VxVk04A7t2bccTUwdSKA2cAAR3PwbV2cbk2xWsX42za1rNQrTqOmDq405PBGUDIzSMpXjYH15oFPojefxRv2oCzTj0ccbUhIIDg3v+gcNH8cm1MZOmQr6DuPXHt3lmyr6kWjonwTPoe2L4Trl07Ki12f5K9agshjeIJrh+LCQyg1uBe7Ju+tGS7KyuXFW1uYlW3oazqNpTsFZvKJZ0whqiBPTS/0ynQpmVzdu1JYE9CEkVFRfw06zfO61X+RqTxtWNZvMwzjGLrjl0UFBRSq2YE8XExLFnumag0Ny+fNes20KhB/Uo/h7+DPr26M+XnWVhrWb12PeHh1YiJrkXPbmexYMkKDmRmcSAziwVLVtCz2+FzsMiJyV29maCGdQisF4cJDKDmwHPJnLGkZLs7K5c/O13Lhl63saHXbeSu3FiSdDIhwZhQT9F2eK8O2GLXYZNhy4nJXbOZ4DL9EDHwXDJnlu+H9Wddy8ZzbmPjOZ5+OJh0OrQfcKkfTlbGqm1Ub1SbavVjcAQ6OWNwd/ZMLx0+VJSVx3dthjK12/1M7XY/aSu2KOlUQRJWbyOqUW1q1o/BGeikzcDubJxRfihXrYal0+E2+0cHMnZ4puX44IoxjOt1P+N63c+i939m7ls/KOl0knJXbya4UTxB3u+vkQPP4cAh14g/OlzPnz3v4M+ed5CzciNbb32OvDVbKExIpXoPzw9DjtBgwjq1IH+L5tyqatzWnPKHr1RIxZN3ONslwGvGmIeBVDxVRY/gmfvpW2PMDcDPlKlyOsTPwFBjzHpgI7DIe+y9xpixwBIgA9gAHPDucy/wljFmjffcfjfGvAA0OLi/9xjbjTEHjDGHzwwJ1wITjDFPAIF45nNajafC6RtjzD48ibVG//srU4W43RR89zahd4wGh4OiJTNxJ+8mqP81uHZvwbVuCa4NK3A270DYw+Ox1k3h1A8hN4uAs/rgbNIaU606AV3+AUDBF6/jTtCF/X/mdpE9YRwRz74MTgf506fh2rWDsOtvoXjTBgoXLyB08OUEde8JLhfurCyyX3nBu6+bnEkTiHj+NcBQvGUj+T//6NPTOW253Ox4fBItPh+FcTpI/XIWeZt2U/ehIeSs3sr+MkmoI6nevRWFCekU6FeivywgwMnIB4Zx5/AncLlcXPrPfjRt3IDx735M65bNOe+c7jx092089e83+Pjr7zEYnn18OMYYrr5sIE+MfZXB196JxXLJgH60aHp6f1T7ykNPvcDSlWvYvz/TM5fWrddTXOy56etVl17MuWd3Ye7CpVx05S2EhoQwZuQDAETUqM6dN13NkNvuA2Dozddonq2/wuUmYdREGn/8NDgd7Pt6JgWbdxH3wLXk/bG5XPLjUAHRETT+6GmstRQlpbN7+KuVGLifcblJeGoijT5+GhwO9n3j6YdYbz9kHasfoiJo9PHTWLelWP3wl1iXm2WPf0ifzx/BOB1s+/I3Mjftpe1Dl5Oxejt7px9telmPgYvHERgeiiMogHoXdmbO1S8cdkc8OTFul5tpoz7k+o89fbHy699I3byX84ZfTsKa7WycuYKuN/ajca82uItc5GXm8P3wicc/sPxvXG72PPkOTT4ZjXE6SP9qFvmbdlN7+DXk/rGl3A8Vh0r7aBpnvHIvLWe+CcaQ8fUs8jfsPGp7+XsxxvTHM3+2E5hkrX3hkO03AS9RWpgz3lo7iWMw9jScm8cYE26tzfZWPH0PvG+t/d7XcR0qe/ig0+/F9UP56w8cv5FUuK2ro47fSCpcpzUv+zoEkSplfef7fB2CAMZ/7hh9WltboLsUVwUbA30dgRw02GrC7aqg464f/pZXiY0tLzrl+YQWG3465mtpjHECm4C+wB48I86uttb+WabNTUBna+3dJ/q8p+stsEYbY1YBa/FM8j3Zx/GIiIiIiIiIiJzOugJbrLXbrLWFeEaADf6rB62Uu9qdatbaEb6OQURERERERESkIli3Twq96gJlJyPcAxxpiqLLjTHn4qmOesBae8wJDE/XiicRERERERERETlBxpg7jDHLyjzuOInDTAUaWmvbATOAj463w2lZ8SQiIiIiIiIi4q8qYjpua+07wDvHaLIXKHtb6HqUTiJ+8BjpZRYnAS8e73mVeBIRERERERERqUJ8NNRuKdDMGNMIT8JpCHBN2QbGmHhrbaJ3cRCw/ngHVeJJRERERERERORvzlpbbIy5G/gFcALvW2vXGWOeAZZZa6cA9xpjBgHFQAZw0/GOq8STiIiIiIiIiEgV4rY+qXjCWjsNmHbIulFl/n4MeOx/OaYmFxcRERERERERkQqhiicRERERERERkSrE+qjiqSIo8SQiIiIiIiIiUoVUxF3tfEVD7UREREREREREpEKo4klEREREREREpArx1eTiFUEVTyIiIiIiIiIiUiFU8SQiIiIiIiIiUoVocnEREREREREREakQmlxcRERERERERETkOFTxJCIiIiIiIiJShfjT5OJKPFUgm1/k6xAEKDygwr6qoMDt9HUIAsxqPdLXIYhXndAcX4cgwJnLXvd1CAK4D6T4OgQBPj1f74eqIBX9G6KqWFVc3dchCNDR1wHIX6bEk4iIiIiIiIhIFeJPk4urFERERERERERERCqEKp5ERERERERERKoQzfEkIiIiIiIiIiIVwvo6gFNIQ+1ERERERERERKRCqOJJRERERERERKQK8aehdqp4EhERERERERGRCqGKJxERERERERGRKsT6UcWTEk8iIiIiIiIiIlWI29cBnEIaaiciIiIiIiIiIhVCFU8iIiIiIiIiIlWIxX+G2qniSUREREREREREKoQqnkREREREREREqhC39XUEp44STyIiIiIiIiIiVYhbQ+1ERERERERERESOTRVPIiIiIiIiIiJViD9NLn5KE0/GmChglnexNuACUr3LXa21hWXa3g+8Y63NPc4xfwVGWGuXGWN2AFne4zqBJ6y1P/zFmBsCPay1n3uXw4B3gXaAAfYD/a212cYYF/BHmd0vsdbu+CvP70vOVmcRcsVQMA6KFvxM4fRvDmsT0Okcgi6+DqzFvXcb+R+8CEDoXWNwNmqJa+s68iaMruTI/Utwty5E3H83OJ3kTv0v2Z98UW576IALqXHXUNypaQDkfPs9uVOnlWw3YWHEfv4h+b/P48Crb1Rq7P4k8rwONBlzM8bpIOmzWeweP/mI7aIv7kar90aw4sJHyF69jeD6MXT+fRx5WxMAyFy+iS2PvFuZofud6PPac+azN4LTwZ7PZrP9zSlHbBd3cVc6vj+cBf1Gkrl6GxEdm9D65ds9G41hy0v/IeWnpZUYuX8J792JuqNuB6eDjK9mkDrhP0dsV6N/DxpOfIzNAx8g748tmMAA6o69i9C2TcFaEp5+h5xFays5ev/wxNhX+X3+EmpF1mTypxMP226t5flxE5m7cCkhIcE89/iDtGrRFIAfps3g7Y++BODOG4cweEDfSo3d38xbtoZ/v/0Zbrebyy7sza1X/rPc9sSUdJ549R2ysnNxud3cf/OVnNOlPQtXrGXch19TVOQiMNDJ8FuG0K1DKx+dxemvee/2DBp1A8bpYOlXc/h1QvnrQ7drL+Ds6/ti3W4KcvL57rFJpGzZS7Neben/yBCcgQG4ioqZNvZzti5c56OzOP216d2Ba0Z5vjPN/WoW0yaU/87U79Z/cu6Q83EVu8nKyOSDh98ifa/ne+z/e/Q62p3XCYCpb/6HpT8uqPT4/UndPu3o9sz1GIeDTV/8yh9vTS23vcX1/+DMG/vidrspzsln/sPvcWBzAo5AJz3+fSvR7RphrZvFoz4laeF6H52F/B2c0sSTtTYd6ABgjBkNZFtrXz5K8/uBT4FjJp6O4DxrbZoxpgUwHfhLiSegIXAN8Ll3+T4g2VrbFsD7PEXebXnW2g5/8fmqBuMg5Kq7yH1jJHZ/GmGPvE7xmsW4k3aVNompQ9CFV5H78oOQl40JjyjZVjjzWwgKJqjXRb6I3n84HESMuI/0+x7ClZJKzHsTyZ+7gOIdO8s1y58156hJpep33ELBqjWVEa3/cjho+vyt/HHlGAoSM+j48/OkT19G7qY95Zo5q4VQ97YBZC7fVG59/s4kVlzwUGVG7L8chlYv3MLSK58jPyGds38ZS8ovy8nZtLdcM2e1EBrcfhH7l28uWZe1YTcL+43EutwEx9akx5x/kzp9OdblruyzOP05HNR9Zijbr3uSoqR0mk55lcwZiynYsrt8s2qhRN88kJyVG0rW1RrSD4DN/e/BGRVBow9Hs2XQcLB+NENmJblkQF+uuXwQI8cc+avU3IVL2bUngWlfvceadRsY8/J4vnh3HAcys5jwwed89Z7nunHVrffSp1d3ImpUr8zw/YbL5Wbs/33MO889TFx0La6+fzR9unekyRl1S9q88+UP9DunK1ddfD5bd+3lrlGv8vOHr1AzojpvPvUAsVGRbN6xh2FPvsTMT1734dmcvozDcMkzNzPpurEcSErn7inP8eeM5aRsKb0+rPphPos/mwnAmRecxT+fvJ73b3yBnH1ZfHjry2Sl7COueT1u/fgxxna/y1enclozDgfXPXMbr1z3DBlJGYya8gKrZiwjYUvpd6Zdf27nmYGPUJhfSJ/r+nHFY9cz8e7XaHdeJxq0bsToASMICArkkS+f5o9fV5KfnefDMzp9GYeh+3M38svVL5CbmMHAac+wa/pyDmxOKGmz7fuFbPxkNgD1+3ai61PXMeO6F2l+zXkATL7gMUKiatD304eYOmCUrtVVjD99g63wOZ6MMecbY1YaY/4wxrxvjAk2xtwL1AHmGGPmeNtNMMYsM8asM8Y8fQKHrgHs8+5bzRjzX2PMamPMWmPMVd71O4wxzxtjVnmP3ckY84sxZqsxZqj3OC8A53jbPADEAyVXMGvtRmttwal7RaoGR8PmuFMTsOlJ4CqmePlvBLTvXq5NUK/+FP02FfKyAbDZB0q2uTaugvz/NWcohwps1ZLiPQm4EhKhuJi8mbMJOafnie/fojnOWpEULFFVx19RvWNT8rYnkb8rBVtUTOrk+URd2Pmwdg0eGcLut37AXVB0hKPIqVCzU1NytyeRtzMFW+QiafIC4vof3hfNHr2S7eOn4M4v7Qt3XmFJkskREqgvT39BWIdmFO5MpHB3MraomP1Tf6dGv26HtYt78FpSJ36LLfOeCG52BtkLPMlwV/oBXJk5hLZrWmmx+5POHdoeM1k0Z94iBvU/H2MM7ducSVZWNqlpGcxfvJyzu3QkokZ1ImpU5+wuHZm/eHklRu5f1m7axhl14qgXH0tgYAD9z+3GnIUryrUxxpCTmw9Adk4eMVE1ATizSQNioyIBaNqgLvkFRRQW6RpyMup3aEr6ziQydqfgKnKxeupCWvUrf30oKJPACAoLLrkOJKzbQVbKPgCSN+0hMCQIZ5BmHDkZjTs0JWVnEqm7U3AVFbN46nw69OtSrs2GhesozPcMdNm2cjORtaMAqNOsHpuWrMftclOYV8CeDTtp29s/ftP3heiOTcjakUz2rlTcRS62/bCIMy48q1ybojLviYAy74mazeuSON9T9ZefnklhZi7R7RtVXvDyt1PRiacQ4EPgKm8FUQAwzFr7BpCAp3rpPG/bx621nfEMcettjGl3lGPOMcasBX4DnvCu6w8kWGvbW2vbAD+Xab/LW6U01xvL/wO6AweTW48Cc621Hay1rwHvA48YYxYaY541xjQrc6xQb4JqlTHm+5N7SaoGR81o3PtSS5bd+9IwEVHl2pjYujji6hL24MuEPfQazlZnHXoY+YucMdG4klNKll2pqThjog9rF9LnXGI+nkTkc6NxxMZ4VhpDjXuGceDNCZUVrt8Kjq9FQUJ6yXJBYgZB8eXfD+FtGxFcJ4qMmSsO3Z2QM2LpNONF2n3/NDW6tazweP1ZcO1a5JXpi/yEDIJr1yrXpkbbhoTUiSJ15srD9o/o1JSev71Ez19fYt1D76na6SQFxkVRlJBWslyUmE5gXPn3RGjrJgTFx5A1Z1m59fnrt1Pjgq7gdBBYL46wtk0IjI+plLj/bpJT06kdW3rNiIuNJjk1jeTUNGrHlr7mcTGe9XJyktP3ERdd+jkUF12LlPR95doMu/ZSfpy9gAuuv59/PfUKjw297rDjzJi/jDObNiAoMLDCY/ZHEXGR7C9zfTiQmE5EXORh7c6+vi8P/zaOAY9eww+jPzpse9uLurJ37XZchcUVGq+/qhlXi4wy14d9ielExtU6avtzrvwHf/zquV7vXr+TNr07EBQSRHhkdVqe3YZa8Yd/75UTE1Y7kpyEjJLl3MQMqtU+/D3R8sYLuHz+K3R5YgiLR30MQMafu6jfrxPG6SC8fgxRbRtSrU7UYfuKb1nMKX/4SkWn+p3AdmvtwXEpHwF3AeOO0PZKY8wd3pjigVbAkcYPHRxq1wSY5Z0D6g/gFWPMv4EfrbVzy7Q/OPj7DyDcWpsFZBljCowxNQ89uLV2lTGmMdAPuABYaow521q7Hn8aancCjMMJMXXJfe0RTGQ0YcNfIufZYZCX4+vQ/lby5y0kb8ZsKCoibPBAIp98lPR7HiTsssEULFxcMveTVCBjaPz0jWy8763DNhUm72PxWcMo3pdNeLvGtP7gIZb1Ho5LZeMVwxhaPn0Df9x35ITrgRVbmN/7Iao1q0PbN/9F2uxVqlCrCMYQ/+St7B5x+OU84+sZBDetT7Opr1G4N4Wc5RvArQSg+Leffl3E4L69uPGyi1i9fgsjX36H7yY8h8Ph+Y13y849jHv/K95+TsOyK9rCT2aw8JMZdBjUg/PvuZSvHyy9XsQ1q8dFj17DpOvH+jDCv4/ul5xDw3ZN+PdVowBYN3c1jdo1YeR3z5GVnsmWFZtw6/pQ4TZ8NJMNH82k8SVn0/6+S5h7/9ts/vI3ajarw8CfxpCzJ43UZZv1Y10V5E89UuFD7U6EMaYRMAI431rbDvgvnmqpo7LWbgWSgVbexFYnPMmlZ40xo8o0PThMzl3m74PLR0y8WWuzrbXfWWv/hWceqgH/w7nc4R3Wt+yDP3cffwcfce9PwxFZ+muoIzIaeyD9sDbFaxaB24VNT8advBdHbN1DDyV/gSs1DWdcbMmyMyYG1yGJJJuZCd6y/Nyp/yWwRXMAgtq0JuzyS4j99gtq3D2M0Iv6UX3Y7ZUXvB8pSMwguMyvPMHxtShMLH0/OMNDqdaiPu2/G03XpW9Ro1MzWn/0COHtG2MLiyne5xmOmr1mG3k7kwltEl/p5+AvCpIyCC3TFyF1alGQVPprXkB4COEt69H1u1H0XvomEWc1pdPHI6jRvnG54+RsTsCVk094y/qVFrs/KUpOJ7BO6a/QgfFRFCWXvicc4aGENG9Aky/H0nLeJMI6tqDhpCc8E4q73CSOmcTmAfex8/bncNaoRsG2vUd6GvmL4mKiSEopvWYkp6QRFxNNXEw0SSmlVc3JqZ71cnLioiJJTiv9HEpOyygZPnfQ99N/48Jz/j979x0eRdX2cfx7dlMhEFJIQpMiSEdAmnQLxc6rzyOooKiIvYGioqKIBTt2wV5BfSyAogIC0nsV6R3SC0lIz+55/0hMMXRJNqy/j9deZmfumb1nh909e/Y+ZzoBcHbzxuTk5ZGSVvDZEJuYzP3jXueZkcOpVyuy4hL3MqlxKdQo8fkQXCuM1LiUI8avm76Eln2Kh+IFR4UyZOIIvhrxNsl744+4nRzdwbhkQkt8PoTUCiMlLrlMXIturbn0rqt4fdh48ktUl/341nc8efGDvDxkHMZA7M7oMtvK8cmMTaFq7eJqsyq1QsmIPfJrouRQPOtys/zJL5jW91F+u+lV/IKrkLozptxzln+v8u54cgENjDF/Te4whIIhclBwdbq/Ji6oDmQAqcaYSOCYM1YbYyKAhsAeY0xtINNa+znwIgWdUMerZB4YY7oZY0IK//ajoPJqzxG2LcNaO8la28Fa2+HGFpX3C497z1YcEbUxYZHg9MHnnF4FnUwl5K9bgs9ZBSMeTdXqOCLr4E7UG9KplLdpMz516+CsFQU+PgReeD7ZC0tf3cMRVvyBEtC9K/m7CyaAPzj2GeKvHET8VdeQ9uY7ZP08k/R3dDW1k5G+djuBjWoRcEYExteHmgO6kTSzePiQKz2TJS1vZnnHO1ne8U7SVm9j4w3Pc2jdTnzDqkPhL9oBZ0QQ2LAW2XvUoD1ZqWt2UKVRFIFn1MT4Ooka0JX4X4vnpslPz2JOi+H83vFufu94N6mrtrP6+pdIW7ezYBtn4bmoG07VxrXJ2pdwpIeSo8hctw2/BrXxrRuJ8fWhxmU9SZu1vGi9Oz2TP9tfx+buw9jcfRiZa7awe9jTBVe1C/DHBPoDENS9LTbfVWZScjk1enfvwrRffsNay7o/NhEUVJWa4aF063wOi5evJjUtndS0dBYvX023zhouf7JantWQPdFx7I9NIC8vn1/mL6N3l3alYqJqhrFs7Z8A7NwbTW5uHqHB1Ug7lMFdT7zCvTdeTbuWZ3kifa+xf90OwhpEEVK3Jk5fJ2dfdi6bZpWeuyysQVTR383Ob0fi7lgAAqpXYehHo/j5+cns+dsFQuTE7Fq3ncgGtQivG4HT14fOl3Vj7azSc42e0bIh1z97K68PG096UlrRcuNwULVGEAB1m9WnbrP6bFywrkLz9yaJa3dSvWEUQfVq4vB10uiKLuybWXpKiOoNizu7613YlrRdBa8JZ4AfPoWf1bV7tMKd7y41KblUDu5yuHlKeQ+1ywZuBL4xxvgAK4C/rgc8CfjFGBNtrT3PGLMG2AzsAxYdZZ9zjTEuwBd42FobZ4zpB7xojHFTcAW6208gx/WAyxizjoI5oJKAd4wxhoKOuZ+Ab09gf6cHt5vsr96hyl1Pg8NJ3pKZuGP24nfpEFx7tuLasAzXn6vwad6eKo9PBLeLnO8+gIx0AAJHvIgjsh7GP4Cqz3xG9uev4tpUdu4bOQaXm9RXXifs1RfA6SDzx5/J37WbasNuJHfzFnIWLqbqf68koHs3cLlwp6Vx8Jnxns7a+7jcbB/9Aa0mP4pxOoidPJfMLfupP2og6Wt3kDxz5RE3De7SnPqjBmLzXFi3m22jJpF/8FAFJu9drMvNn498RIcpozFOB/snz+XQlv00HvVfUtftJOHXI0+QHNKpGQ3vvhyb78K6LX8+/CF5yekVmL0XcbmJHvMujT4dC04HKV/PJmfbXiLvv46sDdtIm738iJv6hAfT6JOxWGvJi01i34hXKjBx7/LgE+NZsWY9Bw+mccGAwdxx8xDy8wsqBwb+3yX0PLcjC5as4KKrbyIwIIBxo+8HILh6NW4deg2Dht0LwG03Xqsr2v0DPk4no28fwu2PvYjL7WZA3540rl+Xtz77jhZNGnBel/Y8cMs1jH3tQz774VeMMYwbMQxjDFOmz2ZvdBwTJ09l4uSCCzG/+/SDhNWo7uGjOv24XW6mjvmYmz99BIfTwYqv5xG3bT997v8P+zfsYtPsVXS9oS9NurXGlZ9PVmpG0TC7rtf3I7x+JBfeeyUX3izE5ZwAACAASURBVHslAO8PeY6MEp0icnzcLjefj3mfEZ8+hsPpYOHXc4jetp8B9w9k94YdrJ29kqsfGYJ/lQDueHskAEkHEnnjludx+jp55JtxAGQdyuK9+1/HreFdJ8263Cx97BP6fjkK43Cw7avfObj1AO0euIrEdbvYN2s1zYf2pVaPlrjzXeSmZrDgvokABIZXp++XD2HdbjJjU5h/j+aMlfJlrK76U27S77hIT24lkL4229MpCLB9p4Z5VAaZ1unpFKRQ7UDNl1cZNF+pS9tXBu5UVYpWBmMu0OuhMkhAcxNWFj3yjjr7i1SQGw987rlZsT3op8hrTnl/wiVxkz3yXOo6oiIiIiIiIiIilYjbi7rbKsXk4iIiIiIiIiIi4n1U8SQiIiIiIiIiUom48Z6SJ1U8iYiIiIiIiIhIuVDFk4iIiIiIiIhIJeJNVypTx5OIiIiIiIiISCXi9nQCp5CG2omIiIiIiIiISLlQxZOIiIiIiIiISCXiNppcXERERERERERE5KhU8SQiIiIiIiIiUol40+TiqngSEREREREREZFyoYonEREREREREZFKxJuuaqeOJxERERERERGRSsTtPXOLa6idiIiIiIiIiIiAMaa/MWaLMWa7Mebho8RdZYyxxpgOx9qnKp5ERERERERERCoRNxVf8mSMcQJvAX2A/cAKY8w0a+2ff4urBtwLLDue/ariSUREREREREREOgHbrbU7rbW5wBTgisPEjQOeB7KPZ6fqeBIRERERERERqURsOdyMMcONMStL3Ib/7WHrAPtK3N9fuKyIMaY9UM9a+9PxHouG2pUj6/KmeehPX7H7qns6BQFanhPv6RQEWLWylqdTkELGiyaMPJ25U/XeVBk4giM8nYIADV1OT6cgQPt81QZUFr/4Z3k6BQFu9HQCHlIek4tbaycBk052e2OMA3gFGHoi2+ldTUREREREREREDgD1StyvW7jsL9WAVsA8Y8xuoAsw7VgTjKviSURERERERESkEvHQ+KkVQBNjTEMKOpwGAdf+tdJamwqE/3XfGDMPeMBau/JoO1XFk4iIiIiIiIjIv5y1Nh+4C/gV2AR8ba3daIx5yhhz+cnuVxVPIiIiIiIiIiKViPXU41o7A5jxt2VjjhDb+3j2qY4nEREREREREZFKpDwmF/cUDbUTEREREREREZFyoYonEREREREREZFKxEOTi5cLVTyJiIiIiIiIiEi5UMWTiIiIiIiIiEglooonERERERERERGRY1DFk4iIiIiIiIhIJWK96Kp26ngSEREREREREalENNRORERERERERETkGFTxJCIiIiIiIiJSiajiSURERERERERE5BhU8SQiIiIiIiIiUolYTydwCqnjSURERERERESkEnHrqnYVyxjzIXApEG+tbXWUuN5ArrV2ceH9J4FbgITCkF+stQ8bY+YBD1hrVx5mH5cC4ygYhugLvGatnXikff3zo/McZ8sOBFx9G8bhJHfhz+T++nWZGJ9zeuJ/6WAA3Pt3kvXBeACq3PMMzobNyN++kay3xlRo3t6meu921H3yFnA6SJo8i7i3vz1sXI2LzqXRpIfZfMlIMtdvBx8n9V+4iyqtG2GcTpK+nUvcW4ffVo7N95xOVB1+NzgcZM/8iexvviy13v/C/lS56XbcSQVvAdnTvydn5k/4tGlH1VvuLIpz1j2D9OefIm/pwgrN35uEnXc2zZ6+AeN0sP+LOex+Y9ph4yIu6UTbD0ewtO9o0tbtLFoeUCeMrgteZseL/2PPOz9WVNpeJ6hne2o/cQs4HKR8NYuEd/932Ljq/btS/51H2H75/WRt2I7x9aH2M3dSpXVjrLXEjJ1ExrI/Kjh777Fw5Xqen/gFbrebK/v14uarLy21PiY+icdemUT6oUxcbjf33Xg1PTqezZLVfzDh46/Jy3Ph6+tkxE2D6Ny2hYeO4vT32LOvMH/RckJDavDD5++WWW+t5bkJ77JgyQoCAvx55tGRtGjaGICpM2Yx8ZMpANx6wyCuuLhPhebuTer1bkO3J4dgnA42TZ7H2renl1rfYvD5tLyhD9blJi8jm/kPf0DKtmgcPk56vTCM8NYNcDgdbP12IWvemn6ER5HjEXVeG9o9VXAudn45j81vHv75rHtJR7q9fx8z+z9Gyrpd+IUE0fW9ewlt24jdX81n9aOfVGziXqZVr7ZcO+YmHE4H87/6jRnvfF9qfd+bL6PnoAtw57tJT07lw1Fvk3SgoC3734eHcPb552Acho0L1vHl2A89cQjyL3FadDwBHwNvAp8eI643cAhYXGLZq9bal47nQYwx/sAkoJO1dn/h/QYns69KzzgIvOZOMiY8gk1JpOojb5C/finumL1FIY6I2vj3H0jGiyMg8xCmWnDRupyZ32D8/PHtcYknsvceDgf1nr6Vbdc+QV5MEk1/fInUWcvJ3ravdFjVQGrefBkZq7cULQu5tBvG35dNfe7FBPjRYs6bpExdQO7++Io+itOfw0HV2+8j7bGRuBMTCH51InlLF+Hat6dUWO78OWS8+1qpZfnr15B69zAATFA1arz/JXlrVlRY6l7HYWg+/iZWXf0M2dFJdPn1WRJ+XUXG1gOlwpxVA6h/y0UcXLWtzC6ajr2exN/WVlTG3snhoPZTt7FryOPkxyZx5tRXSJu9jJztZd+bwm+8jMw1m4uWhQzqC8C2i+7GGRZMw4+eZPsVI8B6U8F4xXC53Dz79qdMemYUkeGhXHPfk/Tu0o4zz6hTFDNpylT69ujEwEsuYMfeA9w55hV++fhlagRX440n7iciLIRtu/dz++MvMvuz147yaHI0Ay7uw7VXXc7ocYdvBi5YsoK9+6OZ8dUHrN+4mXEvvcnk9yaQmpbOOx99yVcfvA7AwJvvoXf3LgRXr1aR6XsF4zB0f/oGfrx2PBkxyVz541PsmbWKlG3RRTHbfljCn5/PAaB+n/acO2YwM4a8QKNLO+H09+GbPo/gE+DHwDnPs33qEtL3J3rqcE5rxmE459mhzBv4HFkxyfT5eRzRM1eT9rfPap+qATQZ1p+kVduLlrmy8/jjhW8IblaP4KZ1Kzp1r2IcDoY8dQsvDX6K5Ngkxkx7nrWzVhC9fX9RzN4/d/HUZaPIzc7lvMH9uPqRIbxz1ys0bt+UJh2a8Xj/EQCM/t/TNO3Ski1LN3rqcOQwNLl4BbPWzgeSSy4zxtxjjPnTGLPeGDPFGNMAuA243xiz1hjT43j2bYw5ZIx52RizDuhMQWdcUuHj5lhrtxx1B6cpZ8OmuOOjsYmx4Monb+U8fM4+t1SMb/eLyJ03HTIPAWDTU4vWuTavxWZnVWjO3qhq2ybk7I4ld28cNi+flGkLCO7bqUxc7QeuJe7tb3Hn5BYvtBZnoD84HTgC/LF5+bgOZVZg9t7D56zmuKIP4I6Ngfx8cubPwbdL9xPej1/33uStXAY5OeWQ5b9DcPvGZO6KJWtPPDbPRewPi4no36FMXOOHr2bXm9NwZ+eVWl7zog5k7Y0nY8v+MtvI8atydhNy98SQt6/gvSl1+nyq9+lcJi5yxHUkvPst7pzi8xDQ5AwylqwHwJWUiistg8A2jSssd2/yx9adnFE7krq1IvD19aF/z87MXbK6VIwxhozMbAAOZWRRM6wGAM3PrE9EWAgAjevXITsnj9y80q8XOX4d2rY+amfR3IVLubz/BRhjOLtVc9LTD5GQmMyiZas4t2M7gqtXI7h6Nc7t2I5Fy1ZVYObeI6LtmaTtjiN9bwLuPBc7pi2lQd9zSsXkHSpum/pW8S/u8LbgE+iPcTpwBvjhyssn95DasScrtN2ZpO+OI6PwXOydupQ6/c4pE9f6of+w+c3puEq0X11ZOSQu34orW+9H/1Sjto2J3xNLwr44XHn5LJ++kHZ9O5aK2bzkD3KzC57/HWu2EhIVBoDF4uvvi4+vD75+Pjh9nKQlHKzwY5B/j9Oi4+kIHgbaWWvbALdZa3cD71JQldTWWrugMO6vjqi1xph+h9lPVWCZtfbswg6uacAeY8xkY8x1xpiSz9Gx9nXaMDXCcKckFN23KYk4aoSXinFE1sURWYcqD75ClYcm4GxZ9suf/DO+UWHkRhf/2pYXk4Rv4QfCXwJbNcK3djhpc0o3VFN+WowrK4fWqz6m1bL3iZv4A66Dhyokb2/jCAvHnVhcKeZOTMAZFl4mzq9bL4Lf/JCgR8biCK9ZZr1/z/PJ+f23cs3V2wVEhZIdnVR0Pzs6Gf+o0FIx1Vo3IKB2GImz15Ra7qziT8O7LmfHS4cfEibHzycqjLyYEu9NsWXfmwJanolvrZqkzy09aj1r0y6qX9gJnA5860YS2LogTk5cXFIKkeHF//4jw0OJT0opFXP7df/Hj3MWc+GQ+7jjiZd55LbBZfYza9FKmjeuj5+vb7nn/G8Vl5BEVETx50ZkRDhxCYnEJSQSFVH87z+yZsFyOXFVo0I4FF38O/ShmGSqRoWUiWt5w4Vcs/BluowexKIxBYMldv60nPysHK5f9SaDl01g3cQZ5BzMqLDcvU1gVChZB4o/qzNjkgn827kIad2AwNphxKgCudyERIaSXOJ7RHJMMiGRYUeM73n1BWyYV/DjxY7VW9m85A8mrHifV5e/zx/z1xGz48ARtxXPcJfDzVNO546n9cAXxpjBQP5R4v7qiGprrf31MOtdQNHEONbaYcAFwHLgAaDkYNdj7cu7OJw4IuqQ+fKDZL3/HIGD74PAqp7O6t/FGOqOuYkD4z4qs6pq2ybgcrOhw41s7DqcyOED8Dsj0gNJ/jvkLltMyo0DSb3rJvLWrCRoxOhS601IKM4GjchbvdxDGf5LGEPTsdez5cnPy6w688H/smfiDFyZqjgrd8ZQ67GbiXnmgzKrUr6eRV5MEo2nvUrtMcPIXLUZXN5ULF65/DxvKVf06c7szybw9tiRjH5pEm538fO9fc9+Jnz4FWPuHuq5JEUq0MZPZjO5+0iWPjeF9vcMACCibSOsy81nHe7mi64jOHv4xVQ7Qx3i5cYY2j55HWuf/MLTmUihcwf0pEGbM/l50lQAIupHUatxXUZ0Gc6ILsNp3rUVTTo293CW8ne2HG6ecjp3PF0CvAW0B1YYY052vqpsa62r5AJr7QZr7atAH+CqE9mZMWa4MWalMWblR5sq71APezAJR0jxB64JCcd9sPQvcDYlkfz1S8HtwibF4Y7fjyOizt93Jf9AXmwSfrWLfyH1rRVGXmzxL0iOoEACm9anyddP03LxJKq2a0qjDx+lSpvGhA7oRdq81ZDvIj8plUMrN1FFw1lOijspEUd4RNF9R3hNXEl/ez2kp0F+QVl4zsyfcDY+q9R6/x7nkbtkAbhKvZ3ICcqOTSagdvGvdQG1Q8mJLf6F2ycogKBmden43Rh6rHiD4HMa0/bTB6h+diOC2zfmrMevo8eKNzhj+EU0uncA9W46rYtTPSY/NgnfWiXem6LKvjcFnFWfRlOepemC96nSrin133uMwNaNweUm5un32X7JvewZ/gyO6lXJ2aVfUU9GZFgIcYnF//7jEpOLhs/95fuZv9OvR8EQ7bObNyYnL4+UtILq19jEZO4f9zrPjBxOvVr6YaI8RdYMIza++HMjLj6RyJrhRNYMJza+uMI8LqFguZy4jNgUgmoXVwAG1QolIzbliPHbpy6lQeHwr8YDurJ33nrc+S6yk9KIXbmViDaNyj1nb5UVm0xgneLP6iq1QskqcS58gwIIblaP8797jEuXTyCsfWN6fDySkLMbeiJdr5USl0xoie8RobVCSYlLKhPXolsbLr3rKl4b9hz5uQX1Gu37dWbHmq3kZGaTk5nNhnlraNz+rDLbipwqp2XHU+Hwt3rW2rnAQ0AwEASkAyc9W6MxJqjwynh/aQvsOUL4YVlrJ1lrO1hrO9zYvPJOmOfavQVHRB1MWCQ4ffDt0Jv8dUtLxeStW4zzrDYAmKrVcUTUxSbGeCJdr5Wxbhv+DWrhVy8C4+tDyOU9SJ1VXDHjTs9k/dlD2Nh1OBu7DidjzRZ23vQMmeu3k3sggWrdCs6PI9Cfqu2akrO98nZ2Vmb5WzfjrFMXR2QU+Pjg3/N88pYtKhVjQoobu36du5WZeNyv1wUaZncKpK3ZQZVGUQSeURPj6yRqQFfify0eZpqfnsW8FsNZ0PFuFnS8m9RV21l7/UukrdvJiiueLFq+d9LP7HztB/Z96P3FqeUhc/02/BvUxrduJMbXh+DLepI2u/R706ZzrmNLj2Fs6TGMzDVb2HPL0wVXtQvwxwT6AxDUvS24XGUmJZfj0/KshuyJjmN/bAJ5efn8Mn8Zvbu0KxUTVTOMZWv/BGDn3mhyc/MIDa5G2qEM7nriFe698WratdSXifLWu3sXpv3yG9Za1v2xiaCgqtQMD6Vb53NYvHw1qWnppKals3j5arp1LjsXjhxb/LqdBDeIolq9mjh8nZx5eRd2zyo951lwg+IO1voXtCV1dywAhw4kUadbS6BgrqeIdo1J2R6NnJzktTup1jCKqoXn4owrunCgxGd1XnoWP7S8jR873cePne4jafV2Fgx9mZR1uzyYtffZtW47EQ1qEV43AqevD50u686aWaWHv5/RsiE3PHsrrw8bT3pSWtHy5OgEmnZuicPpwOnjpGnnFkRv149ElY3bnPqbp5wWV7Uzxkym4Ip14caY/cA4YIgxJhgwwOvW2oPGmOnA/4wxVwB3n8xDAaOMMROBLCADGHoKDqHycbvJnvIWVe59FuNwkLtoJu6YPfhfdj2uPVvJX78U18aV+LRoT9UnJoF1k/3te9iMdACqPPAyjqi6GP9AgsZ/Ttanr+L6U5NlnjCXm32PT6Lx509inA6SvvqN7K37qDXyWjLXby/VCfV3CZ/MoP7L99B89htgDElf/0bW5hPqJ5W/uF1kvDOB6uNeAoeDnFkzcO3dTeDgm8jftpm8ZYsJvPwqfDt3A5cLeyidQ6+OL9rcERGFMzyC/A2ax+Cfsi43mx/5iPZTRmOcDg5MnkvGlv2cOeq/pK3bScKvep+pEC430U+8S8NPx4LDQco3s8nZtpeI+68ja8M20mcf+b3JJyyYhp+Oxbot+bFJ7BvxSgUm7l18nE5G3z6E2x97EZfbzYC+PWlcvy5vffYdLZo04Lwu7XnglmsY+9qHfPbDrxhjGDdiGMYYpkyfzd7oOCZOnsrEyQVDK959+kHCalT38FGdnh58Yjwr1qzn4ME0LhgwmDtuHkJ+fkHlwMD/u4Se53ZkwZIVXHT1TQQGBDBu9P0ABFevxq1Dr2HQsHsBuO3Ga3VFu5NkXW4WPv4Jl3w+CuN0sOWr30nZeoAOI68iYf0u9sxaTauhfanTvSXufBc5qRnMvX8iAH98MovzXh7O1bPHgzFs+Xo+yZvVIX6yrMvN6tEf02vyQxing51Tfidt6wFaPXgVyet2ET1z9VG3v3T5BHyCAnH4+VCnfwd+v2Z8mSviybG5XW6+GPM+Iz99HIfTwYKv5xC9bR8D7h/E7g3bWTt7JVc/cj3+VQK44+2RACQdSOT1W8azYsZSmndtzbhfX8Vayx+/r2XdbyuP8YgiJ89YXd643KTd2k9PbiWwfUaAp1MQoH4bXSmjMli1spanU5BCtapoYtvK4KzZj3o6BQEcwRHHDpJy90G7MZ5OQYCQfH2FqCx+8c/2dAoCfLT7Ww/W6njO+PqDT/mbwcN7PvfIc3laDrUTEREREREREZHK77QYaiciIiIiIiIi8m/hTbWP6ngSEREREREREalE3F7U9aShdiIiIiIiIiIiUi5U8SQiIiIiIiIiUom4PZ3AKaSKJxERERERERERKReqeBIRERERERERqUS8Z4YndTyJiIiIiIiIiFQqGmonIiIiIiIiIiJyDKp4EhERERERERGpRNzG0xmcOqp4EhERERERERGRcqGKJxERERERERGRSsTtRdOLq+NJRERERERERKQS8Z5uJw21ExERERERERGRcqKKJxERERERERGRSsTt6QROIVU8iYiIiIiIiIhIuVDFk4iIiIiIiIhIJaLJxeW45O7O9nQKAtRprPNQGfi3CPV0CgIEr8n1dApS6I+c6p5OQYDPL3jN0ykI0NDl9HQKAty85ilPpyBAysAbPZ2CFGqwKczTKci/mPd0O2monYiIiIiIiIiIlBNVPImIiIiIiIiIVCKaXFxEREREREREROQYVPEkIiIiIiIiIlKJeNPk4qp4EhERERERERGRcqGKJxERERERERGRSsR76p3U8SQiIiIiIiIiUqlocnEREREREREREZFjUMeTiIiIiIiIiEglYsvhv+NhjOlvjNlijNlujHn4MOtvM8ZsMMasNcYsNMa0ONY+1fEkIiIiIiIiIvIvZ4xxAm8BFwEtgGsO07H0pbW2tbW2LfAC8Mqx9qs5nkREREREREREKhEPzfHUCdhurd0JYIyZAlwB/PlXgLU2rUR8VY5jHnR1PImIiIiIiIiIVCJuz1zXrg6wr8T9/UDnvwcZY+4ERgB+wPnH2qmG2omIiIiIiIiIeDljzHBjzMoSt+Ensx9r7VvW2jOBh4DHjhWviicRERERERERkUqkPOqdrLWTgElHCTkA1Ctxv27hsiOZArxzrMdVxZOIiIiIiIiIiKwAmhhjGhpj/IBBwLSSAcaYJiXuXgJsO9ZOVfEkIiIiIiIiIlKJeGKOJ2ttvjHmLuBXwAl8aK3daIx5ClhprZ0G3GWMuRDIA1KAG46139Oi48kY4wI2lFg0wFq7+wixQ4EO1tq7jDFPAoestS8ZYz4GegGpQAAw2Vo79hiPOxSYaa2NLry/u3Dfif/keCoL3w6dqHrb3Ring+yffyLr6y9Lrffv05+qw27HnZQAQNa078n55ScAHDUjCLp/FI6aEWAtaY8/hDsutsKPwRv4dexEtbvuBqeDrJ9+InNy6fMQ0K8/1W67HVdi4Xn4/nuyZhSch4jZc8jftRMAd1w8Bx8bXbHJexFn03b4X34zOBzkLZ9N3tzvysT4tOmKX99BWGtxx+wm58tXMTVqEnDDQ+BwgMNJ3qIZ5C/9teIPwEsE925H/XE3YRwO4ifPJubN7w8bF3JxF856fxR/9H+QjPU7CPu/ntS644qi9VWa1+ePfg+QuXF3BWXufWr1bkP7cUMwDgc7Js9j05vTDxtX9+KO9Hj/Pn7t/xjJ63fhFxJE90n3Etq2Ebu+ns+qRz+p4My9y1m9zubyMddjnA5WfDWXee+U+tGRztddyLlD+mDdbnIysvnukfeJ336AJt1b0/+hQTh9fXDl5TPj2S/ZsWSjh47i9Fevdxu6PTkE43SwafI81r5d+vXQYvD5tLyhD9blJi8jm/kPf0DKtmgcPk56vTCM8NYNcDgdbP12IWveOvxrSY7tsWdfYf6i5YSG1OCHz98ts95ay3MT3mXBkhUEBPjzzKMjadG0MQBTZ8xi4idTALj1hkFccXGfCs3dm/h17ETQnXeDw0H2jJ/InFK27Ro0vETbder3ZBe2XWvOLNF2jY8n9XG1Xf8JtZu8m4euaoe1dgYw42/LxpT4+94T3edp0fEEZFlr256C/Txorf2fMSYA+NMY86m1dtdR4ocCfwDRp+CxKxeHg6A77yP1kZG4ExOo8cZEcpcuwrV3T6mwnPlzyHjrtTKbV3twNJlTPidv9UoICATrqZfFac7hoNq993HwwZG4EhIIfXciOYsX4dpT+jxkz51D+utlz4PNzSH5lmEVla33Mg78/284WZOexKYmEXjPC+RvXI6N318cEl4L3/OvIvOtRyArA1M1GACbnkLWmw+DKx/8Aqgy8jVcfy7HpqV46mhOXw4HDZ69hc2DxpIbk0TLGS9w8NcVZG3bXzqsagBRwy7h0KqtRcuSvp9P0vfzAQhsdgZnffiwGk//gHEYznl2KHMHPUdWTDJ9Z4zjwK+rSdtWeoi/T9UAmg7rT+Kq7UXLXNl5rH/xG2o0rUdws7oVnbpXMQ7DgKdu5P3Bz5Iam8Rd057hz1mriN9efB7WTl3Esi9mA9D8wnO49PEhfHjDeDJS0vn45pdIj08h8qy63PzpIzzb5U5PHcppzTgM3Z++gR+vHU9GTDJX/vgUe2atImVbcfNw2w9L+PPzOQDU79Oec8cMZsaQF2h0aSec/j580+cRfAL8GDjnebZPXUL6fq/4DbPCDbi4D9dedTmjx7102PULlqxg7/5oZnz1Aes3bmbcS28y+b0JpKal885HX/LVB68DMPDme+jdvQvB1atVZPreweGg2j33kTJqJO6EBELenkjOksO0XefN4dAbh2+7ptyqtuspoXaTnEZO2zmejDG7jTHhhX93MMbMO4HNAwr/n1G4/RhjzApjzB/GmEmmwH+ADsAXxpi1xpjAwm3uNsasNsZsMMY0O1XHU9F8mjbHFX0Ad2wM5OeTM28Ofud2P65tnWfUB6ezoNMJIDsLcnLKMVvv5dus4Dy4YgrOQ/acOfh3O77zIKeO44wmuBNjsMlx4Monf+1CfFp2KhXj27kPeYt/hqwMAGxGasEKV37BDcDHF4ypyNS9SlC7xmTvjiFnbxw2L5/kqQsJ6depTFzdUdcS89YPuHNyD7ufsAE9SJq6sLzT9Wqh7c7k0O44MvYm4M5zsXfqUur2O6dMXJtR/2HTW9NxlTgXrqwcEpdvxZWTV5Epe6V6bRuTtCeW5H3xuPJcrJu+hBZ9O5SKyTmUVfS3XxV/sAVl+dEbd5MeX9ABHrd1P74Bfjj9TpffGyuXiLZnkrY7jvTC18OOaUtp0Lf06yGvxHnwLXEesOAT6I9xOnAG+OHKyye3RKycmA5tWx+1s2juwqVc3v8CjDGc3ao56emHSEhMZtGyVZzbsR3B1asRXL0a53Zsx6Jlqyowc+/h06w5+QcO4C5su+bMnYN/V7VdPUHtJu9ny+E/TzldOp4CCzt/1hpjDl8/eHxeNMas878S8wAAIABJREFUBfYDU6y18YXL37TWdrTWtgICgUuttf8DVgLXWWvbWmv/aiUkWmvbUzBz+wP/IBePcoSF406IL7rvTkzAER5eJs6/Wy9qvPMh1R4bi6NmTQCcdephMw5R7fFx1HjrfaoMu61gmJGcMEd4OO74EuchIQHn4c5Dz16Evv8hwU8WnwcA4+dH6LsTCXnrbXVY/QOmeij2YPGvzzY1CRMcVirGEV4bR83aBN75LIF3jcfZtF3x9sFhBI54laqPvkfevO9V7XSS/KLCyI1OKrqfG5OEb63QUjFVWjfCv3YYB3878heGsMu7kfSDGlD/RJWoUDJLnIvMmGQCa4WUiglp3YAqtcOI/m1tRaf3rxEcGcLBEuchNSaJ4MiQMnHnDunDqN8ncPHD1zL1ybJDG1tf1IkDf+zClZtfrvl6q6pRIRyKTi66fygmmapRZc9Dyxsu5JqFL9Nl9CAWjfkUgJ0/LSc/K4frV73J4GUTWDdxBjkHMyos93+buIQkoiKK21GREeHEJSQSl5BIVERx+ymyZsFyOXHO8L99h0g4wneIHr0Ife9Dqj9Rtu0a8vZEQt54Gz+1Xf8RtZvkdHK69BZkFXb+tLXW/t8/2M+DhUP2ooALjDFdC5efZ4xZZozZAJwPtDzKPv6a+GUV0OAf5FLp5S5dTPINAzl4+03krV5J0AOFY7CdTnxatSHjvbc5ePetOGvVxr9Pf88m68Vyliwm8ZqBJA+7idxVKwl+uHgsfOKggSTfditpT4+j2l134axd24OZejmHE0d4LbLeeZzsL17B/z93QEAVoKCjKuuV+8l8/nZ8zjkPExTs4WS9lDHUf2Ioe8Z+fMSQqu2a4M7KIWvL3orL69/IGNo9cR1rxn7h6UwEWPLZLF7odR8/j/+SC+4u3UyKbFKXix6+lu9Gv++h7P49Nn4ym8ndR7L0uSm0v2cAABFtG2Fdbj7rcDdfdB3B2cMvptoZNY+xJ5HTW86SxSRdN5DkWwrartUfKm67Jl07kJQ7biX12XFUu+MunLXUdi03ajed9tzlcPOU06Xj6XDyKc4/4GiBf2etPQTMA7oXzvf0NvAfa21r4L1j7O+vMWUuDjNHljFmuDFmpTFm5af7Y04krQrlTkosmBi8kCO8Ju7E0r/82PQ0yCsYKpH9y0/4NDmrYNvEBFw7thcM03O7yF28EJ/GZ1Vc8l7EnZiII6LEeahZE9ffz0Na8XnI+uknfM46q9T2AK6YGHLXrsWncRPkxNm0ZEyN4l/rTHAYNjWpdExqEvkbV4DbhU2Jx50QjSO89t/2k4I7di+Ohi0qJG9vkxubhF/t4kozv1ph5MUUVxk4gwIJbHYGLb4dR9tl7xLU/izO+vgRqrY5sygm7Iru+tXuFMiMTaZKiXNRpVYoWTHFlXy+QQHUaFaP8799jMuWTSC8fWN6fDyS0DYNPZGu10qNS6FGifMQXCuM1LgjV1Sum76Eln2Kh+IFR4UyZOIIvhrxNsl744+4nRxdRmwKQbWLqwiCaoWSEXvk87B96lIaFA5NbTygK3vnrced7yI7KY3YlVuJaNOo3HP+t4qsGUZsfHE7Ki4+kcia4UTWDCc2PqF4eULBcjlxrsS/fYeoeZjvECXartkzir9DQHHb1R0TQ+66tfg0Udv1ZKndJKeT07njaTfw1wD7q05kQ2OMD9AZ2EFxJ1OiMSYI+E+J0HTghGYdtNZOstZ2sNZ2uL5urRPZtELlb9mMs05dHJFR4OODf+/zyV26qFSMCS1uZPl16VY08Xj+1s2YoCBMcEFVh2/b9rj27q6w3L1J3ubC8xBVcB4Czj+fnMWlz4OjxHnw79qN/MLzYIKCwNe34O/qwfi2ak3+nt0Vlrs3ce/bhiO8FiYkApw++LTtjuvPFaVi8jcuw3lmq4I7VarhqFkbd3JcwZA8H7+C5YFVcTZsjk04gJy4Q2u3E9CwFv71IjC+PoRe0Z2UmcXnwZWeyepWQ1nb+TbWdr6NQ6u3snXoc2Ss31EQYAxhl3XVPAWnQPLanVRrGEXVejVx+Do544ou7J9ZXKafl57Fd61uY3rn+5je+T4SV29nwdCXSV5/tOt1yInav24HYQ2iCKlbE6evk7MvO5dNs0oPlwhrEFX0d7Pz25G4u+AKswHVqzD0o1H8/Pxk9pSYUFZOXPy6nQQ3iKJa4evhzMu7sHvW6lIxwQ0ii/6uf0FbUgvPw6EDSdTpVlBI7xPoT0S7xqRs975r1lQWvbt3Ydovv2GtZd0fmwgKqkrN8FC6dT6HxctXk5qWTmpaOouXr6Zb57Lz1smx5W/ejE+Jtqv/eUdvu/qdW/wdokzbtaXarv+E2k3ez5vmeDqdZ5kcC3xgjBlHQfXS8XjRGPMY4Af8BnxnrbXGmPcouHpdLFDy2+bHwLvGmCzg3FOVeKXgdnHorQkEP/tSwaVQZ87AtWc3Va6/ifytm8ldupjAK67C79xu4HLhTk/n0MvjC7d1k/HeOwSPfxWMIX/bFrJ//tGzx3O6crtIf30CIS8UnoefZ+DavZuqN95E/pbN5CxeTJUrr8K/Wzesy4VNSydtfMF58Klfn2ojHii4oqBxkDH5izJXFJHj5HaT88N7BN7yBDgc5C3/DXfcPvz6XoNr/3Zcf67AtWUNzrPaUuWB17FuN7k/fgKZ6TianI3fZUMLJpI1htzff8Adq3Llk+Jys/vR92n65RiM00HClN/I2rqPOg8OImPdDg7OXHHUzat1aUFudBI5e+MqKGHvZV1uVj76Mb2/fAjjdLBzyu+kbT1A6wevInndLg7MXH3U7S9bNgHfoEAcfj7U7deBudeML3NFPDk2t8vN1DEfc/Onj+BwOljx9Tzitu2nz/3/Yf+GXWyavYquN/SlSbfWuPLzyUrN4OuR7wDQ9fp+hNeP5MJ7r+TCe68E4P0hz5GRlObJQzotWZebhY9/wiWfj8I4HWz56ndSth6gw8irSFi/iz2zVtNqaF/qdG+JO99FTmoGc++fCMAfn8zivJeHc/Xs8WAMW76eT/LmfR4+otPXg0+MZ8Wa9Rw8mMYFAwZzx81DyM8vmLts4P9dQs9zO7JgyQouuvomAgMCGDf6fgCCq1fj1qHXMGhYwRXAb7vxWl3R7mS5XaS/MYEaz7+EcTjI+rngO0TVoTeRt2UzuUsWE/h/V+HftbDtmp5O2gsFbVfnGfWpfv8DWOvGGAeZU9R2/UfUbvJ63nTdeGOt53q9vF1iv156cisB1+Ev4CAVrGqH0GMHSbnb+IWuuldZ7CTw2EFS7tb6eVOz7vTV0OX0dAoC3LzmKU+nIEDKwBs9nYIU2rUp7NhBUu46R3/3r2zA3tDgqlPen/DJ7m898lyezhVPIiIiIiIiIiJex+1FRUKn8xxPIiIiIiIiIiJSianiSURERERERESkEvGeeid1PImIiIiIiIiIVCpuL+p60lA7EREREREREREpF6p4EhERERERERGpRKwqnkRERERERERERI5OFU8iIiIiIiIiIpWI29MJnELqeBIRERERERERqUQ0ubiIiIiIiIiIiMgxqOJJRERERERERKQS0eTiIiIiIiIiIiIix6CKJxERERERERGRSsSbJhdXxZOIiIiIiIiIiJQLVTyJiIiIiIiIiFQi1nrPHE/qeBIRERERERERqUTcmlxcRERERERERETk6FTxVI6yDzo9nYIAa/ZEejoFAfp9NNLTKQiw8KsJnk5BCqUb7/kV63SWQJ6nUxCgfb5+C60MUgbe6OkUBAj56iNPpyCFatfu4ekUBMj3dAIeosnFRUREREREREREjkEVTyIiIiIiIiIilYj1ojme1PEkIiIiIiIiIlKJaHJxERERERERERGRY1DFk4iIiIiIiIhIJWKtKp5ERERERERERESOShVPIiIiIiIiIiKViNvTCZxC6ngSEREREREREalEvOmqdhpqJyIiIiIiIiIi5UIVTyIiIiIiIiIilYhbFU8iIiIiIiIiIiJHp4onEREREREREZFKxFpVPImIiIiIiIiIiByVKp5ERERERERERCoRb5rjSR1PIiIiIiIiIiKViPWijicNtRMRERERERERkXKhiicRERERERERkUrE7UWTix+148kYEwb8Vng3CnABCYX3O1lrc0vE3gdMstZmFt7fDaQDFkgBrrfW7jkVSRc+1ngg0lqbWrhsKNDBWnvXCeynCfAq0Bw4CKQBT1hr5x/HtrsLHy/xhA+gkvDv0pEaI+7COBxkTJtB+qeTS62vckk/gu++FVdCwSEe+uYHMqfNwBkVSdjzT4HDYHx8OPT192R8P90Th+AVap53Nq3GXY9xOtj7xVy2vzntsHG1LulEhw/uZ36/R0ldt5Ma7c6kzYvDClYaw9aX/kfszysrMHPvsnDFOp5/9zNcLjdXXtSbYQMvL7U+Jj6RR198l/SMTFxuN/fdNIiendqyYfMOxr72PgDWwh1DruSCbh09cQheoUGvNpz35BCM08EfU+ax/O3S7y1tBp9P2+v7YF1u8jKzmfnwByRviwYgvFk9+jx3E37VArFuyxeXjcGVk+eJw/AKjXu1of8TQ3A4HayeMo+F75Q+Fx2uu4COheciNzOb6Y98QMK2A0Xrg2uHcefsF5g34VsWT5pR0el7jVa92nLtmBsxTgcLvvqNGe/8UGp935svpeegC3Dlu0lPTuOjUW+RdKDgc/s/Dw+mzXntAZj+xv9Y8ePiCs/fW0Sd14Z2TxW8N+38ch6b3zx8u6fuJR3p9v59zOz/GCnrduEXEkTX9+4ltG0jdn81n9WPflKxiXsZv46dCLrzbnA4yJ7xE5lTviy1PqBff4KG344rseDrStbU78me8RMANWfOIX/XTgDc8fGkPj66YpP3Io89+wrzFy0nNKQGP3z+bpn11lqem/AuC5asICDAn2ceHUmLpo0BmDpjFhM/mQLArTcM4oqL+1Ro7t6mX9/evPLKUzgdDj78aDIvvPhWqfU9unfm5ZfH0qZ1c64dfAffffdT0bohQ/7L6IfvBeDZ8a/x2WffVGju8u9y1I4na20S0BbAGPMkcMha+9IRwu8DPgcySyw7z1qbaIwZCzwG3PKPMy5wDbACuBL46GR2YIwJAH4CHrDWTitc1groAMz/W6yPtTb/H2Vc2TgchDx4Lwl3P4grPoGIj98ha8Fi8neV7hvMmj2Pgy+9XmqZKzGJ+GF3QV4eJjCAyC8/JGvBYtyJSRV5BN7BYWj93I0svfpZsmKS6PHLM8TOXMWhrQdKhTmrBtBwWH9SVm0rWpa+eR8L+j2Kdbnxj6hBrznjiZu5GutyV/RRnPZcLjfPvPUxk557hKjwUAbd/TjndWnPmfXrFsVM/PIH+vXswsDLLmTHnv3c8fiL9Pz0NRo3qMuUN5/Gx+kkISmF/9w+ml5d2uPjdHrwiE5PxmG44Okb+N9140mPSea66U+xfdaqoo4lgM0/LGH953MAOLNPe3o/Ppjvrn8B43Rw8Wu38/N975KwaS8BNYJw53nX23ZFMg7DxeOG8tl1z5EWm8wt08axZfbqUh1LG6YuZuUXBb9NNb2wPf0eu47Pb3ihaH2/xwezbd66ik7dqxiHg8FPDePlwU+RHJvMmGnjWTtrJdHb9xfF7P1zF09d9hC52bn0HtyX/z4yhHfvepU257WnfsuGPHnxA/j4+fLQlLFsmLeG7ENZHjyi05NxGM55dijzBj5HVkwyfX4eR/TM1aT97bPap2oATYb1J2nV9qJlruw8/njhG4Kb1SO4ad2/71pOhMNBtXvuI2XUSNwJCYS8PZGcJYtw7Sndds2eN4dDb7xWZnObm0PKrcMqKluvNuDiPlx71eWMHnf4r4ULlqxg7/5oZnz1Aes3bmbcS28y+b0JpKal885HX/LVBwXfLQbefA+9u3chuHq1ikzfazgcDl5/7Rn6X3wN+/fHsHTJDKb/OJNNm4q/L+zdd4Cbh93PiPtvK7VtSEgNHn/0fjqfezHWWpYv/Znp02dy8GBqRR+GHIX31DudxBxPxpgLjDFrjDEbjDEfGmP8jTH3ALWBucaYuYfZbAlQp3D7BsaYzcaYj40xW40xXxhjLjTGLDLGbDPGdCqM62WMWVt4W2OMqVa4/EwgiIKOrGv+9jj1jDHzCvfzRGH8eGPMnSXyf9IY8wBwHbDkr04nAGvtH9baj0vEfWaMWQR8ZowJM8bMNMZsNMa8D5gTfe4qE78WzcjffwBXdAzk55M1aw6BPbse38b5+ZBXUEVgfP3AcVo/FR4V0q4xGbtiydwbj81zEf3DEqL6dSgT1+yhq9n+1vRS1RuurNyiTiZHgK93vTNVsA1bdnBG7Ujq1YrA19eHi3p3Ye6SVaVijDEcyiz4wpaekUXN0BAAAgP8izqZcvLyTvN3Bs+KansmB3fHkbo3AXeeiy3Tl9K47zmlYnJLfGn2DfQvKDMDGvRsTcKmfSRs2gtA9sFDWLdeFCerTtszSd4dR8q+BFx5Lv6YvpSmfUqfi5yS56KKf6m3oGZ9zyFlXzwJW/cjJ69R28bE74klYV88rrx8lk1fRNu+pSsqNy/ZSG52QQH6zjXbCIkKA6B2k7psXb4Jt8tNblYO+zfvoXWvthV+DN4gtN2ZpO+OI6PwvWnv1KXU6XdOmbjWD/2HzW9Ox5VTNCAAV1YOicu34spW9eU/5dOsOfkHDuCOKWi75sydg3/X7p5O61+pQ9vWR+0smrtwKZf3vwBjDGe3ak56+iESEpNZtGwV53ZsR3D1agRXr8a5HduxaNmqI+5Hjq5Tx3bs2LGbXbv2kpeXx9dfT+Xyy/qVitmzZz8bNmzC7S79w3Tfvr2Y/dsCUlIOcvBgKrN/W0C/fr0rMHs5Hm7sKb95yol2PAUAHwMDrbWtKaiYut1a+zoQTUGF03mH2a4/ULI2vDHwMtCs8HYt0B14APir7vUB4E5rbVugB/BXC3cQMAVYADQ1xkSW2G8n4CqgDfBfY0wH4Cvg6hIxVxcuawmsPsbxtgAutNZeAzwBLLTWtgS+B844xraVmjMiHFdcfNF9V3wizpo1y8QFnteDiM/fI/S5J3BG1CyxfU0iPn+PqOlTSP9siqqdTlJArRCyooufu+yYJAJqhZSKCW7dgMDaocTPXlNm+xrtzqT37y/Se+4LrB/1vqqdTlJ8UjJRNcOK7keGhxKXmFIq5o7BV/LjnIVccN1d3PH4Czxy5w1F69Zv3s6AW0Zx5a0PM+aem1TtdJKCokJIj04uup8ek0xQZEiZuLbXX8jNC16m5+hBzHniUwBCGkUBlqs+G8Xgn56m422XVFTaXql6VChpMcXvTWkxyVSPKnsuOl7fh3vmv0KfR67h5ycKhhD5VfGn2+2X8fuE7yosX29VIzKU5OjiEf0pMUmERIYeMb7H1eezYV7BZ8W+TXto1astfgF+BIVUo9m5rQitFV7uOXujwKhQsg4Uvx4yY5IJ/NvrIaR1AwJrhxHz29qKTu9fwxkejjuhuO3qTkjAEV7237R/j16Evvch1Z8Yi6NE29b4+RHy9kRC3ngbv27qsCpPcQlJREUUn5vIiHDiEhKJS0gkqsT3iciaBcvl5NSuE8W+/cVV4fsPxFC7dtRxbVundhT7S2x74EAMdY5zW5GTcaIdT05gl7V2a+H9T4CeR4mfa4w5AFwElJxAaJe1doO11g1sBH6z1lpgA9CgMGYR8EphNVWNEkPdrgGmFG77LfDfEvudZa1NstZmAd8B3a21a4AIY0xtY8zZQIq1dt/fEzXGfG+M+cMYU7KlPK1wXxQe5+cA1tqfKJi3yqtlL1hCzIBriR98CznLVxHyxMNF61zxCcQPvoXYq4ZQ9eJ+OELLfiGRU8AYWowdwsaxnx929cE1O5jX60EW9H+UxvdcgcPft4IT/PeYMW8JA/r05Lcv3uTtcaMY/cLbRb8etWnWmB/ee4Ep/9/efcdXUex9HP/8zkmA0EsChKKgNBUVFCkixQLYEL1ce+Pa9VqwXiuiWLBjv3LRB3vvigqiFAUEpINUQSCBAKGFmuScef7YTXIS0ihJTuL3zSsv9uyZnZ3dObs7Ozsz++IQRnzwFbvT04uITfbHrLd+5PVutzPh8Q/ofPPZAASCQRp3aMWom1/hg/4P06JPBw7qekQZp7Tim/bWGF7ofhs/Dv2A7jd5edHz1v5MGfEd6Tt2l3Hq/l46n92NZkcdyvfDvwRg/sTZzP15Bvd+9ijXvjCQpTMW7/HEWw4QM9oNvphZg98t65T87e2ePInUi89n49VXkP77dGr+J2ccp9SLzmfTDdey5bEh1LjhRoKJjcowpSIiRfs7t3jaWycCBwOzgIci5keWRsMRn8P4404554YCVwFxwK9m1sbMjgRaAmP8wb0vIHd3u7x7Muvzx8A/gfPxWjuBV+F1THZA584BBgCRjxK3F28zc5jZNWY23cymv7suuegFykho3QaCDepnfw7Wjye0fn2uMOGtW7O71G3/chSV2rTcI57whlQy/lxO5XZHlmyCK6hdazYR1yinpU2VxHrsWpNTpxlTvQo1Wzfl+M8GcfK0F6hzTAs6vnkHtY4+JFc825YkE9q+mxptmpZa2iuS+vXqsnZ9ztPslA0baRCfuzL18+/H0ad7ZwDaHd6S3ekZbNqalivMIQc1pmpcFZauUPeifbFt7SZqNMo5BddIrMu2lILr+Bd+ldMVL23NRlZPXcTOTdvI3JXO8p9nU79ts5JOcoW1de1GaibmnJtqJtZl69qC82LeV5Np09vrJty43aH0uudCBv4yjM5XnEq3f/ej4+UaPHZfbE7ZSN1GOa0G6iTWY1PKxj3CHd71SM68sT8vXDWUzPScsc2+efkzBp9+J89cOgQzWPtn9JZLotnOtRuJa5xzPFRNrMvOiOMhtnoVarVpykmf3c+ZU4dR75gWdBt5O3WObl4Wya2wQhs2EEjIKbsGEhIIb8jdWsZFlF13jfqWmJatsr/LChtes4b02bOIablnuVYOjAYJ9Vi7LidvUtZtoEFCPA0S4lm7Lud+I2W9N1/2TXLSWpo2yalAbdI4keTktcVaNil5LU0ilm3cOJGkYi4rsi/2tuIpBDQzsxb+50uB8f50GrBHZ1+/pdJA4DIzK7h9eB5mdqjfKuoJvIHE2+BVMg12zjXz/xoBjczsYH+xXmZW18zigLPxWk2BV9l0AV7lU9Zw/e8BXc0s8tVVVQtJ0gS8LoGY2WlAvk18nHPDnXMdnHMdLq4fvU9S0v9YSEzTxgQTG0JMDHG9TmLnhMm5wgTq5WRXlW7Hk7HCGzslWD8eKlcCwGpUp9LRbcn4a49GZFIMm2cto9ohDYk7KAGLDdLo7C6sHZ3T1z0zbSc/HHENY4+7mbHH3cymGUuZevnTbJn9p7dM0DuE45rEU71FI3auWl/QqqQQbVsfwl9Ja1m9dh0ZGZl8N24KPTvnHr+jYf16TJk1D4A/VyaRnp5B3Vo1Wb12HZmhEADJKetZviqZRg327LYqRVs7+09qN29IzaYJBGKDtO7bmWVjcveIrt0sp3f1ISe3Y9MKr5C0YsIc4ls3JaZKJSwYoEnnNqQuyT3wrxRf8uw/qde8IbWbJhCMDdK2b2cWjck9DkfdiLxoeVI7Nvp58X/nDmHYCQMZdsJAprzxPRNf/pKpb44p1fRXFMtnL6VBs0Tim9QnGBtDp75dmTVmWq4wBx3RnMseu5YXrhpKWurW7PkWCFCtdnUAmrQ5mCZtDmb+RA32vi82zvqTGs0bUs0/Nx3UrzNJP+QcDxlpO/niiOv4puNAvuk4kNQZS5k44Bk2zV5ehqmueDIXLiSmcRMCDb2ya+UTT2L3pF9zhQnUzSm7VurSldBKb+Bxq14dYr1W4VazFrFHHEnmXytKLe1/Nz1P6MxX34/FOcfseX9QvXo1EuLr0rXTsUyaOoMtW9PYsjWNSVNn0LXTnuOlSfFMmz6LFi2a06xZU2JjYznvvH58/c3oYi07evR4ep3Sndq1a1G7di16ndKd0aPHF72glCrn3AH/Kw4zO9XMFpnZUjO7O5/vbzOzBWY2x8zGRtTHFKjQt9rlYxfwL+BjM4vBqxDKeofmcOB7M0vOO86Tc26Nmb0P/Bt4u5jrGmhmJ+K1gpoPfAc8C5yeJ9zneJVKKcBUvO53TYB3nHPT/fXP9wcnT3LOrfHn7TSzM/G68w3zl08DHikgPQ8B75vZfGASsLKY2xGdQmE2P/0i8S88gQWCbP/6OzKXr6DmNQNI/2MxuyZOovr5/yCu2/G4UIjw1q1sevgJAGKaHUy9m3PejLDt3Y/IXKbC1b5woTDz7h1J5/fvwYIBVr0/jm2LVtP6rn+yedZyUkYXPOBivY6taXFTP+/NXWHH3LvfIH1jWoHhpWAxwSD3/nsA1937BKFwmHN696BFsya89OYnHNGqOSd2OZY7r7mYwcNG8PZn32MGj9xxLWbGzHmLeP3Dr4mJCRIIBLjvpn9Rp5bezrIvXCjMTw+8Sf+37yIQDDDvw/GkLk7i+Nv6kzJ3OcvGzKD9gN4cdMIRhDNC7Nqyne9vew2A3Vt28PuI77j4m4fBOZb/PJvlP2mslX0VDoUZNWgkl771HywYYOZH41m/JIkTb+tP8pzlLPpxBh0v780hJ7QlnBFi59btfH7bnq/Ulv0TDoV5Z9AIbnvrfgLBAL989BPJS1Zz9q3ns2LuMmb9OJ3z7rmUylWrcMMrtwOQmrSBF69+gmBskHs+HgLAzm07+d+tLxDWOID7xIXCzLh3JD3e946HPz8Yz9bFSbS9sz8bZy8neXThQ4aeOXUYMdXjCFSKofGpHRh/4dA93ognxRAOkfbiMGo/8TQWCLDzu1GE/lpBtQFXkLFoIemTJxF3Tn8qH98VFwrh0tLY+uRQAIIHHUzNW+/AuTBmAXZ88O4eb8OT4rvzwaFMmzmHzZu3cvLZl3DDlZeSmem1tjz/nDPo3uU4Jk7YaI+PAAAgAElEQVSexmnnXUFclSoMufdWAGrVrMG1Ay7kgqtuAeC6f12kN9rth1AoxC0D72fUt+8RDAQY+eaHLFiwmMEP3sH032fzzTdj6HDs0Xzy8evUqVOLM8/oxYODbufodiexadNmHn1sGFMmfQvAI48+x6ZNm8t4iySvsugaZ2ZB4GWgF7AamGZmXznnFkQEmwl0cM7tMLPrgSfxepcVHG9xa71k763udJJ2bhSY+VeDogNJiesz5fayToIAL3YfVtZJEF+a6RIRDVaaxqKKBn12Vy7rJAhw4uHqKh4N6nz4f2WdBPHFNepW1kkQIDM96W/53uiOjXoc8MLi1OTxhe5LM+uC18usj//5HgDn3OMFhG8PvOSc61pYvHvb4klEREREREREREqQK5vBwBsDkePorAY6FRL+SrzeaYVSxZOIiIiIiIiISAVnZtcA10TMGu6cG76PcV0CdAB6FBVWFU8iIiIiIiIiIlGkJIZF8iuZCqtoSgIiX5XexJ+Xi5mdAtwH9HDOFTluwd6+1U5ERERERERERCqeaUBLM2tuZpXwXuT2VWQAf1yn14CznHPrihOpWjyJiIiIiIiIiESRsnirnXMu08xuBH4AgsAbzrn5ZvYwMN059xXwFFAd+NjMAFY6584qLF5VPImIiIiIiIiIRJGS6GpXzPWOAkblmTcoYvqUvY1TXe1ERERERERERKREqMWTiIiIiIiIiEgUKYuudiVFLZ5ERERERERERKREqMWTiIiIiIiIiEgUcRWoxZMqnkREREREREREoki4jAYXLwnqaiciIiIiIiIiIiVCLZ5ERERERERERKJIRepqpxZPIiIiIiIiIiJSItTiSUREREREREQkilSkMZ5U8SQiIiIiIiIiEkXU1U5ERERERERERKQIavFUgkIZqteLBl07JZd1EgToevxtZZ0EAb5sFizrJIgvZXXNsk6CALMya5R1EgT4vvLOsk6CAM3+qFfWSRCgUaNuZZ0E8e1MnljWSZC/sYrU1U41IyIiIiIiIiIiUiLU4klEREREREREJIpojCcREREREREREZEiqMWTiIiIiIiIiEgUqUhjPKniSUREREREREQkiqirnYiIiIiIiIiISBHU4klEREREREREJIo4Fy7rJBwwavEkIiIiIiIiIiIlQi2eRERERERERESiSLgCjfGkiicRERERERERkSjiKtBb7dTVTkRERERERERESoRaPImIiIiIiIiIRJGK1NVOLZ5ERERERERERKREqMWTiIiIiIiIiEgUqUhjPKniSUREREREREQkioQrUMWTutqJiIiIiIiIiEiJiLoWT2ZmwETgUefcd/68c4ErnXOn7ke8IWAuYEAIuNE5N6mIZUYAzzrnFpjZCqADkAlc5Jx7ZV/TEi2qHH8cde+4AYIBtn3+HVtHfpDr+2p9e1Nn4DWE1m0AIO3DL9n2xXfEtjqUevfeglWrCuEwW15/jx2jx5XBFlQMse07UvXqmyAQYPeYb9n16Xu5vq900qlUHXA94dT1AOwe9Tm7x3xLzJHtqXrFv7PDBZscxLanHybjt19KNf0VRZeeHbl9yM0EAgG+fP9b3nzp3VzfX3TNefS76ExCmSE2p27m4duGsjYpBYAzzj2VK265DIA3nn+Lbz/+vtTTX1FU7nQctQbeCMEgO77+lm1vv5/r+7jT+1Dz39cRXu+dl7Z/+jk7vh6V/b1VrUr990aya8IvbHn2hVJNe0VTo0d7mgy+GgsGSP1gDCmvfJpvuFqndeGQ1+5m4Zm3s3POUogJctCTN1K17SFYMMjGz34m5eX8l5WiNe55FJ0evhQLBFj8/jjmvvx1ru9bX3oSh13ei3A4TOb2Xfx61+tsWZJMIDbI8U9cSfxRzXEuzG+D3mHt5D/KaCvKv7Y92nHRoCsIBANM+HAso179PNf3va/sS/cLTiacGSZt4xbeuOsVUpO86/a5d1/K0ScdiwWM+RNn895Db5TFJlQItXq25+AhV2CBAOve/5E1L32eb7g6p3em1Yi7mHfqnWyfs4x653Qn8YZ+2d9XPexg5vW5gx3zV5RSyiuePr178uyzDxMMBHjj/97nyadezvV9txM68cwzD3HUkYdx0SU38Nln32Z/d+ml53Lv3bcA8NjQ53n77Y9LNe0Vxf2PPcuEX6dSt05tvnjnv3t875zj8WH/ZeLkaVSpUplH77udw1u3AODLUWN47U3v3u/ayy+g3+m9SjXtUjyuAg0uHnUVT845Z2bXAR+b2c94aXwM2KdKJzOLcc5lAjudc+38eX2Ax4EeRaTlqnxm1wZuAMp3xVMgQN3/3MS6G/5DZsp6Et95mZ3jJ5GxfGWuYNtHj2PTEy/lmud27WLDA0+QuSqJYHw9Gr77CjsnTcNt216aW1AxBAJUvXYgaQ/eTjh1PTWffo30qb8SXvVXrmDpv/zEjuHP55qXOXcmW2/1fqJWvQa1/vseGTOnlVrSK5JAIMBdj93KjRfcRsqa9bw5ajgTfviF5Uty8mHRvCVcdtrV7N65m/6X9ePmB67n3usGU7N2Da6+bQCXnXY1zjne/n4EE0b/QtqWbWW4ReVUIECtO24h9ZY7Ca1bT8Lr/2XXxElkrsh9POwa+3OBlUo1rrmC3bPmlEZqK7ZAgKaPXMvSix8kY00qrb9+mi1jprJryarcwarFUf+KvmyfsSh7Xp0zuhKoFMvC3rdgVSpx2NiX2PTlRNJXryvtrSj3LGB0fvRyfrhwKDvWbKTvqIdZOfp3tixJzg7z5+eTWfT2TwA07XUMHR+8hDGXPEmri04E4ItT7qFKvZr0eudOvj59EFSgZvulxQIBLn34ap6+5GE2rk1l0FdPMGvMNJKXrs4Os3LBch7uexfpu9I58ZI+nHfPpbx647O0OKY1LTu04YFTbwPg3k8eoXXnI1g0ZX5ZbU75FQjQ7LGrWXjBQ6SvSeWIUU+y+Ydp7FyyOnewalVoeNUZbPt9cfa81M8nkPr5BADi2hxEqzfuVqXTfggEArzw/KOcevqFrF69himTR/H1N6P5448l2WFWrkriyqtu5bZbr8u1bJ06tXngvlvp1OV0nHNMnfIdX389ms2bt5T2ZpR7Z5/ei4v6n8W9Q57O9/uJk6excnUyoz58nTnzFzLk6Zd4/3/D2LI1jVf/7z0+fN0rS51/5c30PKEztWrWKM3ky99MVHa1c87NA74G/gMMAt4B7jOzqWY208z6AZhZMzObaGYz/L/j/fk9/flfAQvyWUVNYFNE2G+yvjCzl8xsgD89zsw65Fl2KHComc0ys6cO6IaXokptW5O5OpnMpDWQmcn2H8YR17NrsZbNXJlE5qokAEIbUglv2kywTu2STG6FFdPyMMJrkwinePmQPvEnKnU8Ya/jqXR8TzJm/Abpu0sglRXfEe0PY9WKJJJWriEzI5MxX46lR5/c+fD7pJns3unt37kzFlA/MQGAzj078tuE6WzdnEbalm38NmE6XU7sVOrbUBHEHt6GzNXJhJK942Hnjz9RpVvxzksAsa1bEaxbh91TVQG7v6q2a8nuFWtJX5mCy8hk09cTqdW74x7hEu+4iJRXPyW8Oz1npnMEqlaGYIBAlcq4jExCaTtKMfUVR3z7Q0lbkcK2lesJZ4T488spHNTn2FxhMrbtzJ6OqVo5u2KpdqvGrPnVq9zYlbqV9K07iD+6eeklvgI5pF0L1v21lvWrUghlZDL1619o3/u4XGEWTp5H+i7vOFg2czF1GtYDvKfVsZVjiYmNIbZSDMGYIFvXby71bagIqrdvwa4Va9jtn5c2fvkLdfrseV5qctdFrHn5i9znpQj1zu5G6pdqHb4/Oh7XnmXLVrB8+UoyMjL46KMvOatvn1xh/vprNXPn/kE4HM41v3fvHvw4diKbNm1m8+Yt/Dh2In369CzF1FccHdodWWhl0c+/TOGsU0/GzDi67WGkpW1j/YaN/Prb73Q5rj21atagVs0adDmuPb/+9nspplyKyzl3wP/KSlRWPPkeAi4CTgOqAD855zoCJwJPmVk1YB3Qyzl3DHA+EPkI/BjgFudcK/9znF9ZtBAYAQzZx3TdDSxzzrVzzt25j3GUuZiEeDLX5jx9Dq1bT7B+vT3CVT2pG4kfDif+yUEEGyTs8X2lI1pjsTFkrk7e4zspmtWLJ7QhJx/CqesJ1IvfI1ylLj2o+fwbVP/PQwTi88mHbieRPmFsiaa1IktoGE9Kck4+pKxZT0Linvs5S78Lz2DST78BUL9hQq5l161ZR/2GBS8rBQsmxBNKiTgvrV9PMGHP46FKz+4kvDWCOo8OJlDf39dm1Lzpera8+GppJbdCq9SwHunJG7I/p69JJbZB7mtEXNtDqJQYz9afchdWN42aRHjHbtpOH8kRU0awbvgXhNQCcJ9UbViH7ckbsz/vWLORag3r7BGuzeWn0P/XZzju/gv4bdBbAGxcsJKmvY/BggGqN02g3pHNqNZoz+u8FK1Og7psjDgeNq7ZSJ0GBe/L7uedzNxxMwBYNmMxCyfPY9i0ETw3dQTzJsxmzbKkEk9zReSdl1KzP6evSSU2sW6uMFWPPITKjeqxeWzBN9H1zupK6heqeNofjRo3ZFVE2X910hoaNWpYrGUbN2rI6ohlk5LW0LiYy8reSVmfSsP6OeWoBvXjSVm/gZT1G2hYP6es2iDBmy9SkqKuq10W59x2M/sQ2AacB/Q1szv8r6sABwHJwEtm1g5v3KZWEVFMdc4tj/gc2dWuC/CWmbUt6e0oz3ZOmML273+GjAyq9z+D+IfvIuXanLq2YHxd4ofczYYHn1TT/RKUMW0SmyeMhcwMKvfpS7Vb7iXtgVuzv7c6dQkefAgZM6eWYSr/Pk77Ry8OO6o11/a/uayT8re065fJ7BzzE2RkULVfX+o8cDepN91O1X/0Y/fk37LHfpISZkbjB65g5e17dnms1q4lLhRm3nH/IqZWdVp+8jhpv8wmfWVKGST072Hhmz+y8M0fOeTsLhx9y9lMHPgaSz4YT+2Wjej73RC2r97A+ulLcKFw0ZHJfulydneaHXUoQ89/AID6BzcksUUTbut8DQB3vDOIlscdxpJpGm/rgDPj4AcHsGzgiwUGqda+JeGdu9m5aGWBYUREokW4Ao3xFM0tngDC/p8B/f1WRu2ccwc55/4AbgVSgKPxBv6uFLFsgQMOOecmA/FAAt5g4ZH7ocr+JNjMrjGz6WY2/b0N0ftEK3P9BmIa1s/+HKyfQGhdaq4w4S1bISMDgG2ff0elNjn1elatKgnPP8rml98gfa4KT/vKpW4gGJ+TD4F6CYRTc984u7StkOnlw+4x3xI8tFWu7yt1PZH0KRMhFCr5BFdQ69duoEGjnHxokJjA+jXr9wjXsdux/OuWy7h9wD1kpHt5sm7t+lzL1k+sz7q1ey4rRQut30CwQcR5KSGBUJ6KJLc157y04+tviW3tHQ+V2h5B1f5nU//T96l54/XEndabGtdfXXqJr2DS16ZSqVHOU9JKifXISMm5RgSqxxHX+mBafPgIh/86nGrtW3Po6/cRd1QL6vTrwdbxMyAzRGbqFrZP/4OqR7Uoi80o93as3US1RjktOqom1mX72k0Fho/siudCYaYOfpevet/H2Cueo1Ktqmz5c02Jp7ki2pSykboRx0PdxLpsSkndI9zhXY/izBv78/xVj5OZngnAMX06sWzmYnbv2MXuHbuYO24mLY5ptceyUjTvvJTT0qxSYj0y1uS0CAxWjyOuzUEc/ukQ2v32X6of04pWI++h2lGHZoep1+8EtXY6AJKT1tK0SaPsz00aJ5KcvLZYyyYlr6VJxLKNGyeSVMxlZe80SKjH2nU55aiUdRtokBBPg4R41q7LKaumrPfmS/RRV7vS9wNwk//GO8ysvT+/FrDGORcGLgWCxYnMzNr4YVOBv4DDzayymdUGTi5i8TSgwM60zrnhzrkOzrkOF8U3Lk5yykT6/EXENG1MTKOGEBNDtT492Tk+90v+gvE5hd24Hl3IWOE/HYqJIeGZwWz/dgw7xk4szWRXOJlLFhJIbEKgvpcPlbqdRMbUX3OFsTo5+RDbsSvh1bkHWq7c/WTSJ6qb3f5YMGshBzVvQqOmicTExtCr38lMGJ07H1q1bck9T9zB7QPuYVNqzvgcU8ZNpVOP46hRqzo1alWnU4/jmDJOrc/2RcYfC4lp0phgonc8xJ1yErt+yX1eCtTLOR6qnHA8mf55afNDj7LuHxewrv+FbH3pVXZ+N5q0V/9XqumvSHbMXkLl5olUalofi42hTt9ubBmT87sOp+1gbrtLWdD1GhZ0vYbtMxex7MpH2TlnKenJ66lx/FEABOIqU/WY1uxaurqgVUkhNsz6k5rNG1K9aQKB2CCH9OvMqtEzcoWp2bxB9nTTU9qxdbl3AxesUomYuMoANOrWlnBmONeg5FJ8y2cvpX6zROKb1CcYG0PHvicwc8z0XGEOOqI5lz92LS9cNZS01K3Z8zcmr6d1pyMIBAMEY4K07nQ4yUuj98FkNNs2aylVmidS2T8v1e13AptG54zpF0rbwYy2A5jV6TpmdbqObTMWs3jA42yfs8wLYEa9vsdrfKcDYNr0WbRo0ZxmzZoSGxvLeef14+tvRhdr2dGjx9PrlO7Url2L2rVr0euU7owePb6EU/z31POEznz1/Vicc8ye9wfVq1cjIb4uXTsdy6SpM9iyNY0tW9OYNHUGXTsdW3SEIvsharva5TEEGAbMMbMAsBw4E+/Ncp+a2WXA9xTSygl/jCd/2oDLnXMhYJWZfQTM8+OdWVhCnHOpZvarmc0Dviu34zyFwmx84kXqvzwUAgG2ffU9GX/+Ra3rLid9wWJ2TphMjQvOIa5HFwiFCG9J87rUAdV696BK+6MI1qpJ9b69Adjw4FNkLF5WlltUPoVD7Bg+jBqDn4ZAgN1jRxFatYK4i64gc+lCMqZOosqZ/Ynt2BVCIdy2NLY9PzR78UD9hgTi65M5b1YhK5GihEIhnrxvGC+89zTBYICvPhjFn4tXcO2dV/DH7EVMGP0rtzxwPXHV4hg6/CEA1iat4/YB97B1cxqvD3uTN0cNB+D150aydXNaWW5O+RUKs+XZF6j33JMQDLDjm+/IXL6CGlf9i/SFi9j9yySqnfsPqpzgHQ/hrVvZ/OjQouOVvRcKs/qB4Rz69mAsGCD1w7HsWryKhrddxI65S9k6puDK1Q1vjuKgZ26mzY8vghkbPxrLroV/FRheCuZCYabc/ya937sLCwRY8uF4Ni9Oov0d/dkwezmrxszgsAG9Sex2BOHMEOlbtjNx4GsAxMXXpPd7/8GFw+xYu4kJN2v8s30VDoV5d9AIbn/rAQLBABM/+onkJas4+9YLWDF3KbN+nM5591xG5apVuOGV2wFITdrAC1cPZdqoKRx2/JEM+eE5nHPMGz+L2WOnF7FGyVcozIr7RtD6vUFYMMD6D8ayc/EqGt95AdtnL2Pz6MJfLFGj8+GkJ6eyW91+91soFOKWgfcz6tv3CAYCjHzzQxYsWMzgB+9g+u+z+eabMXQ49mg++fh16tSpxZln9OLBQbdzdLuT2LRpM48+Nowpk74F4JFHn2PTJg24vy/ufHAo02bOYfPmrZx89iXccOWlZGZ6rS3PP+cMunc5jomTp3HaeVcQV6UKQ+71huqoVbMG1w64kAuuugWA6/51kd5oF6XCFWg4GyvL5lYV3V/HnKKdGwVqNM0o6yQI0GeaDodo8GWzYjUMlVKQsrpmWSdBgFkhFbajwYTYnUUHkhJ3Xbqu1dGg64bfyjoJ4tuZrN4d0SA2/hAr6zSUhbo1Wh7wk/LGtCVlsi/LS4snEREREREREZG/hYrUSEgVTyIiIiIiIiIiUURvtRMRERERERERESmCWjyJiIiIiIiIiESRitTVTi2eRERERERERESkRKjFk4iIiIiIiIhIFAlXoBZPqngSEREREREREYkiToOLi4iIiIiIiIiIFE4tnkREREREREREokhF6mqnFk8iIiIiIiIiIlIi1OJJRERERERERCSKOLV4EhERERERERERKZwqnkREREREREREoogrgX/FYWanmtkiM1tqZnfn8313M5thZplm9s/ixKmudiIiIiIiIiIiUaQsutqZWRB4GegFrAammdlXzrkFEcFWAgOAO4obryqeRERERERERESkI7DUOfcngJl9APQDsiuenHMr/O/CxY1UXe1ERERERERERKKIc+6A/5nZNWY2PeLvmjyrbQysivi82p+3X9TiSURERERERESkgnPODQeGl/Z6VfEkIiIiIiIiIhJFSn+EJwCSgKYRn5v48/aLlcWAVVJ+mNk1fq2olDHlRXRQPkQH5UN0UD5EB+VD9FBeRAflQ3RQPkQH5YPsDTOLARYDJ+NVOE0DLnLOzc8n7EjgG+fcJ0XFqzGepCh5+3xK2VFeRAflQ3RQPkQH5UN0UD5ED+VFdFA+RAflQ3RQPkixOecygRuBH4A/gI+cc/PN7GEzOwvAzI4zs9XAucBrZrZHpVRe6monIiIiIiIiIiI450YBo/LMGxQxPQ2vC16xqcWTiIiIiIiIiIiUCFU8SVHUHzh6KC+ig/IhOigfooPyITooH6KH8iI6KB+ig/IhOigfpMxpcHERERERERERESkRavEkIiIiIiIiIiIlQhVPFYiZ3Wdm881sjpnNMrNOhYQdaWb/LCK+kWa23I9rhpl1KSDcw2Z2yv6mv7wxsyZm9qWZLTGzZWb2vJlVKuF1bvP/b2Zm8yLmn2BmU81soZktMrMbDsR6yisza2Bm75nZn2b2u5lNNrNz8gmXaz9GzC/Wb9rM2pmZM7NTD1Tay6vi7vNSTM9pZjbdzBaY2Uwze6as0lKaoi0f/DR9YWZTyjINpcXM6vnXzFlmttbMkiI+V8oTdqCZVS1GnOPMrIM/vcLM5vrxzTWzfgcgzc3M7KKIz1XN7F0//nlm9ouZVfe/C0Vszywza7a/648GZvaGma3L73qQJ1xPMzs+4vPgPHk81J+fnWf5xHGmf06a7Z+fri0srr+LvfltmdkAM3vJnx5sZnf405Hl1oVm9mAx1jvAzBpFfF5hZvH7v0Wlb3/OPxHnljlmNt7MDj6A6RpoZrvMrFbEvOw83It4WprZN+aVuX83s5/NrHsxly0X+WqeX8zstIh555rZ9/sZb9bxNdu8e7rji7HMCDM73J9eYWbxZlbb9vMeQ/6+VPFUQZhXKXQmcIxz7ijgFGDVAYj6TudcO+Bu4LV81ht0zg1yzv14ANZVbpiZAZ8BXzjnWgKtgOrAo/sZ716/adLMGgLvAdc559oAXYEry/pms6z4efMFMME5d4hz7ljgAvK8eaGwfb0Xv+kLgV/8//NNi5lV+PNscfd5Icsf0Desmllb4CXgEufc4UAHYOleLF8u3/gabfngx1kbOBaoZWaHlNZ6y4pzLtU5186/bv4XeC7rs3MuPU/wgUCRFU/5ONGP/5/AC/uZZIBmwEURn28BUpxzRzrn2gJXAhn+dzsjtqedc27FAVh/NBgJFOcBQk8g7w1bZB7fXdjCZlYZb6yVvs65o4H2wLh9iasCOlC/raxyazvgcjNrXkT4AUCjIsKUCwfg/HOifw8xDrj/ACbtQmAa8I99jcDMqgDfAsOdc4f617ebgD2uK+X5muK8MXCuA541syp+pf9jwL/3Jb6IfZF1fB0N3AM8Xoy0XOWcW5Bndm1AFU+yTyr8DdHfSCKwwTm3G8A5t8E5l2xmg8xsmnlPLYf7Nya5mNmx/tON383sBzNLzCf+CUALP/wKM3vCzGYA51pE6ykzO87MJvk16lPNrIaZBc3sKT8dc8x/ulfOnQTscs79H4BzLgTcClzhb/cRWQHNf/JpZtXMe6o61bynnf387weY2Vdm9hMw1syqm9lY/4lEcZ5o/xsY6Zyb4adlA3AXcKcff67WbZbTampv11NenASkO+f+mzXDOfeXc+7FvPu6oAiy9pmZnWpmH0fM72lm3/jTBpyLV2jt5ReKsloPLDKzt4B5QFMzuzPi9/9QRHxf+MfdfDO75sDuhlJV2D5vZmYT/d9Z9lM2f19ONLOvgAX+vHz3h5ldaWaL/WPnf5bzpDvBzD719+00M+vqL3IX8KhzbqGflpBz7lV/mb5m9pt/DP5oZg38+YPN7G0z+xV428yO8Nc3y8+3liW+F/dftOUDeDcaXwMf4FWCZcU10sz+a2a/AU+a2aFm9r2/3olm1sYPl29+lSdmdrKf/rn+NaCymd2Md7P7s5n97Id71bxWevMjzxOFqAls8petZmbfmnftnWdm5/vzV5jZ4/7veLqZHWPedX6ZmV3nxzMU6OaHuRWvPJGUtRLn3KKsskVF5ZybAGyMnGdmN5vXImmOmX1gXguc64Bb/X3VrThxm9k2M3vGzGYDnYAYINVf727n3KIDuS0ViUW0UjGvHDVuLxav4v+/3V9+j/KweWWjDsC7fp7G+cvcZDllozYHanvKQnHPP3lMBhr7yzczr/XYSP/8/66ZnWJmv5rX4r+jH66H5bSummlmNfz5h+I9mL2fPR/SNTWvjLzE/NZpZjbUzLIrWSynRdvFwGTn3FdZ3znn5jnnRkaEi7yG1zOz0f75dASwx/1PtHLOzcO7bv4HGAS8A9xne94/FPu6nkfktSO7XOt/fsnMBvjT+bXcHAoc6ufzUwd0w6Xic87prwL84Z3UZwGLgVeAHv78uhFh3sZ7ygbe071/ArHAJCDBn38+8EZkGH/6XOA3f3oFcFdEvFlxVQL+BI7z59fEK2BdA9zvz6sMTAeal/U+28/9fTPek6S882cCDwIP+Z8TgUX+9GN4LTDAe2KwGKiGV3GxOiuv/H1W05+Ox2upkfUigG3+/82Aef70Z0C/POmoBWzOm4954ihyPeXxr6C88b/Lu6+z92OecFm/6RhgJVDNn/9qRB52Bcb60+pklhIAAAvKSURBVO8B/SPiDAOd/c+98Z5wG15l/zdAd/+7rHTE4VVS1Svr/VcC+7wqUMWfbglM96d74t0QNI8Iu8f+wCscrwDq4p2vJgIvRez3E/zpg4A//OkZwNEFpKdOxO/8KuAZf3ow8DsQ539+EbjYn66UNT+a/6ItH/zPY4BueK1C50bMH+kfC0H/81igpT/dCfipsPwqD3/+b+p+vNbHrfx5bwED/ekVQHw++z2I1+LgKP/zOKBDxDJz/XzZAZzpz+8P/C8irloR4a/3p58D5gA1gAS8Vk1Zv4FvIpZtB6zDu/l8JCtf/O9CeGWNWcDnZb2PD3B+NSPiegAkA5X96doReXpHnjxOitgnffLJMwecF7HMCH//vo93Mx0oLK6/y19+v63IYwSvgmicPz2AnPNPdp7gnVeW+3FsAx6LiL+g8nB2XkWs8yZ/+gZgRFnvm33cn4PZu/NP5L4eBlzjTzcDMoEj8cowvwNv4JVp+uG1/AevoqSrP10diPGn7wMe8Jf9C2gQkYdr8K4vWdeaDnitAMdHpGsB0BR4FriliO2NvIa/AAzyp8/wj8P4vd2PZZh/1YBFeOf7x8n//mFvrutZx9dCYAtwbETYyPP/S8CAvMdG1u+DAsrN+tNfcf7KbVNEyc05t83MjsUr4J8IfGhmdwNpZnYX3smpLjAf7+KQpTXQFhhjXmOoIN6FIMtTZnY/sB6vuX2WD/NJRmtgjXNump+mrQBm1hs4ynJa3dTCO0Eu3/ctjmrj8Cr/HgTOAz7x5/cGzvKf3ID3NO4gf3qMcy7raasBj5nXbz2M99SpAbD2AKeztNZTpszsZeAEIB14mdz7ulDOuUzz+tX3NbNP8Aovd/lfX4jXigP//8uAT/3Pfznnssa06e3/zfQ/V8f7/U8AbracLpFN/fmpe72RUSbPPj8FeMnM2uEVfFpFBJ3qnIs8D+S3PxriFUI3+nF/HBHHKcDhltOQs6b5Y9EUogne+TERr0Ipcv1fOed2+tOT8Z4wNgE+c84tKcamR5UoyIdq/rK/OOecmWWYWVvnPc0F+Ng5F/LDHg98HBFHZf//wvKrPAgCy51zi/3Pb+K1Uh2WT9jzzGthFoP30OJwvIqivE50zm3wWxKM9VuBzAWeMbMn8G4iJkaEz2ohMBeo7pxLwysb7DavK2QuzrlZ5nWL7I2Xt9PMrItz7g/87hp7tQfKrzl4LWG+wOvCWpDnnHNPF/J9iJxrA865q8zsSLx9ewfQC+8mvDhxVWQH6rd1p3PuE/+8MtbMjnfOTQJOLKI8HOkz///f2Y/uYVFgb84/4LWAqotXafdAxPzlzrm5AGY2H++hmzOzuXgVEQC/4nUPexfvmrnan38hcI5zLmxmn+I9yM4a22mMcy7Vj/czvAcYw8ysvnnjbiUAm5xzqyxPhw0z+xzv+rLYOZeVR5HX8O74eeec+9bMNhW9u6KHc267mX2Ilxfn4ZVD894/JFP863r28WXe8CxvmTcsgUipUcVTBeK87l7jgHH+xeBa4Ci82upVZjaYnKbHWQyY75zLd+Bw/At4PvO370XSDO/p0Q97sUy0W4DXIiabmdXEuxBMA1LN7Ci8FmRZ3RkMr1XMojzLdSL3/rwY72J7rHMuw8xWsGe+5U3LscCXEfOOxWtZBt6TqoC/rgDezdu+rKe8mI/39B8A59y/zWuqn7U/9ua3C16l0o143TCmO+fSzCzor6Ofmd2Hl7f1spqW51mHAY8753KNkWZmPfFuPLo453b4N4/ldf8Xts9vBVKAo/F+h7silsveT/u4PwJ4Lcsi48wqGB8LzM5nmReBZ51zX/nrHJxfepxz75nXDewMYJSZXeuc+6mI9JS1aMuHf+G1WFru3zTUxLsJuS/PegN4LTTzu+ksLL8qDPPGobkDr8XwJjMbSRH73Tm3zMxSgMOdc1PN7BjgdOARMxvrnHvYD5rVTS4cMZ31Od9yoHNuG97N92dmFvbj/WPftq7cOgPv5rUvXiX0kfsYzy6/fJbNv4mfa2Zv41WmDtifhFZg2eUX9vL66D+QHQecYN7QEK9QeHk4UtZxEuLvda90IrAZeBd4CLjNn5/3vBF5TokBcM4NNbNv8c4Vv5pZH7zWsS3Jebid9fAgq+LJ5Vl/1ueP8crYDcl50D0f73jEX985fjewyIravS3fRbuw/1fQ/cNginFdz8s5N9kvGySQ+xiD8lsOlXJAYzxVEGbW2nKPQdIOr4kmwAb/yU9+b7FbBCT4td+YWaxFjE+0lxYBiWZ2nB9XDfMGtfsBuN7MYv35rcys2j6uI1qMBaqa2WXgDbIOPIM31tIOvAvlXXjdHbKeWP+AN26A+cu0LyDuWsA6vzLoRODgItLyMjDAf+KBmdXDG+R8iP/9CrybcICz8AoC+7Ke8uInoIqZXR8xb18G8M0yHjgGuJqcFk4nA3Occ02dc82ccwfjPdHOb0D3H/DG/sp6K1RjM6uPt/83+Tf3bYDO+5HGslbYPq+F1xIyDFyK9wQ2PwXtj2lADzOr459P+kcsMxpvcFEAso4B4CngXjNr5c8PWM54NrXIGb/m8oI2yG/x8adz7gW8St2jCgobRaItHy4ETvWPkWZ456ELyMNvHbvczM71lzczOzoiPUXmVxQLAc3MrIX/+VK8cwpAGl63N/Aq5bYDW8wbx+o0iuCfR5oDf/mtA3Y4597B+/0fsxdpjEwHZtbVzOr405XwWl79tRfxlXv+Q5qmzrmf8cZZqYXXWjXXvtqHeKv7FahZ2vE327d7aQU55Zf+hYTbg3+e6gQsI+dmOr/y8H7laZQr7vknm3MuE2/g8cv81k/FYmaHOufmOueewLtetMG7BgzOugY45xoBjSznjXm9zKyueWNrnY3Xagq8MvQFePmUNc7me0BXMzsrYrWFle0m4L80wbw3xNUp7rZEoYLuH4p7Xc/Fv7YH8VrY/4XXYrmyeS1gTy5i8Yp8vEgJU8VTxVEdeNP8gTDxCoqDgf/h9Zv+Ae9CkIvz3nLxT+AJ8wa+nMWeb2wpFj+u84EX/bjG4F3sR+C1yplh3quKX6OcP0Fyzjm8SoZzzWwJXn/rXcC9fpBP8C6aH0UsNgSv0meO3yJjCPl7F+jgt1q7DK8/dmFpWQNcAgw3s0V4TW9fcM5lFS7+h3fDOBvoQs5TkL1aT3nh583ZeNu83Mym4jUv/08Bi7Q2s9URf+fmiS+ENxbNaf7/4BWmPs8Tz6fk83Y759xovALTZH9ff4J30f4eiDGzP/AGayy3r5svYp+/gvdmodl4BdGCnsLluz+cc0l446NNxSuUrsAbnwC8MY06mDf47wL81oV+Ze9A4H0/vnnkvPlmMF6Xrt+BDYVs1nnAPDObhdcd+a1i75AyEk35YN5AzAcT8bv2m/1vMa+VZ14X472Nczbek+2slx0Mpnj5Fa12Af/C24a5eE+vswZ/Hw58b2Y/O+dm43XHXYh3vvg1v8h8P/u/y5+Bu51zKXjjr0z15z+INzZTcc0BQuYNTH4rcCgw3k/vTLwWc58WFkF5Z2bv43WvbW1mq/EeNLwTsQ9ecM5txuuadY7txeDieVcF3GXeCyhm4bUqGXBANqJiegh43sym41WiFMdT/r6dg9e99DM/7woqD48E/mu5BxevKIp1/sm7kF+ufJ+9e5PaQPMGbp+D9xbM7/DKwXnLSp+T8wBiKt65ZQ7wqXNuur/++XjlpCQ/Lfhd6M7Eu778aWaT8cawKuhc9xDQ3S9v/wNvvM7yqqD7h+Je1wHi/N/4LLyKvcud9+KVVXj3KvP8/2cWEgd+18hf/bzW4OKyV7IG7BSRCsLMbgCuxxvAulz1aRfJj5lV97tNxOAVWt9wzuUtzEoJUz6IiIiIyL5QxZOIiEQ1M3sab9yhKnjdum5xuniVOuWDiIiIiOwLVTyJiIiIiIiIiEiJ0BhPIiIiIiIiIiJSIlTxJCIiIiIiIiIiJUIVTyIiIiIiIiIiUiJU8SQiIiIiIiIiIiVCFU8iIiIiIiIiIlIiVPEkIiIiIiIiIiIl4v8Bz8Jp/NBJjsMAAAAASUVORK5CYII=\n" | |
}, | |
"metadata": { | |
"needs_background": "light" | |
} | |
} | |
], | |
"source": [ | |
"f,ax = plt.subplots(figsize=(22,8))\n", | |
"hm = sns.heatmap(data =MatrizRelevante, cbar=True, square = False, fmt=\".2f\", annot_kws={\"size\":10,}, yticklabels=cols.values, xticklabels=cols.values,vmax=.85,annot=True)\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "082e88e5-fd25-4f49-8735-8de65707078c", | |
"metadata": { | |
"id": "082e88e5-fd25-4f49-8735-8de65707078c" | |
}, | |
"source": [ | |
"Podemos ver que:\n", | |
"- Calidad, AreaVivienda y area Sotano estan muy fuertemente correlacionadas con PrecioVenta\n", | |
"- Las variables de garage están super correlacionadas\n", | |
"- Sotano y 1er piso son basicamente hermanos gemelos\n", | |
"- Y AñoConstruccion esta ligeramente correlacionada con PrecioVenta, parece que en un futuro habra que hacer un analisis de serie de tiempo más serio." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "2ac922de-e572-415e-9219-26ca0639dfb6", | |
"metadata": { | |
"id": "2ac922de-e572-415e-9219-26ca0639dfb6" | |
}, | |
"source": [ | |
"### 4.3.- Scatter Plots entre Sale Price y variables Correlacionados" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ffcb418d-a37f-4261-83c2-4cd2bfa34a03", | |
"metadata": { | |
"id": "ffcb418d-a37f-4261-83c2-4cd2bfa34a03" | |
}, | |
"source": [ | |
"Por utlimo, hagamos scatterplots usando seabron de todas las posibles relaciones que podríamos tener en nuestro dataset - entre las variables que nos importan claro.\n", | |
"\n", | |
"Comenzamos declarando sns.set()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 86, | |
"id": "7089ee84-67e9-4f28-8743-f6c2f32b5d55", | |
"metadata": { | |
"id": "7089ee84-67e9-4f28-8743-f6c2f32b5d55" | |
}, | |
"outputs": [], | |
"source": [ | |
"sns.set()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "3fbcadbd-6220-447c-af8a-b6608b43f797", | |
"metadata": { | |
"id": "3fbcadbd-6220-447c-af8a-b6608b43f797" | |
}, | |
"source": [ | |
"Luego cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 87, | |
"id": "cdac00f4-25d3-43c8-8874-0827ce1c3052", | |
"metadata": { | |
"id": "cdac00f4-25d3-43c8-8874-0827ce1c3052" | |
}, | |
"outputs": [], | |
"source": [ | |
"cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt']" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "6e13376b-375e-4169-8fa2-b5d4b06fa0d4", | |
"metadata": { | |
"id": "6e13376b-375e-4169-8fa2-b5d4b06fa0d4" | |
}, | |
"source": [ | |
"Seguimos con sns.pairplot(df_train)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "4666b43e-cb45-41d0-9ab7-ac443b4c05ea", | |
"metadata": { | |
"id": "4666b43e-cb45-41d0-9ab7-ac443b4c05ea" | |
}, | |
"source": [ | |
"Y terminamos con plt.show();" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 89, | |
"id": "59179913-8229-4552-9ca6-d252f4edaddd", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 1000 | |
}, | |
"id": "59179913-8229-4552-9ca6-d252f4edaddd", | |
"outputId": "1d91b30d-29d6-4129-d9d8-ddae9a3d727e" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"text/plain": [ | |
"<Figure size 1008x1008 with 56 Axes>" | |
], | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAPeCAYAAAD+mBIWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXxU5dn//zmz75lkEkJYEkIgEEggbGWxIkVSVKoRFRKp21NBqfULtT9b+7XPo1itfax92lp3rU/trxYBFaTggkG0oigF2REIICRAQsg2mX095/vHZE5mMuckM2G2JNf79fL1ksmZOefcy3Vf131fC8NxHAeCIAiCIAiCIAiCIOKKJNUPQBAEQRAEQRAEQRADETK4CYIgCIIgCIIgCCIBkMFNEARBEARBEARBEAmADG6CIAiCIAiCIAiCSABkcBMEQRAEQRAEQRBEAiCDmyAIgiAIgiAIgiASgCzVD9AfaW21gWWpmlq0ZGZq0N7uSPVjxEROjr7XawbqOOiP/RUPxN67v4+F/tKf6f6cfR0H6f5el8tAfr94yoT+2k703OKQTEgs/amd0k1P6E9tl670pQ17Ggd0wk0kHJlMmupHIGJgsPbXQH3v/vJe/eU5Y2WgvleQgfx+8Xy3/tpO9NzxJ52fLZ2gduo71HaXT7zbkAxugiAIgiAIgiAIgkgA5FJOEMTghgEsDi8unmqGRimDQS0D0tM7fPDR2TdmmwdGvZL6ZrBC4yC5hLS3h2OgkIDamxjckAwamCSxX8ngJghi8MIApxusON1gActxkDAMioYZUDRMT4tpqmGAY/Ud+POGA3B7/cgzabDypkngOA5GHSk8gwaao8lFApxrduDY2TawHPDyu4dx2zUlKMnPoPYmBickgwYmITqGXivHghkFGJmrw/BsbUC/iDNkcBMEMWixuXw432zDpk9Pwe31QymXorqiGLlZauiUJB5TicXh5Y3tbKMKFTML8OTre/h+WrW0nIyAQQDN0STCAEfPmvHcWwf5tq6qKMYbHx7DQ7dNg0EtT/UTEkTSIRk0MAnqGHqtHNfNKcT6mtow/cKUpYvr/SiGmyCIQYvF6cO6TiELAG6vH+tqamFx+lL8ZITZ5uH7Zf60fH4xBAL99OcNB2BxeFP5iEQSoDmaPCwOL29sA4G2Xl9TiyvLR8Bs96T46QgiNZAMGpgEdQwx/aKxxR7X+5HBTRDEoMXl9vFCNojb64fLTQtpqjHqlVDKO7OEMhDsJzICBj40R5NH6CZXELfXD4kEMGoVKXoqgkgtJIMGJryOIaJftFmdcb0fGdwEQQxasjNUXUZdJ0q5FNkGZYqeiAhiUMuwamk53z9C/URGwMCH5mjyCNvk6kQpl6JkVBYMGnInJwYnJIMGJkEdQ8Iwgv2bpVfH9X5kcBMEMWgRMupWLS0n5TId4ICS/Aw8dd8cTCrKwv1LJlM/DUJojiYPobb+P0vLMTJHQ7kSiEELyaABSqeOMac0Fz++eVJE/+Zla+N6O4r2Jwhi8BJi1Dm8fmjk0sAiSsplesABBrUcBrUcw7I0eOq+OTDbPTBqFdRPg4WQOUp9n2AE2rpwRCZaW22pfjKCSB0kgwYuHKBTyjCpMDOifyUSJq63IoObIIjBTadRV5SfheZmKy2i6UqI8R38NzFIoL5PHt3aOt5KJ0H0S0gGDWyS0L/kUk4QBEEQBEEQBEEQCYAMboIgCIIgCIIgCIJIAGRwEwRBEARBEARBEEQCIIObIAiCIAiCIAiCIBIAGdwEQRAEQRAEQRAEkQDI4CYIgiAIgiAIgiCIBEAGN0EQBEEQBEEQBEEkADK4CYIgCIIgCIIgCCIBkMFNEARBEARBEARBEAmADG6CIAiCIAiCIAiCSABkcBMEQRAEQRAEQRBEAiCDmyCIwQ0DWJxeHD7VDIvLBzCpfqABRmf71jfbqX2JvkFjKH5QWxJE7NC8GbgkqW9liflZgiCIfgADHKvvwJ83HIDb64dSLsWqpeUoyc8AuFQ/3ACA2pe4XGgMxQ9qS4KIHZo3A5ee+jbO0Ak3QRADixh2Ky0OLy9oAcDt9ePPGw7A4vAm6WFTSBJ2dQd1+xJxgcZQ/Oi1LekUj0gH0szrjGTQwCXmvr0MGZm0E263240nn3wSX375JZRKJcrLy/H444/jzJkz+OUvfwmz2Qyj0YinnnoKo0aNAoCk/40giH5OjDvRZpuHF7RB3F4/zHYPDGp5kh46BSRpx37Qti8RN8x2GkPxosf5qJELygRTli5FT0sMStLwNJnWsYFLT30bwWWOzaSdcD/99NNQKpXYtm0btmzZgtWrVwMAHn30USxbtgzbtm3DsmXL8Mgjj/DfSfbfCILo38S6W2nUK6GUS8M+U8qlMGoVCX/WVJKsHfvB2r5E/NCq5IJjSKsiRTdWepqPYjKhscWeikclBinpeJpM69jAJZa+vdyxmRSD2263491338Xq1avBMIHz9+zsbLS2tuKbb77BD37wAwDAD37wA3zzzTdoa2tL+t8Iguj/xLRbCcCglmHV0nJe4AZ3LA2aga3Mx9pOfWWwti8RP9weH6oqisPGUFVFMdxeX4qfrP/R03wUkwltVmcqHpUYpCRrbYoFWscGLrH07eWOzaS4lJ87dw5GoxHPPfccdu/eDa1Wi9WrV0OlUiE3NxdSaeBFpVIphgwZgsbGRnAcl9S/ZWVlJaMpCIJIIMHdylCh2ONONAeU5GfgqfvmwOH1QyOXBgTtAE+EEnM79ZWQ9jXbPTBqFYOifYn4odMoULO7DpVziwLxchxQs7sOU8dOS/Wj9T96mI9iMiFLrwZNWCJZJG1tigVaxwYuMfTt5Y7NpBjcfr8f586dw4QJE/DQQw/h4MGDWLlyJZ555plk3D7umEwU0xQrOTn6VD9C3BnI46C/9peJ5fDArVPxxzf38TE2D9w6FYUjMiGRiGe3yLnc+6b5WOjen7G0E8tyaGyxo83iRJZBjbxsbY9tKXj/Pj5nf0NsHPT39+qNRL6fieVw56KJMc/peNHXdxMaC6kYBxHz16RFTnZku4nJhL7M93QhHebdYJUJfaWva3iiYVkOHtYOhccPlUoBU1bs8yLZegKNsegR01FC2zDTx+L/LC3HsyEx3LGMzaQY3Hl5eZDJZLwr9+TJk5GZmQmVSoWmpib4/X5IpVL4/X5cunQJeXl54DguqX+LhdZWG1iWtraiJSdHj+Zma6ofIyaiEVQDdRz0x/7iYQApAyyeNwYsx0HCMJAyQGubrdfdaLH37u9jQey9iofrI3Z1W1tt4RclMYFNuo+7vo6DdH+vyyXh73cZc/pyiadMSMk4iHH+CskEiYTpl+M3Ge1NMiExBMdhqNdZxNqUTKKYR+mmJ9AYu3zC2rBzDPzjw2OonFsEiQQoGZWFkTmasLHZ0zhISgx3VlYWZs6ciS+++AJAIFN4a2srRo0ahZKSEmzduhUAsHXrVpSUlCArKwsmkympfyMIov9jcXjx+7X7sK7mBDZsr8W6mhP4/dp9VL5DCA4wqOXIz9YGMq0K6AHpmMCGGFzQnO47Mc/fKGQCQSScznFYVpSTFuOQ1kEiOAYaWx3Y8HEt1tXU4snX98Bij34MJK0s2GOPPYaHH34YTz31FGQyGX73u9/BYDBgzZo1+OUvf4kXXngBBoMBTz31FP+dZP+NIIj+DZXviC/UnkSqoTHYd6jtCOLyoXlExGMMJM3gHjlyJP7+979HfF5UVIS33npL8DvJ/htBEP0bo16JPJMGV5aPCCRYArBz//mek1owgd3Li6eaoVHKYFDLUr6jnjQ6391s88CoV0a8ezBJiF4rx/xp+QADSBgGWXpl6p6ZGFT0aU4TAHpKhKaExSk+72OmFzlCEDGRZmsyyaBBDgNo1XJUVxSD5YAde+vRYnbFnMwvaQY3QRBEojFoZFi6oBgvbTzMx1qtvKkMBq0cYAW+kMQY5bQjinc3qGV4cNlUnG+2YV1NLX/dyCG6wdFGRMoxaGVYcnUxXt7UNafvXVwGg04O+Hv//mAmWPImdI4/uGwqzl2yx0/mDWYZSsSfNBxPMesVxMBBYDxWVRSjZncdli4ojmkMJCWGmyAIIhlY7F5+UQQCLj8vbTwsGmczmGOzonp3DsgxqnhjW/Q6gkgQrR0e3tgGAuPv5U2H0dqRurq8/YaQkjdrls/EU/fNQY5RFVeZN5hlKBF/0nE8xapXEAMHofG4vqYWt11bgg3ba2MaAzEb3I2NjThw4ECsXyMIgogdBrA4vahvtsPi8vHuXGL0FGcTj+sHEtG+e1TXxdhPBBEtrRaX4PhrtbhS9ET9hOCcvGQHGAb5OYFEaPGWeYNZhhLxJx3HUzo+E5F4WJZDi8Ut2Pd1F61obHXENAaidilvaGjAz372Mxw/fhwMw2D//v348MMPsXPnTvzmN7+J/g0IgiCioQ+uZWIxi2JxNrFeP5CI9t17vS4NXQCJgYMpQyU4/kwZqhQ+VZrTw5yMt8wbzDKUiD/pOJ7S8ZmIBMMAXx5uxNlGi2Dfg4t9DER9wv3II49g3rx52LdvH2SygJ1+xRVXYNeuXTG8AUEQRHT0xbUsGLOolEsBgFc0DRrhLJKxXj+QiPbde7suHV0AiYGDUiZBdUVx2PirriiGUkYRcWL0NCfjLfMGswwl4k86jicJA0EZJJGQK9dAxeLw4o9v7sP2PXWo6tb3VRXF2HngfMzjMuoT7sOHD+OVV16BRCIBwwQGmV6vh9VKhdUJgog/fSrDEBKzaLZ7YNQqAgJR7KQ15HqH1w+NXNrz9QOJaNuql+uoZAqRSNosbry36wwq5xYFQhU44L1dZ1A4zACdkvK+CtHbnIxJRvZGrDKXIHoiDddkkkGDj6AMdZv9eD+k78uKTGDAYerYaTGPy6hHislkQl1dHQoLC/nPTp06hby8vJhegiAIIhr67MbFAQa1vMvY600gdl5flJ+F5mbr4FIUo22rHq4jdzsikRj1SljtXmz4uJb/jMZXz/Q6J2OVkb0R798jBjdptiaTDBp8hMrQFrMLGz6uhVIuxZyJuX2Wc1H7ZP3oRz/CypUr8c4778Dn82Hr1q144IEHsGLFitjuSBAEEQV9di2jBF7iJKBt0tEFkBg40PiKnZjbjGQmkU50jsfDp5rTYjySDBp8GNQyPHDr1Ig+l0iYPsvJqE+4b7nlFhiNRqxfvx55eXl49913sXr1aixYsCC2OxIEQURDX1wVKYGXOIlqG3IpJRKMQibB4nljwHIcJAwDBcVv90wsc5JkJpFOpON4pDVu8MEBs8vyMDSzq8+bzS78/Lkv+jwuYwo+WLBgARnYBEEkjxhdFcWSBT1135xBH0+c0LYhl1IiQVgcXvx+7b4I92ia070Q5ZwkmUmkE2k7HmmNG3RIJAzf5xZn+DrUl3EZtcH9xBNP4LrrrsPUqVP5z/bt24cPPvgAv/rVr2J8DYIgiPhjtnmg18pROa2Id/fZsbeeEnghAcnNmIByZLZ5YNQrYVDLSAkh4g7N6TjTbd7anF5KekikDWmbhJPWu0FNPNahqA3urVu34he/+EXYZ6WlpfjJT35CBjdBEGlBVoYKi+YUYl1NLe/2U11RjCy9UvxLnQvpxVPN0ChlA3YhjWtys1jc/khRIS6DrAwVrv9uEdZuO86PtWULx/c8pwc6fZ1TAvP2/iWTkWfSoLHVwV9GCaGIVGHUK5Fn0uDK8hG8YbNz//nUjsd0dHOndTWp9Em37EbUBjfDMOC48N70+/1gWTb6JyYIgkggrJ/lBSIQ2BlfV1OLKWOzhb+Qjgtpgggmfun+rn2JRYva7W8QtS+RGFiW5Y1tIDDW1m47jslj5qT4yVLEZcwpoXn73FsH8fBdM/Dk63suWy4QxOVi0MiwdEExXtp4mB+PK28qg0ErB1JkbqSdmzutq0knZt1SgKgN7unTp+NPf/oTfv7zn0MikYBlWTz77LOYPn167E9OEASRAGJ1R7M4vNj6+WmsqiqHy+2HWiXFls9OY/iNZQPGnZJlOVicgZ3w4TlaPH3/FWizusUTv0Sxcx5tO6edokL0O1o63MgfqsONV43h5+imT0+hpcMNg2rwjaHLmVOh8zbbqML8afkAA8ikElG5ECo/6CSNSDQWuxcffXU2Yk0uHKpP2ZqRbm7utK4mAQa4cMmGiy12GPVKOD2+rjrsCLiTt5hdiXEp/9WvfoV7770X3/3udzFs2DA0NjYiJycHL730Up/ehSAIIt7E6jbt9Pgwf0YB/ry+a6d4eWUpnF7fwFi4GODLw43445v7hHfCBYztaHbOo23ndFNUiP5Hhk6BhTNHhc3RFZWlMOgGp8vz5cyp4LzVa+W4bk4h1nee2Gz+12lhudCb/CCIOJOOa3Jcw7HiAK2rCUZAD1p5Uxl2HjiPxlYHlHIpqiqKUbO7LqYxEHVtjaFDh2LTpk14/vnncffdd+P555/Hxo0bMXTo0D69D0EQRLyJtV4mI5HgL5uPhO0U/2XzETDMwCg7ZHF4eWUZ6NoJtzi8gnV3xXbOLQ5v2O9G285BRSUUig8lYsHPcni12xx9dfMRsOzgtPhinlMhNbYlEgarlpZjwYwC3tgGxOd5T/KDIBJBOq7J6VaHm9bVxCKkB7208XAgr0Dnv9fX1GLlTZNiGgMxlQWTSCSYMmVKLF8hCIJIHhxQUpCBJ+6djVaLCyaDCiaDQjT2y2x1C+8UW90YMgCSMonthF9odYSdIARPraLeOY+yLmk848aJwclAn6Ox0uOcQrdwEI0Mx+rCT2oeXDYVY0ZkRDXP6SSNSDZpOd/TrA43rauJRUzuBQ8mgv92uHwx/W6PBve1116LDz74AABw1VVXgWEYwes+/fTTmG5KEAQRFbFm4mQQoWD25AKZKeYqNhAUeQbQquWC73euySYY/yXmOgcwgBSw2ML7ote6pGmmqBD9jwE9R/uC2JxigKNnzXjurYO87Hv4rhkRJzW/X7sPj90zKyoX2XRzpSUGPmk/3zkAIrZQMp+B1tXEIaoHhbSvUi5F3UUr8rLU8Ynhfvzxx/n/f/rpp2N8ZIIgiMuAAU43WHG6wQKW4yBhGBQNM6BomF50YYk1mQjLsVheWcq7sAXjxTiun1df6IxBeuPDY6iqKObdR5VyKX588yS88eGxsMuDp1b5OVrcv2RymNJeVVGMlzcdwooby/Dqu4f5GCZ+IwO9bIpw6N0wJ/ofSSqn5/X7Beeoj/X3/uWBSvc5BeBcs4Oft0BgTh872yZ4UnOiri1CLgidkBnUMjxw69SIGG5R5Z5KFRGXSVrO9z7oIgmH1tXLowdZJeRBcO/iMrz1cS0A8HrR+7vOYMyIjPgY3MEM5H6/H++88w4ef/xxKBS0s0kQROKxuXxo6XCGfdbS4URulho6pbDoarEIu6O1WNyCQlEmkWLHnrpARlSPHyqFFFt3nsaPri+N34ukgNCNh/d3nUHl3CJIJMC0cUOgVEhhtYfHYPKnVhyQqVN0ZePkgC8PN+DK8hEwW924/doS/O/Wo2gxu/DnDQfw9P1X4NwlO5UnGWwksSwNxzHY+00jHr5rBiwODwwaBd7/4lssurIovjfqx1gcXhw72wa9Vo7KaV2ZdJUKqeBJjd3px46v68PkgkmviOw7DphdloehmVGcpFGpIiIOcBwjuCYvu6YkZc/UF12ESGN6k1WdHgTP/Gwezl+ywuNlYdDJcPu1E+D0+KBSSPHuv07BavdCFUP/R3WlVCrFF198IepSThAEEW/sHj88Pg6bPj3FC8VlC8fD7vGLLnJqpUxQwRQTij6/XzAjan8/PROKQWI5wONjYcpQYOVNZaJ1TnUaBTZ/dhpurx/ZRlVYNuPQnd0WswsWp4/KkwxCklmWRi5n8J2JeWF1ou+5sRRyOekjQcw2D5QKKRbNKeRrxQbl5U9umYTn3z4UMX+DBOWCGBIJE9VJGpUq6qekmVeCRAJ8Z2Je2JpcXVEMiSR1893u8cPl8YfpItUVxT3qIkT6EpWs4oDhQ3S42GKD2eWB2+fHS+8cCuv/+dOkgfkSJVGn/bvzzjvx7LPPwuul7JQEQSQe1s9h7bbjYUJx7bbjYP3i2oBeI0d1RXFYNtHqimJRoSiTSrHxk5OonFuEpQuKUTm3CBs/OQmZRCp4fX8hGIMUNJg3f3YaG7bX4tev7caRM2Z89NXZsHfesL0Wls5Tb4NGhp8smQylXIr50/Ijshmvr6nF/Gn5UMqlcLl9okmViIFLT8m04o0EErzybnjW4lfePQJJ9OrLgMeoV4LjwBvbQJe87LB7+Lm+umoKanbXAUCEXDhaZ45BI4wkmWOCiBOdJ30PvbALa17bjYee/wLH6jvCkkMlG6VMCpVCisXzxmDpgmIsnjcGKoUUClnq5rvPx0bMrXU1tfD1sFFFpC/RyiqW5aDXKpCVoeaN7eC162pqMWyIDjpVnE+4AeCNN95AS0sL/vrXvyIrKyvstDuWpGnPPfccnn32WWzZsgXFxcU4cOAAHnnkEbjdbgwfPhxPP/00TCYTACT9bwRBpA8OlzfCRXLH3no43OKZIXVqKXIy1Vg8bwwfa5WTqYZOIwMEDq3tLi8aWx3Y0BmbE/q5qR/X+Q3GIJ27ZIswmJ9/62DAyO72zma7BwaNHMfqOvDBF9/igVunwuHyCi5MEgmwamk5sjNUyDNpAuUyOvto5/7zlFRpgJPMZFrtNregHOiwuZHTj+doPDGoZcjN0gjOVavDy8/1bKMKS68uhtPtg9PtR+VVAbf8HXvr8dxbB/HwXTMwMlvTpxNOSrDW/0hHrwSXxweFQop8nQpOtw9qlQxOtxdujw9I0Vhye/yCc8vt6d+ecIOV7rIq26jCghkF8Pk5WFw+/oDmy8ONaGixwePtof9jkJVRG9zxSJp29OhRHDhwAMOHDwcAsCyLn//85/jtb3+L6dOn44UXXsDvf/97/Pa3v0363wiCSC/0WkWEi2R1RTF0PdQ9bO3w4B8fHucNQJbl8I8Pj+Nnt04VNKCNOuXANBg7Y5BUSqmowRwkdLFptXrwxofH0NjqQPM/D2P5DaWCSjQf88kASxcUi7qnEwOTZJal0WvkgnJAm6IauGkJBwzP1grO1YKheixdUIwde+thtXsxapgBDc12rN0W6WZ+7GwbMjTyPhlbVKqo/5GOZd9UChncHj9e2dSVNO3ORSVQKlLnup2doRKcW9mGNMmcTsREqKzKH6rD92eOCkvSt2ppOUYO0eKPb+7jNyWF+t+gUfC5bqIhqhH8+eef4+TJkygpKcGsWbNifjkA8Hg8+PWvf43/+Z//wR133AEAOHLkCJRKJZ+crbq6GldffTV++9vfJv1vBEGkF1IJg49213Ul8ALw0e46lBaJe6S0WlzQaeQoyNPD5fZDrZJif608UJNbwOA2aGT9x2AUirVDZN1di90Lp8cHiVQCt5fFY/fMQkOzDe98cgotZheUcilG5WVAKZdCr400ZkJjPNssLlRXFIf9fdXScj7BksXh5dsOCChrL208THGbAx0OKBmVgcfumYU2ixsmgxI5RqWgF8nlImGE5UBJYVb8b9aPMWhl+PEtk/BiZ7x2nkmDOxdNxPlLVkgYBjfPG4MsgwoSBrjY6gg73V5fUxvwCmK5vhtbVKqo35GOXgleP4stO78Nm+9bdn6LVVXlKXsm2kwaYHTKqqfvvwKtVjf++297I7w8Hl0+k/9s5/7zuO3a8dh18AJ+cGUR3B4/crM0uNhqQ4fNjbEjDFHpi70a3K+88gpeeOEFjBkzBn/+85/x4IMP4oc//GHM7/fMM8/ghhtuwIgRI/jPGhsbMWzYMP7fWVlZYFkWZrM56X8zGo0xvxNBEInD6faiYmZBRMIup9sr6lqWa9Jg4cxRYQlXVlSWIjdLI3i9xd5PDEaBrJoPLpsKj48N+2zlTWX46nADZkzMw6vvHglrg1u/Pw5vf3wSi+eNweZ/ncQT986G28fi8dd2R8RoV84NKON/e+9YwJ23U/mRMAxGDtHySkY6npAQSUACHDzVFrFRNbkoK+4bVW6vT1AOuL0+AHTCBCBQg/uMGes/OoHKuUXQqqUwaFVh5byqK4rBMBzONdnCkj8FN9iG5Wjx5rbjmFOaC4uzaxPPxMZgUVCpon6FQSPrMYFmKvD4/ILz3eNLofs2bSYNPLiAB+SJunZBHcbu8iHPpIFaIcWPrp8AqYTBAgHd0u7yoqHNiWGZ6l7HQ68G9/r16/H666+jvLwcX3/9NR555JGYDe79+/fjyJEjePDBB2P6XrpiMulS/Qj9jpwcfaofIe4M5HGQqP5iWQ6NLXa0WZzIMqiRl60VzT7aZHELJuxas2KW6PO117Xh1c3hCZZe3XwET/54juB3Gk82C8aH2j1+FOVHf4KW6LFw4ZItItbudIOFV5yDn7208TAevmsGn9E5+Pmrm4/g4btmYOVNk3Cx1YbKq8ZizMhMfHmkUXCxGWrSgOOAyquKsGNvfVi896SxJhSOyAQAeDhG8IRkSJYWHo6Jqp9D6e9yQmwc9Pf36k5tfbvgRtWT912B4vzMuN6rL3IgnvT1HkJjIZbfikZWBq9pt7j4GtwbPq7F0quLeZdxoCvJz6PLZ+F/1n4V0ZaL542BUafAj2+eDIvTi9/8tSsj/AO3TsXssryUZonuK+kw70LHQbC/Dp9qjkkuJooLl2zYsL02rAzkhu21KBk1G8OHpEa/SfV8F4NlOXhYOxQeP1QqBUxZsfddsnXGZLRXLDpdsoj2mS6eagbLCbuLa1VyLF0wDi9tPIT/74dT4fEBr2w6HKFXra6aAovNg+wMTa9zpleDu729HeXlAVeOadOmoaWlJaYXB4A9e/bg9OnTuPrqqwMvefEi7r77btx+++1oaGjgr2tra4NEIoHRaEReXl5S/xYLra02sLHs+g5ycnL0aG62pvoxYiIaQTVQx0HC+osBTjdYcbrBwic0KxpmQNEwveDOYIdNuKZ2h90t+nwtHU7kD9XhxqvG8C7lmz49hZYOFzIFvqMSKKVTXVEMlVzK3yMdxsLFFntEW7AcF5b0Y/60fIABnCKZw+0uL/7+/jHcunA8ikfoUddgRv1Fq+Bic6ndiXU1JyLKgCnlUmhC2kbRmePiVRwAACAASURBVDytu6vdhSYrfr92X9hnvdXjTXc50ddxkO7v1Rea2x2CY6y53YHMGMqkREOHXVgOWHqQA/FCrO/6MhZiGgfR1LQOuabyqqLwNmIgKBssIm05fIgW7RYX1tXU4vszC6DXyuE2BxIF/fHNfRiamWYeP1GQjHkX0zhIwzrlF1vsgklDL7baoGBS81Bmq/AYNdsSP99FiaLv0kFPCCUp606yxnQspetieCaNUoad+8+jqqI4zKNieWUplHIJNmwPeAyBA/wsKzgunR4fwHXNmZ7GQVR59jmOA8uy8Pv94DiO/3fwv96455578Pnnn2PHjh3YsWMHhg4ditdeew3Lly+Hy+XC3r17AQDr1q3DNddcAwAoLS1N6t8IgkgsNpcP55sD7owbttdi06encL7ZBptLOOt4ML4sFKVcigytuBtpTqYaC2cF3H6efesAnll3AAtnjUK2USV4ffDkp/tJUHfBmmqE2kLCBE6Xx47MwNKri/kSP2cbrYLtVn/RhoqZBXhz23FY7IHFa/ueOlQJlFHbvidQOih4uhAsA8bHrQUJcbVbs3wmnrpvDkYO0fLGdvA3/rzhACwOKik5UDB1JhEKRSmXwmQQnmeXQ6aYHNANXHdysezRoXOo+zVCbRStbNCp5VhXU4sry0dgXed8DxIMESEuj2j6NNkY9YGkoUuvLsbSBYH/8kyalMZwZ4nIlqwEyJZoSce+SweS0i4xlq6L5ZkMahluu6YENZ05QqorivHArVORk6GCpzOUafNnp6HVyKBSykRlZ4fdHdWc6XUr2uFwYMKECfy/OY7j/81xHBiGwbFjx3q9kRASiQS/+93v8Oijj4aV6UrF3wiCSCwWp0/QuB2bnwmdMlIU+fz+iJ3Hqopi+FlxY9jtZfnY5eA9Xn33CNbcI5zs0eESPg12uHxARl/fNP4IJW0pGmbAg8umws+Bj9UEgO176iISnQVPqa12LyrnFgXi0PRKWO1evL/rDCrnFkGtkmL0sAycPGfG/On52LG3Hi1mF9xeP3JNGvzX3TMxLFMVubPcLW6zvjnyNJ7iugcWKkUgfu3VzeF5AlTK+Nev97FcxHiuriiGnxt43kVBosmNYLZ5+HAYhUyCB5ZNxd+2HkVjqwM795/HqqrJkEqkUcmGVzYdxpXlI6CQSwLXhiizqU6iNVBIx3wX6Zg0lGEgON+ZFHopp2PfpQPJaJdYS9fF9EydBwYP3TYNLRY3VEoZDGoZdCoZWq0erK+phV4rh9fH4S/vHhY8CddpZBidZ4gqpr9Xg/vjjz/u7ZKY2bFjB///U6dOxZYtWwSvS/bfCIJIHC4RV2eXSF1tuUzK7zwG48tqdtdhQuEU0Xu0W4Td0dotbuTqI0/E+k25D5GkLa02D74+fins+VvMLry36wwe/o8ZOPptG8CBdwkHAIkEge93GvFvfHgMamVgpzYY+93dSG9ud6IoT8D1X8DVKx0z3xLxpdXswldHGvDwXTNgcXhg0CiwZedpZBtV0GZr43ovm92L9zo3hYJy4L1dZzAsRwek8NQrkYjNIa1KjvpmO4x6JTL0SlQtKMZfNh8NUwCHZKqQ0Vmu5qujTYKyYVVVOeouWsNkg0QC5HWWFpN0WjfBGG5KEHX5pKNcTMekocEx2n2+DzVpkZ2itkrHvksHktEusRr1MT9T90SPnZ/ZXV64vX5UTitCu8WNxlYHfzgRHJc2pwcdNjmGZfWeMA2IwuAO1swOwrIsWlpaMGTIkN5/nSAIopNYjVuvn8U1swuxdttxXqFctnA8/D2EsRh1CsF7ZAiUBAP6WbkPgQzArR0uwaQfVrsXUokEm/91OqItSouyAy6iDIOSwgzcu3gS2iwuXGp3hsVuBpMpKeUSjMjRRbaJWKxUQUb/aVOiT2RlqDBxdHbYBk11RTGyBDa1LheDVgGr3RsWZxooaTdwlV0hubTypjL84c19aGx18IZw0NgGAL1WDqvDA6NOAbvbD5fHJyobzjUFkmUFCZYKbO1w4P4lk1GQq8P4AiOMWgUKR2SitdWW9DYYaKTjWpOOJ7eZBqXgfDcmQLZESzr2XTqQjCz3sRrQfeorJhDyaHH64HL7kJ2hgl4T0CXVKikfQtVidvHjUimXYvG8MVAppFHPl6izm1gsFjz22GPYtm0bZDIZDhw4gI8//hiHDh3CAw88EO3PEAQxSDGoZXhw2dSIpGligtDrZSGXMYH6sJ3Xy2UMPF5xSa5Uiri6KkRcXUNOjh1ePzRyab9aRE0ZKvztvW8EXZ1UCkmEa949i8vw/FsH0NjqQJ5JgyULivFyyGK5bOE4bPn8W96VPH+oHjlGVaDudrdm78nVi0qoDGxYPytYG3vK2Oy430suZ3DPjaV4JaTM3T03lkIh639Zs6Omm0eLViXnjW0gMNfONnbA7fUj26jCojmF0GsVYaUAf7ZsqmBCoBWVpVDIJbwSq5RLcfcNE7H5XyextGIcCnK1gB98mE+qMw4PGNJwrUnHk1uphMO9i8vw8qaudenexWWQSlPYUBxQMioDj90zC20WF7IMKgwxKoH0SvWSdCx2r2CW+8Kh0+K2YSNqQGvlfC6asERqsZRw6/TQa+5wwWzz4C8heuN9t0zCT6snw+b048V3DmLFjaVh8rW6ohgqhRSsn0NWRnSbQVEb3I8++igMBgN27NiBRYsWAQCmTJmCp556igxugiDijkohw5ad3+LK8hEAE8jKvWXnt1hVJe5SzgCQSRmsrpoCp8cHtUIGj9cnll8jHA5IaaBYHzDpFaiqGIf1NYFsmhIJMGaEESqFBE1tTowenoFlC8fB7vKhaHgGLrbaceWUEQAAtUKKlzceDiuL5nT78eObJuFEvRkShkFTqx3PrNsvmOWzt9MRqsc7cLE5vbjl6rFQK+Rwun1Qq2TIzRoLm8sb95MxlgV0ammY+7rL7cEALBARTohHS32znTe2gUDm8VF5BqyoLMWYkRnw+zkcOtXCl/FrMbvw+tajuHn+WLyz42SYbLjU7oBSKcV//WgmTl9oh93px6ZPT6FiZgFe2XQYD90WP2WZ6EZnnxblZwUySKd4DKfjya3fz6C53YY1KzqN2wwVDtU2IS/OoSoxIQGO1ZlxrskOluNQf9GGkblalOQbUxbrng6YbR7BLPeX5SEhEKYWYUBr5ThW10MmcgFvwO6/b3N60W7z4Lm3DqJybhE2f3Y6TBdqbHFgyvgc/Gndl3B7/fjqcAP+753T0WZxQ6mQosXsRIZeCZmUiXq+RG1wf/nll9i5cyfkcjmYTqU0KysLra2tMbQkQRCDFZvLh4ZWB187OuginpulFkya5vIEskR2T5rm8vgACO8oWuwe8JKPQ+fpGweLwwOj0AKQhqVaYoIDtEoZrpo6EizHQa2Uweb04uk3DvHv8+NbJkEhl8Du9GLtthPQa+VYMKMAJqMady4aD6+Pw9ptJ8JcwtRKKdweFhqVDHqtXDBJSTqejhDJQatRgDG78Mz6/WGnUFp1/Pve6/PB4Wbxhzf3hI1Rnc8HYHCMtdC5lm1U4frvjsYf39wPvVaO679bFBZ2s7yyFDanB7sONUAhk4TJBqvDg7+9dyzsZJvlgCvLR/Cx3IM9EdSgIpbTwCTBSFgMydJhzatfhc13RpI6y7bd5sWlNmeY7lJdUYyhWVpkagbvXIm7DtCDPhZqQFvssSVSE/r9oJEdTBKZP1SHiu8U4LV/duXEGJqtwZyyXBz+tg1Tx+eiscWODruX97iUShjk52qj3nSJqiwYAOj1erS3t4d91tDQgJycnGh/giCIQYzV6eMVQyAgJNduOw6rUzhpmkoh443t4PXra2qhUojvE6pVMnTYfXhm/f7OsmD70WEPnMAJ0d/LfdhcPt5FHwB8fhYvvnMo7H1efPsQMrQqvLwpcJp93ZxCbPr0FP6wdh8sdh9vbAevf2njYThdgVMvl4fFojmFcHv9aLG6w7IXB09HQkuKRZQNIwYkbq+fd/kU+nc8kUqkgomdpJL4Z0RPVwxqGe5fMhlKuRTzp+Xzc/ba2aMiZOpfNh+B28Piujmj8cXBC3zd32yjOqIdX/vnUThdfmz4uBYtZhdtmA1GGMDr5+Dy+OHtrBeeUjiJ4HwHF7W5EnfsLi8fQrN0QTEqryrCR7vrYHelUE9gAIvTi/pmOywuX0r6Ld46QLT6WE/edVH/PgN+A3P08Azc+v3xvLEd/L0X3z6EK6eMxOKriuD1sbyxDQQqPvxh7X5Y7NGPgahPuJcsWYJVq1bhpz/9KViWxf79+/GHP/wB1dXVUd+MIIjBi60z62Mobq+/c9GKzDbcYRPOON5hdyNXLNGalxM06v/r7pmC15vt6Zc0JmokwJmL1rBd958smSz4PizH8Rk3Qzcxgp93vz64GK3ddhwPLJsKpVyKU+c64Hb7w9y2gqcjfEkNMrYHBVaH8LyxOrwYEufkRmYROWC2eeJ+r7SFAzJ1ClTOLUJetoZvD6NOJTrfX9p4CA/dMR1P/f974fb6UV1RLHitpNOOSQd3YiLJSIBj9V2u0mcbrSl3lRYzpjpSON9ZjhP0tmNTVZowXTzz4uwhEW0Sv6hP1ru5p3fX9/JMGlTMLMAf1+5D5VVFgveurW/H+FFZaDU7wzwBg/luYtEVoza4V6xYAaVSiV//+tfw+Xx4+OGHUVVVhTvvvDPanyAIYhCjVcoEhaRawJ0cAIwGEaGqE190HS5vWBwOAOzYWw+HiFGvVcmRZ9LwceIAsHP/eWhVaW44MsC5ZgdeeDv8NLuh2c632diRGbjxqjFwe/wwGVUoKTDyhnQoQm0cXDDdXj9YPxtWIqy729aFFkfqF34iqejUwtUAtAnYpBKfo1GrL/2XToWxxeKGVi3HzgPnsfKmSaiuKAbLARk6uej8DSqLXZtrwezucsyflg8wgIRhMGVcNsYXZKaFOzGRXNLRVVqrkgnOdzEvtWSgVgp72/36nlkpeZ5Ya1MnhG7GbH6OlpcdFqdAMrMoiNaQjir3gMCmxMN3zeB/f8feetx74yT8/h9f8/cTurdcJoFEwqDZ7ET194vBshzcXhZOtx83zRsTk0dQ1COYYRjceeedZGATBNEnVEpZRNbs6opiUYObZTnB63vaVdZp5Fg0pzDiOzoR5cHn9+Om740Ny065vLIUPja9049aHF4cO9sWYTxv31OHu2+YiE/21mP+jAL8eX3XYnPv4jJ4ff6wRWXH3vqINg4a10DXhkhoHe/QHd20WPiJpGN3eiOyX1dVFMPh9AJxrmGv08ix5OriiKzFYnN6wNBNYSwpMGLJ1cVhpdhW3FiKuxaV4PWQuOzg/FXKpQitoLhjbz3uXFQCt8cfNt+H5WhROqrzRJOM7UGF3eXlxwIQkN/rampRNMKYMoNbrZIJzndNCg3uDpGTV4vDg5wUnLqnvJxbDyVBe0xm1gtRJ/GL4mRdSDd5aeMh/GTJZDz/1kEAXbW2gYB8vPuGiWEx3MsWjoNCJsFv/vff0GsDuuWG7Sf5v6+8aVJMJdB6HMFffvllVD8ye/bs6O5GEMSgxeLwQKeRh5X50mnksDg8yBJY3G0OL45+29KVnVirwJbPTmP4EB1giDytDiKkQDy6QtilXCaV8sZ28Pq/bD6CJ+5Nb5lmtnlEa+zanV5Uf388r5gDXTG2v/rRd8JKrljtXuSaNKiqKEaWXgWVUoa/vXeUj+dctnA8FAoprpk1Ch4fi537z4ft6KZ84SdSgk4jx56jjVhVVQ6X2w+1UootO0+jpDAr7vdyunyC8eKPLp+JDJHNuoFAd4WxbMyQiHZ49d0jePg/ZqCqohjZRjUamu28J8rKm8rw0Vdn+d9rMbvg8vgjTuqef+sg/vM/voPhJjUZ3IMMl8cvKL8DiUlTg9fLCs73NStmAerUPJNaKXzq3lM+mUSS6oSlYhvtT9w7+/I24KN1Ue+eyVwjiygRJqSbNLY6oFPLccd141GQl4FLbQ7cuagE4ACnxw8/y+Jny6biTEMHv1kZ3MysnFYUoVu+tPFQTIcLPY6WX/3qV73+AMMw+Pjjj6O6GUEQgxe1QtqZ1VHPlxJyub2iNbKNeiXmTRuJY2fbeQN93rSRMPawo2x3isSJO32AQeD6HuLKTbr0TR5k1Cuxc/95/Oj6CWi3evj2ydQr8NaOk/jhwvGC72VzeNBudWF1VTma2h1wuvxobnfg/V1ncO3sURhq0uL2ayegocUGiYRBll6BX/9ld9dJw01lYTu6PS78AuU9SKEfGGg0MlTMHBXhQaFVx18BFd3UsXkwNEN8462/E/HeAuEggTntRdHwDLg9XhTnGwFwYFngo6/OYsmCcTjT0AG3N7BZlmUQjvlu7XAhQysXrBZBDFx0GuGQBF0KN0vFczaI525JNCqFFDfPHxtWh3nFjaVQiugul0UU62aqy7mJyeRWi+vyN+B7KukFCHv+LBiH2vp2sFxgI+S2a0owMlcnOLbPNVmhVcnx+Gtdes3yylKA8aDD5oXJoMLk4hw0tTggl0u6vi8if+MWw71jx46ofoQgCKI35DIpOmwevFzTtWhVVxQjf6iAJYzARrLH648w0HtKxmnUCRuAGSLGs9j16Z6p16CR4SdLytFucaHd6sGOvfWQSyVYUVmG6787GkNNWuEYW5Ucf//gOL/IjMxRQKGQRLjhL6+ciKEmLZ7433+HnzRsPIzH7pmFIRlKgO1h4e+tTibRr7HbhU+d16yYBZ0hvkqoKUMpeLqUlTGwE6aJbWZ1/3ddoxWbPzuNX9zelSBt7MgM3Py9YtTWt0Mhl0CrkmHZwvHIMqgEf+NimwPZmcLlGWOCNtn6FTqVHMsWjg8rK7ds4XjoUui+nakXnu+ZKUyQyDDgjW2gy7vkNyvj7AkXbTK0FJdzE5NNJhH5EpM+1YsMCT1dzzaq8L3p+bzcC5Y63Pr5adx7Y1mEblJVUQyfn8WrAl6NwTJh1RXFKFLKsO2rM6i8akzY+wiNy1jeTbpmzZo10bcEAQBOpwepSk7YH9FqlXA4ek7Xn25otb0L94E6DmLqr87SFE1mFxipBEq5eOmOVqsbL77TpaT7WQ7Hz7Zjdlme4A6hzeOD1e7F828fxK7Djdh7rAnTS3Kh08qhFXHl0milyM/NwP4TzfCzXKAO9c2TUDhcJxhno5RLUDQiE18fv8Rfv2ppOUZka8LaozeSNhaYQLscr+/A//xjH3YebMDJc2bcMn8sSgqz8Pzbh7D3+CU0XLJi6YJxOFDb1Q4rbixFh83Nv+uhky3INWmRaVDhUrsT4woyMXG0CQ0tNnx1+CImFGbhi0ONYbf3sxyyjWrYXD4M7XRBzTGqMLd8OGaV5eH6K0ZhRLYGFocXvwlxafezHL4+fglzy4fzJUS6k+5yoq/jIN3fqy+cb3Hgs/0Xwj7zsxymj89FdpxPoViGQZ5Jh39sO45Dp1pw6pwZd1w3AUOyNFBKE1sqSKzv+jIWYh0H3WUT6/ejqiJ8Tt99w0R8cegCLrU7MSxbiwvNNiyZPxalRdl47q2DOHiyBcfPtmPiaBPe2nESXx9rwh2LJoT9RlVFMbbtPovysTnIDN2Y7JTtF5ptYDufp0c6jYXfvL4HH+89h0++Po+iEZnIMabGCyEZ866/ywSFXAKH24dhOXpMGG3ChEIT8rLVGJ6tSdlGiYfjMDxHHzHfs4wqqGWpKQXY2ObEJ1+fD/vMz3L4zsSh/JyJh55gcca2birlUmRoFIJ/S+QYE9Ob8nO1vepTPSIBjtaZ8eTf9orKkCazCx/vPQcA+MEVo/HmRyfC2uvQqRbcfUMZGEmgTvbV38nHiCE6FA034qN/1yF/qAGHTrWE3dbPcphYZMKhUwF5+Z2JQzFpbA4amm2YWZqH801WzJyYi4mjs8PG5W3XliAnUw1FyDrU0ziIehvLZrPh2WefxZ49e9De3g4uZNR8+umn0f4MQRADBQaov2SHw+2H0+2Dw+OHWSFF/hCt4GLt8viRP1SHG68aE4j7VEk7az0Lx4txHIRP0XrIDGqxeLG+5gQq53ZmKeeA9TUnMCp3mrDbT8hOscPrh0YuTd9MvZ0K7blLNj6rLBAs33UCq6umQK+Vw23241idGcBZPHzXDLRb3DAZVWDAwer04Zd3TEdjqx1Otx8ZOjlaO1xhWWqDSZfUIlnlWRZ4aeNhPHHv7IDbvYALGMV2D2yMegUWTB+O700vgNnmhlGvxCd76pChj79niEMkhnvNPbOgF9m86fd0nvJo1TI8sXI2vH4WVocXOrUMv7h9Ok6eawfLAp/srUf1gnE4d8mKvGwdbp43Bh12b0R7raupReXcImz4uBZvba/F6qopOHvRAnDgY75VShksLl/gRAmxlx2iBIr9D4vdi607v8UPriwKy8Uw/MaylPWZRyyG+55ZQoVGkoLYWqiKcwhGv1k3xU7Y2cs4ee+svPLcWwcjZMjT918BluVgtnmg1QSqVjS2OkTdvO1OL599POi1oVYC86fnY/RwQ1hfZhtVWDCjADlGNe64bjwYMPD6WFxotgEcIJcCK2+eBL+f40/Sg/d59d0j+K+7Z0JrjG4dinq0rFmzBk1NTbjvvvvw85//HE8//TRee+01LFy4MNqfIAhiAGH3+NHS4eLdc5RyKVZUlsJkVEEroAhnZShxw3dH41yTjY85vuG7o5ElciJmFamRbXN4kCviXtZiccPrDznKZgCvn0WLxS2+YHUajEX5WWhutqansY0uhVasXmR9kwXXzSnkM4ofqzPjfJMVjIRB+zlXmMv4nYtKwHGAXqNEs9nBG+pubyCp0uJ5Y5BpUGHFjaVhcWtBYzwYryUW557qpC6DkiS68+q1ckwYnYNfh8TB3bu4DDpt/JVCi4gcsNrF5cBl09mWF081Q6OUJdc1WsCttLqiGO/tOoMf/aAUz6zfD71Wjmtnj8L3ZxXi5PkObN9TB6vdi+qKYqgUEsH2UnSeUDe2OuD1+7H5X6fDfv9P6/bBavfi/iWTUZCri9l47jfGAsFjc3qxYGYBmKCPLMNgwcwC2FzelPWZ3SFc2tPu9AIpcivXa+SCFVMMcc5ZYRRxp0/LdVMs1ppDwMhGQCaAYaKSn2KVV/RaOb5ttOLFdw7xbf/jmyehw+ZGTqZaNEQm/EDiOBbPG4MN22tRUmDkE8cGM49379e/bj0Kq92LuxaVwOsHnvzrHlG9y+WOPsFg1KPliy++wPvvv4/MzExIpVIsWLAAZWVlWLlyJe66666ob0gQxMDA6vBFxMK8uvkIHl0+C9qMSIObZYGWbqep1RXFyM3WCv6+Vi2c0EXTQ41sMQGqT4AhkGzMIYaH2Mnz+pCTLKVcihG5ehw72x52Iq7XyuEOyVYcaki3mANJT3KzNDhV346tX5zBmhWzcPBkM1gW/DVKubTH5HWpTuoy6Ig29i9O2JIYw61SSAXHe0ISFgFJb8vuCJ0UB0+onW4f9Fo5rptTKDh/19XUhtWaDaKUS5HXKWeV8kB7Vs4tQtGIDJxpsOC9kLJ/z711EA/fNSNm45k22aIglRs5Amg1CnBtTjyzfn/YprlWnbo+M+gUgmu4IYXjSKeUYkSOLqzCyogcXSDWPY79Z9DIsHRBMV7a2FUSbWW3RKVpj4D8vH/JZGTqFNBpFKJjXqzyyoIZBbyxDQTk0IvvHMLqqinY9OlJLK8sDSvret/NZWjpcGHpgmIAgc2aFrOLLydbNmYI3vo4IE8Lhxvwpzf3i3oDddi92PTpsR71Lo1KxntT9kbUAVAsy0Kv1wMANBoNrFYrcnJyUFdXF+1PEASRTDpj8Oqb7bC4fPyOabzoEMkm2mF3C17vdPsES3Y5RXYIPV4/li0cx8cnBesierrdMxQGjOA9mHi/fDLp7EeFIuDWtmNvPaoqisPapaqiGDu+rodeK0dBnh7VFcV4YNlU2JxesBwX1k/zp+VHtNH6mlrMn5bP/1671YUOuxdePwu704vhOTpIJAz/9+WVpeC4HjSAEJezNctn4qn75lDCtAQi5s5rcXgTcr82kWy07VZX3O+lUspQ3W28B05yE5PYKdlt2R2xk2IwgFolxYIZBRGlvYLz1+31w+rwCMoHi92N6opxWHnTJDAMg50HzkPCAOtqTvDGdvD3WjtcEXGhvRnPwU220Pvym2wEb4g89MIuPPziLjz0/Bc4Vt8R93U5Fpxuv+CmudMtvsYmmtA68cFnWldTC7cndc8EDigapsesCUMwYVQmZk0YgqJh+rivZxa7lze2gWDpqcOw2JMjewBctt4oJD+fe+sgDp1uEx7znfdjJEDR8Az8+OZJqK4Yh2xjIAHbyFydqEff7LJh2H2kAb+4fRqqK4pRXVEMr5/Dhu0nsWF7LTb/6zSum1OIPFNXTgKFXILGVgc2fFyLMw0WUVkLgNedso0qqBWBnBmh8u2+WyYHvC5d0Z1yR71ijR8/Hnv27MHs2bMxbdo0rFmzBlqtFqNGjYr2JwiCSBZJOKUxGYUzUppEamS7RWp+ii2keo0cCpkkbFdZIZNA34MCJ2YItFlcyE7jMl+iSICjZ81Yu+04frhwPFbeVIaXNh7G+7vOYHXVFNQ3WfiTZwBYNKcwrFTTypvKUDQ8I7yfROKewHQZ0zq1FGabB7dfMx6nznfw7X/XoglQyqXY+MlJ3HtjWc/P3lt5DyJutFiEN796DKW4DEwZwnM/Ux//IEuZlEGOURUmB3KMKsikibFUUu0aLXZSDA7Ysace8zoN6+7PF5y/EkaCmt11YXks9hxtxMLZhXh967GwEICWDqfgvdqtLvz45klhbpy9eqikOHNyupOOMe4dNreg+3aH3Y2hKaoC4HT7BMe32MZ80uEQSFueAFIte/qsN4aEM/lYTlQ+RYz5zvu98eExVMwsCPPaWV45EXnZWuhUwp6OoR599U1WAAxGDNHh9AULKq8qAhAYy+travHArVPxl38eBgAMyw6v4CImawFA/pC0fQAAIABJREFUwjDIM2lQMbMA62pqodfKsXjeGAzP0cKgUwDgcOpcB5SjsqKq8BC1wf3EE0/widL+8z//E3/4wx9gtVrxu9/9LtqfIAgiSSRjcWcAwbgmsbXIoFMICjcxVzGfn8M/d37LxzOxXODfq6uniD6TKUMlGAMltgmQ1nQmEVm77TgqZhbgfLMdo4fp8cCtU3G2sQNNbXaolXK+pEt1xbiIk4GXNh7Gj66f0JVoiQPUSmEX3VFD9aicW4SNn5zENbMLIZMCbRZ3RAiARMJg4exCSKSSqF2piMSiUQkn9dEkqLyPTMrg/lsm4UKLgzeCh2drIJfFXxFlWT+UCmmgPKDHB7VCBrkMYDk/gPgroSl1jWYACYMIY7e6ohhHv23BzNJhaDY7ROavAT+6fgKsDjeWXF3Mu/wr5VL84vbp+N3fwxP+vLzpMG67djx+cds0nDxv5mvYVswsQM3uOvzfO6bHnkySNtlESbkxJUBOpkrQfTs7hfXtM0T0BLHSnkkhSWEmCZc9MZTcAnrRG4O/ZfeAYRi8tPEQGlsduHNRSY9GrF4rh83tDyRAU8sDeWnmFoV57ei1crR2uJGpV8GgUQiW9wrmkgEDfPRVHe5YVAKzzS2YANbtDVS8AQCrw827oe/YW4/qimJ8tLsOV5aPgEQCFA7LwNs7AiF5GVo5VlSW4alO2ek2+7Gu5gSUcike/o8ZkEslyM/Vw+7yARm9N3+vq/GRI0egUChQXBzwh29ra8OTTz6J2tpaTJkyBXl5eb3fhSCIpJKMxb3d6sauww1YVVUOl8cPlUKKd/91CiNydTAJLBAShhGs+Rl0Ve6Oy+OL2PWsqijuzGouvPtuMigilM17F5fBlKEAUuiR1heCSUSuLB+B9Z27qz+7dSoe+8tuvm+zO0/+RuXp4fJGehDotXIwDMMr20q5FD+9tZxPGhKqZP3v1qO8a+nabcfx0O3T+YUG6HLte+iO6XjhnYN8gqXeYrOIxKNWyrCisjQigaE6zll0g1g7Fa1Q5ea2a8dDp1UgSxNfxdjvZ/D7f+yPUOAe66FaweWQsvwDIUp98CRlWI4WGVo5VCo5Rg0z4L//thd6rRxVFcURcvHvH3yDa2aPwpbPv4VcKsHDd82A3enFxTaH6KmhTq3A797oyuZ79w0T8cneeixdUAydWgawSPtkkv2FdIxx93hZQfftR0fNTNkzeb3+iGSdK24shbeHULJEkyzvhITKnt42DRjgQqtDVG8E0GWoa2Q4Vhf+W3ffMBE+vx9KhSziIGbZwnHY8vm3yDYGNnge70y2efu148NOv4GATtM9R8WDy6aG5ZL58nAD5k/Lh0QCjBqWgUydAi1mF9744HhEqM3ieWPQ2uHCo8tn4lKbE1kZKrz4zkFUzi1CrkkDn8+Pm743NiwO/Mc3T8KQLDU6bB74OVawTY6daUPRcCMYhok6W32vdbh/+tOforS0FCNHjgQA/OxnP8OFCxewZMkSfPXVVzhx4gTmzZsX1c0GCgO1/nKiSJeak7GQVrWX+wAjleCTr8/Dz3Y9oFIuxfVXjIqIzev6Umx1V/0MA5Vchtf+eRS7Djfi62OXcO3sURiRq4dWIKHRuWY7tu0+izsXTcC08bm4YvIwfLT7LEblZSBbIAGXy8fh+ZASEcG63Qtm5Iu671gcXvz3378O+86B2mbMnSxe/zlIPGvuxoOmDhcumV0wZShw5ZQRKCkwQSJBWD1Qh8uHI9+2onCYAflD9PjiUGNYn99wZRHWbguvU7n3m0u4ekY+5k4ZhhFD9FjwnXxs+Lg2LI4zWGP0swORtZYnjcnBp/sCY2vf8UvINKjx3NsHL7vmbrrLiXSuudtm8+Bv732D788chYlFJowvyMKHX51F+bgh0CfglNvl4/Ds+gNh4+qbb9tw9XfE52ZfudDmwL/2CdT8njAUpgRlLQ7Wlp87bQSum1UQqCPbraZ2b8Rahzu0Bm9wXpstTkwdPxQ2pxc+L4shWVoUDs+ATi3D9VeORm6WBuPys/DRv+twqd2JY2facO3sQuw+ehFDsjT423vHUFpkgsPtxfGz7RHrwchcPQ6ebAbQVcP29usm4M2PTmBGSS6Ucmnaz0sx0q0Ot1jt4qhrFCeARrMTF5qtuPuGUkwbl4t504ajscWGsSMzkaVLjUu53ePH61u7ybIvz2JWaV4gSVkKuCBSh3v6hPjW4Qa6ZM+ssjxcf8WoCNkTLd3Hf281vi1OL745246T58wRcmLulOF49NXdOHiqGQq5DH4OqG+y4UKzFQ6Xj5cdo4cb4fez2HW4AfOmjsTEokBtd7lMgl2HGnHDlUV4e8dJ/hmumVWAvccuYcq4HJSMMmHCaBO+N3UENn16KpDhvPM5//1NE+ZNHwGzxY1Pvj6Hq6aOxDufnMLBky3Y800TJow2weNlsb+2OawN/CyHBTPykWVQor7Jis2fncaYkUbU/Pscjp5pxbcXzJhTNhwvvB2uZ+4/0YyhJi1a2l0waBXYe+xSRJuMy8+CsbMMZrZRxdfivqw63KdPn8b06dMDHWaxYOfOndiyZQsKCwsxf/58VFdXoxebnSCIJBPzTmm3mtpqlazHmtoA4PWy+Cg0VhDAR7vrMDY/U/B6k1GFOWXDwmKMqyuKYRJxX+uwiydlyxUpJZaObnt9RauSo67BjKGmrjb75Z3CGYiHmrS40GzF/1k6Gecv2bsyqQ4RTjhy8lw7xhVk4sOvzmL+9Hze3Sr0N2VSieC9zLbwBEuCsVlEUnG6vILl8BIV92h3egXHld3pBUTmZl/RisTwJcpdHkBKSgV2l11jR2ZgwXcKsObVr1BdUQydRoHNn3WV8lp50ySsq6kN+43QWG5wXac81RXF+MktZWhocfKyYWSuFn/d+k3E9+suWtHY6uiXMjOtCYlxj8lNP4GYMlS4dnZ43o97F5chK4Uu5XaXj09q1f3zaNx2E0Gy6nADSFhYRm+6UYvFje176iK8Z+67ZRLONnag+vvFkDAMv4Ef6rIdrG7CchzW1dRiVVU56i5aAQDb99Rh5eJJWLN8JhgGYEP0xQ67G/csLoVOrcCZhg4AwN8/CMRzvx9SOcHt9aPF7MR7u87g3hvLIuK01247gdVV5YJ9pFbJIOkMSbzxqiLIZV0hdS1mF85fsgq2S6ZehZdqDkGvjSwJV1VRjJrddSgpLEOL2YWhWeqo+qDXLOV+vx9yeaDjDxw4gOzsbBQWFgIA8vLyYLFYoroRQRBJJMYs0XaPH1anB/VNVjS1O1B/0Qqr0wN7D5lBPV4/KmYWYPNnp/mMkBUzC0SziHu8wtlHPV7hbNcZOqVgptyMHnYQg2573b/TH0vTuD0+LPpuEV4OyVrq8/oFMxC3mB3IMqjR2hGIYdqwvRabPj0FuUwi2B4sC5yoa8f8afmCWc+rK4rx9o5aLFs4PuzzZQvH44Mvz4b9VnBMhbqeEcklQx8opRM6FxfNKUSGLjEGk04tExxX2jjXpQUAuUwimKVcLou6yEq/oLvsuvl7xdj+7zqsqipH4fAM3uURCMy1pjaHYB9IGIavWhC8ViIBPF4uTDZ4/RzkUknE98H1X5mZ9nQaU2VFOQGDKsUecj4fK1jez+dLXQ0qnUYuOK51Kdz8USmkgjJInajShAmgR92IATRqOax2L97fdQaVc4tw2zXj8cCtU7HuoxP469ZjcHvYMG+54GZeaHWT4CbfuSZr2Do0xKhCfo4WFrs3bI3SKANhaH9Yuw/rarp0yJrddfzvBn9bLpVALpWg3dql4wSzkOu1crAsF5FF/O4bJuLVzYfR0GLHmBFGKOQyNLXZcd/NZfx1Pj8n2C5NnbW8W8wuvLfrDBbPG4NVS8tRObcINbvr8P2ZBWBZDn/ZfAQWZ5yylI8ZMwYffPABrrvuOrz//vuYPXs2/7empia+VBhBEGlGDDulTk9AsETUyDZpoRVxxdaoZOHZcAHU7K4TTWoWa/ZRt9sXUWNxeWUpPF7xGO6BVP/ZoFOivskGtzdQlmL+tHzoNQr8Y9vxsAzENbvrcOeiifCxHB8fDwTa9vWtR7H61nLUN9r4k61h2Rp8sOsMysYMgUQCtJhdqNldhwdunQo/y8JsdcHjZTFtfC5GD9PjqZ/MCcRuaRVoNrv40/DQHe7gv0lJTxGccDm8x0fP7uWLfYMFcNeiEnTYvfy4ytDKEzLF/CwLjUoelqVco5LDz/aXwrTR0V12qZUSzJ9RgDc+OIbbri0JO9FpMbuwfU8d7r5hIl7759Gw2MMOmxufH7wQUFiZQO6MMSMz8euQ3A9urx8vvn0ID981A092upmGntz0V5lJxIbZ5hHOUm7zYEiCwjV6g+U4EdmSusFoc3qg/H/svXl8VOXZ//+Z5cyZfSYzCVkICSQwJCTBsInQIgiJqIgRUBIRt4oIbcWXffWr/uxTtY9tny/t87TfPm3drXVDQRYRUQQEFYtFRZRFICGEsIVA1tnPMmd+f8zMyZzMOSHLTDIJ5/2PkjkzZ7vPde7rvq7rc2lUAhtEalRw+2ikDJK2d5JzIwOBo/UhpfBIdHvdJ9WoKh+L17Ye4QVoczKMMBkIUG0dc7jojJrIXCCyoB/5/J0d1ZgwJhVOL4O/RZUIUkwADc0+fs4Z+VtEeVwZXguM/PaG3TW49+Yi/GnNt6J12mcvebD/2AU8XDkBXDAIu0ULr5/Gwln5IDUEfvuPrwSaAEvmjoXHz8JuIfnuLx3zzCKs3dmRYdHU5sc7O45j1eJSQAHMnDgCpEaFC02ecAkQA+DyWSGXdbh/+ctfYuXKlXj66aehVCqxZs0a/rMPP/wQEydOvOxOWltb8eijj+L06dPQaDTIzc3Ff/7nf8Jms+G7777Dk08+CYqiMHz4cPzxj3+E3W4HgH7/TEbmSsVHsaLp4XnZFkDCieqpqJlJL64+KrVyrSXV2PV1vUCU7YM9tbh7XpH0iQyV1jQKoLHZi1SrFvfdPA56LYGXNx+GjlTh+nCLimixkg27q3HT9LyYBQ0mwIGiAoKFlCVzC3DbnLF4efMh3DNvHB6/ZwoMWjX0WjVohoXdokW7m4bNRMJu1gAcYNaG7pFZT2D1T6fD7WegUChxrL4FsyfnYM+Bs1h6Q+HgvNaJIqzieuHEJehJdUJF5fq7HR7DBECzXKdxNTYhwkaEWgWuk3PNcRw06gRGl/rx3vGEbdev758Kl4cGQaixcXcNyqfmClJ+IxNbl4eBj2L5yemYbCu27zuFqxzDML0kS2AjUq1a0ckyw3L49f1T4adZWAwaUDSLiWMmyc/xFYJJrxZVKTcOoBNJ0+K2ZSD7cKtVKuw5cBY3z8iHnwpAR6qwZU8t7rxx3IAdU4+RmBs5PR2CcJHotlIJjM62QEMoBfO7qnIHtkalepOECgW5KVDOGs3bpOhFeCBkZ9x+BlAoYxYNI32uo4lk5IzMNGNxmQO5GSZ8/u0Z3DpzNAKcuIBZhl2Prf86iWklWfjL2gMCW6lSKvDaVmEWx0vvHeY7N5gMBJZXFONX903BD3UtyBtugVqlFC2z02rUSE/Ro7HFiy17TuKeeUXh8qbuPS+XFU3LysrCkiVLMHPmTKxatQrp6en8ZxaLBbNnz4bRaOxyJxRFITc3F48//jiWLFmCQ4cOYffu3bjuuutw991345lnnsFjjz2Gc+fOYdu2bSgrKwPHcf36WU9IZrGsZGQwiq4MdtG0ntLqoZGTbgLFcAgiFBWZ4EiDXkvAKqE63FNRs8ZWH8bkWDFmRArG5dlRkp+KqUXp0KiVSBERaKG4AFItBjy7/iAvyra4bCxsFg10RNdrhSShgiXs4HeXZBJNc1Ms/DQDjz8APUngQrMHY3NtINRKbN1bhxunjUL51TmYUToc7+w4Do+fxXWTRiDdpse4PDsaWzzw+lncMiNfoNwZ4II4WteCq4vSkTfcgnd2HMe1pcPR1O7H6te+wcf7TuPIyWZcU5wJmg1AoVDGiOeRGhXOXvLiD2/ux7fHL+HEmTbcf0sxxo208mqnTh+DxjY/FKrY70uR7HaiR+MgrAj7u39+je37TmP3/rN9FpXrCk4B7DlwPkbY5cbpI2FIQJ2hnw3ir+u+jxlXXQka9pZmlx9cMKSMHmqBq4DdooVKqYAlzoroAAAFUHvehUMnW9DQ7MW5Sx4ACtiiatN7Oha6JUYZdvJdPgZaUgU/xcKoI7Fh94kYGzvvR3mYUjgM40bZYNQTSLfp4acDIEkVFFF1lpHvfF/ThHk/ysPhk8387khChSmF6XjmH19h3+ELKM5LRV6GCWSnhYxkfy6lSDbRNAA9FiZNNGLP8bFTrZgzJUdU+LRfjonhBJHQiG2ZM2XEgImmKdUKmA1aPLchNBf55uhF3DbbgeFphm6JZUXozzmj1PgXzI0UQLObQYpZi6I8O+rOt6OuoR0jMy3ITDXwrQkBoe05fLKZd2g/+rIOGTYD8rMtuOP6sVjz8TFcbPXx+8u06zFmRAr++839OHiiCSfOtGHBrNE4d8mN/OFWUZG2G6eNQovTjw/31qHN6cc1JcPxzvbjmF6ShS8PNcRsP6N0OLQataitLJuai8++jRW8m1qUgbG5Vkwcm45mpx8cB7zy/hFkphqx46t63D7HgYM1TbzA4ZK5BbBbtGho8iAI4KrRqTDpCIzMssBu1cIUfu/1STQNAIxGI4qLi2P+npeX152vw2q1YurUjjYDpaWlePvtt3H48GGQJMmLslVVVWHOnDn4r//6r37/TEbmSsas18DjoWDSm3jRtADLwtTFhLbNJS5q1uYWFzWzmEmca/LGRFstEmqoHKdAionAU8uuQavLjxSTFhRNg+Pi3+s3qVAAQaUCOh2J+rqWmGg2oVJi3SfVuGdeIYIu4M65BWACHH736leC7XwUC6uJFL1HAS4IH8XgtjkOBAIcnlsfEge5b/Y4WAwkPH4GjS1ebP93PZbeUCio/xdrkfK3d78PCabpiX7pV5rs9FcbmQgKhQLLF5TgxahWb8sXlEi23OsrTglBQ6eHlhQ07C2kRo2P9h4PRZe6m+nSB9x+FmcvuWPLa2y6ni8mdLd/b3i7N7cd5fvBFuTaUDQqBVAIo0IUE0BOhgm7vq6HzaJFY7NXYCNWLhovem+GDzPwGUaRc2ps8fKfy6KHCaafejn3BJdXXEjL5aWRNkB9rz1+8dIz7wCKpvmpADbsrhFkAG7YXYNfLJkoWXKX9IiMx+ULisFxwMbdNchJNwrON2J/cjJM+PVProZapeR7b5++4MbKReNh0Kmx9IZCwW+uWDieL1sBhGngFgOBpTcW8EGB6Iy90xfcqLg2H2NGWHDmohuLy8aCosXLDNvdPui1KtFxw7ABZNr1aGj28n8nCRWsRhIpJhLNTj8cOSkIIuRY60gVJhVkwO2j8ciSiaBoFmkpOjAsh6N1LeCCwJ4DZ3HDtJFQqZXQqBVQd/M92+/LRRzH4e2338bs2bPR0NCArKws/jObzQaO49DW1tbvn1mt1gSfuYxMMhMExQTx0vqOdJwHKorR1UzAZhHvK5oiUfvFccC2L+sERnzbl3UoGCmuas6yHF58r6OGqP6CC3sOnMVDi0t7fZaiDET6aBfHUnveBS8dgIFUgWI4QRrWpk9PYOWiq1BzphVZqUb884PQ9YmoFwOhl8wr7x9BZbkDWo24umpjixcFuSl49YMjmFSQHqrjuzYfr275QTAhnz8jD29uO4rHlk7iJ+JNTnFnq8lJAUD/OZrh+8b3Bk2iPuBdXaNEODQMy4IklMIaQ0IJhmUBxH/ibDVpRceVNQF1nyqVAuVTR8YoKavVCVpM8LGi9fBjclJ67HB3a+FFATS7aLy57WhMic6yimLs+uY0CJUSy24pwdmLLrCBILx+GrMn5+JSq1dgIw4cb4SGUIneGy2hRmW5A1lpRpw67wSpUWHjpyf4bSKih70en0n8PCYD/b0I1x2kOwAM3KKL2SBeemYaQH2QdjctWj7X7qFhH6S6JZ3Ho8lAwKDV4LWtRzB/Rh58dEDQFSGi76BUACqlAiNS9Xhs6SSca/biTKMbb247CpeHwS+XTBSkrbd5xBd1RmdboFYq0NDswcOVpTh1IdQNIqJOX3FtPkYPN8NDsfx1f3TpZGyMXvgIhhYHHlo8ARTNio6bcxc9uH9+Mf741v6oRYAStDh9+Nu7B/m/PbT4KixfUAy3l8Vn39ZjRmk2zl10YWyOFRQdwPH6Vt7ZLp+ai21fnsKqyglQKpVQK7uXqdLvDvczzzwDvV6PpUuXYseOHf29+7hgt3edQi8TS1ra0BPXS/ZxwHFBNDR50OL0wWbWITPVIBnxajhxCS91UsF9afNhPLlsquS9a/EyWDK3gBfqikSs1Sql6HdONjbghmkjBW0llswdC5eHxrhRsToK9U0e0ZccxQTiNp44LogvDzXgz29/y+/jkTsmYlpJZo+ig30dCyzL4eT5djS3+6BUKrBt70lcf81IQZTtnnmFyE4z4Ie6ZnBB4J8fHEFVuQMmAykaBUsxafHepzVYuWg8nxrGp0ZZSVxo9qDmTDsmjE1H2ZRcQep5xMlYMGs0ZpRmw8sEkJ9jAwA0OinRF5tBR8BLB8SjE1Hf74ru3td43bd4ExkHXV2jRNjCiy4KW7842VFjqFVhy+e1uOfmosTsz9MkGlGHIhj3/Z364QK0GgWeuHcKnF46lI3jo+DyMCjIjb/+Sv0lj3ikpId2x2434nzrpS6fB5bl8K+D53H2ogszSrN5WxfZ7uXNh7G4bAwUCgUvYKRUAnaLDoRKAbdPLbCnKxeNh8vjjxFTqyx34B9bDmNGaTZYlsO4USl4bsNBvhYTiLQXNCItLdaWXe68k/V5TIZ5R8QmXDjR9VgYCE5edOOeeYV4betRwXvG52eQlp86IMckZVuCCbAt3aXRScU8m2t3VOPpB67psU3oT7o6ts7jcfakHDS2uLH0xkKcaXRj06dHY873sbsmQ6UKBU9oTgGdToP/XbsXFBMSdq24Nh+159thMZEw6gkEoAAXBKrKx2Ln1/WC2u/sYSZwwSD+6/VvUDEzH5s/q4XJQGDBzHxkDzPB62eh12vw6rvf8Q52EEE+AAMAu/aH5jsXW71Yu+O4qN37cG8dhg8bh/+4bwpcPgYqpRIWowZPvfhvwfn9dd33ePqBqXh96w+4Z14RTjW0Q6EAzl3y4h9bjkTNn8Zi25enUHZ1DtrdFAxaVbfHZr863KtXr0Z9fT2ef/55KJVKZGZm4vz58/znLS0tUCqVsFqt/f5ZT2hudoPj5KXb7pKWZgr1Mh1EdOfhSepx0MP0tXaJHo3tblry3jm9NAi1QhBVI9QKuLzi3zHqiZi2Ems+Po7fLL9GdHsNoRJVQf/54tK4jSenj+EniZFj+vPb3yIjpSPqkPCxoAS+r23Bup3VuOlHo5Bp16Ni5piY43pt61EsmDUa7+yoBkmo8NNFJWACQax+/ZuYF4zLE0oJLxk9DEZ9KG3LbtHxq9Mbd9fgjrmFWHpDAQw6NVLMWtH7zwWDUCoBPaHir7lBq47pS1lV7oCBVIELtxSKiZhEfV+KntiJ7ty3eNOTcWDUq/FARTG/iBXJGDHq1AmxhQwbQFmnKPDyBSVg2EBC9hfkAJpmBc8+TbPgOMR9fyY9gTONbvxlrXDRqHCUISHnlmKSyNwxavj9dXcs6Ek1Mu16wSRxz4GzoeehyYVzzT78dd13qJgZEioSewatRi3W76qOWXz86W3jYxR+n9twEBXX5mPPd2fxyB0Tce6SCxl2A1794Aia2vxQKkPX00+F7l305HTV4lJolMGYa9qd53IgnsfL0R/zjp7YBL1EL+fu2MZEkWrVQaWAYDGL4zikWHQDdkxStiWYANvSXbx+RnyxhGJ6bBP6a854ufHfeTzqtKE0a4oOSIqZuf0Mr9sTSRc3GQjkmIxYdJ0DpxrawQWBDbuqcU3JcDy/8aBgjrA1PDdZuWg8aIaF003BZCBAEkqsqixFIMCh1UXj9//8GjkZRtx14zjceUMhlEoFdn1dj2EpOkHUPeL82i1aLL0xJNoaGTcIgp8LnbvowRnOjc2f1+LeeYVgA7HiayYDAaeHxnWTcwQLh6GgRkhwMjJnXVw2BnazDqlWHV7ZfAg/mV/crXHQbw73n/70Jxw+fBgvvvgiNJpQCkZxcTH8fj+++eYbTJ48Ge+88w5uuOGGAflMRmYo4fQyeHPbUYGz2jk1OBqbuWfp4QCgJVT8ynj0d55aNlV0e6dEapHLy4i2IGHYAObPyIMzqj3I/Bl5YNj4qZW2SSw09Cm1soc0O2ms21mNG6aNxJsfHcOqylKcaXRJOsCR/5dqqbFg1mhoCCU+3FuHsik5OH3BBZNeA4ZmwHLAtn+fwrSSLPzu1a9gMhCYN30UTp13id5/pUKBgtwUgWqxkVQhO80omBBlpxl5QZv+aMuWDPetKwIMJ6z5C4Zq/h5bOglIQM2fhlBh/SfVgud9/SfVePgO8RZ9fYVhOfxT5Nn/1U+ujvu+KIaLaXe35uNj+PX94namr8SztaBZr8biMoeg5cyKhSUwGwi4fSz8NItVlaUglApoNBKp4KRKNPr97PqQcx1JwYz8HQqgodmLP7/9LSquzUf9BRea2vwgCRUcOSl4Z/sxXDc5B7u/OY1Hl07CqQtOjM9Phd2k6fUzmuzPYzKQjC0r2QCHFieFF9/rWBhcfmsxTEYSwMDUJvenbekuBp146r0hkan38SrR6Pw7ejWcHgZtHhq/um8K6s474fGzGJNjRU19GyiGC5ckxZ7v+ajsH4oJ4PmNB1FZ7oBRR/BOaqZdj2UVJfjDG9/EZMw9ce8UHD3Vyqefr7xtPH5+21Xw+gMIIgiNRo1tXx5HToYR108dKdClWbloPNbuiA3YPHHvFCAYRLubgkatRLpNJ7C3kSDE7Mk5oSCSh4FFpCSqbEouAgHwi5DRxx1tZyMJrI6uAAAgAElEQVTZgxdavMhKM2BKUSYopnulW/3icNfU1OCFF17AyJEjUVVVBQDIzs7G3//+d/zhD3/AU089JWjTBQBKpbJfP5ORGUq4fYyos+r2M6IToCA4/PLOCWBY8KJphAqAQrrXrUdi1dcjIW5CSkwoNRJKrXotAYoOxIgXxbO+zGoiRSNQ/dJPOvwivNTux9IbC/noZJvTj1FZFtFrFf3ClVqFTrPq8PaOY3B5GIzMtKDF6cPG3TVYvqAELBsQtAyqmJSPd3ZUw2QgsGTuWEF6alW5A+mpeuSk64Ho3QSB/CwT0qxa0dZr/dGWzSoRhezzfYvTJKfNTYMJRD07ilCLtkQ5IG4fK/q8e30sICFK2Bd8EsJGPj8b931JRpe62fu0N2jUwnp4jbp3atJOD8NP/oDIJPUQVv90OiiOg8vL4N1PQtHrr480xKREVpU7cLHVKxn97lw6GG0jIp9zXOjvK28bDz9F41K7H6+8fwQV1+bjD2/uR8W1+fD4Gdj7IJKVsOcxGYiX4xPVlsnLBKAnVAPefo2mA1i/SygGtn5XDR6qLAUGaKGkP21Ld2E5TjSri+Wk50d9oqsMRVxmPEZp0pgMBE6dd/Gq75EFv3U7q9HQ7OXP48DxRhTkpuCdHdXIyTCiqrwAyyqK8PLmDlv0wK3FeGfHccFhUkwAWalGQXbLjNJs1JxpFb2HpxrawXFBzJ6cAwD48vtzuLo4S1A+cP8tRchMNeDZ9d8LxuXaHccxozQ7ZoGxzU3B62OgAFB7zonsNAMerpyA801u0AzHR7kj14gLBtHY4uF7jkf2m27T43yTW/S4EVUVE9EqWbP9GPKzLVi7oxq/fXBat25rvzjcY8aMwfHjx0U/mzhxIrZs2ZIUn8nIDBV0Es6qjhR/iZIaAg2XfHghyvA9uKAE9hS95D6kBLm0Eu1EdKR4KrJWI26G/JS4eNGvsqdI9gbvKV1FoJCgdykAXhyt9rwTXDCIkZkmlOTbcPOP8+CjWbS0+2Ku1ZK5BdjyRS3/E1Kr0I0tXrg8TIza5/H6VgAKjMoy8y+y9BQ9KCYAqi2ALV+cxOKyMbAatbBbtdBqVBhmJYXOdoQgYNYRHc5jsJufxYmERIviqCJss2gx/8f5MfoGtgSIigGAQacWX5zSJeYVbzaKCxuZE+BgaSUW6sgEtS1yehn895pvY/bXG3GrriK/GkKNFzYdQsW1+fzE71K7n89wIcJOvlajgmNECjZ9WhtzTCMzOxbmIimWW744yX8+NjcFAZbDL++chHWfHMfpC24sLhuDNz46Big6nPK+OsbJGL2NC4lSFg/1t4vXUfYaig3gph+NEqhEL72xIGbM9ieSizcJsp3dwetjsXVvnSBjaeveOiwfVpIQ5fSuBPbONXmlx2PUeDUZCCy7pUTQYi2y4BeJ2FJMANv31WNxmQNtrlB697SSLL4/9YJZo5GdboTbS8PlpUV7U8f0xlZAtLQs066HjiSw5uPqqLnWeKzbGVrkT7VqMXtSDlqcfmSlGWL0fkI9tRGzf7tFBz/FwutnY95/u/afjukNrlQoQNEcPvv2jOB+trn9YANByUy/yP9XlTvQ0OSGy8PAoFWHUtG9dLcWLAemqZ0MAMSIiSRtPbDMoMNHBySVdlP0sZNGigpgx75TWFVZKhBdunteESChzKvThpzyzk66Tis+EVYqFUi1aAWRo1SLFiqV+MTDRwdC6tmThK0p/HT8JgNdRaASmQrp9rM43yxskbZiYQl0OjW8/gDaPTRIjQp331QAq0kLig4gw64HEX7jhJyb2Kh0qB0Yg1WVpXzdJgA+0gVFEMFwXTYXBJzeDnGvpjY/3vjoGC949MLGg5IlCANOMP6R9HiqCHOceBr0VaOn9/4Au4BhOGzvpHewfV89Ro9ITPcNnVYdI8a3ctF46BLg4OtItag4oz4B/cWB+KZHd5VBc77Fx0dPoiecDU0ejBlhxcubD4MJcJj/43z87d3vYiIyVeUO7Pwq2mar4fJQfPr4ykXjsW1vHeZcnYt3PzmOCY50TBibjrwsCwpzrUB4Ulw40tZ3xzgBz2MyEFdlcQVw+qIHXirAZ5G1aVTIGWYYsOukJwns/f5czHv/3vmxbYD7C6UCWH5rcUya+wBq78FmJuHyMILoKkmoEraAKmWDmpxUl+MxupQw3aaXzA6KjtjOKM3Gup3VuPfmIpRN6dCJoNoCeGfHcX4+8MnX1THzjSVzx+JiqzfGSd1z4GyMvVq+oAT/97VvOs21QmUxu/afxk3TR/HbV2GsoFzOZCBAMxxGZpl5AbaII/33d78T/e1ICjsXBF7cdJC3i2YDAZVSgeun5goCGj+ZX4T0FCLmXbNiYQl8FIuHbi+FjlTBqCew9YuTqCx3wOtjUDYlF6RE0KgzssM9QCiVCrzx8XEYdAQ8vtCq0V1zx8pOt4w0PUht81PiaVl+Sjwti2ZYlF2dKxRdurUYNMMCEH+psGwQ70bXjQaBdz+pxsNV4nWjzW0+vP/FSdw6czTfT/e9z07gttkO2EQmL3YziXnTR8VExLuqK+8pA1V76PazMQ7Zup3VWHpjAc40esAFQyuxWo1acE9WLBwPr59GZqoRL713CEyAC61CDzOCJEL9uVtdFO67uYhP29pz4CzyhlvQ0OSBSa8BFwR2fh1a+b1nXmFMX8vKcgeviJzUNZhxjqTHcyw0tVOii0VNTgrmBNT9BThOtANAIEEpjxTFgqIDgsUzig6Aoti416jrdSrYLaRgX3YLCb0uMRHueKZHmw1q3HlDAc5e9PDHfucNBTAbCfgYLpQCjlD0p7Mo2v23FCHFROK/3wpF2z8MR9gMOhXys1NQf74dVxdlxrRLe/zuyVAoFGhp92HfDxcxozQb00qyBL+9ctF4fPxlHX5xxwRYDAROX/T0vZVXP2S29DfxtAkeOoCmdn+MkKLdqh2wXs5S732mmzWpiaDVTWHbv8MLSVHzhMVljgFrwWUzakQXGG0mTUIy4aRskJZUdzke3T5G8B6oKh8r+ju5GSYsLnNAq1FiZKYFmakGXGj2ICNVH/PeOnC8ERzHYcGsMdCTofeKx8+GRXKV2L3/jMAR33PgLBZeN4Zv3xWxV83tPlTMzMelFjdmTcqB00PDbNSgtd2H2ZNyBBoV0eVyqVatwBknCRWWVRTB7WWwNRy1bnOJP6d+OgCzgcDyW0vgo1mcvuDmWyHOmz4KD1eWQqFQQKVSgGE5aEk1CLUCjyyZGBKLJQls+fwEJhVm4MX3hFmQ2/99CiMzxyLDpg/ZzW4gO9wDiMtLI4gg3F7m8hvLXNn0MLVNUuRDYpJAatT8ijIQMlYvvncYv1l+jeQhtTopNDR7Bau+ANDqokRF0CxGEqcvuPHHN/cLjqmrNFSxKP3v8rtXL9MdBqT2UC1e/3791FxcbOkQQqsqHxuj6v78xoNYemMBGps9mDlxBC+i5vRQ2HPgLG6f44CfYnGm0Y1d34Sc6uULSkASSvz70HkcrW8TCIm8tvUoHrr9KlSVOzDMpoefCqDd4wcT4OKSajqYiOdY0OvUuH22A60uine0bp/tgF6bmFeujlSLdgD4zweln9++4KcDfKuUCCShwhP3TYn7vtpdLP667vuYfT217BroLPF3VOKZHt3qYnCp1ReT6thqN0BLhhyuDbtrcM+8ohiV71feP4LH75ksiH7rtCroSALPvLIPFdfmY/PnwkW7FzYdwt03FYAK1y5m2vVIMWtx9pIbFTPz+baBz204iN+tmIbGFh8e+/ve+KZLDyHiaRNcXla09eZTy66BIQHjuDuo1SrR9/7TXbz3E43ZoIHby6C+wcU7fW4vA5N+AN9FHDA+LwW/fXAamp1+2M1a2M2JcbaBrm1QV+OR7PQe2Pl1fUxp2oMLSvDmR0cFNdx7D53HpIIMDE8jUFk2ll+Az7Trsei6MfhL1IJMZbmDtyMkocLisjEg1EosmTsWI7PMaHVSsBg1eHDBeDBsSNPnmVf28b93+xwHfv/PrwXHY7eQMfOhyHl2dsYpJoCXNx/B4rIxmD0pB2NGWMCwQVSVO8AFITg2vVaNhiYvUkwkzHoCdosWLg/DzyXvnVcImuUEC9UPLijBax8cwf0VxbjU6kNupjVGSO35jYfw6F2ToSGUsFu0IcHYbthM2eGWkRkE9DS1zeNnsHxBMXQagk9f81EMPH4GMMc6w121BRNzngHAYtKIpktKOdAeHxOTZlRZ7oCXYiAWRXd7xdOh3D4GtnjVcPd37aEKOHiiFRoiVJdqMhCYPSkHUAC5mWa+xRcgLYpmM2v5iESETLseC2aNxv+89a3g2n64tw4vbjqEBbNG4/aysTjV0I4P957C2ijlTS0ZmuxFRzmqyh0Yk2MdEmmh3SWeY4FQK+H1MzGOFtFL8a3LIRWJa3fTSEuAaBol0W+dimO5R4R2t3i2QLuHQoYlASmdcRS38vgZ0UXDvOEWPL/xIG6bMwZ33TgOQYg/6wzL4b6bx0FHqnmhs3e2V/NpoWLfSTFpsemzE7hp+iikWXU4VNvMZ7REbEJTmx8trq7TU2XiaxPa3ZT4M5qocdwNnBJ2w+mmkT5ANdMMHcDC68YIsq6WVRSDYeJvW3oEB9iNmo5a3URpvIQzGS0GAr99cBo8fqajRAPAL5dM5LVflAoF8rPM/HjsPI9ravNj6946Xhdi3Cg73v74qGDO9tWRBpRfncvbl0jbLSCUbt55kWjtjmosLhsDiuYABZCXZcG2L+swqTADv3/1a77zSUTdu/PvRUoQI7/3wqZDePqBawQLCbu+Oc0vFEjZObtFh7U7jiPVqo3pvb0jXJf+7Prv+YWFZRXFUCqBynIHMlMNOH/JjRSzLmah84VNh/Bw5QQQKiUaW6QFKymGhVKhRm66odtjQXa4k5RIfbecYi4DAG0SLbWkUttSTCQ4NgA2yhCYtGpJ4RGdVlwATddFRE6tUogKjhGEeLGVXkcI+2oHQ321V1WKp6Bbjf2gIN7PyrFN7TSe23AQ995ciJ/fNh5N7X5+Qr5qcankKm/0v3Wa2LSyGaXZMauw0U41FwziWH0rNn9Wi3vmFcJHsciwG/D4PVOg06pFnYLVP5t+xTjbAOJah+qjxDUUfjXiakBah7DX6KRaSiVIWMxsEBdNMyUgI8Ju1YqWltgtiVEoF9BHcavQxExMYZ1FQ7MXb28/jtmTcjAuzyZ6PQm1Ej4q0BG16jT5lLLZ10/NFSgMRxzttVGTYFKj6tE75YokjjYh1RrbiogkVEg198M4lqA37/1Eo1KpeGcbiEQ0Q5kAQwap8sBOYqpKhQIFOSEdjkjZBwDBQu6qxaX8z+pEer27PAx0pBocF8qqnVKUGVO6svub03zdd3QmTGd7E8m0ybAbcKbRjZ1f12PzZ7V49K7JfBuwqukOUAyHipn5GJlp4ntYR85b1Oa4Kay8bTyeWx9K2Xd5GJCaUPR8eJpRfIySakF3l8hvrd1RjYcrJ8CkV8OoJ4DmjjH0cOUEDMvWgdCo8P/ePoCKmfmixwMF4PGz2Pl1PZZVlIjuX61ShjJGe7Dwkpjldpk+EanvfuPj4zHCajJXJpEU8Wi6ShEPItS/9nSjC42tXpy+4ALFSFsGjVqJqnIHv4/uROSCQYWo4FiQEx+zNMOifGouNn9ei3U7q7H581qUT80FzYrXlUcUxPntP6vF4jJHSEE8noRrD0vy00ITzUQ5mUqgxemHyUBAT6qhIwmBU9bm9gvucWSVN/qeLKsogoZUItMu9NqkVmGhiFLZDIbERyg6gHU7a/DHN/fjz2u+xbmLHpg6XdPQS5BOxFVIbsJjISfV0Kex4JPQUPBJaCj0lUgHgM7Pry5BwmIajQorF5YI9rdyYUlClMOVCvHSkoRNXsLlO489uxdPPLcXj/39Xzh6ul0gNNRdTHoNCnOt+D9LJ+Gh20vx6F2TUJhrhclAINWqRVObH+s+qUaA47BkboHwei4aj3U7jsdkukS22fXNaVSK3PMAG+SdbaBjEjp7UqgPrVIJVJU7YAhPzqNJeDnNYCRONsFu0mBFp2dmxcKSUGryAKGXsBuJEiTsDh6/eHDB4x8ipZdR9uXpV/YJ7Ivbz+LsJTc2fXoC63ZW47Nvz6Cp3S/Y9uwlN/++jmSlOMNlqSY9IXo/6xucWPdJNUx6DR/0WFzmQMXMfOz+5jSum5yDzZ/X4q/vfofNn9XipumjkGrV8r8BdNRSb/68Fn98cz82fRrKojEZCL4NWKpVC4OO4I//L+98h3lRvxX9e9H/Nus18PkZ/MdPpqKq3IGKa/Ox8dMTeOOjY2hs8Yqe04VmD+ovuCSizwE8u+Egbp05mj/2imvz4adZsIEgaJpFVbmD7/TS+XisRhImPQGXh8GGXdW4/5Yiwf4fCEfLUy09e3blCHeS4vJegZNdGUlYLoh75xWiParPrsVAgJXIgGADHJra/TEprWl28fCaQqmAXksIhIn0WoJvhyBGm1SKnJtCmkiLBFKjFo1wjxslHuEeKAXxhKAAjpxqw7lLHpRNyUVDsw+AV3D9Ptx7SiA+4vIwSLNqcfdNBdBrNWhs8WLtzmq4PAweuLUYG3bV8OlSIyX6disVCiyZWwCrkcAb245h9qScGOfllfePYMGs0YIem/LEu29YJdpmWRJ0Tf00C3unDgB2ixYUzcathV40Pj+LtTuFgolrd1bjocWlkl0Neovby4imlMeztCSaeCpTB4McyqaOFIpSLSgBwwRw0/RRfKuadheFTJsWj941GTVnWsFxob6z5VNzAXS0qok42Wt3VKOpzY8d++rxyB0TcfaiC2wgiPRUPRSqrhffRmZaEAQHm1kzNFt5JSsccNVoG36z/Bq0OCnYzKR028V+wk+F3jHRdiPNqoWfYgCRbib9AUmIR907O0aDla7si7tTZpRYSnckVXvX/tN8OZqHComDUUwA6XY934eaDQSRatVizcehdzvNBkTFGaMVwaOz4/YcOMuLqorVUke2i7QBmz0pJybT7p0d1fz8Ys+Bs6Kdbd7//AT2/XARhblWXH/NKDy/sUOczmwg8dbHR2NaskVEYcXGSovTh4ZmL/x0QEJ0rRh7D53H4jkO3H9LUUxKet25NiiUHWr56z6pDovTGmAxkiA1KqRaNUAP14Bkh3sAUCoVUIg4MgqFAkolRD+TubKhaRY0ywkc6CVzx4KmxVXEKYm2YFKiRh4fE6NoHOA4eP0MINFfUCfZh1vcrFA0G2PsK8sdoCSU0AdKQTwROL0M/vbu9zAZCCy9oRDnmzwAhC+LpjY/tn3Zoc7a2OzF1n/Voer6Al5kJMJL7x3Gk8umwummodepQfnZGLXxFQvHw2zU4HSDEy0uSjRFDAj9O92m549Fnnj3HTbAifacT5RquFKpxNvbj/PlFxwXxNvbj+PnUemG8cTtZUQFE11eBhlxTvW2mcVTyvu7JU/v7I4S66M7OQBY/0k1fn57KT9ZVSoVeGHTYTx61yQ+LTPC2h3VqCp3SDrZw4cZ0djigc2sRUaqAQ1Nblxo8kguvq1YWILmdi+yhxmBwNBs5ZW0KICjpxLQ07svh6RQ4q2PhXbjrY8TZze6g1qtELWdKvXQmBd3ZV/YQCctB4n3tYZQCpzIzZ/VYsXCEqzbWc0vwj+4oARmgwZ+mkHV9WPx7PqD0GrUMU5zpHY72pZTTACZqaFyvu37TqHi2nxk2PWSC3l7DpzFioUlaHH6RbfJyTDhsbsmw6gn0O7248n7p6LNTcFm1uK9T2uw74eLAICj9W1ocx/Hr++fCo+PQd15J1pdPtGWbAgCu/afFtUF+nBvHV9+Jy66dhgV1+aj5mw79hw4GxMEmlGajT3fncX9txThF0smou58e+jZ2HYMVdcXoGS0tcfONiA73P1OdDuwaIx6Aq9vOwaXl0aG3TBARyeTrJAacRViKRXxnooaadQq7DlwFjfPyOdbcXywpxZ33jhO8ph0WpXoi1FHiq9Eq5Uq0Qi3I0f85T4gCuIJoslJ8QJpCgUwMtOMLZ+fiFldLZ+aizc/ComabP68FlXlDrRL1O83tfnw7PqOleB75hXikSUTcfJcO5QKBdpcfvxl7QGQhAoLZoVSqyIpVGIrwgtmjUZ+tgVpZlKeePcRj4/F3kPnY1rbDB9mBCzx35/XL+4Ae/1sQvZnlojgd9VxoLdEFgs7Lx4W59uRAD24uNodj48RXWSM9MdNt+tDLdXCaZCRtMxI5AoIlYts+aIOC2aNRrpNjxanDy+/fwguD4MFs0aDJJTQEErUnG5Fus0Ap5uOscvLKopgNZJ44b3Q91b/NNwPfgi28kpW4trTO054KQZMIGoRUAEwAS5hdqM7KABoNSpB1F2rUfWmoiMpkbIvarUKBl2oXKyh2Sv4rPO2WalG/GXtgZjsv+jI98VWL7SkGi4Pg4KRNqz+6XQ0tok7xMpO9TmhGmmCFzw7fcGNR++aLLmQt7hsLI7UXsTsq0dKbuP1M1AqFfjruoP85/9n6STe2Y7Q0OyF28fA72dAEkps31cf41TfO68QXorF7Mmh+VRluQNZqQacanDhw711fBZgu9uPERlGyUULhQJYXDYWjS1evrf3ytvGI9VMYnpxOnKzrDjT2A69Vg2vn8XkwmGhNPJeVjfIDvcAEGkHJvZ3p4cOFfrLyETh8oo7XS6vuIq4QSvRFkyiB7COVGFOp36cD9xazCtYi0FRrGg6mlQaq0lP4PqpuTEOulQPw35XEE8gZiMRE6V7oKIYX//QgEfumIhTDe3guNACRNX1Y2HSazBq+ARcaPKgqc0rei+b2/1YVVmK+gsuIAhs2XMSM0qzeadrcZkjnAlRgKxUPe69uRB5WRboyAK+B3jEAdixrx7lU3Oh0ygTW8d+hWCzaDG9JCtG+d2WIIEko0S7GGM3+4P2FEKtFE0NJIj4V1Y3SUwSm9r9CenLG0+7Y9R3EopE6Bl/qHJCOBtIBQ0RmmQbdIRoP+6f3jYeC2bmw27R47WtRwQRrGF2HWiag49iseWLk7jj+gL46FDqeed0/9mTc+DyMIPWhg52kjFjK8VEimaPWE0Dt6itVCpitGMItXLI6BmJ2Zeqcgf+3zvfwuVhBJHqPQfO4oFbi/HSex2Za0vmFkCvFRc81BBKzP9xnqDN1ZK5BfAzAaSbSPgDnOh7YmRmR0laJM18w+5QGnWaVQe7VYu124/FBAhWLCzBMJsOm3afQNnVuag71yYacW5scSNveArWbPsBD90+HmcvecEFgzDpNaILDBaDBn9e8y1MBgL33VyENqcfv7rvatScaQ3bTBX+ufWo4N1js2oAmHHH9QX8AvfpC2786r6rRc85e5iJVyiPaGaMGGZEirFDCE2tVsKoUcMYnbXZhxIQ2eFOciJp5rJa+ZWNSS8eUTLqxF+MJKkSnRCTEg50gAtiw64awcRww64aPLJkouQxqdUqbP1XXUxU/J6bi0S3N5IqZKcZBQ56dppRuodhHBViBxQl4PPHRule2nwYT9w7BS4PjbzhFjAsB6VyBD744iQmFWQg3aZHEEF8eagh5iVWVe5AWopO0E8zkkoFhMZGboYJC2aNRqZdj39sCU3Ux4ywoKq8AL++fyqO17cgw27AxVYvZpRmY8e+ekwcM2kgr9SQwU8FsL2To7V9Xz3G5KQkpDZSrVLivvnj8OqWH/gxct/8cVCrEiMtxnEBGHVqPFw5AT6ahU6jhloV+jsQ3/OTjDgnIrwNxLVzgY8SL6Px0ywqyx34YE8tFswajYcqS6EARPtxP7v+IH59/1T4/Azum18UWmj10DDrNWhq9UNDqNDm8sPlYXhVerEUzPGjUzG9KH1w2tAhQDJmbHEcRO3UuDz7gB0TQSihJdUAKP5vWlINTYJaKvY7UfalyUnhxNl2bA236gOA5zce4tuBqdUqvLb1iGDxbMsXtXikaqKEE2nEn98WRr7XfHwMTy6bCiCUydh5XlhV7sCG3R1lL0qFAh4fg9MX3JhWosT6XdVYsXA8jta3YdakbDx292RUnw7pTKzbWY2q68di2vgseHws2j2MaIr2sooSGPQq3Du/GOfDonAUE8Dm8Lz03U86UuGX31oMlg1n/LQFUH/Bhc2f1fIZghl2Q4wy+QubDuE3y68By7J4MercKssdeP/zE/jpbeMF2YA/v/0qvLZVWGv+3IaDocwfqaovKWX5HiA73ElMJM0cAO6aO1Z2uq9gKJqNWel84NbisMJ37MQzyAXx7idCUaN3P6nGLyQcaK9fOvVRSnRJrVZizpROUfGKYqjj+WIcAimPzU4aJ862SaSF+9Hq8sORk4L/eesrmAxEjMBHZbkDXx8JRcLZQACEOhQV2/rFSdx1Y6gePHuYCa9tPYKmNj9fv60AMKkgDaOzU8CwHP533XeoOdOOmjNt+OzbMyifKrx3P7/9KnkyHifYQKw4TWW5A2wgMQpJhFoJA6kWLGYZSHVCIs4AwLDA/6w5EDPhi0zs4oleqxZdPNQnsnVR2O7k59hw6ZKr188ESahEhYaeWjYVH+6tw7zpo9Dc7kdDsw/bvqxD1fVjJTOZaCYAm1kLtVIBmg7gj2/tF0SxVlVehQ/21OJSuz8mpXzV4lJkpWhD5yE/3wNCMmZs+Wjx9z5FMwAGZiGAojn8dd33Mbbl6eXXAAPXQS2+hO1Lm5sWiJUCHYrsOakGOP0sTl9wo+ZMO/85SahgEhlLKxaWgA1wovbD42MAixZeHw2GDfDvCa1GhVSrlt9HJNLb7vaj4tp87NhXj9vmOLBlTy1IQoUR6Rb85uV/C/bx7PqDeOSOiTjf5MKeA2dFM3T0pAInzzrR1OaPEWh7YdMhPHHvFDS1+/nIdKhUJlYoct0nIU0LsXP8rvoS0m163DOvMNRhJQg+vfzuGwsFgRu3jxFE1SO/IZltElaW76v+guxwJzmyWrkMEKrhFkSgg6EI9MNV4grfbW5KtPzYRS4AACAASURBVKazzU2LpmGSImIaa3dU4+kHpHtfenwMNuzudEy7a7Bi0XjYRIyW08vgv9d8G/MiHZSq491FATS1+5FpN4iuSDe2hIz+D3XNoJgAKibli96HX903BSqVEj4fUN/owkdfnkJTmx952SmC1d/ICrVRp8YL7x3Cz2+7Cmq1kl9RP9fsBUUH0NDsxYd76wT3LsWkkSfjcYIkev489QWXh8GaTqJpa7Yfx09vuwpmCRHDvuAJ1yBHE5koIs6iaS4vI7p4+LPbS2FKUJ/xeOHxi7eH8/hZNLX5Mcymx5nGjohPc7tP1E6cv+TGGx8dw/937xQYdQRefGN/TBRrxYJilIwexkcqK8sdyEk3IVXWZEgO4pg5ES806v61U91BqnzO7aWRniChxIHiclkPUos0Rq06NvvPQOBsk7j9iGS+qFUq/COcBRUh067H0w9cg1anH3odgf0/NOCa8cPR5qJw1ZhS7PzqFA7VtmBZRTGqT7eI3ptTDe28VsymT0+ExSCBkZkWbP6sBvNnjMZL7x3G7XPGiH6/5kwb3gwHF0lChcZmb4xQ5KN3TYbLQ4dS2D+tjTlHjgtlB/zHT6bita37Yq5XZJEDACChZSOVbRIv/QXZ4ZaRiQc9TTdRhiKfzU4/7BYt7CaNdCoLgHY3LepAt3vEa7hJQoVMu56fgAMhJUmNRMTLKdHiy+mhkW4Wf8lFHLfOxyQlzJaMNWwJRQmcCdcqkURszWskBXz25ByQGhWqyscizaoTvUYt7RTW7jyOmRNHCFbE9xw4y6dLrfukmv/diDgS/wKJZAqMsKDZRYMkVHwPYCA0XqYXp/fbpRnqtLnEn6c2NyX5PPUFL8WKix8lqO+32dB/oml+ihW1M/4EnVs8MWjFOznotWrcc1MhVCqFoM9259aAoej1WGz54iQiyrxH68QnvQ0tvphr9PSyqbImQzISBJAE3WikWnsmyk51B4uBFJ27mA1Dy9kGupH1cJmyOkH2HwdoSXEhWzK86Noqcr8bmr1obPbiuY0H8ev7piA1xYj/fLnDYV1WUYxZE0cAANRpBlSVO8AFQ60ZIxl1HAf46JBieceiL/Dy+4fQ1OZH2dTQwmNWqnjgISvVyP9/ZbkDW8OlcZFF1uI8G9hAMJSxpUDMOUbmUqGsQS//vfGjUzsye3py3TsRr7mr7HDLyPSVnqabKIHva1v4HtORdKCr8m2STrdeqxZ9Cekket7qdQQWzR4Tk4LeWR0/gtRKq0WiJVhX35GqrUzGGraEEe67/bd3v+ev/6/vm4IFs0Yjw6aHllRj82c1mD0pBznpRvjpAN7ZfhgVM/NFr5GGUGHR7DHQkSqBuMlts8fAT7H47YppuNjqw5lGN59Gxb9AogkCdpPcfzfRpJj7t+7YYtBg/o/zBWJ4S+YWJMQBBgCVQqJ1TwKciFSLVvRapg6QQ9ATKCYgKiJEh8/l1HlXTOcAQq2MUWie/+M82C06qFQKjEg3iV4PZadrP2Rt62AlTmmp8SSlv/URuoFep8LtZQ68EDU/enBhCfS65M5m6RXd0anpQVmdjlQh1SIUsk21aKEPa/fYOr2XUq1alE3JBUEoUTEzHxdavfw7JNItobndh7QULZrb/Hgxaj4ZLbYaaaXlowK8snkEklDxLWQbW72i9pAIt4IbkW7Cmx8d5evZI0GEolE2rH491DLxdyunQatR4eHKCTjd6ATHhVLHI86/hlDx35telB4XfaB4zV1VTz/99NM9+oYMfD4awW4ayEjP7cj2CoUCXx+7CA2hAs1wMf+lmABMBo3gbwBw9bgMKBQQ/Fbn305WDAYS3kGWGm/oxmpqZBw4fQx+F9UnOcAFsf/YRVxbOjwUlehEs4vGH97cL9j+u+pLmFaSBb1EiiSLILLsRqzZfhwHTzThxJk2LL2hEGkpWuhE9tHuY/CnqBrLABfE9zVNuLY0C0YRJ91NMRibY8N31ZcQ4IJ8naTRqIZRI+6kB5VA3nCL4DsrFpYg3a6DpnOfCQAkoUR+dgr2H7vIb79qcSmyU/USV7h/kRqnPRkLEZw+Br9/7RvB9c/NNMOgVYNmA7AaNchON+OtbceQaTfyEa3GFg8WzBqNY6da+WtUWe6A3aqDnlTjvU9P4NoJI1Ay2o6bpo8CwwZgNZAYbtcjzaJFmlWH8WPSMP9HI0PXNSh+XmlWLa4tHY5rSjIF2w4kyW4nejIOlKQCozJjn42sDD0IxL+u2sdwAiGZABfE0boWzJk8QtKm9IXGdh/WbD+OG6eNQlG+HQW5Nmz/qh7jx6QiJc5O3kDajb7aBIVSgdc/PIrrp47kr9Pu/WdwdVEGnttwCOcuuVDqSENRXiqO1rXgxmmjsHZnNb6vuYQjJ5tx+GQzDp1oxugRKXjxvUPYd/gCCkfaUDjKhqN1Lfz1WDJ3LPRaNQ7XNsf9GiX7cylFfxx3IucJ/UFQrUBeJzv14IISZKTpRd/h/YGfDuD/vh47P5ozKRukOnmd7t7MEyKQhAqWsDBuX9ColPDTHPRaAqRGhVSLDkYdgbTw4qRBp0b2MDO+q76EFHNIoX79rhp8/t05nDjThimFGag+0wq9Vo2bpo/Cht0n8H1NEzLsRry17Zjgnhw71YoHbi3Be5+ewPVTc7H9q3qcbXThnnnjcPqCEzdNH8XPUzSEArmZFvjDHRQ628PUFD3sFh3e2X4c5VNzBfOfn91+Ff75wZFQXTaA0dkWqJQq+CgGFiOJtz4+BpeX4TWEtv7rJDw+tlv273LXPWJDevIO6mocyBHuBBLpuQ0Ad99QgGAwCEUvIgDRPbpNeg3uvqEAAGRBtSShp+kmzU7xNjfNTj/sUhHlIPDS5sOCGpKXNh/G71ZME93c4xOvsXT7WKSbY7fnOAX2HT6PJ+6dAqc3pID74b9O4paZo6VOGwZChRQjKVAq1pMqGMKpj2LnMCRUx7uB2Jj44vtzuGn6KL5fJr8SrAC/bVObn6+tTrfr0djsxY599bhn3ji8/P5hzJ6Ug9xME6xGEkqVApk2nUDlvdsCc0NAjC6ZcXsCoBlOEGmgGQ5uTwA6Q/wnja0SKeytLgqpXWSp9BazXiOqhG2W6JrQJwax3VACqJiZL1CP/8n8cfCGa7uptgA2fnoC86aPwiNLJoLjgqL3kQvP0ikmgH9sOYJfL7saT9w7BX46gNqz7djyxUkAuGwqpczAkYwlVV4vK6qP8HDVBBhNA+PcNrWL27KmdgpmibamMmGCQM4wA5xeRlwnIACUjrHhN8uvAcUE8PtXvxbMKV/YdCj0zuKCgtr+6LKXCBQTAM0EcP/8YpxrcmP25BwoFQoMs+mw8LoxeHlzRzT8rhsLUJRnA80GkGHX47kNHYrh999SBI+PwY59p7D0xkJcbPViVWUpGpo8oBkOBq1aIHC28dNaVJY50OpioFAAT9w7BW4fgxQTCQ2hRGXZ2PjrVsTpHSQ73AnG5aUFDnOG3dDr34n06H592zEYdIQsqJYkWE3iNUdS6SZ2iRRJexc9ettcEi9rNw2byH6k+nBLKfsybABjR9rx+/AKfCSyyrBdqCpHGfduG6Gh7uiFa/kJQhVz/ScVZPBlBNFONgDBtk1tfmz+vJZ3ypcvKMGG3TX831f/bLpw4jHUruEQgKJCjlHne/yr+64GevcK6BJ9F7XCiYCiWNHUQIphkRB140FqN1qcFNZ3Erv0+lm0hnUUQjWHfrz24VGQhApP3j9V9D5Gny/FBNDU6gehUmJ4mgF/ihKivGwqpcyA0dN5Qn/QJqUN4xbXhukPdKS4LdNKlM/JdOJyHRY4QKtWSuqMZNj0uNDiiflMqtQt0i0hgoYojBHie+OjY/jtimmgqQDys814atk1aGj28KrkERX2qxwuvLNDuIj72wenxcyPNu4+gV8smYh2Nw2VSokRaQY+8GDTd+jWxJU4vIOGSGO75CfiMLt9fXeSXd74/I5MfDDr1Vhc5sDmz2uxbmc1Nn9Wi8VlDpgN4quxdrMm1BM7nMYSSeOyW6RfvJEJdTRdTahpNlQ7GL2Prhxoq4HEjnA/zsVlDr4lxGUnA2EjlJNqkMV5wjV6jz27F//cegQPVBQLrn/2MEPsRBrg215Eb7ty0XiMzDLhiXungGUDfMuOqnIHLrX6+QmbTHLio8XVqX10YoS+LEZNSBwnagxVlTtgMSYmImTUa0TthVGOQAmwmkg+E2DdzlBbG4oJYOfX9THP/JK5BbjQ4sGyiqKY+7hr/2n+N0lCheFpBhTmWHjxn+jtRbUbZAacns4T+gODxLxCl8iWe5fBpCdEbZlZJzvcfSZqjnLyvFP03lvNJHIyzILPdn1zOuaeVJY7cLHVG/Oe89MB0Xff/mMX8bcN3+ObHy7iNy//G39d9x3+d+13mFaShVRrKAhVONIWY8vsZk2MjVt6QyHsRg3y0o3IsmpDZZKDYO4pj+AhhFLZMQuXU8z7D6eH6YhcImRcnt94SLJlgNMt3uYmL3OSZGpZ5KUToz4pUXui1xL8hDiyjx376vHIHeJ9uM06NZbeUBgrpHWlO9E9ILp1xARHekzLtEttHS07ontLRtpe/GLJRJxpdIFmOKzdcRz3zCuCn2LhpwNYXOYAgsDWsCDakG6lNgSwGsVVvC0JimYxTKhuLzqFXa8lwDBBIAHDRNJeDJJU7/5CKaKoOyrLApeH6Sgdselxqc0HjuPw4qbDqLrewd9HklCC1Kjg8jAAoiahxo4WfoM13f5Ko6fzhP5AJ6FqrRvAdntGUoXsNKPAlmWnGQWlUzK9I3qOEj0Hidz7n91+FdZuP4arizJx/y1FeOX9UJaWy8MgO82I1T+bjnNNXl6ctWxKbsx7rrMIJNDRtmv2pBx+rAEdbegWzBqNEcOMGJGmj7Vl3NCxcbLDPQRQKBRQqRQxdd7BYFB2vPuBntZmSaVxdVXL5fLS2Nqpb/LWvXUYlWVGikg0w+WhcdOPRuHNjzpUi5feWACXlxav6UzCHqGDDcE4UCDmHqdatVhWUYyXNx+O6i05CWwgiLMXXXhp8yFenRMACLUCpFqFVz/4IXZfQ7WV2hDB5WVE2zu5fUxCUjUvtfnw7q5qvhc7xwXx7q5qLLulWNQ+9BnZXnSLFicVY7fX76rGykXj8dyGUCu/iMOzuMwBiglg67/qcNP0UfxEONOux6NLJ8HlZTDMpkOGtVNt9iBNt7/SSMYa7jYXDb1W3WmhTo12Dw37QKW6B4H8LBPSrFrZtsSZ6DEYrReTN9yMjBQdml0Ujta34Wh9G1KtWkFbrmx7SFjVPMKC4XY9CnKtsJlIjBhmFCy85meZY7qgRLdAFXsGRmdbkJdhBDgJWzZEbJzscA9yOtd0R9d5A7GCanIUPP70tGVAb1oMWI2kqEiR1HfMBg1e3nxYMNH78F91+IVEhBvA5Wt/ZLqk833tfI9dHgZeP4PFZWNgNWqhJVU4e9GNcaNsgjrMyHftJhKQWC2W2/0kNyY9gW1fnhI8f9u+PIWHqyYkZH92i1bUPnSlC9FnZHtxWaJTyiOQhAp5mSY+YmPQEtj0aS3/WfREWKkERqSb8Nymg3xmi3ydByfJ2BbTqCfwyvuHo3onB/HeZ7VYVZkYO9VtZNuSEDqPQV4XJpxlwYQVuCPaEhFNiCkFwySdX9HoMyCwb396+1s+mCD2DKSaySviHl+RNdx1dXWorKzE3LlzUVlZiVOnTg30IfUJsZpul5eGy0tDoVDwTnZENf3ZTYfwxsfHBc63TO/paR1db+ruevodu0kjrBf7PFQvZjfLjlqiiL5HYjVPqxaXIstuwLqdNfjru6H6pVSLju+LLXZv5RrNwUmahcTtc4TP3+1zHBhmTYwQkd2kwYqFQl2IFQtL5Od9gJF6fo1aNa99EXn+9xw4y9d1RybCJKHCqx8cgcvDyM/9ICcZbfmwFHE7lW5L/h73Mj3ncmOwV+8RMR2fqL/ZTRosvaGwy3nRlWLXFMFgsndxjj933303Fi1ahIqKCmzevBkbNmzA66+/3u3vNze7JaPD0U6sQqHA3zcehFFPwO1l4PTQyEozwO1l+L91/m9X2/Tm+4qwulKkldjfNx6E00PDbNDgZwvHS6adR84jHlHwtDRTaJVyEJGWZrrsNoJxEFan7naNSU+37813lECzkw61GzNrQ0aTu+xpDcr7FQ+kzrtHYyHqHtlMJDguGLPyK3oPu7q3vRkr3TivZCPZj7PHNkEFXGyj0OqkkGImQ852F6L/faaXz3tfSfb71hfiaRO6TI8Nb+P2MyAJNZxemldrdnkHtm5xsN7f/jju3s4TkipVWg00tlBodfmRYtKGnO3EaDv2mME09no8FhKM5LW73HwiEe+Ry82LBvoZkKA346+rcXDFpZQ3Nzfjhx9+wKuvvgoAuPnmm/HMM8+gpaUFNputV78ZcU4VCgWf3u3xMTAkQY1ldFuy6OOJTjuP1HtHiJyH2GdiyKnp6HmNSW9qUnr6HQ6wGzUdvb37YfJ9xdP5HgEx96vHNUpDpH7piiMADDORKMpLDb20E+lsA/Lznqx0Jz220zNuj9LZ4Gvw5ed+8JOMqdIskG4mkW4m+X/LDGEuN59IxHukG/OiK4ErzuFuaGhAeno6VKpQSoNKpcKwYcPQ0NDQbYe7cxR74+cn4fHRSEvRAwpF5AMAgMlAwqBVQ6EIZe8bdRooFEr+b53/29U2ffm+x8/yxxPZxuNnYdCqsXHPSehJNbwUC4+34zw6f9Z5Gy/FAkFg0cz8yzrlKlXyVi/0NsljKKfkD+Vz64renneyX69kP74Ig+U4pZA6/sF+XpdjKJ9fPG3CYL1O8nHH/xiS4dgGA0PpOvX3uQylazdQxPMaXnEOdzxISTEI/r3s1pIBOpLBg81muPxGg4zO42AoYbcbB/oQBoTenneyj4XBcj8Hy3FKITUOBvt5XY6hfH7xtAmD9TrJx917rlSbEC+G0nXq73nCULp2A0U8r2Hyhh0TRGZmJhobGxEIhPL7AoEALl68iMzMzAE+MhkZGRkZGRkZGRkZGZmhxBXncNvtdhQWFuKDDz4AAHzwwQcoLCzsdf22jIyMjIyMjIyMjIyMjIwYV6RKeW1tLR5//HE4nU6YzWasXr0aeXl5A31YMjIyMjIyMjIyMjIyMkOIK9LhlpGRkZGRkZGRkZGRkZFJNFdcSrmMjIyMjIyMjIyMjIyMTH8gO9wyMjIyMjIyMjIyMjIyMglAdrhlZGRkZGRkZGRkZGRkZBKA7HDLyMjIyMjIyMjIyMjIyCQA2eGWkZGRkZGRkZGRkZGRkUkAssMtIyMjIyMjIyMjIyMjI5MAZIdbRkZGRkZGRkZGRkZGRiYBqAf6AAYjzc1ucJzcvry7pKTo0drqHejD6BFpaabLbjNUx8FgvF/xQOq8B/tYGCz3M9mPs7fjINnPq68M5fOLp00YrNdJPm5pZJuQWAbTdUq2ecJgunbJSm+uYVfjQI5wyyQctVo10Icg0wOu1Ps1VM97sJzXYDnOnjJUzyvCUD6/eJ7bYL1O8nHHn2Q+tmRCvk69R752fSfe13BIRrhXr16Njz/+GOfOncOWLVvgcDgAAHV1dXj88cfR1tYGq9WK1atXY+TIkQN7sNEoAKeXQZubhtVEQqkAWpwUrCYSZp0a6MvCWOS3PTQMWgJsIAC1SgWPn4HV2On3w9s2OSnotWqQhAouLx3aTq+G0xP7OywXgEKhRKuLgtVIwqhXw0CoLn/Mnc65y/PsybY9uBYUzcKo1/T9GsvIDARSz0X47/VHL0CrUcPjY2AxamA3aQAAzU4aLS4/LEYSXj8Dkz78WVDaDvXKJilD+2p2+mG3aEP74Hp+bjaLFlyA6zjPiC3qqz2Q2F/cfnOoEr6vNRfOw2Yie3ZfewoBNDZTaAmPoWE2EmAStK9k5jLv8ZjnUwE0u2i0OCkYtGqYDRoYtSo4PQycPhqEWo12NyV8LpXC7zAAfL7LPBMKwO1n4fSx8FMsUi3aofPsyDah/wk/70fPtifP855sNqgv71WZDsK2y0MHwLIcKDoQsl96Nc40unD+khs6Ug2blYDHx4GiAmj30LCZQ36OXt0NPyfMkHS458yZg7vvvht33nmn4O9PPfUUlixZgoqKCmzevBlPPvkkXn/99QE6yk4ogKOn2/G/674DxQRAEipUlTuwdW8dXB4GqxaXojDH0msHs/NvL6soxsbdNWho9oIkVB2/j66PY8XCEqzbWY2GZi8y7XosvG4Mdn1dj9lTcvHy5sP8dx6oKEaqRYucYYYeHZfkefZk2x5ei8pyB3bsq8fSGwp7f41lZAYCqeci14Kj9f8/e+8eHEd55f1/+95z18Uy2Cg2WCDbIIHeGPCGRGExCHMxa1sQ2+sNJLsvxiabcqitJLtvNr+qrWSzVDabqg1varExlXdTYb3mZpsQIEZcFrSQmMDaIAcbY2Fs5Kus29z7/vujp1vdMz2jkTQazUjPp0olTffTz3Oep885fc6M5jweev7rE1h3SzOCPhb/8h8Hcm3g9iWAQeW1/3H7JBp4v3cQ23b32P1t6WzFNU11YwcHjrmFAhzuvOEy7Oo66urH8kUT9gfFrCXxCblM5r6OFw44+NEgtu8ZHWvz2la0La6b/iC8nBTxHHfa5/+571oMJ2Q8+uwHdvuv37kUPpHDk10foWP5QjyZZU/XXFGHD44N2dfMq/fj7puuwA7Hsz3HJiig93QMff1xl33OCNshPqH8VKK9V5pM5fS/M5mM77owkkJa1mz/Na/ej3W3NLvWd+v6a5CWNDy295BLB+bWiJhf7y/KH8zIfym/9tprMW/ePNexgYEBfPjhh1i1ahUAYNWqVfjwww8xODg4HSLmEE0qtlMHAEkxb/6KZQsgKRoeeeogosmJWbZX348/dwjtbY32a6v/seTYtrvHvq69rRGPP3cIq9qb7GTbumbHc4eQlLSCMnuNlW+e42k73rV4suso2tsaJ7XGBMJ0kM8uBqJyXj3ftrsHigrPc5+dSxS0//H6pIGobD+0rP627e7BQFQe19xWLFtgPwyd/Xj5sIlSKh8zG5jMfR0v5wYkO9C1xtq+pwfnBqSSj1XJFPMcd9pnUtLsxNk6P5JQ8OizH6C9rdFOtq1z23b34Nyg5Lqmva3RTratdtk2EU0q6D0dzbHPmWA7xCeUn0q090qTqZz+dyZj+a6RhOLyX1ac5Fzfz84l7GTbOrZ9Tw+0zH8EFsOM/ITbizNnzuCiiy4Cw5j/k88wDObOnYszZ86grq5uXH3V1wdLLt/ZY/32jbSQFA2gRv9OKhqaFoxP1mL6dvYPA2PKYV9Hma/TkuZ5TUpWzT7hXUggn1xe8xxP20IUWovx9jcVelApFFMAZCYy0XlPly7k0+fBuFRQz1Oy6nlON4yi7b8Ye/n47GnP/obiEpZcVp/T3rn+rrlRhf1SsfIUohQ+Jp8ezDR7Gu99nQyH+0a8x4ql0dI0p6RjeVFKnzAZPSj2OW69TklqTnvbvvPY01As7T6ep53TJs4e68/rNyZjj6VgsnZHfEL5mW57n0qZShUnFOt/iY4VxvJdAMb0e/l8XDQpg+PoovzBrEm4S8lUVBr0C+Z3pZ03VHB8B1rgGPg5Bv39sZL37ewfFDWmHNnX+UTG8xofz5p9Ap5y55PLa57jaTvRtXD2V2kVJ8tJQ0NoQnpW7eSbdyXrQj59rgsKBfXcx7tdv3WOpou3/2Lsry7kLUdtUMi5Lnv9s+dWrA+bqO6O5WMmqgcz0Z7Gc18nS31E9B4rJE75upbSJ0xWD4p9jluvfWJuezrzfLfa5viNkPdaF3ru+gXW7neyz+dSUgq7Iz6h/EynvU9GpnLGCcX4X6JjY2P5LsDbz3n5zuw2YT/v8nOkSjmAefPm4dy5c9A0c7E0TcP58+dz/vV8ugj7WGxd1+Z6GG7oaMZr7520vzcU9nMl6/v+1S3oPthnv7b6H0uOLZ2t9nXdB/pw/+oWPP9mL+5f3eK6ZtPqFvgFpqDMXmPlm+d42o53LdZ3NKP7YN+k1phAmA7y2UV9mM+r51s6W8Gx8Dz3uYsCBe1/vD6pPsRjS2erq78tna2oD/Pjmttr757Eho7mnH68fNhEKZWPmQ1M5r6Ol7l1AjavdY+1eW0rLqoXSj5WJVPMc9xpn36ewYN3X+1qHwlwePDuq9F9oA/rPexpbp3guqb7QB82ZT3bs20i7GPRND+cY58zwXaITyg/lWjvlSZTOf3vTMbyXZEA5/Jf3Qf6ctb3cxcF8MCalhwdYCgU7Q8owzBm3kd0GVasWIFt27bZVcrvvfde3HPPPXbRtGeeeQa/+tWvxt3vlH2a5ahAWhPgQdMUBmMSagK8eUNLWaVc18DSmeqm2f3nq1Ie4BEOcO4q5Zl+nFXKIwEBIT+LAG++217wnbasORec53jajmMtJEVFUORc/VXyp5pTzWx9Z7QaP+EGkN8uMseHErJZpTytIOLn7YeyWaVcQjjAIyWpCPk485yR3w9NyCc5q6mGRXMMj8IunuvvmFtdSICuG6PzdPiikvjIQmuJievBjLWnzH0dikuoDQp572tJyFQIHoqlURsSzUC3DF+jraRPuAGM+RzPsU9HlXK/yCLi5xD0se4q5QkJ9SGHXdLuaxpqfUinxrCz7CrlYaE09jgJSmZ3xCeUn2my98nIVPY4YYznKtGxIvGqUh4WEA5wSKvA6f44RIFFvVWlXNYQjcuozVOlvJAezMiE+x//8R/x8ssv48KFC6itrUVNTQ1eeOEF9Pb24u/+7u8QjUYRDofx4x//GIsWLRp3/zM10ZoqqtHwKz7JmkKq8X6VgqpNuMegWu5npctJgmtvZvL8Ki7hngaI3IXHGIvZ6BNKRTWtU6XFCdW0dpXKRNawkB7MyO9wf//738f3v//9nONNTU14+umnp0EiAoFAIBAIBAKBQCDMNmbNd7gJBAKBQCAQCAQCgUAoJyTh6pS9zgAAIABJREFUJhAIBAKBQCAQCAQCYQogCTeBQCAQCAQCgUAgEAhTAEm4CQQCgUAgEAgEAoFAmAJmZNG0WYO1XUVcRk1IQDjAYmDE3CagLizCgIFYQsGciIiwn0Va0xCNqxiJywgFOEiyBp5lwHEUkmkV4QAPwwDSsoaRuIy6sACeo9E/lEJdWATL0Dg3mER9xNyCIJ50bAMSERH2sa7tiCy5lP44zvQnTBmtNvnm4De3LLFf+0wVdbXJ7oNAmE1kbGYkKcMnclBUHbKigecYJNMK/CIHgaehqAY0zcCxszEERA4+kYGqGRiKSvCJLII+DpKsIpEy7ZemgGhSBssyiCblzHkNfh8LlqaRkjS3rYPY5awms03O4b4R1EdEzK2bwq17MmMNRtNTP1Y1kNkS6EI0jZqQAE3TEPYL0A0d/UNpCDwDQWDAMQxkVYMkmz9BPwdRYCHLGkYSMnw8A7/IQjeAkZiEcJAHTVFIpBTUBEefv4QSkfHdZ4/1wy+wleEzndtLRUTUh6Zwe79iKadvGadMxAdVAdl5xXjszOFbz8UkMLQBXaeQllUIHIuRuISQn4cgMGAYChxD5WwNlg/iTasVCjh8cgSPPHUQkqLZm7A//epRnBlIQuAYbOhoxgtvH0csoeD/+9/XoX8ojW27e+z26zua0bX/BG77wmWIBFgMRyWomoEdzx2y22xa04J9v/8UJ8/GsWl1C/bt/xTxpIK/uG0J+odS2NV11G67dV0bli6M4PAJt1xOObaua8PSBRE7Mc+ew5bOVjz1yugcvr3x85BV3dXG1QeBMJvI2MwTvz2Mu9oXQVEN/PZ3x9GxfCGedNji5rWtUFQdv3j+jy47FHkGz/7XMcQSCjatbsGzr39s29rX71wKWdWxc99H9jUbVy5GyM9hJC7n2DrP0viXnf9D7HI2wgEHPxrE9j09Lp1rW1xX+iC0nGNVAzTwfu+g61n+1/dcjVPnE/jF8x+61iggMjh9Iemy3c2drXj6FXecMKdGxBv/04erFs3JsfP6uuB0z3hm4BHvTLvP9NClLZ2tuKapbvqS7kq090qUieDNZOwsyx7m1fvxlZub8fSrR3NirE2rWxAOcOBYGhxDY369f8z+yb+UVynRpGIrFABIiobte3rQ3tZov97VdRQrli2ApGigQNtKZJ1/suso2tsasXPfEfAcB55j7WTbarNj7yGsufFy8+/nzL/b2xrRdz5hP5itto88dRADUTlHLqccjzx1ENGkkncO23a759B7OprTxtkHgTCbsGymva0R0YSCnfuOoL2t0X4QAKO+YCgm5djhSEKxbXHHc4dctjaSUOxk2zq2c99HEHnO09Z7T0eJXc5Szg1IdvAJjOrcuQGpqseqBgaics6z/PSFpJ1sW8e27+mBplM5trt9d26ccKo/ibvamzzt/MyFxDTMcubhFe9Mt8/00qVtu3swEJWnTaZKtPdKlIngzWTsLNse2tsa7bwqO8ba8dwhqBpA0zQ0A0X1TxLuKmU4Lts330JSNIDyfj0cl/K2lxQNKVlFSlI926Rlzf03BeiG4dl2IJouKJekaBhOyEXPId84Vh8EwmzCthmnDWZs2ImkaNANw/uYwxaLsbWU7O0XvPondjk7GMzj54di6aoeqxrwesbmtd08z/TsOEE3DEST3s/jwViqtBOYpeSLd6bTZ+aL1wai02dblWjvlSgTwZvJ2FmOPVDuPCm7z5SsIpqUEU3KRfVPEu4qpSYkQOAY1zGBc3+PwPm6UHuBY+DjWfhE1rONyDM5f9MU5dm2PiwWlEvgGNQE+KLnkG8cqw8CYTbhtBmnbXjZCE1R3scctliMrfl4b7/g1T+xy9lBfcTbz9eGxKoeqxrwWo+8tpvnmZ4dJ9AUhbCf92xbF/KVdgKzlHzxznT6zHy2VR+ePtuqRHuvRJkI3kzGzvLdZ+dv53EfzyLs5xH280X1TxLuKiXsY7F1XZtLGTavbUX3wT779YaOZrz23kkIHAPD0LGls9XVfn1HM7oP9mHjyiWQFQWyrGLT6hZXm01rWrD3jWP2dxb2vnEM3Qf60Dg3gA0dza62W9e1oT7M58jllGPrujaE/VzeOWzpdM+haX44p42zDwJhNmHZTPeBPoQDHDauXILuA31Yn2WLm9e2otbx4LHsMBLgbFvctLrFZWuRAIeNKxe7rtm4cjHSsuJp603zw8QuZylz6wRsXtuao3MX1QtVPVY1UB/ic57l8+f48Vd3XZmzRgxl5Nju5s7cOOGSBj+e7+71tPN5cwLTMMuZh1e8M90+00uXtnS2oj48fW8CVKK9V6JMBG8mY2fZ9tB9oM/MqzxirE2rW8AygK7rYCgU1T9lGAYpcTNOBgbi0PUKWDarEl9CRk2ARzjIeVcpDwsIB7jRKuUJGSEfB0nRwGWqlKfSKsJ+HgZGq5TXhgXwLI0Lw2nUhQSwbKZKeVhEfSSrSnlYMBXOyJXL5+Nx5kLclNFqk28OAc6sUm69ziixq012H1NAQ0NozDYVowclpqEhhP7+2HSLUXbyzbvidKFglXIVfpGFwNFQNLNKuVW53C8wUPV8VcoF0BRlVymPJWX4RQ6yosEvsmAZR5Vyy9ZRWrusdL2bqB5U+rwmTKZq71AsjdqQaAafU1ylvCxjOSilTyipHjirlAcFaLqGsI+HDgP9wxIEjoEg0LlVyn0cRHG0SrnIMwhYVcrjMsIBbrRKecamG+ZUp/6Ww+7GrQcZ351UNPg5piyxzJg4q5SHzR1oKqVKebntfTIyVVqcMGOfO8WQnVeMx86yfCvDeFQpD/AQeAYMTYFj3VXKC+kBSbgnwExNtKaKajT8SnOe5aQa71cpqJqEe5xUy/2sdDlJwu3NTJ5fxSbcZYTIXXiMsZiNPqFUVNM6VVqcUE1rV6lMZA0L6QH5l3ICgUAgEAgEAoFAIBCmAJJwEwgEAoFAIBAIBAKBMAWQhJtAIBAIBAKBQCAQCIQpgCTcBAKBQCAQCAQCgUAgTAHsdAswHbz++uv42c9+BsMwYBgGvvnNb+LWW2+dbrEIBAKBQCAQCAQCgTCDmHUJt2EY+O53v4v/+I//QHNzM44cOYI///M/xy233AKaLtMH/lbJ+riMmpCAsJ+1t8LyiSxSkgqeYyDJGliGBs/TSKZUCDwDlqGhGxpoioGm69B1czuP+ogAhqYxGEsj7OehqhoYhsFwXEJtSIBh6FBUA6LAQpZVMAwNiqIwHJMQCQlISypEnoWkqPCJLBTFgK5r4FizDH4kJEBRVPgEDoqmI5ZQUBsSoGkafAKHsI8tvux+9vzHcy2BMJNx2kZYgKrqiCZl+AQOIwkJDTU+KKqOpKTCx7OIJiSEgwISKQUhPweOYxCLy9ANA36RRTQh48xIGlRmq59QgIMkqeA5FrKiQuBZKKoGlmFMXxDkwfMMRmIS/D4OgA4KNGJJGQEfh7SkIeTnUB/iAQOIp1WkFA2KaiCRVhAQWIQDPIIiY/q02WzjmXt59lg//AI79WtQbr+a2SbncN8I6iMi5tZN/bZgg9H01I9Vbhz3rS4iQlI0095EDiMJGT6BBUUBPMdAVTWEQzziCRVDMQn1ERGapiOWVCBktvgyDCAlKeBY1tzCKCwChg7doEBTFNKK5TtkCDwDUWDAsTR0zUA8qaAmmNEdTEB/nVtMRUTTT0z3FlOEwlSibZXTt4xTppKsUzG+ejriZK8x4fZPuqbb52kKSKQVUDSN4Yw/KovNZ+S8EJXgE1hEQhxSKW3U70R4DAzLGMxs4UbTQFLSoKo6/JkcyyeyiCUUBP0sBJ5FKqUiljTnlZZV+AQWA0kZkqKBoWmoqg7AsGOluogAn49FkGcArTixZ13CDQA0TSMWM0u9x2IxzJ07t6zJ9uGTI3jkqYOQFA0Cx2BLZyueeuUozgwkIXAM1nc0o2v/CXQsX4iu/Sdw6/KFEHgGz3d/gr9ctRSyakBWNOg6sOO5Q3Y/Gzqa8cLbx8ExNDpvugKPO85tXtuK/YdOY8ml9Zg3x48Lw2n86qUj9nlrzLvaF0FRDfz2d8fRsXwhnuw6mtPm1uUL8cLbxxFLKHhgTQteeecEVn2pCUsXRMZ2CB7z37qurbhrCYSZjIdtfP3OpZBVHTv3fYQFFwdx259cimde+9jTNv/wxzPoWH4pnn71qH0+FOBw5w2XYZdH2xXXLcRrfziBFdctdPmKTatbQNHAM68exa1/cim27e7J8QHrOxZjTljAqQtJpGUNO/eN+pKNK5dgTo2AR558f/baeLn9XLnH44CDHw1i+54e1zOmbXFd6QPjco5Vbhz3zbLVl/efwG1fuBQ7933keraLPIOL5/hx9MQItu/uQSjA4a4vNblsb0NHs/lGuG7gsb2HXDGGpul49vVjOb5jQ0czGmp9eOG/P8HhE8MQOAbf3vh5yKo+Pn2igfd7B13+YktnK65pqiNJd6VSibY102UqxldPR5zsMabTD3jFEn9111VgGSrH10ypzWfJOa/ej6/c3GzfG6/Xd990BZ59/WM7p3L6wKULa9Cx/FLXvbXinHtWXAGGpjAUk/BOJmZy5VWdraiPCPhcQ6CopLuivsN944034k//9E/H/JkMFEXhX//1X/GNb3wDN910E/76r/8aP/7xj0szgSKIJhVbUQBAUjRs292D9rZG+/WTXUfR3tZo/97VdRTRhIL2tkYEfAL6zicg8pydbFvX7eo6ihXLFqC9rdFWCuvc9j09uOOLi7Cr6yh0nbKT7ewxowkFO/cdscf3amONIykaHtt7CKvam/DIUwcRTY7tebzmX+y1BMJMxss2RhKKHXivufFyPLb3UF7bXNXehO17elznVyxbYD8gs9s+/twh+7fz/I7nDsHHc1jV3mQHz85r29sa8eizH0AzgKGYZAf8Vpud+47gs3OJWW3j5fZz5R7v3IBkByjWeNv39ODcgFTVY5Ub532zbLW9rdG2eWD02T6SUEBTNLZnbHLFsgU5trer6yh4jrUDYOv4tt09uDAiefqOXV1H0Xc+gVXtTfax3tPRcevTQFTO8RfbdvdgICpPzeIRJk0l2tZMl6kYXz0dcbLXmE4/4BVLDMUkT18zlTafLWd7W6Pr3ni93vHcIVdO5fSBVtzkFec8tvcQeI7FLkfM5NKB3T2AQeH8cHF6UFGfcP/kJz+Z8jFUVcX27dvxb//2b1i2bBnee+89PPTQQ3jhhRcQCASK6qO+Pjjh8c8e67dvmIWkaACV+9r5WzcMgAKG4xJ0w0BKUgv243Uumvn3iELX6obhHt+jTfY4aVmDpGhIKhqaFtR5ztvaDD7f/AtdW6lMRg8qHet+zTYmOu9S6IKXbdj2CCAtaQVt07JD1/kx2tp9Zp1PySpgFPYB0aTsks/ZRjeMnGPF2Hi1652lB+X2c+Ue73DfiOd4Q7E0WprmVO1YXpTSJ2T35bpvWc98J5ZNRRPymLad7/luxRD5zqXl0eP57LqQPn189rT3fYpLWHJZvec1U00l+JN8z4ZKkG26bWu2yVRfH8TpobF9dan8+Xh0bKz4w8t35PMTU2nzOXJmy5XvdR7/mi8GstqlZLVgrBRNymDTNK5aNLYeVFTCff3110/5GIcPH8b58+exbNkyAMCyZcvg8/nQ29uLq6++uqg+Bgbi0PWJ/V+HX2AhcIzrxgkc4/o3Eeu18zdNUdB1AzUhAZ+di8MnFuiHgue5sJ+HwDEFr6Vpyvwb3n045bKOiTwDgWPg5xj098dy5tzQELKP55t/vmuni2Ic1WT0oJJx3q/ZRL55l0sXvGyDpij7mE9kCtqmZYfZ5wu1tfrMPu/jWQBGQR8Q9vMu+ZxtaMrxDiKKs/FK17vx6EG5/Vy5x6uPiJ7j1YbEko9XzrGyKaVP8Oor+74Vsm+aohAO8mPadr7nO01R0A1vm6YpCiLP2Mfy2XUhfaoLCd73KShMi12Xw59M9NlQKb5uOm1rpslUrC4U46tL4c/Hq2NjxR+WDIXOW22m0ubzrc1Yr7N/W+fzxUBWnOPj2YKxUtjPQ+CZovSgov6lPJvDhw/jV7/6FR555BH87Gc/s38mw8UXX4yzZ8/ik08+AQD09vZiYGAACxYsKIXIYxL2sdi6rs1147d0tqL7YJ/9en1HM7oP9tm/N3Q0Ixzg0H2wD4mkhMa5AaQlBZtWt7j62dDRjNfeO4nuA324P+vc5rWtePGtT7Choxk0ZeDe25e4zltjhQMcNq5cgu4D5vhebaxxBI7BA2ta8JvuXmxd14awn5vQ/Iu9lkCYyXjZRiTAYePKxRA4Bnv+6xgeWNOS1zZ/092LzWtbXedfe/ckNuRpe//qFjz/Zm+Or9i0ugUpWcHz3b3Y0tnq6QMevPtqMBRQGxKwcaXbl2xcuQSfuygwq2283H6u3OPNrROweW1rzjPmonqhqscqN877Ztlq94E+2+aB0Wd7JMBB13Vsztjka++ezLG9DR3NkGUVD6xx2/SWzlbMiQievmNDRzMa5wbwm+5e+1jT/PC49ak+xOf4iy2dragP81OzeIRJU4m2NdNlKsZXT0ec7DWm0w94xRK1IcHT10ylzWfL2X2gz3VvvF5vWj0aN2X7wOff7M25t1ac88CaFsiKig0dzZ6x0ubOVoAyMLemOD2gDMOoyI/onnzySTz88MP44he/iDfffBNf/vKX8dZbb+Hmm2/GT3/600n1/etf/xo7duwAlfkUZuvWrbjllluKvn7Sn2ZZlQATMmoCPMIBbrRKucAiJavgWfOdFJahwXE0UunRKuWGoYGiGGiGDl0DonEZtWEBLENjKJZG0MdD0zTQDINoXEIkKABwVymnGRo0RWE4LiESMKvy2VXKBQ6Kqo9WKU+YbRTVo0q5rsHHsaYjyLMkOe+0Zc+/wLXTBfmEe/rffS830/0JNwC3bQR5qJqBaFKBTzCrCs+pEbOqlMsIB3gk0gqCPg48zyCWkM1PWUVz9wO/yIKiKCRTCoJ+DpKigmfNKuU8x0LTRnc0CAfMd2tH4hL8AgfQOiiDtqsmp+X8VcqTaVPOiJ9D0De680KxNl7pejduPcjcy6Siwc8xU+/nyu1XM1V7hzKVYC+qn/oq5WUZy8FUf8INwHXf6kICJNWsOu4XWUSTMkSeBU0DPGtWKQ+FeCQSKoZjEmozVYOzq5SnJRUsy9jrBUqHrptVyiXFfNbHkgp4jobIO6qUp5RR3cEE9NdZpTwsmoH3NBVMI59wF8k02dZMk2lculCMr56kP5+QjnmNCbd/0nXDPk/TFBKSAorKVCkvl807qpSLAosaZ5XysIj6GqtKublLk7NKuU9g7Srk8aSCgI+FILBIpVXEEjIiQcH0kQILhqYgKR5VyuMSasMC/CKLoOCuUl5IDyo24e7o6MDDDz+Ma6+9Ftdddx3+8Ic/4I033sCLL75Y1iJnXszURGuqqKiHS5GQhLu67lcpqIiEewqolvtZ6XLOiOB6CpjJ8ytLwl3hELkLjzEWs9EnlIpqWqdKixOqae0qlYmsYVX+S/nAwACuvfZaAOY2Xrqu48Ybb8Trr78+zZIRCAQCgUAgEAgEAoEwNhVVNM3JxRdfjL6+PjQ2NuLSSy/Fq6++itraWnDc7PkeIIFAIBAIBAKBQCAQqpeKTbjvv/9+9Pb2orGxEd/4xjfwrW99C4qi4O///u+nWzQCgUAgEAgEAoFAIBDGpGIT7s7OTvvvG2+8Ee+88w4URSl6r2wCgUAgEAgEAoFAIBCmk4pNuHXdXeaOZVmwLAtd10HTFfvVczdWxb+4jJqQgLDPXO54WkVC1jKVwHUIHItkWoFf5BBNSKgNiwAARdXtCuRpSYUosmBpGsPRNIIBHrFMBVORN6vm+UQWHENjJC5D4Bn4BRYUDQyMmNWHJVmFwLFQNQ0+gUNKUpGUVARFDiE/Z1bbw2j1P5/Ajh6vzHpQBEL14agEGhA5SLKKcFCArukYTsgIBnhQME1OUXSMJGT4BRYBP4u0pCElqQj6OaiqjmRaRU1QgKyqYGizurhdZZNnEU/KGEjKoEAhkVYgyRoCIgdRYCArGqIJBTUhHoqqgaEZuxo5z9EYjKZRGzaroqfSKuZERIT9ZvXxeEqBwLNIpBXUBAXQFDAYlUb9nAFv/zeb/Ehm/meP9cMvsFM//0wV3cFoGvUREXPrpriyb2a8w30jUz9eueeWqbb98dnTqAsJZlX+iVbeLaQHjnnNrfWBZYH+Icncc1dkwQsMEkkFsYSCUIADQ1MYjskIBTjQFIVoQkYowCORVBDwm+cvDKdRFxYgKypYlgXNAIYOMDQFjqMRTyoZv8Ej6GeRTGkYjErmeBwNH8+SZ/5UUUq9KhXltq1xyFQW3zJOmaZ8nZyV/iNiro5M9rma1b8oMBgYToPjGKQkNeM7dAyMmOdrwiwSSR1pWUMsYY4pKyo4lkU0YT7zG2oFDAyZfV5U74dhGEhJGkbiMuojAhpqBERjHjJTZj4UTalIS5kYI8BiMCpjICbBxzMI+DjUhjmcH5Sg6hoYisFgNI26iAiKMsCxDHTNQFJSoekGQj4OKVlDKq0inPFxsqwjkVKRllVzJxaBhqIYSKVV6IZh7wJTGxYAA4hlqpf3DaVAw8js+GDOVZLMCuaBAINEQhuXHlRswn3llVfa23Zlc/jw4TJLMwEo4PDJETzy1EFIigaBY/DtjZ8HAFwYSSEta3h5/wl0LF+IrszvJ7uOIhTgsPHWxdB1YMdzh+xr71/dgtf+cAJ/0noJOJbCT/7jf+xzGzqa8XbPaXzpmkbs3HfEdXxORMSv//sTnDwbx/qOZvzhj2dwxxcvw7HPRrCr66jdduPKJZhf7wcA/MtOd9+NDUE0zQ+RBzCBMFk8/MLX7lwK5XQMO/cdse0/ILKIpzU8tqfHbrdpdQueff1jnBlI2rb5wtvHwTE0vnJzM7Y72q7vaEbX/hO47QuXIpqQMRKXbXufV+/H3SuuwI69o/5l89pWPP3qUVffb/ecxg2t811+YktnK17+/ae47qp5eNJx3JIlllCwdV0bli6M4PAJ9zy3rmvD0gWR2eFHPO7zlM6fAw5+NOjSgc1rW9G2uG5qgsJyjlfuudHA+72D2La7x6X31zTVjT85KqQH7Oi8QgEO96y4Av/v+Q9dz+T6iID/+9T7CAU43HnDZdiViRGsv7Pt/dblC2073LSmBa++cwI3X78QNAXQFAUDcM3Ly+79Ioe6kECe+aWmlHpVKsptW0SmwoylI5N9rnj0/8CaFqiajl88/6Gnb9m8thVBkcFP//OgKx/ZnYlF5tX77fhjwcVB3HPT5YglVVf+srmzFft7TmP/h+dHZV4YQe+pGPr64/Z4SxfWYOUXLsOjz36Q4we7D/Th+pb5rpho89pW1IZ4fHomhpf3n8Bd7YtwQtZc8j9499WQZA2/eP6PrjVNSyp+3f2JnXs5xwv6WZw4I+OdP57BiusW4nGPXKxj+aVQVQWn+7mi9aBiPyp+9dVX8corr9g///mf/4mbbroJP/jBD6ZbtKKIJhXbKABAUjT0no6i93QUIwkFu7qOor2tEU86fkuKhhXLFkDkOVtZrWsff+4QVrU3Yee+I4gmFNe5XV1HsebGy+1k23n81IUk1tx4OSRFw5NdR7GqvQmn+pO2Qlptd+47YsuX3Ufv6Siiyel+e5FAqH68/EI0odi2a9m/plP2g8Vqt+O5Q2hva7Rf7+o6ihXLFqC9rdEOBKxzll/Zue8jiDznsvf2tkY72bbab9/Tk9P3mhsvz/ET23b3YFV7k+2vsmWRFA2PPHUQA1E5Z56PPHVw1vgRr/s8lfM/NyDl6MD2PT04NyBV/XjlnttAVLYDUmu8bbt7MBCVx91XIT1wzmvFsgV2sm2127nvCPrOJ+zzuxwxQrZdWvbutMMde82YYcfeQxB5DjzH5szLy+6HYhJ55k8BpdSrUlFu2yIyFWYsHZnsc8Wr/8f2HsJQTM7rW7bv6YGqUzn5iOU3nPHHmhsvh6ZTOfnL9t09uOOLi1wyD0Rl9J6OusZb1d5kJ9tWW8sP3vHFRTkx0fY9PaBp2s6nopncytnm0Wc/wFBMylnTkYTiyr2c4/kyMdOq9iY72XbOfVV7E7bv6cHnLq4Zlx5UbMJ9ySWXuH7a2trw4x//GI8//vh0i1YUw3HZvkkWumHYP5KiARTcvwGAAlKSmnOtpGhIyxokRYOetXW6pGhIS5rnNbphIC1rrj7s8T3aevWtG+ZG9wQCYXLk8wvZ9p/PB4DyeO30H1nnJEXL7atAe+frfD7F8kP5rpcUDQPRtGeb2eJHvO7zVM5/MM96D8XSVT9eueeWT3cHouMfr5AeuOaVxybt53FWjFDI3p12aNlqSlaRkovzKVYcMFtstVyUUq9KRbltqxhms0xj6chknyv5+vf0M47zKVnNOWb7Dcc11lfevPqIJmXX64FoOicXKZTHRBPec48mZVueQrmN57EC8y0mBrL0olg9qNiE24t4PI7BwcHpFqMoakICBI5xHaMpyv6xzmX/BgCfyOZcK3AMRJ6BwDGgs/7VXuAY+ATG8xqaoiDyjKsP5/jZbb36pikKNQF+vEtAIBCyyOcXsu0/nw9w/tuY83W+tgLH5O9rjL7z+RTLD+W7XuAY1IdFzzazxY943eepnH99xHu9a0Ni1Y9XKXOrD49/vEJ6kD1Ovmey1/lC9u60Q8tWfTwLH1+cT7HigNliq+WilHpVKsptW8Uwm2UaS0cm+1zJ138+P2O99vFszrGcWASAT8wfb4T9vOt1fVj0iH3y5zHhIJ+3X+t4odwm37F88zVjp8IxUF0mzilWDyo24f7Od76D7373u/bP1q1b0dnZiT/7sz+bbtGKIuxjsXVdmyuhbpofRtP8MCIBDhs6mtF9oA/rHb8FjsFr755EWlKwaXWL69r7V7fgN9292LhyCcIBznVuQ0cz9rxxDBtXLsk5fskcP/a+ccz+ntdvunvgxQKqAAAgAElEQVRxSYMfGzLjWW03rlxiy5fdR9P8MMJ+sv85gTBZvPxCOMDZtmvZP0MZeGBtq6vdptUt6D7YZ7/e0NGM1947ie4Dfdic1XZ9RzO6D/Zh48rFSEuKy967D/Rh0xq3f9m8tjWn7z1vHMvxE1s6W/Gb7l7bX2XLInDm97Pqw3zOPLeua5s1fsTrPk/l/OfWCTk6sHltKy6qF6p+vHLPrT7EY0tna47e14fHn4AW0gPnvF579yT+8q4rc57JjXMD9vkNjhgh2y4te3fa4aY1ZsywaU0L0rICWVFz5uVl97UhgTzzp4BS6lWpKLdtEZkKM5aOTPa54tX/A2taUBvi8/qWzWtbwdJGTj5i+Q1n/LHnv46BoYyc/GVzZytefOsTl8z1YR5N88Ou8Z5/sxcP3n21px988b8/yYmJNq9tha7rdj4VzuRWzjYP3n01ah1vVFhrGglwrtzLOV5KNmOm59/sxf15crHNa1vx2dnhcekBZRhGRZbF+PnPf+567fP5sHTpUtxwww3TJNEoAwNx6HoRy+aoRlwT4G2jsKqUq6oOzapSLinwC9xopTxkqpQnZLMKsaJC4FmwDI3hWBpBP49YUoHIM5kq5TJ8IgOOoRFNKGa1UYEFTQODIxJCft6sLMix0BxVylOSioDIIeRjERTNd7GsKuVipqJqUJxcdd2GhhD6+2MT72AaaGgIjdmmaD2oMqrxfpWCfPMuuS5kVylXVIT9PHTd8KxSHk3I8AksAj4WaTlTpdzHQdV1JFNZVcoTEsKBjL/gWCRSCiJBHhTlrlIuCAwUxfz+eCTIQ9UyVcpTMvwCB4GjMRiVUBsWRquUhwWEA5xZpTytmP2nFdQEeNA0hcGYNOrnDHj7vwJLVOl6N249yMw/qWjwc8yY8580mSq6Q7E0akOiGQSUoUp5WcYr99wylXyH4hJqg4IZ8DoKW41LFwrpgWNec2p84Kwq5TwDn8BCKKZKuZ9HIq0gIHJgGAoDw2nUhAQoqgqWYUGzZpVymqbAszQSKbNKeTjAIxTwqFLOMa5nfqXbZT7KIfe4fcIYejUtlNu2ZqhMJYsTnFXEw2KujhT5XM2r/1n9iyKDgZE0ONZdpXwwas6zNuKoUp6UEQmYvsWsUi4jEuQxt85RpbzODwNmlfJoXEZd2KxiHo15yJxdpTwsIBzkMBiVMRgz/WBQ5FAbMauUa7oGmmLse0DTBhiGgaHnqVIeyFQpV9xVykWBhqwYSEkqdD1TpTwpozZo5l6xpAK/z7zOVaU8k4vxHItgkEE8ro1LDyo24a5kZmqiNVVU4wObJNzVdb9KQdkS7jJTLfez0uWcqB5U+rwmy0yeXyl9QrWuE5G78BhjMRt9QqmopnWqtDihmtauUpnIGhbSg4rcFiwej+OXv/wl3nrrLQwODqK2thbLly/HV7/6VcyZM2e6xSMQCAQCgUAgEAgEAmFMKi7hPnfuHP7iL/4CPp8Pt956KxoaGtDf34+XX34ZzzzzDJ544gmk02m8//77WL9+/XSLSyAQCAQCgUAgEAgEgicVl3D/9Kc/xfXXX48f/ehHoByV5b75zW/ie9/7Hr71rW/h/PnzePjhh6dRSgKBQCAQCAQCgUAgEApTcQn3m2++iRdeeMGVbAMARVH4m7/5G7S3t+MXv/hFRRRPIxAIBAKBQCAQCAQCIR8Vl3BLkoRQyPtL55FIBKIoTjrZliQJ//RP/4Tf/e53EAQBbW1t+OEPfzipPgkEAoFAIBAIBAKBQHBScQn35ZdfjldeeQV33HFHzrmuri5cfvnlkx7jJz/5CQRBwL59+0BRFC5cuDDpPnNggOGECknREEvICPhYMDSNtKzCJ7D2lj8pSUVNSIBuGBgckVAXEWAYOijQGI5JiIQEJFMKQgEehgEMRs0tPyRZhSiYt28oKqHGbsfBMCizXVBA0M8ikLVJPYFAmCYy22DoNKDrgKxoth8QeQaiwIKmKQxF04gEBaiqjlhKgU9g4RMY0BSFeEqxt7JIy+YWFSNxCXVhASxDY2AkDYFnIPDmNoGx08OQJA1DcQkBgQXPMxiOSQgHeTAUhZG4hEhQgKLpUFVz+49wgEdaVlEXEqFr+ugWZrKKoJ9H2Fdgq0Br25K4jJqQULjtTCazjczhvhHUR0TMrSvPNl2D0XRZxyvL/Bjg/PDo3BoiAqBN0VilJmMPZ4/1w5/ZatO1bV5cxkVzRYxEVSRSCvwih3hKRtDPQ84856MJ8zVgPu/rwgIMSgdN0dB1cwvRtKQi6OfAMjTiKQUCxyCZVhAO8IglZISDAmAAw3EJtSFzS6ponNhpWcmnC9NJuf3GOGQqm+8shnL5oFI/P6nRrX79IgufyCKeVJBIK5hT4zOf+ZK57bDlGwzKQCptbiEaTUgQeRY0Q4FjKMCgMBST4BNZ8CwN3TDAMjQkSQHLmjFJwMchLalIyxqCPg48z0BWNMiKhpqwiFRKtdcxGGARjSlISSr8mfHCQQGqooJlM7FNRISuG2auExagqRp0gwLDUuAYGrKigmUZpNIqeI5BMq0i5OfsbY9phsKF4TQCIguBZxBPKmioExFPmHLURUSIPINEWgHH0NA0A7GUgr7BJAI+DklJRTKlIhLioSgaBJ41x2QYzK0VALW4W1FxCfc3vvENfPvb38bZs2excuVKu2jab3/7Wzz66KP453/+50n1n0gksHfvXrzxxhv2v62XvPI5A/SeiiKWVLF9Tw9CAQ533nAZXt5/Ane1LwJD00imFezqOgpJ0ezN1p//715wDI2v3NyM7Xt67HNfu3Mp+s4nsHPfEfvY+o5mdO0/gVuXL8QLbx9HLKFk2hmudptWt2BORMSCuYHpd+wEwmyGAnpPx8CygKYDqbSKwZjsstcNHc2YExHxxoE+tF4+13Vu48olqAvx2PnyR+hYvhBd+0+gY/lCPOnwIxs6mm1/sKGjGfPn+JGSdTz67AeebTauXIKgn0X/UAppWXP5pK/duRRn+hP49xcO5/idr962FEsXRHJ9CgUcPjmCR546aF+zdV2bd9uZDAcc/GjQ5cc3r21F2+K6qQkcZ/J4DHDwY4+xrqir/KQ7nz0sjODwCfP4mi9fisFYCE+/etRlz/Pq/bhnxRV4bO8hO4Zw2ufmta0I+hic6k+6jn/9zqWQVR07931kH/vq7UvQP5Ry2fLmzlY8/cpRnBlIzl47LSeV6BvL7TeqVaZy+aBS64hHf5tWt+DZ1z+Goum484bL8M4fz+Dm6xdix95DdpsH1rRANwz8+Ll3c2KTnS9/ZPuMDR3N8IscOJaCYQDPvPYx7mpfBCkrlti4cglE3kxOP/lsJGcdu/Z/iuuumueKZe5f3YLdDjl3ZZ177Q8ncP1V8xAJ8gCoHP+ZL0/a0NGMxgY/Pj7hlmNLZys4lsJwTMavXjqSs17WnB9Y24JX9p/Ayi9cht99cArLW+ajrbmuqKSbnsAtnFJuuukm/OhHP8ITTzyBW265Bddccw1uueUWPPHEE/jBD36AFStWTKr/zz77DDU1Nfj5z3+Ozs5O3HvvvXj33XdLJL3J+WEJigr7Zq5YtgC7uo6iva0R0YSCoZhkKw8ASIqGnfuOYMWyBWhva7Svs85FE4odeFvHnsz0t6vrKFYsW5C33Y7nDiEpaYgmp/vtQQJhdhNNKug9HYXA85AVA6cuJHPsdVfXUZy6kMRd7U0553buO4JTF5Job2u07f/JLD/i9Ae7uo5C0yk72fZqs3PfEfh4DiMJJccn/fKFwxhJKJ5+55GnDnr6lGhSsR/u1jX52s5kzg1IOX58+54enBuQyHjj5Pyw91jnh6dmbqUknz0MRGX7eNvii7F9T0+OPbe3NeKxTBBsxRDZaxDwCTnHRxKKnWxbx5546UiOLW/fbY7plGu22Wk5qUTfWG6/Ua0ylcsHlVpHvPrb8dwhtLc12j5lVXuTnWxbbR7bewgDI5JnbOL0Gbu6jmIoJkHkOTy295Cd43jlN0MxCQLPe67jqvamnFjm8Sw5s8+tam/Crq6jEHnO03/my5N2dR0Fn7nG2Xbb7h7QFGMn29nrZa/NHnPsR5/9AHd8cZGpm4PF6UHFfcINALfddhtuu+029Pb2Ynh4GLW1tVi0aFFJ+tY0DZ999hmuvPJK/O3f/i3ef/99bNmyBV1dXQgGg0X1UV9fuN2RU1GkJNW+aaDMGwUK0A3zbSr7XAbrvNc53TDytndel69dSlaRVDQ0Lagran5TQaHN4KuVsfSgmpmJ96sYJjrvYnTh7LF+6IaBoVgaaUnLa6+6YSCalPOec9r9WH7E5YfytZHVgrJ4XSspmqdPOXus37OfYv1PteudpQeH+0Y812EolkZLU4n/o2qGj3fkVNR7rKiEqxaVfm7ZTMYnnB7ytoeh+GgwOxhNe9uz83UeWx929GMxXlt2vs5np9Vql5Ugt+UTJusbp4Jy+41qlalUPmisOKHUOpKUtTGf/2nJu42Xv7Dij+xjKVl15Tj5+huKpT3P5ZMhX04kKRrSmbnZMU6BeCi7r3zx1VjxUvbYVj/F6mZFJdy6rrteX3bZZZ7naHriH8zPmzcPLMti1apVAIBrrrkGtbW1OH78OFpbW4vqY2AgDl3P//8d9REBAwAEjrFvnsAxpuyZf2N3nrPPZ77XlX2Opqi87e3rCrTz8Sz8HIP+/lhR8ys1DQ2haRt7ohTzoB5LD6qVarxfpSDfvEulC36BBU1RqAuLGIpJee2VpiiE/Xzec7ph2P4krx/J/O0T2bHb8GxBWZw4/Y6XT/EL3uMV438qXe/Gowf1EdFzHWpD4pTMcSaPVx8RvMcKC1OuL5P1CfnsoTY4Oqe6zFpa57LbOmOI7HM1ody1Ga8tO1972Wml22U+yiH3eHzCZHzjVFFuv1G9Mo3tg0oRJ5RSRxoaQnn7c+YaPpEp2l/QFOWS3zrm41lXjpOvv7qw9731Cd4y5MuJBI6ByDOuGMc6PlaeJHBM3vhqrHgpe2yrH6duFtKDivqX8iuvvBJXXXVV3h/r/GSoq6vD8uXL8dZbbwEAjh8/joGBASxcuLAUUwAANEQEcAyweW0rBI7Ba++exIaOZnQf6EM4wKE2JGBDR7NLSTauXILX3juJ7gN99nXWuXCAw8aVS1zH1nc0o/tgHzZ0NOO1907mbbdpdQv8AoOwnyvZ/AgEwvgJ+1g0zQ8jLcngWQqXzPHn2OuGjmZcMseP57t7c85tXLkEl8zxo/tAn2n/md/Z11v+YENHMxjKwIN3X523zcaVS5CSFUQCXI5P+tqdSxEJcJ5+Z+u6Nk+fEvax2LquzXVNvrYzmbl1Qo4f37y2FRfVC2S8cdIQ8R5rbs3UzK2U5LOH+jBvHz945Cw2r23NsefuA314YE2LK4bIXoNEUso5Hglw2LhysevYV29fkmPLmztb0X2wzyXXbLPTclKJvrHcfqNaZSqXDyq1jnj1t2l1C7oP9tk+5fk3e7Ep42esNg+sabHfZLCOWbGJ02ds6GhGbUhAWlbwwJoWO8fxym9qQwLSkuy5js939+bEMvdnyZl97jfdvdjQ0Yy0pHj6z3x50oaOZsiykiPHls5W6LqGe2/PzaGcc35grTn2g3dfjRff+sTUzbri9IAyDKNiPqI7depUUe0uueSSSY3z2Wef4Xvf+x6Gh4fBsiweeugh3HjjjUVfX9Qnm1lVyv0+Fmy+KuVBAToMDI1IqA0LMJCpUh6XEAkISKazqpQHBUjKaJXy4ahZZTgpKWYl00y7SEBAyM8iwE9vlfJqfIecfMJdXferFEz1J9wAxqxSLvAsGIbCUFRCJMi7q5TzDGjau0p5NG7uVMCyNAYdVcpZhgbH0naVcr9gVukcjkkIB3gwdHaVcgNpWUUowEOSVdSFBOiaMVqlXFERFDkzABirSnlCRk2AL9w2a50rWe/GrQeZSrtDsTRqQ6IZMJahaviMHM9RIbguLJqBbhkKppXEJ2TsIalo8HPMqD047OSiOSJGYllVyn08ZMWsHhxLKghmgu7hmFVJ2IwTDMNRpdzHgWVpJFKKq1pvPFmgSvkYdlrpdpmPSvuEG0B+XZhOyu03qlWmMXxQyeKECT4/s7H1P7tKucAinlKQSKuYUyNCVXVImThiOC6hJigAtIF0WstUDZch8AwYhgLLUKAcVcq5TJVyjqEhSWal8LRiVga3qpQHfOYbfbLqrlJu3dtQMLtKuYxwgIeqamBZBiMJCbVhEYZuYChmyqdpHlXKGQYpKatKuazCL3BgGAoDw2n4RXOXloSjSrklhyi4q5THUwpEnoXfxyItaUikFESCPBRVg8CxkFUVDM2YybbqXve8t7aSEu5qYaYmWlNFNT6wScJdXferFJQl4Z4GquV+VrqcE9WDSp/XZJnJ8yulT6jWdSJyFx5jLGajTygV1bROlRYnVNPaVSoTWcNCelBR3+H+zne+Y2/VVYjJbg1GIBAIBAKBQCAQCATCVFNRCXcpv0dNIBAIBAKBQCAQCATCdFJRCfc3v/nN6RaBQCAQCAQCgUAgEAiEklBRCXc2sizj+PHjGBoagvOr5l/4whemUSoCgUAgEAgEAoFAIBDGpmIT7nfffRcPPfQQZFlGPB5HMBhEIpHAxRdfjFdffXW6xfOGBoYSChIpFaqmIxLiIcka4kmz2p1PZEBRFFKSilRaRdDPQeQZyKoOSdYgyRqCfg6GYYBlaXAMA1nTIEs60rJZ+Y/nadAUhXODKdQEefhEFhEfC+hji0cgEKaJTHXyuGRWIg76eQBALCHDJ7CgaIBnGfA8DUnSMRTLVBTlGWi6WTEz6OOQlFTwDA1RZJFKq0hJpl/gOBopSYHAsRhJyOae34xZD+NMNA2BNbe5uDCcQk1IgKJo4HkGkqJDkkxfFBA5BH0MBqIyBqMSAiKLcIBHUPDY5cCqpBqXURMSEPax019tt9LIVNo93DeC+oiIuXXlqRo+GE2XdbyyzK/cc8vo99lj/fAL7OT027FOdRERPpGGIhtQNB2yYla8HY5JaKjzQVV1RJMyQn4eacnc0SSZViEK5j62wzEJdRERum4gmpAR8LGgKBqJlIxIQICsmZVzAR00RWM4LiPk4yApZrXgVNqsgl4f4s2YgdhxeSmlXpWKctvWOGQqm+8sBhY4N+hYp1p3deoJk22DfhbRRAGbzLSPpxQIPItEWkFNcPS6lKICoHEk428CfhYDg2m7b0nXMBJTMRyTEPLzEHgaQzEZfpGFoesQRQ6ptIqkZO5IQtMAw9CIxmUE/BwEjsaF4TREnoEosEhLCmrDIlJpDfG0GadIsmbvvBLwmTnNYFRCKMBB4FmkUipGEjLqwgL8PhaptIahmLkDE02ZVdCDfg4cY+7WFPCxYBkaI3GzYnrQx0HVdAzFZIT8HJjM7i0BkUMiJSPo5+H3m9XPk5Ji7sKi6EhJSibO4RAUGUQTCqIpGRxr+uCasACWAWiKRm2As9c7qWpIps05pWUNtSEBcyL8uO9/xSbcDz/8MO6//358/etfx3XXXYd33nkHP//5z+Hz+aZbNG9o4MhnIzg3kMTL+09g3c1X4HR/HL966QgkRbP3f5tTI2Lnvo+gaDo23roYHEPjwkgau7qO2u3uvX0JGJpCKLMNyP99+gP73MaVS1AX5vHr7k9w8mwcm1a3oCbEY9G8EEm6CZOCZWnX36pKFKokUEDv6RjODSVz/MELbx9HLKFgQ0czGmpFKKqBbbt7ICka5tX7cfdNV2DHc4fsa9Z3NOMPfzyDm69b6Dr+V3ddBVnV8ERW/yLPuER59r+OIZZQ8Nf3XI2hmIyd+0bbP7C2BQxN49FnP3D10dgQRNP80OhDnwIOnxzBI08dtNttXdeGpQsi0x88VgoccPCjQWzf02Ov0ea1rWhbXDc1geNMHq/ccyulfueRvX8ojnBAhKzq2LnvI4QCHO684TJXHLC+oxld+0/grvZFUFQDO/cdQSjA4a4vNdl/Z1/zYGcrDvX246qmBtuPOPtad0szdr38EW79k0txzeV1OPwpseOyUYl+s9y2Va0yscDBox4yNddNLun20Iktna146pWjODOQzNWRTPsnfnsYHcsX4kmH7W/pbMXve07j2ivn4XFHbLBpdQv27f8UJ8/G8Z17P49YQnH5BisO4RgaG1cuxoXPRlw+ZePKJeBZCgaA53/9Ce5ecQX2/d7sz9yHm8eFYQlPv3rU5auc4z/7+sc4M5DEvHo/vnJzs3sdO1vR9ftP0T+S9vRtXn5u05oWPPvax1A0Pa/f/MrNzejab/ab3ebe25egNizgiZeO5Kzj5rWt4DkKZwcoREJ+nB5IYjgho38o5fa1d1+Nqy+vHdf9p8duMj18+umnuO+++1zHHnjgAfz7v//79Ag0BgNRGSfPxrGr6yja2xpxbihtB9cAICkadnUdxan+JNrbGrFi2QKIPIdTF5L2TbTa/eqlIxhJKOjrT6KvP+k6t3PfEZzqT2LNjZdDUjTseO4QZMXAQFSetrkTqh+WpfHS/pP45UtH8POnDuKl/SddCThh4kSTCnpPRz39wYplC+y/Q37BfhACQHtbo51UW9c82XUUq9qbco4PxSQ72Xb2P5JQXD/WeKcvJO2HotW+fyhtJ9vOPnpPRxFNKq75WAGC1e6Rpw662sx2zg1IdlABmGu0fU8Pzg1IZLwKHgsorX7nk/3qKy7CSELBzn0fQVI0rFi2ICcOeDITS0QTim2rK5YtcP2dfc2ju3tw07ULXX7E2de23T1Y1d6Ebbt7cH5YInZcRirRb5bbtqpWpsE8Mg1OTiYvndi2uwftbY32a6eOWO3b2xrtJNF53R1fXGQn29bxHc8dsvMFWTZyfIMVh7S3NeJUf24+snOfmY9EE4oZk+wd7W9X11HwHIfte3pyfJVzfGs+7W2NueuY8Un5fJuXn9ux95CdR+Xzm9v3jPbrlWN9di7huY7b9/Qg5Bfw2bkEek8NQzOAvvOJXF/77Afjvv8VG1GHQiHE43EAQENDA44dO4ZoNIpkMjnNknkzEE1DNwzzhlAY/duBpGjQDQOgAFBASlILtrN+vM6l5dEbn5JVDETTUzo/wszn/GASp/rjOH0hgfODlWln1chwXM5r56BG/44mZHcbCp7XpGUt53gxfsT2PXnaF+pjODH6ht5wXPZs52wz2xmMpj3XaCg2NX56Jo9X7rmVUr/zyT7ojBeAvLaeE0s42+W5Zjgu5e3L6T/yyUbseGqoRL9ZbtsqhtkkUz6dAOV+bemI3T6P7UeT3v1Z+UJKUvOPN0beYsUPzv6s/GOsvMeeT4GYJq9vK+AbC53z7DdrToXWUTcMDIykEU3kj9/Ge/8rNuHu6OjAG2+8AQC4++67cd9996GzsxMrV66cZsm8qY+IoCkKAmf+C6fzbwuBM7+HZf37kE9kC7azfrzOWf8qKnAMfDyL+rA4RTMjEPLDsrTrh5BLTUjIa+eWLxA4BuEg790m67XIMznHi/EjTt/j1b5QHzUB3jUfr3bONrOd+ojouUa1oanx0zN5vHLPrZT6nU/2urCYY2/5/EOhdp5yBr3lh+H2H/Vhb9mIHU8Nleg3y21bxTCbZMqnE86vGDh1xNne67pwwDuGsPIFn8gWHG+sOMLpQ6xzPn60z7HinHxyO/vzajdW7OR1Ll+/zjnlOxf286ApCvUREeEgn3de473/zD/8wz/8w7iuKBNf/vKXsXjxYgDA5z//eVxzzTX40pe+hL/8y78ElZWElptUSkbWB8/wiwwU3cBl88J4/d3PsPzKi7D0sjr88ZNBaLphf1fi4nofXnjrOHpPDWPppbWoCfJYdEkERz4dstvde/sS+AQGDTUiwgEO7x3pt89tXLkEF9WJeO7NXiRSKjatbkHAx+KSOf6K/d5VICAgmayud80DAWHMNl56UK3QNIX3j11ALCmDYWgERBZtV8yBruefoPVv6G/3nMH7xy7gzGASixfUFLymksmnp5PVBYGjAVBoaozk+IOX3zkBTTOwoaMZLEPh84vn4uBR094HR1L46m1L8f7HF+xr1nc047/ePYl7VjS7jt/QOg9XNdXjw6z+gz7WLG6S+Xnxd8ehaQZuvrYRV3yuFoePj7b/8v+aj+uvuhgHPup39XHpxSHMq/O55tPUWIv3jpy3221d14bGOf6JLr29zpXsJ8ajB4Egi8aGsH0vre+GXf65qam1MZPHK/fcitHvYnXBH2A8ZT9+agiRgIArF9Xj8PFBnL4QR+efXu6KA9Z3NOP19z7D1ZfPwVWL5tjt7lnRnPeaBztb8c4fT+OOL17mGtPq62t3XomX3j6O9R2LsWh+CE2XjG3HlW6X+SiH3OPxCVPlNydDuW2ramUKsGic6yFT46hME4kTvHRiS2crXnr7uFkULUtHrPa/+e9P8GdfbnLZ/pbOVrz+7kmsam/CB47YYNPqFrzw1idIpFR8+X/Nx9WXz3HNw4pD+s7F8MWr5+XkIxtXLkFAZCDwDLreOYGv3r7U7m9DRzN4lsKyJRfhpbePu3yVc/zf/v5TxFMKBkdSuO+OK93r2NmK3759HH88PuDp27z83KY1Lfjt7z5F76nhvH7zvjuutPvNbnPv7UtwUb0Pv+nOXcfNa1uh6RoiQR5XNzVgYDgJnmewaL57XR68+2o0XRLM0clCekAZRuWlDJqmYeXKlXjxxRfB85X3buvAQNw7qRirSrnAgKIppCUNybSCQKZKueKsUu7joMMAx9Dg2EyVcllHWlLhF80KgTRtVimPBHn4q6BKeUNDCP39sekWY1w0NITGbJNXD6oQlqXxy5eO4FR/HBzHYm6NiK/dvqRg4TTnNQBwSUNwzGsqmXx6WhJdcFUpVxH0cQBlVikXBRY0DXAMA16gIUs6hmMSfKKZLOuOKuUpSQXL0PBlVSlnORrpTJXyaKZPhhl9Y9KuUj6SQiQgQFXNKuWyoiMtawj6WAQEFkE/a1cp94ssIn4OQTRbL7EAACAASURBVNGjkq5VWTUhoybAI+znJv2GX6X7iXHrQabS7lAsjdqQiIvqy1M1fEaOV+65ZfQ7qWjwc0yOfo9LF7Jk9/k8qpTHJTTU+KBqOmJJGUEfj7SiQuRYs9qvYO5wMhKXUBd2VinnQFEUEikF4QAPRVPBUAxA6aBA221kRUNA5JCS8lQpL2DHlW6X+SiH3OP2CWPo1bRQbtuqVpkyVcptmercVconHCdk22CAM6uU57NJq0p52nzeJ9KK67qUqgIGbcsZDLAYGErbbewq5XEZQR8HMbtKuWDGGalMzmFVKY/FTV/C8zQGhtMQeAa+fFXKFQ2ptAqRZ+H3sYBVpdzPQRDM2CUal1ETFhCwq5RLiAR5MHmqlDMMjVhCBs+Zlc81TcdwTEYwU6U8kTJ9WyKlIODjEAiYVcpTkopwgIeq6khKKgIii6DIIuhj3VXK4xIiQQEsCzCgURvk0FAfQv+FWG6V8qCAOTXeVcoL6UFFJtwAsHLlSjzzzDMIhcZW4nIzkxKtclCND2yScJOE23l8LCpZF6rF/ipdzonqQaXPa7LM5PmV0idU6zoRuQuPMRaz0SeUimpap0qLE6pp7SqViaxhIT2o2G3B7rvvPjz00EPYvHkzLr74Yte/kX/uc5+bRskIBAKBQCAQCAQCgUAYm4pNuH/4wx8CAN566y3XcYqicPjw4ekQiUAgEAgEAoFAIBAIhKKp2IT7yJEj0y0CgUAgEAgEAoFAIBAIE6bi9/E5c+YMDh48ON1iEAgEAoFAIBAIBAKBMC4qNuE+/f+zd+7hTVXp/v/msrNzb5q0hZZSLoVyLVTQQVCUA1ZF0AqMgD7O0ZlBYXQO5/GMzziPc2aOP8ffcRjHcfSog46eGc9BBBwv/FARi/WCoo4gxeJQChUpUC69pWmSJtm5/P5Isps0O2mS5rKTvp/n8ZHu7L3X2mu9613vu/d639XejrVr12Lp0qX44Q9/CAB499138ctf/jJlZTz99NOYMmUKWlpaUnZPgiBiQ3t3EwRBEARBECMF0S4p//Wvf41FixZh69atmDdvHgDgiiuuwKZNm1Jy/2+++QaNjY0YM2ZM8jcJpOfvtDhRqGfh4ryw9bugUSlgsTth0LKABOA4H/qdbhRo/duEOTkPNCoGVpsLOo0CSqUcF7vs0KjkkMtksNpdYBkZ5HIp1KwcWlYWe+uI4LYCVhcMOhZ6lcA2PgQhAoJ7d1/stgMASoxqLJ1XkbOZzYckuIVHP4eCAhZOlxdOpwfWfhcK9UpwnBd2JwetWgEffLDaOKhY/3ZgLo8XNrt/qwuNSg6H04NuiwOmAiVkMsDF+SCTStBnd0GnVkAmk6DH4oRS4d82o1DLwGLlcP5EB9Ss3K8X4N+ezNLvhsPpRlGBkvRFughsbXP0TC9MBUqUGDOzTVdQRjJVXkaeL9NznBTosrhw/Hw7jDp2YButZBiqnQJl9VidMOhYeDxe9Nk5ftsduUyCPjvHb0fjdHFgGDl8Eh/6rBz0WgUcTjeUrBwejwcyqYzfPixi+y+yEbJLKuUqVWRabyRQp4zpTjETkJmuQP8MKTMy4KLZieazFpgKWBQXsIAn8vduiwNGvRI+nxcqBQOpBOi2OFFcpISlzw2r3QWtWuHfpjCwhbHD6YG132+jMEH/RCmDzelBn90Nu4ODVs3A4XKDkctg7edg0CqgUcthtbvhdHng8/mgVMjRY3HCoGeh18lhsbj925jplXC7PWAVcsikEtgDW59qVQzkcik6zf0w6pXQaeXo7XOjJ9AmEokXMpkMnNsHm53z2zVq/7ZfQ+q8GLrR6/XB0u+331hFYAs2bfL6U7QOd1NTE55//nlIpVI+Q7lOp0Nf3/DT3LtcLjz88MN4/PHH8c///M/J3UQCHG3rxVM7GlFdacSCWWPw6vstqJ03DtvrW+DkPPwG7a81HAfn8WLZggnYFvLbmtoq1H9xCrcsqcKFrj4oWUXY72trq6BUyFBUoEJlmS6qsATrEbxu4+oaTKsooAmVECUXu+38VmJ5TWBsbnn3KNbVTce5i25YbBz+vPMIdBoGN15Zia17msPG+9v7T6LPxvFj/7UPT6C4QInaeePx3BtN/LnrV1RDr5bjsZcPRb1XcaEKL7/bjHNddl4vaJRynDxnCdMzpC/SAAM0HuuO6LOaKcb0GI75XF6m5zgpcLi1G5tfH3i2DSurMbvSmLhzNFQ7hZSl0zC4+apK/O/ugXF823VTYdQp8PTfvg67vv6LY1hy2Tjs+eI7tJ234valU/HOpyfx/SWT8bf3j/NjfsPKasyeZMTR78hGyDqplKtUkWm9kat1yhaJyowMaDwu0HaTjX6nW+D3dXUz0fDlKXxvRim6e+2YMKYwwpcpNalxy5KqsOuCNkppkRqdvU681nAc188fj3c/+y7CD/rJqllwuz147YMTEb+tX1GNV99v4XVWsD5LvjcOrzUM6LKgfRTNHvriSDumjjfxNtRPVs3C9vpjYfZPhM6LNbcA+KzpHF56+5uIOierP0W7ntNkMuHUqVNhx06cOIHS0tJh3/vJJ5/ETTfdhPLy8qTvYbFzfCfduLASz73RhIU15XynAICT8+DPbx7BwppyLJ5bwRu5wd+217dgYU05nnujCTVTRkf8vq2+Bb02Dq3tFljswpomtB7B657a0Rj1fIIgMkNwbC6sKYdSoYDbA/x55xE4OQ8Wz63gHWRgYLwvnlsRNvYXz63A8oB+CT33uTeaoFIqYt7rzEUbFtaU88ee2tEIu9MToWdIX6SeC11OwT670OWk8hIk03Ncl8XFG7jB8ja/3oQuiyvhew3VTqFlLZ5bwTvbwXO37mnG2U57xPXLF1bizzuP4OarJ8HJebBldzMW1pTj+TeOhI35za834aLZSTaCCEilXKWKTOuNXK1TtkhUZi6ahdvuotkZ9fcXdh7B8oWV2FbfgvmzygV9maCfIuSfSCRS3s/ZuueYoB/0p9e+RmevU/C3YHmD6xO8Z2h5seyhG66YGGZD/em1ryPsn8E6L9bcYrFzeOKVrwTrnKz+FO0X7h/96EfYsGED7r77brjdbrz11lt47rnncNdddw3rvocOHcKRI0dw//33J30Pk0mL9p4OvgMsNpf/3xLwx4IEj/P/FvjNyfmXigr97vX5X6HYOQ8qK4wRdTl/okPwumjnZ4tYm8HnKiaTNttVSClyuQwMI+f/XVioEc01mSJZORWSBX5sSgCz1QmH0zMwVuPQFV6fD5Ag/LqQc81WZ8x7Ba8PPdbvdItaX+S6ngjKwdEzvYLt3NPnwMzKopSXm8/lZXqOO36+XfjZrE5MnWCK+z4mkxbftJljtlNYWbHG8aBjjkBomsM1YATy1w8a8z0W57DbL1fHpRjqHdQJqZKrVJJpvZGrdUoVidqMicpM81mL8PkWJ2ZMLIr6e1Cf9PQ5hH2ZGLrJYndF6J9Y9kgsu2dwfQYfj2UPhdYj2n0H67xYcwt8sZ8nmflHtA7397//fRgMBmzfvh2lpaV488038a//+q+45pprhnXfL7/8Eq2trViyZAkA4Pz58/jxj3+MRx99FFdeeWVc9+jqskLNysEyMjg5D/RaBVhGBgD8sSAsE4i/lkT/jWVkMOqVgr9LA8vp1YwMHR2Ry+lD6xF6XbTzs0FxsU40dYmXeCbqri4rvN78WJMnl0vhdnvAcW4wjBxutwc9PbaYsdWh1wBI2zWZIpqcJisLwbEJAAYdi16JK2ysRtUVGBj7Xq8PKqVM8FyDlg37W0h3hNaJZWRQKcWrL8SuJxKRA1OBsD4v1CnT8oz5XF6m5zijjhV+Ni3LlxevLAzVToPLimUDhB5TKmT8/4PHgrZE6DJHlpGhUC/8PPG2n9jHZTQyUe9EdEI8cpVpMq03crVO8ZAOmzFRmTEVRDlf7z8/2u9BfRL0Q4LHB58npJv0mnD/J9a5Xp8vpt0zuD6Dj8OHqPaQXq2IsKEGXz9Y58WaWyCRxHyeaPozlhyIdkm5x+PBNddcgz//+c94++238cILLwzb2QaAu+++G5988gkaGhrQ0NCA0aNH48UXX4zb2Q6iV8mxcXUNWEaGXR+3Yv2Kauw7dAZraqvCOumum2diX+MZNBxow9pBv62prcK+xjNYv6IajcfOR/y+trYKBRoGlWV66NXMkPUIXrdxdU3U8wmCyAzBsbnv0Bk4nC7IpcBddTPBMjI0HGjDbddNjRjvDQfbwsZ+w8E2Xr+Enrt+RTX6Ha6Y9yov0WBf4xn+2MbVNVArZBF6hvRF6ikxsoJ9NsrEDnEllTeYTM9xJp0CG1aGP9uGldUw6RUJ32uodgotq+FAG36wNHwc33bdVIwpUkdc/9a+VtxVNxNvfnQCLCPD7UunYl/jGdy9YmbYmN+wsholBpZsBBGQSrlKFZnWG7lap2yRqMwUFwi3XYmBjfr7urqZeGtfK9bWVmH/4TOCvsy+Q2cirgvaKD6v1+/nHDqD266bIugH/WTVLBQVsIK/rV9RHaazgvUJ+k6h5cWyh9759NswG+onq2ZF2D+DdV6suUWvkuO+W+cI1jlZ/Snx+Xyi/ER3+eWX4/rrr8eNN96IuXPnpq2cxYsXY/Pmzaiqqor7Gv4tVUiWcoOeBcd5YevnoFExsNhdKNAoIJH6s5Q7nG7oQ7OUKxk+o7lKFcxSzkAuk8Jqd0HB+LOUaxQyaJVDZMQLZtmzuWDQKPyCIKJezcU35CPxC/dLu5txtsMKhpGjxKDEHUunDvm1OngNAIwp1qblmkyR6i/cAAaylDs4FOgDWcpdHljtHAr1LDi3F3aHPwunTwJYbS7BLOVqlRxOp3/JV6FOCUYOOPks5f7MoHKpBD19TrAKGbRKBoU6f5ZyO+eBmpHxE0RYlnI9Kxp9IXY9kbAcBDLtBvtslCkzWcPzsrxMz3EhmcMLtazfwA1RUQnJwlDtFCzL5t/ZxOP1os82kKVcJpXA2u/PUm7QsnBxbshlMkDqz1Ku0yjgdLmhVMjh8QazlLv8WbD1g7KUJ9F+Yh+X0RDbF24AQ8pVVsi03sjVOg1B2mzG0CzleuXQMhPIQt4T2D2pxBAtS7kThToWgBcqRg6pVILuPieKTf4s5UH/pM/uglbFgGVlgR1W/FnKef9EJR/IUu7koFXFmaW8z6/v9PqQLOU6JTweDxRRs5Q7UKjzZzbv7XPDHLhGKvNCJpGB8wSylOtZ6DWMP0v5UDovhm40mbQ4eaYHVgcHlglkKR9Cf8aSA9E63P/4xz/w1ltv4Z133oFUKsWyZcuwfPlyTJkyJdtVyytHKxPk4oRNDjc53KHHh0LMspAr40/s9UxWDsT+XMMln58vlTohV9uJ6h27jKEYiTohVeRSO4nNTsilthMrybRhLDkQbQz39OnTMX36dPz85z/H3//+d7z11lu44447UFxcjF27dmW7egRBEARBEARBEAQRE9HGcIcyceJEVFZWoqysDGfPns12dQiCIAiCIAiCIAhiSET7hdtisWDPnj1466230NjYiCuvvBLr1q3js4sTBEEQBEEQBEEQhJgRrcO9cOFCXHLJJbjxxhvxX//1X9Dr9dmuEkEQBEEQBEEQBEHEjSgdbrfbjXvuuQctLS3YvXs3PvvsMyxYsAA33XQTGEZkW1mEZLjTqRVwch7YHG7oNAy8Xh/6bBwMOgV8EsDl8sLhdMOgZdHv5MAGMvHZ+jl/tj7VENnICYLIbQL6otfugpJl4OI86He6oVEyYBgJPB6gz+7PVK5RMbD1c3C43CjUsXA43NCqFdCr5Xz2TY2SgdvjgVzuz0ysYuXQqRloWRnpkmwTyLR79EwvTAVKlBgzkzW82+LIaHkZeb7QTL0FSph0IsjuHC9C7eQO2A1WFwy6wNyPgV1PNCo5AH92cp2GgUzizyCsUzNwujxgZFKolHIwUgm6Lc6Be9CYJxIl03ojgTplTHfmEwEb4/yJDqhZeaRekAzoHmOBEpzHy++CUKhjUaRX+LOaSwR0lC/yHgYdC4/Xhw5zv1836xWwWKNfZ3d70GfzZyU36pWQSn3weiXotTph1OeYbk8Q0TncfX19+OEPf4j29nZcddVVmD59Ojo6OvD4449j69at+Otf/wqdbuhsgBlBAhxt68VTOxqh0zBYtmACttW3wMl5+H3j3t5/EoxMilWLJ+PPbx7hf7t96VTIpRL89e2j/LGNq2swraKAJk2CyEcC+mLLu0dx48KJcLo8Yfri7ptn4m8Nx3Guy45Skxqr/mky/rwzXGe88+lJrL6mCjv2tvDnfX/xZDwfolvW1lahvFiLyjId6ZJswQCNx7rx3BtNfL+sX1GNminG9BiO+VyeFDjc2o3Nrw+UtWFlNWZXGsVvmEVpp/ISNX713Bf8sftvmwOX2zukLdFn47Cmtgr1X5zC9fMnQCGX4LUPT6DPxpH9QCROpvVGrtYpVwjxSQT9ikE+y6pFk+AYZIf8ZNUszJpUiKMno9wHkWWE6qf1K6pR/8V3OHrKHHFde5cdF82OsL69e0U19oacnzO6PQlElzTt8ccfh9FoxN69e/Hb3/4WP/vZz/Db3/4W9fX1MJlMePzxx7NdRR6LneOFbvHcCl5oAcDJ+YV48dwKLKwp553t4G9bdjej18aFHXtqRyMsdtIoBJGPBPXFwppyWGxchL54/s0jWFhTDgB+nbEzUmcsrCnH5tebws57fpBu2VbfgtZ2C+mSLHKhy8kbFYC/X557owkXupxUXoJ0WVy8sx0sa/PrTeiyuFJeVqqJ1k5ujyTsWGu7JS5bwsl5sL2+BQtryrF1j9+GCB4n+4FIlEzrjVytU64Q6pMAkX7FYJ+lV8AO+dNrX+NCtzPqfYTKCNVPz73RhOULKwWv8/gQ0bfPDzo/V3R7MojO4d67dy8eeughqNXqsOMajQa//vWvsXfv3izVLBKz1cULDiQY+HcAJ+cBJNF/8w7aAt3JeWC25aegEcRIh9cXEsDr80XXF0BMfRLPeV6fj3RJFum2OAT7pafPQeUlSFeUsros6Xm2VBJvO4Xpg1i2BML1gNfnCztOY55IhEzrjXgQY51yhTCfJECoXhjss0SzQ3r6hPvAbHNFLSNUDzlcHsHrLDbhawefnwu6PRlE53BbrVaMGjVK8LfRo0fDarVmuEbRMehYsIyM/zv03/zfvui/SSWSiGMGjSI9lSUIIquE6gupRBJTX/B/C/wez3lSiYR0SRYxFSgF+6VQp6TyUlSWSZ+eZ0sl8bbTYH0wpC3hC7EhQo7TmCcSIdN6Ix7EWKdcYbBPAoTrhcG/R7NDjDrhPjBoFFHLCNVDSoVM8Dq9ViF47eDzc0G3J4PoHO6xY8fi888/F/zts88+w9ixYzNco+joVXJsXF0DlpGh4UAb1tZW8cIUjGtoONiGfYfO4K6bZ4b9dvvSqSjQMGHHNq6ugV4tsqRwBEGkhKC+2HfoDPQaJkJf3H3zTOxrPAMAfp1RF6kz9jWewYaV1WHn3T1It6ytrUJlmZ50SRYpMbJYv6I6rF/Wr6jGKBNL5SWISafAhpXhZW1YWQ2TXvzOZbR2kst8Yccqy/Rx2RIsI8Oa2irsazyD267z2xDB42Q/EImSab2Rq3XKFUJ9EiDSrxjssxQI2CE/WTULJUY26n2EygjVT+tXVOOtfa2C18mAiL69e9D5uaLbk0Hi8/lElWLj9ddfxx/+8Af86le/Qm1tLaRSKbxeL9577z088sgjuO+++7Bq1aqs1rGrywqvN9BsAlnK7Q43tGoGXp8/S3mBTgFIAM7lhcPlRoHGn6VcoZBDHsxSrlH4B4WoeiM1FBfr0NHRl+1qJERx8dCJ+cLkIMeRy6V4aXczznZYwTBylBiUuGPpVLjd0TNXhF4DAGOKtWm5JlNEk9OUykKULOXqQJZyrwfo63dBpQjNUu5BoVYBh8sNrZKBXsOEZyn3eiCX+bOUKwNZSbXKgcyguTL+xF7PhOUgkGm3p8+BQp3SbzBmIGt4XpYXmqVc78+Em4mkOinRCULt5B6wG/i5HwNZytUqOSTw2wZaNQOZNJClXMXAyXkgl0mhDmYp73Om1X4Q+7iMRibqnezcIKo2zbTeyNU6DYFobMaAjWHnPFAzski9EOKzGHUsOK9vIEu5lkVRwaAs5aE6anCWcpsLBq0CHi/8Wcr1SpgKAlnKo1wXmqW8UKeETBbMUu6vT6Z0ezwkM05jyYHospSvXLkSZrMZv/jFL/Czn/0MBoMBZrMZDMPg3nvvzbqzHYEP0KsY6FXBN8sMUDDw8+jQpRGakOu0A29wTMFlYPnhuxEEEY0IfRHJKP3Am3yDMkRFB/WEV/geptDlpKRLsg/n78uZlUX+STvdBmOgPF5+MlReRp7PC5i0Cpi0A2MgZ4jSTmFj2CdwDABCdIEpynJxLSsPuwdBJESm9UY8ZFp35hMBG6Oywuhvu8F6QcAGKQzVOZ4o54XeR+gewdU1ntjXqWUyqPWyMDsHAEp0gb9zSbcniOgcbgD40Y9+hNWrV+PQoUPo6elBYWEhLrnkEmi12mxXjSAIgiAIgiAIgiDiQpQONwBotVosXLgw29UgCEIEyOXh6SbEsASdIAiCIAiCIIZCtA43QRAE4He2d3/RhovddgBAiVGNpfMqyOkmCIIgCIIgRA853ARBiJ6L3XY+0RpBEARBEARB5AojzuHu6enBz3/+c7S1tUGhUGDcuHF4+OGHYTQas101giAIgiAIgiAIIo8Q3T7c6UYikWDdunXYs2cPdu3ahbFjx+L3v/99kjcDLP0c2jpssDjcgAzosrrQ0m5Bl801AluXIAgeaQx9MFh3SLJWSyJdBPq46URHZvo4lrwR4kICWJ1utJsd+PaCFRaHG1anm/RBvpNpnRAPpDeIUJKxTRK5ZgTbPiPuC7fBYMC8efP4v2tqavDKK68kfiMJcLStF0/taIST86DUpMYtS6rw3BtNcHIefgP32ZXGvE5zTxCEAFLgcGs3Nr8uoA984bqDZWTYuLoG0yoKaGuffEGS4T6OJW80/4gLCdDa3oczHVZsq2/h+2ttbRXe3n8SfTaO9EE+kmmdEA+kN4hQkpHRRK4R4xjIICP6XZbX68Urr7yCxYsXJ3ytxc7xQgMAC2vKeWcbAJycB5tfb0KXxZXSOhMEIX66LC7eiAHC9cFg3eHkPHhqRyMsdtpsNF/IdB/HkjdCXFjsHFrbLbyzDfj7a1t9CxbPrSB9kKeIUe+T3iBCSUZGE7lGjGMgk4y4L9yh/OY3v4Farcbtt9+e0HUmkxbtPR280AAAJAj/G/6/e6xOTJ1gSkV1c5riYl22q5ByTKb82hdeLpeBYeT8vwsLNTl9TTIkK6eDZeH4+fao+kCrYgR/s3MeVFakJ5dEroy/XKlnNIJycP5ER0b7OJa8ZWL+yfV+i0WqdELwXudPdMDr8wn2V3B5Zbr1QaLkav+Kod7Z0gnxkG29EQ9i6MNUkWmbMdG2S0ZGE7lGjGNgKFIpfyPW4d60aRNOnTqFzZs3QypN7EN/V5cValYOlpGFCY/Q34VaFh0dfSmrdy5SXKzLuTaIZ5B1dVnh9YpvHUwy22jJ5VK43R5wnBsMI4fb7UFPjy3uawCI6ppkiCanyciCUcdG1QeMXCr4m5qRpWWc5Mr4E3s9E5GDaPNDuvo4lrylu03F3m/DIZU6IXgvNSuHVCIR7K/gssp0ykqi5Gr/ZqLeYtYJ8ZBNvREPuSR7YrMZk2m7ZGQ0kWvEOAZikUwbxpKDEbmk/A9/+AOOHDmCZ555BgqFIql76FVybFxd458kAew7dAbrV1TzfwdjYUz65O5PEMMhuI3W2Q4r73gTmcOkU2DDSmF9MFh3BOOY9Gomm1UmUkim+ziWvBHiQq+So7JMj7W1VWH9tba2Cg0H20gf5Cli1PukN4hQkpHRRK4R4xjIJCPuC/fx48fx3HPPYfz48Vi7di0AoLy8HM8880xiN/IB0yoKsOmeBTDbXDBoFNBrGTyyfj66LA6Y9Eq/0qLEEwQx8vACsyuNUfVBhO5QMyMiaciIIWR+sHMeqBlZevt4CHkjRIQPqCzTYZRRhckVhXA43SgqYCGVSDChTE/6IF/JtE6IB9IbRChCfs1QMprINcncP48YcQ735MmTcezYsdTczAfoVQz0qsDbGQ9g0ipg0gbeDpLSIoiRizeGPhisO0bIhDOiCPRxZYXRvywt3X0cS94IceEDtKwcWjbcBOP/Jn2Qn2RaJ8QD6Q0ilGRsk0SuGcG2z4hcUk4QBEEQBEEQBEEQ6YYcboIgCIIgCIIgCIJIA+RwEwRBEARBEARBEEQaIIebIAiCIAiCIAiCINIAOdzDRQJY+jm0ddhgcbhhdbr5f0OS7coRBJFRBumDIXVAoucTuYMU6LK6sL+pHV02F822I5XAGG860RH/GCe9kJ8kIwvphmSNECKVckEyBmAEZilPKRLgaFsvntrRCCfn4ffSfHv/SfTZOGxcXYNpFQUjKgsfQYxYBPRBTB2Q6PlE7iAFDrd2Y/PrTXzfblhZjdmVRsoCPJJIZoyTXshPxNivYqwTkX1SKRckYzz0zn0YWOwcL0QA4OQ82FbfgsVzK+DkPHhqRyMsdi7LtSSIkYdcLo34L90I6YNYOiDR84ncocvi4p1twN+3m19vQpfFleWaEZkkmTFOeiE/EWO/irFORPZJpVyQjA1AX7iHgdnq4oUoiJPz8MslnJwHZptrYL85giDSjlwuxe4v2nCx284fKzGqsXReBdzu9H1ejKYPoumARM8ncocui0Owb7ssjoH9bom8J5kxTnohPxFjv4qxTkT2SaVckIwNQA73MDDoWLCMLEyYWEbGL5NgGRkMGjKuCCLTXOy242yHNaNlRtMH0XRAoucTuYOpQCnYtya9Mou1IjJNMmOc9EJ+IsZ+FWOdiOyTSrkgGRuAlpQPA71Kjo2ra/xONsDHcDccbOPjFPTqkfUGh0g9n70DyAAAIABJREFU2VgePRJIdZsK6YNYOiDR84ncwaRTYMPK6rC+3bCyGib9yDMyRjLJjHHSC/mJGPtVjHUisk8q5YJkbAD6wj0cfMC0igJsumcBzDYXDBoFpFIJJpTpYdAo/AI1wpICEKklW8uj853B7VpiVOO266cN76YC+iCmDkj0fCJ38AKzK414ZP189FidKNSyfmebhuzIImSM2zkP1Ixs6DFOeiE/SUYWMlgnkjWCJ5VyQTLGQw73cPEBehUTFougZeX8bwQRitCX1KEc52wsjx4JpKVdB+uDoXRAoucTuYMXMGkVmDrBhI6OPnK2RyqBMV5ZYfTLQTxjnPRCfpKMLKQbkjVCiFTKBckYAHK4k0IqHaGbyA2DfGwzoWeSyaIvTZbJJPjiHxfR0+fgjxXqlJg3vQQej7AGkskkKDGqw46VGNWQy6WQSITbdPA1Q50/+Bq5XAajnk3ommTKSdc18bSZ0D2B5OVU7PIt9voFyZV6RiNa/XP9uYYin58vlTohV9uJ6p36OoihbrlAPrVTpp8ln9ouW6SyDSU+n2+EvmsgCIIgCIIgCIIgiPRB2ZcIgiAIgiAIgiAIIg2Qw00QBEEQBEEQBEEQaYAcboIgCIIgCIIgCIJIA+RwEwRBEARBEARBEEQaIIebIAiCIAiCIAiCINIAOdwEQRAEQRAEQRAEkQbI4SYIgiAIgiAIgiCINEAON0EQBEEQBEEQBEGkAXK4CYIgCIIgCIIgCCINkMNNEARBEARBEARBEGmAHG6CIAiCIAiCIAiCSAPybFcgF+nqssLr9WW7GjlDYaEaPT32bFcjIYqLdUOek69ykIv9lQqiPXeuy0Ku9KfY65msHIj9uYZLPj9fKnVCrrYT1Ts6pBPSSy61k9jshFxqO7GSTBvGkgP6wk2kHblclu0qEAkwUvsrX587V54rV+qZKPn6XEHy+flS+Wy52k5U79Qj5rqJCWqn5KG2Gz6pbkNyuMWEBLD0c2jrsMHicAOSbFeIIEYAgXHXdKKDxh1BxAuNG2IkQHZZ5iHdQoiRYeoCWlIuFiTA0bZePLWjEU7OA5aRYePqGkyrKADEuVKVIHIfGncEkTg0boiRAMl55qE2J8RICuSSvnCLBIud4zsSAJycB0/taITFzmW5ZgSRv9C4I4jEoXFDjARIzjMPtTkhRlIhl+RwiwSz1cV3ZBAn54HZ5spSjQgi/6FxRxCJQ+OGGAmQnGceanNCjKRCLsnhFgkGHQuWCQ/QZxkZDBpFlmpEEPkPjTuCSBwaN8RIgOQ881CbE2IkFXJJDrdI0Kvk2Li6hu/QYHyAXs1kuWYEkb/QuCOIxKFxQ4wESM4zD7U5IUZSIZeUNE0s+IBpFQXYdM8CmG0uGDQKf0dSkgiCSB8h487OeaBmZDTuCGIoaNwQIwGyyzIP6RZCjKRAF5DDLSZ8gF7FQK9i+L8JgkgzgXFXWWFER0cfjTuCiAcaN8RIgOyyzEO6hRAjw9QFtKScIAiCIAiCIAiCINIAOdwEQRAEQRAEQRAEkQbI4SYIgiAIgiAIgiCINEAON0EQBEEQBEEQBEGkAXK4CYIgCIIgCIIgCCINkMNNEARBEARBEARBEGmAHG6CIAiCIAiCIAiCSAPkcBMEQRAEQRAEQRBEGiCHmyAIgiAIgiAIgiDSADncBEEQBEEQBEEQBJEGyOEmCIIgCIIgCIIgiDRADjdBEARBEARBEARBpAFyuAmCIAiCIAiCIAgiDZDDLVYkgKWfQ1uHDRaHG5Bku0IEkacExlrTiQ4aawQhRmg+FD/UR0Q+Q/I9sklB/8tTXyti2EiAo229eGpHI5ycBywjw8bVNZhWUQD4sl05gsgjaKwRhLihMSp+qI+IfIbke2STov6nL9wixGLn+I4FACfnwVM7GmGxc1muGUHkFzTWCELc0BgVP9RHRD5D8j2ySVX/k8MtQsxWF9+xQZycB2abK0s1Ioj8hMYaQYgbGqPih/qIyGdIvkc2qep/WlIuQgw6FiwjC+tglpHBoFFksVZ5hMT/xspsdcGgY6FXyWlZ0AjFoGNRalJjYU05H5Oz79AZGmsEIRJojGaYQfOjyTv05Eg2C5HPkA4aAQj5BQFSpd/I4RYhepUcG1fXRMQL6NUMOYbDhWJxiBD0ajlWX1OFza838fKwYWU19BoG8Ga7dgRB0BjNIALz4323zkHVGF3M+ZFsFiKfIR2U50TxC0xGLYDU6TdyuMWID5hWUYBN9yyA2eaCQaOgiStFRIvF2HTPAuhVTJZrR2Qai43jJ1HALw+bX28ieSAIkUBjNHMIzY9PvPLV0G1NNguRx5AOym+i+QWV5QYoJEiZfqMYbrHiA/QqBhVFGv+ApokrJVAsDhEKyQNBiBsao5ljWG1NNguRp5AOym+i9W93X//AgRToN3K4iRFFMBYjFJaRQaNkaF/FEUg0eaDYLIIQBzRGMwe1NUFEQuMij5EAGhUj2L9GnSqlRZHDTYwogrEYwcHFMjKsqa3CH175CkfbesnpHmHo1XJsWFkdJg98bBZBEFmHxmjmEJof19ZWocPsoLmRGLGQDspTArHbf3jlK6yprQrr342ra1BapElpcRTDTYwsArEYj6yfj4PHLsLrBd7ZfxKdZgfFco9ALDYOO/a2oO6qSr9B6QN27G3BhNFzSQ4IQgTQGM0gPmBsiQYrFk2C1+cDfMDb+0+iz8bR3EiMWEgH5Sehsdvv7D+JuqsqIZUCc6eUwKRTQCpN7VtGcriJkYcPsPVz2FbfEnY4GJNDCnTkYLa6cK7Ljh3vh8sCyQFBiAMao5ml2+LEtvpjEcepvYmRCumg/CQ0drvT7OD7d+q4Qpi0qQ8XyJjDbbVa0dPTE3Zs7NixmSqeIMKgfUMJgOSAIMQOjdHMQu1NEOHQmMhPMt2vaY/hPnHiBG6++WZceumluPbaa1FbW4trr70W1157bUL3efrppzFlyhS0tPjfQDQ2NuKmm27Cddddhx/96Efo6uriz032N2LkIBSrxu+rR4wYSA4IQtzQGM0s1N4EEQ6Nifwk0/0q8fl8ad284Qc/+AGmT5+Oe++9F0uWLEFDQwMef/xxXHLJJairq4vrHt988w2eeOIJfPvtt9i8eTMmTZqE6667Do8++iguvfRSPPvsszh9+jQeffRReL3epH5LhK4uK7xe2vMiXoqLdejo6Mt2NSKR+GM4hPbVKy7WDXl5vsqBaPsrXQTkwM55oGZkEfsr5ros5Ep/ir2eycqB2J9ruGTk+WLo6nQS7dmSkYWckoOQ9h5t0kIh9eXcNl+ZaG/SCelFVO00hA4Sm50gqrYTM0P4AYm2YSw5SPsX7ubmZtx///3Q6/Xw+XzQ6XT4+c9/jieffDKu610uFx5++GE89NBD/LEjR46AZVlceumlAIC1a9fi3XffHdZvxAiE9g0lAF4OqiuLSQ4IQoyQrs4sIe09pkRL7U0QpIPykwz2a9odbpZl4Xa7AQCFhYVob2+H1+uF2WyO6/onn3wSN910E8rLy/lj586dQ1lZGf+30Wjk75nsbwRBEARBEARBEASRStKeNG3u3LnYvXs3Vq5cieuuuw533XUXFAoFLr/88iGvPXToEI4cOYL7778/3dVMCJNJm+0q5BzxLLfJNfJZDvKxv+Ih2ecWuyzkSn/mSj2jEU0Ocv25hiKfny+VOiFX24nqnTwjVSekinxqp0zbCfnUdtkilW2Ydoc7dOn4v/3bv2Hy5Mmw2Wy4+eabh7z2yy+/RGtrK5YsWQIAOH/+PH784x/jBz/4Adrb2/nzuru7IZVKYTAYUFpamtRviSDmeE0xkouxJGKLx8kkudhfqSCV8ZpiIlf6U+z1pHhNYfL5+UZsDHcIVO/YZQzFSNQJqSKX2klsdkIutZ1YybkY7iBerxednZ2oq6vDbbfdBrVaPeQ1d999Nz755BM0NDSgoaEBo0ePxosvvoh169bB4XDgwIEDAIBt27bh+uuvBwDMnDkzqd8IgiAIgiAIgiAIIpWk/Qt3b28vHn74YezZswdyuRyNjY14//338fXXX+O+++5L6p5SqRS/+93v8B//8R9wOp0YM2YMHnvssWH9RhAEQRAEQRAEQRCpJO0O90MPPQS9Xo+GhgYsW7YMAHDJJZdg06ZNCTvcDQ0N/L/nzJmDXbt2CZ6X7G8EQRAEQRAEQRAEkSrS7nB/9tln2LdvHxiGgUQiAeDPDt7V1ZXuool8I7hfntUFg46FXiWnrRmI4ROQq/MnOqBm5SRXBCE2SPenDmpLgkgcGjf5S4b6Nu0Ot06nQ09PD0pKSvhj7e3tKC4uTnfRRKZJp9BKgKNtvXhqRyOcnAcsI8PG1TWYVlFASo9IHpIrghA3NEYjSXaupbYkcgGxvQQX47ihFwCpIVbfppi0J0275ZZbsHHjRnz++efwer04dOgQHnjgAaxduzbdRROZJCC0Dzy7Hw+9+AUeeOZTHG3rBSSpub3FzvEDAgCcnAdP7WiExc6lpgBiREJyRRDihsboIIYx11JbEqInRL4f/NP+lNuSySC6cZNme3skkcm+TbvDfdddd2Hp0qV4+OGH4Xa78eCDD2LJkiW444470l00AfjfgvVzaOuwweJwp21ApltozVYXf+8gTs4Ds82VkvsTGSJD8hgvnRanoFx1WpxZqhFBEKHQGA0n5lw7hH6leZQQO6JzbpHhcROHjSTGNspVMtm3aV1S7vF48OCDD+I3v/kNOdjZINllMEksVUm30Bp0LFhGFlYGy8hg0ChScn8iAyQjj2leNqVi5YJypWTTHm1DEEQcqJVylJrUWFhTzhuf+w6dgVqZ52M0iu6LNtdaHRzOdtpj6leaRwmxE8uW1KuYrNTJoGMFdVDKx02cNpKo2ijHl7ZnUiemdcaSyWT49NNP+WRpRJIkKdDR3oJtumdB9EGZpJOebqHVq+TYuLomol56NZNTgzvvSEA2E5bHDMRN6dQM1tZWYVt9C1/G2toq/3MQxHAQWxxijqJi5Vj1T5Px551H+DF6V91MqPL5pVgM3RdtrmUZOba8+zXqrqrknYIt7x7FA7fP5fUrzaOE2MmYc5sAMplEUAfJ5KldJByvjZQye3u4zrIYY9sTJKZOTDGyhx566KGU3zUEj8eDffv2Ye7cuZDJZOksKmP097vgy5QwBQT6//71S7x/4DQ+OHgGleWFKDYoh7z0gtmB9w+cDjvm8fpweXUpCtTCA9PSz+H//vVLfiB7vD4cbL6Iq2rGgGWi9x/LSFFZXoiDzRfh8fp4oS0vUkOjZmG3D/9Ld7FBiatqxuDy6lLceMV4lBep0zaoNRp2yHMyKgcZRKOJs78SlM1E5TFZWUwEhVwKjxcYZdJg+kQTpk8wYfxoHUYXqvhzcl0W4u7PLCP2eiYkByFj470v2hLS27lGuvut2+rCE68cCtMDh493Yv6sMujS/JU72rMloxMSaadYuk+vZgTnWrlcAoNOidc+OIGvT3TixGkzbrqqEjoNA12IsZ7oPCr2cRmNTNQ72bkhV9s0E7AKKYoK1Xj53WZeju9YNh3jRmmz5sR19gnroHkzS3kdlAo7IV4bKZa9HWRIGRuGbxEkEzZaJoimE5MZp7HkIO2viLds2YLOzk785S9/gdFoDPva/eGHH6a7+Jwnqa/UAZJ5C5b0UhUfMK2iAJvuWQCzzQWDRpH6t+Y+QK9iBuohUgdnpJCobCYqjxlZNuUDKst0KDYoYec8UDMy+tpDDJvh6G0iHIfTLagHHE53lmqUfobSfUJzbVefC9sDK3WC52+vb8Ej6+eH35zmUULEWGwcNr/eFCbHm19vyqruzJQOittGSoG9nYo5SlRL24dDhnRi2h3uxx57LN1F5DXDEehklo8JDfhSkxoaJYO2DlvsZSfxCm2Ox3wQfhKVzUTlMWNLywJyW1lhREdHH8kiMWzyxhARAUUFSkE9UKQf+otSrjKk4S0w19ocXNj5RQYlFs+tQJfFAUYuDZ9naQ4mRIrZ6oJOw6Bu7kBoRMOBtqzqzqICpeB4TLUOSshGGqaTmIo5Km9yQkTRh16vD5b+1OnJtDvc3/ve9yKOeb1e7Nu3L91F5wXDEmiBt2BSqQRtFwc5ziHCZixQhg34UpMaq6+pwr8/9xmvAH56y2wUahXQqhUjMuaD8JOwbPqAaeMK8Mj6+eiyOGDSK2HSKwCv8Ol6jRy3LKnCc2808bKyfkU19FoG8AhfQxBiIG8MkVhIgS6LC8fPt8OoY2HSRR/Lw2Ek6oFohrdUKon64tugHZC5IoMSNyyYwH/xDs7bM8YbAF8a52By5IlhYixQYtmCCRF5VYy67L1g06vl2LCymv/yzjIybFhZDb2GSa3Oy8RK0QCpmKNyNieEBLA63LD0u+HxeGCxcXj61cPh+nBcAT5rOocnXvkqZXoy7THcoTQ3N+OFF17AL37xC7z33ntYt25dpopOKZmM14wnVmPoe8hQoFHg23NWPPKXQfEahcqwOI6GA2ewcHYZ6hZOwOXVpbj6knL8bsvBsBiNr5ovolCvwtN/OxxXzEdoHESuxHzketzucIg3biVh2Qy8bHn0fw7go0Nn8fGhszHlp6vPhccGyV5jSwfmzyyDWpF6WUllvKaYyJV4QbHXMxE5SIXeFjVS4HBrN3635SA+/OoMPj50FmNH6zHapEq5oZVpPRBKtmK4gci4QqfLg//z4t+jxluGytzS+RPw2gcnIubt2VUlkAAJzcHpyumRbiiGOzdxcB78cVtjmHw2f9eDay4bC1aeHRvR0s/h+TeP4Np54zGj0oSp44zYvf8kLps+iq9TKu0ElpGhQK0Ylk08lIylZI6S+EMAQnPgFBcos/pyZEgkQGt7H461mfHs376GUa/C/+4+GqEP51eX4T+T8FWyGsPd1dWFXbt24c0338SxY8cgkUjwy1/+Et///vfTXXR+EO2NF5DQUodo8RqPrJ8fcfz3W7/CpnsWoKJIg7YOm+CyE0hixHwMestt8g5UjJZa5hEJvo1NNGaos9chKCudFgdM2hhvYekrC5FtQsZGPuYG6LK4BOMsH1k/P/bYTIKk9UCuE7Jk1NLP4fdbv4quOwM6r0DD8CuIhNrs6HfdmDzWkJY5mPIWEKmgs9cpPN57ndArsyNHHWYHOE/Ip2wJwHm86MhinYaNkP2mYWCxJeZXhOolwP+yQMxj3mLn0NpuwRsfngjzZUJxch5BHarTMLA6PUnblmlzuHfv3o2dO3di3759mDhxIm688UY888wzWLNmDa6//nqwrIjfgIiJwNIHq9MDt8cHSCT+N8mnElsSFs3RjTYxByffaMtOguVETNQCS8bvu3UOqsboAN8IWWqZqySzjVECcUSJxmYVaBWCsqKPJSsUskCIDR/8ejuP6LI4BMdyVxqc4EJ9lDlDOwJsiKBO7ulH3dWVaDjQhk6zA0DI3KtmInTeg3deJhj3zjIySKWStMzB9DKdSAUqVi4on8osbgOoVsmxatEk9No4eH0+SCUSrFo0CWqleFZlJkWo/RbwK7a8exQLa8ohlQLTxhsxtlgdddl83GNeRB9BzFYXvD5fhHwN/tukD4/bLzL4Qx1+8+IXSduWaZPg++67DwaDAX/84x9RW1ubrmLym8DShzMd1rB4lp/eMhtb9zQn9CY5mqM7WKiCx4OTr1CMxpraKryz/2TEuYDwW+4nXvmKr1vOxnzkOxlwVBONzVIq/HtdDt77UhljGSl9ZSFEQZ6/+CmKMpZNBalfPszIpVhbWxVRloJJ7R64okNAhoJzb6fZwc+9Qjpv23vNWH1NVVjM6bq6meDcHjz/RhPW1FZFxHcPdw6ml+lEKlAr5YLzvibNWwDGgmXkcLg8/FfRoA5imezVKdVY7By2vHsUtfPGReZ+GGeImth2yDEvsrnQoGMhlQy8dGw40BahDzeuroFJr8B9t87hY7ivuWwcPwcBydmWaYvhLisrQ0dHB/77v/8bH330ERwOB8rLy7Ft2zbceuutUKtzN5YtU/Galn4OTd92428NxyNisa6dNx4XemxYfsVEf0zJeCMK9WzYfpuhRIvXqBilGTKOIzSW7KpLxmDH3hZc7OkXPDeefQQzuZ92suR63G6iZCK23uHy4I/bBWKzLh0rWEav3QUffJg3oxRzppbgytljwCqkYOQSaFlhOU9m7/kgFMOdXcRez0TkIFdyVSSLxcHh6Ve/jhjLV10yBtoUf4nq6HXg5T3NWDp/Ah8/+d7fT6FmcvGQY3q4ZC2GW+KPXX/0fw5EtPHS+RNw4oyZn3sv9ETqvMWXVuDld5vDrv36eCeWXTEBuz45ibMd1rD2HF+qhS7K0ti05fRIMxTDnZuYbS789e1/hMVLv/v5d5gztQTaLDndPTYOz/4tUt9dMbsspftwp5JEZeyC2QG1UiGY+yHavBXPmE/ZXCjx3+uC2QGJTAo2yReu/uskqBitQ/N3Peizc7jYbcd9t87BojljwnySqvEmXDqlGJdXl8KgY/HBwTNh9xKyLbMSw71y5UqsXLkSZ8+exZtvvoktW7bgt7/9LQDgo48+Ql1dHWSy3Dc80onQ0gfA/2aFVUgjspCOLdGizBjFeY0Wb+uNIw530LKTB26fC7PNBY2SgdPlz/QXXCIS1xsv2gdUdGRiOaDZllgZKpbB/7xzFMsXVgIAfPBh50etWH9zddQykvrKksxSeoKIQb4vr7U7hPeltTvcgD61ZRm0LPpsHHa838Ify+svp4EvQqcv9gm28cQxev9XlcA8LaTzpFLhuETO4wXLyNBpdvDtyTIyLJg5avj1zmCGZSJ/6Xe6ca7LHjbeg8ezRab24c4mBh0bVW9EnbfiGPMpmQtT+ZXcB1SW6TDKqMLkikI4nG4U6dnwegf+L5VKBvJoONzDXsGT9tdFY8aMwb333ot7770XBw8exJtvvolHH30UTzzxBG0NNgSDlz4EYRkZpo4z4uFALAHgF+CnXz2Mx356BbxeH/pdbkikUpj7nDAVKPktWwQd3UQcYB+gVzM422nHoy8diBB+oSXj9906J/rEK6LYjpFM0ssBE+g/jZIRLEMT5cuKXiXHmmumwO70AD5AIpFgzTVTYhpxepUc9982B63tFj7WqrJMH1P+xLTcicgP8n15rV6tEIwR1qfhi7NeLcfGNbNx+oKNH9NjR2lSvyWPSAguEa+7ulJQhkYXqvxzdUA/Cem8KRUGsIwMOg2DxXMrAAkglUhQEtj2c3CcZsrakl6mE8Mkk7olXqLuw12QP3kk9Co5po03Jj5vDTHmUzEXDhkqGLBDOy1OqFg5dGoGWlYWXf/4AK1SDq/XBzfnGTrHihTos3PYsHIWLnTbsffLU+izcQmHw2Z0W7CysjIsXrwYd955J8aMGYPJkydnquiUkqllIYOXPoQu2WAVUtT/PXwZWaGexdjRemzfewwmgwZ/2PoVv/1SyrZsCSx1a27rwZRxRlzotqHPzg0sEZHLIpaMV08uRr/Q0pYo24iolHKc7+kf1rKR4SK25UHpJqnlgAluA2O2OlFarA2T5TW1VTBoFcKhEFLg1EUbnn71MPY3ncOBoxdQPakIo4wx5FgCXOhx4KW3/4GvT3Ti+GkzLp02CsVRYkvjWe6U67KQK8sXxV5P2hZsAIfbjfISPV7e04yvT3TixGkz/vmG6TDoGahSHNdodbhxodsOu9MTyD8ngUIuhU6tgEKe3vkhG0vKg2ExF7ptWLFoUsTcHyFDEuBcdz/+552jaO+0Yup4IzRKOeZMLUF5iQ6vfXCC14VTxhsxfYIBo01a/O/uozh8vBOfNZ2LqbfFPi6jQUvKc5NM6pZ4cft8mFBWgMaWDn4srl9RjSKDCgqZXweJzU5IRsYKtAwmjDHgqxTOW6mYC2OGCmoUvB36wcEz+PRwO0wFSni8gFEfpU/itF01Ghb2fhe+OWXGf+/6Bka9ChIJsHT+eFx1SRlGm9RQSKUR10Qj7dJ700034aabbsKyZctQWloKAFAoFLjhhhvSXXTuE2Ppg6V/YHnD5LEFuPnqSfD6fJBJpVhTO4X/+gz4U9lf6O5Hq6oPxQYVpBKg2+KM74tyyBdMY4ESpy9YoyZx4ZeIDHrjJZUKvz2K9tZqxaJJ2FZ/jL42ZpIktjEKJtmou2ogU/GWd4/igdvnCi4V0qoV+PKbc9i4pgYOpwcqVoZd+1oxZ3KR4P27+lzYXn8s7P7b649hzG1zYIrydjTRpGmJZk4niLjI823BODfwxZF2PHjnZbDYXNBrFXjnk29RWjQZUKW2rH7Ogz47F5GwqJ/zpDxeXAwEvwh1mh14Z/9J1F1VCakUmDulxL9SLVSGAi/An371MCpGa7F6yRTYHByUrBwymZTPJu80e/yr4HYcxq9/PA9Pv3qYEksSooRzA/VffDdgJyhl2PVxK/552YyU65Z4sTvdAHz41zWXoN/phkoph8PJwe50Q5OtnBzpWB3qBWaMN/BbC5r0Spj0iuGtfklBqEmsr+ShNl+RQYnFcyv84TNeH6wOt+AcYXW4cfqiFXVX+8MVGw604akdjfjVj+dBqwwPK7TYOWzd0xyRTG5d3UzYHG5MLRdBlvIg//Iv/4K33noLzzzzDGbMmIHly5fj+uuvh8FgSHfR+YEP0LLycKHxDWQPf+uTViy+bBye2j7gBK9fUY2K0VocP92LIoMyItZ7bW0V3t5/kl8SEdWhHbTcdm3tlIG96+CfqLfXt2Djmhps2X004eWS0WI7vIFXgGQIZJjAi5LKCiM6OvqGVCLWfi5CCa2prYLVwQn2l14tx7WXjw+T1Q0rq6MuZ+yzC9+/z85Fdbg7LVH28LQ4BeuUaOZ0goibBMdTLuHxevC9mWX4z8DqEJaR4e4V1fB4PUNfnCAuzhuRHXZbfQv+/UffS3lZYiA0LKvT7MDOj1vx01tmB/KlSAeMwZBYb52GwXXzxuP3Lx8M05X1X5zCjVdOxK5PvkWn2b9O79gmAAAgAElEQVQF6IVue17nFyByGxfnjrBp19XNhItzA8jOvOzx+tBrdeG5+iNhdsLooiwp9XSFwiWy5XAiDv8wQ01i7W7UdtHGO9uDfZ2frJqFWRMKAYR/OPz2XF/YC9zgh8OvT3Ri50etA88Mv5+ysKacvy/g15cv7DyCFYsmocyojltvpn29bm1tLZ588kns27cPq1atQn19PRYtWoQNGzaku+j8JvDW6I7lM/BCYPsEwC8Iz73RhBVX+5frL55bESEo2+pbsHhuBXQaBqcvWvHteSssDjf/hS+YDbC9xxH2tTBaAjeny4O7b66GXpvYZB18axVK6B7fwfubbbT0SoywCnmEbG2vb4m6VYbFxvHb1ATP3/x6Eyw2TvB8pUImeP9Y24IF9/AMq2eMPTy9HmFj3uvNI++IIFKMTCrD82+Ej+Xn32iCTJr6rz0xE7TlIyFfhB5aNw8P3nkZtu5pxr8//zkeeOZTHG3rBaT+L9unL/ahYrQO11w2jt9GCRjQlQtryrF1zzF/HDf8upBVyAR1ZL7kFyByGwUjj7BpX9h5BIosbsHldvsE7QS3Ozt2QrSVfBa7sC2V8vsGHP4Hnt2Ph178YkAvDREKnTSDdOKmexZg2rgCWOwcGMavz4R8nT+99jUsdi6srvubzuNPr30doSuvuWwc4It85ljJ5Lw+X0L+ScYkWKvVYvny5dDpdOA4Dh9//HGmis59YrxJ6onyRc8Hf6wEJMKComAis5xvXF2DaeMK0Hq2D63tFhQbVKi7uhINB9rQaXYAEN4g/nyXHa++34L1K2YB8MGgjW95i9Bbq+DX99D7kyGQIRLM1m1zcIKyZXNwMGkj+yzRr8+x7o8oMdlKVia4Z6+KFXYEaEk5QSROj8UhODZ7+hwYFS1uLkkKdMJJlAoEdEzKkAJdFheOn2+HUcfySUczRuCLEAA88Oz+MOPwrU9aoVFNRfOpbug1DBRyGcaO0gr2Bz//S8B/yXlrXyvW1c3knZrgXrvWfg6QSCL0vtfrg6WfEpvmLSJLXGu2OlExWoubr57ELyl/48MTMFudKdct8eJwRclS7krDS784+iNdu2DEu5NMoqF7KSGQsFkqlcDS78b5nn6c67Lhm9ZO3H3zTHSY+6Pal/F8OCwr1uDjr05j9ZIqQAI43F6cvtCHjl4Hpk8wodSkxrkuO38Ny8gglUjElaXc5/Ph888/x65du7B3716UlZVh+fLl2LRpU7qLzn0Cb7EvdPfjzEVrWGa8oGOsUQlnftZrFPiPdZfDyUWmsi81qTF1vBG9Vif+7bY5aO+04u1PT+KpHY14ZMN8nOmwCi63aDjQFuHMrKmtwmdN7aidNw6PvjSwvDCu5S0CsR0dZgf6Al88Q5eN0ASfZiRAa3tfRHbvyjJd1LY3aKPE1UQxhNVKueD5qih7a+o0CsHzdTGylbo9XhRoFRGxVm6PsLVMS8oJInGMUbL2FuqEX4QNBwUjxeprqvjVMcFQFIUiTQv0pMDh1u6I8mZXGjPjdIcY3Ewg07jT7G/nIoMS/3RpBR596UtUjNbiusvH47EtB6NmNIfP//+JZXrUXVWJ+i9O4dp54/DeF9/xuTGkEgm6LQ48vvWryLlbAnzWdA5PvPJVapeuEuJAhLt0lBSqcN288NCzu+pmorgwSwHciBFDrE2xnRBnf6RlFwyJPyGl0O4Gg+2hrGx7GbBRz3RYw+y1u+pmYu/fT2Hl4smCbaJk5RF1FTxPIcPyKyfiQrcdRr0S7R02/Mfzn/PlrF9ZjVf3tuBclx0sI8Nt102FQi6JmqNKiLRnKV+4cCE+/fRT1NTU4MEHH8Q999yDOXPmQKfTpbPYtJK2TIMhG7vLWRlaz1rQfMoMs9UJiUSCmqpifNvei32N7Zg/qwwnzvTC6XLj0mmjcPh4J58B8K66mTD3OfC/u4/i0mmjMH2iCYcD2RVLTWqs+qfJeOKVQ/i48Sy+/McFzJpUjNmTijBlXCEkUim6LU6c7eiD3eGGx+tD83c9WDp/Ar4+0Ym500qw+NKxmDPFnwH1vb+fwoLqMXjtg4HY7sGZnofKlsgyMhSo/c6VUc+GZTgPbkCfacSWcTLdWJ1uHGsz428Nx/mMthWjdf4snFEyAds5D8aWaDF5bCGmTzShurIIl88YBWOBCiqBRCIOjxejCtVhWXf9cVAaqAWWiVudHKaOM4ZlBt2wshpajRxahbBS77Q40dHTjxd2HuEzm08ZVwi1koFBwFF3uDz44/bGMNlt/q4H11w6lrKUZxix15MyEg/gk0swtaIQFaP1/Niv/d5YFJtUEVlbh4vZxuHxl78KG6ONLR24clYZtFFe1g2Hrj4XfrflYER586vLeD2VtizlUuB0px2Nxztx0ezA395vwS1LqmDuc6Db4sTyKybilfeOQadhcMcNM/jkZ0IZzdfUVuGDg6dx5/IZMBYocbHHjoU1Y7Dj/RacuWjDNye78M23XTjybReqKgrxzbddEXO3pZ/Db/7y96hzu5ihLOVDE88uHZnG6nTjL7u+wbXzxmNGpQlTxxvx7mffYd6M0dAosrOsvM/hwuSKwnA7++aZ0Krl0LJ+WyQVdkJc/RFYtTJ9ogkVo/Q4322Dx+OLyPydqIxZ+jk8ub0Rq6+pwsSyAnxw8DTGjdZDIvEnvC3QDnz4ksik+ODgGXhCQu9YRoYbrxifNrmx9HNo+rYbf2s4HtY+h493onbeOLg4L6aNN0bs6lBSqELDgYG6Xui2YeUgXen/kHgMh451YMbEIpztsGHLu80Rc8DdN8/CmBItpk8woaRQiT1fnMLksYUoCLEts5ql/Nlnn8WsWbPSXUxuEnyTbXNBo2RgtjrRetaCvV+ewoabZ+Fid39EZtZlCybgpXeOotvixLb6FtRdXYlvz/T4s8XaXdCrFTjwj3O4dEYpbl86DQwjg8/nxX23XgKfD/D5gCe3HwpbCrJ1TzNWLJoEAPjd/x6IyD7u5DwYZVKj7qpKvP7hCQDAurpq7Py4NXzZWghJv+2ifTyzQq+dE4xRmjTWEDUTcK/VBR8QJqN3LJuGXqsLhQL93mNxYH9Tuz/7qMsDpUKGNz86gbJiLYqE3sz6pPi8qT1Mtt/59FvcvCj6doIsI8PWPccGyfcx/HrdPMHzs/KmliDSQQaXhjocHnT1OsPG/m3XTUWJUQ2tJrUGl7WfEwz7sPZHDy0ZDl1Rlst3WRyCoTIpQwJ8852Zd6JZRoYf3zQDdgeHtbVTsa2+GeNLdVh7rd8g7uvnwkK+ghnNS4vUUDAydJrtuGPZjMDWnS6MNmlw+oKVX0EWhGVkGDdahyKDkp/vzTYX9GomahgQ6cf8IN4lxJmkz8bhhismYMvuZn4c3L50KvpsHIpT/UU5TiQSKV5rOD6wY4oPeK3hOP517SUpLWdIe0TgC/hPVs3CxFKd/+VjsvpeAlidHiy8pBxGvRI7PzoRkbD2p7fMxoxxhrCkzUJJzIZTh1jzl9nqirocvNSkwZPbG/3zRMjKHaNBCa/Xh/tvm4Pfb/W/tGVkUkydUIhfr5uHXqsTMqkUnWY7Fl9agXGjdXhqeyPqrq4MKyeY/bzf6Q8hCK42XlNblf0l5WfOnEF5eTkAoLCwEKdPnxY8b+zYsekoPjcQGDhraqtwuOUC1t1UDTkjFXSANq6pAcvIoFb6l0moWBlmTCzis8WWmtS4ZUkV/vMvX4bd97WGE1j5T5PQGxjQQQEKGjCsQop+Z3gSgbqrKtFwsA3XXDbOf1rg3E6zAzs/PI57b5mNZ1497L8+1ctbiIySTGIitVKOl94+GiajL719FP/n7ssFzzcVKLGguixsqdja2qqoeyVybjeumD0GR7/r4Ze5XzF7DDh39Gyl0eK+7VHivtOyNIsgMk2Gl4b2O93Yuqc5bOxv3dOMB394GZDisaNRybFq0ST02jheD6xaNAmaNDkEpijL5U361Dv3oVjsXMR2XS/+v2+wYtEk9FqduOOGaXj53WZcNqM0LDv8Hcumod/phpPzQiqRwNznxEvvHAUArL6mCqOMamiUcowp1mBiqQ6jTWo+aVDQPtiy+yhuWDAB7wR2LzHq2EAGdCvpxzxGoxQOSdQos/cyRadh8NiWcN2yZXcz/s96YbsiE1hsLpzrsmPH+y0Rx0tSGH42lD0iFDv9p9e+xqZ7FgzL0R08d9x36xw+jCRYztOvHh6I0U7BVl9D1WHw/GXQsZAGlrwPbh9foI5Osyesj7w+H591/LGfXgGL3QVbvxvNJ3uwrb4FOg0TFlL4w+XTUHdVJUYVqrG2dgr2fnkKACLyXQU/SJYVaRJ67rQEQd144438v2tra3HttdeitrY27L9rr702HUXnDEIDZ3t9C+qunownXvkKXWbht+xOlwdra6ugDmRjlsvCHfOFNeV4blD22GC20hd2foOyYi1KTWrcsGACdn7cih17W7Dzo1YYtCymVBhQFNj43cn5E6stWzABb3x4Ak/taMTOj1pxw4IJKDWpsfzKSswcb8CmexZgVqURP71lNr+UJOxt11AEltG3ddjCM6UTGcWoF84YH80ZBvyTjZCM9kXJlOlwCWcEd3LCgZFKlkFXrwNvfHgCO/a24I0PT6Cr1wElG12u9IG478HPES3uO/imNinZJQiRkK6stdFwujxR56dUo5DL4HB5wvSAw+WJGuoyXEw6BTasrA7TCRtWVvv3o00jsbbJfO6NJhz5tgd1V08Oy8Sr0zBwujzYsfc43zZSqQRFBiWf1OdClx1PvHIIbeet0CrlmDWhEI+sn4+1tVWou6oS7+w/iXNddj5T78bVNXC6vXhqRyP2fnkKa2qrhtaPNI/nJE6XO6J/19RWwcllbweAqHZFlN1MMkGBVtiu0Kf4xdNQ9kisL+A8gbHYdKIjrrEoNHd8d6536HICq1ErijS8Ex5afiK6IJ75S6+So7JMj7UC8nqxxy7YP6FZx71eH7RKBifP9fF26OK5Ffy/iwxKqFgGOz9uxX+92og3PjyBZQsmYFmIsx2sW1BXalSJvWRIyxfuQ4cO8f9ubm5ORxG5SWDJhLWfQ38UgyUo6L02h+CbHK2awdb3mjF5bAF+9cPL0Df4y2SU5d3B4z6fD3csmxHx9mrz601YsWgSv2dnn43D5LEG/k168Lzt9S14ZP18PmtrcPl3mVGd+NuueL/KiCyLZj5i0ivwk1Wzwr58/GTVLL+RGcWGVga2lxkso9FieOzRvj47OQCRX4/6nW5BB/3B8uhf0TjOg9uum8IvK/cvdZ0CtzvKQ0gASHxYsWgS//UMEh+/bIwgkibBrP/DIdEdAIZL1C9jaSjLHkMPmNLxpdULzK404pH189FjdaJQy/r1YJoTpkX7uhU0Gr0+H8529IX9HmowAgMhNCsWTYKKlUOpkOLVQMxjaBZhW78/hCgUJ+fBtPEGSCVSnL5g5b8YBZeqQwLMmlSEskJlxPwstsRbRHxo1QrUf3EqbKl0/RenMGfy3KzVSR1Ft6jTkK8hXvqdbkG7wp+lPIkv3NFs2iG+HIfqiOAqVanUr4+Djm3MsShQrpAT7/XFsWpV6BmGKj8K8Sylt9g5qFgZZk0qwuSKQvTZXTh51oJ3ArsaramtEvwKHXov+AZlKQ/xlxbPrcCL/++byHnmzssE61ZeooVMJvF/to5zbsiKBHMchzvvvBMvv/xyNorPLCFOdo/Vha17mvkAfyGB9gY67p3930UM8NuXTsXzbzahz8ahQMuitd2C8532sAE4brQOa2ur4PWBj+0KzVZ6vssGo14V9U16cLI2FbD4tl34LVevzQVbP+cfZGo5LLaBQVdRrOEVx1DEtbUATeYZwWp3w+P1hjme/5+9N4+Pqr7Xx585Z87sM5lkskMSQhYSshCWGECRNSKihiAQoCgqq8vFr/32Vm97W7H23v6s/bXV3rZutXqLiKggRSoSwF1LQUACAgkBkgBJyD77zJlz5vvHyZzMyXxOSCBDQjvP68XrRWbONjOf7f15P+/n4XgedqdPtoabUVJECy6lkryladST7X2MWvKi+WqyaCa9GiolJfkcKiUFk0yGu83qxaYPT4nPxPv92PThKXx/2YTw1mtG8M+N6zxuadVKYt/SyvTda4VaReHeeTn4S1Cd5b3zcsKSdb6e2XQRPGAxqJCTbkFLi+3agu1+bryQ6iIDi0aBpcMgLlonURFOiNGFWHd6WA6jkk0w6JRoaLRJXm+1eWDSMcTgPsmiQ5eDxe/f+Vaiet7a6cbWfdVQMzSm5iWEPPuQWARFMCgwaZVYcXvu4NbiXiO8LIeV83NhDSohMekZeNkw9vcrgFFSxHUFczXj3ZXmhj50jAJjxKbdJyU11ts/EWjTKfF6bNp9smcDBcCm3SfxxIqJMOkY4n1HxOlDxoLPj1zA+oUFEqcGSbuQ+Qwp8Xq8sPWoRHOj4bIdiRYdbA4vYqI04Dk+ZKOhTyq9zL1GxOnx27d69Kj+9tU5lM/IRMbIKNRe6BI1qKTXUoTQ0sX/yyQrO6we4rPVN9nwu61HJbXtV8KQBNx+vx+HDx8eiltfXwQ1lLJbM7Djs1rRmmPOTalYv7AQze1OsQB/1d152N4tStba6cbOL86ifEYm0pNNOHfJih2f1cLmYPHwokI43D788d1jMOoZVJRmo/JAHUpL0iT1scGvVx6oEz2u59+c3udOeny0Fl12D1xejnjcmQtd2FJ5GkkWXYhdy0AWlf0RrIpM5teAATADHB4fXt5+POS33rimRDbgVtIUNCpaMglpVDQYmjwJcRyHxbOzxZIHNUNjXXkBOJ48kZoMZFuwvmhcPM/j9aC68sA5zz4ylXi8zeUNEQepKM2GzUX2Eo8ggv7geo9bahWNe2Zm4ZUgb+U1ZflQE9T/BwMUpYBOoxTs97w+aFVKuL2ssOM/yDDqyRkv441Q9jGQjRc/kJsWhadWl+ByuwtN7U58XXUJc4rTkBCjQ6xZg827T2Ll/Fx4vFyIPWdggalmaJy90IUdn9Vi1d15ohiamqFxpqELLo8PeaPMIcH9+oWFIqNt/6H6kIyRXCAWEZ68gTHYtbiDAKNOhXqfPUSQsS870HBDSVHEdYWcXk1fGPDc0Gsdl5sWhe8vm4D/fOnrkGs8tbqEuJ6xuwVqNum+zz16c8hYUFqSJgawmSOjEGtSS9qF3Gf4yaoSGPVMSM2zJUqNPQfqMLUgWTJubVhShESLDp12j6gJ5WEFLar1CwvR6fCC5fzYtPvkFZ/b5mAxIk7fTf+nJPbCS0uzQVEKGDRK5KSasaYsH6/sOC6xOg4cGxL0G9Uhmw+B8dbD9qptvwKGjqPxLwBJo+zePdFq6JAOseruPIyIN8Dh9GLhzCy82r1osjlYqBkKBp3wM82alAqzQYVYsxZtXW4J5euBO/PEYBvooX8/tboE5y514f4786BmKNx1SzrionUhmcnlc8dg5xdnu+t2NXhnXzVYjg+ZdANBOyDUiwcaYeCepAz1xct2NLU6QoK+/ghWRSbzq8QAM2x2J5nubXf5kGAi36LL7oFKRSPVoBE9r10eFl12D5HqqaTpEH2Bl7ZXyU5aLjeZxuXy+AAZoZLWLhlqbZcHJoIQjE7NEOtzNq4ZOoGWCG58XO9xy+XxicF24F6v7DiO/3zwJiAMganV4QXr43G5wyZutkUbVbA6vDAPsuASx/mxcn6uKNAYEArjhqsPXxCsTlY+40RoB1YHi2NnWvHNqWbcMzMbyXF6XGpx4M2PToqquBzvD6GRB0ROd3xWi9Vl+dhz4Dw8rCC6Fng9sEi0OVj8x8pixJhU+Pm6KXC4WcSY1Ghud4nXDFY9T7TokBJvEMrICF95RHjyBocCYDk/3F4OrHboy6k8Xo4oyPjTVSVhGcv6g047eV3RZR+4aFp/6dOddiEj3NBsD1nHRekZ4jUcbh9xPfPzdVNC7hugpDe0OJAYq8Ozj0zFxVYnGprt4jix4FYDRicaQlircp/B7fVhTnFayDO8uuMENlQUhcQoL2w9ivIZmWIC74n7JkGlVKDD5pUVhgSAI6eb0eVkodXQeHrNZFidXqiUNF7afgy3TU4DANENp9Pmxq6vziE92QSDWgmzQYWX3q+SjMn33ZGDOLMOq8vyxfgrsNHzP+8eBUNT+OG9k9Bw2Yo4sw5//uCEhDnU33k9EnCHEb0bpZqhER+tC2l0f/prT2NcOT8XS+ZkgfXxSEkw4s8fnECUIUdUy1s6Zwz+Z+tRrJiXK6GON7Y6iB2grcsNr4/HuUtWZIwwweHisPmjUPl8Ja2AzcFi3cICpCbqRJpRYJcrJcGAKIMav91yWGxoV7QDu0LQ1x9rgchkfnUY6C6qpluEr/f3rOkjQxZlVONii1PMjAcGqNQEI/H4LplBWm7S0qqV2P31eUl92e6vz2NDhbwVh15LptbqtTLWZg7yRGp1eJHQh2BcBBH0BdlxK0ysCWExEtqOAzYmgw2thoHT7QuxrdSGQd1YYLUwPfaAehVsDg9UyuHtAw0IlmZyGSfSONxp90KtojG1IFnUWQnOqLxdWY21CwqIv3VqogEbKorwwee1mFqQjPHZCYACyEuPgVZNY1cQxfJUXTt4HtjxWS02rr4JrV0e2JysqMzb2ukW3Eg+q8WPH7hJNtgGwmQRFMH1AQV8W9suyd6tX1iAcRkxYdcskIPTI6f1MnRCbiY9eTy/mqz7QOjTS0vHiGMs0LOO+/m6KcRraNVKmUCcDan/7p2FXr+wAOMyYzDCokNOmrlPtoPcZ4g1quFJMMgE4+TSIGU3K6qxzYln//cQnl47WeLWECwMGXjWdeUFOHuxCzu/OAuGprD67nzUXuxEaUkqYoxq/OE9aTaaoSnx+221esByPY3b1V2a9P9vPiyJizQqGsmxOsyalAoAeHVHFVbdlQ+vjxdf23+oHjYH2+94JGwB9/PPPy/7HscNXS3G9URwo9x/qB6r7s5DUxs5MGZZHkY9gzd2CbvhW/dVY8mcbNgcLDQqJVbMHQOLWYezFztRPiMTL3R7zs0pTsP988fCbCRbmbR0uuD2cOLOt1ZDi5nxYPn87y+fgKWl2XhnbzVGJ04MpRnpGbRZvUQPT7lg+IpBXz/oTJHJ/OowUBEllYrC8rk54s5yIHhWMfI1ShznJ+5Ey2WsTQYyNdSkJy/SPV6fhPGhZmisLsuHl5UXKlGrlDLUWvJQF2Mi95uYQbT6iOBfDxzvJ+obcGFaxEZdRfnFtcDj5bAnWGwJwJ4DdchMMQP6wb0XraTgZf2SjMe68gIow6RSPphQq5SyGScSzEY1/I0gnhNYFwQcJXr/1kqawhu7vsNd00ZDxdDYUnlcsugMPpbnASiA224aCc4vWIlp1DS+rW7G/Knp2NWd4Xp08TgUZMSio8Mh/yGHIS05gv6hzeoNYSm+uK1KEMYdopIqvVbOqmzo8oMGnVKkIQevK4y6gT9TX2va3mtmOd9ph5slXkPDUDLfHQOTVikK486amBoyxry4rQr/+eBNMGqZK2oxkT7DQ/cUgqIpmA3k8SlYZDdY8C07NRpZKVGoaeiCUc+EsAlIwpAvba/CYxXjsfKOsdBrGbzyfhUa25ziPGvUM/B0cuLY+aP7iwGFArWXbLjU5pBYgSVZhMz24tlZ8Pp47D9UD0CwAvvVmz2bnsvnjoHH58MLb38rmdOTBmANFrYW3NTU1Of7CxYsCNethw2CG2VrpxsuD4skS6hAgZqh0dTuFH0woRBeoxQKVJRmY+fnZzD/ltGoaehEQowOCgWwcn4O1ColWjrcqG+2o63LHaIyvbQ0G2oVDYUiQOs4Lvp4977/pRYHeN6PxjanKP0v1v7qlDhZ14UPvqjF48sm4HxjF3g/UFVzWaxtCAT/KQkGQKEAFP2kVfYhEBH4OzKZDxxauYy1TD2218Mh2qiS1GNHG1Xw9iFMZHV4JeIYgLDjJ+dNyShprFmQj1feD5q0FuSDYciZKhWjxP6DdQI1yCN4zu/8vBb3zc+TfSa7iyVSa3/84E0wEyZsi1GFH3xvPFgfRFo8Q+O6qBJH8M+Llk4XdgWpO8MP7PrqHJJi9YgOAy3S5mCJ5Rd2FzuoPrEBcByPRbOzoFUxYr9JiMmCLww7Cm43h3f2VUuC+3f2VePflowHwiQKN1hwyDgzONxkjQiTTon4aB3xnMC64HyjNUSwbtXdeWhud2LB9Ay4vRx2fn5W8n1VHqjDrImp2PFZLZbPHYPdX5/HI/cUoNXqxTN/OiDZ0Nx/sA4P3JkHg45BikXXv42NK83jEQxLtFnJ9rNtNveQBdw8x2NdeUGI1gvPD92ErGdoxEZpJJoVOjUNvYoeeFvvY01LWjPLJbVS4/SSa7R0unHiXBtRrdvD+gC/CqOTTSifkYkR8Xri715V2yb6VkvKDwl6QIHPcLFNoKFv2i2Uvdw/PzdkLlpdlo/3Pz2D1WX52PZxDbGsFhBqvM9fsklYigky42F9sxVbKqslJbHCezyWleagucMpiknauoWeoVBgRLwBf+peI8aaNSgtScOrO45jWtFIUBTw0MJCcD4eZxttksB980en8VjFeJRNzwAgrHW3VFZj45qSfreBsM1Wv/jFL8DzPA4cOICJEydCpRp45+3o6MAPf/hD1NfXQ6VSIS0tDT/72c8QExODo0eP4qc//Sk8Hg9GjBiB5557DhaLBQCu+r1BR3fHenrtZBytbsGopCi8uO1YSIdYdXceKv9Rh/omOypKs5EYo8eji8dBxdCoPHAeC2dm4VKrU3LO8rk5MGopCaVvQ0URKkqz4fZy4gLP5mDx+DKBguthOTS1OUIGswBdbdakVCRZdFAqafz9u2bwfoGOu2xuDlxuL2ZOSpXQ3B5ZPA756WY89+jNONtokwT7G5YUISXBMDh08MhkPmAYdQwxw2aSoVYrGRq/f/dYyG/VVy2z2aiW7BQG7mGWWeB7PBze218jCULe21+DRxcXAVTYuUsAACAASURBVISsu5f1oTgvKUQI0OuTz3C73D7iJoDLLU9Hs7t8IZS6CCK4FliiNLA5WAmLSM3QsJhC7e8GA3otQyy/+Lcl8uUX1wKjXoW2Tjeef/uINOMThoy6083irmmjJarFd00bDaebBaKGNxNFLttDnAMVwMm6LrR0OonnUAoFVpfl48DxS5g3dTS+v3wCXG4fmtqd2LqvGjYHi6Wl2UhPNhFp7KkJBjy+bDya2x14fHkRvCzQ1OaQqJwHNuUbmm0oyo6LzLX/5Ig2aVAyNh533DwaVocXJoMKf/viLKKN4Rmn+gONhgFDeySb/wytgCYM5Sr9hh9IjdcLQedgJH5k1rS9qdrBol4khmfgGlYXi19tPoyy6Rn4/MgFWZs3g5pGRrIJKjUd4maUZNEhLdGIsukZaLhsR0q8XhDM7as0FJCUyALA67tO4r47ciTPEB+twffm5kChAFbMyyWW1T5WMR7Pv30EqYkGCbNxaekY4ngY2H8JBMNLS7PhB0LGvYMnGuHychKmpBjzTEwVhaV7x2SfHm4Qk6CtncLGVGObHfADFAWsKSvAu/ur4XT7ABmdo96gN27cuPFq2kt/oFAocPfdd+ORRx65qvM9Hg/S0tLw5JNPYvny5aiqqsLHH3+MmTNn4r777sMzzzyDJ554AhcvXsTu3bsxZ84c8Dx/Ve8NBC6XFwPRa2mzefA/7x7DxRYb7rwlA18evYA1ZQVIjtNjTGoMPvr7eUyfkIL6Ziumjx+JuiYruhxefHa4ATMmpoJSKMTGAgh0xZPn2jEi3ohva1rE1745eRmZI83Yuq8aJ861wen2geP9KMlLRHaKGXdMTYdJr4ZRr8KU/CSkjzAhY4QZe/4hqKRPzInH+DHx+PXmw/i2phVnGjpx960Z2PFpLWZMTMGmD0+i0+4V73f41GVMyEkEAPzyL99Inu+bU5cxZ9JIjE234JtTl8HxfrGjjozVDej7Hgro9VdeyA20HVxPqJQUKIrCxJwETMiJxy3jRiDerEVcFHkivdTmxKdHLkpe43g/iscmwCITQHc4vPjDe8ckv/up8x24uTCZSFtv7nThw6/rcOJcG06cbcOJc22wu1hMzk9EjCH0Hh7OL6nlCVx/zk2p0MtltigFEmN08Pp4+CHoE4zPjkNyvAE6Qj16m82LV/96HLeVjEJehgU5o2Lw4VfnUJQdLx5/o7cFvV4Np9M71I9xRQz35xxIO9BpaKQkmnC0ukUc+9YvLEB6kiEsQYzPD4yIM+DNj07h2JlWnLnQifvuGIvYaC00YaBedzpZ/CbIkoXj/fi2phW3jEuGcZCpn5wC8HEcRsQZoFHRGJlggAJ+xERpiX16MCHXJvvbFlQMRWwHaQmh7cDqYvFfrx9EXZMVS+Zk47uz7eI5q+7OA8/78cXRC7hnVjY6bB6YDCr85q0j+LamRZzrT53vwMxJKfjDu6Hj8uziVDz7v4cA+DEqORonz7WJm+rzb07Hhcs22JwsJuUkYES8ASNitYB/+PdLOVyP577auWG4fKc++GHUqfGbt47g828v4etjjSifmQWLWQONjNtIuNHpZPHcpsP4tqYFJ8624fjZNhw+3RKWsWVAUAjZU7eX69a8kX4/g7FOUDMUMkZGi2tmjvPj9slpKJuWjskFSbjr5lHC+rnXNZo73dh3qAHN7Q7cPmUU3vv4jDgPrCkr6FlzK4DmDjd+9WbPGr98Ria8Xh/uuHk0/vjeMRw704qahk5kpkQjIVoLq1MYlwIZ4XlT0mFzemE2adBp92L/Nxckz8LxfkwrGom/fl6Lg98148yFTtw5dRTiozSglTTautz48tilkHNuGZeMT49cxJziNLy153RQQO7D4tnZOFbTKo6HFaXZ2POPOiHY7T7/tpI0vBbkox0Y9x5eVITntxwJeX3elHRAAaQlmvDex2ck7x8704rbSoTvccH0DOSkxaAg04Jx2bHQqRkwNI3WLheKsuJgNmlgCGqXfbWDsLfe4uJiHD16FEVFRQM+12w2o6SkRPy7qKgIb731Fo4fPw61Wo1JkyYBAJYuXYrZs2fjF7/4xVW/F04EdrlrGroAnMeK23Px368fFL00p40fCS/L465bRqPd6gbPCzsoFaVj0Nrlgh/S3R2gxze792tUrzFSzdCINqrRZffg15t7stNLS7OhUdHY9eU50ZIsKVaPn7/2D/FeRj0DL8tjxbxcQAEsmp2Ft/aclqjzHTvTCqoP8bTc1Cg8//0ZaGqzR+jg1xkOty9kV1IO0SYNctPMuHNahkDf1tDY+VltnzvdAxVqCq7hCUDN0LLWRTY55XSnPE2WphVwe7kQMSclRbYr6nKQbcG6nN6ILVgEVw8eGJcVg41rJqPd6oYlSoP4aDUQJt0fl8cnpV37Bdr1o0uKiKUU14q+BBCTZDb1rhYUBfh80hruhxYWhMx1wxFWB4ute6W/y9a91UhPDFUp77R7xTVBkkWPJ+6bhFN1HcI53UyJO6ami9/D0tJs4m9gdZB/m9N17UhNNGBWcSpO13WA90NkC+z8/CzmTRmFrXtrEB+jQ3KsJmxtNYLhA4+XE5mJgNBO/vjeMTy9bjIgo3sSblzPsaXfUAC1l2yovWQVs+4ZySZkJBsHdz3bB928L4ZnIDMe7C5AUcDEMfESwcNAjXgwC1BY44/Fz7pLS4CedvDsw1NFmntvobXtn9Ti+8snENd0ze1OsYRlw5IimPQMrA4WrVYP4qK1Idl1NUMj1izo6QSLMceaNZhSkIxtH9fg8eUTwHE8DDoGL753rEe8ufuebg9ZlK2ty0V8Xa2iMCLOgPONVtkSHg/LIcakxda9p3FbSRoamuySksh75+UgPkYHq5MsgtkbYZ+ykpOTsWbNGjz55JP47W9/i+eff178NxDwPI+33noLs2bNQmNjI5KTk8X3YmJiwPM8Ojs7r/q9cCJQy51k0WF8dgIcboH6de/tOaCCAoG0RAMSY/SgKID3Ay9tr4Lfr0CHVWiQwQhQzHq/lp4cJR4bCDYcbp9Y7wUIjWhLZTW6HCweXVyEx5aOR+U/6tDS4ZI09DumpmP7J2fw3KZv8N9/Pgg/D9wzI1NyP/iFZyU9n1kvdPQR8QakxupFobQIwg85wTqrkyUer1bTmH/LaDQ029Hc4UR9kx3zbxkNtVo+g2TQMcTf3SAz8Og0SkFXoFf7lBNDMWjJ19f1MbA53VyIwMaWymo4PeRadL2WbAumH0r6WgQ3Pijg25p2bHzl73hu0zd46uW/49ua9rDNuE4XC4OOQVqSEQnROoxKNsKgY8QMwGAjINwVDDVDIzoMyv4c58cfewk7/XFbFThu+E8mgo9sUO2pAmA5XtRJCX5dr2Pwvbm5oCgFXtx+DNX1ndjxaS227qtGa6c7ROhIbt5V0gri6x4vj/vm5aK5zYntn5zB1r3Vwsakl8NtJWmINmrw0D2F0KgVkWD7XwRWuxcFGTF4es1k/N/lE/D02skoyIiBtXf7vI6QHVuGUMjU7vHhQotd0m8utNhhD4dyendwPZA1cyDGCATdOz6rxaikKCHYhsCeqW9xwOHhUJARg9V392xYfnq4Ae02ci1/p8MrBvMB+nXZrRlYMicbZdMz8P4nNVh1d55kTVdRmo29B+uQYNGhfEYm9BpBA+rZTd+gvtmG/9l6VEgqKoDVZQXITTNjdVk+Oq0ebKgYB71GiaWlY7BkTjYevDMPlQfq0NjmxHv7q+HxcnjxvWMoLUmT3PPhRYU9AXsQ1AwNNaMkvj56RBTe2PUdRgXFTMHvo3t8tTo8KC1Jgx8Qg+3A9/OXD0/By3KwuvrXX8K+heXxeETKdnNz81Vf55lnnoFOp8OKFStQWVk5WI93VbBYDAM+J9qshx/Am7tPIilWMGHvtLOSTNza8gK8u69aVNurKM3G/oN1WHHH2BDj9fULC6AOyhgGhAnarS48VjEeXpZDU7sTahWNhmabbIb8u3Pt2PFpLdYvLERcTI9iM0nF8JUdxwW1P/R0rL91e3L3rkt/fNkEpI+MFjcU4uLIVlE3Mq6mHVwvNJ1pIf7mTpZDRmpMyPEt59tg6zXJ2hxeeLwc4pLNxHt0enwhQn3Cgk1J/L3bzrchyqCSCI+4vSz8fnL7aOxyE+vQ/X6/bHs600Ru6043i7i4uJDj62Ts9NxeH+LiYon3IGE4twXgxul/N8pzyiHQDqrrO6SZTQiZzdTESchOjR70+7Y5vJg7eZRE72DNgnxEGVRh+U7tHEeck/Q6ct+/FtTI9OlOuxdj0/vfR68WV/t5LBYDOlw+os5FlFEjXpfn/fi6qjHEBuy7s614fNkEXGyxIcmiB8vxku9h/6H6kHl3xbwcvLOvOuT1h+4pRHKcBj4fRdyQfKyiCAYdA42agkGjQVycdDy7UfvlcHju4LmB5/1obHWg6kwLYkxaJMXqJUmX640ON4sZE1Nw8nyHkLltUWDGxBRYojRD9t1d6nCG+CGvLssHx3FD9kwXqy8T+01mihnpI/o/ng/GOiHQhtqtLkkbssQYkDHSjHabCzFG4XUAIWPL2vICvLHrhCTOaO8SknoBhk3ALjg5zgAf58djS8eDphQwG1V4Y9dJyTjF8bw4z6UlClbGNgeL5jZBWyJgbVZ2awaxXnr9wkK4vSxe++AEVpcVwKTnsfmjUI2p8dkJeGm7INDs9/uxdkEBtBoasWYt/vzX4/Dx/hAl+XULCxBlVIa0p4fuKcTL26vEQH7V3Xn4UzcdPbj2+4n7JqHL7oGX5RBlVMsyLqNN/esvYQ24WZYV6dqHDh2CP4gCPRCK+bPPPou6ujq8+OKLoCgKSUlJuHSppwagvb0dFEXBbDZf9XsDQVubHTw/sN11q4vF77YeRdmtGXhxWxUeXz4Bb3xwQrIge3dfNaYVjcTWfUJjPHiiEYtmj0HVmVaoVUIjiDNr0dLpwpsfnQJDU3h82QSwHAeVksbrH/R0ovULC5CfEYO6S1Ykx5HFyyiFAjwv2A68uO0YfvxAsdhg5Ty2HW4ffvLgTahp6BLFBABBmOHn66YIfn/dNJi2NjsAYdJrabEN6PsaavSn81xNO7he0KnJftQ6hib+FqyPnAFmfZzsb8fzfmhVlCSApik/eL+feE6XXfB6fUni2z0GXXYv8XinmyUqPY9MkG9Peg3ZUkSnYYjnRMuIGkXrVeLxN3pbuFH633B/zoG0g06bmyj01Wlzh+Uzcrw/ZPf9lfeP4+m1k8NzP84Ps0HV442tU4HneXAcue9fC+RKUTQq8lg2mJBrk/1tCy43S1yoj0mLFq6rEHQkAgviwDGVB+pQPiNTfD03zYwVd4wNoWJWHhBcHOqabKAUCvh8PGoautBh86Ds1gykJhqg0zAwm1Q4f8mGy+1OGfqkAjStgNPJIdYg/Q2He7+Uw/V47gHNDX2JTw3R1MFxfrR0uEJKsOJjdEP2m/uhwKHvGiVjy9++PIs7p2UM2TM5ZcrnnB7f9V0nXKENqRRAYpQGVqcXJ866wNBUyNjy8vYq0WIwwOh7fPkEbKgYh8vtLoldVkKMVrKpSrLc2lBRhJe2H4eaoVF2awZsDlaSjBOtzRTAtKKRBDuyY9i4djIeXTIOgAK//IuUzfR2ZTWWzMmC2aCBUc+E+Ic/sqgAC2dmw+5iYXV4sGROFjwsLwjG/f08ZhWnYdvHNSLNPj05CkpagcY2JwB0j5fC5nhakhGMkoJOQ2NUkgnV9R0waBlE6VXgu+vHe89DCkqwVWxptQEyyaMAwhZwb968GUeOHMFzzz0HAFi1ahWio6Ph9/vhdrvxgx/8AIsXL77idX7961/j+PHjePnll0Wl8/z8fLjdbhw6dAiTJk3Cli1bcPvtt1/Te2FBkJQ+RQNlt2YgIUaHsukZUFIKYu1ogCUea9Zg5qRU/PIvhyTvb/7oFKYVjRQD3d+8dRiPVYwX67OBHk+98hmZ2FJ5GkkWHdaWF+Dl7dKOo1bR2PbJGfEcq8OLtGQjnlo9GSzHERuXxaRGnEkNt4cTPbnVDI0Vt+fCYlT11L0Oz9jjxgbBmkHWJ1GnxIp5OWhodogL/hXzcgTPa4K7hkJBrn1WKOR3330cj0utztDsjYwSs16nwuaPpO1080enZZXQTXoVUelZzrcbEGq4H7wrDx02T5C9mRo0Tf4cEZ/3CMIBk16F+iZbSH8Kly92h81DXBB22DxhsQVjWR7nG20hfT9PpwIG+SPq1Eoi00U3zC3BAMDpllmou32AWVg8N1wOzeBPKxopZlyyUqIwqzgNP3v1gGQtEAjK//zBCXE9sGSO4LcdoJWuWZAHhQKg7Qq8tK0KZdMziPO6UccgyqCCTnkVNkcR9AtyZV7PPjy1X/Wf4YDL7SNuCP1oZDEQprHqStBplSgemyTRbFhTlg/dEAqmRelVxH4TFY7vqHudZ3exUKuUQhLLIKz3rtiGegXkcjoPUEj/PnuxCxoVjbcrq5GaaMCC6ZnQqpR4tjv+CBy3pbJaDNYDrzW2OqBmaDy6eByMegZj0iZCxdD43txcqFUUuuwekbJNUeREntXuxaUWOzwsuQ7bYtKiqd2JOcVpkoDdqGfQ1uXBlkppRjywIblkdraY2Q48s5qh8dTqEsnvGRgvV87PhdmoRmOrV5IRF+IlijgPXW53Is7cvzrusLXgHTt24Omnnxb/VqlU+OSTTwAAJ0+exMaNG68YcNfU1OCll17CqFGjsHTpUgDAyJEj8fvf/x6//OUv8dRTT0nsvQCAoqirem/QEdTwUxMNmH/LaOz4rFb8oX6yqoRYO/qj+4uxZE420hKNeOHtUHGD20rS4AryRvawHFxe8qQeEFVrbHPi3X3VeGp1CTptHmjUSjQ027DtkzPiRK1maJgNwi74qzuOw6gPtZVasyAfvJ+PeGMPBQYo2mF3+3C5PXTnOiXeAANBDIXj/MSJ98cP3iT7SB4vuV76Rw8UE4+3Ocm+3XaXFwmE2k+n20f0lHS6fQBB1RwAlLQCjFJql7euvACMTMANP5CbFoWfr5uCDrsH0QZ1xIM7gmuGW6Zv/GfKTYB+8O8XbZJhaoSp7tHl9mFPdz1foC/vOVCH0SOjBn2h7uM4xEVrJTZBcdFa+DgyK2c4IVBX2Pt3iTWrxcVzIAgOpnOOSjKKmaQF0zNDbHQCa4Wzl7okc3hA10XN0Fi7IB9pSUZUnWmDxyDQ0Uk09IcXjcOIOK1Qtx2Zw8MGkseyhxXqZIcq4JYLcDzeoetbHg8n0oIDz/PKjuN4ak0J0T70esDn44hrEZ8MM/Cq0R03bNp9MiQht2FJEaL0TJ9tyOpksWn3SXFcTk00Esef4H4e+Nvt5ZCaaMBtJUJpUtn0jCsG62qGRlKsHhWl2VApKby0rYpAGS/AD5ZPwGsfnMC68gJZttKWymrJhmCsWYNZE1NBUYBKReNMQztunZAiOXfWxNSQeTaQda9rsknG0eDPcLq+IyS+CQhHnzjbLq4fA8dvqawWk5TB81BirB4cx2P/oTrcecvooQu4L1y4gJycHPHvjIwM8f85OTloaGi44jWysrJw+vRp4nsTJkzAzp07B/W9wUSwGuCiWdkhGejTde3Exny+0Yr9h+rx4J15WDw7CyMTjHgjiCq+uixPco6aoaFVKYmNOC3RiFizBq2dbjS2OXHyfDs+/Po85k9Nh17LSDLUD91TCLeXF3d1PJ0cdn11DuUzMjEq2QStisbfvjyLzNIxwg0i3tjXFXZ3j2hHcACdEKMVvBJ7octBpjJmppiJAbec4ri7D1EQj5cjBtByk3WUQUWsZ5Tz7qUUClGkI9hTcv09hfLPxPKix3zgM7y0vQo/XV1CPqHb+3Y40fwiuPHRZ2YzDOB5P5HZ0dvJYtDu5/cTKfPhKKvgeQXe3H1KLI/heT/e3H0Kj/bhujBcwPp4YlaE9fnh6HZh2H+oHo8uLkRrpzvkuF1fnRPVdwML0MBYa3N64fEKO4OBhW2UQY115fmIj9ZDpaLQ1uWBh+Wh0ypFQaVgFePCzDgkWsKnnh9BD3p7LAN9eLIP9TPJbGhfD1gd5I15q92LRBn2XLihZpTEtUjB6AmDeh9xE+7WjJCE3Atbj+Ln66b02Ya6nFLXlSSLLqR+ef3CAmzd25PtFT2pJ6WifHoWnn+7x0JLrhQ1+Nz3Pz2De2Zm4ddvHSE+94vbqvDMuin4j5WTcLHVgfvn56IraN6IjRIYiGXTM6BRUVg5Pxc7Pz8bErivLsuHzeGVPpNM6WtDsw1b91ZLxtHgjUmXm8P+b+pRPiMTcWYtmtsFIclFs4RMdvBGciBb7vIKMVFgEyB3VDRopQI7P63F2NGx/erHYQu4nU4nnE4ndDrB/23Lli2S91wuV7huPSwQ2M1cMiUL5y51iY0iMGkmxeqJjXlkvBF33TIazweJ3wQ6RGunG6/uOIGK0mzx+KWl2XB72RABm4rSbGz68KRo3G5zsMhOjYZBy+C1nd/BqGdQPiMTyXF6tHQ40WX3oKlNKiAlLABOY8mc7G5htQJZSnIE4YXVRaZ+ZaVGEwNuh5tsqSW34I8ykClTfVFgLWYNMYC2mMmTIsuSs+g/WUUOho0GFRbPzhYD6EC2Wi5AB4S6b9nPHRV6/HCk+UVw40N2IRumjDPP8URmB8+FZ7A26Bh4CCUoBt3g9xmnh0VjtwCP5HWZPj0o6KZ1Np1pgU6t7LN8py+0dLqIOhQJFj2SLTqRaqlVM9hSeSxkbCyfkQmthkaSRReyAH14USHyR0djyZxsUAoFDFoG7+w9jTtuTseFy3Zs/uiUeOza8nysWZCPV94/LtIn1y0sQGKsGiAbV1zT99afsqd/NQzH8iU//GK7CGYy+hVD96NZosjripihsgQD4PH6iCWgHtaHwayhEVkQshpKbJ9tiFEqJQFvY5sT2z6uwcY1k+Hx+mDWq9Bp92L6hBTERWvR0uESY4v9h+px//w88VwSG2Z1WT54nscT903CuYtWfF11CbeMG9FjrdX93L03BzusbmjUSvzvrpO4fcooybzx8KJC/P6db8Wk4vK5Y/DgXXn41ZvSJOWrO45jaWk2ls8dg80fCT7dlEJBnGd5vuc7C4yjWypPh8RTYnzzmSAcTSn8MGhV2LLnuOR3rjxQB0qhCCrVycem3SexaFY2Zk5KAxToVz8OW8CdlZWFL7/8EqWlpSHvffHFF8jMzCSc9c+DwILLbNCgucMpUsbumJqOygN1iDaODlF4XnV3Hpra7GJjAnooEsEiByPiDPg/S8dDraKhpBS40GIHpVDgPx+8CSfOtoHnga+rLmFa0Uh4WQ4P3pWPTpsbf3j3W9xWkgajnhEbW0DowKPo2Skn0U8CO1WRQGRo4B5gBjrGRKYyylFM3R4fVszLwaYPexZpK+blwO31ASCfw7I8MYDOTY8BCHOjfDDMgnSCl+VQeeA8NlQUCd7gaho7P6/FyrvyAJn6TXnRNPLxw5HmF8GND7/fj+VzcyRBz/K5ORLh0MGEUklLfbgh+HA/tnR8WO7n8pAp8z9OuQnQDe69THoVSsbG446bR8Pq8MJkUOFvX5ztU8vhmjCI4lYxJg1RhyK6OxjdsKQIDZftqGsie8GmJhrgdLNYs6AAz/6vtJ7yD+8ew09WlWDHp7WoKM3Gto9rsGxuLtq63AD8PeJBAN7dV4O7p43GhooieLwcEmP1sEQrBz3YHm6iYMMKQaV4TpaDjqGHvBTP4+Wx7x91IXPssttzw1L60q9nkllX/CRVhqV2HWDQqYgZ7glZEwf1PoG4ASCvxc16FVLj9LLlnC5P6Bqrsc0Jp5tFerwBVheLX3SPIwHr3wDT1eZgJYmX1k43vq66hMeXTcD5xi7wPLDt4xqUz8gEQ1MYPcKErJQovLbzBO6dlys+d5JFh9unjBLjmCSLDmNSC2Bzsrh3Xi7+8uHJkHEsOL7Z/NFpPFZRFPI5jHoGaUkmNLbY8fiy8fD7gcsdTkkAHhxQB+BhOcSZtXhyZTHOX7JKxJ7VDI2x6TGgFAp8+e0F3HVrBv77zwdD4q8n7p0EBQX8+P5iaDUM7E4vphYmw2Rg4HCy0Kj714/DFnCvXLkSTz/9NBQKBWbNmgWKosDzPPbt24dnnnkGTz75ZLhuPSwQmEwVlKAOXVGaDS/Li7L4XQ4WFAVJY97+yRlUlI4hTryBRVSg3uHd/dW4Z2Y2LrXaER+tQ1ObAw6XQCPubVAf2DViOZ4oehCwAPj0cEPIjtaqu/Mkx0YCkaGBXAY6ykDeXZVd8MuMCjoNA5VSWp+iUgrq3nJot5KFmtqtZKGmgG93788g59ttd7IozkuSWB1VlGbD4WRla7g9LLnWytvrOQMYjjS/CG582J0sdn5RK1mg7fyiFiPiCsMiYuZ0kzMwTrcPCMP9XDKUeVcYKPNarRIl+ckSEaV15QXQasOzfBlM1gvHc0SLI97PiQGYWkXDy5JFSjWMEq/tPIGV88fKZrzuuyMHWrUS828Zje/OteObU02YWpCMrXtrJG2B5/144e2jWL+wEFo1DcZP937ca0KELTQA+AH0IUh6veDz8Zg2fiQamu3ivD9t/Ej4fENHYxzoxvz1gEmrxIrbc8POTgjEDZt2nwxZxwTfT66c0yKTaFGrlLC6feh09CQYAuUlGyqK0NBsA88DOz49g0cWFeJSqxO8349RiSaJyjkA/OmvJ7rPsSM10YBVd+fD6vBgdVk+tn1cg7XlBfj/3ugJ6ktL0kLEn4OD3uD4JvA3RSkkLjsaFSWIuP3voaBxNA87vzgLABJbsk0fnhSvHfj8LZ0uJMXpoGYoSSnt+oWFeGnbMTS2ObFkdjbONHQS2179ZStUSlqiWxSYh5Lj9dD3U8AzbAH3/Pnz0dzcjH//938Hy7Iwm83o7OwEwzB45JFHcOedd4br1sMGKiUFjZrGwplZ2PZxDRbNyhZl8RfPzoJBpw5pzB02t2yWWQw4XCxuKxmFN3adBoEv/AAAIABJREFUQGlJmhiQLC0dAzVDEz20N390uifQ7iV6EBDgSrSMwduVp8X6rlFJUXjv42qpsFokEBkS+Hwc1i7Ix8tB1K+1C/JlhYOsDi9xwZ8cV4g4QrDK8X68tvNESLvbuJasIA4AZiN5E8BsJLcRlZKs8sgwFPF4vYYhCgvKqZoDgIqhiTvRcvWew5HmF8GNj1gzObMZaw4PpTygMNu7rzwlp11wjZAtQZHZALwWOBw+oi7DxjWTYTANbtAIDC7rhaIo7D/YnUH0ctCoaHzweS3umz+2+wBAr2XA8XyIF+y6hQXg/TzmFKfh4mUHmbmjVkKrZiRlN48vmxBiBSS0hckon5GJEfF6RBkGObuNCFvoihiGDACjjkFdY2hpiDEMpSH9fiYZRXCjbgjXntdLKLj7Pk+smAi7mw2x2r3S/UjrmaWl2fjtlsOwOVg8uXKS5Ltt7XRj04cnUT4jE3/66wkY9QyKHF6xPcipnNc12bDj01osLc2GiqFAKRRweTksmpUNr48XzyHFIm/3SvoF4psA1AwNhqFxz6wsSalDb0uyV3ecEKniW/cJica7bhkdUoa4trwAtAKgaQqabnvlhBgdTAY1umxu0R5Mq6GRFEu2UI4z69DQbA8RU3tpexV+/EAxdEz/5qGw6uw/+OCDWLJkCY4cOYKOjg6YzWaMHz8eRuPQmNdfT9jdPrTb3NB4GWz7uAbTikYiysBAodDBw3JIjtWjsVfNNADAj5CgZP3CQsREqQAIxvEr54/FqzuOhwgU7D1YJ3YQUidRMVSI6MHDiwqRnmiEQaMEFMCIZRPQZnXDEqVBp9WD+ia7eGwkEBk6KGka7+6vkQSS7+6vwfeXkUU7DDqypZZcNrlLZrFktXuRIJMhY2iZAJomB9DtVg++qrokoa9t//QMRsQbYCFMplYHOYNudZBVzQGAUVK4fUp6SGafUZKfaTjS/CK48eHj/MS+MdiitgHIaTY4wlTnTFMK3DsvB38JKkG5d14OlNTgZ+36sjyTGweuBYPJeqEpCjf1YuksLc2Gkqbg8HGoOdeFl7q1V5IsOvzgexPh43mYjWpwPg42lw+piUa8tvM4oZ4yDwxDiYvLQN2kXIaww+ZGfIwWsWbVoAfbQIQtdCUMRwbA9XZT6A8cTpbIUnO4WSAM/b3fuF5Cwb3uMyCr3V6uK2cvWiWCYS9vrwph3CyalQUfx2NDRRGMOgb/FUSp5v19l5luqazGk/dNwvlGq/h7/cfK4p5zZGrRKarnWuvKC/DOPqmIW13Q9QLnbOn24/Z4eTFpmJ5kFMt1509Nx+aPTsOoZ1BRmo1Eix4KBXC53YmR8Ua0dgi6YV6WR4JFiwvNDjR11417WA7x0Tq88cEJrL+nEC8GlfquXZAPtZJCnFlL/CxtXR5QFEXUUuqNsBvbGQwGTJs2Ldy3GV5QABdaHTAbNaI6+ZHqZsRHa9Ha5UaSRQeKpjA6OSqkMXtYDt+capZQzbfuFQr76xo7UT4jE77ADlKvxtza6caur87h8aUTsP2T2pBOkhxrwPK5OeB5QTk1d1QMUuJ0ggiaX/hnMXR7aSuATqunF8VYJmiJIOxwuMnCQQ432zMgB8HHcvjhvROgpGmx7tHn42RtLPQastK9tg/vS6vTSxQESk0ywkJYZOk0SkwtSA5ZfOpkqKEmA3kB15eQm8vNglEqJO2WUSrgcrPydkXdE1xGagxaWmyRYDuCa0a71U3eXEowICYM2SOtmtx/NWHyqra5WFCUtJ9RlAJ2F0vs+9cCOcuzcAnQDSbrpVVGNC0+RgcFFHhnr7Tuvt3qQoxJg6ZWJ17cdkxkrtkcrKguHigBizFpcbndKQbbgTIyOa/tGJMGUabBz2wHEGEL9Y1gOm8AQ80AGKi46vWAyaBC5V9DWWqPLx9cRfB/SiiA2ouCfWycWYstlVKXp8Y2J8wGFR6rGA+O56FRK6FSKnDyfAc4noffL40pSMJpFaXZ+LrqEpbMzga6M8d7DtTBw3LISomCVkVhXXkBXtpeBYAcsKckGEWxR0YJ/NuS8Th2pgU8D1ExndQuY0xacVxUMzQeWlSIp9dNhpfl8V+v/QMeloMRQl96fsuRoKRlAUx6FZq9PkTpBYemP753TAzO366sRmOrA41tTjCUQmx7Rh0DNUPhuTcPy46r7VZXv8VCh85J/p8FBFVOq5NFU5sTfr9fnAzvmZmNN3adwB03p2P53Bycv2TFN6eaQupsc9KiAShCqOYvbqvCT1eV4DdbDmPWpFRZYQWbg0WH1U3sJHotjZFxFrTbPD0UFZlSHauTxa82Hw5pXJF6rKGB2aCW1LQAgjaAXPZAr2PQ1eLFhcvdvt0tCoyM18MsY6uhUdHEmm+NSp4qo9MwxCy6Tk1uH0qaIu6mPy1DW3d5yD7crj6E3KL0ary4rUpiIbTz87N4YsXgiptEEEFfiDKqcMu4kZLNpeVzc/rcLLoWKGkKa8ry0NrlkditKOX8568RWpUSb+w6GTI/9FXucbXgOJk6aD5MdIFeWaJogxoWk+qq3DksUeTSAgUU4Hk+pO7+B98bD7VKidqLXSibnoH9h+pF5tqWymps3VctZoUudziQEm8KKSMjLZLXLSwATfuhUdBhzcxdF9rtDQo5QU99Hzop4Ua0UWZdIVMWdr1wW0laCDsogisj2D6WFCAmWXRweXxijTalUCBKz2DvwXrMKU6D1WEPoZxXHqjDjx+4CXaXF/VNdnxddQlTCpLF8WUHI2hECSW0SvzX64dEF6SUBEPI2F1Rmo0/f3BCzLo/VjEeTW0OUX9q1sRUjEoi+4c3d28wAsL68Y/vHkP5jEwkxOj6pLG/uK0KZbdmYMdntXh82QTUN1mDNjoFNlrAOepypxM7PhMSlktmZ4tCwqRx9aF7CvHR1+cwNj2mX79PJOC+FvSqyUmy6LB+YSHcXh8SLXrA7xcnw+Z2O0pL0iQq0MvnjoFBp5RkCTptHoyI1xN3d7ocHjA0hf2H6rG0NBt7DtQRA5KWLhdZUXHFRBjUyh7qQx8TYaQea3jBpFNiyZxsifVbXzZtPs6Plg5XSG1WfAxZQtjj9SHGpJK0xRiTCl6vTzYzbHd4ydQvl5dI/XK4ZGivLpYo7KRVk70vN1TIKy9fL3GTCCLoC5zPL25eAQEdjVNhq6lWqWjQtNQWbP3CAqj72DC7FnTK0Lw77YNP81bSNLkO+s68Qb2PCAVwsm5wam3jzGox2yMGv+UF2P5pDVbMy8Xv3vlW/B6Negaddhav7jgiGU//9tU57PrqHH50fzE6rB40tTuxec8p2Bws1pTl4dEl43Dxsl2ySA5kwxMsOsSZtYgxq6CjwxhsB3C9aLc3IDxe8gbyYFtLDQQqhiZab6r6WZMaDrR0yFnp6RAbKU/oE1aXD3u610xaNR2iC/HQwgLUXrSGrAvnT02Hy0sOKhfOzMS5S13Y+cVZzJ+ajok5iUSNqMcqxose3p5OTnRBWlqajfIZmRgZr8flIBsyoCeINmiVEutDo54JKclat7AAmz86Jfm8HpYD7/ej0x6kfSVDY0+I0aFsegaUNKDXqrD765puJyceo5KjcOjEJTx0TyHerjwtKp8HXyt4XE1JNKClQxBim12cBo1qiEXT/hUQXJMTUOMLKKkuLR2DaCODx5YWwePlYdQxeG7TNyGNtKI0G1F6BslxBlgdXqgYGtEm8q6jXiPsGjncLCiFAg8vGocumwePL5sAmhZ2UNutQsObf3O6pL5uoEFHpB5reMHqYLG1F/1w695qpCdOJG6AuNxk3+4fjSwmBtAKisLmj073ZIb9fmz+6LSs2BggiJscPNEYYimSO4q8ENbrGHK7ltnAYZQUFs3KChGKkxNZAxDJskQwLGB3sTDqGZRN7Omv+w/Vw+5igTD4ybrcPuL48OiSIpjDQCs3y8xRUTLuAdcClZLCndNGS5SU75w2OmwlToNZa2t3+KBiFPjR/cWwOr0w6VRglArUN9lx7mKXZH6dNTFVzAQF7hsQGPr86AUoKAWa2h3gu8cyD8vh4HdNWDAjCzSlwA/vnYTtn9SgpqFL9Istn5GJ5Fgd/DyAoYuhIoCgqyLOl0EbRxOyYofsmZwuH9FO8NElRYgKUznKlWCJ0kh1YBSCXky0ceh8uG8UcBwnYc0EdCE8Pg4Xmu3w8SCuC5+4dxI6bB7MKU7D11WXJKUrdicLl5cTS1aX35ZDDGhd3da1sWbBRz0+Rge3R/jby3JQqyh4WR4MTWHJ7GxQFDAmNRq7vjyLiTkJeGRRIY6f7cDi2VlIjtWjy+HBYxXjwXIc2rvc0GkYzClOBe8X5tLWTneP4FqQ9hVAprG3dLqwdW81lpaOwaeHG0LYRQ8vKsRX317Eyvl5aG63Y0NFEeheaumAMM9Nn5CCWLMGbrcPr+w4jp+sKkFUH+WXAUQC7mtAcBa4N43hTEM7ZhWnwun2gVJAbIzB8LAckmJ1cDh9EsuThxcVYsW8HLzw9reSXcdPvqnHV1XNosLfkjnZ2LpXaGD/tqQIL22vwqyJqaAoYPyY+GsKOiL1WMMLdhcr8TYMMCTsbpa4CPSwZOE8j5dMw2R9HPH6bB8qT2o1hdKSURLa7LryAmg1MgthBXDPzCy8EkQvWlOWD8gc3tblwu6/n5csUN7/9AwWz85GTF8L30iWJYIhhl6rxPyp6SG0SH2YrKxcMrZgLk94ajGNeiUxM2Y0DP7n48HDy/Ih2Xv/1XC8+4HBZHfZPT60dLjxu63HgsbVHNF6J3hhqGIo4n3VKgqLZ2eLNYqB37ajy4n0EdHY+MrfpeMpzqO+yY6lpdlIjNWhvcuBja8cH3JF7H91mPRK4nxpMjBAmKojrgQPSx435NYJ1wMaDXlsCZcNYL9BKB8dbn1Jp2akrEAAr+08jh98byJGWnRo7nLLMpN+985RcZ7a9dU52ByCeN2eA3VCwAkhy9vU7iQGtFF6Bg/cORZmgwrtVo+knd87LweJMXpUHjgvKqIHJ1F0GhotnR7JGL9yfi6a2h0YEaeHUa/Cb7pLXANtNGCx/LevzmFOcSr2HqyXzewHPhMgJJMCblHBGw8BP/BX/yrEUQ63DdEGFRbPyRaFLdWMoHru9frw3v4aPHTPuO51df/m2YgK1jUg2KQ+QD3ISonCk/dNwuyb0qBSCoJVOq0KNE0hySKl8wbqXV/ptav9h3ePoaHZIXntpe1ViIs2iJQJcWen+zpalVLc1VYzNLQMBZOWQWqsXlgkDHRgCMoUblxdgmcfnhqZrIcQarVSDIaBHoaEWobKYjYEtc3ANRgaZpkMlFbm+n2JLrndPNGux+UmL4S9Xj6krb+y4zi8XvLxJr0a9U12PLfpG/xu61E8t+kb1DfZh9YeJIII+oGAkEzZrRlYMicbZdMzsOdAHWgqPFOuQUe20AtXfajNTrbqstsHP8BnWYilNIF7vbitCmyYxL8k83o3rpbd5fP5QzJKmz86BZVKCTVDYXVZvniv5DgD8b45o2JCvuuDJxoxpXBkyOuv7DiO++fn4Yn7JiF3dAzizBo89+a3Ypbe6gzTlxbBFdHW5SX2mbYu75A9k1bGelM7RNltALDZyd+TzT5031OgfPSJP3yFjX86gCd+/yVO1ndJLHaHAwIbKDs+q8XWvdXY8WktSkvS4PII/d7QrSMQDDVDo8PW44m9pbIaD96ZJ9bNV5SOgUZNIdasQaxZA42KxqOLx2Fp6RjEmgXf7/vn56Kx3QmXh0NjmytkzPvLh6fg8/txU14S2q0elE0X5kWjnsG7+2ug16pFMTRAKK/xeIW2WHvBKtqDBa73dmU17p03Fn/r3hgYlRwlsiJcHg52lxfL547B48vG44n7JkmU2gGAouTV01s73di6rxpb91ajy8GKwXbgmJe3V8FkUIPleLR3CVl2XT/n2UiG+xoQnAXWqoX6CKWSxm/eOiLK1EttPARj+MZuKfrVZfmwOsm76bzfH/JaINCmFAqsLsvH23tPi7t/NqdHVP1LjtULNl/XGhxHMoXDBnK2XV0OL1EV2OvzYf3CgpCab6+PXC9mlVFQtTlYxMsE6R1W8m5ph81NrON0y7A83DJZOJebFWtpgrPuQtZuCO1BIojgCvB4ZDJHbHjark1mHrG75C30rgUdtoH1/RvlXsDgsru8PjLTyMtyeONvJ5GVEoUNFUVgfTyMOmWPO4lfoC6Wz8jE+V7U86yUKCyalY02q0v2e9FpGHi9Pvxq67eS9yIaLEOHNpn5ss3qJjqNXA/Y5Ob9MI0b/YHbK7NOGMKs+3C0dCNBzSiJGyg/XzcFnXYv3KyPuKba+cVZ8RoeloPXx0OvZSRZ4pXzc8EGaZOoGSGTzPo4JMcZ8N+vH0TZ9AzxGsHwsBzcbh8MOhX2dNskUxSwpqwAdpcX351rk5wza2JqT9AuU5MN+LGsNAdaNY0DVRdD2JNrywvw+ZELGDvaApujZ6Nx/6F6rCkrIGbps1OjxdfVDI2kWB3x3g3NNsyfmg6nh+1Tt6g3IgH3taA7C/zcozfjXJMNakYpqouXTcwI2eV5dcdx/PiBYnx3rh2MkkKSRQuvz0/84QNe2b1fW12WhySLHrRSgQfuzINRp8KuL2qRlmQGRQG5o6J7rL4i+KeBnO2PVibDTVM09vSiY3/weS3um0+urzboVMTry/l2A0B0lIZ4jlytlU7uM8jsppv0KqiUVIg1nUk/fCa4CCIgQSWz8HkqDCregEAlJPet8PSVGJm+HyPjgnBN9zINbJy5ZgSxu5wsBx1DX3UplUFL1q2IM2uRZNFhSrdN4rLSTEAB/PHdY5LFbOU/6jB+TIL4+WPNGpTelIZfbvqmD/svLaLNSvzs5YOSrE5Eg2VoYZHpM5Yw9Jn+wqgnz/tG7dC1E4OW/ExyWi/XA0MqIjwAKruczZvDzcJsVKPLocDur0+KlPO0RCM2fXgyZJxglBT++N4xyfxldbAi5Tvw2p/+egLlMzLhDEqmUAoF8ffTaZX4884TIaWLaxbkw6TvNX/1CrJJ16tvtovCbI8vmyBxdgpkojdUFOH9T89gTVm+GIzbHCzg57FmQb6YOQ/QzmkKKJ+RibhoLexOLzQq8pqV766Ff3rtZDy/5UifQr7BiFDKrxV+wXpoy57T8HG8bIMBehrt3oP1UCgUsLs4vPJ+FSpKs0Wah5CJLESUnpG8tq68AHnp0RiZYMS+g3XY+PIBNLc78cLWI0gfEY20JCMmj01ASmwk2P5nhEYt1OcFt4k1ZfnQqMlKOA4Xi+K8JLzw9lH8butRvPD2URTnJcHhJlMKeb9gjRB8/aWl2eD7XGXyWFteIDlnbXkBoCA3QHW39Vjw8cvn5sgqKSspBV7fdRJbKk9j695qbKk8jdd3nYSSGmY8rggi6IVOO1nF22r3hOV+NK0g9l+lMnx9hXS/cFAs42MEpe/e82GCJYwZuG52V0FG3NWVZHXDx3FYODNLQvFcODMLHM/h+8smiJsyOemxYrAN9Cxmx2cn4PMjF0Tq+ayJqWLWKaAoLPleFhYgMVYNNWisuD1X8p6YpY9gSGAxqYjt2BI1dMHt1c374YWH9YW064rSbHjZofMGH8wykxAoAKuLRX2LA1a3TzqGDpDKLltKqFfBpFXCx/G4fcoocTza9OFJLJ4d+l1f7nCGzF98t81xMDwsh8QYHQxaIV7Zf6gepm6Fccm6cEE+vCyHOTelhpQuvvL+cSRaDJJzAkE7AOI4t7Q0G3sP1iHWrEHZrRmyrAiO5zExJxHvfVzTU951awZe33USXpbDU6tL8MS9E/HU6skYGW+AkqYxIk6Hd/dVIyFGj9c/OCG4ffT6fvZ/Uy+wU7rcWDw7u99zUSTDfa1QAHYPh0WzhHqEwG726GSTbOb6rltGw+XhwPo4NLY5Ran5gAUCo1TA5UG3grkaze1OvLOvGmvLC7D/63P4qqoZG5YUISVej9HJJqkoWoT2/U8Jp9snDhqBdvLexzV4eNE4RBN2WPXaUPGMviy17A6WaMWRHGcAZHbg/TyFk2db8NNVJei0e2A2qPHxoTokWUYRj/f5OVii1JKMtSVKDc5Ppop12mR2le1emIbQu3Q4gOredOD5SIcfjog2ybg8EOzvBgM2p5fYf0cmGGVLQq4FVjv5fiPiDYN+P6uVlSop+wUl5dFJZIeG4QSaokOUx1/dcRwb10wWbRKzUqLQ2kmmh48eGQW9Vok9B87jvjtyYInSiscF29SkJhoQY9IiLlYJdO+pRtwahhesdhaVB86HuHqMTjIOWTu+mnk/3FAzA7cDDTfCJiLcy1o4cN2AXtJAqexXes44sxatnW7JGoyhgZ+uvgldNi9omkJrpwsJ0dqQ+UuvUWJp6Rix3HX/oXrYHCzarC7oNLTot73tkzO465bReHJlMawOD1o7XfjHiUbcfWsmvCxPHOe8Ph5xZi1+9EAxLrU4kJJgQKKlEH9875joBf74sgm42GLDmNQY/PbtwwCAO7rLdr+/fAJxvo0z62DQqrD3YB227quW3NcSpUFNQye0aiV+u6Xn+1q/sABrywu669GdcLpYbKgoQkOzDTwP0dZMzdCwRGkQH6MWx9wrIRJwXwt6dZbcNLOorkjykasozcb+Q3W4edwI7P66GusXFkLN0GKRPiA0kh/dX4w3d5/CwplZeKtS8Nt8aFEhNCoa0yekoGxahtiB+uOpHcF1QJgVLF0eHxrbnCGDhpwKsddHriEVarhDF8Rmoxo2Byu5/pUCBN7PoTArHlW1beD9fjQo7CjMigcvE0BToPD5kQu44+bRokXO3748i/KZWcTjI9Z0ZFCUApv2nAYArLhtTCToHoZgaAprF+SHWtqFycrKbJLrv+HpK3oNQ7xfOETaOu1e4th3I9QjyzEduhweMRu1YHomGprtxLHuUosdaYkmzJiQgkSLHvXNVslxAaHUJ1dOgtGgBO0Pym5FNFiGFexBrLPgOVnOaeR6IFpm3IgO08Zgf8DxHBbNzsbL26XK0Bw/dDXc4bIbvVJAPWAq+xXKYXiex2s7T0iumWTRYfncHPzPOz2uSMvn5mDl/Fy8seskPKxgL2bQMhIq+NLSbKhVNL6tvozRI6LgZV348QM3oaahAz6OR32TFSa9GhqVEtMmjMSmD7/D0ttyyBRtjsevNh+GmhEC9zd2fYfvzR2DJ+6bhOr6DjBKCs3tDiTE6AH4cdctowVmcbdnt9vDhsRby+eOQbvVhU0fnsLquwtw4bINXh+P/YfqwdAUrA4WLg8XknF/cVsVfnR/MQxagU7e5WTxwZfnCDZi4xBv7n+wDUQC7mtC784yaWyiqK7o6eSw66tzQj2AWYvmdme3fH0atu6tRmlJGrbsOSXuCgV+xHXlBaBpYP09hbh02Y45xalCY/Zy4DgeqbF64eaRyXP44Aq7lIOBKIOKWAtokgk+VUolMcOdO4q8S6xSU0SRNZVaPkBQMUq0dXVJrBwEKxo98XiW5TBmlEVigVdRmg2fjPVYxJpOHlbHECq2RnBFdFg9oCngsYrxcHl90KqU8LIsOqweIiPlWqHwKyR1aoGSE0WYZHQZhpIsyNSMIKrDMIO/oTAkG2/dG6hNZ1qgUyuvegNVjulg0qlwuq4D98/PBevjsfdgHSpK/x97dx4nRX3nj/9Vd3X1NTPNgByCOjIMkUEiIWgSEhcdiVc4vAiiJqsImjyy3/XhN4dJfsZsslF3c+g32WCMbkxcgqgcaxQVxSjRR4y6EsHlHBTE4Zyr76rqqvr90d01fVTPdA/d09Mz7+fj4UOmurrqU1Wfs6vq/WnO6tAtWzANAs/i/j+8nXWOc4MerVoyE163ALfMldT5I0NLEgsHtKoWlmUc232Oq95rWxzL4amcJ1qeenlvVe9wA6jID1gDDagHVfel0tk0uQEnToSy0nmyN/sHwDF1MpZfOt3+ESi9/zUv7Ma1F0/Fws83gWWBmVMbcU9q+sH0Omu37MWNl7Xg/NaJuPex7DpKT5hZddRXLp+O81snwDCtvIHx0rZmHOuK2tv97aad+KfrPolI3MDb/3sEl372LHx8PJyVR5ctaEHTJK89Z/cfNu+CbphZ84cDAMeyaJs7xX6/O72/qaf78S+PJoO8OZ3/cEzHn7a149s3zrYDUT+xZY99Ppon1+OMCe6S61sacJ+CzMIy9XQ/GuuzI9qd7Ilj7ZY9WNrWjHUv74UkcJgy3ps1B1zCtPCN62ZB1QwE/DLWvrgbCy44E3/fewxv7DiGZQum4T+feR9fOO90TGp0HsiQ6hpUBMsS74hbsJznsGacvxSJ6Y53uCNx3TGaYixq4P32jMfDvRJeeesgxjW44fc7VxNxNZEXGHDtlr347qQ5gEOD4HGJjo+KnTd1dqGDHtWPRTo9Ns6yjL08c51MdMe7+nweEcFI6n1tCwADmBbgrVA04khcd3zlZNVVM9FQgfd2NT0Bj0vIejTR4xJS71mW9xhZBo6dNKe8XxZl/AE1/Y5sbtpNy8KaF/bg/94wGxzLIBTR8dwbH+Ab183CwaMhOzZM+gcNIFm/PvbsLixta7avc8uUeqh6An4fDbaHu0Iz0gSjWtWilMfiCcfgqsu+OL0iPwwWoyesOj/RElarFjm9UgYaUJf7pkNm8N0xdTIu+8yZ+OhYyDFfqrppX4OJYz2O64ypU7Dxz/vsz7xuAWPrFGgJA7cuakVvJI7n3vgQvamAa0svaYYsclnthiRyWP/n/VnbtWDh8c27MG/WJGi6mTct5JoXdmPxhWfbQdOua2vGc298kJVn7rz+PAg8B003sPSSZpimBVU3oeomWI61t+d0/r2KiCvnnYWImsCJrpg9FznLAtOm1GPK+NIH2wANuE9JurB43QKu+odmfHgk6HjxTh/nxQ2XtmDq6XUAmKw54PZ91It/e/wdAMC1Fzdj18EeHOh4D9+68VP41CfG4/HNu3DJ3CmY1OgZVYONWlK9ysxdAAAgAElEQVTyYz+D6NBpuuU4h/V3//HTjuu7Xc7za/6gQJRkPZFAy5lj8MNH3uwb0C+aAb3AI+gAENecp7wpNH0HywBfvODMrGklli1o6b/jPAofi0wPqn///G4AwI1fbIFpWvaydLRWryLi98/vRjCiYfwYNyKxZAtAj5lXnwULlgU88MS7WY+UVyoDxzXDsZOqVmgqHY7l8KuMIF9Asq0rVL+ciq6g6vie6ZkTfH2vVJVROacAKvSO7C2NrclOrWbg8c277LvbB4+GsOnVdqi6gWsvbnasX2OaYf+A/8kV5+P0CTIiQRM+l3PwSTI8FIp4LBWYaWQoxNQEdh3swa6D7+Qtrxa/xzlKud89sgbbQBED6jLfdPAqfa+6zp89GU9s2VtwtoP0PiSBA8eyjut80BHEJRecCbfrMD48GsKSC8/GR8dDeY92pwOuPfv6B1hy4dn2NlrPDuCX67bnRUn3ukW0zZ0CTTfQW+C1nPS75Om+7cLPN2W9mlvnlfEvj7xpT9G87qV9dppOCygYH1DsgGyZN6ZWLm4Fy1io97nw930n7Sc4M7f9gxXnD+rHH4pSfgp8Co+vX3MuLp4zBR8e6bUfC8uNQnm8O4rTAm787wfd+KCjB2dM8DtGEkxncFU30B1UwTAMvnbNLMye1oimCd5RMdioRaVGsCzUoQtGC/9kphaIwqhqzg1jMFIgSnKBR5FFgbenSEiv+/DGnRCFwp2B9DRfmSSh8DRfwYgGgWew+MKzce3FzVh84dkQeAbBKD0enR5k8zyLx1/cg6dfbUcwosGygN8/vxv/sWGHvSyckU+CEc1elv43qT7DgP3+NpCapmTjThgVeg2xLtVJzSQJHHwVunPW39zY5ZYZX2LdS3ux7uW9CEX0ij1S3t8PqKVyywIELqObxSTf72cZ2NdLN0y4RA7fXD4bbjk5HVhmHyJTup+Q7lsEAjz2HghT9PEakB7s5EZb9rmqN+AutQ0fCi6Jx4pFOTOyLJoBV4EZWWpaxoD6B7fMxX23fyb/xkvqpsPkMe5TmjEhuS3LvsM8riH5RG6hKOBb3zlk3z3e8Od9eXn3ulSk8NVPv4dLLzgTl15wBoIRPe+pxzUv7MG4ercdr+qVdz5KBkVrUAAL+PIl07K2e8vCGbAsE5LA4typjfAqzm1b5nlQdQMs2/fZyiWt+K/N/wtVN7Ln9E6t++un38NXrjjHfrJo8YVn487rZ+PuFefjzZ0d+N5Df0VXMF4wMvtg2zm6wz1YDLDrYG/qXYdmdIfi9sXLfI+gN6zised24dqLmwEAkbiBTX/eh5u/dE7WpPLpRyKAZIbpjahomujti8ZMg+1hq9THfgYzp6OvwHyZhd7h9haaV7tAx6w75DxA7wkVfoxLEFgsW9CSd8e60HuckshnPSKZTlM132EbDtJB0NJ3qtMD7bT0QNqrjO5gcbUkFHEu46GIhtMq8FhkJJ7A8ktb8PjmvrK4/NIWROMJoAJRyodybuyhjuVQznfGRYHFVfOnZs33umLRDHQH41ja1ozecByXf+ZM9EZ0/O7Zd+xHPe/66hyEIhpuu3pm3tzcMVXHD1acjzEBHpGgWdZYIaRyPBKHSY2erMdpJzV64JHLG2C1FKW24UPB7+LhdwtZ8S8EHvAr/Mic8nYIn+LrCqp4+s/7MX/2ZLhkzh4Ep8ctLAucc1YADAPM1yYDVl9U7u6Qiru+Mgfvf9CVtRwA9h3uQWOdgmMO04mpugGGtbBqSSvWvbQXF7ROyAoceMOlLbjz+vMQjOr2Kw0LL5yKhze9jzuvPw9uicuLM7C0rRnPpsZLQLJ+njzOh+/cNAcuicfx7gh2HexJflhgiuaPjoXssZppWnDJfNZ76nVeqWAwy8G2czTgHqTMu5Rel4C4mrAf1Ug/7nXLwhnY+tZBXHtRM8bVK3DJPJ55bT/mnDMeG/68Hws/3wRJZHHmBD8e3rjDDjV/w6UtGFevnPqvWWRolPjYz2A6dLF4Iu/Rl+vampOPfjl0qF0yj5WLW+0gfuk7Ii7ZucjXeZ2Dsvn7uUMmCBwavGJWB6LBK0LkC8wNHtcdK75IXK/aO2zVlr6zTYPqkcXjEhzLk7tC70W6ZR7PvZ796PJzr3+Af1pamUBDFkzcurg1L5IwmAr0iIc4lkO5B/hOTw7dsew8PLl1By694Ayse2lfVvCedIRoVTNhmCa++9U5+N8PumCawIY/78c1FzUnI5LrXPIxcuoj1AYLaJrgRWOd7BhBuho4jsVpDXJycKsm4JJ5cIwFnqviw68m0DTBh86ghu6winqPhIBPHJmD7SGW+bTQmDrZ7lOmZztYtaQVHSciiKq6/WpLWiiiQxC4vOWSwME0kwEiT/TEHPu2ssjjz29/5Big7Q+bs9/HXtrWjCMnkgNdd2oMdMYEH+659Xz0hDW4xOR72RfPmWL3O31uAY/+aSduvnIGfv3033HDpdOz0uGUJi3jHXVJ4PD9qXOz1nnpzQ8xe/ppeTE4brtqZnLebXqHe+hk3qVMWMDvnt0Fr1vIurvNscBFn56S/ev2whl4+a2+F/DPGO9HTyiOGy79BHiegVsW4HXxVf3VkwxCCb9SDqZDx7KMY8Cx266a6bh+LJ7om/MzIxjKDZd9AnB4XEwSOHtKu8wBuigWfoyL5xnIEofJ47xZv0TzvPM72elpcMpx52gkSN/ZrtQgjFSPJLKOQQ5lsTIdWYaxcO3FzXnRhlm2Mo0Iw7D4284O3PWVOUVN8XfKhjKWwwBT65QiPdd2JlU30P5xL072xFNBfPo6hV63gLZPT8G//mffTA43XNqCpol+hKI6br96FjjWhCJwQBVnSSKD1E8E6WrgOQYx1cCvM+qN25a0gqtUQMJimUDAI6LlzEDyPNFguywy+57p+a2/uXw2QlEdgsDCpwj40X++Ba9byJsNYcXCGdjy1w+w6qqZWP30e1k3fra8eRAuicP4gCtv5qXr2pJTvC2/dDoOHnUO0Da23oVrL262g6g9s+0Abr96JryKgEc27cSJ3jgunjMFTRN9cCsCeo6rWbPjLFswDQLHosEv4VvLZyMc1+2ng7a+fShv0Jy+2w4gq/+d2T995X86wLEMFlxwJu6aNAdxzUC9R8KYenHQASppwD1ImXcpI9Fko6r2GFlBa765fDYeyPk15+FNO/Hdr34a4ZiOo50R/Hr93xGK6PZd7fH1sh0sgYxQg7hj43YJuGTulLxot4XmvQ1FdcdgKKGojtP8+Y/DaLppD7aBZF59aMOOZBAkl3OaGAtwu3gAHKyQlZqz2ygUOJ2m+XKQ+/g4GRliquEY5PB7//hpQCn//uKqlT3LgEfCK28fRMA/GajA5BZehcfc1glZU/ytXNIKr3uEdCnKNDAq9CNjetqa9N/p9yg13bRfNQP67gB968ZPocEvQ5E51PtkikhOyiIcTdiDbSD1fuv6Hfj+zXPhr+J73KRCMvqeJ0Mq9n/Ui19veM9+NPz/Lp9tj2We+cuBrNkQHt64A0c6o4jGE/j2TZ/CnoPdMM3kjZ+2uVPw7Bsf4PLPnonGOlf2k1apR8/TATydAwdykAQW06Y0ADDxreWz7bgUKxe1ZvWTj/Wq+I+MgJ3p98S/fdOnIPIcfDIPn0vAhDEK7rn1fHT2xiHxyVesIjEd089owOljFZx52uzs/jeQ1z/91CcmIOAREci8KXQKdS+VqEHyuXjcuew8tHcE4XY5R5/MDD2fpuoGdh7oxNa3D+HiOVNwy5dmwKOI8Cl8MuIqdb5HFwsAM/CvyfVuAWMbXFmPb49tcKHeIzj++ut1C4550usuNEAv8M5pVCv4Drdb4NCpWYiqKuJa8n1vReLgrivwmOMon+aLjB5R1TnIYaWi/3IcMHGsL2uWgaVtzRWbT9fFcRjf4Moa4LOMBRdHjzhnKvQjo8iz9kA7fffluTc+wLJLWgrG0pg0zoN6r0CD7VpWpvndyyVa4DWvaFwHUP54DGQYSD8tpAhQVQOhSLJCkQQO3oy7vCd74vbrsWctOw9fv3YWesMqYDE42hnB5HG+1DvfM7F6fXLQ/uJfD+LWxa3Y9Fr+Y+djGxQ8+fLevFcjv37NufC7BUwMNGb3B1P/z32yqSvoHLAzFk9A1Qz4J/iSCw1grFfCWJ+EYFQHzzN9fU7D+Ymp3P7pmZPq0dkZLtuppwH3KdASJjb8eT+8bsHhkYWZEDimYLj9UETHaWMUNJ/u63s0jDoqowMDtHeE0N4RtAfPTRN8/UeiN4Hpk+swtk5BZzCOgE/u970mSUhOQ/SbjNcZbl00A6Lg/Ih4fYH3ytPvEzqygMlj3cn5xIsdQI/Cab6GWsXmJyZFqyswtU2hIIenShJ5KHL2vNiKLORFdy0bCxhX50IwqoNhpWHxPuqwVOjxdAD/9vXPIhhLwDQNfP/mudhzsAsBv3MwujqvhDF1g3+UkQwDZZzfvVwKxpOpQKBFMsw43ABhORZfu3omOk5Gs96PfuxP7+ML552Ol946iPmzJwMM0BvW8ZkZ4+CReXxred/d4piWwKolyUF45iPcEwIyvrV8Nk70xvFP130SHSfDSBgWZIHDhFTE8mLKQaE60u0SoDg9lVFKnzNn3XL3pWjAPUiZQdPUHgNv7OjAP3/5PHx4pBemCax7aQ++NO+svPcgbrt6JnyKiDnTL0gOmOg9rFEnHE/g8Ilw1jsoS9uaMa7B1f+8sqn3muwAY/2818RxyWlIMiN98hzAF9h8wCvitqtm4tcZ7+bcdtVMBLwDBCuhAfSw4jQ3N8/zWDq/iebmHkKN9VJeZNVVS1oxtmFwwVYGZkGROXSH+pYoMoeC73eUZ5fD6n3UYcvpPDHAR8cjWYOv69qa8cy29rx3IG+/eibOmOCmwXaNK+f87uWiuDjHdl9xj8ApuEi+3P4bC5gWct6PbsGNl0/HI//9vn3XO61lSh08Ep+1DZ8iwKOIuPuW89EbUTEmfXMoNdb59//6n7zBcillYGy95BgQGLCGfXA9GnAPUu7UTp9sHoef/zE7I/3u2V34/1bMxd0rzkcwoiLgzbkrOYwzBilR6lGxnrCGOq/U76NiwVgib17AtVv2Yurk+v4H3KUwGXzQ0YOZU8fBClqo90l4b98xjK1zAU71mgnMPKseP1p5AUUGrXGZEc9DUQ2CQBdxyOnAuc0N+MGK89EdiqPeKw86smkxYnEDv3zyvbyOzPf+8dMFYzCQIeLwGLHT4OuJLXux8PNNeDEV7BJITr9WyXxDhs5gpgOttFjUwBNb9mS9c/vElj2448vnQfHQoHu0CUZ0+8cXIP1+9G78aNUF9qPnaQUD3lrJ1w3dfg6n+SV7WTCm42h37NTLQAKYldG21nlluF08vBI37PurNOAepLxHcQrM9dYTVDH9dH/f3KvDPEOQQSjxUbF4gfc742V8v9Pn4jFprB8/SM0rWFSAMooMOmKlH42iu9xDhAF2HRi6x0dVzXCsU9KBakiVFGgb3C7e8XqBAfZ91IsHn9iOu74yB+P8NNgeKco5v3u5ROI6jnRGs+5appeP1qk6R7NCPwpFYvrgA95m1IELv9BUnjKQAMb5pOz4QjXQX63iZHu1zefi8fVrzrXfkWMZJu99OUngMDGg0KN2I1yhR8WCUeee0pjUOyiZJIHDmALByQYl4/2cH9wyF/fd/pmqvitGqsejCPj987vx+It76P3uIVJqnXCqhqROISUrlA/cDu/Xp+O7pAMJnd5IfYeRJB1AL33dswYtVVIoHxaa/YSMbOkfhTKlB8SD7U9m1oHp2RiGUxkYSnSHe7AsoN4j2o/iSAKb9772aJ/yaLQo9VGxIZsei96vJinBiJa3jO56V85QPz5KU+4NT4Xygaon8q7X1685F/VeEZ+ZMS553Wrgjg0pQRnndy8XVUvkRY2+rq0Zqp4AQHe4R5uB2pHB9Ccz68CTPXE898YHWPj5Jpw10YfT6l1VLwNDiQbcp8CjiFnh78fUyVh84dk4e5IfY3zSqMpIo1nJj4rR9FijWnqgW427zZn7/v3zuwEAyy+ZRoPuMhvyx0epThmWCuUDjyxgQoNS+HrRdRuZhlmgQY8iYsubB7Pe4d7y5kGcN3V2dRNGqqMC7UhuHXiyJ45Nr7X3BUobRXUdPVJ+CnIfEQpFdJw+1oOzTvOMuow0mg3qUbFUwzt5jJvyyijCsgwef3EP/mPDDjz9avuQ7jsdwTy973RwNZZlCv5HBqcqj49SnTLs9JsP6HqRKvO5eCz/4nRseq0d617ai02vtWP5F6ePmkd8iYMy10vD8VWKaqE73KeC7ioQgPIBKUp6EJsZRXyo5e47PQh3uwREYnrWdGIAcOMXW2CaFt0BL9UwfHyUVAHlAzKcUd+FVBrlMRsNuE8VvSdLAMoHJEvu3eH0I9zuKk3/0p9gRINlAaFo9nRi6cE40DfwHkh6nczjH7WD9WH2+CipEsoHZDijvgupNMpjAGjAPSj0qGXpRuI5G4nHlDaSj60/gz3uzO+xLIMN2w4gHNUxtsGFWNyAS+bAMMl1/J5k5GiPIoBlGSgyb38/d9lgP8tc5pEFmIY5qG1F4wkoMo+N2z5AKKplHU8sbmQts2BhyeebAADrX2tHOKrDowhY8vkmWFZxLSzPD4+3nAb7I0Gh/DPSy9NIPr5y1Amnuq1qo3SXPw3DIW21YCSdp6E+lpF07qqlnOeQsYrtCRFCCCGEEEIIIaRow+N2AiGEEEIIIYQQMsLQgJsQQgghhBBCCKkAGnATQgghhBBCCCEVQANuQgghhBBCCCGkAmjATQghhBBCCCGEVAANuAkhhBBCCCGEkAqgATchhBBCCCGEEFIBNOAmhBBCCCGEEEIqgAbchBBCCCGEEEJIBdCAmxBCCCGEEEIIqQAacBNCCCGEEEIIIRXAVzsBtaizMwzTtKqdjJpRX6+guzta7WSUpLHRO+A6IzUf1OL1KodCx13reaFWrudwT+dg88FwP65TNZKPr5x1Qq2eJ0p3YVQnVFYtnafh1k+opXM3XA3mHPaXD0b1He5f/vKXmDZtGvbu3VvtpIxoPM9VOwmkBKP1eo3U466V46qVdJZqpB5X2kg+vnIeW62eJ0p3+Q3ntA0ndJ4Gj87dqSv3ORy1A+73338f27dvx8SJE4d+5wwQjOk4dCKCYDwBMAN8llp24FgYR3riCGtG9neK2S4ZfVigM6xhb0cQnRFt4NKeyj879p+oXP4pNU0jXbFltp96oezlna4RIcNHf+WcA46HVOz+uBfHQypOhuPU9pPSZOShE2EVGA7jtFQb9MaOjtHXBlE/vqgx0oDjoXLus0xG5SPlmqbhhz/8IX7605/ixhtvHNqdM8CuQ714cN12qLoBSeDwjWtnYfpkP4D8z+5cdh60hJm1bGlbMyY1etA0wQtYRWx3eD7pSiqJBf7e3oXV63fY+WHVklac29QAmA7rD0X+KTVNI12x59xhPad6oSzXi64RIcNHf3UEC2zf14WHNvSV1VsXt+JvOzvw+U+eTm0/GRiXn4dWLm7FrKkNgFGlNI3mNoj68SWPkRzHQ2XaZ6DBU77jwuj63cj2wAMP4Etf+hImTZo05PsORnX7ogKAqht4cN12BKO642ftHcG8ZWu37EV7RxDBqF7Udsno0xnU7AYLSOaH1et3oDOoOa4/FPmn1DSNdMWe82LrhXJcL7pGhAwf/dURx3tUe6CU/uw3G3bgss+eRW0/KYpTHnpoww4c71GrlqbR3AZRP770MZLTeKhc+zxyMnLqB5Rh1N3hfvfdd7Fz507ceeedg95GIDD4Xz2O7j9hX9Q0VTcQ1Q3AQt5npmU5rm9aFqK6gabJDQNuN71ONRUTUKLWnEo+qLR9Rzsc80N3WEXLmYG89Yci/5SapmoYbD4dTF4o9pw7rVeoXih0vYo9rmpfo1qvJwrlg1o/roGM5OMrZ51Q6rb6qyN6QprjZ8GoVva6u1av73BI93CuE3Z/HHSu74MqzjlrTFXSVO02qJIG6ieUux82HPJYqUodIzmNh8q1z65QDK1NjYPappNRN+B+66230N7ejosuuggAcPToUdx88834yU9+gs997nNFbeNUIg0qEg9J4LIuriRwUAQOYJi8z1iHZZLAgWUYKAKHEydCA243vU61NDZ6q56GUg23iJOlavBKjvmh3iM5XouhyD+lpmmoFcqnlcoLxZ5zp/UK1QtO16uU8lfNazTc64nB5oPhflyl4nkWL71zGEc7I6m/OYzxy7h49iQkEiPrmc9y1gmDyQf91RGc37ms+hSxrHV3rebfoUh3rdcJgQJ5qN5XvTZ5uPcTCilHP6Gc/bDhksdKVeoYyWk8VK59NnhdgzrvhYy6R8pvvfVW/OUvf8HWrVuxdetWnHbaaXjkkUeKHmyfKp+LxzeunQVJSEamSL8r4FMEx8+aJvjyli1ta0bTBB98ilDUdsnoE/CKWLWkNSs/rFrSioBPdFx/KPJPqWka6Yo958XWC+W4XnSNSDGOdkZw6GgIh46G8NGxsD34JuXVXx3R6JewcnF2Wb11cSuee/0Atf2kKE55aOXiVoytk6qWptHcBlE/vvQxktN4qFz7HD/GfeoHlIGxLGt43qIbIvPnz8fq1avR3Nxc9HdO+c4mk3xnoCeioc4tJjOK1c9nSC47GVQhSzx8Lh4emc8PENDfdquoFn9pq/U73ACSkT6DGjqDcQR8crLB6u8GVCr/RHUDisBVJv+UmqYhNNR3uAEUX2b7qRcG+m7J5a9K12i41xO1fjerXHiexeMv7sGho8ljEgQe4wMuLL9kGt3hzlCOO9wA+q8juOR7uF3BOOq9MjjOgsiWt+6u1fxLd7iLlJGHGnxycrBdrYBpaak2qDusot4jDat+QiFl6yeUqR8/rPJYqYoYIw04HirDPhvHlH4O+8sHo+6R8lxbt24d+p1agM8lwOcS7L8H+ixrWe53itkuGX1MIOAREfCI9t/9SuWfpskNyUqmEvmn1DSNdMWW2WLqhXJdL7pGhAwf/dURBjDWK2GsV8r7DiFFyc1D1R5sA3Yb1HJmINkXGU1tEPXjSxsj5X5eiX2Wyah7pJwQQgghhBBCCBkKNOAmhBBCCCGEEEIqgAbchBBCCCGEEEJIBdCAmxBCCCGEEEIIqQAacBNCCCGEEEIIIRVAA25CCCGEEEIIIaQCaMBNCCGEEEIIIYRUAA24CSGEEEIIIYSQCqABNyGEEEIIIYQQUgE04CaEEEIIIYQQQiqABtyEEEIIIYQQQkgF0ICbEEIIIYQQQgipABpwE0IIIYQQQgghFUADbkIIIYQQQgghpAJowE0IIYQQQgghhFQADbgJIYQQQgghhJAKoAE3IYQQQgghhBBSATTgJoQQQgghhBBCKoAG3IQQQgghhBBCSAXU5ID7T3/6E9rb2wEABw4cwPXXX48bbrjBXkYIIYQQQgghhFQbX+0EDMYvfvELrF27FgBw//33Y+bMmVAUBffccw9+//vfD/j922+/HYcPHwbLslAUBd///vcxffr08iaSAYJRHSeDKlwSD0XmEdcSCEd1uBUBEs8hFNVQ55FgAQhFNcQ1A163AEngEY7piMUT8HtFxNUEWIaFy8XBSFiIxhPwKAJ0wwQswDQtxNQE3LIAQWDAsSwSpoVEwkRvWEODTwLLWoDFoiesQhY5uF0CYqqBcExDnVeCYRgQeR4MA2gJC8GIBq9bAM8y6A6p8HskaHoCksjDMC2EozrqPRIMmNB1CyxrgWc5dIdU1HkkyCKH3nDy3/qJMI6ciKDOK8HnSma5YFRHT1hDg1+Gqhvo7I0j4JcR8IkIhpOf5a4fjumQRB6RuI46T+oza/DXpieiwS0LULUEPIo4+O0NFRboDGroDKbOlVcEzH7WZ/rOs30u+zs+ATjWqWLX4V4E/DLGNkiAPkCaOOB4j4quVJoa/RJgDLyP9PoD7qPU9U9hHyUdd7kw2WXBNMy+6+XhcbxbRVdQRb1XgkfhoWomdMOEYRjg0uXNK0ISOVgW0B2MQ5GEZHnkOETVBPYdDaHOI4LjGJgmEAxrcLsEyBIHPWHCME3AYuxtyRKPcCRZH3mU5HqalqxLFJmHKLBwiTw8ModgREc4roPnOQQjGhSJh88t2p+dDKpQXDwEjkVXMI4GXxH5ttjzo/AIRkrI34TUAgYIxxMIxRIIx3W4JR6yxCFhWmAZBoZhoTeSLIsuiYOqJcCxHMIxHW6XgLiWgEvkwDAMuoMq6n0SRIHD0c4o6rwiFBePeNxAV1CF3yNCElkwYBCKanBJPCSRQyiiI6om4JEF6ABisQHKWSrNwVgCsXgyHR6XAI/EUZnMlGrD9x3tQINXKq0urJTBtLFDlKaqtMkDpKni56nYfluh9VLLj+4/kWyPB2oX7T5csv13iTwiUa34PnE5+6W5n2W08Xntf5Hfy1o3ldZQTIMiCwhFNfg9EgAgpiZgmhZkMTn+8ioCjgTjCEd1jPHLYBgGFiyomonuYByBOhk+Dw/LBFxccfVcTQ64u7q6MGbMGKiqinfeeQcPPvggeJ7H+eefX9T377vvPni9XgDASy+9hLvuugsbNmwoXwIZYNehXjy4bjtU3cD4gIKr5k/Fwxt3QtUNSAKHpW3NePaNDxCK6FixcAaefmUfjnRGk+v+w1Q8vKlv3WULpuGvOzpwyflnYN1Le7HoC0041pm8unHNwNote+11//HKc1DvFRGM6FnbWLm4FU++vBdHOqOQBC5rn5LAYdWSVigSi3DMwG827oTXLeDyz5yZte3r2pqx5c2DuGTuFDvtty6agb+9fwSf+sR4/DZjfysWzsALb36IQ0fDWcd657LzoCVMPLhuu+M+ctOZXv/x53ehbe4UPJGx7jeunYXpk/2lNeg51ybzuJZ/cXrp2xsqLPD39i6sXr/DTveqJa04t6nBuXJzOM5+z5cAbN/ThYc27Mi6FrOmNRRuVDhg+8bNvvoAACAASURBVD6H70xtcB50l7qPwaRpKPZRLhnXKLcsjA8ouOai5qx0rVrSClFg8adtBzB/zpTs8rZoBlgGWPPiHggci+u/2IIT3bGssnXbklbwPINgRMcz/30A11zUDI+LQzCayKqbVi5uxZY3P8Sugz32fte91Fcml7Y1w6sIcMk8Ht+8O69cLlvQgjF1Eh584u+O9V2/+bbI8+OUrkHVB4QMJwzQ3hFCR2cUa17YnVWmTh+roDuk4Tcbd2Ytb/CJ+OWT79nLbrp8OvSElfX9dHscjup59cqKhTPgVXiE4wk89fI+XPUPU7P7Izl9l7xylkrz4RPhrPK5bEELJgQUNE3wUpkESm/Dh0I12z9KU75i+22F1pvix66DJfT7OGD7/i48tD67PmBY4FdPvzdwn7ic/VLkj5uuvbgZq9fvcGz/C32vYN/gDD/+vr8L617aiy9ecAbWvLAHXreAqy48G3HNwItvHszryyxta8b7B05iwflTwLEMesJ6Xh44Y6IbwZCGcXWuAeu5mnykvKGhAQcPHsRrr72G1tZWiKIIVVVhWcXV6unBNgCEw2EwDFPW9AWjun3xAWDerEl2gwUAqp4cJM+fPRmqbuDhTTsxb9akvnU3Za+75oU9uGJeE1av34F5syahO6ShN6KjN6LbGTC9bndIRcJA3jYe2rDD3kfuPlXdwOr1OyBLot2Yz589OW/bT2zZi3mzJmWl/Tcbd+Kyz55ld/4zt7/oC2fnHWt7R9A+N077yE1nev15sybZBSH92YPrtiMYLa22y702mcc1mO0Nlc6gZldqQN816wxqjus7HWd/x3esU7UrkvT6D23YgWOdasE0He9x/s7xHufvlLqPwaRpKPZRLpnXKLcszJs1KS9dq9fvwEfHIrhiXlN+edu4E7IoYP7syZg3axIOH4/kla1fr98BryIhGNHt7btdUl7d9NCGHbhiXlPWfjPL5Note3GyV8VHxyKO5XLNC7vx0bFIwfquv3xb7PlxStdwLr+EFCMY1dHeEbQHy0BfmeI4zm6fM5d/fCKatSwY0fO+n26PneqVhzfthGEycImC3f/I6o/k7DO3nKXTnFs+17ywG+0dQSqTKaW24UOhmu0fpSlfsf22Qut1BrWS+n3He1R7sJ1e/+FNO+26YKA2tZz9UqdxU3rbTu1/oe8V6hsc71Ht5Wte2GNvNz2OcurLrN2yF1fOa4KeADiOc8wDqgqYFlNUPVeTd7hvv/12LFmyBBzH4ec//zkA4I033kBLS0vR2/jud7+L119/HZZl4be//W1J+w8EPP1+fnT/CfuiAAAYZP+N1N9M/r8LrRvXDHs9M+OHhdx1TSv5eHl/+yv0dzCq9X2vnzTnpj0Y0QqmOXdfpmUVtY/M48nab866Ud1A0+QGFCvv2uQcVynbGygflNO+ox2O6e4Oq2g5M5C3fqHjLHR8uw73Om8/FMeMpjGOadr9cdD5O0EV55yV/51S9zGYNA3FPpwMJi9kXaPc/F0gv5uWhbhqOH4W0xLO5SxjnWBUS9Yfqe33hNV+y27679y6wq6D+kln7rLMOqNQvm1s7PsxtN/zUyBdpdYH5VYoH2Qe10jA8xwEgc/6u77eXcUUVc5gr51TXhhoW0f3n+i37BZT1gp9P64VbkdjWiL5R077Xky721+aTcuqapkcDuUunQ9KbcOHQrnaP0pTcUoeO8C5XSu0XleB9rxQGSzUh0v3JQZqU8vZL4XVTx+on3oo73tw7ht0BdX8sQQz8BgjGNWgaclX7xzPeTCe3BQrDVjP1dyA27IszJkzB6+++io4joPL5QIAzJo1Cz/72c+K3s6Pf/xjAMDGjRtx//334+GHHy76u52dYZhm4bvpisRDErisi+P0d/rxg8x/F1pXFrnkegDYjDvyueuyDAOX7Lz/3H3k/u1zi1nfK7SN3LTnfi8zzbn7YhmmqH1kHk/6uJ3WVQQOJ06EUKxC1yZ9XOntFdNQD5QPyqnBKzmmu94jOR5/oeMsdL4Cftl5+1654PkN+AukyeecplL3Mbg0lX8flcoLudeomDojWb45x89cYt87XLnlLL2OTxHBMgxM04IkcKjzOF/DdNlN/51bV6TrINOyCqYzU26d4ZRvGxu9WcuKOT+56Sq1PijFYPNB7nHVOp5nkUgY0PXkIE0QeCQSBrq7I0gkqv1CankVunaDyQvF5ANF4vstu8WUtULfz2yPHesOIK99L7R+ZjnrL80sw1S0TPZnKMpdKfmg1DZ8KAymjaU0OaepHP2EYvtthdZrKNCeF+73Oa+f7ksM1KaWs1+KAnVIf+1/f9/LrcMCPslxLDHQGMPnFhFhE3C7CpxznwzTtIoaO9TcI+UMw+DKK6+Eoij2YBsAAoEAGhsbS97eokWL8Oabb6K7u7tsafS5eHzj2ln2Rdz27mGsWDQj66IubWvG1ncO2e9MbNt+uG/dhdnrLlswDX/a1o5VS1qx7d3DqPeK8LsF+N0ClrY1Z61b75XAs8jbxsrFrfY+cvcpCcl3HuJxDbem0rn17UN5276urRnbth/OSvuti2bgudcP4Jac/a1YOAMbX92fd6xNE3z2uXHaR2460+tve/cwrstZ9xvXzoJPEU7p2mQe12C2N1QCXhGrlrRmpXvVklYEfKLj+k7H2d/xjW2QsHJxa961GBeQCqap0e/8nbF1zt8pdR+DSdNQ7KNcMq9RblnY9u7hvHStWtKK08e58cxr7fnlbdEMxDUdW985hG3vHsakse68snXbklaEoip8bgHbtie3H4mpeXXTysWt+NO29qz9ZpbJpW3NGOOXcPo4t2O5XLagBaePcxes7/rLt8WeH6d0DefyS0gxfC4eTRN8WLagJa9MGYZht8+Zyyc2KlnLfG4h7/vp9tipXlmxcAY41kJM07Ft++H8/kjOPnPLWTrNueVz2YIWNE3wUZlMKbUNHwrVbP8oTfmK7bcVWi/gE0vq9zX6Jaxckl8fpOuCgdrUcvZLncZN6W07tf+Fvleob9BYJ9ljqGULptnbTY+jnPoyS9ua8cxr7RA4wEgYjnlAkgCWsYqq5xir2Befh5Evf/nL+NGPfoSmpqaSvxuJRBAMBjF+/HgAwNatW3H33XfjtddeK/pd7qLuZmVEKZclHu50lPJYAu7UHehklHIRFhiEojriWgJeRYAkZkQp94iIa8VFKVdSUcp5loVhWtBTUcrrvRI4ri9KuZSKUh5XDYRjOuo8IgzTgMDzYFNRykMRDR63AI5h0BtW4XNL0BIJSAIPw7IQierweySYA0Upd4twuUQcORlGnVu0M2U6SniDV4KaMJNRyn0yAv5UlPKIlrd+OK5DElJRytOflSNKuZ6Mxpq5veF2hxtAdjRIXzKie1HRIDPPZRFRyrtDcdR75WRjUkKU8gafnBxsG/2sX+o+BpOmMu+jonmByS4Lpmn1XS+vYEcpr/NI8Lrzo5T3hFX43RJEMfnbaXdQhSLzYJm+KOVxzciLUq7IAmSZQyJhwrBMwGTQE0pGLZZlHuFIsj7ypKKZa3pOlHKBg8fF50Upd0k8/Ipgf3YylR6BZ9EVVJOReQvkW8c7Uv2dH7eQjERabP4+RXSHO4nnWTz+4h4cOpo8JkHgMT7gwvJLptEd7gyDucMNICtKeSSuwyXxkEUOhtUXpTwY0eCSebhEDqqeEaVcFhDXE5DF5N3ldHssiako5R4RipKMUt4dVOHziJAEFmAYhNNRygUOoahuz3wSqJMRjw1QzjKjlKvJPo4n9V+1AqYNtzvcAOw2vDusot5TuC4cUoNpYylNlesnFNtvK7ReanlUN6AI3MDtYmaUco8Il8QjEtPy+sQFlbNfmvtZRhuf1/4X+b2sde0o5ToUmUcoqsPvSf44kBul3KMIMK3kjEwBvww2I0p5TyjZ3/V586OU95cPanLA/fOf/xzPPPMMFi9ejNNOOy1roHz11Vf3+92TJ0/i9ttvRywWA8uy8Pv9+Na3voVzzjmn6P0P+UCrxtVih3NYDriHSC1er3IoZ+d6OKmV6znc00kD7iQacFd4wD3MULr738dARkOdUCm1dJ6GWz+hls7dcDWYc9hfPqi5d7gB4H/+538wceJE/O1vf8tazjDMgAPuMWPGYN26dZVMHiGEEEIIIYQQUpsD7j/84Q/VTgIhhBBCCCGEENKvmhxwZ7IsK2v+bZatuThwhBBCCCGEEEJGoJoccB87dgw//OEP8fbbbyMYDGZ9tmvXriqlihBCCCGEEEII6VOTt4PvvvtuCIKA3/3ud1AUBRs2bMD8+fNxzz33VDtphBBCCCGEEEIIgBq9w/3uu+/ilVdegaIoYBgGLS0t+PGPf4ylS5fi2muvrXbyCCGEEEIIIYSQ2rzDzbIseD75W4HP50NXVxcURcGxY8eqnDJCCCGEEEIIISSpJu9wn3vuuXj11VfR1taGz33uc/g//+f/QJZlzJgxo9pJI4QQQgghhBBCANTogPv++++HaZoAgLvuuguPPvooIpEIbrrppiqnjBBCCCGEEEIISarJAbfP57P/Lcsybr/99iqmhhBCCCGEEEIIyVdT73CvX78e//zP/+z42R133IFNmzYNcYoIIYQQQgghhBBnNTXgXrt2LVasWOH42a233oo1a9YMcYoIIYQQQgghhBBnNTXgPnjwID7xiU84ftbS0oIPP/xwaBNECCGEEEIIIYQUUFMDbtM00dPT4/hZT0+PHUiNEEIIIYQQQgiptpoacH/yk5/E008/7fjZ+vXrMWvWrCFOESGEEEIIIYQQ4qymopR//etfx0033YQjR47gkksuQWNjI06cOIEXX3wR69evx2OPPVbtJBJCCCGEEEIIIQBqbMA9c+ZMPProo/i3f/s3rFmzBqZpgmVZzJo1C4888ghaW1urnURCCCGEEEIIIQRAjQ24geRj5WvWrEE8Hkdvby/8fj9kWa52sgghhBBCCCGEkCw19Q53po8//hhPPfUU7r//fgBAe3s7du/eXeVUEUIIIYQQQgghSTU54N68eTOuv/56HDt2DBs3bgQARKNR3HvvvVVOGSGEEEIIIYQQklRzj5QDwIMPPojf/e53aGlpwebNmwEk5+Eu5g53d3c3vvnNb+LQoUMQRRFTpkzBD3/4QzQ0NFQ62YQQQgghhBBCRpGaHHB3dXVh2rRpAACGYez/p//dH4ZhcMstt2Du3LkAgPvuuw///u//jn/913899YQxQDieQDCWQExNwOcWIQgMVM1EMKLB5xbBMsn5xBmGRW9EQ4NPgmUC3WEVLpGDS+KRMAxwLIfusApZ5CCLHFgWME2gN6zBq4hQ9QREgQPAIBzVUOeRoJsmLMMEx3HoDsZR75fhknmEI2pye6E4An4ZHMugJ6RBcQmIxDR43SIknkMkqsGjJNPYFVQRqJcRjxvoDCa/F/CKgAUEozp6whrqvBJ8Lh6wTv3UkSIIwLFOFV2p6zG2QQL08q+/63BvcesPYZqKXn8w32GBzqCGfUc70OCVkvncHGAfg8UA0YSBUCQBMCZgsegOxVHvk2EkDEgSD8OwkuXLIwJIlsU6jwjFxSOuGugJa/C6BAgCi2hchyTwCEZU+DwSVC0BjmXBMIAocBAEFuGjPYhGE8nteEVIAodgRAPPsZBEDtG4Dp9HhJGwoOkmInEdUqoucskcwpGEXZ8YhgGe48BzgGUyCEY1KLIAVUtA4Dl4FQEeiavdOoGh+o2UWUa92uCX4fPy0OMWWAaIJxIwDAaRmIY6nwxdT/YVFJmHS+IQ1w3AtMDzHCLxBORUefV7JBimBSPdVwipqPNKkAQWnb1xeBQBDMOgN7Vc1RLwKCIShonO3mQ9IArJNl8UeERiOjyKAF1PQJaErLb+6P4TUCS+uLIwEstPOY+JB451ZbSx9RKQKGtqSzeYNnaI0lRSX2SI0jRk5ymV78IxHZLIIxLXUeeR4HPz6OzV0BmMo94rwTRNuCQBPoVHMKIjpicAsNj9cS8afDI8Co+ekI64msCYOhkczyCUatMDfhleN4/uXhWSyMOABcZKjjPcLh4cyyIU1SCLPBgW8CgCYjHDPgeiwOFYVxT1Xgl6wgDLJvskgToXVNXIOlfBoI64kQDLcIjFE1B1Ax5FgCxy0BMW4qoOUeDRG1Hh90jQ9QQEnkdvWIXfK4FlgVBEh8clQNcNcByLcEyHWxYgSSxgMVATBkwTiMV1uCQeHMdA5DlwHINQVEcsnoDfK8KyTPAsh5hqIGGY8CoCYmoyTcljMRGK6jjcHYPPIyAeN9ATVqHIAhSJA8ex4HkGqmqgwS8WnQ9qcsB9zjnnYNOmTVi0aJG97Nlnn8XMmTMH/G5dXZ092AaAWbNm4Y9//OOpJ4oB2jtCOHwijLVb9kLVDYwPKLjmomY8tGEHVN2AJHC4bUkrLACr1++A1y1g0eeb8IfNu+3Pv3L5dLhkAb9++r2sZbLEY/X6vu0sWzANIs/id8/uspfdcGkLfG4Rv3qq77srF7dibJ2EHzzy14zvtkDgGTz2+K6s9SxY+NXT7+GSuVPw/oGTOH/GBDy8aae9zqolraj3SPjJ79+2l33j2lmYPtlf+43qcCcA2/d0ZeWllYtbMWtag3Nhr/T6IyVNLPD39q6ssrVqSSvObWoo/6CbATo6ozjeE8ebOzvw6RkT8JuMdH7t6pkIx8J47Nld8LoFXP6ZM+26JH0cT768F0c6o3a9oCVMrHlhj73OdW3N2PLmQVwydwpkkcNpAQU9YS3r+FYsnAGGBZ56eR8umTsFisyjqzeOaDyRVRctW9CCgF/C/1v3d3vZrYtb8bedHZg7Y0JWWjL3O6nRg6YJ3tqrExhg16FePLhuO9VvpDwK1EcuETAsBppu4cmX9+Lqi6aiN6zhNxv72tulbc0Y45egG8CTL+9F29wpeCKjPrjp8unwKgJ++eR7WWX7rzs7cM5ZY/LqjmBEy1s3XQ+0zZ2CLW8exJJ/mIqtb+3BFfPOAiymtLIwEstPOY+JB7bvdWibmhuqN+geTBtLaap8mlL57vHnd+WV+9x+wC0LZ+Dt/z2C81sn4MW/foj5c6bgt6l+e+4YxGlMsnJxK3wKh+PdMTAMY49NrvxcE9a8sDurPmqsd+G/nt9t73vFwhl44c0PEY7qWPIPU/HbTTsx+TQPFsw9I2vssHJxKw4e6cHUyQ040R3Lq5ve3NmBT31ivJ3u9HGtf2Wfva+lbc149o0PIHCsva/MbQAWQtFEXpplkYNHEbDmhT32tlYtaUVcTeC/tx3AlfPOwsEjBtZu2VtUv2tpWzPGNbjgkngIPINdH0Qx/cy6ovJBTb7D/d3vfhe/+MUvsHz5ckSjUdx888144IEH8J3vfKek7ZimiT/+8Y+YP3/+KacpGNXR3hG0LxQAzJs1yc7YAKDqBkShb+A8f/Zku4Ob/rw3otuD7cxl6e+kl615YQ96I3rWsj9s3o2Ok9GsZQ9t2AGG5XK+uxvBnO8+tGEHXKKAebMmYe2WvbhyXpNdYNLrrF6/A1HVyFr24LrtCEar/dPjyHesU83LSw9t2IFjnWpV1h8paeoManlla/X6HegMagX3MVjBqA7DAh7asAOXffYse7Cd3m/HySgeS/2ANn/25Ky6JH0c82ZNsv/ujej2YDu97Ikte+0y3BvRwbJs3vE9vGlnVlnvDmmQRSGvLlrzwm4cPh7JWvabVNpz05K53/aOYE3WCcGobnesAarfyKkrVB/V+dzwKpJdjlyiYA+20+ut3bIXHMfb6zyRUx889uwufHwimle2r5zX5Fh3OK2brgfS5fe3m3biinlN+OhYpOSyMBLLTzmP6VhXgbapq3B7VmmDaWMpTZVPUzrfOZX73Lb3t5t24rLPnoXV63fginlN9kAUyB+DOI1JHtqwAy5ZgiwKWWOT9MA1vd7aLXtx+Hgka98Pb9qJRV842647VN3Aoi+cnTd2eGjDDsydMRGHj0cc66bLPntWVrrTx5W5r7Vb9mL+7MlZ+8rchiwKjmnujej4+EQ0a1ur1+9Ab0THvFmTEIzodpqK6Xet3bIXh45FwLIsOI7HR8ciReeDmrzD3dTUhM2bN+OVV17BhRdeiPHjx+PCCy+E2+0uaTv/8i//AkVRsHz58pK+Fwh48pYd3X8CpmXZFwoAwCD7b8B+bKHQ53nbKLBM1Q2YllXUsp6wWtR6MS1hpykY0Rz3GdMSecuiuoGmyf2/A9/Y6O3381rklA8qZdfhXsfr0R2KY0bTmCFff6Skad/RDuf1wypazgw47sNJMXnh6P4TdrlyKl9Z5dyhblB1A2AKrJ+zTrqM91uOM9bLqpcy1nOqJ4JRLS8tufstpk5wUs164uj+E47noJRjKZQPRlr9x/McBIHP+ru+vrT2t1YM9toFAh68f6jHMU91BeMwTcsuN4XKX0xLZJWt3M/7LZ9FrJtZD6T/H9eMgnVLf2WhHOWn3E613JWzThhMe1ZplKahTVOxfUY73xXRD8gs8/GMG2IA8r9fYHs9YTX7u/3VNzn7jmvZ6cxLA/rOVaF6pVCd5dTHsP+ds+6AfRjGYTlTer/L7ltFNbAMA9Oyis4HNTngBgCXy4XLLrts0N+/7777cPDgQaxevRosW9qN/s7OMEwzu/FSJB4sw0ASuKwLlvu3S+azluV+7rSNQttlc95ZL7SsziMVtZ5LTL6bJAkcfG7RcZ8ukc/7niJwOHEi5HCmkhobvf1+PhwV01A75YNKCfhlx+tR75Udz22l1x8paWrwSs7reyR7/XLlBUXioXuS5crnyS9fueXcKV2ZjzEWqhfSZZhlGMf95JZ1lmHy6qX0ek71hE8R89KSu9+B6gQn1a4nFMn5HKSPZbD5oNrHVW48zyKRMKDryR9fBYFHImGguzuCRKJSwQ+qo9C1KzYvFKqPGnwytETykUUgv1+QXs8l8vY6pZbPYtbNrAfS/5dFrmDd0l+5Hqj8DLVylLty1gmDac8qjdJUvjSVs8+Yznfp/fTXD8gs8y6ZG3AM4vR3nVdCL6MN2P9gGSYr/en6InP9Qmlo8Mn46FjY8bNCdZZTHwOMc9oG6sPkpjs9WC6132X3rZRkHIyPjoWLzgc1+Uj5smXLcP311+f999WvfhXf+c53sHXr1n6//7Of/Qw7d+7Er371K4iiWJY0+Vw8mib4sLSt2S4o2949jJWLW7MKjqYlsGpJctnWtw/hhktbsj73uwXcdtXMvGXp76SXLVswDX63kLXshktbMGGMkrVs5eJWWKaR890W+HK+u3JxK2Kajm3bD2NpWzOe2daOFQtnZK2zakkrFInLWvaNa2fBpwhlOYeksLENUl5eWrm4FeMCUlXWHylpCnjFvLK1akkrAr7y1AuZfC4eHICVi1vx3F8O4NacdE4Yo+Cmy6fbdUNmXZI+jm3bD9t/+90Cli2YlrXOdW3Ndhn2uwWYhpl3fCsWzsgq6/VeEXFVz6uLli1owaSx7qxlty5uxXOvH8hLS+Z+myb4arJO8Ll4fOPaWVS/kbIpVB/1BCMIRdRkOXr3MGKqjlsXZbe3S9uaYRgJe53rcuqDmy6fjomNSl7ZfmZbu2Pd4bRuuh5Il99bFs7An7a14/Rx7pLLwkgsP+U8prH1BdqmhsLtWaUNpo2lNFU+Tel851Tuc9veWxbOwHOvH8CqJa145rV23JLRb88dgziNSVYubkUspiKu6lljk2ULWvLqo0lj3Vn7XrFwBja+uh/b3j1s73fDn/fnjR1WLm7FX3d8jElj3Y5103OvH8hKd/q4Mve1tK0ZW985lLWvzG3EVd0xzX63gImNSta2Vi1phd8tYNu7h+FzC3aaiul3LW1rxuRxbpimCcNI4PRx7qLzAWNZVs2Fs/jFL36BjRs3YtGiRRg/fjyOHDmCTZs24YorroBlWXjqqadw8803Y8WKFXnf3bdvH6644gqcccYZkGUZADBp0iT86le/Knr/BX+lyohSHlcT8GZEKQ9FktHFk9HG+6KU13slwIIdkdwl8TBMAxzDoSesQhI5SCIHjmVgGMlHRAtFKU+YJsx0lPJQHPVeGS5XZpRyFQ0+CTyXGaVch1dJDr4jMQ0eWQDLMugKqQj4ZcTVVJRyn5wchKSjlEc01LnFZMMzQA6qxTs8w+0ONwA7Smb62o4LFBfhu2Lrj5Q0paKUd4dV1HukZD7PuFFX1rxQKEq5NxkBXBJ5GKaF3rAGn0cEA6A7pMLnFqHIPFTNSEUQFSCmopSLAo9QahYEVU+AZVmwLCDyySjlHMfYUcr9HhGSyCGUilIuihxicR1etwjTsKAlTERifVHKZZlDJJLoS6OZjIosCIBlZEQp1xPgOQ4+Fw+PPLgovsOinmAK1290hzuJ51k8/uIeHDqaPCZB4DE+4MLyS6bRHe4Mdl7IqY98Ph56zATLMhlRynXU+SQ7SrlL5qHkRCmPxhOpWQUS8HvE/CjlHgmSyKIrGIfb1Rel3O+RoCUScLtEGIaJrt5kPSCm2vx0lHK3S0AiYUAW+ay2PqobUASuqLa+v/Iz1MpW7spZJ6SilNttU8PwiVJeUhtLacpLU9n7jOko5amZSCJxPZn/PIIdpbzOK8GyTLgEHj63kBWlvDsUz49S7pfACSxCkQR60vWRp1CU8uRYIBzVIYtcMkq5S0AsbtjnQBI5HO+Kos4rIZEwwLAsovEEAn4ZqmbYaciLUq4moGoGPC4BksQhkRul3C1BT6SilEdU+NwSOC4ZpdwtC6mZnFiE4zoUSYCcEaXcMoFof1HKPSIsZEcp9ygC4moCqm6izpOczSEU1SFLyfOanh1GSdXLbDpKedxAoE4sOh/U5ID7mmuuwb333oumpiZ7WXt7O7797W/jySefxHvvvYc77rgDL730UkX2P+QDrRpXix3OYTngHiK1eL3KoSyd62GoVq7ncE8nDbiTaMA9uLxQq/mA0t3/PgYyGuqESqml8zTc+gm1dO6Gq8GcwxH3Oa3a/QAAIABJREFUSPmBAwdw+umnZy2bOHEiPvjgAwDAzJkz0dnZWY2kEUIIIYQQQgghAGp0wD1nzhx85zvfwcGDB6GqKg4ePIjvfe97mD17NgBgz549aGxsrHIqCSGEEEIIIYSMZjU54L733nthmiYuv/xyzJo1C5dffjlM08RPfvITAIAgCPjpT39a5VQSQgghhBBCCBnNanJasLq6Ovz85z+HaZro6upCQ0ND1tReZ511VhVTRwghhAwNns//3XykvUtNCCGE1LKaHHCnRaNRxGIxfPzxx/ay3He7CSGEkJGI51m89M5hHO2M2MtOC7hx8exJNOgmhBBChomaHHDv378fd955J3bv3g2GYWBZFpjU5Oa7du2qcuoIIYSQoXG0M2JHDCeEEELI8FOT73Dfc889mDt3Lv72t7/B4/HgrbfewnXXXYd777232kkjhBBCCCGEEEIA1OiAe/fu3bjzzjvh8/lgWRa8Xi+++c1v4oEHHqh20gghhBBCCCGEEAA1OuCWJAmJRAIAUF9fj46ODpimiZ6eniqnjBBCCCGEEEIISarJd7hnz56NzZs3Y8mSJViwYAFWrFgBURRx/vnnVztphBBCCCGEEEIIgBodcGc+On7HHXdg6tSpiEQiWLRoURVTRQghhBBCCCGE9Km5R8oNw8ANN9wATdMAACzLYuHChVi2bBkURaly6gghhBBCCCGEkKSaG3BzHIfDhw/DNGmOUUIIIYQQQgghw1fNDbgB4Gtf+xp+8IMf4OOPP4ZhGDBN0/6PEEIIIYQQQggZDmryHe7vfe97AIBNmzbZyyzLAsMw2LVrV7WSRQghhBBCCCGE2GpywP3yyy9XOwmEEEIIIYQQQki/anLAPXHixGongRBCCCGEEEII6VdNDriB5F3ut956C93d3bAsy15+//33VzFVhBBCCCGEEEJIUk0GTfvlL3+Ju+++G6Zp4vnnn0ddXR3+8pe/wOfzVTtphBBCCCGEEEIIgBodcD/99NN49NFHcdddd0EQBNx1111YvXo1Dh8+POB377vvPsyfPx/Tpk3D3r17hyC1hBBCCCGEEEJGo5p8pDwYDKK5uRkAIAgCdF3HzJkz8dZbbw343Ysuugg33ngjrr/++lNPCAMEozpOBlW4JB51PgGxuIFoPIG4ZsCjCOA4Fr0hFV5FAM+x0HQTUTUBj0uAaVnQEwYUWUBcTX7HLQtgWIDjWESiOtwuHoZpgmNZ6AkDAs+BYxn0hDTIIgdJ5MAwQE9Ig9vFA2AQjesI+GT4XDxgDXgUpBpYoDOooTMYR8AvI+AVgYFmtROAY50qulLfGdsgAXr51991uLe49YciTaky1hPWUOeVaitPp67xyd446rwSPG4e0ZiBuJaAS2JhmgyiagKKxKM3okGReAgCA4BBOKpDkXkkEgYEgUc4qsGjiIik/s/zLGJqAnE1AbdLQFw1oLh4JHQDHMeCYRh0B1XU+yScjGjoDatwywJkmUc8biAa1+F1C+gNa3BJPFwyD1U1EFMTGOOnuoOQsnGoV4NBHb1RDaLAIxzTUOcRATBQ9QR4jkNvWIMi85BFDqYFdPXGUe+TYAGIqwnIYrJOUFwCGIZBJKbB55Ygyxy6euJgWQZumYckcOgNqZBEHpG4jjpPjdWhI02qTdh3tAMNXqm4dr/SSm2ThzBNJfVFKm2o+iK5fUOfiGDYYb+F0sMBx3tU7P44iIBfQqNfAsy+dRsDMoLhBLqCcYypk8EyyTGDKPDoDqkI+GWwDHCyJ446nwTTNMAyHCIxHR5FQCiqQRZ5sCwDhgE4joFL4hGJJqDpCXgUEbphQtUMqJoBr1uAwLHoCqlQRB4NDSJ6exN2fgs08P8/e3ceHlV97w/8fWbmzD6TyUwWgmENBKgEI6C0KmKtEStYBCsgP71aF0DbattHW6+3170q4tPWtS5ttdUiQhG4qBWiVqVaqchikLBFIYQlJJNMZj9zZvn9MTOHWc4kM5M5mZnk83oeH8mc7Xu++/cs34NOa/jv8lINAKDbwUGnUYCVy9Hj5GDUK4EQ0GXnYDIooZAzkMtlCARC8HB+cL4AzCUqBINAR7cH5hI15LIQ/H4GLq8PBq0SLg8Po06ZXOYSxnFqpRweLw+9VglLMLcJXJQD7pEjR+LgwYMYP348xo8fj9dffx1GoxElJSV9bjt9+vTcBIIBmlt78NSaXeD4ACaNMmHOBWPR0e3B6sYD4PgAVKwcS2ZPxL92t+HiaSMQCIbw6j/2CctumDMJMhkDt9eftI1SwSAEYNPWr7Hwklp81nQcM88+A3YXj7+83Syse8uVk7Hug4PgA0HMOW9M3H5uX1iPSSNLqHEtNDJgd0sXnn+zSUir5QvqcFaNOXXjywK79nfhhfWnt1k2vw71E8ziDZHU6w/EMRLKWFHl6YQ0rrJo8f8um4iObg+OnbLjzJpyrHnvAC77zmis2rxfWOeq747HSxv3CH8v+O54/DHyt4qVY1FDLRq3HcHV36vF2vcP4ITVnfQ77w/iz5u+iqsjNn92GE43L2x32XdGY9Vr+0+vM28y1v3zoLC/oolnQgpZijqvo9sJtUqJVZv3w6BjccUFNfis6RguOXcUXtywJ2W5vGHOJPiDIbz2j30w6NikNv/Wq6ZAq5Lh5beacemMUSgzqeHzB/Hi+j3FV4cONtm0+1LLpt0fimEaqL6ISB5ZNr8OjdsOo/mI7fRxR5Wg+YhIeMaUYNeB+LhbvqAOejWLJ1btwHl1lagbVxG3/LrvT4RRp8Szf98u/La4oRZvf/oNWLkMC747Hm/+82BcXyW6jlopBwAY9Up8vKMNF08fAbszfJMhcUyz6V8tYOUyXP292qS03bbnOFqO24X6LLZuE6vnbpk3GUYdC2uPF6/EjIei4Xa4eCybXyfaR1p4Se3pMieSrosbaqFSyrFp69e4fs6ZqD3DkLM0LspHyn/2s5/BZrMBAO688068+uqrWLlyJe6+++4BC4PdzQuJBABzZ9ag7ZRLyBQAwPEBrNq8D1fOGoceFy8MtqPLelw8uh0+0W16XDzsLh4z66vx/JtNuPz8sWg75RYG29F1X9qwBzPrq3HxtJFJ+3lqzS7Y3fm+LEgSWe0+oUIFwmn1/JtNsNp9Kbdpt3JCJRXd5oX1TWi3cnlZfyCOkVjGiilPJ6bxzPpqoX747vRReP7NJsysrxYasOg60cF29O8/xvzN8QG80XgAM+ur8cL68PZiv3c7uKQ64spZ4+K2iz0uxwfw0sY9cfsrlngmpJClqvOmjK8UyuDF00Zi1eZ9mDuzRhhsR9dNLJc9Lh6vRfoRYm3+H9Z9CZ1GhZn11VjdeADHOtzQKNmirEMHm2zafall0+4PxTANVF9ELI+8sL4Jc2fWxB3XaveJhqe9Kznunn+zCS3H7eD4AC45d3TS8lf/sQ/HO91xv61uPICLp40U+iBifYbVjQfQ4+LR4+JxtN2Fy88fi0CQwbFOt+iYJro/sbS9/PyxcfVZqn9Ht3lp4x74A0CPixcNd3S/Yn2k2DInlq6rGw8IY6/fvb4jp2lcdHe4eZ7HrFmzAADbt29HKBTCI488AgA4++yzByQMFosex7s7hEQCAC8XQDAUivsNCCeg1ye+LBiZXV1sm+gyMOG/7W5fyv2DQcr9uPkAakaasz7XXCkvN+Q7CDlnseiz2u7gyeOiadXt5DBxjEV0m+a2HvFtHF5Mrikb8PUH4hgnD3UMeJ7ONp8m5oWkNGYglF+bkxPKbeI6vf4NxG/HiP8eDIWStvH64rfrrR6J/p2PuqPY64lUdYKU56VQyMGyiri/S0t1kh0vX8fMl/7UCV+12kTLWpfde/r3SHn0coE+y2VcHyBFObY5ubi6wOPzJ62Tadku1nJZCOGO1gnZtPtSy6bdH4phylVfpK8+Y6o84vUF4v7ucnIp46i38YQtxXZifYa4cUWKuiZ2O7vLBx8fzGqcYnf74o+R6t8x23h8/rTCnbgstsylStdgKCSsm8t+UFENuFetWoWdO3di5cqVAICbbroJpaWlCIVC8Hq9uPPOO3H11VdLHg6r1QmtKvx+VDSxNGo5ZAwT9xsAqFg51ErxZTKGEdZJ3Ca6LBgMQcXKYdQqU+4/+j6H2DItK0dHh0OSeEhXebkh72HIVDoNtdXqRDCLdzzMBpVoWpXqVSnjyVKiFt/GoBbdRur1B+IYiWUsur5UeTpVPs0mL4ilcbT8miLLAPEy29ffCMWUe5Hfo3VH7LLoo1+9HTdxfwNddxR6PZFtnSDleSkUMvj9AfD86UGV3x9Ad7cLfr80z6kmHpNlFZIfM1/6WyekqvPMxvjfVawcGrW8z3KZ2AcQW9+kV+FIyCHUBRplfDcv07Jd6OUylYEIdyZ1QjbtvtSyafeHYpjS6Yvkos+YKo9E2+/o32a9+HqJ9Ur092ifwJRi/2J9hthxRfS33rYz6pRwef1ZjVOMWmXSMfqq5zRKRepwQ7xPE+0jRctcqnSVMYww9sq0H9RbPiiqR8o3btyIm266SfhbqVTiww8/xEcffYRXXnkFf//73wcsLEaNArcvrBcy46aPW1BdoQs//x+TQZfMnogNHx1CiY7Fdd+fGLesRMei1KAU3aZEx8KoY7F1VxuWL6jDO598jeoKLa6fMylu3VuunIytu9rwwfbWpP3cvrAeRi07YHFC0mMxKLF8QV1cWi1fUAeLUZlymwqzCsvmx2+zbH4dKi2qvKw/EMdILGPFlKcT03jrzjahfvjn50ewfEEdtu5sw5LZE+LWuWXe5Li/b475O/oe0tZdbVg2vw5bd7WJ/l6aMKC/5crJ2PDRIWzdGdku4bjRd6Ji91cs8UxIIUtV5315sF0ogx9sbw2/4/hxC5ZeObnXclmiY3FtpB8h1ubfetUUuDwctu5qw+KGWpxRroXHxxdlHTrYZNPuSy2bdn8ohmmg+iJieWTZ/Dq8tbUl7rgWo1I0PBWlyXG3fEEdaoYboWLleG/b4aTl131/IoaXaeN+W9xQiw++aBX6IGJ9hsUNtSjRsSjRsRhRqcM7n3wNORPCGWVa0TFNdH9iafvOJ1/H1Wep/h3d5pZ5k6GQAyU6VjTc0f2K9ZFiy5xYui5uqBXGXj+/ZmpO05gJhUJFM3XG+eefj08++UT4e/HixVi9ejUAIBQK4fzzz8enn37a6z4efvhhbNmyBZ2dnSgtLYXJZMLbb7+dUTiEq1Qxs9upVQqUJs5SrmEhV4RnKddrwzP1+fxBuL3hmYVDIrOUa9UsZDJALpPB5QnPVBwMBSFjZPAHIrOUMwxsLh9UbHiWchkAmys8qykTnaXcoApnlAJI3WK8Qi7lHW4A8TNRGsMzUaY7S3m3w4tSgzrcAKUxI7hk6w/EMaIzcbp8MOmUkubpXN7hBnB6lnK7FyZ96lnKNSoFHC4f1CoFlCwDhBg4PTw0KgUCgSBYhRxOjw96jRIujw86jRIsK4OHC4RnKVcrInVH+E6jTC6DjGHQ7eBQalBBJmOEWY81KgW8XABujodew8LuisxSrlKA80VmKTfmp+4o9HqiUO9wv7ZlP1pPnt7/yGEGXHvpBEnvcMcek2UVqLJoJD1mvuSkThCp8+JnKedRomfBJMxSronMUh4KAV328JcOgJhZyiP9g7hZylVydPVEZilXKaBShmf5VbGRWcqzqEMLvVymUmh3uAEIbUK3k0OpXpVeuy+1bNr9oRimPvoiOeszJvYNSyKzlCceN1V4IrOUR79SUmGKmaXc5UO5OTxLebfDC7NRDbmMgZvjoVQoYHNwMEdnKe8J91uCocgs5d5wn8Hh5qFShr+WBAZQyBho1JFZyv1+6DUJs5RrWbAKGbodPqhVclhKw7OUR9O2zBKepbzb4UWZqe9Zykv0SigUDBQyGYLBENzRWcqNKgRDQKfNg1KDGnJ5dJZyHgYtG56lXKtMLnMJ4ziNUg4Px0OvZjGmuhRWqzOjbNJbPiiqAffZZ5+NTz75BFqtNmmZy+XCBRdcgJ07d0oejn4NtIagYmywJR9wF7BiTK9cyPmAu0AUS3oWejhpwC1+TBpwi0vMC4Wev1OhcPd+jL4MdJ0wmBRTPBVaP6GY4q5QZROHg+aR8vHjx8fd4Y71r3/9C+PGjRvgEBFCCCGEEEIIIeKKasB9/fXX44EHHsB7772HYDB8JT0YDKKxsREPPfQQrr/++jyHkBBCCCGEEEIICSuqWcrnzJmD9vZ23HXXXeB5HiaTCTabDSzL4sc//jHmzp2b7yASQgghJMcUiuT7A4PtEXZCCCGDU1ENuAHgxhtvxMKFC7Fz5050d3fDZDLh7LPPhsGQ/+8tEkIIISS3FAoZ3vuiDSetLuG3YRYdLplWTYNuQgghBa/oBtwAoNfrMXPmzHwHgxBCCCED4KTVFTc5HCGEEFIsiuodbkIIIYQQQgghpFjQgJsQQgghhBBCCJEADbgJIYQQQgghhBAJ0ICbEEIIIYQQQgiRAA24CSGEEEIIIYQQCdCAmxBCCCGEEEIIkQANuAkhhBBCCCGEEAnQgJsQQgghhBBCCJEADbgJIYQQQgghhBAJ0ICbEEIIIYQQQgiRAA24CSGEEEIIIYQQCSjyHQBCCCFkMFMo4q9t+/3BPIWEEEIIIQONBtyEEEKIBBQKGd785yEcO2UXfhtm0eGSadU06CaEEEKGCBpwE0IIIRJp73Kh9aQj38EghBBCSJ4MyXe4v/nmGyxatAizZ8/GokWLcPjw4XwHiRBCCCGEEELIIDMk73Dfd999WLJkCebNm4eNGzfi3nvvxV//+tfMd8QALl8ADrcfgYAfCoUC3XYvSkvU0OsU8HoC4PggXF4eWpUCSqUMMoZBj8MHrUaBYDAImUyOHieHUoMKjCwEhBh4vH6Y9CrIGKDLzsFcogbHB2Dt8cJSoobFoAToacTCIgOsdh+s9jTTiAHsbh42pw8mgwpGjQII9XEMFmi3cuiKHKPCrAL43K/f3NaT3vrZHCPT884mnvIpVXgZwO0PwO0JwObkoFbKodWw8Hj9cHN+lOiUYBUy2Jwc9FoWoSDQ7eBg0qvg9fmh07AAgE6bB2ajGiEmBIeTh8WkhpwBOm3h7RiGgc3BQadWQKNWwOcP4kiHC6XRsDCn82l5qQZyBrA5sojb3tKl2NKMECmJ1auBcDns7PGi3KxBIBCEy8NDo2Lh9vIwaJWwOTmoWDn0Whb+QBAcH4TH64dRr4RCziAYBHqcHHRqFmqlHA63D2ajGl5fAJ09HlSUaqCQMUL5DgRD6LB5qA+RT5G68eShDmhVisKoGzNtwwcwTBn1RaSWaR+vNwltZLSvn5P2MhLOgyePw2xQJYeTBTptPni8fvj8ARi0SjjdPHRaFjzvh1bDIhgE3B4eapUiEi4llKwcPQ4OlhI1QiHA4faB4wMoN2kQCIbQafNCp1agxKgEx4XHPV5fAJYSFTQqOVyeALxcAB7Oj1KDCoFAABoVC6NegVPdHLrsHEqNKqiVcjjdPNycH3o1C4OWhV4th93Fw+byhes7jRxOlx9dkX6MTAbY7D6olXLI5QwYhoFWpYBeJRf6X3Y3j047B41KAYOWBcMAPS4eXs6PEr0SHOeHXqtMjv/Ith6fH4xMBlskDrJJ/yE34LZardi7dy9efvllAMDcuXPx0EMPoaurC2azOf0dMUDrKRc6e7x4//MjuPicUfjjxj3g+ABUrBw/XXgWbA4Or/5jn/Db4oZaqJVyrPvwEFi5DAu+Oz5um2Xz69C47TCaj9iE9T9tOo7z6oZjdeMBYb3lC+pwVo2ZGsxCIQN2t3Th+Teb0ksjBmhu7cFTa3YJ69++sB6TRpakrmhZYNf+Lrywvikuv9RPMIs3RFKvn802mZ53NvGUT6nCO6oExzvd6LRz+MO6L4Vlt8ybjHX/PIgTVrcQd2olA5udw4sbTtcLixpq0bjtCC6dMQpvf/oNHC4et8ybjM/2HMeZY8uwuvEADDoWV1xQg1Wbxesbh4vH7QvrASaEp97YDYOOxZzzxsTVK2nHbW/pgiJLM0KklKKOtJSo8Mgr2zFymB6zZ4zGun8eRMOMUWjcdgSXnz8Gr/3jC2H9n/xwCrocPqFsV1m0uPp7tXH7TOwriJXvxQ21Qv1BfYg8KMT2LJt2fyiGKdM+Xm9E8kFs2exXnugrnCyw92sbOro9cXVDtI8RrYOu/t54hEKI64fcMm8yNm87DKebx1XfHY+XYsYu0fCzchmWXDoBnT3euP3fetUUeLw8Xnm7Wfht6ZWT8Z+vTmDG5OFxaZ3YL7ru+xNRalThqTd2g+MDuGT6GfjW2HK8sL4pZT2nVsoBAGUlGtScYUDzkfj4XjJ7IswGJZ75+5cxv03Au/8+jGsvmyTEfzAYQnNrD976V0vSGC+b9B9yj5SfOHEClZWVkMvDCSKXy1FRUYETJ05ktB+7m4ebC+CljXswd2aNkBAAwPEBtJ1yCYPt6G+rGw+gx8Xj4mkjMbO+OmmbF9Y3Ye7Mmrj1r5w1TshM0d+ff7MJVrsvJ/FB+s9q9wkVHNB3GtndvFD4o+s/tWYX7O7UrUm7lRMqpeg2L6xvQruVy8v62WyT6XlnE0/5lCq8VrsPgRCEwXZ02Usb92BmfbXw9wvrm6DTqIRGLvr7G40HMLO+GqsbD+DiaSOFba+YWSPUDRdPGyl0yKPbxdY30bAcbXcJ6yfWK+nGbW/pUmxpRoiUUtWRAAOOD+DKWeOEeiBazl9L6Dcc63THle2Z9dVJ+0zsK4iV79j6g/oQA68Q68Zs2v2hGKZM+3i9EcsHsWWzP3mir3C2Wzm0nXIl1Q3Ruif6f7WSTeqHvLRxD66cNQ4z66uFwXZi+GfWV+NYpztp/39Y9yV6XHzcby9u2IPLzx+blNaJ/aJX/7FP6LcAwHenjxK2SVXP9bh49Lh4tBy3w2r3JcX3qs37cKzTnfDbfsysr46L/xOdLjy1ZpfoGC+b9B9yd7hzwWLR43h3BzycHxwffkwimhBRwVAo6TeODyAYCgHM6b8Tl3t9gfi/RfbN8QF0OzlMHGPJ4VlJq7zckO8g5JzFogcAHDx5PKM0OnmoQ3R9Nx9AzUjxpyya23rEj+HwYnJN2YCvn802mZ53NvHUX9nm02idkCofcD7xchytC6J/2yOPaYmtF7t+0rqMeH2SWN8EQ6Fe108nbntLF4Sy3y9Q/PVEtE5IxLKnm1qFQo7SUl3OjqlQyCXd/1A+JtC/OuGrVptoebC7wx01oX1nEsp5jKS+RIqy642tY1KsE1sXZNKHKNZyWQjhjtYJ+WjP+pJNuz8Uw5RpHy+V3voJsWUz2zzRVzib23pSjk1i66Do2CZxHa9PvI6KDX+vY5+E33rr76Ta1ubk0uv3RHTFrt9HeKL7i8Z/U6TM5mocNuQG3FVVVWhvb0cgEIBcLkcgEMCpU6dQVVWV9j6sVie0qvA7kipWDo1aDhUrj0sQGcMk/aZi5ZAxDILBcCdYbHn0UYjo3xpV8r5VrBylehU6Oopj5tvyckPRhDUqnYbaanUiGAzBbFBllEZalUJ0fS0rTxlPlhK1+DEMatFtpF4/m20yPe9s4qk/UuXTdPNCqvCW6lVw+/yiy2IfG1Oxchi1ypTrxa4vtm6v9U3M37HLs4nb3tIFKeq9dPZb6PVEJnVCVPT72zzvF37z+wPo7nbl5LNgCoUMfn9Asv2nc0yWVQz4MQHpzxPof52Qqo40apUAIPQdor9H/59OX0Ks79BXfRBbf6Tbhyj0cpnKQIQ7kzphoNuzdGTT7g/FMKXTx+tvPyG2bGabJ/oKp6VEjaPtzj77GNGxTarxScrwM72PfWL11d9Jta0p4Rz7OpZZLx4nYuGJxkE0/s1GTcoxXqo6tLd8MOQeKbdYLJg0aRLeeustAMBbb72FSZMmZfb+NgCjRgGtMvy+waaPW3DzvMlxDWZ1hQ7XfX9i3G+LG2pRomPxwRet2LqzLWmbZfPr8NbWlrj11390CIsbauPWW76gDhajMifxQfrPYlBi+YK6tNPIqFHg9oX1cevfvrAeRi2b8hgVZhWWza9Lyi+VFlVe1s9mm0zPO5t4yqdU4bUYlZADuPWqKXHLbpk3GVt3tQl/L5tfB5eHw9Ir4+uFRQ212LqrDYsbavHBF63Ctpu2tgh1wwfbW7Fkdur6JhqWEZU6Yf3EeiXduO0tXYotzQiRUqo6EghBxcqx/sND4XpgZ1u4nO9sw7UJ/YYzyrRxZXvrzrakfS5uqMWGmL6CWPmOrT+oDzHwCrFuzKbdH4phyrSP1xuxfBBbNvuTJ/oKZ4VZheoKXVLdEO1jRP/v5fikfsgt8yZjw0eHsHVnG25JGLtEw791ZxvOKNMm7f/Wq6agRMfG/bb0ysl455Ovk9I6sV903fcnCv0WAPjn50eEbVLVcyU6FiU6FjXDjbAYlUnxvWT2RJxRpk34bQK27mqLi/+qMh1uX1gvOsbLJv2ZUCg05KayaWlpwd133w273Q6j0YgVK1Zg7NixaW8v3MWIm6U8AIVCjm6HF6UGNfT607OUu73h2f5UrAwyGYMepw9aFYtgKACZTA67Mzw7oUwWQijIwMP5YdIpIZMx6HJwMBtU4PzB8CzlRnU4kYtospNivEKe8d2s2Bks00mj6CyVLh9MOmW4gKc5S3k0j1Va0pt1XLL1s9km0/POJp6y1N+7WdE6QTS8fcxSbozMUt7j9EGnVQBBwObgYNSrwPn80KlZgAE6bV6UGlSALDJLeYkaclnyLOVatQLayCzlXq8fpfpIWGJnKTdpIJchPFNqpnHbW7pkmWaFXk9ke4d79QeH8HWbTfht5DADrr10Qs7ucL+2ZX/cd75zuf90jsmyClRZNAN6TED68wRyVCeI1ZGByCzlkXIYCATh8vqhUSng5ngYNJFZypVy6DQsArGzlOuUUCgis5S7OGhVLDTCLOUqeH1BdPZ4UG7SgJUz4fKtVyIQRHiY159vAAAgAElEQVSW8gz7EIVeLlMptDvcAIS60c0HoGXlkrZnacum3R+KYeqjj9effkK0r5+TPk4knN1ODqV6VXJZj85Szvnh44MwaFk4PTx0ahZ+vx8aNYtgCPB4eaiUCnTbOZTolVAqI7OUG1UIgYnMUh5EuUmFQDDcN9GqFTDFzFLO+QIwG1XQqEVmKQ8GoGEVMBrY07OUG1RQq8KzlHu4cL/HoFFAr1HEz1KulcPp9KPb4UWZSQMZE+7HqNjTs5TrlHLo1YqkWcrVka8DMDImfpZyX3hW9Nj4Ly83oKPTEZ6lnPeDYSKzlPdSh/aWD4bcI+UAUFNTg7Vr1/Z/RyFAx8qhKzn9GHil8fRVOJ0u+rs6bjOLNv6qyDBjwpU7w+m/9SpF5P+ARRfZrogG20NGELDolbDo00yjEGDUsDBGPveUVgXLh/OXkMf6aoCyXH9yTVm4o5JOA5fpMTI972ziKZ9ShTcEaOVyaPVylOljyr8m/kq2OebvCqEeOF0flOlOb1upP12vGCtPb1euj69fysdG0jMUDkdcPgVgVGcRt72lS7GlGSE4/fh/zqWoVxPLYXlCeS/T9333JLasl0buyuiV8dsK5TtmHepD5EmkbqwZaT5dJ+dbpm34QMimLyK1TPt4vUlsI3G6r9/vPBEJ58QxlnDcJYaTj/QjYvoSYn2N6PKKmPFIbP+kRB0/fCyNWabTymFOuEuv0ckBsSk3/OFjxB6nRJUwNA0mx5fOKI8bb5m1IvVlTP8rcXsA0JnkMX8o47eJ2UfstkI4s0j/ITng7i+ZjOl7JRJnMMbZYDynqMF8br3J9rwLPb4KPXxRxRLOVBLDL5MxqDTr4PeffvdrmEUHlpXn5FzlchmGWeJ7MbncfzrHVCjkKCtRD+gxgdzH486Dneiye4XfzEY1ZpbqclonFGv+pnDnPgyFELZiMJjiaaDPZTDFXb7kMg6H5CPlhBBCCCGEEEKI1IbcpGmEEEIIIYQQQshAoAE3IYQQQgghhBAiARpwE0IIIYQQQgghEqABNyGEEEIIIYQQIgEacBNCCCGEEEIIIRKgATchhBBCCCGEECIBGnATQgghhBBCCCESoAE3IYQQQgghhBAiARpwE0IIIYQQQgghEqABNyGEEEIIIYQQIgFFvgNQjKxWJ4LBUL6DUTRKS7Xo7nbnOxgZKS839LnOYM0HxZheuZDqvIs9LxRLehZ6OLPNB4V+Xv01mM8vl3VCscYThTs1qhOkVUzxVGj9hGKKu0KVTRz2lg/oDjeRnEIhz3cQSAaGanoN1vMulvMqlnBmarCeV9RgPr9cnluxxhOFO/cKOWyFhOIpexR3/ZfrOKQBNyGEEEIIIYQQIgEacBcSBrB7eLR2uGD3+gEm3wEiZAiIlLumQx1U7oY6qoPTR+WGECIFqltIIepn/6Dg3+HmOA6PPPII/v3vf0OlUqG+vh4PPfQQvvnmG9x9992w2WwwmUxYsWIFRo8eDQBZL8srBmhu7cFTa3aB4wNQsXLcvrAek0aWAIX5aighxY/KHYmivJA+iitCiBSobiGFKAf5suDvcK9cuRIqlQqbN2/Gpk2bcMcddwAA7rvvPixZsgSbN2/GkiVLcO+99wrbZLssn+xuXkhIAOD4AJ5aswt2N5/nkBEyeFG5I1GUF9JHcUUIkQLVLaQQ5SJfFvSA2+VyYcOGDbjjjjvAMOF792VlZbBardi7dy/mzp0LAJg7dy727t2Lrq6urJflm83pExIyiuMDsLl8eQoRIYMflTsSRXkhfRRXhBApUN1CClEu8mVBP1J+9OhRmEwmPPPMM9i2bRt0Oh3uuOMOqNVqVFZWQi4PzyAnl8tRUVGBEydOIBQKZbXMbDbn7TwBwGRQQcXK4xJUxcph0inzGCpCBjcqdySK8kL6KK4IIVKguoUUolzky4IecAcCARw9ehTf+ta38Ktf/Qq7d+/G8uXL8eSTT+Y1XBaLPvf7DIbw82um4nev7xDeD/j5NVMxproUMlnxzxiRzjcKi40U+aBQDMb0EpOrclfoeaFY0jOf4cxFXkiVD4ol/tM12NurWNmmnVheKNZ8QOHO3lCpE3JlMNctA91PoDzWf9E4zEW+ZEKhUMFOQ9DV1YWZM2diz549wiPll19+OR577DHceOON2LZtG+RyOQKBAGbMmIEtW7YgFAph9uzZGS/L5A63ZB+vZ8LvCdhcPph0Shi17KCYJKK83ICODke+g5GRdCoqyfJBnhVjevVLpNy5+QC0rDyp3BV7XiiW9CyIcPZSB2ebDwrivKTQR7kZDFKlXTZ5oVjzAYW792P0ZUjVCblShHVLofUTKI/1X1IcpjFG6y0fFPQ73GazGTNmzMAnn3wCIDzDuNVqxejRozFp0iS89dZbAIC33noLkyZNgtlshsViyWpZQQgBRg2LkWU6GDWFX8EQMihEyl1dTTmVu6GO6uD0UbkhhEiB6hZSiPrZPyjoR8oB4IEHHsA999yDFStWQKFQ4PHHH4fRaMT999+Pu+++G8899xyMRiNWrFghbJPtMkIIIYQQQgghJFcKfsA9YsQIvPrqq0m/19TUYO3ataLbZLuMEEIIIYQQQgjJlYJ+pJwQQgghhBBCCClWNOAmhBBCCCGEEEIkQANuQgghhBBCCCFEAjTgJoQQQgghhBBCJEADbkIIIYQQQgghRAI04CaEEEIIIYQQQiRAA25CCCGEEEIIIUQCNOAmhBBCCCGEEEIkQANuQgghhBBCCCFEAjTgJoQQQgghhBBCJEADbkIIIYQQQgghRAI04CaEEEIIIYQQQiRAA25CCCGEEEIIIUQCNOAmhBBCCCGEEEIkQANuQgghhBBCCCFEApIMuM8999y4v3/zm99IcRhCCCGEEEIIIaRgSTLg5nk+7u+NGzdKcRhCCCGEEEIIIaRgSTLgZhgm7u9QKCTFYQghhBBCCCGEkIKlkGKnoVAIR48eTfk3AIwYMUKKQxNCCCGEEEIIIQVBkgG3x+PBpZdeGndnu6GhQfg3wzBobm6W4tCEEEIIIYQQQkhBkGTAvW/fPil2SwghhBBCCCGEFI0B+yyY3W7H3r174fF4BuqQhBBCCCGEEEJI3kgy4H7ppZewZcsW4e+PP/4Ys2bNwoIFC3DRRRdh165dUhyWEEIIIYQQQggpGJIMuNetW4fx48cLf//mN7/Bf/3Xf2HHjh244YYb8Nvf/laKwxJCCCGEEEIIIQVDkgF3R0cHxowZAwA4cuQIjh07hqVLl0Kr1eKmm27C/v37pTgsIYQQQgghhBBSMCQZcGs0GjidTgDAF198gQkTJkCn0wEIz1AeCASkOCwhhBBCCCGEEFIwJBlwX3jhhfjf//1fvP/++/jzn/+M2bNnC8v27duHqqoqKQ5LCCGEEEIIIYQUDEkG3P/93/8NtVqN3//+96ivr8cNN9wgLNu6dSsuv/xyKQ5LCCGEEEIIIYQUDEm+w20wGPDoo4/i1KlTqKioiFt22223oaOjI+N9PvPMM3j66aexadMm1NbWYteuXbj33nvBcRzOOOMMrFy5EhaLBQCyXkYIIYQQQgghhOSKpN/hvuyyy0R/nzNnTkb7+eqrr7Br1y6cccYZAIBgMIi77roL9957LzZv3ozp06fjiSee6NcyQgghhBBCCCEklyQdcIdCoaTfnE4nGIZJex8+nw8PPvgg7r//fuG3PXv2QKVSYfr06QCAxYsX49133+3XMkIIIYQQQgghJJckeaR81qxZYBgGHMfhoosuiltms9kyusP95JNP4gc/+AGqq6uF306cOIHhw4cLf5vNZgSDQdhstqyXmUymLM6UEEIIIYQQQggRJ8mAe+XKlQiFQli6dCkef/xx4XeGYWCxWDB27Ni09rNz507s2bMHd955pxTBzJrFos93EIpOebkh30HIucGcDwZjeqUj2/Mu9LxQLOlZLOFMJVU+KPbz6stgPr9c1gnFGk8U7uwN1TohVwZTPA10P2EwxV2+5DIOJRlwn3vuuQCAzz77DBqNJuv9fP7552hpacH3vvc9AMDJkydx00034brrrsPx48eF9bq6uiCTyWAymVBVVZXVskxYrU4Eg8mPyxNx5eUGdHQ48h2MjKRTyAZrPijG9MqFVOdd7HmhWNKz0MOZbT4o9PPqr8F8frmsE4o1nijcvR+jL0OxTsiVYoqnQusnFFPcFaps4rC3fCDJgDuKZVls2LABzc3NcLvdccseeuihPrdfunQpli5dKvx98cUX4/nnn8e4ceOwZs0abN++HdOnT8fq1auFCdomT54Mr9eb8TJCCCGEEEIIISSXJB1w33XXXThw4AAuvPDCnH56SyaT4fHHH8d9990X93mv/iwjhBBCCCGEEEJySdIB99atW/Hhhx9Cr8/NewsffPCB8O+pU6di06ZNoutlu4wQQgghhBBCCMkVST8LNm7cOPT09Eh5CEIIIYQQQgghpCBJeod75cqV+PWvf43zzz8fZWVlccuuvPJKKQ9NCCGEEEIIIYTklaQD7jfffBPbt29HT08P1Gq18DvDMDTgJoQQQgghhBAyqEk64P7rX/+KDRs2oKamRsrDEEIIIYQQQgghBUfSd7jLyspQVVUl5SEIIYQQQgghhJCCJOkd7uuvvx533XUXbrnllqTPgo0YMULKQxNCCCGEEEIIIXkl6YD7wQcfBAC8//77cb8zDIPm5mYpD00IIYQQQgghhOSVpAPuffv2Sbl70hsGsLt52Jw+mAwqGDUKIFTA+yVEjAyw2n2w2r2wlKhhMSiBYL4DVUAKoTwWQhjIwIuk+8lDHdCqFNKmO+UxQoaOgaxbMgwT1UGDRBrpGQyGYPfkLs0lHXAnOnr0KBiGQXV19UAetjj1p3AzQHNrD55aswscH4CKleP2hfWYNLKkfxWEVPslRIwM2N3SheffbBLy2/IFdTirxpzbQXchNu7pKITymM8wUAcofwYy3Rmg5bgDLcftCIZCkDEMaoYbUTPcQOlNyGBTCO2aSJioDhpE0sljDPDvphP43es7wPEBVFm0WL5gCkKhEEz67Pobkk6a9otf/AI7duwAAKxbtw5z5szB3LlzsXbtWikPW/wimeFXz32K+/+0Db969hM0t/YATHqb2928kJEAgOMDeGrNLtjdfL+CJcl+GcDu4dHa4YLd60/7HMngZ7X7hME2EM5vz7/ZBKvdl7uDxJS1e/7wacZlLZ9yUh77Wf6kqmv61M86kvTPQKa70+vHcasb6z88hDXvHcD6Dw/huNUNp9ef82MRQvLL7ubx2rvNmHdhDRZeUot5s2rw2rvN0rcpvXB6/WjrcMbVQW0dTqqDilQ67ZfdzQuD7TKTGg0zRuGRVz7H/X8M9ze+OmLLeAQt6YD73//+NyZPngwAeOWVV/Dyyy9j7dq1eOmll6Q8bNHrb2fG5vQJ20ZxfAA2V/8GKjnfL3WaSS+sdq9ofrPavTk7Rt4GjDnQ7/KYg/InVV3Tl2JOt8FgINPd6fVj1eZ9cWm9avM+6uwSMgg5PTwaZozCxo9bsOa9A9j4UQsaZoyC05u/ut3u8WN144G4Omh14wHYPVQHFaN02q/YdS6eNhJvJKT/M2t342iHO6P+kqQDbp7noVQq0d7eDpvNhmnTpmH8+PHo7OyU8rBFr7+dGZNBBRUrj/tNxcph0in7Fa5c75c6zaQ3lhK1aH6zGNU5O0annRMta512LmfHkEp/y2Muyp9UdU1f8jXQJ2EDme4uDy+a1i4acBMy6KiUiqTBzRuNB6BiB/QN2Dhezi9aB3k5qoOKUTrtV9w6DETTv/lwV0b9JUkH3JMmTcILL7yAZ599FhdddBEAoL29HXq9XsrDFr3+dmaMGgVuX1gv7CP6foJRy/YrXLneL3WaSW8sBiWWL6iLy2/LF9TBYsxdp16jUoiWNbUqf417uvpbHnNR/qSqa/qSr4E+CRvIdNeqWdG01hRBGSWEZMblTXWBLX83YspSXPwvM6ryFCLSH+m0X0aNAj+/ZmrcOrFUrBzBIDLqL0naYv3mN7/Bk08+CYVCgV/+8pcAgJ07d+KKK66Q8rBFL5oZEl/oN2rZ9F7SDwGTRpZgxW3nwebywaRTpr/tAO432mmOrVyp00wEQeCsGjMeXvad8CzlRnV4sJ3DCdMMWhaLG2qFx8VUrByLG2rDE2IUun6Wx5yUP6nqmj70u44k/ROT7m4+AC0rlyzui7qMEkIyYtIXXr+Q2ptBJp1+Swj4Tl0VhpWeB6eXR3WFHs+u3S2k/6KGWjRuO4LzJlemfVgmFApRdsmQ1epEMChxtEVn4B3ATqxUyssN6OhwJC8oxNkoI8rLDX2uMyD5IA9SptdglMbso8WeF4ql/GWc7wa4jsw2Hwz28iT5+eVxhuBU55ZNXijWfEDh7v0YfRmKdUK/FFi7FBuu3tqbQusnUB7rv7g4lAFHO9xoPtyFYBDYuqsN1142KSlf9pYPJLtEHAqF0NnZibKyMjAMg61bt+Kjjz7C+PHjsWjRIqkOO3iEAKOGhVHDCn8POnm6O0aIIATUDDeg3KSW/E5dwSn28jcU6kgSV0aLMp8SQtI3gE/PZBouam+GsCAwokyLEi0Lm8uH8yZXZpwvJRlwf/755/jJT36Cnp4ejBgxAnfccQdWrFiBqVOn4t1338WJEyfws5/9TIpDk2JDlRjJt0gerBlpDl/NHEp5kMofKQaUTwkZOoZym0wKVz/bIUkmTXvsscdw5513YteuXbjxxhvxP//zP3j55Zfx5JNP4i9/+Qv+7//+T4rDknyi72mTYhXJu02HOijvAlSWSeGhPEnI0EFtMsk3Bjh2ypnTNkeSO9yHDx/G1VdfDQBYuHAhHnvsMYwbNw4AUFNTg+7ubikOS/KlUN+5IaQvlHfjUXyQQkN5kpChg8o7yTeJ8qAkd7hj52GTy+VQqeKnzmcYulwlqQG+G0Df0yaSkTgvU96NiMTz8W4vxQdJzwDdhaIySsjQQeWd9Fs/+41S5UFJ7nD7fD48+eSTwt9erzfub56ngiOZPFwd7O17vsK7DoRkagDyMuVdxMXzvFk1FB+kbwPYzlAZJWTosLmovJN+yEHbJFWbI8kd7rlz5+LkyZPCf3PmzIn7e+7cuVIcliA/Vwej3/ONle/vJqaF3gssaAORl4s27+ZQYjwXVHxQGS1IA9nOUBklZOjQqVnR8q5T53mwTW1RUci4bRJJV6naHEnucD/22GNS7JakIWdXZqLfHHT6YDKoYNQoUl4dMmoUuH1hfdIVpYL4lIOYyLkds7pxtN2J9z4/AoeLp/eECsxA3NkyahW49aop+MO6L4W8e+tVU2DUsUAwJ4cobAzQaeeEeP5geysWNdTijcYD+S/LCVeqqyxaLF8wBaFQCCZ973USkdZA3nUe8mWUkCGE8/mT2qBFDbXgeD+A/F34bTnuQMtxO4KhEGQMg5rhRtQMN1AbVGAyapti+hgGHYtLzhmFEZV6jKjQJ41pfnL1Wf1uc3I+4D569Gha640YMSLXhyY4fWUmNsNlfGUm00cypP6ebwaD/3T2lXhuixpq8c6n3+CpNbuw4rbz6LGlApF1Xs4gvzg9fni8POZfNE5oSD1eHk6PH3qVJNcjC4cMONrhhs8fEOK50+bFO59+g/kXjcO46hKUGVV5u3AWe6W6zKRGw4xReOSVz2kinQKQk3YmTU6PH5wvEFdGOV9gaJRRQoYYvVaJxm1HMO/CmvBd5BDQuO0Ipo6flrcwOb1+tHU4sf7DQ0L7s7ihFpVmDdVBBSaTtinaxzDoWFx+3pi4izx3LpmKX984A1993YlgEFi1eR+uvWwSJo0qgd2V3Xgk5zmloaEBDMPETZyWiGEYNDc35/rQBLm525zqkYxeB6NSfSc1x+8Kip3bG40HMO/CGqx5/wC9J1RAssrLGeaXHjePV95uTqqcf33juYO7IWWArw7b8Mza3TDoWCxuqMXqSGPjcPEYUaHH2GH6cJzlaUAbe6X64mkjhcYQSLNOIpIZyKeaHB4//rzpq6Qyeu9NMwZ3GSVkCJLLGVz13fF4aeMeoW65Zd5kyBWSvAGbFrvHL7SPQLj9Wd14AONHllIdVGAyaZuifYx502qS+hdPrNqB+ReNw+rGA8L6r73bjCWzJ+KZtbuzGo/kPKfs27cv17skvYm5m2cuUSMYCKJEx+LhZd+By8tndbc5p48LRr5ld7LTldXd6awG/71IdW5g6L3AAZHJ0wohYNKoEjy87Duw2r2wGNWwGJW9PtKTaX5xe/2i+cHt9Wd7hoVNDpyyhR8hjzYanC2AtyN3tctNGlRatBheqs77neO4K9UMaCKdQhICJo0uwQNLv40uOwezUYUKkwoI9L1pppxeXjTtXV4egDr3BySE5E2Pi8e6fx6Mu8O97p8H8eOr66EzyfvcXgpeTryf4OUGaT+h0EX7kS4fdGoWnM8PvVYp9CfTfeJWeFc7Rf8imHDjeGZ9tdBviq6TyXiELs3kU38flU54/2DOeWOwZdsRzKyvhkwGTBptzvydAwYw6JT45bXT4OEC6HF58c6nh+Fw8ZkPRgtwtsBUj5vIGKaw3zsfCJH8ePJQB7QqRe7fkWWA1lMuuLkAPJwfbl8ANqUcIyt04sdhgOYjmeWfTGc4NRvF84PZqEpatyhFLnh1druhVivQYfMiFApBqZDBoGPB2cLn3WnzYnXjfixuqMX4amPuXuHoh9gr1QAG7BFmkgYZsK+1B60nnQiGQmg9yWDkMD0mjijJ+XvVOpUCVRYtZtZXCxMVbd3ZBg3dWSJk0AkPnliMqjLAywWgUcux80B4UJUvZSVq0fanbLD0EwZapmOfhBuLR9udSa+FNm47En7kO9I/7PWJ25gB+z03nIPDJ+wpxwVRZSY1hlm0/RqPSNpi+f1+rFq1Cp9//jm6u7vjHjP/29/+JuWhC18OBqN2N4/X3m3GvAtrUGnWwu7mcMXMsfhL5BHZ6Iv+Z44y9foIbmzGtzk4fHPCLjw+o2LlWDJ7IkZV6gEArR3p36nOxd3pXL8rKPa4ya1XTcHYKgP06iE8CdMAfObH5QvA4fbhWKdbeBfzjDItXD41dGzylets8o9Ow4rmF12K9S0GpeiETBZD73fSi0IkTV97txkLvjsO1h5OiPcSHYurLhqHdR8eQqfNCyAcT2eOseDoKdeAflYwpZgr1U5v+DH3xEe5hvQFsjzqdvHocXBxv/U4OHS7eJTm+IkDvY4VfcTUoKUnGwgZbEqNKvzggrE42u4U2qsfXDAWJkP+BrdFNzFwIcu0r5lwY/HGuZNx9JQD82bV4IPtrei0eYXXQtMaX4gc/ydXn4U7FtfjydXxYVKrFFCxchh0LK64oAanuj39Go9IOuB+9NFH8dlnn2HhwoX4/e9/j5/97Gd4/fXXMWfOnLS27+7uxi9/+Uu0trZCqVRi1KhRePDBB2E2m7Fr1y7ce++94DgOZ5xxBlauXAmLxQIAWS8bSBkNJlJcDXJ6eDTMGBX3ov/ihlrhzlX0sdGUGVAk4/34h1OgUspx+6J6eCN3uD9rOoZx1d/CFwc6UGXR4Ui7HaOrSjCiXHt6UCISxlzcnc55Rdfb4yZDuOLM+uJIBlcq3VwAnT3epIlHKiw60QG3zeWDQcdi3rQa4c7WB9tbe80/wVAo7n3k6DESHw06vQEwZVwp7r/l2+iye2EpUaOiVAUMgifF7G4eb/2rBb9YMhWHTziS4l0mY3DJOaOwunF/uOxffRaCoSCOnnLG1SF95oNcTmqYKOZK9XCzVrqJGUlGvL4AvL5AUp7y+gJAjgfcnC+A9z8/IrRJGrUcmz5uwYhhZwJ0l5uQ/pGy/s4C7w/BzcX3G91cAP5AHgOVxettRFxvfU0ASfkwcWKzJ9/YmTThcafNKzwW3tf4Quz4qzbvw/VzzsTSK+ugUcth1Ckx3KyBpVSPFbedBy4QxOHjdtRUW1BdoUfbqdNfN7r1qilp90Ukba22bNmCN954A8OHD8fTTz+N66+/HhdccAHuu+8+/PSnP+1ze4ZhcPPNN2PGjBkAgBUrVuCJJ57Aww8/jLvuuguPPvoopk+fjueeew5PPPEEHn30UQSDwayWDbS0B6O9XA1SKRVJL/qvjpkALPqb08uDD4Rgd/ug07Dwcn6Y9CrIGMRlPIOOhT8QhNmoweETPQiGgKaDp9AwYzQe/NO2uEz+/Jtf4prZE2HWK2HUq5Ie8bh9YT1GVOr7vhrUV2UvxQzoUk3wVsSyujiS4ZVKr0984pF7fnQOxD73YdQrccUFNVi1eV/c0xbGXq4m2p0+tJ7swb03zYDNycGkV+G9/xxGdaUB5XqRK+QyYPfBLjz/ZpNwjOUL6nBWjbnoG9OgLIT/mvMtWO1elJWocf2ciXjzw5bI4+MHcPuienC+AP7nR+dCqZDh+Te/xAmrO6khi9YhQHJjOBBPRgio3BaMQCCELbEzCQPYsu0IaqpNOT8W7w9gzvlj4u54zTl/DHi/BC+MEzKUDGT9naZAMAh5wvxocln497xhgJZjpz8LdviEgz4LlqVUfc1jVjeeeiM5H/Y2sVn0zvbGj1uAUHp3mxOPP35ECRrOHYXfvb4j7uKxUcOi3MLAqGdxwuqFTqPEwaPdkfQO4cdXnQW1Wh5+bTfNPCDptH9erxdVVVUAALVaDY/Hg5qaGuzduzet7U0mkzDYBoD6+nocP34ce/bsgUqlwvTp0wEAixcvxrvvvgsAWS8baH1+WD3yMfbj3d6UH3F3pZhMBqdfO0CVRYtOO4ffvr4DR046cN+Ln+H+P27Dr579BF+fcMCgOz2YmnPeGASCwO9e34HVjQewdWcbllw2Cae63Zg3qwZlJrWQyWfWV+PZtbvxZUsXPm06mTKM99xwDqosWuH8hLvTkXNsbu3Br577FPf/KRym5taeuPADEDraI8t1AMLvAUc/UE9yo8/8KCLVlUq7mxdd38cHRPOrjxdvSHl/EPG4GgIAACAASURBVO/++xvMu7AGCy+pxbxZNXj339+AD6RueM0latSNq8CDf9qGla99gQf/tA114ypQmuJdK6vdJwy2o+F5/s0mWO2+lMcoCixgs/PYfbATXx+z48UNTeB8QVx98XihHHO+AEwGFSpL1Xjklc9xwuoGEI6Dxm1H8KO5Z2LhJbX40dxvodvhSy6nMsDq8PWdByJ1WWsHldvBIhgMomHGKGz8uAVr3juAjR+1oGHGKARDue8Uq1gFHAl1isPNQ8XS3W1C+iPTNnwgyGUMeH98PcL7g5DL8tdwOL1+dCW8QtPl4OAcrJOrSihVX/Nou1M0H/Y1sZlMBtz0gzPRdOhU/PgijeOXmdS46ru1+NP/fRV37NWNB2D3+OH3B9H0dTce/NM2PPG3L7DlsyOoKtNDIZdhf6sNNgcHtyeQdp9G0harpqYGTU1NmDJlCiZPnoynn34aer0elZWVGe8rGAzi9ddfx8UXX4wTJ05g+PDhwjKz2YxgMAibzZb1MpMp91fme5PyUWkdC7uLxzGrG0fbnVDImZR3Hk361BOARf+9bP4UPPqXzzHvwuSrQ39Y9yXuWFSPwycd+GB7KyrMWuEKU/S7tw//+T+9Pr4BJvwYr1gYvzzUiY0fteCnC+th0rPQq9m4u9OZPlZfaFdiB5NsHt3P9K54uUkjOvlReYn4YNjl8Se9MrGooRYuj1/8bjXCDfML6+MH0C+sb8IDS78tur7V7hU9B6vDC4u+SCfkYoGmQzY89/fdcfG2ZdsRzJo6AhdPG4mNH7fAYlJDKWfQZefi4iBa9qN1weKGCaIzc95zwzloPtzVex6gcjsoqZSK+G/lIvyt3NsXnZ3zY/n8QdHH133+In8EhZA8y/WktLngD4ZEy7s/mL8Gw8MH4PbySWHy8AH6LFiGUs2j9Nq74U9Fl5nUuHjaSIABXFwAVWY1bl9Yj6OnnKLjnRGVBrz2j/DnuiaN6mPSTgaQMRDm7bl42kgcPtEjWgY4nx/fHO/Bc3//Mm5MlHgnXK9m4VTI0soHkuaUe+65B3J5+ErC3Xffjfvvvx8ulwsPPfRQxvt66KGHoNVqce2116KxsTHXQc2IxaLPzX7MetRUm9Dl8MBs0KDSrMW2r07GJegvr5smZLIykxpzzhuDSrMWfCAElpXj59ecjd+9vhMGHYtLzhmFYRYtdBoWD9wyA0pWAafHJwyMxTLV4ZMObPyoBYsaahGKGTiLffdW7PGN6GOlYgUBofB2T6/ZhSd/cRHOqIiPt5OHOkTD5OYDqBlpjvv92Cmn6OBcbL8DJVf5oFAk5seqMh1kvVxV9oUY0QH0MIse5eXJcROwOnH1JbV4Iebx7WUL6qDTKlEuEpcne7yiefDem2egvNwgGqZ9beKVZ5fdizPHliWt3+7gRPNuiU6V8hhiCiUv2OxeHD3lFAbbQHzZDYZCkMmA2354Fj7c3opPm9rxyG3nx8VBYtlPdUGt+XAXgiHxsh/NA5mW20zivBClygfFfl6JWq0u/PB746FRsvBwfmjUClSax4Pj/SgvTy5n/dHW5RF9FeV/fnTugMRrtscQywvFmg8o3NmLzQfBYAgnOl1oOtQBs7HvNlZqvhDTa/2dD/ku72KOdYuH6dc3Zhamge4nFEL+F5PY12QYwOHiUWZS4/Lzxgj9j40fteDn10zFeVOG41S3G1VlWqzesl/4EtPo4SVY98EBnLC68cza3XjktvPB+fwoNaghkzGw9niEcgYA25vbcfCoDSqlDHcsOhtgwq8HiL76qlfheKdLGHv9aO6Zwk0I4HQeuGNRPeQKOcZUl/Z53pIOuKuqqlBeXg4AGD16NF555RUAQEdHR0b7WbFiBY4cOYLnn38eMpkMVVVVOH78uLC8q6sLMpkMJpMp62WZsFqdCObiahsD+Hx+MAyDDpsbR9vtsPZ4wlfOfOFE/fv7B3DTD87E+g8P4YqZY8H5Angy5j2HZfPrcN/N5+Kk1SPc2YteeXn7029wyTmjhMcnehsUvxGpPPr67q1MBmEK/ugdbwBJE1XFLuP4AE5anVAy8XGmjcwAmBgmLStHR4cjbt2TkYyfGB6x/eZCOhVVzvKBVDKdDEUGOFw+ONw8WLkMyu5Qr1cLlQqIDqCVilBS+gGA1cEJ6wKRu89vhu8+y0XiMdUrE26vX3T/AFBqFP98h8mgFt2G5/1Y1FCbdBed958+RlHkBRnAMwF8dagHp7rcKcsuwGByjQU8z6PcrMe8WXr4eD7uirNMllz2xeI0GAQ++KI1Kf5uX1gPpSycBzIpt+XlhpTpWggyzgey8CsLXU4OZoNqcMx8H6HXKNHZ7Y2bwOaWeZOh1yhznoZeX4pv4PpS1wO5kipPZlMnFHr+ToXC3fsx+iLkgwJ82kcpB25fdBaOtruE+RFGVOqglIu34QOB41O9ehbIW5jcXvE6KLYvUmj9hEIvt0oGGFaihtPLw+n14/ZF9WDACG0KEI7j372+Q3jqtW5sKXDpxKSn97odHDptXny+9yRWNx6IGwM5XOH+zYgKHVpP2uOeUvjFkqnYurMtqQ9z0w/OhMvrg14T/iRlw4xRONruEM0DHi4AmcuHjk4HEOo9H0g64J49ezZ27NiR9PucOXPwn//8J619/Pa3v8WePXvw4osvQqkMP+I5efJkeL1ebN++HdOnT8fq1atx2WWX9WvZgIkMgjrtHNQqOWwOL6w9vqSJoT7YHs4oN/3gTJh04U8X7f2mW8gswOnHZe+54Zykx2hXNx7APTecg2+O9+AXS6Ziw4cHRQcWsYPiHieHH/9wCo53ujFymPiEZ2eNLwfv92N42Zn4y9tfAQAuOWcUKsxaPLD023B6eBw62nP60XOkfhc41WPMMhmT9PmxXH8ebNDLtHGXAbtbMps8zGr3iQ6gH17+HVhE0qUnxTey7S4fKkQ++WHQKkXTvLfPASlZGX668Cy0nTrdgaiu0EHJik9XYdSq4h+NDYUfjZ06flrKYxQcFrA5/PD6wvE/b1aNaLyNripBCCGACeLFDV8JV4k5XwiTRp+emFCnZrH+wxZh+53723HzvMn4Y8xnmX5y9VlYtXkfOm1evPNp+D17mQyYNqEiPLCM5LEhW26zKE/9NoCzDfv4gPCZLiBcjl/auAf33TwDQG4fRU2Zh/L4mSBCMpWLz6TmmtPjh9Md/x6y0+2H0+PP26PSem1mn/YcCCV68b5IbxO4kj4wQMtxB9o6nMLNusUNtaJ9xDarG2ajCn5/SPTpvYWXjAfvD2FEpR6/vG4a1n94KG4C6dfebcZPF9aD4wNxnxPb8OFBLL50IlZv2Sf0YUZXlWDjRwdx3ZxvQcYwuHneZDz+6hcp+1U9Lg5eHw+7Sd1nOZa0RIVEPsXjdDrBMOk9QnPw4EG88MILGD16NBYvXgwAqK6uxrPPPovHH38c9913X9znvQBAJpNltWxAJAyCfrrwLJSbtGg75YrLBKs278PPrzkbf/y/PVj/4SFcP+dMOD1+jKoyiGbGVHcCmw93CVd7bvvhFOg1CvxiyVQEgkG0nnQmDYo1KhZtp5xY/+EhGHRs0l3rZfProFIxCATlOGG148YrzoTN6YvriN+5ZCpGVOjhcPHCfn9+zdT4d4FjOoYjKvVxM5B32Ly465lPkgaJ9B3EzGTauFsdPmz57HDSp3eqK/Sig2cA6HZwovmu28GJbqNTp3iiQS1eDXk48bvPXp8fgHhnm5Ex8AdCcVcxb71qSsrH9oxaBRY1TEj6DrdRxxbH3UgW6LD5cPyUS3gl5IPtyXedb/vhFBh1Crz6TjO+XTccl31nNFZt3h83gD5zlEl47zr6jpNBx+K8uuH4IPJZJs4XQKVZi6oyNa69bBKeWrMLnTYvNn7cgtt+OAVujgerkAmDvaFablNNxvfwsu9IMzfAAN89S/XuZ4/Th2El6pwei1XIsGx+XdwTXMvm14FVSDrnKyE5VYjvS7t8AQQTZv8OBoNw+fL3brLLzYu2+y4vD6SY/FRqeq0CyxfUJV1ANejo/e1s2d08Wo7b424ipnpFra3dCavNA71GKVqGhll0YBgG7V0ucL4g5l04FhqVEm4vj/++/hzYHF488Mf4Ly3t/boTl5w7GtYeN2696iwcPNoNzhfEX97+CtddPgmnujx4o3E/Fl5S22u/SoYQOnu4tMqxJLll1qxZYBgGHMfhoosuiltms9nS/g73+PHjsX//ftFlU6dOxaZNm3K6TGqxg6DxI0rAgMFvXhaflOzwCTuuuXQCjFoVWo7ZEAwBGpU8xWPh4u/hjKg0oMykRqfNi+f+/iV+feO56LQ5sSEyo2zsoPjWq6bgyEm7kJk4WwBvf/oN5l80DqOHG2HUKuF0e9Fh9eK3r++MXI2akHTH/YlVO7DyJ+fHDaLHVJfCanWGA9ZLx9Du5vHEqh0pB4k5/zzYIJZp4+728rj026PjPsuwfEEd3F4+5YA71aR9phQTmum1StFGS68V379apRC9+9zbxEwcFxAGz9Fz/sO6L3H/Ld8W/Wav0+OHx8tj/kXjhDviHi+f1yv8cXq7a8kCe7+2QcbI0N7lwqQxZqhYedJd5ynjytFld+PpNbuxqGECHG4fXvvHPiGODDoWxzpc0KgUKCtRw6hRYOxwI+ZfNA4jKvV47R/NcZOoRQfooyr1uOvaaVCyMvD+EP64sUn4rFjsYG8ollur3Sv6DXmrXZrJ+Ab67pmlRLzsm1NMgNgfbq8fa98/EFcPrH3/AH6ysB4lhVBGCUlDIT7tEwqJT1AmdrNsoOi0bMbtvtT8fDD+hoRKjk1bWzCmqg6Qy/vewVAn0o+xOX1J88N8sL0VS2ZPiLsZcO33J0LGAEadCnK5TLQMHTnhwMaPw3NRfbTjKC6dMQoyGYeX39or5GmDjgVnC7+u0LjtCBZeUovfvb5DmP+qukIPo47FhFGlkDHAq+80oWHGKNicnGi/amSlESVGJTxuPzjenVY5lqS1WrlyJUKhEJYuXYrHH39c+J1hGFgsFowdO1aKwxY8p4fHvAtroFHLUTuiFE0tnXF3tmMnJWMVMgSDwBN/+wIcH0CVRYsbr5iMW6+agpNWt/DR9Zt+cCZ6XN6kRz6vnzMJ7V1u/L/Zk9Dt8OCdTw/jq6+tULFy8IFgXMYZUWlAp80Nry/+3Znw93rDV3g2ftSCxQ21UCvlQsZNNZlSl4PDyDKd0NGLvbvYW8ewz0EifYc3bZk27hoVizXvNcXNOrzmvQP4+TVTUx+EAW6YMwk9Ll4YrJbo2JSfSOD4ABgAdyw6W5hoyRd9P1OZ3GgxDLBk9gQc63BHJvtisGT2BDC93Njq7bH1SpGr4z1uHq+83ZwUT7++8dz8D7h7u2upADq6w58ua2134L3PW7H7wCksnV+HF9c3CXedly2og7lUgWBIg5vnTYZOw0KnVgj1DoC4SUqixxg5TI9hFi2Otjsws746afK6Z9buxvyLxmF1436hQYt+ri1psDcEy215qQZzzhsT94TQ4oZalJs0khzPliLfS3X3jGXloq9usGzuO589Th/0WhajqgzC0zc7D7DocfpQleO76YRIpRCf9vEHQuITlN14bn4ChPAd9h/N/Rb8AQj9hHHV30JIgk8Opsvm9OGcM6viLjovaqgN16/q/D3qXhRE+jH/n70vD4+iztN/q6urq+/upHPfNwlJIFxyjCAiEREhHArIIB6I4BzOz92ZcdbZmWV23WPG2TmcHXU8xlEZBBSFERwwgAcjiiggh0DClYQrd6fvququ/v1R3ZWu7qqQQJoEyfs8Po8k3anqrm9963O8n/d9dMEIZKcaYTHEUvU1apXYALEYKFhNWjyz/iBMBgrzpxZh1fwReP7tQ5Lr8N6eM2Ii/d27q9Bq9yLJqhUbjpH0cgCYXJWF598+DJOBiol/HppdDoOOwuSqLNTubcDsyQUi2xcQ8pk0mx6XOlzQUCaAIFCWl9ir+zguEeVNNwk362effQadLj4BxnUHAuh0sdh98Byqx+fi31/eG7Ng2uw+UZSMplRiAh2Wow8n3zRFYsXcCqQnGXCyqRNuXwCH61vws+XjceRUm5BU+3nJIloyoxQ8z0sWXnjxLZxeAgBQEfKd8rCw2rraOsybWoRpY3LE9/a1YttTUj0YK8DXK/r6cHf5OHkLLh+HJIWOnMPFwM9L6dtLZ5bC4WKQJHPNeD4IPqpyzgeDiiIiwSDQ4WAlf3/JjFIkJegVP7degbauU6Ct9ySGMtCQK06t2XYMP3lgDM6ccUlo8OE9ZMfes3jygXFo7/LBZtHCZKRwuM4uKcYtqi7B7gPncOekfBBATMD1zIaDePzeUXB5WIwsTkKXi0XNLYUAIBYHGS4gXsvw3hD5QBtoquRAgyRiv9d1tXUYVdK/Ct5hGLQKc49xCgY9Pg52JyO5N++bWQqrmYa1nwtVaTY97ohi3zwytwJpNuV9YAhDGHSIYPt4uAD0FDngbB9GQZCQYQMK74g/aI0aF9s8eHHTEUm8mxinYmVvQFGkomPKNw79rAUiF8c8t/EQ5k0tQlG2Gf+0ZDTOXOgCHxTGDsMNkCSrFg/PqRS70LNvLsCrW4/BZKAwb2oR0hIFR6YNO0+gze4T86T/+PPeiHhxGN79x2nRyjiMsDBszZhYu+ROJwOSJJCXbkJuepmY7C+uLoFBR4me3eHCQXqyAcm9FESN6xCUWq3GM888g9tuuw2VlZW47bbb8Mwzz4Bl2XgedlDC4eHwf29+JdstWl9bh2ljckBTJCoKkqDVqJCSoEfNlEIsnF6CB+8qj3nPi5uO4PDJdryy5Rg2f3QK48rTcaJBmNn2MgGRkhF+/drtx6FWq8BwAYmAVDih3n3gHHLTTVhcXSL8LPS7JTOGYdeXjeLfUZMEctNNWDi9BGY9he/ePULy+ssZzyuZ3lsNGjFJ7MvfG4ICgkBZngW/eGQCfnzfGPz7IxNQlqc8z0krPFA0PXSsjAaNhJrMcAGs+ftxRYo4oRJmdH6//gD+8OZB/H7dAfBBKHas/X5eFBMM//2124/D34P/rkatilnDi6tLFOc9E83y6zFxgGbFIhFdnJr9rVw8eNdwnG/2xtDmw3vIsQY7jp3tQJeLgcvLwu7o1liIfG14HyrItKDmlkIkWYVOYZJVi5ophXB7/QjwQTR3ePHbNw5gw446bP7oFGbfXIAkq1bcN8JguIDkgUZTJNRqEu0uFhc6PHD4/IrMh28i7E6FwqIrPs8+hvXjkXkV+PHSsfj+PVX48X1j8ci8CjBcfApHQR54Peref/3vxxGPJhTLBfDCJukafmHTEbDcwCUFQxjCFSHE9qksTBbZPwMJs0GDdJseC28rwcLpwn/pNv2AioGxbEBMtoHueJcdwCKApwfHlH4HATi8HBpb3fF/bkYfSyV0o594dg9Wv7wXT/zxExxr7Lqqc1BqsqlJAk2XXPjN2v1YV1uH3QfOITvVhHtvL8GPl47ByrmVokf2tDE5Yk4TZt4+9/YhnDrfhVElqQDkrYzXbj+BB+8qR7pND1VIO4ymSFQU2rC4ehhSE/Ux8U9xjhWkisDv1x9EwyWneEwvExCT7fDff27jIfgYf6/v47hyJp9++mkcOnQIv/jFL5CRkYELFy7g2WefhcvlwpNPPhnPQw8ORFSK/HxQDErlFp9KJVhr/W79fiRbtJg9pRAqFSHQtll5m4TIDtP6kCo5TZGKx9DTQhckL82M+2aWgvPzKMlJwPZPz2D+rcVwuBiU5Frx0wdvgo/141yLq7s6BGGhZqWYJD7hS2aUisqCZXmJyE7W91jpuVzn9Uac94wLVMBXJ3uvkuzyyj9Q3F4OUKBtOhVorE4PJ6s6zvuBnZ83xAiz3Xdnuezf9zAK3WdG+SGnJlVIMNECbZ31Q6dRg+X8oEj5hNtm0ogCYZFVy8Fg4RQuTpkMFFbNrYTJpEFnFwsfK3+tQAj36IiiJBAqAnsOnkNpfpLiaxkugKNnOrD5o1NYPqccAZ6HiiDQ6WTR3OlBQaYFr245Khkz2PbpWbEzvjXkcAAIx418oC2uLsHv1u2H082JNoJL7ygbUAucawmrWUnfID6BrMVMo9PFoLHZKVK8M5P1sCjoKVwtlK26+j8otiuIM9pd8u4GQxjCEHoHlgtgwbTimG4yy/kBDEzSrSjI6O5/QcbewqinkG7TY3JVlvgs3H3gHIy6fk6hrqX4pcyxnnxgXL9rgSgxV9OTDN3d40lC9/iXr30hnsvyOeWgNWSPOY0waij8W87OlOECaGp2YsG0YnCcoIJelpuA5g6PhJ21qLoEnx6+gJtHZqK+0S7Rpgpf9/QkvUKM7IfDw/Xq+4lrwr1t2zZs3rwZCQmCIXhBQQGGDx+Ompqab37CHbWY759VJum6RS++nFQz/rzlCBJMNO69fRhOne9W71tcPUyR6p1k1WLamByAADh/AEtmlMLL+OVptbTQsW61e7BhR31EIjYC7+05jcZLLiyuLsGYYckwJung9nISYbVV80fg1a3SCs/a7cdFKilNkZe/MS+XVN+A857xQF9Vkq1XYHuhRGNVUh33B/y47Sap+NaKuRXwB+RVx41XQJMNBHkEQl10kX46rxIBpdZbELAaNJIEXU+Tg2LdmXVq/HDJaIAIgqJUuNjmwXNvHVK0p9BqBNVMPsjDbmeQaNGjqdmluHdEjou8/Lej+Nnym3DqXPe+8+BdZbJjBjmpJnh80r3hu/eMRGqiDoVZFpw614WtEQ4IYW2KgbbAuZbg/HyMy4Mw5x6fhcUwQhU+Wvwo3WaAIQ5z1UYFyz5jHK6tkj1gPI4lIlQsv3SyFXpaHVeLtSHcQBhk60pNkrLd5NUrJgzYOSUqFisHrrimUZNYcGuxaIVIUyRW1FT0yAC8ElxL8Uu5Yx072yGbVF7q9AIEcUXrVa7Jtqi6BC2dHnGGmuF4rKuV5hYv/+0olt1ZiuVzytHhYGTXhIogUFlkAwAUZ1tlX8PzwIubjoh5yi9WTMAL78Sy/h6/dxR++8YB1NxSKP7uwIlmzL+1GC9tPqIYd7V3eaFRq3p1feJKKVdSOhxIBcS4IoKe0e5kJYsZQaGDHTZZj0y+H64px5+3HAEALLi1BF6Wl8z/7djXIEuTPVDXjDsn5WPzx6ewYUcdnl6zH5SaQHGOFQ/XlMvSank+iL+E5iAW3laCmlsK0dzhwaTKDDCcMGfo8PrhcHPYsKNOpLXXTCmEw+3DxXaP5CNHUkkZTpjbvCxCSbUorPYNXQ4DiQ6nT3bj7HAysq/ngzxWza+UrJlV8ysR7KHN6+MCWDJjWMwIghLVk1KrZR/ulFo+QVerCdw3s1Ty9++bWQq1WpnfxDABvBDlSf/CO4fBMPKfw+Hh8N+vfYFfrfkCf9hwEL9a8wX++7Uv4PBwise4ZggCmel6qNUk3F4/nntL6MKH7Smk33spyvITcbi+BXWNXVCTaqyrrcOOfQ0xr11UXYLdB89hxdwK6LQkirMtqJlSCJeHg5fxw2QQHhxJVr3smAGlVoHWkHhi2Vgsrhb2hje2H0dbpw8USWBd7Qkx2Q6/L1yh7tX+8A1Aq92LrSFhyvD+uXXPGbTavXE5npvx4/2Qsu/C6cK+/v7eBrh7YINcDfhgUPaZxMdhM9dQKiyZURqz3mkqTuEL0U2rfPK5Pf1CqxzCEAbjunJ6WDEWDFPKTQYKTs8A7tMqYEVNheR+X1FTAWIAxcDdXk5MtoFQ7LL5iMAA7Ef0pHHUa4TykMMnW3ukpMsdK2zLFQmaInH6vANP/PETHDrTCRcb6NuajWiy/WjpGMybWiSInLE8po/LRe3eBiRbdTHnYjJQyEw2welhkZ9hxvfuGRHzvLEYKHgZP7483gxKZpxwUXUJdn3ZCIYT7EwXV5coMid5PgiTgUJumjBau3B6CSZUpIsjeXJx13fuHok9X51XbDJFIy4d7i1btuCuu+7CHXfcgUcffRTf/e53kZGRgfPnz+O5557DzJkz43HYgUVURzvawN3LChds2pgcEATw2KIqBPggOh0+JFp0eOiucgQhJBl+Px9jKbPn8AU8sWwsXF4OHh8Hng/i5pGZ8DIBiaDRu7tP4/5Z5TCHunYX2lzwB4KgNST+tOkwpo3NkVXme7imQlT08zJ+BAIBXGz3iCJIgCCuptQtC///kMDZ4IDVSMtSoCxKlNagCkdPteLny8fD7mJgNdH4YF8D0mx5iscw6SiJoqSKIKBRq2BQqPR1OhlZqyS7k5FVEKc1JFISdJLus5qMfSBEQmn8IvpnYdhdrPw5DQbBLwroaGMRDAr+4ouqi/HenrMSe4pUmx6tnV5QagKNFx0ozU/C9s/OYs5koUrL2AP49PAF/PO3R8Mf4GE20AgEAiAn5oHlAvj8yEXcPj5PIqq2ZMYw8HwQrMz3xnCCqEiHwweW40XlTgB4ZsNBPLVyYo8d9Rtlf0iy6OB0c5L9k6ZIJFniI/zD80E8eFcZDDpavH+LMk2KgoRXC7eXw9HTbXjygXFweFiYDRq8+/EpZKUaAXP/0j6dXg6UmpDsM5SagNOrbFl4NXB4OHx8oEn4bG4WZqMG7/3jNDKT9AO/JwzhusW1tu7rDawmGvdMK0GnkxHvrXumlcA6gKMaXQ4WR09HxCJGGjs+PwuTUYMUw8CcV7SDDxCfERqrST5uk31uyomboReU9ND7KCrWZnj3gXNYPqdcIgwWqQIeFjvLTjH2jeYeZq5mW5Bp06M01wqaVsPpYqGhctFq94rnkmTVYtakfBj1FP771X1gOMGl6YG7yvGdu0cgwURDpSJgdzIw6igQBDDvlmJ8faYDO/Y14rFFVWhqdoLnIYpR0xSJVrsX62rrRLZx+HMnWbWYfXMBjAYNHppdgeYON3bsa4TTzWHV/BFR8aFQaDYbaTS3e2A2ULhtXC50vRQKjUvC/fOf/xx33XUXfvSjH+G5557Dv//7v6OlpQUpKSmYNWsWOu26OwAAIABJREFUvvOd78TjsAOK6M1UzsA92aJFbroJLMfDqKNAqoAgz6PxokNCPXx0wQjcM60Ef363e9Evri7BxTYXXnvvOB6/dzQ++KIBEyozsXb7IUmgTKlVkhnrRxeMgM1M49mNhwQVdILA9HG5MZ2rlzYfES3JmpqdMOkFMY3IjvbuA+fw6N0jxE5b+Ly27jkDmhK8eYdmruOIPqhH+vkA7r6tWKTOCNTqCgR4+QdEIBhARWGyRD3/0fmVCASVHyicn5e11Po3BeXO5NBGGk2ztVnlA3SO43G+1R3z+gSzVo6BLhwjQSeb8CVb5d+QaJE/p8SBng2lgBMNDlxqk37+SNXNzR+fkoxz/Pzh8Vjz3te4dUw2Es1aodqrIaEmVfjfv+6XfD69Vo1NH53C0pllIsUf6BYamTe1SPTUlqP0r9l2DNPG5khOWShs+GXpY7V7GwbcAudaQqtRyVLKtZr4dGUTLVqcOe/A/67dK9n785PiM/Nos2gxoSID//WXfRKKZWI/J9uAsOZeldln4qUQzAYCuCnqsz0yrxIsHwAwlHAP4cpwra37eodYH+4lM0oxkJt0coIO5QXSWGRFTUXcLBV7g0SLPM29v8VVzXo1Fk4vidHeMRsoqaaMwqx3ZpK+56JOxPvCytvrautEL+q0kGDe40tGg/MH0HTJhU8PXxDHVgGA1qiuvFAUBMxGCj4/jw4HgwQzjdotDeACPJbMGIZtn55F9fhcMByP9z84KdooG7QUfrNWqh3F8zzOtbhQmGWFUU+CDwJON4dXthyVaSiWY/0OofitUatEG2WTgcKCqUXwsQH8558/j4mzHG5GNj50uBhs/vgURhSPx4ubj+Bny8fD0osuN7l69erVffvGLo/nn38eq1atAkmSmDBhApYtW4ZHH30Uy5Ytw4QJE0Be50bxXq/QdYpEs92HnV80df+7w417bx+G4uwEVJUkozjbivwMC/667Tgyk42CkjNB4OxFJ97aVS/eIAE+iAMnWpGXYcFX9a3iz46f7cSw3ATsP9GKrBQjbq7KFBdg+DXN7W6ML09HWpIB5QU2XGhz4ZOvLiItyYDsVDNmTMhFTqoRGorE7q8uSM4/wAdRWWTD5KpMvPPRSXx2+BJWzR+JfV83I8AHQyIGFagsSMCUkZmoLE5GXoYZBIDcNDPmTy1CUZYJDjeHZrsPBKkSKX8GAw3PQFKUrgCGXlRS5dZB3BDaKP/zL/uw84smfPDlORRmJSBZIVn1cryYZAHC9f2qrg3TxubAIFON8/mDeHrNl9J1WNeK6eNyYZDxyAaAS3YvPtx/TvKzAB/E+Io0JMrMWzl9fqzdfhy3j89DeaENpXmJ+OCLJtw0PE3W87rdxeC5jYcl53T8bCcmVKbDorDRcwEeWakmHD7ZLq7bB2cPR4pVB42MUrmPDeB3EQln+BjTx2aLnfRrvhYo4EKrD/WN9pi94diZDsycmI+T5+xYVF2C9z9vgMcnKIpnJhuQlWKCSa/B/67dj6/q21CWZ8OGHXUxn68sPxHfGpkBng8iPcmI5g63qLga4IMYXmDDri8aMW9qEY6f7RS/yxU1Ffjb7lNo7fRheL4NR063i6dNUyRmTcxDVpIeU6oyMaEyHXdMyIXVqMHkkZlQkwSCBKFIBR7s+0Rf1sGlTi/e23MG988ajjHDUnHzyAzUft6A4uwEWBRU/K8GDq8fT7/+ZcxzZHJVpuL9ezXocvvxmzei9pf6Ntw8MhPGXtLreouWLh8++DJ2n5lYmY7EOIjQOX0Bmb2zFbeMyhb3qSvZEwb7+lbC0Hn3fIzLIbwO/EHg4wPnEYhgndAUiTsm5kIfh3u0N7B7/Pjjm1/FPGNuHpkJUz/fx71Fl4fDX7YclcQJ2z49i7FlqbJxwrUAGwiiMMuKg3Wt4rNw5bxKJJq10Kq749zL4XJxgsPD4X9ek+7jB+taMaUqU8Lsc3g5/GeoIBh+3ZfHWzBqWIrsXjmhMh0WvQYOL4fn3j6E28fnIT/TAkqtwpjSFIwpTcXrfz+GTw5dQF1jJ6qKU8ByPAI8j6IsK9bvqMOhk23o6PLi1tHZyEg2wmLSwqRTixR2Sdwv9zMAIIGDJzvw6zX78fGB8/jHwQuYM6UQ9U12FGdZcfuEPDy38RCqSpJQkGnFxg9OojDTijfePxGzRotzErCutg6fH72E8oIkHD3VintnlCHRrAVJEhhZnIxpY7NRkGkBx/H49PAlAMC3RmTC6WVRmGnF1DFZaOn0KcZZKhWwfkd9TPxUPSEXw3Ks0KhV+GD/OUyIiHl7WgdxWb08z+Ozzz7rcVZ74sSJ8Tj0gEFOiY+P8ih+uKYCD80uR5ebxct/O4K7p5VATRLy8wRR353QPeJFEQBHVLU07EEXKRYVpoKQJIHX/34cNCWoELZ1eWWrdRWFSahv7BTnL8+1OEWF4hFFSchI0AIBKTVEFD4zUDh2VoHKMoSrRl/paE4Pi8rCRMyeXCjSIt/9+JSigrjDLa8E7HCzSFYIanW0vOe1VuGh6PYqe31DplKsSA/vgcbV6WJAqVUSGrqX5dDpYmQf1oOi6xCmeGlVIAig+aIPnQ5Gdq6J4QLIyzCLc1CRDgIAUJhlxX++8nkE0yYoOxulo9X47Ruxe0WYfoUgJNT13HQTmppdWLfjBJxuDt+7ZyS0EZS08P0e7mCLwocEcKzRi2c27IvdF77BnW6TQYNJlRkSgcDF1SUwxSHZBoAul9L9yyjev1cDu8Lx7C4GaZb+7foY9fLiifESTetU0L/odPpkR1+GMITewM8HZVkv/jiNffQGinZXDAdgYBTB3V5WPk7wsrJxwjU5J4YDw/olYy0M64eb4XrV2ewteprhFuMRAnBFjZK22YU9SykmC1PSXTIx2OP3jhZZseE8IpIlu7hamOs3gUL1+Fz8KtSYoSkS/3TvKPgDQUncL/ez8DO/rYvFmyFtqHDHvHZvg9hBd3qEz5+SoO9m3vWgUB7+/w07TmBR9bAYdu8nB89h4ohMrK89Ib5XpyXRaucFhmDoO5T7+4IQNS/7u7MXuqCjKdhdgpibvgch30jEJeFmWRY//elPFRNugiCwc+fOeBx6wBCtxDfvlkK89p7Up/SlzUfw2KIqbNxVj+rxuXB5WWSnmmRvkLDFTvTPwvTMsrxKyfvkPOjW19YJ8xbJJhRnWzCqJBUuL4eCTAsemFUm0oFpisQjcyugVhOi1Q9NkWA5XqSrTipPlQbIUWriDrdyQpgcl2/8xkJfZ40TzDQmjciU0CJXzquE1SwffCupDivNYwMQRSqiAwglz2uDjpJdo0qKqCaDfKBt6sGXXUtTcLgceKH2iOScslJM8ueklbf76EkJvV8RYi6kp9Bo62Bhd7F4NjSyoeROkGimwfkDEpXwpTNLoVGT+PpMu/j6JKsWeWmx+8v0cbkxfpJhJfHNH5/CipoKbN97FgBE6vqPlo5BdqoR08flYMywFME2Dbishd9gnFu8FvAyAYnwJcMJ/y7OSUBCD+v3SqGk5G3QxSfBV1ISTojDKEYgEMD37hmB860eieWZ0njM1cJm0SrcdwOTgABAOBz4purN3gjweDlRSBEEgKBgrZiTZgIGaITJZJDfN0xx2jd6A4NO06c44VqA5yE7PvfTh27q1+NcdoZbhkoeLpY73Rz0WjVWza9UpKTTGjVqQ+Ka4b/f3OHqMY9YF4oNAMS893ybO+b1Zy46JbZa4Wf+6hXj4XTLN10MWjU0lDD+RlMkLra5Y77r6H9HxhrTb8oRrV3Dx3xu4yGsXjEBOz8/KyqNM1wArZ1eJJjokM4Wr/j3VQSB/Ayz7O94Hli7/TiWzx6O+2aWitZkl0NcEm6dTveNS6gviwglvi4PC6dXXgmPIIDbQzMK+Rlm/GXLUSyqLpEswBVzK5BgEmYw+aBww82/tQguD4f39zZg2awyGPUUHq4px0ubhcBZyYMuNVGPt3bVofqmXIkQwoq5Ffjht0fD4eZgdwmUinm3FIodrvDMQ3TnSgn9oq44BEUkWrRYMLUIXW5ODDoXTC1SnDXmuCBq956N8bxeNqsckBmF4nl5G6OeWCoEAWQm6yXiJm4vg6hakYhw9TISDBeA08PKdo5UKkGdeO324+I5LZlRCpWCpzYg+IrKJTr/qvBg9AcCks04zETxxymYj4bDwyEzTQuvFwBBiMk20O1OEHlNHplbgVe3HMXMSflYOa8CZoMGWpqCx8fBoKWQmaLHYgwDrVHBoKXw+t+PxewvqYnyfpKpNj1qphRi4wf1uGV0NuqbusS9ornDDaeHQ3aKSUi2Q8vCHEoe7S5W1jakVxX7byCudecorBrel/v3auC/hkkwTanR4XDGzJmm2Qz9fiwASLbQWDmvEn96pztoXTmvEilWGrg224IEBAG8vPUYAGD5rLKhpPs6hVFPyQop9lTUjjeU9o14uA30Fn2NE64FvD75eN7bzy4Ql5vhjixghy2BWS6Ah2ZXwO4UBI/f/ywi7qNJvLv7FPLTTDDrKDCcPybhXT6nHGW5VlQWpSA9SY9F1cUgQMAbYhIeONGMwiwLeD6IYbnC7PPFdg/SbXqsmFsZ02mXY9UJbCsOBEEoFlPau7wIhOLQMJuX4brVwddHrdFwcxAAbBZ5NqDDw2LSyCy8uOmwWCjg+SCSE3RoavajoigRHXaf5B5It+nxcE0lXF4WpIrADxZX4ffrYgscDBeAXqdBmoHq9ajDwAxEfINxvs2DphYXAPmqidlAw+3lsG7zUdxzWzEutntE2ma46qmn1fjV690G8I8uGIGsFAMutXvw0OxytNq9+N0bgujBvKlFSE3UQ6eVp5J0OLyoLEqJ6WhF+tKFQYUWcl66BamJOnzv7pGKnatoKJnb3yiqxPEGF+DB+oMxQSenQEdjWT+mjZN6Xj9cUwGWk/e8dnv9stX3zBQjYJFPEHjwcHkDEqGmlfMqYTLJW3BZ+uj13dHlw7v/OCU5p3f/cQqpiRVIVnhPX2noapIUk+3wa1/afARPrbw2Iy8GswqHTzjxp3cOS/wfAaG7vHXPGTyxbCw4Pw9KrcIb7x9HfVMX7K4TeGzxKJxrduKlNd00qu/cLewVJr0Gz799SLK/qFRAWV4ifGxA9jo0R7gS5KWb8P8Wj4JBS2HDzhMYU5ra3dmOUDu9nCLqjbovmBU6R+Y4UcqVumdZqSYgDlM9apKE08NJ9qP7Z5UhKUHf78fysgGx6AaEhf2OC92leOTcAaCqOBG/eGQCOkPCPgOVbIfh8Q0Cm8IhXBVcHi4mcRCo0tyAdbjdnh72DfOAnJLy3jmAz4wEhc5zQj97gzvcnJhsA8Je9/zbh/HUyomwmTRiATvJqo0RBlsyoxRB8BhXni6J+xZVl8Dl42DWUdBQQod74fRiWI1a6LQknG4Wd0zKF4v94VgRBAsVQeCOCXkSwbLlc8rBcQHYEvR4cdNhUVw1nIjq6Fj1c5oioaFUYBUo2l+faRdo+hwPNUmgKNOMFXMr8OKmI2iz+1C7twGP3zsa51udKM1LRMNFh8jwK8u1IsmqExuU4cSfpkhhpJDxgwvwklzn4TnleGXL1yjOtmD2zQVQqQg8sWwsPD4OXiYgyb9WzK3Aj5eNRX1jZ4zy+bkWF4bnJwi6Jb2oUcVFMvUb67N9Gbh8fthdPuSkGUFrVDEexavmj8Cldhde2nwUJgOFrBCdvM3uw4adddiwow6bPz6FxmaX5IZ7buMhfHGsFZyfR5ebERVb2+w+rKs9geffPgSSQMzxFlWX4O+fnlXsfkd66Qk0Dg/W1dbht2/sBxEM9sknO0ypjzy+2BkfwlXD4/Nj26dnJD672z49IwpdRUOjUWPXvgY8tqgK37+nCj9YXIVd+xqgoeRrbGajRqy+b9hRhw076+B0cz0+5IigSuwCAcKa+tM7h0EE5beVAK/g3auwXySYaNlz6smyJClEB40ETZFIUqiMuxU6ke5rEeBSQFu7X/IdRp+7080hyAex6cN6nL3oQKeTEeesvqprExku4fN+9q1DaLzkwn/9ZR+qx+eKVn8bdtZhXW0d2rt8UJOqGH/zsF9l+N+0hkSnw4c/bRL+XmluImxmjWQvUKKLR3qY37D7AhHEynlSX/uV8ypBEPF5NhoN8vdvvOacVSpCohzOcAG8uvUYSFX/mwp7lLpLCntfv4AHtGoVLEYNtBQpVQgewhCuAGaDRqTkLpxegpophajd2xC3Ilxvz0lu3+hpbCveCAKyccJAZhVJCRrcM70Emz8+JcTpH53CPdNLkJTQv9dOiRH25YkWHGvsQmIovpGjfq/dfhwqgpTtIKvVJEAAdieDOybmYcOOevzhzYN4/b1jSE8ySph14aaD1xeAlwnghU3dDQmTgUKHg4GWpnD2ggOLq0tw/6wymAzCuOD0cbkozLTIXr8/vvUVzpx3yMZngDBy+M6HJ7Fm23E8/df9YLkAFk4vxmMLqzC5Kguvbj0Km1UHj5cDQQCP3zsaP1wyGjMm5eM/Xt6LdbXCdblzUn6oS10BAkH8ZctRPDynEkvvKMXC6SUozrYgJ02gio8qScUf3zqEV7Z8jTfePw4dTcU0YF7cdATaEDNw88enxGR7UXUJduxrgJfpfSU2Lh3uAwcOxOPPDm6ogDOXnOLcdrji/6OlY+Bj/TDoKHh9LEg1DYYLYOHEYrwqQydfOa8Sa98/LvnTDCcIBDz/9mE8+eA41NxSKFZxwr+vP9eFXV80YuH0YtjMOlzq8IhzHcU5CT3OiUdWp8J/r8+UzwhKfU8znUO4MvgDvOzsiz8gHwn6A35Mv0na4X5kbgX8AfnNQUUQ8vTtHgLoDoe8cFKnk5EVZnO65avpGclGpMnMRxoNaqycX4k/RdCrVs6vhMGgvG1FaylcbiTCahygDiwFHKzrgNPNiN+HjhbsKNZuPyGpJq/bcQL1TV04fcEpzlKtr62L6YgD3YW08IM2ksVCUyRsFi3WbDuGTieDxxZV4WKbG1kpJry69aj4IFkyYxheeOcwJldlwenmsHxOOdbXHsddNxd2d697EG6R7B036L4Q5Am8ubNOstbf3FmHxxaNisvxfIwfS2eWYs3fu+/fpTNL4WPlGS1XCyXRtC4Xg6R+vnf6yoy5avSCuTGEIfQVNpNGli5sM2sGrKDjY6/tvtEbONysItsudYCYAO12VoxDgFBz4e3DeGrVRNj6cR9SYoTxPETtk8cWVqGpxSm7/0bPPod/7nCz0KpV8AeCYnwRLtxH6r5EvgeEYAEWvg5ajQpajVostIYTaZWKwJ2T8vHenjMozbXCHxA2yccWVYEAcKnDg62hrrDcmFyYeRnNwn116zHMm1oEvVaNgkwTKgpHor6pEx0EoNOo8ds39ou6M9EFhscWVUGtIqCmSCyqHoYulw9ZKUZ4fH7cf2c5HG4vFlWXgOW6GZGjSlJxTuF7PXyqDbSGFEXzEISYX5EqAi6fv1e08iFKeX+AAJpaPTFVole3HsPPlo+HhiJxsc0Jk4GGTqNGuk2PRLNOlk5uNlAiVSKMsEAAwwVQ32jH5o9OxagKqwhC6GTtqMdDs4cjL92Me28vhU6jhtlA4dEFI0RRgfBG73Cz+P7CKrSGLGzCCXy6TQ+DlkJjq/uyfs8SRAmpDQUn/Qeakq9cKnleU2q1pDLJcEKl8hePyAuPtPdA31YKoJWEk5Q60FaTRnaGzWqS//uddgY2M40nHxgHh4cNdQKCsNsZGBIVqKt9TPD6mqD3C0K2X2/uEEQN127vfvjcP6sMi6pLkJFsxOlzXdiws05SWAMBqCJUO3sSE2G4gCjmES7QPP/2IcyeXAAfK9DsWT+PjR/UYXJVFlQqICfVDLvLBy7AIy000x0+h9MXQmJneqpH4RarQRPrGa+/sfYFh5vBxQiKfvfP4zOHqKPVUKsIiYquWkUoOgZcLYxaeUHD3qq19gWkisAjcyvE/SxcPCTJ/u+mA4Nb6I8ghoTTrlvwwMjCRDy1ciI6XQwSjPSAJtvAtd83enVOGlI2TtAOkHUaIDQX5ERrOxzM1SfcUc/KHy4ZjV9HULjvn1UGL+NHzS2FcDMBlOVakJKgwzsfnorZf2mNPJ3bbNCgzcHgQlusQFrNLYWy76EpQQdm3fvS2WmTgQJjFxLVdbV1+Odvj8bp8w48UlMBl5eTCIaGY4MwwmNyjy2qQsMlJxAE3v6gHndPK5FNdFMT9eh0+KBWk/jtGwdjzkNJwbyp2YmKQhtWv/AZctKMmDE+T+LKsnJeJS60ODB5VLZIRdeoVUi26hQLHls/ORND4390wQhs3FWH++4cPpRwxx2hG8XFBHDynF32wttdDP6w/iAev3c0zl50QEercP+scpy96JDQyYFu6oXcnM97e86ApkjBZzdE3whXd5bMKEVhpgk/WjoadicDl5dDu4MBIGwKq+aNwPZPpYn9+5+dxV2TC6HVkNCoVWKSn27TY+H0Evzrnz4dqu73BdEJRm+LFL2E08vJbvhOL4c0mRnrLgW7qy43K9t9TjDTCsmwcnIQpn5FC64oIaBgixJQmEPX0mqcbLJLhOIsBgpF2VbFY4RPrNeFn4gE3cMFoKfI+CXbKsDJ+NHRxqLT4cPkqizZqu4Ty8biUrtLUrkFhOtRXpAIBIX/lxMTiWSq0BSJyqIkpCcZcL7Fjff2nEGCiUaiWYezF7twqcOD3QfOYd7UIgSDQSSadWi45IA/EMTsmwvQ6fRJ1gPDBeDyceAiLD/CPxcdEVKMgkVgw43dITQrMCfi1ZUNQl5Fd7VCge1q4WUDsmuvJ8u+KwUfDCLBpOkuvBk0CPhjrTP7C4NJ6I8guhXKdbQaf62tx5LpxUNJ9/WKIECRBIw6SnDzGODryPqDsvvGz5bLF/KvBXRatWycoBvAIoDZQGHWpPyYczIZrnA/CMeLbhYEQYh6K+Fn5X89Ogn7jjWDpkhwfh4bQl7Qmz86hccWViEnzRjTRFtUXYJNH52U3ZcdbhanzztAa1Tdz6VQsnrgRDMerqmQCMcuqi4BAcTEJ+uiWHMMFwDL8fhofxMKM8uhIlR4afNXMbFB5Hucbg4NF52S2EKnlS8UdDi8SLMZui3Cos4j/Lro9+WlW9DR5YPJQGHuLUUx7//TO4fxrw+Nx1N/7tYfenzJaDS3u7B8TrlEYDqyuRlpk6rXqkFTKowrTwfr791zbyjhvlJE0M4W316CzBRhHttkoERPORVBwO1hsXB6Mfw8j5w0I5o7PDjf6sSOfQ0xN8byOeXYsLMOFKnCz5aPR6fDh/OtbrFztKi6BK9uPYppY3KwYWcdUm16PPnAOJxrcYL1B5GcoEdLh1e8OcObgl6nxrEGO4412CUfYWSJExOGpyI/1Sh2BA1aSky2gcFV3R+0uAYURJuZlt3wlVTKTX30rg0EeFlKeYBXLr+7FKhfWakmWepXXynlrJ+Hjw1IhJkWV5eA9fdzSyCUoBfmJKK11Rm3ZPtsswtqUpiNtlm1cHrkabkBPoiv6lpjHoIr51fi+Y2HwAW6FeXf23MG86YWITPFAIOWwoubDkc4DVRgzXtf467JwsMuyapF9U1Sj81F1SV458OTuH9WOX79125/zZXzKgEExRlwQCjGdTpZnG/tkD3voiwLCtKMPVoE3ih7iNfHxYwHLJkxLKRqGweKt8J4h93JxIWGadRF2csEBcuYHyzuf8q8WqVCU4snZm8qL4iPTddgEfoLq5NHdhu9jH/IIux6BQGcuuDEqQsOsYBcmGFGYYZpwBJvr0++kC+I9A2MDR5BEEiyaiVd9ySrFkQc9CF6CzWpknU/eWrVFYir9mDt1Wb34ZkNB/HUqolIswlCyXIWW/OmFmHHvgahyJ1qRIpVh9+8sR8X2z0ABDo3wwaQZNXhYpsLLg8HWqNCbpoZj86vhIZSI4gg7p9VBj2txtsf1IvCqsXZCXhr5wlUFqdI9sCwKnpqotCU2/VFI5xuDudaXJh+Uw6cHg4tnR7Z51Ak0y5aYZymSFCkKibRDb/u2zPKYv6myUAhN92Elk5PzPuWzynHxg/q0HjJhZophfAx8kK6rRHnynABvLrlKFbOq8T62hOhBmkXslNNWPP3Y2IMFLZJnTe1CAAwosjWI9M0GkMJ9xUiTDszGSgUZFjw/NuHcP+sMjBsQCIvv2BasSQBXjKjFDkZRjjdnIROriIIuL0cnG4Oj8ytwB/fPIg5UwqQnWrEvdWl0NEk3vnopHBDEcIibe30Qqsh8dp7x/GLRyagrdMjuymsXjFBNoAoy0sUu3nhjmBjq/wMyDfdxudqcC0oiP5AUPba/iJfvoPF83xMwvZwTQWCQflkleF4UGoptYxSC6qRSogUWguDppR9sk0GeVsUpSpxQOEz//TB/vW+vBbo8nJo72Ik1+PRBSOQbtOLD0lA+D5OnevCxBGZIitFQ6lQkpOA5zZ+Jb52ayjRzkkzofGSE69u/RqP1FRg6cwy+NgAtBoSmz46ifqmLlSP76aQKflvn73YJQm8Wjq9KMoUFDxf2fJ1aAxlBP7rL/sUKWhJZhoIDq4O4UDBqNdAo1ZJ7ieNWgVjnMSIEq+xdzTLBXDPbSUx1ln+Xlb6+wIv45dVKf/Xh24C4vB9DsiYiQI8Pk4iQqul1Xhpy5BF2PUIl8+Pc62umAJyaqKu17ZC/Y1Ei1a+kD+AnvMONwuCAMryEkRGi9PNwOFmkThAzw+3l0NOmhFzbykSbVbf+fAk3F6uz5RyuXgxsgvMcAF8ebwFO/Y1YsntpbLPUj4YFEWTaYrE09/7FpbeUYY1245hYmWGRLtHSFzr4XRz+NF9o+Hng3hu/QHJ7yNVvGmKxA8WjYJZr4aqehj4YFBxfpvWkHj7w5O4t7pUdFqRew5lp5rwo6VjcKndDTo0MhD+3ar5lfjzu0fBBXiheZBsgNsniMU63VyM6nmSVViz4c+YbtPjx/eNRVOLA8lWPV7ZclRMkEEod89qaUiVAAAgAElEQVTpqBGFi+0eqFQEZkzMx6tbj+LOb+VDTRIxugvh4sgdE/LgcLMwGSi4vJyim08khhLuK4TdJXzRd07Kx8lzdlxs98DL+MXkGgAmV2Xhxag52rXbj+OflozGj+8bg5c2H8GuLxsxfVwuslKMsBo1WHZnKRweFlyAB6lSSW6c5XPKoVY1QkUQWFxdAptFiy27T2HlvEq8uuUo7vxWgezN6fFxMQHE9+4Ziexkfcz80GCp7l9PuBYJhtMjr6bt8nCyFHFSRYoq5ZF+jMtmlcv+fT2txru7T4u2F3wwiHd3n+6xY+Vj/LKzlYyC4IrRQOH7C0fiXItbTEKyUgyKSYiPlVcnFgRdrhMQQqDldHMx6pfPbTyEJ5aNxS9f67agCM9rXWp3Y/bkQvx5i8BoOXPBLrEk2fVFI9bVnsATy8YiJ9WIB+4cDp2WwunT7THWGGa9IDqlNO+kUgn3ePR80sM15UhO0OGplRNg1FKwh8YU5KjskQnJ0B4i2NPJUTX/NU5WVnwwiAdmlcWMX8SLdk2oCFAk8INFo+Bl/NBp1Qj4/YLAQD/Dw1wbD1wR13LM5AoQtggbmue+vuDw+mULyMU5CQOWcPN8EO9HMlUAvL+3AeWFtgE5HwDQa9VouuTCHzZ006WXzCiNi+Vgb2GzajFjfJ4kHl9RUwFbL5KsaCjFi+HvPzwz3Gb34VKHp0edlvB7O5wMynIs+Kd7R8cwVCNp4Bq1Ght3HY253mHWbPg9zZ1uMBwdUxyKnt9eOL0YTjcHvU4txgZy9PQ1fz+GVfNHYMOOeqGwH9FozEg2YOnMMrCc0JG/0OpCh4OBQavGj+8bg0AgKIk3po/LldxHF9s9+NXrX2De1CI0XHQCABbeViJo0qSZsWtfA1bUVODFKLbglt2nJNeApkj4A0F4GS409tuFDhWB3AwzlswYhiSrDj4mgC63DxSpQl6aGVotiVmT8nu9DoYS7iuE1USLAWp3VSfKY04hwD11vkuYxVg0Er4I2X1xBpYApo/LjelGvfy3o3hi2VjodCRIQgWvj0PNLcXY+EEd6pu6MLLELXtz2kw0zKlUrJCUTPNyMFX3rxdcUYLRx5lvowJF3KCQ0Ht8nKwfo8fHATKiTQznl1VBZxR8uwFAQ6nx1q56Ca30rV31ikrMPl8A7V1MjJd4SqIeRnWsIEqCgihbwgAplfYZKkFMscPBQEeTsnuBl/Hjpw+Ow5HTHdBppPNa4Wugo0mQKpVEXG1RdQlq9zZApyHhZf1o7fDiD29+FfP7BdOKse0zoRs+LMcq+30WZ1nR0OyMEeV7afNRzJtahAnDU4TCEUGIuhOR3t7R/txDe4jQlb2WSSLD+MH6+ah7a5hi8etqoaXUaOtisK72sOTZlZ5s6vdjKQm0Ke19/YJrMWZyFRia577+4FPYE3zxKhz1Ak43K/vcd3rYfncb6C38/qAso2Ug58rdXr+YsIXP6cXNggitgeqbmJtSvBjWZonUYZErbstRsq0G4fkrZ3Mapl8vnF4Czh+Qvd5ERJ2UpkikJhjw+1AXPPx55ea3OT8vWoDRoe9BpYJIyeZ5YdTojon50FCEOGa1YWedyLp0e/14Zv1B1EwplHiQh8/lpw+Ok4wvJVt1svdRVooRuw80yTYOhHMaBbfPD51GDR/L4abydJy+4JR8r5faXXh39xnMnlwAgECni0UGG4BBR8UUW9odXiRAi3W1dajsZYEqLj7cNwLMejVSEnSSjo8qFJBGQvbfwbCSnjtGSXpdbR3Sk4zITDbILqq6xk502Bl0OHz4txf34n9e24f6pi4AwI59DXh0wQjxmNGBrllHXd5bO6K6v/rh8fjldybdUGJHV4I+ew2HZnieeHYPVr+8F0/88RMca+yS+KJHIxiU97AOKlwYg46SVTVXUhGmSAX/RlL5YeL2caISc9jD82K7R9HD2uuTp4YqJSE8H8SSGVK/6CUzSuPWtetXEMDRs3b811/24ffrD4BQ2BssRhpcgMfmj07BywTEmV+g+xpkJBllqeAr5laCIACTno7pnKyvrcPSmWXYuKsewwuSsGNfAzi/MGYQ+X0+XFOBv396BgkmrSJ1ze5mAUjXeXiWKTvFJEm2AQztIegOqiJBUySsxvgUi7S0OmbtrN1+AjQVn5q6h5Hv1nnikDyY9JTsPmDS3tj9grh1+IcQFySFxj4iQVMkkiwDV0DWaxXiBHrgRn88MkljmKk5UOhw+GTPqcPh6/PfkosXv3fPSIwoEhTsa/c2SGaGa/cKTMWF00uwcHoxtFGU7MhY0xAqToYRSb/esKMODMvLXu/UBIP49wSKufzcM6IS8+xUE7buOYMXNx3GqvmVmD4uFy+8cwQv/e0weB4AAdwyOhuFmSZABWz79CxqphRicXUJHr93NEgV4PcHcP+sMqhU8g1Klgvg9vG5ogd6q90rex+1dHpwR0SyHX7/S5uP4lK7F//z2hf4w4aD+NWaL3CpwyuO5f3k/nH40bfHQKUiYDbQWHBrMd7dfRo8H4SKAAiVKoap/OLmIzDqhZFKhgugrat36+DGfmJdBRxuDuda3JKOz6xJ+RI6xe4D52TpFeHqFR8Myi6w0+e7oI1UEwwhTDVpanZiVElyzO+dbg4F6aar97wdsvfqG/poRXUlM98er19WcCw71QSYZY6hoFLu9MrbErm8PTzkFOgygkpj7BpVUhNlOPlNXEnZ2OXhZK3KslJGIDlOiUt/weHh8H9vdqt1vrWrDivnVUpmXpfPKcerW49iUmUGFleXKH4/SuMEF9vcyE41wuWRv9YNl5y42O4RFcRPnuvCri+F4mBKoh4tHR64PCyKshOQapO3w1ARRDdToy/r/AbfQ5xuVtbf1ullkWTs/86R3ansix0PGzKvT6GD7+v/JNBIk8iw6SXz8Bk2PYza/nWCGMIQ4gkVIe/qoSL6fwyjt7C7FMQW47Rv9AY6um9xxbWArT81Mnp6jhLA0jvKJOywhdMFSnZYxfyHS0YrPoMZ1i8R64ymX0fagoXBcAFQFIF/uX8cdFo1zpzvQnuXVzEeCP//ouoSyby0UUdBly5Qyxl7QKLV8y/3j8WmbSfxnbur0Gb3wmLQIMDz6HKxeHNnPW4fn4uKgiTQVKwzi4YS7CZ/sGgULra7kJNqwoq5FWISHJlXTR+X06tCAYIQZ+B/fN8YGC1aZJMCO+uv245j+k05SDTr0NzhgcsrH19xfh52lzC2Z+vlOhhKuK8QdhcrURoXLl4dvr9wJP7522Pg8rC41O7B+3vPioqBLVF+1+GOuBy15L09Z2Xl6Wv3NmDV/BFIttCytM1wEHKjBroDhj4kGFcy851k0coKjiUpPBRNBo3s2jLp5IN9q6KNkfJD18f0zRooKUH+GElW+WOY9fKibIIf9+BG9DWub+rC1NEc5k0tQnKCDq2dXtHfetSwVOz6ohEP3VUu+/0QhLz1RXqSAQ43A1ojH6BE+nGn2fRYs+0YnG4OqQl6lOVYkGXTdz+0DVTMfrK4ugRZyUZpUn2DJ9K9hV5H4b1PpAWy9z45ozhucbUwG+Xv93jZkF3T4wWBwgwTkq3aqyskX2cYwDxsCHFAh4ORLZrnZ5gHbIZbcRxuAAvaapKQLUyQ5MDdEMkWOqZgvnJeJVKsNHAlOpFKz1G5ZNxAIT9tTMzeJ/cMNhtpiVhnaqJecm1ZPy97vYNB4NS5LpQXJMBi1GB9bV1MbHffzFJwfh6PLayKyWVoikR9Uxfy0k3ycadeg5VzK9Fs9+L36w/EfB1eNoCmFofsdW/p9CDA8+h0emE2aPDrv+6HyUDhB4uqcDbk5R0+Fz4oHytFFwoirVPPXnDi9+sOYuW8Suw9cgHV43PBcjyef1vQEPiX+8cpPuu2f3oGq+ZXwmbWyI7oRoNcvXr16su/bAiR8HpZQEVg6ydn0djswMyJ+SgvtGFMaQoSTFpw/gDMeg1e/ttRtHR6UdfYieKQd/D+460I8EHQFInqm7IxpjQVB050/2xRdQne/1yglLg8DFbMHYGMJAOG5STigy+bsGRGKYoyTQAPJFu1mFKViQmV6Zj9rTxkJekHZRBiMNDweNiBPo0+wdBDohmG18te0fwcQarwVX0r7pwkrJvyAhs6uryYPjY7hioTBk2pUJiVgC+Pt4hr5bGFVcI1l0G7k0FmihHHz3ZK1pbJQMEqk7D6/DxSEnSS1y+uLkGazQCdwjlxQWDttuO4fXweygttKM0V1uiUUVkwaGLf42YCyE034/DJdvEYD84eDqtRC73M6+0uBunJsZ/BatTAFIf5TaV1eiVrQe4aA8Da7Sdw+rwdpXmJ4l5QWZiEr+rb8PXZdsybWiT5vCvnV2LbnjO4fUJezPfw5s46JJr14AM8bipPw1f1bTH7iMfnB02RmHtLAUaVJEv2CZoiYQkLqgW795Oxw9Nw27gc5KeZkJagu2Z7ymDfJ/qyDtocPtgsOmz84CQOnWzDyXN2zJlSCKOOiot4nB9AQbpFsgZW1FQg2aaHVt3/k2McH0RhpvR4j8ytQKJVq7hfXC0k6/UaoT/3hL6sb4IA3v74NJweFpRaBX+AB6VWgVKT8DJ+UGoVCILAmGHJvf4sV4rBfl8q4Vqcd1/WAUGqsPWTszh0sg1HT7fj6Jl2BAJBzP5W3jVd05HggkEUZVlxsK47Bl05rxI2qxY6GV2VawHGz8PhZpGfacXwAhuG59tg1KmRZNXJxgnXBEEgLUmHm8rTMbo0BXdOyhNo0hHJdn/GjNHP5t7ufT42gF+vPYCv6ltx9HQ7ctPNONlkR4AXDtrc4cb8qBhjcXUJnG4Wa98/gSOn2zGlKgMTKjNg1GswbWw2xg1PxeSqTBh0FDqdDHJSjfAyfuz7ujsWfXTBCCSYaWgoEtlppphYJdFMI8mkBUWR+ODLc+L5hD/r8HwbEk00KIpETppZvO6ZKQbYnSw2f3wK+75uwbQx2Zh1cx6Ksqwg1ST+suVrHDrZBk+IWdXR5cV9M8skz6UlM0pRmmfFlKpMTBmViQ076tDS6ZXESU4Ph4N1rXhoTgWMOgpGPYWPD54Xv7MlM0pj8rQ3d9Zh5fwRKEw3SZLtntYBEQxeDwORgwvt7S7wwaDESy9sARamOTw6vxIqlUqkk6fb9Hi4phIUpUK73YcOhxc7Pm/E8jnDodFQcHs40BoSL246LFJHFlWX4NPDFzD3liI0NTsxsjgZqRZ6UCbVPSE52SQIz1xHSO6F+E97uws8fwUXgwQO1nfEVEurihOVq6V99PBsd7P4zdr93crWQWD3wXP4p3tHwyZDaT1x3oGX3z0iesgjCOz6shHL51RgWIYMZx0AQwRw/HSXxDJh1fxKlBZYQAdjHwzHznXhlZDqduQxHppdjtJMS8zrHT4/fvn6FzGf4YmlY+JiL6W0Tq9oLaiAr051SL6bnywbi/8JKZKHPS1VKqAw04ILbW6s3X4CJgMVci0wIMmqg9/vR5fbL1ZYL7a5wXI8dn0pqJAvnF6CnFQjnG4WCWYd+CAPrUYt2Ucev3c0SjIHzuu1txjs+0Rf1kGri8Hv3jgQs3b/3+JRSI6D6F+nj0GHnQHnB7ysIAxDqYFEK40Ebf8f73SzE11uFjoNJR7Py3KwGGgUpBr7/XgDhf7cE/qyvgkC+OuOenR0eaGj1YISPK2GTkuJP9NpKVFwK54WYYP9vlTCtTjvPq0DGf/lxxZWDai+RYeHRUuHBwadRrDg0mvg9rJISdQjcYCYZKebnWjp9MIR4bhgNlBISdAP6r0lrjFjL9HY6sbql/eK/06yamNExL6/cCRaOr3wsQFhPCdJj3f/cRr1TV0xeUxkRzjsevKz5eNh1qnB84K+C0EQeP7tQ7jY7sHi6mH4aH+Tcswmcw8sn1MOt5cTheCmjclBQaYZaQk6mA0UHG5O0t1vbHXjo/1NmDEpH5faPHhu4yFJ/MkHg0g0acH6eRh0FMw6dff4UUis+EKHB2cvOMU4KozvL6wCgkBzpwebP+qmt6+YU44uNyeJW9vsPqx+eDxykqS2Iz2tgyFK+ZUigvrR5mDAcrxE1e/NXfVYMLVIMnfmZThoaRoGnRrNHTwmV2Xh+XeOoM3uE3zkmp24ZXS2IAoVokk43Ryaml2gKRIGmhz0QfMQLo/2LlZMtgGB8vundw7jqZUTZZNhQNgkfr12fwytRWnu22bSxPgH9kR9sZppWfp2T9Sy5hYfLrU5sXrFBHQ4fEg0a3HwxCUkmOiYTQgQ5qDkjpFgkp9/MevUMfNM14vatcPNSRQ3GS6AFzYdxnfuHoFn3zokio49XFMh8aDMSjGCUqvw1q46UQyRpkj824rxeHrNl7JUKZtFBy2txsmmLuzY1wAAYjI/ZlgKSnIT0d7uuvZfwg0MUqXCgluLJVYkK2oqQJLx0SnlOODP734dE+j8YPEoIA6WusYQgyv6ePGizA9BHpEWYYBgExb5/0MYRBiEdnPBINDlYtHY7JbYCSYPoAVX9N7C84JF6dDecnlEjwiERdeeWjkRbh8Hg5bCn989gsqiFPG7feP9E5hclYXGSy48Mq8S//PqFzGiajVTCrH541N4bGEVMhK0kjX7xLN7xNfv2NcQ4+suidmiKPMGLYXfvLEfF9s94t/b/PGp7riWj6XeW4009hxuxgf7L6A42yKO7NosWqzZdgz1TV2xsXHUSBxn1eH36w7GxFNajTDCt/vAOQml3un1Y/PHsfPlfWWrDSXcV4PQxbO7WNRdckguRpvdh40fnsT376lCW5cPWg2JTR+dhMvDYUVNJfhQtSWMdz4U7JVaO72SxbpqfiW8jB/JFt2QSMw3BO0KipftDp9iwt3nuW8eGFkoqF62O3ywmbU9zplEi20IVJxh6MkWzGqisenjs1i/s9vPkKZITKzIkH19SqL8HFSqjQbkBEj7KEY3mCB3vS62e2DUUZIZvr1HLmDpzDLwwSDMBg3e+8dp3Bx6+AHdM0eNFx24f1YZXg15O4epYMmJOqQm0ABPg2ECompm+OFoM2mgioM38hB6RmunF9tD+h0+NiDu//NvLUaiknvBVcDhZkXHgOifp8Sho65SBXHPbSUx9zJJXgc35zcMOlqNl7YcAwCsmF2GF98V/j+eXe8hXCEGmd1cS6cXGz88KbLOeD6IjR+exEOzy2EbIFuwob3lyiFnybn0jjLYTBrYjBo0trpxrMGOYw12yfsKMs345XcmoV1BfDM/9Pvo+Cs6zmmz+7B1zxnxudfa6UV2iiHGxURMolXAqvkjcOxsB/igkOguvaOsxzgv8jPWN3XhmfUHsai6BGvfPy52qy+niWQzabBqfqWkIbWipgKbPjoJtYrAPbcJlPGw9Wl5fgKyU67e6vSGTLjPnDmDn/zkJ7Db7bBarfjlL3+JvLy8K/57VhMtK4DmdHNweTn8YcNBAN30jl++/kUMXaPxkguZyUak2wwoyLLAxwaQYKQR4APQUerrJtEYwuWhpHjZk9LhFXl984DNqOlO4nsQdaApUiK2oSIIaNQqaHqYGeqz3zIHVA1LxOoVE9Dp9CHBpFVOtsO4TkW6lK6XWa8RK6Xh/SDaKz3JSsdUgCePyhIeRjNLkWjWQkerwQeCSE3SiWMI12tx4puIJKsWjZdceHrNl+LPBJHDOLSbAeivsbKvlqKgoQg8+cA4kYrq9DDQqm/IkGLA4fFx0NFqvPXh6QG1TxrC9QWbVZ51dkXq2/0EDanG3iMXJHvLe5+cRkH6sAE7p+sGl2FRKMUlaQm6EOVbXsg5Pfz7qHhC7u+FWbk8H8SGnXUozbXKiwISwLEGKb38e/eMRFmupWcBMoUueSQ1vDexcXRDSkuTSLKWCrGTkUJ2ymh0uhgkGGnYzBpk2nDV8dUNOcO9bNkyLFiwADU1Ndi8eTM2btyI1157rdfvl8xhEIDL58f5djcutXmwrrYOJgOFOyflIyPJALNRAxVBwO5kYDXRcHs5UGqV0HUKAlyAB8vx0GpIGPUUEowUHC4OdhcLq4mGWScsVIcn6mfX0VW7HmfA+jyPQ/ThGsnM966aX4mRhYnKGw0BtDl98AcIdDoF+japCiLJpFU+DgU0twue7TaLFimJysltu5vF/uOXMKI4VaCHW7Q4VNeM0aVpPVe6VUC7g+1VFz38OQbrWu6Xec3Q53N5OXS6WNEaTJzXy7OgqcWDY2c7kJ9hgd3pQ4JZC54PwqinoFIRcLhYWEw0AoEASJKE0y0IrfgYDs9uPAyTgcLsmwuQl24GHwyCptQIIgAVQaLT6UNKgg5qkkCbnYFeK8x6djl9sBppmPVqcSbKoKXAsH4Y9ZpBcR0G+z7Rp3WgAppa3QAIONwszEYNEAwiO9nQKzXTvsLFBnDqvB3NHT6xYJaaqEVhhiUuCsgOL4eL7U5YzQZxv7B3uZFuM8VFX2GgMBAz3AQh/Lem9vIz3Eq/B4DvLxjRLx3uwX5fKmHQzXBHvW8wfKd2H4d2uwcaihL3KZblYLPoYR2o+5gAvMEAHA6/uLeYTWroiAEeqbxM7DIYZrgBiOfpYQPQ02rpeV5OR6A3OgMR30OiRYumZleMuwmtIfH2hyfhdHN4+nvfAgC4GD/8gSBURBCkSohVLEYabg8DWkOh08EgwUKDJABaowYX4BEIBMGwASRZtFARQIvdBx2thklPwRgesQ2d85Z/nML8W4uhVqvA+XnoaTW0NIlEk+bKlOQB2GxGnDnX2ad4dWiGOwLt7e34+uuv8corrwAA7rrrLvzHf/wHOjo6kJiY2Lc/FrrQa7Ydw+zJBVCpCPzw26Ph8grzmyYDFTPPELb2un18LrQhxcWNoYW5uLoEyQk6/HXbcVHw6LGFVdCoVeL87mAQ2hhCFPoqhtJHujcAQA2ca/HE0KySErTySTQFHDwhI8w2LFH29ZSGQHKCEatf/EzyekrTAx1ZpkLZ4+cehKIx/Yqoz5du0+PJB8YhGAyK9h7Hzko//4q5FXglNMMdvVc8XFOBtz+oF/eCJTNK8fOHb4LdKQjdPP/2IVSPz8W+oxcxbVwuXtp8RHbPWVxdgq17zoAiVTFz/eH9aOkdZd+c6zAYQALtXUzM/ZedFp+E22ggARB458OTkiKe0ajumUFyhaB0KnhZ4HfR+4UuPjPqNwoIAnh56zH8f/buPEiuq74b/vf23XrvmWmNFMmyZGvwWGNrzIABs0TJg2FQ8PJqsS0pAhKetywkeImrEgihoEKohyUxRXgrpnixMUlYjRds2bEMKLJFiEIc2xjJlmzJkmUsedA+W+936e73j+6+08vtnu6eXme+nyqX1X3PPefc0+f87jnT3aedDfgjSf7Pii28t1WoGpIsIBxL4p5dBwvG8ZL+Nn4NSQJeeWW66rlLS3TL3GW2es72Nb3Zjtvk/+ltb8Wd/8+7cXFagyw58PqZkLXY/vS2t+LcRBwXpzObtD2bN1fJf213/ccJHDk5Zf3ahegQMBnWCuYx29atxuP/dcJaKy3v91qbBg9dFgCEVRg7Hyk5JxhQcdVlPbUvugXg6UNn8P/+pHFrrwV3dzxz5gyWLFkCUcwsdkVRxOLFi3HmzJma8wrFDNz14EGsHVmO7z9xBP+6+2Ucf2Nm1+brr11R8KPzuQ0I1o4sx/17j2E6amA6auD6azM/1n7/3mMYOx/NbBaRTX/Xgwdx4nSoII+7HjyIUIwfG+sUuX5Q02uU/bj34DJ/5iPfs0zCz41rthutnRvXGpI+Hk/Zpo/Hy1es1uuuq526SPH1nRmP4avfey5z03Jldtssvv57Hz2MtSPLbWPFdx87XBAL7ttzFNPhzMe17s/GkQf2HsNNawesG5hdPvfvPYbrr12R2aSxaCO3XDyaT69DJ6h1/DWivOLX9u5HmldeKGTaXl8oZDalvPmimt/WjiUMxOf4sXCXKuHhX72Gf37iCP75iSNwOPi73lQqGk3ajuNotM63BBug1bGzGt0yd6mqntmv6a1Y5LH9mHil43b5f/2+3wJpYNUSLy5d5MabB4L45K1vxp2feDf6e5w4cTqE6aiB+4vmKrnz79l1CDetHbAef+fRw1BkqWQec9+eowVrpROnQ9Z1jU/reONc1PacsfNRnJ+qve+EYoa12C7bljVacO9wN0IwmPlpgrOvXsi8GAJmvsNQ7t9Z+elTuT87CzPHUul0wWZqBenynosZSQysqPEd+Taq5uM23aakH+Rp9Gt0ZGzatozJcAJrBha1PD1Q+3W3op3mqt5+Ggx6cXqy8vWVu/788V/uWO5xXDeRSqcL4khCS1YVcyqV0SmvQ7fHiVxMqGc8zcV8L6+d5hIT8v3jjzPf5//Uh66teJ4kSZn/RMfMv5MofW6W40YyDd1Mw6VK+N4vjlVVdjndOi47od7F/SCnE+rWieO4E+vUqLlLub7QKM2eY1WTf3/esUOvXrDWLyVzlbzzE3qy4HFcM2edx6TSaavc42dPz8yLis5JpdOYDGm4elVtfacZbbngFtxLly7FuXPnrO9HJpNJnD9/HkuXLq06j9z3MHIb1QAo2Dig3L9zj3M/ZO/I/sk5952O3HOpoh+FdxT9aVqVRbhlsSO+A1SNTvm+Ui1q+T5OuQ2LGvkaldtordfntC2j2emB8hs1lbvuVrTTXMz1+5qzXV+547nvIZU9lvfYpUjWBo3Wc06xqphTqYxOeB06PU7UEhPqGU9zMd/La5dGfYdbEIBYwoRpmrh4MVz2I96CAJimCVMETEmY+bfdczUcj2d/r7tS2bW2Qafjd7hn14njuBPrVM3cpRO+w93sOVY9c77c+sVurpJ7Pvf12pl0FeZKmFkX5crt86n4XZkN3xyCgF6/WvP119uWlfrBgvtIeTAYxNDQEHbv3g0A2L17N4aGhmr//jZmdmnO/WabKovY95tT2LZutfXvrdnngZmf+Nl/cAxbRwcR8MgIeGTse/6U9V3L5Ys92H9wzEp/x+YRDCzzF0Y8xcQAACAASURBVORh7QRNHSHXD5r5GuV+Uiu/DOsntdqQHqj9ulvRTu002/XZHd++YQ32HxyzjRW3r19TEAu2jg4ioRu4dIkHW0cHrbjzePb3vMvFnK2jg9j3/CnsPzCGnZuGbePRfHodOkE944nlLWy5zdKaXQZRTieO406sU7fMXZpdz3rmfAPL/Ah4ZGwtmqvkzt+xcRi795+wHn9swxroulkyj9m2bnXBWmlgmd8qN+hTrHlR8TnLF3uwuKf2vuN3SfjLP31rQ9tyQe5SfuLECXz2s59FKBSC3+/HnXfeiVWrVlV9vt3u1JGEAVWWEE0Y6POpSKXTuBjK7BLsEARMRTQEPCo0w4TD4YDoEOBwCJBFAZNhHYrsgNcpo9eX3aU8f8MCZHcF7NKf++mUv+bWou5dypv5GmV3Ha/6J7WanR6o/bpb0U51auQu5WWvL/+4V0EaAiIJA/GECZ9HhoDMLxoEsj8JKDpERBNG5i+1DsApS+j1yYjETEzHDJjJFAp3KdfQ3+OELNnsUp7duK1gl3LDhNcpd8Tr0OlxouaYUM94mov5Xl4bNPId7m8/9jJM07TdPdzhAL67O7NZWjW7kNd73O2U8aHRK0rKrzQL7PRxWQ7f4a5SJ47jTqzTLPf2TniHG8DMLuVG6c+CNTL/WuZ8kYRpu0t5r88JVRWgaWlMhjX0+jLzHkWWYOZ2KTeSWOTP/PTy+akEnNmd173Ooh3DHcBkxEBUM5HIxjunImY2JJ7rLuU1zFe5S3mRgYEBPPTQQ43JrOh3gq3fPAbgd878JWSxL/cXltK/tPS58352KWn/u8Pd+FvEC0orfi/aAJb4VSzxq9bjZqRfM7AoMxmo5gZX63V36e9qV2226ys+DiDgLAzDM7Eiy1/0OAl4Vcn2556W5KX1L8mUUTC5SxWXr9jXk+aunvHUgPKqHu8NKq9l1zdPFL/LLAjAw7/K/H52s9//SGNmYZ/QTDhVCQJguwgvriNQfmFu9875fHkrZ7Zr73qtjhvV6MTY0i1zl2w9B1b0Zdqu0fWsY85nN1/Jn6tALXpchndJ3nfgi8tNAb1uGb3F70DPYf8/h0No6Gu+IBfcc+Vw8HNZtZqPbTYfrylnPl9bJfVed6e3V6fXL6db6llOufp3+3XNZj5fXyNigiAAbqcESZTx4yePwymLcKoSpiIanLIICIDbKWcWwIIApyrBpYoVn6v3eEIr3EneqYq2dUoYSThlEV63iovTMSANfGTdYMnCUxCAH+45Bqcyc47gEHDrH69q+yJVFOfWL3PXBgAf/kDptVdjocaERplP7dTqa5lPbdcujWzDBfmRciIiIiIiIqJmW3CbphERERERERG1AhfcRERERERERE3ABTcRERERERFRE3DBTURERERERNQEXHATERERERERNQEX3ERERERERERNwAU3ERERERERURNwwU1ERERERETUBFxwExERERERETUBF9xERERERERETSC1uwLdaHw8glQq3e5qdI3eXjcmJ2PtrkZN+vt9s6aZr/2gG1+vRih33d3eF7rl9ez0etbbDzr9uuZqPl9fI2NCt7YT610eY0JzdVM7ddo8oZvarlPV04aV+gHf4aamkySx3VWgGizU12u+Xne3XFe31LNW8/W6cubz9TXy2rq1nVjvxuvkunUStlP92HZz1+g2XJDvcH/iE5/A2NgYHA4H3G43/vZv/xZDQ0PtrhYRERERERHNIwtywX3nnXfC58u87f/kk0/ic5/7HHbt2tXmWmU5gPGwjsmwBq9bBgDEEia8LhmRmA6fR0F/r4rxSR2hmA6PS4ZpJqHKEqIJAz1eFX6XBKTz8gvpGA8l0OtXIYoOxBMm4pqJgFdBXDPhEAR4XDJ6PTKQAiAAoZiBqYiOHl+F/HwqUqkUXKpcmKbo/GDxR2jyjvcFnEglUzNluSWEomXKrlSvWuTyierwOGVougmvW6k/v/lCAs5NaDgyNo1gwInFvSpgznKOCJyf0jARSiAYcKI/oALJCull4Nz4TPrFfSpgNDD9HMqwrruaMlqhlv5eNKaANKajBmKaiTNTCfjcMryqWDCWonoS4ZiJcExDj0+FmUzBMFNwKhJCUR0Bj4JUOgXRIWIqosGpSJAkAaJDgNspIWmmcHFag0uVoCoiNMNELGGiP+CyxvHFkAa3U4IqiwjH9NL4VEMb1BQrOkE2Vh4/exp9PhVBn5KJr83SqPhYrVaOm3riQKfIvi5nX70AtypVfl0cwGTEQDRhQDOS6PGq0HQTqiLBSKYQjhro86sIBhSMT+uYCGfGn+gA3E4ZyWQK4yENLkWE161A05OYjmgI+FQYhgm/W4UkCwhHTYSiOtxOCYrsgEuRZuJDtr4XQ5m8DQiQBczel4rOK4k5RDS7auN4PfG+GXlXk7aaOXct+RSnyT4fiRtQlaK1EArLjmkGJFGE2ykhrpkwzCS8LgV6MgXTTEHTk1gUcMLvkmCaKYxHdYRjBrxuGZqeRFwz4VYluJzSzJqpSgtywZ1bbANAJBKBIAhtrE0eB/Dia5P49sMvwueRceO7L8f9e49BM5JQZRFbRgex95mTuO19g9j7zOt4+9VLsfeZkxi9biUeyEt3x+YRDK0IAALwwokJ3P3IIevYjo3DeOipYzgzHivI8wPXrcTiPheGVvbgyOvTuOvBg1Xld/v6Ndj33Enc9IcDmTQAjpwqPP8v//StGLzEZw2M3HG7a9y5aRgPPjlTP6tsm3ytY7Xc0IXSfHJt8OE/Gao9v/lCAg4em8A9uwr7yshgX/lFtwgcPG5zzhV99otuGTj4ik36K/vsJ8+1pm9VGa1g00/L9veiMXXL/3oTEnqyYFxtW7cay4JuDCzLxL5T56O4OJ3AvY8dttJ89MYh6GYK9+15BZqRxNKgG7dcfwXufXQmzdbRQQS8CgChoM22jg7CqYh4+D9ehSw6sPn9gwVxYuvoIJ74798hHDWqH7f1xopOGL+O0li5c9Mw3jzQ15xFdy39pRFaOW46dYxWo5bXxQEcOTWF8xPxorF7JX7x9Ov4wHUrrTG0Y9MwHsrr+x+9cQiqIhW00fb1a/DwL48X3Oufe+kMPvDOy0rGptspo8+nYuASH46cLKzv1tFBLO/3ZmJHhUl38XVWdR4Rzag2XtQT75uRdzVpq5lzo7587tg8gqGVARw5OY0f/eKI7VpIkRz4+n2/LSn7lvdegaeeO4m1b1kOAdGSOdMdm0cgjE3jhz87gpvXroJ2pnROtahHxdCKnqrv6eIXv/jFL1aXdH75/Oc/jy996Ut4+umn8c1vfhPBYLDqc+NxHekm3EDGwzq+9sPnoRlJ3PSeVXj4l69CMzIrl2QqjaOvT+ID112GH+85io/ccBX+5d9ewgeuu6wk3fNHz+OPRi5BJJHE1370fMGxg8cu4APXXYaXfjdekOfDv3wVy/p98HlU3PmD31Sd34vHL+IjN1yFux48iD8auQSakcJXvvdcQZrnXj6HPxq5BKosIhQ3rON211hcv1zZdvnmjqly9d+zyC+/uF1/8LMjVn4ejzprXs3qB+1wbkrDP/74tyWvxduvWgqvav93ufMhDV+3OecdVy+Fx+acsmUM2ZdRa/pmldGOvmDXT8v19+IxpZsp/HTf8YJzj/xuAkuCHvT3uKAZKUyEdfx/D79YkOaKS3vx0FMz593w7sutxXcuzdHXJ/GHb74E3/rpCyXPX35JDy5bGsDKP/Djx784WnL8g++6HC++erHsdXg8KmIxvex1VRsraokHtailH4yHddvY+67hZXArja9fLf2lEeoZm91QVrHiPpn//GzicR3Tsepfl/GwjqMnp2zHbu4enRtDxX3/ikt78aOiMffC8Ysl9/qP3HAVvvXTF0vG5mXLApgMa+jxOfH3Rff/o69PWrGjXF8qd1+d7bxmKvfaNbqM2djdG1pRt/mgm9qpEfOEauN4Nekq3U/nmnctaauZc1czvy9X1ruGl+Hvf/CbsmuhJUEPXjh+oaTs+/79FXzkhqtwYTIBzSidMz1/9DyWLfJixRJ/2TnVsn4fenzOgnt6pX6wIN/hBoCvfOUrAIBHH30UX/va13DvvfdWfW4w6G1KnY6fPW29oBAw8+8szUhazyf0ZMHj4nQxI4lwzCibh12eqXQaEyGt5vxydYkZSSBdvj4DK/pw9tULVV1j8bmz5VutgvJt2qCW/JrVD9rhyNi0bbtMhhNYM7DI9pyjvw/ZnxPScPWq0nNqLaOeOrWiDDuN7gvl+qld/yweU6l02vbcVDptjaW4ZpakKTmvzPiM66Xn5vLPjd1K47rSOMvf4bPeWFFLPGi0XD8oiOVZmpHEZETD6sur/+NutWrpL43QqHHTaWXZqWb3YTvBoBenJ6t/XY6fPV127Fr9Xyh8LqfSefmPrXlDUbpUdhUwEbG//+diR7m+VK7/zXZes9X72jVSuXtDJ9StG8yndpptnlBtHK82Xdn7aQPyrjZtNXPuaub35fKZzMWsMnOEVNFfOIrXUbnjleY0leZUtdzTF+yCO2fDhg34whe+gMnJSfT29lZ1TrO29u/zqVBl0Xph8/+de4x05v9ORbT+8mOXzi2LkH2OsnnY5ekQBAT9as355erilkVAEMqef+FCGG5Vquoai8+dLd9qFZdf3Aa5/DrtJx6aLRhw2rZLr89Ztn2DAfu+0utXbc+ptYz66tT4MtrRF8r1U7v+XpzWUWasOATBGksuZ2n+5c4rfuxS7OvmEIRMGwiVx3W56+jv9xU8V2+sqCUe1KKWflAcy3P16/Xaj425qqW/NEI9Y7MbyipW3Cfzn5/N+Hikptelz6fid2XGYO7+lD+G8vt+ubFbPD5y92q7sQsAfV77fpuLHeXau9x1znZeM5V77Rpdxmzs7g2tqNt80E3t1Ih5QrXxopp0s91P55J3LWmrmXNXM78vl09vNmblHpeLbXZlO5WZ42XnNOl0xTlV8T2dPwuWJxqN4syZM9bjffv2IRAIoKenp421ygj6FHz8lmugyiL2/eYUto4OFnSkLaOD2H9wDDs2DmP3/hOZxwfGsKUo3R2bR+B3ywj6FOzcNFxwbMfGYew/OFaS59bRQVy6xIP+HhV3bB6pOr/b16/B7v0nrDR+l1Ry/l/+6Vvhz24Al3/c7hp3biqsX6V8c8dqYZdPrg3qyW++WNyrYsfG0r6ypK/8x2P6A/bnLO6xP2dxX5kygo1J36oyWqGW/l48pgIeuWRcbVu3GgPL/NZYciuZ73jmpwl4ZGxbd6X13P4DY9i+oTDN1tFBJHSjpM22jg4i4JGx7/lT2H9grCRObB0dxL7nT9U0buuNFZ3ALlbu3DSMoF9pSnmNio/VauW46dQxWo1aXpegT8GlSzw2Y/dK6x6dG0M7ivp+wCOXtNH29WtK7vW795+wHZu9PhUDy/wI+pWS+m4dHbRiRy3XWc15RDSj2nhRT7xvRt7VpK1mzl1vPndsHrFiVrm10MAyv23Z27NrF79Htp0z3bF5BCv+wIv9B8bgLzOnunSJp6Z7upBOz5dvoVbn4sWL+MQnPoF4PA6Hw4FAIIC/+Zu/wdVXX111Hk19ZzNvl3KPW4aAwl3KvW4Fi/sq7FLuUTKd1GZX8R6fCknK7FKe0E343QrienaXcqeMXm/RLuVRfdb80ukUXLJUmKbo/MuX92J8PDJzjXnH+3wqUqn0TFkeObPzsF3ZlepVi+IdEw0TXqdckN9Ce4cbgLVL+WQ4gV6fM7PYrmGX8j6/M7PYTlZIn91t2CojWN0O4lWnb0IZbesLtfT3ojEFAdYu5V6nDJ9bynzf1XaXch0Br4JkqnCXcr9HQbrcLuWqhGQys0u5U5XgtHYpT6I/oMLvlu13Ka9wHbbvZtQbK5qg5n6QjZWTEQ29XjVzY27FLuUtao+6xmY3lJVnru9w5z7xEYoZiBlJuGWx8utSsEt5Cj1epeIu5ZPhzPhzOACPKiOZSmEipMGZv0t5VEPAo8IwM/d8SXaU7lIui/A6C3f8vRjK5N3f44IspGvapdyZ3Y3dyrMN+A539+umdmrYPKHaOD5Lutnup3PJu+a0Vcy5a82nIE1ul/KEUboWQuku5aIowlNpl3J/Zg7T2+PBq2OTJbuUu1QJ7jK7lFfqBwtuwd0I826h1WTdFDRzFuSCO6sbX69GaMjkugN1y+vZ6fXk5NrefL6+RsaEbm0n1rtyGbNZiDGhUbqpnTptntBNbdep6mlDfqSciIiIiIiIqMW44CYiIiIiIiJqAi64iYiIiIiIiJpgwf8sGBERERERdY7JcALT8dKdWz0uiYsX6jrss0RERERE1DHCUR337Hqx5PkdG69BwMXlC3UXfqSciIiIiIiIqAm44CYiIiIiIiJqAi64iYiIiIiIiJqAC24iIiIiIiKiJuCCm4iIiIiIiKgJuOAmIiIiIiIiagIuuImIiIiIiIiagAtuIiIiIiIioibggpuIiIiIiIioCbjgJiIiIiIiImoCLriJiIiIiIiImoALbiIiIiIiIqIm4IKbiIiIiIiIqAm44CYiIiIiIiJqAi64iYiIiIiIiJpAancFiIiIiIioPUwA0bhZ8rzHJXGhQNQAHEdERERERAtUNG7inl0vljy/Y+M1CLi4VCCaK36knIiIiIiIiKgJuOAmIiIiIiIiagIuuImIiIiIiIiagAtuIiIiIiIioibggpuIiIiIiIioCbjgJiIiIiIiImoCLriJiIiIiIiImmDB/bje5OQkPvOZz+DUqVNQFAUrV67E//k//wd9fX3trhoRERERERHNIwtuwS0IAm6//XZcd911AIA777wTX//61/HVr351jhkDoZiBSNyAqkiIJgz0+FSIkoBozEQopsPvUZBOA6aZhKpIMMwk0mkB0YQBtyrB45ahaUnEEgZ8bgVTEQ2qIsKpiHA4gFQKCMcMuJ0SND0JVREhQEA4psPjlKGqInQ9iUg8k5+iiJgMawh4FDgcaZhJIBIz4FIluJwSEloS0biBHp+CNFJA2gGHI41kUsBkWMOiHifSaWBiOoEevwrdMKFIIiTRAU03oSoSdDOJVAoQhDQkMVNej1eF1y3BI4sAgN+fj+DsxSh6fCr8LglIl7bbVES3P15tmoVABs6Na5gIJRAMOLG4TwWMxqc/MjZdXfoW1qnq9HMoo6brbiQJmAgZiGsm4pqJHp8K3UjBMJNwqRKmozpcqgSfR4aupzAZ1uBzyxBFAdGYAbdTRjimI+BVYaZSiEQN+L0KFMmBWMLE6ckYxNzY9ClQZRHxhAGHw4FowoDHJUMWHZiO6PC4ZETjBrxuGZGYAZ9Hhig6cGEyjl6fao17SQTSKQGhmA6vR4FppBDXTCwKOOF3SwhF88Zr8eNOHr+NjDWt7lf1jJUGlNeS62v1tTmA8ZCO42dPo8+nIuhTgFSdedm1k5npZ3oqiWRSQDSuw+9VYSZTSCbTiGsmPE4ZoiQgnjDhdckAgLhmIqEn4fcoAIBQVIfPoyAa0+FxZ8b2hck4Ar7MXGMylECf3wlFERGJ6pAlMTPmnTJCUQ0+twJFEaHrJgSHA5JDsPL1uGSIDgHnwxchCpl5So93lnt0NDMX0XQTXrfS2WO9Wpx/UKNV6lPFx8rdP7MxajwbE4N+BaHITEzJxRufV8LktIFE7v7sk3BuXMNkOHOeJDqgJ5NIJYFIdh4R00wosgOSw4GYZsClytB1E4osZdc4IhTFASEtWHEkljAhSw64VBGimJl7TEd0BAMq3E4JkyENDgfgVGTEsnMdr1OGyyXCNNMYn0qg16/CNJOQZBHhbAwSBAEJzYRTkRCJ6/C4FGi6CVF0QBIFKHJm3RNNmPB7ZZhmGtHsGkgQBSiiA06XiFDYQCiaaUMgBckhIq4lYSZT8HtkxBJJxHUTff7M/CsaNzA2GYfbmanfREhDn1+F6BBwYTKOvh4nvB4JbkWs+l7UlQtuXdexa9cuHDlyBLFYrODY1772tYrn9vT0WIttABgZGcFPfvKTuVVIAI6cmsaPfnEEo9etxAN7j0EzklBlETs2DuOhp47hzHgMqizi/775anicIsKxCHQzjfv2HLXSbl+/Bk89dxLvfvMl+NHPn7ee/+iNQ3CqEu5+5JD13LZ1V0KRHPjeE0egGUksDbpxy/VX4N5HD1tpto4O4on//h3CUaOkHtvXr8HDvzxuPd65aRjnJyLo7/Xinl2H4PPIuPHdl+P+vGvZMjqIvc+cxM1rV0FVMp08oSfx7EtncP3bV+K7jx0uuJZFAScMM4Wv3/db6/k7No9gaEUgEzCy7XbXgwftj6PKNAuBDBx8ZQL37DpU0LdGruyzH+zNTr9Q69RoEnDk9Smcn4jj/r3HrHH378+cLBtLjGSqbJr8Mb99wxo899IZvO2qpQVj85O3XgMjmS645m3rVkOWBHz/R0cKYswv/u113PLeK7Dnmddx6mwEt69fg33PncTodZcV1CU/TuzcNIwHnzxWEFvyH3fs+G1krGl1v5rP5bX62hzACycmCu63OzcN480DfbUvusvU/cpVAfxk7yu4bs0yPPTUMdy8dhUuTMaR0JMFY2nbutUIBhREYjouTiUKYoTdvfmW916Bl167gKtX9ePevDG/Y+MwPE4R337ixZKYsX39Gvg9Mp567hTecfVSCALw86dfx7uHl9nGmGru0bn6fPhPhjpzrFeL8w9qtEp9CoXHlgbd2Pz+wYJYdMfmEQxdFsALrxbGqB0bh/HyaxcwtKof38nGm6VBN25732BJ/MlfC/zFbddAM1L4Tt7a4c9vHIJRtD65ff0aPJK3ZiheQ+TG/G3vuwKAUFLmy69dwMiVS3BhcrokxnmcIu5/8hhk0YFbr7+ioC4fvXEIZiqNH/38aEl8+b/WroKqSGXXLFtHB+FURPg8Cn78i6MFc5KEZuLf9r+GDX88gJNnzLKxtbi9itdVy5e4sajHWdW9qCu/w/3Zz34W3//+9+HxeLBixYqC/2qRSqXwk5/8BNdff/2c6hOKGbjrwYNYO7LcujEBgGYkcc+uQ1g7stx6PBnWMHYhhumoYXXm3LF7HzuMm9YOWB0r9/x01LAGVu65+/a8gumoYT23dmS5tdjOpbl/7zFcf+0K23rc+9jhgsd3P3II11yxxBok11+7wup0uTQP7D2GtSPL8f0njsClyJiOGrh/7zHctHbAmtDn5x/TkjhxOlTw/F0PHkQoZhS0W7nj1aZZCM6Na9ZrA8z0rXPjWlvSL9Q6Ndq5CQ1vnItaYy037irFkkpp8sf8vY8exg3vWVUyNn9/MVZyzfftOYpQXjzJxZi1I8tx72OHseGP3wTNSOK72RhVXJf88+5+5FBJbMl/3Knjt5GxptX9aj6X1+prGw/pJffbux85hPGQXnNe5eoeCpm44T2rrHEUihrW/bR4XPrcKn5/IVYSI+zuzfc+dhjvf8dl1mI7v8xkSrCNGfc+dhhmErjhPavwnUcPw6nI2PDHbyobY6q5R+fq06ljvVqcf1CjVepTxcfWjiwviUV3PXgQ56e0kufv2XUI733bSmuxnTvfLv7k34/HLsSsBW7uuZDN+uS7RWuG4jVEbsw7Fdm2zPe+bSXGzkdtY9zFaQ3XX7sCa0eWl9RlOmqUrIlyZU1HjYprlvv3HsN01MDY+WjJnGQ6amDtyHJMhvWKsbW4vYrXVcmkUPW9qCvf4d6/fz+eeuop+P3+OeXzpS99CW63Gx/+8IdrOi8Y9BY8PvvqhcwLJMB6oXJyz+ek0unCY0VpE1qy5PlUOm2bNj+v2courofd44lQYiaPCvlpRuajF7l62dU5P03x8zEjiYEVfTPtVuY4gKrStEtxP2imI2PTtu0wGU5gzcCilqdfqHUqp96+cGRsunB8C4XjrLhexeN5tjShmF5fPCkqI6HP3IASerK0LmXqUO5xufHb3+8rea5VGhFrcv2gUf2qWvO5vFZf2/Gzp+3Li2hYfXmw6nyCQS9eOjVlm9dEKIFUKm2NjdzYs0sbiun2MaIoXe75qYhW9n5c7ty4biKZTs2kQ+UYU809OnduO+/Vc40njYwJja5bo8XPhiDLpUsCRRHbVtdTHVinuQgGvTg9Wb5PIV003sqMv4mQ/RgvGftVrkmqnSPMdl+HkPnaS7m6VZx7lJlPVKpLNXHRmtcINs9XmUe5687FckFAVfeirlxwL126FLpe+1+b89155504efIk7r77bjgctb3RPz4eQSo1Mzl1qxLU7PeVVVkseMFUWSz46JFDEAqOFad1qWLJ8w5BsE2bn9dsZRfXw+5xn99ZkEe5/FRZhEuRrHq5nKV1zk9TXEe3LOLChbDVbsXn5Y7nt22lNM1QTTAv7gfNFAw4bduh1+e0bYdmp19IdWpmXwgGnHjjXKRk3OX+bzuehSrSZP/tz36vs954khvvTmWmPKciltSlUsyze2w3fvv7fU0d07OZLdbU0g/q6btzMZ/La/W19flU+/K8as0xoVzd+/xO6GbSGse5sWeX1u9WSsZspXtzj9e+/i5FKnuuS5HgcUnWv9NIV4wx1dyjc/Vp9r26nEbEk0bGhEbXrdF0PQnDMG2fb2ddO7FOdqrtC5X6FMrcm0vjh/0Y7ykTu2Zbk1Q7R5jtvo404HLaX1+PTy2Z6+SOOQQhM0Zs5hOV6uJwzB4Xc7E1fwxaZabTVcdWu8e5WA6gqntD13yk/Omnn7b+27BhAz7xiU9g9+7dBc8//fTTVeX1jW98A4cPH8a3vvUtKIoy57r5XRLu2DyC/QfGsGV0sOBGtWPjMPYfHLMe9/pULO93I+CRsW3d6oK029evweP7T+DDHyx8PuCRsXPTcMFz29ZdiYBHtp7bf2AM2zesKUizdXQQ+54/ZVuP7evXFDzeuWkYLx4/hx0bM+Xs+80pbC26li2jg9h/cAx/fuMQ4rqBgEfG1tFBPP6fJ3D7+jUl1+JWRQws8xc8f8fmEfjdZfpTrwAAIABJREFUckG7lTtebZqFYHGfar02wEzfWhJU25J+odap0Rb3qrh0iccaa7lxVymWVEqTP+a3b1iDn/36tZKxeckid8k1b1u3Gv68eJKLMfsPjmH7+jV49FevQpUz3+Pavf9ESV3yz9u5abgktuQ/7tTx28hY0+p+NZ/La/W1BX1Kyf1256ZhBP21zxXK1d3vl/Cz/3otM44OjMHvka37afG4DMc0XNLvLokRdvfm7evX4MlnX8f2ojG/Y+MwREfaNmZsX78Gkgj87Nev4WMb1iChG3j0V6+WjTHV3KNz9enUsV4tzj+o0Sr1qeJj+w+MlcSiOzaPYHGPWvL8jo3D+OVzJ/GxvHiz/8CYbfzJvx8v73fjY0VrB7/N+uT2ojVD8RoiN+YTmmFb5i+fO4nliz22MW5RQMW+509h/4GxkroEPHLJmihXVsAjV1yzbB0dRMAjY/liT8mcJOCRsf/AGHp9SsXYWtxexesqUUxXfS8S0ul0a96im6NqvmctCAKeeuqpimmOHz+Om266CZdddhmczsxfJpYvX45vfetbVdfF9t2s3C7lCQOqnNulXIEoORCNmQjHdPjcCtIAkmYSSt4u5bFEZudwj1uGpicRixfuUq4qIkSHgGQybe1Arhl5u5THdbhVGc68XcpdqgRVETEVzuwgKIpFu5SrEhJ6ZpfygFcBhBTSKQdE0WaX8lACPV4Vumm3S3kKqVQagiMNyZHbFV2Fzy3Bk31XTE8JODseQY9Hydyo7HYpj+r2x6tN02Cd9g43AGu328lwAr0+Z2aQV7H7dtPSL5A6Nb0vFO1SHvCpMPJ2KQ9FdThVCT63DN1IYSqswevO7CCc+YWDmV3Kk6kUwkW7lAtIW7uUB7wKVEVEwtql3ITHKUGSHAhFdLhdMmLZncujRbuU93izv1QgS5BlIJ3M7lLuVmCa2V3K/Sr8Hjmzq2puvBY/LjN+O+JdnwqxpuZ+UE/fnYv5XF6rry27A/BkREOvV80stvM2TKupL9jVvWSX8syYzd+l3O2UIZXZpdznUSAgu0u5W0E0u3uvquTtUp6CVaaqiohGdUgFu5Tr8Lrl7AaoJiBkdv3N5et2yZAcApLpNERkdymv4h7tccrQjMwOxK24V5fTsHjSyJjQ6Lo10HTcxD27Xix5fsfGaxBwtefDsPFkGt984EDJ8+2sUzk19YVKc9riY+Xun/m7lPudCAYKdynPjX2/L2+Xcr8Kv1+24lGf3wlZyt+lPLMeyN+lPK4ZcCqyde+vdZfyPr8Kj0vCZEiHw5Eu2KXc45Thzu1SPp1ZZyRTSUiiiHDMgMclFe1SbljxRRQdEMXMu9O5Xcp9HhnJZGaXcpcqwVG0S3k4mpknQSjcpdznlhHXkkjoJnp9KnQzs0u5U5XgcopImmlMhjT05nYpn4qjz5/dpVwVq54vds2Cu5O0fKHV5Trx5jKbjlxwt0g3vl6NUO66u70vdMvr2en1nE+T60aaz9fXyJjQre3EelcuYzbdEhO44J6bTpsndGIf6zb1tOG8+Eh5vo9//OO2z3/yk59scU2IiIiIiIiI7HXlgvuZZ56xff7ZZ59tcU2IiIiIiIiI7HXWZzJm8U//9E8AAMMwrH/nvPHGG1i2bFk7qkVERERERERUoqsW3GfPngUApNNp6985S5cuxV/8xV+0o1pEREREREREJbpqwf33f//3AIC3vOUt2Lx5c5trQ0RERERERFReVy24c3KL7UgkgsnJyYJjl156aTuqRERERERERFSgKxfcJ06cwKc+9SkcPXoUgiAgnU5DEAQAwJEjR9pcOyIiIiIiIqIu3aX8i1/8Iq677jo8++yz8Hq9eO6557Blyxb8wz/8Q7urRkRERERERASgSxfcR48exac//Wn4/X6k02n4fD585jOfKdm5nIiIiIiIiKhdunLBraoqTNMEAPT29uL06dNIpVKYmppqc82IiIiIiIiIMrryO9zXXnstfv7zn2PTpk1Yt24dtm/fDkVR8M53vrPdVSMiIiIiIiIC0KUL7vyPjv/VX/0V3vSmNyEWi2HDhg1trBURERERERHRjK5ccOdzOBxcaBMREREREVHH6brvcB89ehRPPPEETp48CQD4xje+gZtvvhmf+tSnMDEx0ebaEREREREREWV01YL7Jz/5CbZt24bvfe97uO222/DlL38ZL7zwArZu3YqJiQl89atfbXcViYiIiIiIiAB02UfK/+Vf/gU//vGPMTQ0hBdffBFbtmzBr3/9a/T19eGGG27ATTfd1O4qEhEREREREQHosne4x8fHMTQ0BAC45ppr4HK50NfXByDz82DxeLyd1SMiIiIiIiKydNWCu5gkddUb9ERERERERLSAdNWKNZFI4EMf+pD1OBqNWo/T6TQ0TWtX1YiIiIiIiIgKdNWC+ytf+UrB41tvvbXg8W233dbK6hARERERERGV1VUL7o0bN7a7CkRERERERERV6ZoF909/+tOq0hW/601ERERERETUDl2z4H7sscdmTSMIAhfcRERERERE1BG6ZsH9wx/+sN1VICIiIiIiIqpa1yy4U6lUVekcjq7+pTMiIiIiIiKaJ7pmwX3VVVdBEISyx9PpNARBwJEjR1pYKyIiIiIiIiJ7XbPgfuqpp9pdBSIiIiIiIqKqdc2C+5JLLml3FYiIiIiIiIiq1jUL7nx//dd/Xfbj5V/72tcqnnvnnXdiz549+P3vf4/HH38cg4ODzagiERERERERLXBdueBeuXJlweMLFy5gz549uPnmm2c9933vex/+7M/+DB/60IfmXhEBiOpJhGMGjGQSblVGTDOh6UkEvApE0QHDSGE6qsPjlOBSJSTTKYQiOnxuBWYqBaTSUBQJ8ex5XrcMSRQACJgKa/B7FSiyiGhMhySKiCYMBLwKUmng4mQcfQEnXE4J8biJ6YiGPr8TZiqFcNRAr09FMpmES5Xhd0uIxE1EEiYicQNORYTHJaPXIwOpmesJxQxMRXT0+FT43RJC0QqPXRKQnnszzgvFbTdb2ziA8ZCO8VACwYATQZ8y8zqUIwPnxjVMZM9Z3KcCRuPTHxmbri59C+tUdXqgvrZtlLx+0BdwIpVK4eK0Bo9LgtcjI55IYiqiwedWoMoO6GYKhpFCXDPhViW4nBLMZBpTYQ0upwSXIsJIphGJ6/C7FURiBrxuGW63hHDEQCiio9evwjCSSAsCFMUBR1rAVESDKotwOyWcC50H4EAknokdDkHAxal4adtk6x6JG1AVCdGEgR4vx3nd6hlPDSivprHSgPJacn2tvjYROD+l4ejvQwgGVPQHVCBZZ1557dQXcMLjFqFrmUEXTZhIp9NwO2Wk0mmkU2lE4gY8ThmJ7HzAIQiYCCXgdsqQJAEJzYRTkRCK6vC4ZTggIBzX4VFlyPLM3MHnVpBGCgIcmIpo6PGpSJpJCIIDPrcMr1Pk/Zyo3Yrnjh4J49M6QjEdHpeMhGbC45Sh6Sa8bsU6XnZ+Yxe7UtkyojqWLHZiasq0YqmqZNYVqRSQ0Ez0BlSkU8D4VALBHid0I4lYwszMO1wSEtk5jMeZWauIogOy5EBMMyGkMxtcS5KI6YgOlyrB45KQSqcxHdHhc8tQVQmxuInJbPl9fRLGx01E45m5TSiqw+uWgXQaguDAZFjDoh4nUqk0JkIaenwKPG4Z8bhpPZZEAQ5BwFRIg8etQJYFCBAQS5hI6CZ6vCo0I4Vo3ECPT0V/r4JoLIlwzEQsYcDjkjEd0RDwqlAUB9LpNFRFRHIqjMmoDt1IQnAISCbTSGiZtnAqImIxI/OaVBk7u3LB/clPfrLkuVtvvRXf+ta3Zj33bW97W2MqIQCnzkdxcTqBp547iRveczleGwvh/r3HoBlJLA26sfn9g7j7kUPQjCRUWcTW0UE4FREP/8erCEcN7Ni4BrLkwMWpaes8VRbxkQ+uhlMRcf+TxxCOGvj4pmFIkgPffPCFgrye+O/fZfMZxjOHT+OZl8+XHPvYhjV49qUz+KO3LsfFKQ337TlakMfiPheGVvQAaeDIqWnc9eBB6/jOTcN48MljODMes72eOzaPYGhFgDdpobTtKraNA3jhxERBW+7cNIw3D/SVXxjKwMFXJnDPrplzdmwcxsiVffYTz2an79Q61dO2jZLXD3weGTe++3JrXA+t7MG6d12Obz/8YkG9dCOFf3n8JSvNB955mVX3pUE3bnnvFbj3scPWOVtGB7H3mZO47X2DeOipzNhUZRG3r1+D37x8Bm+/einuffRwwRjv73Vh/4ExKz585IOr8eh/nkA4asy0TXb8/+gXRzB63Uo8kBePOM7rUE/fZXntLwsARODgcZvyruirfdFdpu6macDhkPDwL4/j5rWrIDocSKZS+P4TR0rG+p+863I8/l+Z8frRG4dgptL40c+PlsQYVRaxbV1m7vDQvszc4WMbh/HTojix77mTeOfwJVjUo+KuB17gOCdqF5u5446Nw9j7zOt4+9VLC+7DW0YH8crr47huzbKCeFIwv7GJXTs3DcPrlPH1+36L/33jlZgIaSXH8+chuTjyXy+M4d3Dywriy45Nw3joyZl4snV0EG6njF6fgomwhl89/wbe/46V+E7eHGT7+jV4+JfHrXXEbe8bLImHL792AZf+QQD37XnFmvvc+r5BfGfXIds4t2PjcMH8Z/v6NXA4AMNM4Z8ffwmb3z8IObtmsjv/47dcA8kB/HjPKyXznR0bh9HjleF1Szh5WkM4qgMAEnqyZJ2mKiIeefhFfPhPhqqKnfPmN7SGhobw7LPPtqy8UMxATEvi3scO46a1A/j9hZj1YgDA2pHl1sQZADQj82JNRw1cf+0KaEYSTkUuOU8zkvjhz4/i4rRmpfv2I4cwdj5aklfu+D27DuGG96yyPfadRw/jhveswhvnotZiOz/dG+eiGA/pCMUMa9Dnjt/9yCGsHVle9nruevAgQrFmvs3QHezarlLbjIf0kra8+5FDGA/pZcs4Nz4TJHPn3LPrEM6Na21J36l1qqdtGyW/H1x/7YqCcX3T2gFrsZ1fr8mwVpAmv+5rR5Zbi+3cOQ/sPYa1I8txz66ZsakZSXz3scw4zy22c8/fv/cYxs5HC+LDD39+1IoPubbJ1X3tyHLr5pNLz3Feu3r6Lstrf1lA5t0hu/LOT9VeXrm6X/oHPbj3scNYO7IcoaiBybBmLbZz6XJj/b49M+N1OmrgRz8/ahtjNCOJ+/YcxWR4Zu7wHZs4cdPaAdy35yjeOBflOCdqI7u54z27DuGmtQMl9+EH9h7DDe9ZVRJP8uc3drHr7kcO4cTpEDQjiZXLem2P589DcnFkwx+/qSS+3PNIYTy5f+8xTIY1mEngXx9/GTetHbAW27k0uTgHwJq7FF/ve9+20lps59J9J5vOLs4Vz3/ufewwnIqMybBurVVyaya787/98IsYuxCzne/cs+sQRFFEMuXA2PkopqMGpqOG7TptfFrD2pHlVcfOrnyH++mnny54nEgk8MQTT+BNb3pTS8oPBr04PXkh8zFwI4mElkQqnbZeDACAgMLHyDxOpdNA9uvncc0sPc8mnfW4KE3+8VBMr3isUjmTEQ1el2x7PJdPueuJGUkMrOir1FwAgP5+36xpuk0w6AUAnH31Qk1tc/zsadv0kxENqy8P2pZ1ZGza/pxwAmsGFrU8fafWqZ62zVdvP83FBKvsovGS0JLlx3m5NGXGnPW8UPh8KKaXLaNSfCgY/3Mc53PV7XEiFxPq6btzMZ/La/W1Hf19yL68kIarV1VfXjDoxUunpmzzmgglrPGWiwHVjPWC+3gVcwy7OJHQk2XnFOXGebeOy06ody4mFOuEuuWLnw1BlkuXBIoitq2upzqwTnNR3BfKzR1zY7T4+XL3+Nz8plzsyo11K+6UOV5NHYrjSSqdRlyfWQvVs46YimiFz+enqzAPyn8c100r9hVc0yxxslw7OwShoF1my6OaOVJXLbgvXLiA/v5+fP7znwcACIKQ+f6T243Vq1fjH//xH1tSj/HxiPV9S1UW4XKKcAgCVFkseFHsHjsEAalU5kV0OaWy5+Wnyz3Op8qi9fEFVRbhdysVj1Uqp9erQpYctsfzPyJhd9wti7hwIVyxvfr7fbOm6TTVBPPx8QhSqTTcqlRT2/T5VNv0vV61bDsFA077c3xO23Oanb5T61RP2+aU66fV9oXifpD/b5dTLDv+csqlsRuTdmPT71bKllEpPuSP/3JlVjPO56rT40QtMaGevjsX87m81l9bmRjin4kh1faFcnXv8zut8ZaLAdWM9eL7eDVzh+I44VTEsnMKu3He6eOynFbUu5aYUHxep7WpridhGKbt8+2sayfWyU49faHc3DE3Rouf93vs7/G5+U252JUb631l4pFdLChXh+J44hAEuJSZtVA964ger329K8W54jxdimTFvuJrKhsn02n7dnYrUBQRb5yLzJ5Htrxc7KzUD7rqI+Xr1q0DAOzbtw/79u3D6tWrsW/fPuzevRtf//rXcemll7asLn6XBLeS+e7A4/95Apf0u7F1dNC6ie4/MIadm4YLJrFbRwcR8MjY9/wpqLKIhGaUnJf7bsCigGql+/imYSxf7CnJK3d8x8Zh/OzXr9ke+9iGNfjZr1/DpUs82LZudUkely7xIOjPfOn/js0jBcd3bhrG/oNjZa/njs0j8LvlFrV457Jru0ptE/QpJW25c9Mwgn7FNj0ALO5TsWNj4Tk7Ng5jSVBtS/pOrVM9bdso+f1g329OFYzrx//zBD5+yzUl9erN/oEglya/7vsPjGH7+jUF52wZHcT+g2PYsXFmbKpy5ruZP/v1a9i+oTD91tFBLF/sKYgPH/ngais+5NomV/f9B8awpSgecZzXrp6+y/LaXxYA9Afsy1vcU3t55er+xtkpbF+/BvsPjMHvkdHrU/HnNw7ZjvVt62bGa8Aj48MfXG0bY1Q5893LXt/M3OFjNnFi9/4T2LZuNS5d4uE4J2oju7njjo3D2L3/RMl9eMvoIH72X6+VxJP8+Y1d7Nq5aRgDy/xQZREnfz9pezx/HpKLI4/+6tWS+LJjU2E82To6iF6fCkkE/vfNV+Hx/zyBjxXNQbavX1OwjrCLh7/8zUlsW3dlwdznY9l0dnGueP6zff0aJHQDvT4F+w9m1iq5NZPd+R+/5Ros73fbznd2bBxGMpmEKKSwfLEHAY+MgEe2XacFAyr2HxyrOnYK6XR6lq95d463vOUtOHDggPX4He94R83f2/7yl7+Mf//3f8fFixfR29uLnp4ePPHEEzXlYf2VKm+XcjO7G7jdLuWhqA53wS7lmd34kna7lLsyO5ECwsxuxkrRLuUeBSkA41Nx9PqccLmyu5RHNfT5inYpTyXhkiX4PXLRLuUSPE4JvV6bXcqjOno8CvweObOLabnHbrmqDVY68a+5s6n5r5XFbTdb2+TvpO13ZgJmlbuUT4YT6PU5MxPOKnb4blr6Tq1TPW2Lub/DnYsJuX7Q51ORSqdLdimfjujwumSoSuEu5S5Vgrtol3KnIsJMphGN6/C6FEQTmR2MPZ7sLuVRHT1eFaZps0u5ImZiTioJpB2IJozMp10cAi5OxxH0FbVNbpfyhAFVzu5SXsM4n6tOjxM1x4R6+u5czOfyWn1t2Z1+J0Maev1qZrGd94nCmvpCUd09HhF6IpWZP9juUm7C7ZSs+YDDYb9LeThmwO2SrF3K3aoMpdIu5d7MfABwwO+S4HVJVd3PO31clsN3uGszHTdxz64XS57fsfEaBFzt+TBsPJnGNx84UPJ8O+tUTr19oWTu6JXtdyk3THidsnW87PzGLnbl71Le78TUtGnFI6datEu5X0U6DYxPZ3YR140UYgkDXld2l3ItM4dxOSVIogApu0t5XDMBm13K3S4JaZtdyqey5Qf7JIxPmIhmywjFdHicMgRkdimfCmsIZncpnwxlfrnJ65YRT2R2KQ94FUiSAAcETEc0uF2KFQfjCROJ7HpML7dLuZaZU01HNfg9KlTFgXQqs0u50yVickqHbiYhCDa7lMeNzGuSFzsr9YOuWnC/9a1vxW9/+1vr8dvf/nY899xzLa+H7aChsjrx5jKbuoPnPNCNr1cjNGTB3YG65fXs9HrOp8l1I83n62tkTOjWdmK9K5cxm26JCVxwz02nzRM6sY91m3rasFI/6KweO4tkMon/+Z//Qe5vBMWPAeBd73pXu6pHREREREREZOmqBXcwGMTnPvc563FPT0/BY0EQ8NRTT7WjakREREREREQFumrBvW/fvnZXgYiIiIiIiKgqXbVLOREREREREVG34IKbiIiIiIiIqAm44CYiIiIiIiJqAi64iYiIiIiIiJqAC24iIiIiIiKiJuCCm4iIiIiIiKgJuOAmIiIiIiIiagIuuImIiIiIiIiagAtuIiIiIiIioibggpuIiIiIiIioCbjgJiIiIiIiImoCLriJiIiIiIiImoALbiIiIiIiIqIm4IKbiIiIiIiIqAm44CYiIiIiIiJqAi64iYiIiIiIiJqAC24iIiIiIiKiJuCCm4iIiIiIiKgJuOAmIiIiIiIiagIuuImIiIiIiIiagAtuIiIiIiIioibggpuIiIiIiIioCbjgJiIiIiIiImoCLriJiIiIiIiImoALbiIiIiIiIqIm4IKbiIiIiIiIqAkW5IL7d7/7HbZs2YJ169Zhy5YteP3119tdJSIiIiIiIppnpHZXoB3+7u/+Dtu2bcP69evx2GOP4Qtf+AJ+8IMf1J6RAIRiBqYiOnp8KvxuCaFo3mOXBKQrpHdJgACMh3SMhxLo9alIpVJwqfLMuXbnpKuoS7l09VzXXPJaKGpts1a0sWOmbwUDTgR9CpCavU5nX70AtypVV6dar6PWOtWjU/pvNfUQgEjCRChuQtNN+N0KNN2E163A75YQiWeOJTQTiwJOOAQgFNWhKhKiCQM93qJ87cqk9qhnPM1FK8ZWPgk4N6HhyNg0ggEnFveqgNmkslp9ba2WN277Ak6kUilcnNbgUiX43DK8qjjTd7JtEYrp8LhkROMGPC4ZokNANG4TE2zK4H2diCpqVryoJ9+icxwCMBHS7M93AONhHROhTPz0uCT0euS53y8a0B4LbjY2Pj6Ol19+Gf/6r/8KALjpppvwpS99CRMTE+jr66s+IwE4cmoadz14EJqRhCqL2LlpGA8+eQxnxmNQZRF3bB7B0IqAtXAuTv/pbW9FVDPx7YdftJ67ff0a7HvuJG76wwEMrQzgyMnCcwryrFAX23R1XlfdeS0UtbZZK9rYAbxwYgJ3P3KooH++eaDPPvDUU6daz6m1TvXolP5bTT0E4MTpMMYuRHD/3mNWui2jg9j7zEl8+IOrcXFKw317jlrHPnrjEHQzhfv2vFKaL+zLDPZ5W3jhBKD1/bAVYyufBBw8NoF7ds2Ut2PjMEYG+xq/6G71tbVaXl/xeWTc+O7LC+LB1tFBLO/3YmCZDxAybfHgk8cwet1KPLD3mO05drGmI+IiEXW+ZsWLBs0zt44O4on//h3CUaPwfAfw4muTBWuqraODWBJ0Y/WlgfrvFw1qjwX3kfIzZ85gyZIlEEURACCKIhYvXowzZ87UlE8oZliNDwCakcTdjxzC2pHl1uO7HjyIUMwom/7E6ZDVMXLPffexw7hp7QDuevAgxkN6yTn5eVaqi126eq+r3rwWilrbrBVtPB7SrQlqroy7HzmE8ZDesDrVek6tdapHp/TfauoRihk4cTpkTZRz6R7YewxrR5bjjXNRa7GdOzYdNazFdnG+5co8czHayksntL4ftmJs5Ts3oVmL7Vx59+w6hHMTWsPLavW1tVp+X7n+2hUl8eD+vcdw4nQIoZhhtcXakeV4IJvO7hy7WNMJcZGIOl+z4kWj5pn37z2G669dUXL+eEgvWVPdv/cYTp2NzOl+0aj2WHDvcDdCMOjF6ckLVuPnaEYSEAofx4wkBlb04eyrpelT6bRtHgk9Cc1IYiKi2R7P5Zljl7ddumo0Mq98/f2+us/tVMFg5p3DWtusWW2c7/jZ07ZlTEY0rL482JA61XpOrXWqx1zbtt5+musLtdTj7KsXysYACPbxoVz6mJEE0rA9NhGOY3igv67rarVujxP1xoS5asXYyndkbNq+vHACawYWNbSsVl9bsUbFhHJ5FfQVwX4Mp9JpxIwkwjHDig+znVMca9oRF9utE+pt1w+AzqhbvvjZEGS5dEmgKGLb6nqqA+s0F+X6QrPU20bNun81cp6ZW2vln1/uXpFKp+u+X/T3+xrWHgtuwb106VKcO3cOyWQSoigimUzi/PnzWLp0adV5jI9H4FYlqLJY8CKosljw8QJVFuGWRVy4ELZN7xAE2zycighVFtHnVW2P5/LMKVeX4nTVaGReOf39vrrPbZdqAtX4eASpVLrmNmtGGxfr89n3nV6v2rA61XpOrXWqx1zatlw/raUv1FIPtyqVjQFIAw5H6bFy6d2yCJQ51udzdcX46/Q40cyYMFetGFv5ggGnfXk+Z8PLa/W15WtkTCiXV3FfsbtWhyDALYuQfY5MfChKV02saXRc7HStqHc9/SB3Xqe1qa4nYRil3wfR9WRb69quOpkAovHSsj0uyXbhVG9faJa59LFm3b8aOc/MrbXyzy93r3AIQl33i1wb1lLvSv1gwX2kPBgMYmhoCLt37wYA7N69G0NDQ7V9fxuA3yXhjs0jBTe/nZuGsf/gmPX4js0j8LvlsukHlvnx8VuuKXju9vVrsHv/icx3L/1KyTn5eVaqi126eq+r3rwWilrbrBVtHPQp2LlpuKR/Bv1Kw+pU6zm11qkendJ/q6mH3yVhYJkfW0cHC9JtGR3E/oNjuHSJB9vWrS44FvDI2LbuStt8y5W5dJGnlZdOaH0/bMXYyre4V8WOjYXl7dg4jCV9asPLavW1tVp+X9n3m1Ml8WDr6CAGlvnhd8tWW+w/MIa13GfQAAAgAElEQVQt2XR259jFmk6Ii0TdIho3cc+uF0v+s1uEzzfNiheNmmduHR3EvudPlZwf9Ckla6qto4NY8QfeOd0vGtUeQjqdXnBbZpw4cQKf/exnEQqF4Pf7ceedd2LVqlVVn2/9lSq3a11UR49Hgd8jZ3Ypzz12y/a7lOcfz9ulvMenIp1OwSVLM+fanVNpl/LZ0lWjkXmhM/+aO5ua/1pZa5s1uI1t5e/s63dmAk4Vu5THjCTcslhdnWq9jlrrVI8627aR72ZVXQ+7XcoNE16nDL9HLtqlXIVDEBCK6VDl7C7lxfnalNm/qDvGX6fHiXpjQk3jaS5aMbbyZXcpnwwn0OtzZhbbrdilvBXXltWKd7gBFIzbPp+KVDqNi9ManNnd7b3OvB1xbXYpd7tkSLldyivEmkbGxU7Hd7hrM51dYBbbsfEaBNr0axfxZBrffOBAyfOtqFOt7TGf3uEG0Lw5aj35Fp3jcAiYCGv25zdwl/KCNqyy3pX6wYL7SDkADAwM4KGHHqr7fIdj5ovaPR4FPR6l7OP873TbHgfQ71fR77d5Z0CoLs9qy65FI/MCCttsvii+plrbrNFtbKekb83ymZYej4KBoBfj45Gq61TrddRap3rU27b19tNy51VTD79Lht+V/5dStcIxWI8L2jAvX7sY0y3jr1vqWY5dTKh1PM1FK8aWJQUs7XFizcCizPWlmlteS68tTyNjQqW8SuYS7qJ3ZPJOLWiLgHPmeZ99TChXRrPjYrt1Qr3t6jAZTiCUsPu4sgy5TVUWypQrCG1sx6T9SqwVdWpGe7S6HedaXrPmqPXkW3xOwbyo6Px+n1oYC4G67xeV1nu1tseCfIebiIiIiIiIqNkW3He4iYiIiIiIiFqBC24iIiIiIiKiJuCCm4iIiIiIiKgJuOAmIiIiIiIiagIuuImIiIiIiIiagAtuIiIiIiIioibggpuIiIiIiIioCbjgJiIiIiIiImoCLriJiIiIiIiImoALbiIiIiIiIqIm4IKbiIiIiIiIqAmkdlegG42PR5BKpdtdja7R2+vG5GSs3dWoSX+/b9Y087UfdOPr1Qjlrrvb+0K3vJ6dXs96+0GnX9dczefra2RM6NZ2Yr3LY0xorm5qp06bJ3RT23WqetqwUj/gO9zUdJIktrsKVIOF+nrN1+vuluvqlnrWar5eV858vr5GXlu3thPr3XidXLdOwnaqH9tu7hrdhlxwExERERERETUBF9xUngCE4gZOXYgilDABod0VIqrCQu63C/naaf5iv547tiHZYb8gagl+h7uTCEAoZiASN6AqEqIJAx6nDM0w4VJlmKkUdCMFQUhDEkVMRTR4nDICXgVIpRGK6lAVCaGYDqciweeW4VVFoNqvjGTLn4ro6PGpmApreO1MCAGPiphuIuJRsKzPBaSa2gqz1svvkqq/JmouCTg3oWEilEAw4MTiXhUwK6SXgXPjeen7VMCokF4Ezk/NpO8PqECyQnoBOD0eQzINhOMGBFFAJKZjWdBdvs9k+9fZVy/ArUqd07+ybRWJ6fB5FETjBpyKBLdTQkI3EYkZcDtl+NwyBAGYjhqIxHScGY/ipRMXcf3bVuKMAJwLaTAME3530djhuKK5yPbPI2PT1Y3legnAuak4UmkBUc2ErIiIawaW9LjmZ391AOMhHRPhBHp8KjT9/2fvzOPjqK58/+1975bU2iVrsWx5lRFesDEBPGBhwIAxBtsQGAhhzQKPN5NhXibvDZksDEle5pE3IRBIAg8CxmDAIU4CNmZxYuLYxju2tXiRV+2t3rurq+r90eqyWl0tW7ZaC6Pf58Png9XVdatun3vuOfec8zsxDAY9gaCAzWLAbtVjM8RTHf3hGP5IDEmCYI+9YDXrCUViBMMxcl3m+LrWwLG2IPuPdGIy6jC2a3G7LDisxmQ7QU0njOGLCw3sb+7mZ6t3EhFETAYdjyyvZUqZa3jX1lDpljGMYQgxpk2HG5r4pukNxZAkEY1GS0SQ0OllghERg0GHxaInKkj4A1EsZgMeX5TjrV1sP3CaS2uKKcq1YTXrsZj0xCSJ0+0B9HotpQUOTrQFyHKakGUJDVr8oShGvQ6bRY9Gq6GtM4TbZcbtNNJ03Edbd4hCt42WrhAOm4GSPDv+oABoaO8KEQgKFLmtdHoj5LjMIMt4QzHCkV6bO8mbttDm51RbQN2o77vBW/V4A8n/3n90BG4IX0QM1PHUw+eHPRxvDSDJMsda/JTm25hamaXudBvg8AkfkahMOCLS6Y0QCEWpLHGob6Y6aO8OIUlaZBkkKf7vXJclrdMdjImgkdFrdWi1GvQ6LbIkEoyJWHUq9TgaaPeFiYkaunwRNBoN0ViMXId5+ORLA/5ojENHfLz36WHq5lbwk99+RkQQKXJbuf/mGrz+MHnZNrr8EbQ6DbIsIUoyOS4zudlmxpc4EaIyWp2Gbl8Em8VAWBCJxES8AQG7VY/HF+X/vLZDWVffuO0iKksceHwCkWgMu9WAPyiQ5TCh04DH18cxH26HPRPjD+Y9R+pBzmDAAPsPezjWcmbtjyuwMaUya9AN45Ao4s410tERVyparQZ3joFQRMSi/YLVKWphV1Mnz761R1mXK+qq2brvFLctnEQgLCDLMqfDQRxWI0JMpMsX5edv7MJhM3D9/EqKcm2YDDrMJj2nOoME7UY0WrCY9cycnIenO8zx9iCBUAxJlpEliahowGrWUn/Eyy/W7E7aa9059rM/dy87JskW+CLI+3DruQzCGxT4/Z+beGRFLeGIiMWs491Pmii5uQanxTA8D2WAQOTMBi8T/7fNpBtep3ugwYUxjKEPxhzuTOJsiloDTSd9tHeHsFv1ZDutRIUYgbDAj1/Zrmx6Dy+bgdWkw2o20HS8C0kGp83AdfMreWNDPZfXlqLVQmWxC50WqsqcnGwL8W8vbFHu8eDSGt74oJ5THUFMBh33LZmG22VhzYcNNJ/2899ur0WMSWiA+mYPJqMWe8DIC2v3Kve4f8l0BFHkeFuQ1q4AaOBUe4AX1+3HYTOwcE455YUOrGY9z761WxlrZV016zYfxhcQkp3lPqerRW4ryxdWJxkb375njvI5QEQQ+dnqnTz1tfnDtyF8EaGB5tYAwYhIKBLDYtbjMeooy7elNS7au6MEQsk7TiAUo707Sq7NmHK9NxjDF4wlGXQPL5uBNxjDaUhVRWFR5HhriOfe3pMkx3a7ETPqhrYkQzAsEhNFwhGRbk0UvRacaYgjw1Jcnp/rJXMP3lKD3WbArBkGY75HJ4gyCDGRe26czoEjndx29UQmjnPh8Ud5Y8NBrppTzr/9Knl9Oyw6QhERu0VPKCxyqj3AqvX1yjV3XTcZl93I7zYdovm0n5V11ThsBiIekYgg8p9v7OKf757Nv7+0TfnOHYsm0e2P0NoVRpJltBoNZYV2xhXYaT7lH76DsExEZgbznj2/Y9NJrzJvVcVOqoodXwhjvdMr4LIZyJmYS6c3TI7LjBiL0ekVyBlkvWw0wZ6D3Sl6oGaSa/RHvfrYCKIk8/5fj/DIilpiokSuy0IwLDC+eBKvrz/InGlFvL6+XtlvS/PthCMxvn5rDZKs4RdrduOwGVg8vzJp7T+8bAZ2qwG71UA4JvF6r89W1lWTn2Ml22FUdDOc2WurSrMw9pdm3CPrx9v8SWN+IQ7GB1vPjLBDuJAQY/FllRxr8St6avFllYSE2LDZVzFZpOFI6nqfXu1Cn2bfzzgGGlwYwxhUoHviiSeeGO6HGG0IhaLIZ1OSPYr6By9u5YNtx/hw+3GqSrPJyzIrl3hDAqFIlLxsGxFBQhRldFqtEnUCyHaayM+2odfpOHLKh8NqQKfV4A0I/OEvh6mbW86aDxs50eYnx2nBajZgMRn43z0RMQBRktlZ38Y1cyvYd7gDUZLZ3dBOfraV6ePdNB734HZaEUQJISbx5sYGqkqyeO39g0n32NXQzqJ5Ffzo5W1sP9DKp3tOM7kiB28wwlWzy3hzYwMf7zjBp3tOcdMVVZxo8+MLChw40sV1l1ayu7Gd7QdauaK2BJNBhzck8Iu3dnPN3AqmVbm58uISXnv/IB5/VBmz0G1lV0N70tSKksy8miJc1lSnbrBgs5nOes05ycFwoqc2q8UTRqPTYjKkp2wICCIn2gL8/M1dbN5zim37W5g23o3DbsSoU/+eNyzQ4Qnx+oZ6dje203DMw/QqNy6HCbsp1YH2h2P86OXtSTK142AbCy4uxWpM3Ug7vIKqHF86vVj1/gD+iEhLR4hn1uxW3mP6+FwcNiMWQ+oYnX6Bn7ySOsb8mmJsPWMMpSyEJJGWrhD/d/VOPt17mk07TjBtvJs/fnoEp83My3/Yz13XT00yjBPPPGdqEW991EBNVS6Nx7t5c2ND0jX7DnVSWeJi3vQi9h5q57MDbVx3aSUtXQFuuGw8kytysFsMfH64g2A4hijJtHQEmFzh5tX3Dii/cU1VLlrgJ68mz1vvtX0+sNlMBIPRc7rWGxL4wYtbB3X8s91zIHLgj8Q42OzhzY0NyryVFTrIzbJg1I9+6hRRC/6AgCRDOCqi12sRRTmuL7SD+35tHnU9cMmU9HpgsJBOJs9HJ6Tcq4+NsKuhjekT8phYloUM+INRTncG0Wm1nO4McNlFJTz31h4lkv3mxgY27TzB7sZ2LpqYz5sf1OPxR7nhsvGs+bAxRc+W5tvRa3X839W7kj47cKSL4jw7TpuR3U3tBMNnPAhRkpl/UVG/8+wNCew51Jmiby50PV4oBqJP0mEwdULv3/v9Lc2qNuFQIxKTOdEWSNrDJ5Vnk59tVd2ThwLp1vvcqZlf7+nQ7ovSfNrPGx+cmacJpdnYLEZlnkaazTgY8v9fHeczh/3Jwejf+UcovEFBNTLrDfYcyesghow3JPLdF7bw41e289NXP6PbH6Gs0M7EcS7++e9nc8/iaZQVOvjTXw/z9keNBMMxojEJSZa5vLZUOe2+fn4lb3/UyE9+u51dDW3KuAlEBDGJDCMiiOh1Gn71u31cNasMSZbJzbIoJ9RoUL1Ha2cw6Z1Wra/n5isnKCfmib+/vr6eq2aVpYwdEUQ8gbgA+0MCdXPLWftJE6s31PP06zupm1tObq8NSJJJ2bBNBh1ZKhHUMfRCz+b++DObeeJXW3j8539hf3N3WkKUQDimnChD/Hd67u09BML9HN/K8JddJ3hkRS3fvK2WR1fW8pddJ9Je3uWLy/a37pzFN2+r5Z/umkVZoZ0uXyTN9WFVGezyhdOOEYmIPN+TlZG4/vm1e4lE1XPQO70R1TE6verPNKgwxOur9x/vptUX6albC/PMm3FnOjfLzJIrqogIIvfeMA2X3cCSK6qQJDnN+pZZNK+C/Uc6kWT1a1w2E4dPdnPVrDIiQjyF8Pr5lWfW4KqdXD+/UlmDl9eWKlkuiXu8sHYvogwOmyHl/om1nWl4/FHV97uQ8Qfznt5Q7Iwu5Yyu9Ia+GOGQWEwmFImx/0gXx1r97D/cRSgSIxYbfGuy0ztwPTAa0NtGyM0yUze3nH9/aStPvrSNp1ftxKDTsX7LUX773n4iUYlgOEZEELlqVpmy3yZ0REd3iLsXT+Xu66dQkGNVna8cp4XmFq/qZ5Is03DMw8I55UmfmQw6chyWft/D44+m1TdDpQ8yhUHVCWezCYcBQkzi5T8eSHqml/94ACE21EQ9Z9DpDeOwGVh+dTXLF8b/c9gMw7reI1GRV99LnqdX3zuQ1q4YwxjUMJZSniH0p6iddgO7m7qwmPRKKmvi82ff2sO3755NW3eY/+hVX3nfkum8v+UIq9bX8w9fnoksw+GT3UQEkSWzqpIc3oST2nt8kyGZPM1k0FGa74gbzRrQajREomLKd/r+29Tn1DMixFN3+3Pwe48d38BNeEMCskaj6qgvuaKK1R/UA7Bpx3G+cdtF/Ocbu5JSupxWw+hOVcsw0m3u6VLxuwPq8todiJLvUD+xkySJhXPL+dnrZ9LtHlg6HUlU36wddgOL5lYkXX//kuk47OqpazlOs6oMZjvSRwR8QfX38AWiFLlSv+eyG1XHcNkzfKBjgN0NXUnp9f9892zqm7sUQ/r6+ZVJqZ8PLK1h085DXH5xqfoz20w8vWonS66sQqvRqF6TnxM3ni1mHUVuK9Vl2UrpCaSuQa1W/eCtvrmLhXPKWbX+YNL99Xod3nAs46mSWQ6T6vtdyEHcYN4zHImpzls48sVwuCVRoqUzxNsfNaakJg82clwD1wMjCmnSiHvbCL2daDhzULh84UQ0Pfvkkiur4ntpz2G4mo5YWVeNNxhRna+WzmBa28Bs1BGOiJQV2ZXPE7wOBTlWuroCaV8vy2FKq29G+8H4YOqEfm3CYUrf9ocE1WfyhwRQ2S+HAvk5lpSSiJV11eRl9X/wk0mE0ujz0BdEn49haDCiI9xdXV3cf//9LFq0iBtvvJFvfOMbdHZ2ArBz505uuukmFi1axL333ktHR4fyvfP9bDCRUNS9kVDU7d1RXl9/kKig7qiKMjz/TmpU6eYrJyh/02k0lBU6WVk3CaNBm3SfjduaWVFXrYyfqIHZtPO48u8VddW8tG4fC+eUo9Vo4vV4zjPPnO4ev9/UlPJOFrM+Xn/d60SyqIcVOqEsN25vxmTQ8Y93zORYa4DHn9nMnqYO1fdPZCSaDDruvHYK0yqyeOpr83nivrk89bX5o78ubAjgSeNApzuZNxt1qvJq7ietTK/X8cu3k+X0l2/vRa9P8x1Joxp9RlIPuwuCyH1LpifJ4H1LphOLpT9VdqVZdy67+qGBxazjgZuTx3jg5ulYTJlNp2vviqbUSx482qUYxGoG+C/f3sPltaWqa/O+JdPx+OPR+o3bmnHaDKzsc839N0/n0Ilu/u8bO3l61U5uvbqajm716GFBjpWVddVMH58bX8u9YDLokCQozLEm3X9lXTX/Z9VnZ82mGAw4LXoeWV6bNL5yEDcC7pk4yOmNITnIGSIEI6JqBD8YSb82zxcGPTy4tCZlLzKMBgqPXplG3/7F5qS1kWQjpMkoy7KbFT2QWPcJ51ZNR6xaX48kySr6YRobth5V1R0r66opL3Syaedx7GY9SxdM4JHltSy5oopX3zvAZwdb+20b5bToqSp2puibOxZNps0THtVtpgZTJ/RnEw4XzCa9+r4/TKnbADFRVtUtMWn4jD6rWX2eLOaxmOUYzh0jWlo0Gg333Xcfc+fOBeCpp57iJz/5Cd///vf51re+xZNPPsns2bN55pln+MlPfsKTTz6JJEnn9dlgI6Go+5JtOK0G6k96uby2lBNtAdXT03SnadGe+xj02iRio/9+x8yk+7R7wqzfcpRHVtRy9LSPyeXZ2K16Lq8tjW9+Mvxh82HaPWGK82x0ecPIwO//fIj7l0zn+bV7lXv8892z8QaiGHQ6QGJeTTGHTvqUsR+6ZQZOq57brq5OIrl46JYaCt0W5k8vwGIxUlnsVDaWx5/ZrDyr2vvPmpTP5PJssmzG+MYmgdNiOHMKPOZsnxU2s0F1bm1mdUPBatKzsq465VTZ0s/Gm+7EvtuvHhVPOIR9r/f4IxQ4VRxijYaNW+NyHI6KmI06fr+piduvnZL2mcKRGCvqqpOiPivqqglHY0DqGEa9FrNJx9IFExTSGLNJh7GfevfBQJfKXEhyPKNjRV112sM4NPH1/YfNh1lyRRXjCu1oNRre+biRlddMYmXdJCW902jQ8uiKWnQ6bZxPIRAlFE124B9debGqnLR5QqxaX4/J0MSDt9TwxoYzhIsr6qpZv+UoX1t2EU99bT7t3giNx7tZ16NTgMwTG8owpczFU1+bjycQPaMrLkQ3DOI9I5EYdyyaxKvvHVTk8I5Fk4hEYzDKo34Qb0GlJp/B/kpQzhOiCEdPefjX++bR5QuT7TCzZe8JivNtgz7WYKPfTCOrQcnegjSRZ1Pyvv6HzYdZPL+Sh26poaVXeVcCEUEkIkhs3NbMkiuqKHBbaekI4g8J+ALx3yyhO7RaGFfg4De/38d1l1Zw61UTOXrah8Wk59X3D9DuCZObZab5tJcfvdwPGZoMVcUOclxmCnKshCIiHn+Yd//chC8gjG6C00HUCf3ZhMNl0+h1GtV9X6cbvlOSrjRlXh5vhII02XaZhsGgVZ0nwxeAj2MMQ4cR7XBnZWUpzjZAbW0tr732Gnv37sVkMjF79mwAVq5cydVXX82TTz553p8NOvpR1DazAa0WNmw9yldvmsavfrcvyTmwmPSK4QzxaLMvIOB2Wfj6rTP4ZZ9a2xd/v4+Hl81ISk+tm1vOb36/D19AYMrds5EkWPtJU8qG7naa8QUivPVRI+2eMCfaAnz7njk0HvdQVuDkZJsfm8VIhzdEjtPEnz49omzWE8dl09oVwBvQpdT/PvvWHmWjzcuzY+jZUZrbAsp1idP21/swm7odRtyJSNCYc31eiETVHc+IEANSDX6LWUdetiXJ8czLtmA1p4/02i3xzAblIIe4w2hLY1xlp0vPSxN91us0XDKtKCkFfWVdNfp+jAGzMV73uOSKKuVwaf2Wo3xzxcWq13t8Aj97fVfKM/3Pr87FmpW5KHcio6D3uJt2HGfFNZN4/f2D3HXdlH7LQto9YdZ+0sQdiyYRCMWYO60IDRo+/uxYUncAUZTw9ZB+vL/laPy36kFEEGnpDKgaEus2H1auee6tPfzLVy7h88MdSFJ8Pu9YNJmSXAtI8YOX3qnlie9lPFVSzsBB3CDd0241KroyIYd/+vQIj985axAecviR5TCprv2sDETw9Tot5UVZfPeFvyoy+uDSGvRpyBxHEvpNI7YZMBm0LLmiCpfVkLKH33/zdNo9IUUP5GaZFe6FgmwrTru6PkU+ox8SpSFFbisP3VLDs2/tUT5bUVet2AgTx2UTFWKUFtj58SvblYOzq2aVpUQbVQ/TZPAFovzole2pczCMKdODgsHSM71swqAgYjXohr00TpJkzMY+B85GHfIwssHmuNR1S7baofwQIRCMYeozTyajjmAoBmnslzGMoS9GtMPdG5Ik8dprr3HVVVdx6tQpiouLlc9ycnKQJAmPx3Pen2VlZQ3+Q6dR1C6bkcpiF76AwPq/HeWx22dy5FQ3kgRb950i22FKqY1zu8y89t5+bl80mVMdwaRhTnUE6faH+df759HZHeZ4q58/9LThum/JdFo7A8REmQeX1iiOcZHbyt2Lp3HgaCfjS1zUjM9h854Wbvm7iRw62U0kKvHcO7vxBQSWXFHF2k+aWFlXrShBo0FHlt2IThtPATrX2qTeNVGJE/ulCyYwodRFrtM07BvQFwV2q1HV8Zw5Ud3gt+rjqW2OCiPeYBSn1YhOE/97ut/DYtKz7O8mKmniJkO8JtucJh07FouniPduNXffkumIonoaqlanIdth4tEVFyutyqLRGFpteofbajGkZFs8uLQGq0Vd1Q1Lra1GPaPgmrnxNj9XzhxHS1cwZa4SkWaIG9bfvG0GEUFKiqKuqKtWsldWra/nzusmY7cYCEdFli+cRJcvRG6WmXZPOJ5NExbZUd/C/7x3Lm2eIPnZVl5ct08xuBPzERVE5k0twBOIMn96gZJ5Apmppx7tcFr03HntlKGNZg1hv2CzUae6ztKt/QtBe3eYzbtP8O175ii66d1NTditFYPegmyw0d/a6PBGOXTSpxyETxzn4rHbZyLJEnaLEVmSKM6z8dAtNazeUE/d3HLlAPXtj5q4f8l0Hl1Zy9Orkg8k120+nPL/SxdMUPbaskIHzad9io3w8LIZGAwaSnMd8daNgV4kXmlS3c+2t/d91zH0oMcmrCrLoa3NN+y2Tt806QSM6crChgA6nUZVt+j0wxd1d1gNPP/OIcX+lSSZdzcd4r/fMXPYnmkMow+jxuH+3ve+h9Vq5c4772T9+vXD+ixut/2Cvp8dk2jpDPLAzdP55Tt7eeF3e1g4p5ziXCszJk7le79KJjFKGM77j3ro7FYnRAmERLyBCL5AnF35qtllaDUaYjGRcA8Zmkaj4dv3zOHIqW4sJgP/8dpnikJ7+NYZXHfZeDo8QV5YmxwVXb/lKA/dMoPVGw4q0bPHbp/JhHHZaLUaTrT6VZ+p0G0nLy8+V3l58UbIbknmsdtnKmP7AgIVRU7mTC3s15EaTEiSzKn2AJ3eEDlOC0W5tvMa+0LlIJNwSzJ3L56W9Bs/dvtMKkuz076ry2ml6YSHQDiGxaSnqiQLYz813McPtqjWZP/LVy5hUllO6vVdobQp4gn56I3OUBQZePr1M+SBD91Sg16nUb0eoKWpnTc+qE86aHjjg3oeWXExVcWph2oRST2VszjPnnYMNZyrLEiSzKd7TrHt85PUTipIzSiwaMnPsSjtf5YumEBJno02T4hIJMbdi6dy6KQXZOjyR3mlD8Nsb8KziCASCAmU5NmTetsn1vTSBRMQJYkvXVTK9369Jclo7/JFFKc7MR/jCtTno++aPhdZS4f+5nyw1m0m0VsO3Dl2qkqz6PSFyHFk9nkTctX3N7i0pigjYx6vb1XtavAv915CVUn2oI512htm2vhcftjTnikho3arYUBrdCBIyNqexrbzljW32052dvq18dd9p9iw9aiSidRwrJv/eO0zHrt9ZjybRIZsu5Ecp5k7r5uiZPrAGV37rS/PUg7sDXotWq2GLy+agj8UJRaTuGp2GcgQCAs0n/ZzaY2Wdz9p5O8XT8PtMpGbZaEkz05BTvz93Nky/3TXbBqOeZBkmYoi51n3duV9B1EPDBYyJR8DQbq9YSQ8m2jw4eg00t3rkMVhM5KdZSQva3ierz/dklc2PM+UnS1x1/VTaD7d069cq+Gu66cwoTQb/QDSyofaZhwJMjbaMZhzOCoc7qeeeoqjR4/y7LPPotVqKSoq4uTJk8rnnZ2daLVasrKyzvuzgaCjw490AQQO3pDAr9/dxzVzy/mnu2YRE2XMJh2xmEQgTW2cLwMo94MAACAASURBVChgMujo8IaU1DCHzcDCOeUU5Fjx+MPkOM38x6s7UjbHFXXVTCrPRkN84w2ERF59LzlN7Bdv7mbpggkU5Vr54cPz8QWj2MwGYpLIRRNyCUVF7r1xGjarAbtJj92sp6PDD4BRi2ptklEr09bmIy/PET/N7UF1iSMl1T5xr34xGBGcHhKbvs/al4jtXBbZhcpBpjGgedbC/mYPx1oCSLJM82kfbZ4gU8qylEhmX4Sj6nXG4Wgs6fdOwGTUqqaIGw1a1esFQWb1hl7OM7B6Q9x5VrsewOOLcKojqLDcK3/3R9SfSY+ynno79WY9yvWDKQvekKAYpKIks/CSCjz+CDlOM13eIN97fis3fKmS79x7iRKFfvmPn3OqI8jyhdW47CbWfhyPiC1fWJ22zhvia7+6LJs3NhxMmsP1W45y13VT+fXv97JwTrmSTZP4/qr19SxdMIFV6w8q0YXuQITosTTs4xoozDbzrTtnYTHpcViS9cO5rtu+eqLvGOeybjOJ85EDowZqqvJoa/Odm447T3hDAi+t25f0O7+0bh+F2eaMpPP2lxmS9jc8T2jQqJIoPXH/vEEfq2fAs8raQGQhoYd7pxF3dPjJcZjwBQSlpjpRb3281YckxzuHdAeiiJKclk06EBE41R5nH48IEn/89IiSlZbQgSaDjkdXxEnQ1m85yvKF1ZiMWgrdNiJRkW5/hNaOAHarEadVTzgSU3RCPBV9Bs++tVt1b++L897bM4B+9ckgjnE2qO0NQ/Fs54JwTCQ/24TbZaHTG7chdVqJcEikTRie5xtK3XLO0IAskZR5+sjyWro8gfPSCUOBkSJjoxnnM4f9ycGId7h/+tOfsnfvXn75y19iNMZTk6ZPn044HGbbtm3Mnj2bVatWce21117QZ0MJf1jg8tpSjHotJqOeaCCKQafl2TW7ueeGaaonylqNRolM3XT5eP7prtl0ekO8sPZM/ffDy2ZQVmjn4uoCxejauK2ZghwrMVEmKohkO01otT5VhSbJMs+8uZunvjafslwbaKC5NcDxVm9SaqtifCQwUGKR86mJGiSDOx2JzfcfvBS3wzjsKV4ZgQxo+o8wdPkFZFlmSkU23kAUp92ILxChyy+QnYaR1W5VJ2azpzHwA8EYTrsxKUU8FBHS1kFFhFhSGmVyHbp63VRulnoLoVyneosTb0BIdurluFNfWTgrI45K75rODz87yYefxQ8Av//gPOzWeCTLbjXQ0hFgzYeN3HpVdVIJSZsnqJBxJd5NrYYzka5vNGiYM60oaQ6/etM0ugNh2j3htP1z87IsLF8YZ0R2WA3sONjG2o+bUtdcf+vybJ+f47r3BgX8EXFAbe5GBNK0g8oE/CGBGy8fjzcgKBkTN14+Hn9YyMj8ONKsfccFsMSnQ3+ti1TJFi8QA22peFakSSN2O41KmdfqD+pZWTcpXnd9ZRWbdhznxsvH43ZZePH3+7g7jV1gtxh5+6MzzvAdiybx7p8PJXX6ePCWGjz+COMK7Xz1pngJz57GTqWvsMmg487rJvOHvxzmoVtmJL37qY4gqzcc5PsPXkogLGRmbx/DsCESFfEHY+h0OiRJJhoTEWMiWq0O2zClldstaQhfh1HPD7pOGMN/SYxo1pGGhgaee+45WltbWblyJUuWLOHrX/86Wq2WH/3oR3z3u9/lmmuuYevWrfzDP/wDwHl/NmTQQrs3wqadx4nEJL73qy089fI2vvvCFm67uppOb4g7Fk1WamvihvM0TAatkgYaFkRESVKcbeiJUq/ZzbK/q2btJ02s3lDP2o+bWDy/ktbOID95ZTstnUFeXvc5E8dlp9TuJAz1iCDS7o2npfvDMcKCpDjbiXF+tnon3qCQ9P3ERluWa4sroEHeaNMpvJTnOAvSkdhsP9ia8VZGQ4pe7Wie+NWWs7ZqEpGICjI/fHEr//vVz/jhb7YSFWTEdOFt4rVWd12XLKt3XTc5LcOp02bAH4zx9Os7elpT7cAfjKU10k1GvWqfdpMh/Tmh22HkoVuSWwg9dEsNbqd6HWG790xEfPWGelZ/EGfjTqyBwYZaa5i5U/Np7Qrzg9/8jR+/sp0f/mYrOp2WW6+eSFsPaRL0HJ657fzp0yMsXziRsnw7Dy2b0UdXTMdijtds2ix6gmEpZQ5/9bt95GdZyc0yK9/rDZMh3rN37cdN5LrMdHrDim7ou+bOti4vaN32kuHdje1pa0lHJPppB5UJWMwGIlGRtz9qZPWG+ngkJipiMWXGGDTotSltoOKEhoNvUiQO9nqjv4O9C0V/RGeDCa9fYP2WIzyyopZvLq+lqsTJ/TdPZ9OO4yxdMIF3Nx2iszvEirpJrP2oga/eNC1lrb+wNjn19tX3DnL9/ErGFThYvrCapQsm4LKb8AbiB5tGvYYT7UHF2U5875U/HmDhJWXsP9KZ8u6nOoK0ekKU5WVmbx/D8EGj1eDxC0n7vscvoBnGUp10usU4jIzg7WmY0zNlJ4zhi4kRHeGeOHEiBw8eVP1s5syZvPvuu4P6WUbQJ51SlGR+8eZullxRlWIIP/f2Hr715VmEo4JS22k26ijMsRJyiNx743R+/e5eTnUEWVmnnk565FR3Surd8oUTk+o73/zgYEoa7VdvmsbqD+oxGc70YPSGYkn36z3O6a4QaDQZjdr0Rr9srwMwvNIRu0jSELQyGkIM9EQ2FkO1bupf75+XdoxYTCLL0ROxjsawGPVIsoggqjvpskyKoffqewf4/kOXql7v8alvct3p2ogBSHBRVQ7ff/BSOrxh3E5z3NlOc26gxhZuMugw9VO7fiFQaw1z05UT+LcXknkbnn1rD9+59xJkWebxv59NfXO8R/eHW4+yom6SwmZc5Lby2O0zOd7qQ6vVkJtlxqDT4s4yc6zFh8tuUp3DhuMerppVxsZtzSnkbF+9aRqhiMAjK2p55Y/7eWBpDVs/P83yq6tBA4GIqES5zrYuL2Td9pXh0UTI5A0KvPKn/Ukp3q/8aT+P35mZzIlQVL0v9sSy7LQZKheCLl+EdT2p0InMkHWbD1Na4MA9yL/JQFv9XSiGivzL44+e6S0sgyBKaDVw/801BEMC18wtJ8dlwWLSsrxuEs2nvTyyopZ2T4jSfAehiJBCoBoRRArdNn797l58AYE7Fk3iF2t2KeUp/3TXLFw2dZ2QZTfT0hVUffdjLX5K3Nazy+4QEveN4cIRiUrp9331pLCMozONbinJtw+6bjlXDLWdMIYvJka0wz3qoZJO+fCyGThshrTsn/6QwHt/PcxtCyfh9Uc53Rnk6dU78QUEHllxEd9cXktrZ4gcV3rHse89ZRnFWK4ocrBxezMef0RRaFPKs3n1/QMKq7mzh9E5HIkhyeqG7qETXv7jtR1DVkc5WEaQmsOTYHY+Hwd+pGKgjk53P85tYRrn1mox0NoZ4tm3kknN0vX67kozRpc/orqROq1G9bTVs/3mErjtvVrLpQ/So9er99ccCBHKgNBTfvHjb1yGNxQjHInhC6j/VpFonDH4+XfOlI187dYZ7Glo5b/dfjGHT3oxGbScavcTjUk4rAaC4RivbzjI0gUTeGndfpZcWZVWTxgNWnwBAZfNmJxS/0E97Z4wyxdWI4gSQkziipnjONkWYMPWo0mp5WdblxeybnvLcLoWgiO1q4E/JHDtpRUpfbgzleI91Gz7JoMOX0BI4kowGXSYMtC/XqfVqHZceGjZjEEfC4auX7I728yiuRVJnBb33zwds1HHsZZ43eBPX/1MOVi7e/E0jrf6iAoSq9Yf4PZrJqunmVsN3HvjNLQaDWs+bFDIDyOCSCgiYrPoVb+X7TThDUZSmM8T++Pk8qz+ZXcE8CyMYWDw+tX3ZG8g/b6faViMelXdYjYOn7sy5HbCGL6Q0D3xxBNPDPdDjDaEQlHOpU2hNyTwgx5mVQBRktlxsI3Fl41HBhqPeRB7ESiYDDrGlziZM7WIphPdvPzH/exqaCMYjiFKMtv3t3J5bQk6DWg0GqaNd7Ozvg1RkpUUs/f+egR/SEi656J5Fby47nN2N7azbX8rtyyYAMCr7x+k8ZiHOVMLMZv0TC7PoSTPRmG2BQCdXsur7x3gpiuqOHCkSxnnqzdN4/d/OYQvKLD9QCtX1JakpPz1hs1mIhi8sHQ8k0FLVWk22w+0Ks/xyPJaSnOtA75XXpaZS2uKcbvMTCrL4f2/HVUiADdeVhGvF7KdfbM5VzkYDmh0Wj7cfjxFvhLv1xeiBv6882TK9ddeWoHdpL7RdQcEfvLbz5Lke2d9G1+6qET1OzFg0w6VMeaVY1O5XtTAhJKsJBl/cGkNeTkWzIO00ckaDV3eMJUlWUwd72ZqpRu7RU9Jrk1JYRt0WdBA00kfP35lOx9uP87iyypV5/6aueX85xu7UvTHsquqOd0RYM3GRj472Mauhnb2HepgUlkOL637nGvmVvDa+3FHr6UzwF3XTWF3Y7syhyvqqvlw+zGunjOOcQUOIoLI6g317G5sZ9/hDoLhGCaDjrnTCqgqyeL5d/by510naTjmYemCCTS3eNm08yRX1JbEmY1dliT9sLKumpK8+PwNZN321RO9ZTgYjnGizc/iy8Zz85VVLPlSZfweQ7j+BiIHUUnm6V6s0qIks/9wJ9fMLceagaiITq++3pd8qbJf3Xy+ECSZ/Gxryu9enGcf9PeLSjJOq5E1Hzayu7GdxuMellxRlZGxEsjLMnNFbQlXzCrl+nnlKbJ2Pjqhr3z7grEU/bmroZ2rZo/DbNDzy3fOlHL5QwJbP29h4rhsVn9QT6c3wvgSF9PGu1N+g25/hJ+/uZutn7dw7aUVnGjzK2u6JM/OuEIHRW6b6vdWra9nztQCJpRmUV2WzeTy+P7oCwhp944E1Oydc7EPMoXBsDvOZYyzQW1vGIpnOxfESLPvz0u/72f8mWR13VKSZ8vYej8boqJMtz+SYifkZ1ux9Mj2SLMZR4qMjWaczxz2JwdjEe4MIl2UsSDHyuoNB1MiNncsmoQkyYiSlJbMqK0rhMtm5OhpL3sa2/lf983lwJFOSvIcdPvDXDO3POkU7r4l03lpXXKtdyLNPGF8v/C7PYrD+dTX5iuGRaKXbCI1UquFiiIXaz6sTzo1H5Ko8ECJ2c5yL7fDyLh8x9D2yR1CDDRKIwjqaZtCLH3aZqc3rB6x9oVVU76DYfUxQpEYOFRI0yIxpcaxdxuxv188NU4vPgiwm3TkuixJbVFyXRbs5sylQvZNle7yhlXnJV1KfaIFUO/vFLmtTK7IZsmVVRRkW5XvtXvCrP/bUaV1kCTFo4N1c8t5Ye3eeF9RUD29z82yKhG2xNi92455AlFioqya/jeuwIG9wH5B67avDPsCAuPy7YwvjN93JK/T7jS6v9sfzUha5FBFZRPwBgVMRl1SWzuTUYc/KJCbgfcz9xnLnGnDewj6JXeo6E+HzRDPbompd4DoTYaW3aMz+87Lmo8alesT63XtJ01KpNph1VOYa0v57d7qYWD+z9W7+PY9c5LasJ2LLA1W2dcYhg6BoKC69wTCAgxThLs7IGA165Pk02rW4wsKw5ZS7u9pUdobcs/fM1GyM4YvJsYc7gwiXTplpzfE5bWlaDTwL1+Zw+eHO6kodtHVHeLFdft5dGVtfBNU+W5+jpV3Pmqgbm4Fr75Xz+SKTl750wFys8zcXjeZdZsbFOPXZNBiMepU67wKcmz845dn8et39yrO9jduuyh5U+0xlh+/cxaeQLxN2E9f+yzpfkNaRzmYDKiD6cCPRAzw/ZxWk2ra5syJs9IO4XapM4JnO9SLv3SagaWG+kMx9h/1sP/o9qS/B0IxcPb79ucOGaqKHeRlmZPa9mRSDlIMUw2q8/LNFRenTQePCBIbtzWzdMEEJpQ48YViPNljIK+sm5T0vYZj3by0bp/Sw/vy2lL+sPlw/NBME6//3bitOcVp/soN01QN6Lhuia/7QERUT//rfSByvut2FK9Ri0k9bdecqajREM+VQafl3U2H4gc2mnjf6nc3HeLhZRcN+ljd/ghrPmrkqlllylhrPmrkwaUzMuLcDxX66s/cLDOL51fyw99sTVsKMqUih5V11UgSvPvnQ9y9eCon2+P78bgCO7/5/T7lMBx69nq3lSVXVPGHzYfxBQTcLitrP25gyZUTkWSJIyd9vPVRY9IhuizLiiwVuu0YtfJZZWmoat/HMHiwWQzqe8/yi4ftmQw6Le983JSkW975uCkjuuWcn0mvY9OO49xweRXhiIjFpOPdTU3cdf3UYXumMYw+jKWUnwfONS2kbzplvKflRXgDUURZ5v0tR/nsQCvzZxTT0hnkt3+Kp4FOGJeF3axnckVOUlrNf7u9FotRT36ODaNBx8XVeXQHBBqOefAFBSqKnexuaI+nhh7qYHdjO2WFThpUUtcrihys2nCQBTPHMa3KzeTyHCqK7DhU6m9NBh0uqxGrSUdxnmPAad0jObUl8W59U95GWnrQ+SLd+6VcZ9RSnG/HFxSQAa1Ww+W1xZTm2dIbWnoNlUWulJTvojwrRm1qyndMlsnLshCNScoYF03IJT/HqpoqJiKrpqAvSpOCfiEwGXRUlmYjRlNrXgdbFhKp0tlOEzdcNp6oIPJ3s8p45+NGtuw7TeNxD3cvnorVrGNSeQ67GlLTwcsLnexubKd2Yi5FeXb+92+3K4bu6c4AtyyYoOiOIreVB5bW0HzahyjJbNzerByyTS7PAQ1JemPf4Q5EUebaS8v5867U+Z9a6eaaS8oozbWi0Wpwu8wp6X+VhY4Bs8qm0xPnKsOZxkDkQKvXUD0ui/IiF1PHu6mpymXh7FIK3VaMGWDyTmCo5irdWi5Is5YvBCLw3qfNKfKZCT3QF+lkcjBSyq1mHeMKnYr+vOnyKt7c2KCUgixdMIHWziBLF1SxYGYp18wtp707hF6n5fUN9bR2hSgvdKLTalizsZHCXBu7e3RFAiaDjrJCJ69vqEcUZR66pYaPPzvG7qZOtn7ewrzpRby07nN8weQytBsvq8BpMeCyGinMdxA8B4b2wSz7GgyMpZSfHRqdhrICB75QTFnHX5pRRH6OJaN6qj8MpW45V4hAlsPML9bsZvOeU2zb38qtV1WTn2NVyttGms04UmRsNGOwU8o1sjzSXYaRhwE1r0/0kQ0LdPmiSk1mIt3b7TRRkGvheGuQJ1/cCsDEcS5uuKwSjz9KbpaFSFQk322hwxPmmTeTe24a9VrMJj3PvrUHh83A4vmVSamh31x+ETFRVliNE+O+9WFDSqT6nBi6EyykA4iinE/z+OFGf83rExiQHIxw+CMxdjd18PIfz/Rmveu6ycyocqet5TrSFkCMxTAaDXiDUZw2I9GIgE6vpyLPlnK9Nypw+IQviR3/oVtqqCxx4DSmyt3R9gCHT3pT0t0qi52U56be/0KRTk4HXRa00HDcy8n2QNJafXjZDHKzzDQd7+bdPx/CFxB4dMUMTEYjDce6kCTYtPM4t15dTVSI0e0XqChyIMkyP3r5TBZAIlI2vtRFTJTxB6NJemNFXTXrtxzlmrnlrNt8GINOy7K/m8jzvZjKV9ZVM7kymwOHu1KecXyR40zKfU89etNJr5L+V1XspKrYMeDo6kjXEwORA38kxo6GjqRex3csmszFE9OvpwuGFjq80Tg7v8uM25Genf9C0eILcbo9lLKWC3MtFDgsgzrWkTY/x1r8KQR04wocqnpmMDGYOkH1Xr1+M51Ww3Pv7FEi+dkOI0a9TqnlTqzLvGwz2U4Lh090U5xnp60rRJcvgsmoxW4xJnUceGDpdApyrOxt6lD0R93cciXD5e7FU8jucSTSEZ0NaF2eh32QKQyFPjnfvWHE6DoD7G7oSvr9H142gxkTs2FgHVcHDUOpW84VJz1hfv7GTiXqDrBpx3G+flstxT3tNUeazThiZGwU43zmsD85GHO4zwPns2i8IYHHn9mckm71+N/PxqjT0HCim1Xv1+OwGbh+fiXrtxzl8tpSpW66ozvI//vDgZTvL10wAYtJR1GujZgoY9RpiEkobKabdh7nhi9V0u0XMBq0FOfacVj1dPmj/LyX859JNtHRuPBHmvLMNE53h/lur9ZUEJevf71vLoUu9RTx9kCUfU0dKbW/U6vc5KmkEbb6IvzrL/+aMsZ3H5hHvkoNd6svwtOrdpzZ5OS4wfjIiovTtwW7AAyJw93D5NvSFUxqCwhn1rPRoFUM4pV1k/j4s2Mpc3D/zTUcPtlNeaGDY61+Vr0fv1dulpnr51cq915ZNynek7nPON+6cxYn2vyU5NnJdZrw+KMcaPYoTnNlkYMX132OIEqKA6DVaJg/vSDVYRwkI3uk64mByMFJT5jv/Sp1Pf3Pr85VDLRBhRZ2NXWmGKkXVeVkxOke6Fq+EHQEovz01c9S1sB/v33mmU4EGULGHe5e8EdFth9oVfRpurW7dMEEbBY9v/rdPu6+fkpPO0AL4YhIOCoQESSKc21YTHqQZX740raUeyTqupcumMD86QVIkpx2/Y70dZkOYw732dHmj/K/nvs0RT7+7cFLycvw2kqHFm+EJ55P1S1P3D8vI/v+ueBYR4CmE6mH/1UlTsa544d+I81mHCkyNpox2A73WA33ECEtoYgvgtmkx2kzct+S6XR0h5VFnaiLNBl0PHBzjer3C3OsRIQYv3l3H8sXTuJHr+9IGbs7ILBxezPXz6/k6dd3KCRL375nDrIsD/tJ9BgyhAH0RA2EBVX5CoRj4FL/TjhN79/vjLsEVAJP3jTtr7yBqKqRHgjHqJtbrk6yloH+u0OBBGHa7ddUq86FJMtJxGSSLHOqI5hUIw3E+3JLsGZjA4u/NF4hPbtqVlmSI5+OfDEakyh22xQCMqfVQJbdqBjd/tCZHr+9x55cnpXqcA8mt8IXBEPdpqvDG2X1hvqkvt+rN9RTmpcZp7Q/UrjBdrjdDiPLF1anHCa4nZmL4A8HJFFK0qfp1q4ky1hN8bUWisY7DPRFQh+srFPXM1pt/JrSPLuSrTK2fv/rIV2rTo8vMmwOtydNq7Juf2TYHG6ryZC0ryYICb//4KXD8jxjGJ0Yc7iHCOkIRU53BFn7SRP3LZlGaYEdvU6rRKoSkSUAl92QhkTNwsHmLq69tIKCHAsmgw6HzZAUlTIZtCmG+KmOID98ceuZNPLem+wAHLUxjFAMsCeq1aQuX9Z+0l+D4RgOm4Els84Y+Ru3NRMMqzsVZmMaIqk0/TWNeq0qocvDt56FPGUEy6/HH6Ws0E5ZoVN1LpDPEJMBKeSJuVlmFs4pJy/LQl62haoSJ1lOEzkuM//jnjkEw6mOnvo4MnnZFmWechJZDDKg0eC0jxEgXQhy0xAK5mbIYPQGo6qHU95gNCMOt8Wsp8htTUmxtJgzYFJIcNGEHL77wDw6vWFynGbys0zxwsovEPoeypuNWlUZ0mo0WC36pL+p6YflC6tx2Y2srJuE1JPIuHFbM76AwIwJudjN+v67MfTo0dONbVhN+hGlR0ctekoIGk6fJMdhymjZx7nAblHf923DyCrvshlVdYtjGPee9AEJIeNZNmP44mCMNO08MGDiAw0IosTEsmx2HGxLIkB6/29H8QUFdje0k+2wUJxno6HHgV7zYSMn2/1UlWRhNRu4cmYJDc1d+EOCUmvT6Q1TkGPFZjZw+JSXK2eWMHdaEb/7pIkt+07TcMzDjIl56PUath9oTXosUZKZV1OEy2pMetb9zd384MWtfLDtGB9uP05VaTZ5F5AGORrJG0YaAcZAMdCeqOGYREFOau/LArcNWxqiEo1ei8tmOtMf95iHWxZMoKLEqfSm7A1RA+WFTiaUZilEUvNriih0W1WvjyFT7Lbz6vsHlf67d147hbxss+r18Yc6f/kdTIKkdNDotJTmO/nN7/el7W8vijIXTczl4NEu5k0rYM60QnY1tJPtNLF4fiVvbmxg855TbN59itpJ+cRiIr98ey9WkwGzUUdlsYvTnQGC4RgtfQjUEhwOeq0GGQ1Pv76Tv+47jd1i5P+8vlOZsykVOVx+UTF/+7xlyAiQRrqeGIgcDDWBlCDJKT3bDxzp4poMEYvJOg3lhQ78CbIljYbLZhSRl21RSIQGDRrYf7Sbp/7fNj7ZcYJNO09SVXJhe9K5YlB0gg5avREOHu1C1oItjeOqM+hw2c1MHe9m2ng3DouBqeNz2X+4M1kn51iwmAx8friD4y0+vnztFI63+Fj2dxOYOSmfV987yOY9p2g85mHO1EL+uPlwnIyxRz9fMq2A//eH/VQUuchLUy7UW4++v6V5UOyAocaII03TwoFj3Rw46qHTG+Z0RxBBksnNMg/bQUZElChQ6XldlDt8Pa81Rg1lBc4zBK4aDV+6qJiCXAtGzfAQuWm0caLTvoSEvXvTjzSbcaTvp6MBY324Rxt6RRprqnL4l69cgjcQofm0/0xrHuKnZXnZFt7ccJAHls7g31/aqtRzv74+Xtu9cE45dyyajNGg43RHACEm8ou39vDwLTW47GaigsiJtgCbdiQTo7z63gH+9b555xSx6tsjOCKI/Gz1znMjVBvDiMFAe6J2+yOq/ZRLCxxpU8tEMc603zuN9f0tR5k63q16vVGvxWTUKXWJiUMjo0F9E5VEWPNhQ9Izrfmwgcdun5n2vUe6/Dotek4QTxP/Q5/5DoQFfAGBlXXVTCx1sXTBBNZ81Ei2w8Rjt89EoyGlL/Yv1uzmX74ym2VXTeT5PuRK63raAJXm23ns9pmEIgJul4XX3tvP/qMe5dBPluWU0oDEnP34G5fhDcUIR2LkpjPOx5AKGaaUu/j+g5fS5Y+QbTdlNAXaF1Rf776gMOgp3gBiTMYfTGZV8gcFRHHwrcmRvqb7hQ4+P+LheGsASZZpPq2hNN/G1Iqs5Ai9Bo6e9iXpxvuWTGPj9qMsXziRLLsZs0lHa2cQvV7LC2v3cP+SGgx6LZt3HWdF3SQ6NcV9aQAAIABJREFUvWFeWLsvKUOu3RPiruum8OuedmGr1tfz2O0zOdUR7HcOR/Wcj1B0BQRaOoJJv3H8AMVK9jDNaX/7/nC13AuHRHx9WPF9gSjhkIjNNjyHAE6Lnn+8Y2YKOehYKeYYBoIxhzuT0ECHL8rPVu/EYYufVv/gN39jyZVV7Gls5Ss3TIv39DPrePeTJlxWA1++bireQLSnD6dWcbZ7EyElDOVsh5kHl07HZNTzH699lsJCfNWsMlZ/EP9OVIjxyPLalBTjvgpjoI7aGEYmshwm1bSsdCnBNrOBPJeZ8iKHIpN5jeY48U4aBMOCahprMCKAipPuD8YUNlQ44zA+cf88bM7UjbTLF1atX+7yRchNcwgw4uVXjqd9mgw62j3hJJ6Gx+6YyT9+eSY6nRZJo6Gs0MH9S2pYv+UIbZ4gOU6z6rv5gzHF2U78bdX6eh5ZUUu7J4Q/JCTVv66oq6atO0y7J84X0ZsfoncpSzgm0eEJJ+mMh5fNYHyxE7tJN2Zo9AcNNJ0YHPb2c4HNop6GaVNp8zgYiMREwlExxXmIxkRgcMcc8Wu6H3R4o3R0R5Lm6Y5Fk+nwRnH30sXeoJCUoRARRF5Yu49HV1zMkdNeWrqCSjr4Ew/M42vLZiATr+G+em4F73zYwGW1parEiQlW93f/fIh2TxhBFFm+sJqN25rTzuFonvORikAopsp5UlWaNWwOt8WoxxcQkvbYeJnX8LVgjIqSum4Rh5ewIRqTkp7pkeW1w/o8Yxh9GHO4M4WeyPaxVh8RQWTJrCplAzx0vIu6uRX87PWdSuT65gUT8IUEfvzbM47zQ7fMSPkunCFs+PZX5pCXZeXHr2xP+ax31NFk0GE06Miym/jxNy6j0xdJS5SWrtZ8rHZzdMFp1bOiblJKuw+nzaAaZXM4DIpMJq5/cGkNTkd6Q8Bi0qvK5XcfmKd6fX+kaWpkKDlO9TrYnH4idqNBfvNcJh6+dQa/6GnVNaU8i9sXTcEfimK1GDh80pfUTuqhW2pYvaGeurll6vXYGo3qvB497QMZpZ1S4u+9SdkiQvxwJcH90NtQ12o0SSzJiQOSR1dcjEGnyZjz+EWAPxyjvTuU9Lf27hAFOZaMtAXT62Ruu7qa597ek7R+9frM/ECSmJoVsWp9Pd+595JBH2ugh4cjCeGoqKxliM/Tq+8d4Dv3XoJXe4ZnwpNGNza3eFm9oR6TQcfXb51BjsuC1xfBGxSS2n89vGwGXd4wJoMuha8lPuZBvnPvJRw60Y3VZGDtx02srKtOq0tHgx4dbQilIVIMZYhI8VxgMev55vKLlAwMrSaegZERLoZzxFDqlnPFWMbHGAYDw1MQ8V8AiQUqyQmjGGWxLryknOfe3kNZoZ37bqoBZERRZvWGZCXT0hlM+W4CEUFk/+HOtEpcq43XEa6sm8RDt8wgEI7x3Nu7OdYaoCzPlkqU1gOnRc8jy2uVupSkSPgYRg28AUE1muwNqDfXDARivPFB3BFbvrCaJVdW8cYH9QQC6Y0BX1CdSMQXVB/Datan1I+bDLq0m7vbZeTBpTVJsvjg0hrcWemNvlEhvyLkOk0suaKK79wzh7p5FfzgN3/jRy9v5/PDXSkG+rNv7eHy2lI0aFhZV530bivrqtFp48RquVlmll9dzfKF1aysm4TFmF53FLitSqS9pSPIyrpqFs4pPyeG8+YWL8fb/PjTkOONAQJRdUavdH+/UIiiRnG2If47Pff2HkRRk5HxhtJ5cFr1LF9YzdpPmli9oZ61HzexfGF1/PBwhKO/eXr8mc088astPP7zv6DtWcO9YTLokHoOR8sK7RgNevY2tSNKMm992JCi22OixIq6arRa9TXf7gkjSTKhSJy4cdX6+rQtikaFHh1lyHGaVH/jnGFi3gaQkBF6IrerN9Tz9keNCDGJ4TxJHYkHE+kOxDyBsRrpMZw7xiLcGUK7N0JZoZ3xxU4eWVGL3WqgyG3lVEcQISbhsBmou6Q8JRW8d133hq1HeXBpDa1dIdXTZkmCE20B1c8mjsvGH4zwzJozEY+v3jSNV/60n8fvnJX+VE6GKWUunvra/AvuqzuG4UO7N6LKIN7ujaj+9oGQOstxICRAGoMg4UD3lT1rGgfabNIp7Wp6p4pZ0qSvdXiiyiFAor7sjQ/qGZffT6ujUSK/douRtZ808djtF/PcW3vO6uSiiaePbtzWnFJvd8/1U/nasho6vZGkub1j0aS0TMdtXSEWz68kx2mi0xdh2ng33SotYtLpnVXr65lYlp2RaO0XAbIsq6ZFyhlizOn0hlXXe5cvnJFWOlZzmq4GGUhh9wbOlETAmUOo0RBdspjUdaRBr016nzZPiPuWTE+KWifsgdws81lthYggIsQkNmxt5t4bpqmOmZdtYfWGg1w5cxw3XzmBH7+y/UyKuEpnh4QeDQoiVoNuROrR0QS3w8jDy2akZJ0NJ1O5IMiq7QS/ueJisAzPM41E5nRbGn2XqZKdMXwxMcZSfh44F6ZBWQe5Tis/f3M3n+w8wae7T/H310/F6w9zyfQi7BZjUqpnglX2uksr2Xe4I/43UWZSeTbTxrupKnWxu7E9heH80Mlu7rpuStJnD91SQ7c/wvM9BCqJ++9ubOeauRU4bMY4M7kmzmbd4gmj0Wkx9SKvMhl0uKxGVUbrgWI0siWONMbJgUKQZbId5hQG8eJ8u6qTFJXg52osx3PL0zpVnf4IJfn2JIbTFXXVOG1GsqypDnFrd5hwJMb4kjhL+dRKNzaLHqNRp3r98fYAf/rrUfYd7mDfoQ72He7AHxKYNTkf91mIoM5HfjPOUq6Nczp0+sPIaLhoYh5arYaPPjuuXDJtvJvGY54UNtTJ5Tmggd0N7exubFfmQxRlSvId8VTxDQ1Jv9/+w51cNDGPedOL2NWQrDve23KEzw60UVniYv2WZsYXuzh62k9Dr7HVGM57d1aYX1NE9iC2RBnpemIgctAdFHimV4ZJYj1dXluSESdRq9OSZVfpGFDszAjbcCAaoyTPkcSgfceiybizzDgG+RCmxRPmg23Hkv6m2mEjA7hQnRCTZfKyLCks0HaLgU07TwIwcZyL6rJs3tzYwDVzK6iZ4GbJFVVs2XuSi6sLWDCrNOnAQc1WMBl0XHdpJR9/doLPj3SorttV7x+kbm45er0Gm8VAWYGD8kInVrNOvbODy4xJr6OyNBsxOvqyWUYcS7kMBTkWLq0pZs7UAhbPr6Cy0D6sbcFau0KUFzmJCJLCCH5xdR4GnYZs+/BE3kMxUbVjSr7bii1NC9FMw+OPUJSXautk2Y04evT5SLMZR/p+OhowxlI+GqCFSETi+bXJREbPvb2Hf757DmJMoLzIkTYVHM6ki2Y7TPiDUd7+qJF/vns2zad9BEIx5XTbZNARCAksuaIKo0HL+BIXx1p8/aaaZ9mMA+7TPIbRBb1Ow9/2neKRFbVJxHw1E9QZxNP1mQyG+49wq/XJfnTlxarX67Qa3t10SKnFlCSZdzcd4qFlM1Svd6fpZex2jkK2bC3saurk/b8e4ao55bywdi8Om4F7b5jOyrpqJDkekdy4rTklCyBRwy2IkmqGwLrNh7lqdpnq7+eymVi3+RD/4+45fH6kE2SSImNCTOLBpTN4sqcrwoq6aiXLwRcQMBl1/OOXZ9J0ohtJIknvZKqn9BcBEUFU/T36/m2woNGgWvf4gwmXZmQ8o16Hw6rn0RUXE4rGsBj1hKMCJv3gO/fDUk88SD2os20G8nMsLF0wQamRzc+x8NaHDUCcpPDOa6fww54WjgnyqiK3leULJ/HsW7u57eqJZ7UVHrh5Oms/jnd00GqhqtTFP901i4ZjnqR1+/r6eh5dcTHNLT5Wra/n7Y+a+MZtF6WUsYzVp2YIErjtRiZXumlr8w2rsw2Q5TTR5knmmpAkGdcwOdsQz2hJx5yeP0zPZbcaVW2dmRNnDcvzjGF0YszhzgC6/AJdPemZvVl/ATq6g+h1Ok53BFWNiKmVbv7xyzMx6HXodVoMeg2SJHNPD6N5VYmLQDiG0VCBThfvV3j4ZDdoYPv+01QWO6kqdSEIkur9K4pctHnCaLWaMRKILzDC0RhXX1KeRIJ2/83TCUdjoBIVsqVJ4+ovRTQUiXHj5eN5ad1+ZYy7F0+Jj0Hqxmg16blmbnlqSnmaiJjZGDckf9mr3dUDN0/HbBo+BtXzRYc3yl/3nOSu66exu7GNFXUTMRv1PP36jqQ00fVbjpLjNPHYHTORRAmLWc+fNh9m4SVlZNnNOG3/n70vD4+izLc+vVRX791JJ2QhZCEQCCQQ9kVZBgiIiAEUEhEHFRBx/dzGe9UZnateP69+d8ZxV3R0VGQVIoJCABVndBBUZDEQiBC2JCSddHqvrl6+Pypd6Uq/hdk6nUCf5+F5kqZSVV31Lr/1HAoPLh4Jl9sLJS3D6k+P8M6zWBme3clCKgUyk/VwMV7cPncoNn91Emdq7MhMMYBhueAcY/Fh+7enuGxCPKcXXdvgwCdfnsCMsRmC90BSOIihBQaNgvg+DBFyEs3W8HYAhvWhwcogPgJZYH8gAEAiGL8r5+c3f961CPYT/5bCRpdBAlRe6CKGeT+Qm25EH6O6RR7OoAAC2bDYy1E4LgPmJrfg3SUYlVgyOxdna20oLhyIfkl64lga2j8Bj96ih0Ylh98fwA3TciCRSsAwPnzweTlGDU7C2rIKwXmnjUqHPxCAgpIgwahEvcWNVzb8jJLCHLgYn6AdIcZIHgF0USCnq+Dxkj1+NoqM4GqazJx+KcWUSEOvkmPJNbndtwbFcFki5nB3NSRATYMTeg0n09K6L/auG4dh7c7jYJsJTta1ymR98PkvOFNjxxO3jYHD7QXrBRSUDO99dhSsz485E7PCHJYv/n0aNgeLu24chhqzA00OFlUXLGH9QsuuH4pNX1bgTI0df1w2TpQEIrbJ9n7IZbIwqai3txwRZRD3sr6wHsLlRXnwesUzclq1Aia9V5DlkkkD0IoY+FKpBJkpOjx26xhYHR7otQr4fX7IpGRipyYbA6/PL8gOeX1+NNkZaOLU7Xwi0QXr82JsXir+vPrfgrmr01BgLFzmc12zlNffPzsKm4OrWindW4lFMwZCIpFg454KTCpIg1QKDOxnRG2DA7ZmErw9B85g8axBfJtK8PwuxoOHbh6Js7V2gTTYqhuGQS4DGq0uDOhnFBj0AUAYqCnKw3eHL+CPy8bB6/X12L74ngSJRIIVRXl8lVPwOUpExnpnoVLIiE4ZHSF5Hw/rJ5K0/XHZuK6/WDfzMtjdXpyrsxP0kjvIMN86q+njvs+DN43EE29+h/tLCvh3F5T0Cp1/t87JDZvbdy4YhouNDry1+YjgHvVaBRL0ShQXDuIdFH8A+Ol4LSbkp4ZxdHx3+ALG56UgwajC+ToHdu2vgs3BXpLBPIYOogdWFQYAMtdEdG4HAKBWyYm97mpVFN2VAJCbYcAzKyfAbHXDpFfCpI9e730MvRMRHcGrVq3C66+/Hvb5Pffcg1deeSWSl44arE4WZ2vt+LmiFivm5eP5fxwQGCWvbTzES/JsDymbyUzWobbBiRNnm5BgVKLa7MQ7nx4VbI4SkMsGg+cLnrt0byXXp/ndKTy5fDwOnqgDAsD63RV8Nszt8cZkPy5jNIhkvBqtDPoQDCmZTIpPvjwhKJn65MsTuOcSWpN+fwAX6p1hAaA4A5ltxef3odHmCZMu0qjlIGn30go53t36S9gYfWZlZMpkIwmJRIa3WjkooXM3+Fl1PedEB0mRGNaHOJ0SG3ZXhAXv7pifh8dvG4NfTjXAHwAouZQPTgTL8GwOFvcXjwgjnXp90yH84ZbR+OiL43h4ySg+g0iSFHq79AiKC3OgpWXQxylhdbI4c9HBkyvFHO9wONwsNrWaT5u+PIE7bxiG+AgENNVKOW6dk4smB8sHpwwaCpoIyfu4GHILSsSZhAPg6ucjCKuIXnKHSQJFspoOF/cMN391EncvHI5XN/xMnH/vbStHSWGOYCxRMgle3nAk7B7nTx2AeL0SdQ3O5rHA9eUumj4IL34ULh/6wE0jiWRsa8sqMGJgQpc8zxg49ERpKZ+XLMH1+G3Rk+BivX643Kwg0O5ys/B6/aTCue6BBCiv6lnBkhh6HyLqcO/bt4/4+ffffx/Jy0YVFrsH/kAA5VUW2JxkKQGpFIJSc6lEApVSjm3fngIAzBiTwTvbwb8JZr9I5wuWgTEs16tbNDkbHtaHuZOywfq8KP26MsxpSdDR3VumF0O3QqykVS9CcuVws6g2OwVlXAC4Hm4DuWfa5fYS+8T7pxkAQuBGTLroqRXkrLtYX7nDzYqzlPdQNFjdxO+ioKRYND2HXwdy0g18X3awV9qoozGpIC3MEH9r8xHMnzoAa8s4nd57FxXgrS1Hwq7t8rTwOYSuOwzrxcxxGahrdPEZxOoGF/E+UxO10GuomNHRRrg9PuJ8ckdIFgwSCXQaBZpCZP90GkXEnFMx1l4xhYJOoZszg24R/hN3R4IJl7j3YG/6ibNNUClkeOCmEXC6ydfWa2m4PE7sOXAGNgeLBxaPJB7nDwTgcLFhWcs7FwwjHn+6uinMzggGAWPVbl0Li11cWipaz9ntIY+31p91J1yMF5+Gcr0EAvg0yPUSpYRQTwyWxND7EBGH+6WXXgIAsCzL/xzE2bNnkZqaGonL9ggYdTSkEk5T09xElvMa0Jcr4QxGFlNMagzKMOKa8Znw+gLol6Qlb/geH/F8QaMjxaSGRklh7c6WLNg9C4fj4cUj8eKaHwUbvl5NQU8q0wPHXB4qDxIzpnsf1Co5Vs7PD8smi2lea9VcC0RwkwOAb346B61KfIOTSYFpY4R94suL8iATsfHFnE4x6SKjNgpkSRGCGAFcWh+dIMOkogdDKpXwzvZ9xcOhoGRINqlRNCWbk3YLkQIK9swyrA/nLtqJ11A2lxvrNBSunZglyJIvLxoKvVYBq8sLvZqCgyGvMVoVBasjZnS0FaJjN0KkPx7WB1srTVibw4N4gxKIwLvx+f3EFpSAv+trLLvb2E0QmasdIQm0Oll8+EW5QHaJl+ZUU3zQm1bI+EoV0rVrzU6U7q1ESWEOlAoZ5M02hk5DCQP3tAw6tQIvr/9Z8LxqG8icMa1fVzCA31vX2Z4Mo44m7rHRfM5i9xQprom2wO8PECVKxTTjuwM9MVgSQ+9DRGTBSktLYbfbcfz4cfTt2xd2u53/l5SUhIceeghGo7GrL9ttEKX2lwDn6hzw+/0Y0j8BO/9dhflTBwikU1bOz4eTYfGP7cf4nq1rJmTizU8O46eKOpw4a0H+gAScq7XB7mrJVtCUDNlpBuRnJ4TJJez8vgo+XwB3LhgeJkXz47GLKJqUhcIx/TA+PwVzr8pEWoKad6IF8knN0fgweRBj51ihe6M8QU+TeGgvPH6ufPzq4X0xcnAfXD28L7w+H+IMNJSy8L7ORjuDjBQD1uw4zssKLZmdCyUthUHE6XayfvxvcyAHaJaeO1GPaaPTiaWXAYkE3xy8ECZ5NXtCJvF4mpIiOy0OPxy7yI/3+xYVcOM3AoikLJhGI0daHz0OVtTx3+WuG4fhoy/KYbFz1wxKeRVNycak4X0xIT8ZDOvH//voR3x7uBonz1owf+oAnK+zw+nmWkIGZ8Tz0kA1DQ4snTMkTAJs1/dVmD0hExnJBmzccyLsfSXFq/HSuoPcXI9TwWRQhq0xWck6NNo8EZVn6unrRHvGgVQO9O9rxE/HW973qhuGISVBBUoi/c3ztBc2xotasxMb95zAoZP1OHHWgsGZ8TAZVV0u0wUAbq8f7312FDPHZWJotgmDM+Kx49+nMXFYKjS9XBasLetOW8dCvdUNo14oz3j95GzoNBR0SgqJRiUmF/SFN+BHnFaJzV+dxNI5QwTrRKgU37HTjcjJiINRR2PaqDRkpujx8c7j/Du/angq5DIpvvzhnOBeahocuH1unuC8q24Yhu3fngqzM4ZkmTBzbDr/fXv6vBRDT5MFoxVSJMSp8dEXx/ixsHTOEGQkaaOW1LCzXqQl6LBmZ8i+f00udDpF1CS43N4AUaJ0+liyXdEdkDTPqda2y9yrMjnbGT3PZuyt87YnoVfIgj333HMAgBEjRmDRokWRuESPhNXJ4sU1P0KnoTBnYhaWXZ8HmUyCR38/Gk12BtX1TpgMNBqsLdEyUs/W6tIjeOL2cTj6az38AS7iuOB3AxGnVYBWyPDE7WNhbnJDq6QglUkwe0Im+ibqcL7OJhqFS0/QtETiRCZ8rGzm8oHN4cWG3SfCItd33TgcBgW5X7o9JGsAYLGR+8QtdoaYsaYVMmLWXZR1vJvJkiIKL1CQE4+nVoxHo82NOJ0SLsaLarNTcBjD+tBk9+CjL8qxZHYuXtt4SPBOgiWf3xw8h6VzhuLcRRsWzcjhS02TTWosmT0YOpUCNQ1ObG/u4y6arIJcJhUpH/Tzc/2Fe65CWqJW0D+XlqiFVikXzb7FMmHhYBk/dnx3imu38PigVMjw2TeVyEzKh0rV9URmPp9IL+btkenFtLtYIZOxhGM2drhYoIvJtrpdFixk3XGyPqgpWYfXHVrRSjoRnJxQfv+R/LX0Kgp6DYWaRidKZg6C3elB0eRsJJnUqDU7BTJ+wWdgd7M4U+sOsx3e+OQwHlkyKux52RwsXAzH5+D2eJGcoIFCLglTjVheNBT9Uw2I0/TSdbYHw+pgw7g03vjkcFTtK48nXL727dIj3Lqhicot8dwGoWBYH7e2REmKstuVEmK4LNHlDvfZsy2R6AkTJgh+D0W/fv26+tJRR7DshLH48P72cgDAkmsGQyaTIDVBi9K9ldBpBsPhCiEsk4C4uJgtLuzazxnRy4vysHPfaYwYlIS0Plr8Y/svmDY6HQDHTjx7QibkUmBIlqlThkmsbObygdfnJ5ZleUXkPsT4BmxOlkiyBgBxBrIhHCdyfHW9A98eOs+xlDs90KsV2PpNJZS0DIa+BvIXCRqkvxEs6hXwAkl6GipKin//UothAxOIz8/c5ELhuAycrSUH0FITNSiZOUhQil5SmANaIcOrG37GzHEZ8AX8oOQSTBudjoxkHbZ8fRI3Tsu5ZEsKw/rQYGOQnapDolEZFuSIGR1th8XuQXmVBeVVPwg/j9Bayoj1YkaoZzwYVG5NmKjVdP13k0pA1J+XRojxXYBOkrQxrJe4DjOsF0DLvmx1sPjz6v0omZmDpDg1/rH9GIqmcASorefrwH5xeH3Tz1g0YxDxndtdLO5ZOAyvbGhheV48axA+ac6eNzkY6LUKeCSSML3jdbsqcM+NwxGnju33XY2eaF9197rRFmhUcuI+pYk2S/nlEvyPIWro8hFcWFgIiUSCwCXqJiQSCcrLy7v60lEHKRLv9QUglUrw3mdHUVyYA4eLxa79Z3hJMICcNappcGLaqHSs312B1aUcORLASYTZHGxzn7gU00alg/X6odMokGjsHBFat2cSYogYaEoWlv1YV1aBJ5eTZXs6QoIkkUiIhrCY9FGCQYXDlQ04cKxOcI1FMwZ15Cv2WnDEitxcvnNBvkCu684F+WiwurF+1wkUTckmvhNKLuX75oGWbOaiGQNRbXbyP3/w+THQFEeieOJsE9777ChW3TgMr28USgWWfV/Fn9uoUYgHOWJGR5vR3WupRkUmSdQoI2PI+3xkxYwnM8UrYjqKBisT5hhu+/YUslL1kSkx7UKSNpqSE9fh1koLQWcsEAjgg8/LUVyYg7J9VWHSocuL8uB0ezCpIE20L7vG7ERmql6gWLD1n7/C5mBxscGJ9btO4K4bhyMrRUfUO47t95FBT7SvtGryuqGNYoKF8fjCZPAWzxoU1SAAgMsr+B9DVNDlu9WxY8e6+pS9Bnq1HPcsHI5XNvwMnYbCjDEZSE/WQiKRoLq5NOz264bC5mB5SbB4vQJ3LhiGNz5pMYKD0hzBLDbD+pAcr4aLYVFrdqCkMAcGrQI2J8tHwDd/VckZBRmcQVxvZaBWcpHCM3UOGLWtCNCapUpCydFiGazLB+IM316AkExmWF+YcVdcmAMPK77JNVjcREM4OUGDRIIRoVRIidJFSkXX97T2ZBh1NL756RwKBsbDqFXg8dvGot7iAq2QQUXLUdvgBMP6sOfAmbB3smJeHgKBgGhpePBno1bJ9V6nGrBxD8diXjguAzu+PYVHfz8apy40gfH4sfmrkygclwG7k8WSa3J/e67HjI42QSoBbp87FI02hh/rcTo6YllZxuMlzl8uk9r1ZZhi7SRNNgbJXVz2adTR3eoYdmVrVVuVFow6GrkZRuT0MyIzxYCztVYsmZ0LIIAHbhoBN+MDRUlhtTMAKCSb1Fiz81jYO192/VCs312B2RMyEa+nBdKiwUq5osnZqK63I9WkFiVUjc3rrkdPtK8cTpa4bkSzfJumZPj34Qth7TgD+g2Jyv3EEENXIYo1GpcZmnX61uw4xpXWqSmsLuU2u5LCQaApGeotbrzbnOleV1aBnypqMWtcJtweVhCNDvZdhhKbaVQUFAopdCoKNQ1OqJUKvLn5SJhR8Mdl4+Dz+bFpTwXGDE0RLKR8lB7iEfxYBuvygEohJ7KPKhXk/lGdhhL2Gga4XsOHbh4peg2TUQlKFuIsSwBKJoVJREas0cbA4/UL5GoWzxqERhsDrenKWYr0KjkeuKkALo8frNcPjVoBo46Gi/HCxXgwKD2OXy+CgTmpFMhMMaDB6oLN6blkaThNyVBncfFyYcuLhsLuZHmpsef/cUCg/x3MuNGUNKav3UVwMCzkMolgrN8xLw8Oho1IVrYj87czSDAqieuL2NzvDPRqObESRK+hgK4nRe/S0l+Nilw51LryQK+W4/opXCVKaMXQY0tH47/fPwCdhmp2olU4XW2DgpIIAvdBlnKHi4XNwSK7rxHn6+woKcwBw/qQmWKA1+fF1cP78pnDzV9V4p6Fw/GGIeB2AAAgAElEQVTYraMhl8mgU8mhVcbmfcTQhdwAXQWxdeP+m0ZE7Z4UChmmjxWqn6yYlwdaxHbpNhCSVLG5EkN70OU7/7Jly/DOO+8AABYvXgyJSP/TRx991NWXjipCo+Iuxicot9u1v4ovva23uFG2rwr/sXQ0FJQMr6w/iLmT+oOmpIKNdvGswdj6z0r+Z52GQvlpG17aWYGlc3IRQABFU7IBgJcKYlgfDp2sR+nXlVh2/VDe2AOEUXoAl4zgxzJYvR8qlRw3TBvIE6EFNy2xEnG/H2EEOiWFObiUEodcJsUNvxvIk67QlAwrivIgl5Ez1pRcxht7ADfu1uw4LlrmfjmjpsHNM7HeMS8PjMeHnfuqsGR2LiQS4K4bh+O1jT+j3uLm5YAarC5s/eZXzByXQSzl3/btKcHPQJCE8SiKJmcLiZdClmWG9eGixSUwcGL62p2FFG+1IiF8a8sRUc35zqIj87czEJ378q6vVrE6WKzfVSFwCtbvqkBW8qiI9L52Zemvw03OIDoZYYbb6mBRVW0P27NP19hw65xcuD0+wbtdOicXK4ry8HbpEazfXdHCZr6vCsuL8vDKxoPN/C9DkabV4s0thzFjTEbY+V/Z8DOKJnO94qEB+RgihOYKoez0eNTV2aK+viooGRZOzwkjMg0yb0cDLreXSOD6xO1jIyJx2CZ0YZtJDFcuutzhnjdvHv/zwoULu/r0PRaCqHgrIrT65tLb/1w6BufrbMhKNaDO4oJcJsWkgjS8v60cOg0liFQPyjQi2ZSPcxdt2PrPShi0uXC5fdBpKDAeH/768U9hJejBrDjD+vDOp0cFWSygJUofPCYU0SbviKENkAJmqwdmqxsmgxImnUI0w+PzBoib1tOtegeDqGt0EcvDk0xqJIgYmnanh8xwettYGAmOvV2EfdTuYoEIZMZ6KqxOFq82t50smjAQeg0Ni9+NksIc3ul94tYxgqqXbTzbeDZcHq7c/L7iAtSYHRjYLw6s14fb5w4FJZPizS2HeecaCHewQ7Phwd/P1tq7pIQ2Bg6NYgz+NjKDf2fRkfnbGbR37ncGFrsH1WanYC8DIkdA15Wlv5RcRswgDlpUwB3QnDWraXTBT2gVcbi9kKqpsH7597eV4+GbR6JocjYUlBQpCRpcbHRiUkEa7C4PP/9Xlx7FfcUFqLe4iecPrg2xOX9lwurwYMNuYTBrw+4K3HnDMBiiJMHlYshEbi7GG5X7AWIKPjF0Dbp8Rs2dO5f/ef78+V19+h6L1lHx4M8JRiWmjUqHVApIpUDfRC1qzE4oaRm0KgWk0ub+S4uvlUERQJ84NT7/7jRsDhbxeiU+/KIc00alYydBZmTGmAwoKCm2h2S2pK2SDXyUXiLpceQdMfwGpMDPlQ1hZZXDs+OJTnejnUF6shbzpgyAm/FBpZRh81cn0WhnkKANf88mg5LYJxmnE3eEXYyvXRtjnEjmSIzV/HKFxe6BTkNh7tX9sWbHcaQnazF/ykD4AwE8sHgENu05gSYHi7Vlx8P+Virlspk2B4saswMSiQTP/v17QQ8n1arCgKZkkDZXGgV7OT/58gT/+6obhuHDL4QklrEAXOcQr6eJJddxEeqLNBnJ8zdeH5lAVnvnfmfQm2XBAgE/bpo5CBfqnVwvv1SCm2YOQiDgB6RcG9rf1h9E0ZTsZiJU4ffUKOUwaBTEZ20N4XAJIkiSGHpckIeDdP7WKgWxOX9lgfH4iMGsaBKUadXkNoxoErn1RIb5GHofIhrC2rhxo+j/3XjjjZG8dLdDr5Lj4cUjUXnBClohxZ0LhmH9ruO8JIhOQyHBqBKU+K6cn8f3a7ZeXPx+4M3NhzF/6gD0iVfh070nUW9xQ6WUEWVG+sSp8N62X/jINk3JkJli4M8tiNIDPY68I4ZLw2z1EDU8n1k5QVCaGITJQGPWuExhH1RRHuJFDH6ZTMKXKApLRMVJnow6MsOpgXA/3D0piL2YJoMCiF7wutth1NG4dmIW72zPHJeJl9a1VKwsL8qD1+cjPtvMFAPe38bxQEgQzhT9zqdH8cBNIwWSYatuGIYEoxIlyIHfD+zZX8VreHt9ASToOVKqUMQCcJ2DXC4hlmpeaj516noyKbHNIBIl3kD7535nEBWyqS4q/VVQcjTabK14KwZDTVM4etqCNTuOgWG5ipWbZg4Ke4cZyTowrJ/4rJvsDFYuyMebIetpaDtJ8DitSoEUkxp6DRXG/hysjgseG5vzVxaMWpFgljZ6QXBKLsXiWYP5uRGcMxQVPXLVnsgwH0PvQ0Qd7tLSUsHv9fX1OHv2LEaMGNFmh/v555/Hjh07cP78eWzduhU5OTkAgK+++govvfQSvF4vDAYDnnvuOV7be9q0aVAoFKBpbtF4+OGHMWnSJADAwYMH8ac//QkMw6Bv37544YUXYDKZuuT7hhJCjRvSB3cvLMDT7+wDw/pQNCo7rMT3zc1HsGpBHt+v2XoTZFgfslL1UNMyHK5sAAAkxWl44zx4nnVlFXj8trG80UxTMty9cDgMWjmeWTkBDjcbRoAWI0frXWiwuYkR1gYbQ3S4PZ4AseTzyeXkHtJGK4Md+04LmEG3fH0SC6fnwKQmbyouxkuU73B7yMzIZosHO/99Oox9NC1RS/wOlyukEiDZpAHD+jBvyoAwia/VpUfw8M0jw4yOu24cDpqSYsrIftj+7SnMGJNOHBPnLtowf+oAJMer0cekwgfbfsH1U7IxanAf1FvcyEzVY9OXFThxtgkAkGJS4+6Fw/me8lgArvNwuny8sw0E1/vDePy2sYhXdf31GprIigF9+2gRH4EMjIf14Y75eXhrc0uA7o75eWC9EciM9WI5Ojfj5ecwEOStOIYHF4/k+6eD2UW5VAJaIcMfl43Dkcp6+P2Ay+PDP7b9gmXXDxUwji+7figcLhZ6DYX7i0cggACMWhoX6u0CO2BFUR7e3XoES2bn4u+fHQUAfowMzYrH2p3H+Aq83Mz4iBHRxdAz4XCzWDJ7MD78vGWfWTJ7MJwMC0RpT7bYGPzz53NhtkhqokbUFok0eiLDfAy9DxF1uD/44IOwzzZu3IjKyso2n2P69On4/e9/j5tvvpn/rKmpCY8++ijWrl2LrKwslJaW4qmnnuLJ2gDgb3/7G++cB+H3+/HII4/gueeew+jRo/Haa6/hxRdfxHPPPdeBbydE6x6PjBQjjlc1iPZ1AxxDpFGnhIKS4YHFI0HLpbhQb8fmrytRb3GDpmTw+fxgWAnPVCwhnIdhffj1gkVgbMXrFEjSc5Yd78yELgwxeZ9eBaOWXKIqllGy2EV6SO0Mkg3hzrBGSUEelCwKcONMLpVAcwljXSqREOU7MlMHE483W90or7KgvOqHsM+vJIe7wcpAKuEMYner0txgC4qb9SE1UYPfXzsYTQ4WgzPiIJdxfBAalRw3FQ5GskmNr388FzYmBqUbYXN64Q8E4PcDXn8ANfVO/PXjgwKDHajCibNNqDY7oVHKe6VD01PBsOQ+xNafdRVohQzZqXoM7R8Pq8MDvVaBqmpLxJh9pRIpdu2rCpv7N8+OkHRPL92v3B5y6b3X5xe0fU0blY7XNh3m29CunZiFdWUVuGNePlifH3E6GvcXF8Dl8cHNsLA5PQAAtVIBBLj2klCHOsmkRq3ZCZuL638/W2vjq9+CJGujBifi2qv645VWgbYYEdSVA6lUgqoLFvxp2ThY7AyMOhpf7q9CerIuavekouW4eniaoDpv8azBUCmjyFLei4N+MfQcdDsrwoIFCzB+/Hg8+uijbTp+9OjRYZ9VVVUhISEBWVlZAIApU6bgD3/4AxoaGhAfHy96riNHjoCmaf6cJSUlmD59escd7hCZAIqScYRmFm7DzEjRwcP6cNt1Q+D1+Zt1cQdh1/4q1FvcSDAqsXjmINRb3MIy3nl5iGvWHQ3Ki1Wea+KZiqvNdmJpi9PV0gNOUzJMzEvq2HeKoXvQTokJf+teQElILyABoj2kIv3SGg2FwlYl6Cvn50OjFne4tWoFUb5DJxKFNhmUxLFrilCfadRBesfgpIKsTg8eXDwSMmlLX+XAfgYUjs0QZLKKC3PwzU/ngABQurdSQJD42NLRYUzRd8zPh93N4qWQd3Lngnys30UuPV/96WHYHCz0akWvdGh6KhINKuJYTyQEu7oCRj2NcXmp+O/39gvmrzFC/AgUJcXkEWk4W2vn16PJI9KgiFTZZy+V5NFpKORmGHHdpGyeS2PrXk59hKZkyM2MB03JoFLKBLwsv/xaj4duHgmDToE5E7Pw4kdci0iKSY0FvxuIf2w/JlgjyvZV4dqJWdj+7SmU7q3kmceLJmcT28tKCnMglUh4ZxuIEUF1C4IkeSfroKblUR/HRh2NIf0T8V/NlZiRXjfaApqS4YvvTgnmwxffncKDWZGROGwzemnQL4aeg4g63H6/0BlwuVz49NNPodN1LnqWlZWF+vp6HDp0CMOGDcPWrVsBANXV1bzD/fDDDyMQCGDUqFF48MEHodfrUV1djdTUVP488fHx8Pv9sFgsMBqN7bsJgkxASWEOvj18ARPyU/G3dQeh01CYMzEL63edCOuxmjEmA0oFFVYe/vaWI/jjsnGwOjygZBJIEED/vno8f9dE1DXreLcu471jXh427mkhQYqVuvRwdEBiQi6TwdzkFvQClhTmICVBQzxerZITe0g1avKUd7q8xBLYJ1eMh15EIsTr9beLCd2kE+nh1ouzrfdaEN7xw4tHwuP1Cz67e+Fw3LtoOD764hhu+F0O33sNtLSLPHzzKLy55RD/+/3FIzgyJK8/rG3grWbeh9a9/otmDMQHnx/jb49hfXC6WSyeORhxOprro48eT85lB71ajvtLCnCmpsUhTU/WcutyBMa600mev0+tGA9dBCR+bA4PJBKhzvht1w2Bzenpelb0XizJQyvkxECmUiHFfYsK0C9RjRfuuQqnamx4bech/pgHbioATUnh9wl5GiYVpGF1qzm/roxjmV5XVoH5UwdAQUlRtq+Kd8TvunEY4g0KFBfmwO3xQSqRIC1RC4eIakSMCCpC6IHjWGzfj9S60RY43CyumZAZ1qrmcLMwRbNnupcG/WLoOYiowz1kyJAwHe6kpCQ8/fTTnTqvTqfDX/7yFzz33HNgGAaTJ0+GXq+HTMYtEB999BFSUlLg8Xjw7LPP4r/+67/w4osvduqaoTCZtDh/0R4mE7C22RgOOtFFo7LDSI3WllXg0VtGw8164XKTyw5rG5x4a/NhLJ41GH3ilRibm4I6iwtqlQ+P3DIaDVYXLxkklUigoKS4fe5QVNXYMLS/CUOyTJBKI0PO01EkJkavRClSMJm0/M9+fwDV9Q40WF2I16uQkqARfQeksfO39Qfx0oNT0bePlvg35xpqiWPp8bSxSMwMf7Y1lfWiDnRWdnhw6dh5K3EsNtkY5GcnEO+povq8aF95bhaZF2GyTo2+iVrUN7mRYFAiu68RigiVvXYEHR2nwbEQHAeNVnfYOz5bZ+fJDoOfvbrhZzyyZBTuXDAM5acbiM/T4WYFv5+ptWJtWQVKCnOIx/sDgbDPTHoVEoxKAanixUYX1pYdbzbwR2JCfkqb1432jPf2oLevE8FxUF1vh5vxCRzSlfPz4Q1IkJJInuOdQfm5JuJYaLS5kScyfzuDersH//PBD4Kx/PfPfsHTKyd0+TvsyHrZlejMmnDhZB15HV4+HlcX9IFUKoHnoh2vbTzEH6PTUGC9flTXW8PbEERayoKfZ6XqQSukuHthAc5ftGLJ7FzUmB2I0ylx9fBU1De5EK/j5mt1vYNYhZFs0iKx1RjtrfOyJ9x3cE2I9jgmobvXjbbgoo3hne3g/azZcRxP3TE+au/T7w/gQHktTpy18Hb3wH5GjM5Nate+F2ozdgd6wvjv7ejKZxhRh3v37t2C31Uq1SVLvtuDiRMnYuLEiQA4MrZ33nkH6enpAICUlBQAgEKhwOLFi7Fq1Sr+8wsXLvDnaGhogFQqbXd222y2o6befsmND4Do5njsTCMyk3VQKeXEDU+pkDUvMsdQ3Jw1D+2zKinM4UvTg38TLCEbnBmPU+ctPSr6lpio45heexHaMsnMZjv8/kC7I9c19Q7iuKgx26GQkF+aWC+g2+MlPlubkyxjYXd6iMfH6UVYOHW06LvTKMnyHWqlnPw3PTDCHwqxcdrmsRAI8N+vaEp22PM3aGhyUMPhQV2jE/4AiM+zxuzEtFHpfO+l38/1evdL0qGkMAf+ALDnwBme90HaKshJUzLUNDgxY0wG72CHshkzrA9/+fhHJMe1sZQ0Qu+xp68T7VkTzFZGNHMkD3T9YI/Xk9s1jDplRJ7ppTgiuvp6HVkvuwqdXRPE5ISa7AzMZjuA8O83bVQ6ztc5sfmrkyiawpWE6zQUpo1KR2aKTlTaK8gSr5RL8fyHP6BwXAbe3doyR+9ZOBxDM4xAIACz2Q6FlKxWopAGBN+5p89LMXTHfbdnTYjmOBZDvEibV1yE1o22oElkzljtZNulO2BnvDhTYw2rMEw00NA265W3y2bsBvTWeduT0JFneKlxEFGe/b59+wr+dZWzDQB1dXUAuLL1//3f/0VJSQnUajWcTidsNu4BBQIBbN++Hbm5uQCAvLw8uN1uHDhwAACwdu1aXHPNNR26flAmIBTB30M/Jx0jlUhQ2+iE3+/Dyvn5gr9bOT8fXx44A4BbZAwaOqzPam1ZBaaNSufPybAc+UpJYQ7+uvZHPPrqv1B+ponvf4khsmhNmBeMXFudLPF4sbFzKYmJoDZl678R06ZU03Li8UqaHGPzeX24o9VYvGN+Pnx+8TpjBcVJEYX+TUlhjmgfZ3ufU29D6+/X+vmrlDLiO7HY3MhMNeCbn86huNXzXHb9UOzaXwU0k6wVF+bgp4paXDsxC39bdxBryypQ+nUlrp2YhRSTGotnDYJeQwnOUdwcoEtP0uIPS0bhvuICbPv2FB+wA1pKSTvyPS+399gVsDpEjMY2PuP2Qq2SE/cStSoyMfVgD3LYZxGoVunIetlTEJRPCwVNyaAPIYkM+34SwB8IgGE5ubClc3IxZ2IWSvdW4t2tR8PW3OLCHHxz8BxWLshHHyMNi92DSQVpYdU0r2z4WThHQ4ignlo+Ds/fNbHHBD8vR/TEcSyR+InrhkQavUGgErFdVCK2S3fA6vISKwytritIzzSGTiNiDvfu3bvx1ltv4fvvv4fX68VDDz2EkSNHori4GGfPnm3zeZ555hlMnjwZNTU1uO222zBnzhwAwF//+lfMnj0bM2fOBEVRePjhhwEAZrMZt9xyC+bOnYvrrrsOp06dwpNPPgkAkEql+J//+R/8+c9/xsyZM7F//3489NBDHfp+epUcq24YFrbxbf7qBO66kft8z4EzYZvjLbMHY2A/I/qnGnCx0Y0Nu7n+q0UzclA0ORsbdlegf984/viEOCV0GqFTFcykB0FTMqQn6XkjOmYAdy/EshhiDkxQYiJ0XIRqpJOgVVK4ZfbgsLGkVZI3oWAAprUzLBWZ8TKZDBtbjcWNuysgk4ob0D5/AAkGGvcXj8C9iwpwf/EIJBho+EQiuO19Tr0Nod9vz4EzYc6zXqMgvpPPvzuNTXu4/suyfVUompyNksIcPHDTSJR9XwWbg0VGsg73FRegbF8VxuelhBnT68oqsGR2Lrb+81ds/eZX3F88gn+PQZI1FS1HUrwaBo2CqLutUbatb/Nyf49dge42Gp1uL3EvcbkjYxCqlHLiWI7E9+vIetlTIJNJsKIoT3DvK4ryIAvRY2/9/aQSCaQSjkyx3uKGi2kx9ustnPzb/KkD8J9Lx+Dx28aCpqS4r3gECgbEAz7OsZNKydV1YXO0mQgqPUHDVbfEnO2IoSeO40BASlw3Av7oZWuUtIy4tijp6LWeuRly+6ebiTncMbQdEdn9X375ZWzcuBEjRozAhx9+iIKCAigUCvzlL3/BZ599hmeffRZvvPFGm871xBNP4Iknngj7/NlnnyUe369fP2zZskX0fCNHjuRJ1jqFANA/Vc/3UqsUMvgDAYzPS0GySYM/3j4GR37ltLOLC3MQr1fC4/EiLUkLi80DN4DURC2qzU6eXZxHSDbrjU2HMGdiliAjFVo2SlMyrLphGN797AgAYNH0HN4Zt7vZGPlJNyAYuQ4r5xSLXHdAYkJLy5AUpxb07ifFqTmHm/B3cpmUd4ZdHi9UCjl8Pi/kMrLH7XCzxLHoZFiQNLUBLsMtkUhwptbG31Naohq0SIbbqKMxbkgfXHtVf166aPs/f+0Vmaq2IHQc1Fvc2N5sGA9IMyBBT0OvpSCTAo/dOgZWpwdKhQyBQAA2B4t6ixt250ncMT8fVocH1fVObPqyAqMGJ2POVWo0Wt2g5FIsmT0YHjZA3PyramywOVjcvXA4vD4vSr+uFJS/0QoZ4jQUXG4WS+fkwupg+fem11BgWC+A334X7R7vVyBUtAy3zslFU8gzNmioiBmNDicL1hfCxiYBWJ8fDhcLRIBxWK2SISleJVyP4lVQR0K6pxdL8gT8XPAzdB12e1ghcV7I9zPbGAAS6LQypCSom3u7/YK5Vm9xY9f+KtyzsAAnzjYiu68BSUaaJz3Uq+Q8+3lsjvYghLxnJ+uDmpJFfRw7O7DvRx4BZCZr+X1Sr1bA74suo2eCSOl9gj56bO4x9D5ExOHeuHEj1qxZg759++L06dOYPXs29u/fD61Wi9GjR2P69OmRuGy3Q0vL0K+PFh9+UY7CcRkCNvI75nPyXlq1AozHh3g9DQ8rR1W1DS6PD3E6JWiJBCkmNarNTv6cNCVD/1Q9n5mqt7ixtpl9NNh/ec/C4dBrKDx750ToNRTcHh/mXp0FFU0JJIX69dEiNV7dKwyT3oxg5Lp1L9wlN9P2SkwEgOy+Ohh1NKdbrVdekt1bo5bDVy/BK80EfsHAjFaEpdyoU5B1vi9poElQZwlnTk9OIBOD6LVyjMtvJV20IB96HQVcBoHi1uPA5mDRr48W/ZO551F5zoYLZifW7DgGnYbCjDEZSE3U4Mnl43DibCMcLo5l/ObZgzEky4ikeDXe+OSQ4Nl6fX7YnF7i5j8kKx55/eOhVlGw2z0CZyg1QYPkOCXgB/RaGuwFm+C9LS/Kg4qmuHf/G2OxQ+P9CoNaJYNKSeG9beWC+adRRcbhNuoUmHt1NtbsaJGLWjxrMIwR0rdX07KwpccPcA53JAqreqkkj5qWg/UGcLGxJSgZp6OhVghLyIPsxya9Et6AFxcbGDhdLBbPGoTMVL2AqwEA5kzMwnMh66iAQyEA9EtU456Fw8M0tmNzNMpoHsfZ6fFcb2iU34VeQ9739VEMzKiUcpy76MCbn/wosBMS4tVRu6fYnhdDV0ASCHQ9g8vIkSPx448/8r+PGjUKP/zwg+j/9zYIiA8kgNnmwRNvfhdmAD9w00he5ifFpMY9iwpwoc6O1aVHBYbuJ1+eQLXZyffPrNl5TNBfCQCP3zaWkwmTSPDGJ4f444Mau5MK0lC6tzLsHnhNzShKGvRG8oZ2E2AEn2+kMjDtJKqqszP405v/DhsP/7VyPBK14VHZBheL0+etQk34ojxk9tUjXqRK4nyjC8+8+33YNZ5YNhZ9jarwe7Ix+NNbhHu6YzwSo6j7GUSnSdOaCfRI48DqYvHjiXqsK6uATkPh2olZfFl4sJolGGCjKRnuKy7gpYSCoCkZ/nPpGLyy8SAWTc8J0+su21fFrwOrbhiGfkla1DW6kBinRpyGm+9WJws748PTzbqroeeeP3UA+vXRtq2PMwLjvaevE+0ZBw1ODx5/PXxPeHbVBMSL6NR3BjVNbvx5dfg7fXL5OCQbul7nvtbK4Km3w+fyUyvGI+kyyvp0BZFi5QUbKi9YeYc7O1WP7FQdN19arespJjXuXlgAq53BB59zgfzW6wQAQUsJ0GqvD6KL5mhPn5di6Gmkaa3/ric80wYni9MXCPt+qh7xUSp1v2hj8CTBTvjzHePRJ5p2wm/Mpxhp2uWHXkWaFkRQruuyRACiepanqznJhYH9DJg/dQAOnzTzznbwmNWlR7Bkdi4WzcjBAzeNgF5DEfsrFXIpjBoF/vu9/XxGnGE5jd1gdFK0Z6t5U3/0tW/x1Dv7YqRqkUCEe+HaS1TVaCOzCDfayH22Dhcbpun8dukRriRVBG6PWF8TufzLbCXfU4OVEb1Gr4PIOKi3MjxL+bRR6cQe7CARYvAZkp6V3eXB3Kv7g2V9gr677d+e4taF5nXg9U2HUGt24f/+4wAee+1fqDxv49eAQyfrief2BwJt536I9X5eEt091u0ie5D9EvO3M2iwukXWF7fIX1yhCADZqTqMH9IHBTkJGD+kD7L76mB1sjhT54DZ5uHX9QSjEoXjMvD0O/twusZGJD5bV1aBpHh1rD87hi6Bw03e953u6PH/NPRUOyE2n2LoJCLicLtcLkydOpX/Z7PZ+J+nTJkCt/vy2pTF2CeD8j03/I7LRgWZR0MR7L0s/boSgAQXG51EwojT1VbUiyxEQcdZjAEzxircAyHhsp5n6hywur2/GfxoL1GVVkVmxxVjNWdEZMcYj3jvlFbdvmsYtb/N2Hu5QkXLW1jKRYJjQXZ37pmQWenPXXTAxfiQEKdG6d5KrN9VgfW7K/jMeNAIYFgfXB4vEoxKFE3Ohs3F4uxFO0/ASDo3AjHys66CUtF9LN5A95O0BeWEWl8vTtf12fRej2ZDPT87EXo1hfKqJjz/4Q/45XQjzl5skRdtHYgTIz6TSMT3+hhiaA/E9n33Jfb9SEPMTjBcAXZCDJc3IrIbv//++5E4bY8Fqb9j1Q3DsK7sOKaNSucz3QBZZ1cqkaCkMAes1wtaIYcEPkH/ZaJRidJvfsWtc4byf59gVGLaqHRIpUB6kg6bvz6J4sIcQflZsMfkzEWy/qPF4SGTqkWx/PyKQAd0jI06GrkZRlw3KRtuxuvGLAIAACAASURBVAeVUoateytFjSxawUl2rQ0ZD1wghxxjM2jJRFgGQvl5EE4XGzbmigtzuOg4oayUVnDlaq3L1y7phFwmY1GnpsCwPpQU5oBh/cRnnZKgAU1xZFsM48XyoqGC9pNg2fm00el477OjuHNBPt745HBIz+4gbP3nr/z5DGoFX7oe7Bm/eVYuXIwHi2cNwpodx8PO3WWG+2Xy3joKjZIizr+2MsG3F1KZhHg9qSwyZUwaFdf+FNQaD7ZDadQRqmaTAmarh+OvMChh0onzV/RkWJ0sPvyiHHMn9YfVwUJJy1rWgpBA3J4DZ7C8KJ+4TtSanWHvOtZPGkNHoFFSxDGmjtA61RaomiUOW68tahFFlm7DFb6nxdB5RGQEjx07Fj6fD4899hiefvppKBSXf2RKLpNg/tQBkMsk6Jekg0IuwYLfDYS5yQV/gFvEglJBoQ7K8qI82J0ebGuW7pk/dQB27a/iykubbSWzlcH8KQOh11C4b1EBT9LW2tHZf7QaD9w0EufrbBiWncAZJYE2sAqHLCTxBiXO1trb5QzG0D6IVRyE9eCFQK+Ro3BcJt/XG9yE9FqKZ6cNhcXGYNu3p1A0OZsnwtr27SmkJelgIjhU9maCnlAnbPGsQXC4WCSKRJY1KoqXsQpeo2xfFe4rHiH63XVquYCxVyYNiCf3OxCY6KnQ0jI0ADAZlFDTciy7fmhYD3YgEMADN41EncWJlzccQsnMHD7whgB4eS8EgGqzE1YHg8duHQOG9YGSS/HW5sN8prukMAcSKUR7xpfOycXvrx0Mo46b78Fzt9twJxkhuHzeW0dB01IkGJSCwGmCQQmajkwXVyAQgFIhE1wvyIIfCThdPpTtO437igvg9vigVMjw2TeVSE0cCq2ui80KKfBzZYMguHTngnwMz47vdU63xe7BzHEZYDw+bP7qJHSalsAM0BKQr7e4sWlPBZYX5WF1SIBy2fVDEa+noWheM9weH6QSCeQRCqzEcHlDJpdg8azBYWSLcnn0xpPfxzH/tWb2767eZyIuI1skhughYiEjmUyGf/3rX5BILv+NwOpk8b8f/8Q7UIum56B0byV0Ggq3XzcUH3xezjvaQamg1EQN6hqdWLfruIAgzR8IoN7iFsg0LJqRA1etFYFAALkZBjx400gBSVuwt+u+4gKs/pQzup9aPg6mZkfpkgyLEC4kJYWDePbi4Ll/yxmMoX24VHm42DM2N3n4iG/w+Dc3H8YzKyfw7zkUCkoGm4MVjCOakvFly61ByST44rvTAuf5i+9OY9UNw0W/h5PxEgM/Lo8XJEmRukYXNn15EvOmDAAABBDAxi9P4obfDUQc4Xt3JDDRYxEA0vtoYLZTPLN760BFkPBs5fx8MKwP2/51SpRcjaZkSIrX4uUNB7FkVi4+3FHeEqRrDq4snjkYDOtD0ajssF7Q97eV47Fbx6Bfohp9TWoMzjC2n1hJxAjpm6C+fN5bB2GxerBm53GeX8PvD2DNzuO468bh0MSFEwp2FpRcbF5HJuNssTMor7KgvOqHVp97upzYyGz18M420MJdIrb29WQYdTSSGDVeag6cMhYfr6s9sJ9BEIg7U2MH6/Vh0YyBYFg/MpJ1+PDzcty7qIBIkHclza8YugZOtxeUXCII1FFyCVxuL3CJ6rZIwuFi8ebmI2Hj+/HbxhLthO7AZWWLxBA1RLRGY+nSpXj55Zdx7733gqIu30EZ5kBJAJ2GwrRR6ahtdGL+1AG8gU0rpMhKNeBsrY2XEQsiWF4eiuBnfj9HaPTCPVehyeERlJUHU4QXG518hktQFhqi/1hvZaCk5byz3XohEeszv5QzGEP70BEdY7PVDZ2GQtGobP597zlwhiuxJBidSlpGLDFVipRvq5VyzByXEXa86hK6wZRMSsxwr7qR7KSbDEqcqbHjhQ9bjHSaksGkJ/d9inEW1FuZ3jkWA4C5yY13tx7B3Kv7h1UTbP3nr2BYH+Kax0dQy7tocnZz64ge7352BDYHizsXDMOmLytgc7CgKCkxuJKepEVJ4SAkGlXE5yiTAlbHJUrkfqOETswIeWTJqCt+DXG6vURdbKc7Mvp3cpkUWjWFphDCTa2ailjmU7wUtetNCrMIQZvY2teToVfJUSOVCL4PJ/15HI/fOgYuxos/LRuHw5X18PuBT746ye/p86cOwMIZOZBIgJKZOdj2r1N8sP5Km18xdA3USjm2fvOrIDC49ZtfcX+JeJVapOH2+Ii2jtsTPe3QjiRJYoihNSLqcH/44Yeor6/H3//+d8THxwuy3V999VUkL92taO1AqWgZ5kzMwtqQcs5brh0CNS3D+To7/D4vsvvqw3o0l87JhV7dYsjwfbcKGT5pLj/7tdqGGrMTKSZ1WHZx2fVDkWJSY8k1ucRM1fl6Z1g2SqOShy0k7XUGY2gfOqLpmBin4sdU6NhIJMhvAZz+a4KxVUmrkStnJiHeoECSSS04PsmkhsmoENXV1ajluPmawTh30cH9jVSCm68ZDK2KfA2TUUHszTLFka8RJIJqPRaVESKC6g6YDEpQMikMGoormWO8UCnl8Hi4B0BTMlAKKVbMy8PbW46g3uJG6d5K3DEvD3UWJ6aNTodUIoGH9cLu5HroP/umkj8++FxvnZOLc3UOLtA3JTvsOaaY1Gi0efD0uyJavm0ooRMzQsTe25W0hiQYlcT5mmCMDKmYkpZCp6aQmxkHq9MDvVqBQMAPWhmZEnaVkszHoFZ2fUbd1EzQ1no8iQXqehyaA1c1J+ugpuVINqmJ89Hq8GDNjuPQaSjMmZiFnfuqeJ6WQelxkEqAC/UOPPX2PpQU5mDB1AECh/xKml8xdA00ajluuTYXZ2rs/B5+y7W50Kijt8cadAri2hlN0rSOJEliiKE1IjqrXnjhhUievsdAr5YLCIwCAfHeyXsXDYdKRePwyXooKI7YytXch9XHqMa63cexaMZAGLVKqGgZKLkUb27hysRLCgfh9U2HkJ6sxaobhuOXU2YUTcnGngNnUG9x451Pj3Jlds2926EQy0Y9s3KCYCHZc+BMjJAl0gipOGirRqpMAv6dANz7W1tWgRE5CcTjNQoZlAoZ0pN0fB8UJQc0tIzY92ixsnC2khByulhYrCyMIhFcnzcAh0sYdXa4vPD5yF/kYgODDbsrBBnxDbsrkJo4gliGqlTIiP1lqggxPXcHTDoF7l40HCeqLFhbdkRgUCyYOgAqmsJH28vh9XP93D6/Hzq1Ah/vKEd5lYU/D03J8NitY+D2+CDLT0VakhaLZgwE6/WjX5IONWYH3ttWDob1Ebkj7lwwDP/93n7RErm2lNCJGSG6DgSULjfIpCLzdRB5vnYWLpcf1fVONDlYPmBm0FDQqmmoI0Bk5vUGsHt/VVgP99KkoV1+LZNOEUYQeOeCfJj0vYA4jRC4enjxyLD5ETofGYsP3x6+gAW/G4jVpUealQUk6Juogc8fgE5DYW1ZBeZPHYBpo9JRurfyiptfMXQN3C5fmAytzcHC7fZBo4nOPisJSIhr59MrJ0TlfoCOJUliiKE1Iupwjx07NpKn7zGwOlis39XiSAT1dlv3Tuo0FOoaXXh5/c+Cnsygw3x/cQFGDErCv49UY0ROEiABMlM4EXWakqFfkhY6DYUJ+al49u/fh/V11lvccLhZYpmdWDaKYb2ChcTmYJGWqG2XMxhDB9AsFcOXI/3G87XYREqa7B7oCYyiVgeLd7f+wpeKAcA3P53Do0tGEUug7G4vNn15sqW0LBDApi9PYtWNw0Udbsbrg9PN8j3/QceR8ZIlRRqsDKrNTkHpMwA0Whmiw+1hvYjTKQRZ9zidAh6vF0AvLeMKAAE/2Rl7/LaxeH3Tz2B9flw7MQt/+fhHwRyva3ILSkiPnmpA6deVWHb9UNjsDNbvOoHiwhxs+Zrrk184fSBSEzSobXQCABbNGIi+iVokx6lgcVy6RK4tJXRiRohWKW93QOlyQ10juQy6zsJAn9T1Y5fxclI+5LnY9dezO1lMGpGGs7V2fm5OGpEGu5Pt8h5u+IHh2fF4ZuUEroxcr+wdzjbIge4X1/yIF+65SjA/Ws/HETlJvLPdOmi/7PqhKPu+Cv5AAOkpOtxfPAL9kjRX1PyKoWvQ3j28O9BoJ7eSWewMEqKV5e5AkiSGGFoj4nUj5eXlOHDgABobGwWMqffff3+kL91tsNg9vCORYFTituuGoqQwB+nJOug0FBhLi85ma0N7XRnnqJfurUR1vRPfHDzHR7aDC+CqG4ahf4oO/gAwY0xGGAFS6DnESlzEslFaJYXUeDVxIWmrMxhD5NHekia7i+WlZ4IG8dxJ/WF3s0SHm/X6iARorFfcqvWLOY63kwNt8Qbyd4gjSIgBgFwmw6sbD4Ud/0wUI93tBkEBQCaThBkUXBYrgEkj0pCZrMMHn5cT53gwWEFTLbrZ73x6FP+xdDQeuXkk1u2uwIT8VAGbfXFhDsr2VWHmuAykmtTQ0nJAIrnkeGrTePsNI6Q9AaXLDbRCRnx+YrJ8nYXP68fOUD4FADv3VSE7zRiR6+m1CpyttYUZ6vpIGcR+wKRVtASTe4GzDYgHuhtsDNITNC3zI2Q+JhiVyEjRoWhKNnEteOfTo3jgppGobXBALpXi/W1HUVw4CMOy4q64eRZD5yAW/H1CZA/vDmiUcqSY1GHJgmhKlQFod5IkhhhaI6IO97p16/Dcc8/hqquuwt69ezF58mT861//wvTp0yN52W5H0DgNRqNDjd2Swhxsa84+h+psBsGwPiSb1PjDLaOwtoxjtQ0628H/f33TITx/90RIJRKk9dESzyGV4pIlLr9VEhNbSHo22lvSpFJSvPRM6FhU0eRNS62ksP9oNVciGqLznZsZL3pPbsZLHItuhkxuIpVIcOuc3LCyV6mUTOzkcLPE84tVcfQ4SMgKAE/dMV7gjAX7fZ/9+36BkxysWgFa5jgA/v+/O3wBi6bnABLAxXhh0NEomTEI//PhD0RnfW1ZBfKyTdAq27IetHG8xdYOIjQqitgOESkdbp8/QAyY+fyR8UwZj49sqPcbC2gicsleibYGSoNtaet3VaBwXEZYwKz1WuB0s8hI1uHNzYcxqSANr286hCeXj4Oalsf0gWNoM1wie7hLZA/vDihpOW6cNhBvhXCS3DEvD8pLELjGEENvQEQd7tWrV2P16tUYPXo0xowZg1dffRVff/01tm/fHsnLdjuCxunZi/aw7HOw12pt2XFIRbJKNWYn3tx8GMWFHAMpaQE8V+fER1+Uo3BcOvEc+dkJSIlXikf+YyUxvRvtfH9Oj5doEA9MNyJOHW70+/0+TB8rNPRWzMtDICBeWqZTk5mKtYTzA4DN6YHH6xcEARbPGgS704MEQqbeqO3dRCUkBQCdhoLN5sYd8/J4g2LGmAzRypfQjHZ6kh73LipAXaML3x2+gAn5qWGlpi6GHKQIBvt+OHYR/frokJtuuPR4iq0XnUKcjkKCkW5FWkgjTk8BEbBlVUo5sfLpzyvHd/3FwLGwk8ZZpFjYeyvaGriyOlgcrazD3QsL8PQ7+35zLbjY6II/EOCY8Jvn9sVGF9aVHceSa3Jj+sAxtAniagPRyya7GR+/NwLc2H5ryxH8cdk4IMYIHkMvRkQdbrPZjNGjRwMApFIp/H4/pkyZgkceeSSSl+1+NBuncrmUaIT076vH/ykeAS0h6xGMXgc31vuKC4gLoNXB4M4Fw9BkZ/AfS0fjrc2HUW128ud4ZcNB0f7c0PuMZaN6Mdrx/lztNIilEhnPch089u0tR/DUCnGDXSaTEjPWchm5bFZNU7wUVvAaa3YcF72GVAKitJlYRryngVROOmNMBv7fxweRnqzFfcUF8LA+qJWUaNUKAP57v/vZEQDAtROzMGpwcpiD9c6nR/HwzSNRUjgI/ub2nT0HznCkOAHuPH4/BORnlxxPsfWiwzA3efC3dT+Ht0PcOQGmCASMbCI9+TYHiz4R0NM16BTEss9oMgn3SIQErpysD2pKFh64kgB2xodJI/vhSGW9aBXcohk5kEok0GsofPLVSdgcLBfQ8Qf4wP2S2bk4W2tHvz4arnUkhhguAYVCitvnDkWjjQnhSaEj1vrSFjhFKtucbhZAL1EmiCEGAiK6IicnJ+PcuXNIS0tDZmYmdu/ejbi4uMtWk9uoU5AzfioKv563ItGogj/gx5LZg2HU0ThbYw8rFasxO7C8KI8nTJkxJgOpiRpoVRTe+OQQ72QHs1lJ8Vps+rIC1WZnTBMwmvgNzeLuvoZY5FqspLXRxhC1LxttDJJEeqytdk+Y8yuVSmB1kDPWFps4GQrpGg1WBtuadaiDrObbvj2FrFR9rzAmW5eT7jlwBkuvHQKG9aHRxqDB6obJoIJWRX5XuZnxuHdRARKMSnz4eTm/Tmz/9hRuKhxM7AO32D1hbQS0Qoat3/wqCO4R14ruGMNXCBpsDNKTtZg3ZQDforH5q5NotDERcbgVcnLPuCJChrOX9QklASWcJKDXFz2ypR6L5sBVdno86upsYc52sO1k4fSBoBUyYsDsYqML63dV8FVBALd2piZq8PGOY/zcnjY6HaVfVyLZpI71dPdEtJKIi/Ya63SxUFBSwZ5x54J8ON1sRNaptkCpkBGDeXQvVieJIQYgwg738uXLUVlZibS0NNx11124//77wbIsHn/88UhetvvQvHg2OT2w2D1Yu/N4mPzOXTcOQ6Odwc8VtSiaMgBatRxujw/nLzpQurcyzEAa0M8ID+vDinlDAUgE2rqhvVzvfHoURZOz8ZePf0RJYQ5GDU6G1xeA1e2N+iJ+xaENmsWkv2mXc9POa6hVcqLmtUpUI5vG4pmDoFRQvDb04pmDEG8Qz46JESdliWzUcXoauRlGXDcpW9AnbhTJwBl1NGwOVsBq3ptKyvVqOR67dQzKTzdAq6KQHK+BUiXDbdcNgUZF8XM7N8OIOxcMwxufHGp5VwvyBQG2xbMGY2J+KlweH1S0DBpCOf+MMRlh/A9ryyrw4OKRmFSQxq8dxGdIGF/3LByOoVlGWO2EcRpzzi8Jk4HGrHGZwhaNojxRgsDOQq2SE6tBVBEKTCkUctQ1NoXN/T7x6ohc77KEFLjYxODsRRuKpmSjf18DLtTZsfYr4TtUKmTY9NVJAC1VQUGSVINWgVtm52Lz1yf5ShadhkKN2QmtikKCQRmbmz0FHbETIgyVksIb7x0Q7BlvfHI4qhJcahWFG343EG+HEAevKMqDJtrJpNieF0MnEVGHe8GCBfzPU6ZMwffffw+WZaHRXAasKiGLZ3DzY1gftjdn5KRSID1JD6/Ph70/nMX0sRn4y8c/8cemJ2v5THboovLh5+U4U2PHo78fjef/IVwIQ3u5gn2ZOg0FrZrC2tKjPWYRv9LQFs1iATqw8bb3GizrJ2peP3DTSIBg81Nyrtz4pXU/CcajghKPKreXOKlPPI3CVk7Iyvn5SDLRABt+fK/WvpQA5VXCd7x41mAoFVK4GB9fWp9gVGLM0BSs33WcXzfyshPw6oaDqDZzcl6ckX0M86cOwJ4DZzBnYhbe/+xoWHAvKV5NrCDw+QP8+kR8hhLAbPOEja9XNvyMR38/Gm9vaWlfuW9RAXIzDGHfLbbmCOHxBHiDEWhu0Sg9gieXR6anmpJLkWBQCnvGDcqIZbiDc7313P9j+pUhBdppSIGfKxsE2uJDbxuDDz4/FvZMF80YyFe3BD+XSoGV8/OxdW8lDlc2oKQwBzPGyLFr/5kwGbHY3OwZaLed0A1oEmHRtzo8UZPgkkrIa+dzd0dRnaQHBkti6H2IeKNGY2MjtmzZgrfffhsKhQJ2ux01NTWRvmzEIVg8Q4jO6i1urN9dgbVlFThdY8WrGw/h2qv64+0tXIl40CgekZOET748gaLJ2Vg0IwdFk7Ox6csTGJGTBIb1oeJMoyj5EdAiC8RltY6GLeJWJ8GDiSEiuJRmMQliG++l3ll7r9Fob9G8Xr+rAut3N7cd2Bni8W63l7jJuS9BgtRehtNaM8Nn3IPHvrn5MGrN5HtCAMjNMOCZlRPwH78fjWdWTkBuRu/Y4EjveM2OY2i0eeAPBPjPp41Kx7qyCv5drS2rwJHKet7ZDoJhfZDLJLjtuqFY23x8MLhXUpiD+4tHoNHm4taFENCUDJkpejx/10Q8tXwcnr9rotBIaDYkfjh+kfguK840cqV9aBmnZmu4cx5bc4SwiGjJNonMv87C6mCxZudx+P3ci/X7A1iz8zisjsi8k/ZyRHQaEsDqYnGmzgGr28vvg70VZquHd7YB7tmZLWTt9tbSjDQlQ78kHTbsrsDvRqfzjrndxWJETlIYt0NsbvYMtHcP7w5oVHLinqFSRq9lq95CXjvrLZFZO9uCjthsMVw+8AJocnnD/rV3t4vorPr+++9x7733Ii8vDz/++CNWrFiBqqoqvPvuu3jjjTcieemIo/XiSeqfC+rkWp0eXjKsztJsFEvAG9kCNBsS/sD/Z+/Mw5ussj/+zZ5m65IWaNkpFAoF2rIUKJulWBRKWQQq4jiyK4o46IAogooiPx1RERUFHGfGEVGR2oIoCAKKYCtLARmWyt5C6Zo2zZ78/kjzkjTvmyZt3izt/TxPH0je5d7ce+656zmH+Z32sXWnp/dkVOLEnts3eBoj21XHy1RnnqYhFjDEAWawg6pmcLpUrdajXSi9oxKJhx5OK1T0A8rKGi29nTjNLnGwrCoz1bHNNpMqN5qoBExtv0MbOa6UVDst7gHA9PQ47C+45rTrnV0f+QBA/VFwx5mKbSCRNSqWNk2zGQ6TG53BhHKGerxZXgdFx8CvG1/A5M+DLadidRoDbX/C1gTYUx8RzaIF7i7RtSGxiF5nd4kOpb639f2f5J1FWZUWWv3dCYDBaKbVJ2Q8EBh42of7Ao3W6NRnzBgbR8mVP5CI+LTlxJZ5jDs0ZcxGaDmoNUZs+qbQ6fsFk/shlMFMkw5Wd7hfe+01vP3229iyZQv4fGum+vfvj8JC54wHGzblCVgdm8yZ2If6bFNa+3+/BpGAB6VCjPRB1hip+/Kv4pHx8ejSToHssXGYnh6HyDAx9ZxtAHH4xA3MzUpweOfcrAR0aifD6nlD0KmtHKOSOzLuagWLnWtLwHb02b6uqGO7NNjLjo3G6szTNCRiq02n/f2ubDoZ8+TCwzGHY8G8rD7IHtsT09PjkD22J+Zl9QE49KNgZaiYNo1wOf2EPphXlZnKk8vhYH/BNczM6Eldj1ZKMH2MVRdMT4/D6YulTvpkblYCPt11lpqM0723rErrsOu94q+DsOvIZfx5sxrL3j+C1VuOYdnGX3D2ahWl+W0DiRPnb2PhlL5OOuzwyRsOkxqbPqPLw/XbtUFRN75AKLCG1bMvz3mTEiBkyfFPmELkJEfRSgnCWJrgCwRczMzo5fD7Zmb0goCFI+yqOgP+s+fc3dNgo2Lxnz3nglrW6HThnUqNk85eMLkvqmu1ePrBJDw6IR6LZyTCbLYgbWAnRCslEAvv3tslOhS9OoeT8UCA4mkf7gukEgHyz5Zg8YxEPDktEU/NSET+2RJI/bjDLRTyaHULW7rTHZoyZiMQGsJqq7p58yaGDrXaXXDqd1YEAgFMLcCTqb19aVmVFgcKrmHl7EEwGC2orNGhqlYLAc86KNl77AqG9I1B1shYhIh5EPB5Draytt3qqff0wPfHrkAk4GHc0C7gcuFgk2cL1bA19wwG9GqLbXsvIDJM7LRCGTR2ri0FD2MWN8k22QLEdwvF6nlD6r1bi9Emgt72GQCUYUJEhYc4yE9UeAgiw4S0z+gN9CvdeqMRtEbfsDpc4fGcPZwy7XDz+aB15MYUtCCYV5Xp6nhmRi8I+BzUqA3I/flP68JbjALRSomDLeeCyX1x7EwxssfGoW2EBFwuB1KxAAaTmXYX+7Gp/cDjWAcAZVVa5BwqwtysBPxnzznUqA24frvWyTZ7xV8HoWOkBGFy60RtaN8YbN93gbIj7xIdipyDFzHlnh7YceAigLsDRKVCiMem9sMHXxc6yMruI5fRq3MYFBJBq3cuIxFzERUmxoq/DoKqTg+FRAjAAomYnTVumYSPaWPinNqWTMpOF69S65H7c5GDj4jcn4vQoU0/2ggFzaFWY8ADY3ogxM6hY9uIHqjVGgJeDzChlAuxcEpfh3avDBXDbDZjxtg4KEPFEPB4uF2phk5vhjJUBLlE5OT/4kDBNWoxtUKlgVhojWCy5duzZDwQaLgTIs7HyCR83DvE0a/Kwins6Q13qNMaIOBzHMYuAj4HGq0B8NMEN6j9yRACBlZaVVlZGSIjIxEbG4vDhw9jxIgR1LUjR44gLi6OjWR9i53yLFPpIJUIUFalwXvbT1ENcv6kBMS0laJ9lBRqnRE5h6wDlG0/ONrK2uJv/+e7c5g/uS/OX61C7s9/QsDj4pHxfXDzTg26tFOgrFoDrd6EoX1jwLEbYNs7ahvQsw2UciFRAr7Gk5jFHk7QAQAC4OT5CqcBdWLPCNoJtEplwMnzt3HPwM6oqtUhTCbCgYKr6BAppR2kioUC7D121WEAvffYVfTplsyYJZ3O5GSH+OGO09a42jQ76RYzh9aR298epE8jEI/guU3DOpYJYTJbbXtXzxsCncGISpUehRfLqQUL4K5d+6p5Q3C7XI137AZC2WPjsOvIZYf23r9HFN794gTaR0nxwuzBqK7Vg8vh4JuDF3HtVi3mZiXgi33nHbKmM5hw7koFQiUCKCQCLJzSD6/9Mx86g4k6kiwS8LB4RiLyDhfhbw8mQ6013JVTM9AtRkENiGCxhiqrURsQIRe1uOO/TcFotODPmyonr+HhChHAwhyxVm2k9Y/w0vwhkMi9vzMUIuTTRhAQCb0/pJBKhLBUaJwcOkpDgkAPMGEG+sdGYM2Coaio0SFUJoTJbIKAz0d0pAxnisodZOfpB5Np63fJg0no1j4cu+rbYtpSfAAAIABJREFU399nDcDmb89Q+iG+SwQ6RkkAcyP5IfgGVyHi/EBNrYGhD0+BROGfHWWxkI9Pd51z6vdfms+Ow0m3aMqYjUBoACvL7ePHj8fOnTvx3HPP4ZlnnsGyZcug1Wrx4osvYvny5Xj22WfZSNb31CvPbm1lCOFzqck2YFVcH+08g1Pny6EzmPD+l6cYbTZ1BhOu3qpBSXkdqmv06NhWhnFDumDWffEwmkzQ6c3Y/O0ZqLVG5P78J77YewFmswUz6o+f2Xa1OraRk8l2sFAvO51sE+BG6sxTh2NVtXqcvFSOUxfLcPVWDU5dKsPJS+WMDlqMZjPuTemMnENF2L7vAnIOFeHelM4wmplHapVMcbVrmPLE4MiNIU+BeATPI+zrWCxAuFQArc6E1R8fhVZnwoc7Ch0cqNnQGUwouaN2Gght23sB6YM6U+29bYQUlTValJTXoVv7cKzZ+hv+uessrpSokNSzLSaP7o5wmdAaLsgOm9Ol2nrnUxaGPFy/XYMJw2OhlAud5FQm4qFjGxlyDhZh+48XUKM2YPF063HXYDUD8CZVtQZaL95VteyUQ4WKvi1WqlhyNMQF7bFPDgsjCo2O3qEjk3PGoMFs3ek2Gs1Y9dFRPP/BURz/XynqdEYn2bH33WBDZzDhcrEK23+8gLJ6h2sXb1Q5OGB87Z/5rDnOIwQ/NXUGWrmq8aO+rvJwXOEzPByzEQgNYWWHe8OGDVi5ciU6d+6MnTt3Ii8vD1OnTkV0dDS++uortGvXjo1k/YorJ0k6vcktB2siAQ9CARdXSmqw/ccLEAl4WDknBddu1zrE0bW+24zDJ25g1dwhqNMaEKkQkRW3FoynDsciQsUYP6yr0w5bhJz+eHiNWo9d9Tuntt3nXUcuIzpKhmgFvY21p46hhAyO3BhDF7WwVWV7m3S15q6XZ3oHMTza+o4KC8H09DjAAtRp9BAJ621B6xfydFUmh13HZ2YmOx0xza53ulSjNmDhlL7oGq2gzYPL0zIMdXOtVB20ZgDepE5jgFwqQNaAWMrp3P6Ca6w5MQuV0bdFBUs23FwAwgbHPoV8DivOwxlNS2qZHToGCw39VJgt9B7gXTlRtf/ccH20NbY9gvuIhJ45V/UFcgm9LpMHw8k2AsEFrEy4Bw8ejNzcXGzYsAGTJ0/GokWLcO+99wIALl++jMuXL1O23UEPx9ppChgmE326RlDHv+VSAUQCLh6b2g+3yuuwL/8qatQGzMzoiT2/XrHuGAj5lLO1hVP6wWg0IedgkdN7uRwOZo2LR7swEWCpn0QF6USE0Dg2JzsN5YDJ4ZjZZMZv9c5QtDoTQsQ85B4qQlKPSNr7w+ViCHh2E18OIOBxEc4wQbelP29SAj7eaRdL3oVjKKmYj9mZfVBZo6MG6eFyESSuvI96clQ/wLGfOMgkVi/PTDbZyjDH+u7RMRSTR/WA2WJGl2g5cg8VoX9cW/D5esyZ2AcVKh11f2SYGGkDOoHLBbg8Lvb+dhWTR3dHhzYyVNdq8c3BImrh7sMdp/HaY8No7dMaPS1DUzdBbQbgRSLD6Be8lHTe+L2AWMjDEw/0w82yOqpttY+UsDZwlooFiAoTo1M7BWWyotHqIWPBk7AylF6mIlgqS59QP264ValB1qhYnDh/G0lxbdEmTIxwhRiLpydCLOLhdkUddv1ymXKiujnnrq5dMKUvjp0uBmAtj0XT+uPz7//nkExrbHsE95GI6Ptkf3oEF4us5pgf2Y0r5k9K8OsiAIHgDVhrVUKhEI8//jguXbqEt956C+Hh4dQ1DoeDH3/8ka2kfYdduBK5VIDssXEOA6wFk/viwx2FMJjM+Ov4eGj1Jofrcyb2gUZnRJhMiHFDu0AZJoJYxEX6oE4wm4Ht+85jfGpXLJ7RH+9+ccphQN4tWg5ZCB8qdet2TtRaaBMhonU41lZJ7zhNYzAibVBnB2coc7MSoDEYaXc7REIupt7Tgzq6abOTFAmZz4iKxFwoJAI8NSMJGr0RIUI++DxAzOAYKiJUiOu3nZ2sKRkcubU0bJNRuVSAqhotpS92H7mMyaO7o32UFHeqNPjPnnMQ8LiUU6VO7WTISOniYMO6YHJfKCR81GiM2L7vAu5N6Yy5WX2w48AljE3p7OT8zmZj/XQDe3mdwYRbFXXo2FbmlZMExLnMXeiOlL/anZ2FZi7PApMFDm3rsan9wOexU+gyKQ+XbhjxxmeOMtmtI9/rbTkqVIQFU/pik71jwSl90SZMBASj/9UGYc6ilRLKOeH9qV3x4qZfHRZppo7uDi6Xix+OXcHk0d3RLkICaYgAOw5cwANpcejdTYm2ETIcKLiK6elxDo7YWmvbI7hHiMR6wszJ8anEf5NbHt866bY/PSMW8cD33xqAlfpFMjLeJjQVjsViYUVkfv31V6xcuRK9e/fGqlWroFQq2UjGL5SX18JstkClMWDZ+0eoQVVkmDX8V7f2CkjFArz35UmUlNcBAB6+rxe277votEqfNTKWcqaWc6gIk0d3x7a95x3uWbdoGGCB42AYwRObNCpKbnUQEkRERckbvccmB75ApTFg087TmDAiFlq9CWIhD3mHi7BgUl/aCfRtlQ6rPz7qJG+r5w2hPYJ+o1KDV7f+5nT/87MHo0N4CG2eSmt0eGfbCYxI7EAdQz988gaeyk5CG5qd8fJaPV6oH0zap7FmwVAoWTr66glMcuo1WagfaF8vrcU3P12CXCpA2oBOaBshQYiIj39/9welLwDg0Qm9odGZEN8lnHJqZkMk4OHFuSl4efMxB/0ze0ICNTG3vzdrZCy2/3gB2WPjrIt5ds7RbLrHa/rDNjDxcPIe6HrCEzm4dKsGr/0z3+n6ir8OQvd2jb/HUzxt78GWHnhAaZUOFSotIhRin022vakTbO9qOG6YPibOYQzQsEwnj+6OPt0icLqoHLAA+3+/hhq1gXKMZjaDev7wyRvOTg6b2Z4DvV0y4Yt8N7VvCJQyvaXS4SWadrxq3hC089MJEp/rFnfgND7eDrQxY6DIWDBjK8NqD+Jwu5IDVtaMnnvuORw+fBgvvPACxo0bx0YSAUFD27KyKi227T2P5X8ZiFvldQ6DZ53BTGuHRjlR49y1+W54T1Wt/q6jBgCwWCdgdM6J1j0+jNhrtUCqavU4d7UK567+7vg9g31eZQ2TzbeOttOq09A7T3Flc2rvBK1hXmkn3Ax26OUqbUBMuFmn3u5ZJOQ52FtPT7dGbbDXFwCg1lp3r5+clkhbbg3t+suqtLhyS8WoZ2w2ntz6Awj2u99e1R8tyAygqYgYTIzYOhbpqY+HYEsPJqCNXHRXrwTjznY9TjbpDcYA9tjGBKWVGmzf56hnbZNt++dLyuug1hrQKVJqvakVtj2C+1QytOOqGq3fJtzMYxeWdIsbNPS1QMbbhKbAyoTbaDQiLy8PYWFhbLw+YGCyV1QqxDBbtLTXmJylwQJEKyXo0k5BDcD3F1hXsulssII5RjHBczy1jWWy+WayewxTMLzfxURYKhYgWim5u8MN4PCJG5CK6dUKU56UDE7ZWiQWIJKmHLgcDuN3IWL6yZuCxrkMl8OhrRMuh4MZY+Ow99hVLJzSD0sfSsb1W7UNHDES/eEtJGK+k4lR9tg41mwjPfXx0FwiFPTphbGUXkuCTpdb+345bZlyORyENAi3JhLw0CU6FJ/uOosRiR0cxhLEZpvgLr7WG+4QoRDT9mH+zBMZbxO8ASthwd54440WP9kGmMMWKRVCSIT1NrD11w6fuIF5kxIc7p0xNg6HT97AjLFxOH2pFNPGxOGdL05YwzIdLML4YV3xzMxk2jBItk7bHtLZtlw8DZEVFWq1+ba/f8HkertHGkJlfCyc4nj/wil9ESpnniDIJAJMvafH3VBiB4sw9Z4ekDF0QEq5kDYNpaJ1yWzDujx84gY6tpUiuz7MH2Ab9AgxM6MXcg8VYW6Wo+6YNykBfD7H6ftencIwPT3OoU4eGBOHUKk1zvqscfHQ6024WapGzqG7ztNszxP94R2UYUJEhYdg8ujumJ4eh8mjuyMqPASRYeyUr1zKp23vChk7E3wZQ3pyqb8NLQOfhu3/9EVr3//v785hZkZPhzLNHhuH9lESaPUGh+/nTOyDnIMXMTalMzWGOHzyRnCFTST4nVAFfTsOC/VfO24TIcK0MY592LQxcVZ/NX6CjLcJ3oA1G+6WjIMdBpO9IgdQ602oqTNCVWf14mqxmMHl8qBS6yENEaBOY0CImI8atQ4SsRCvfuJsQ8t4ZMUNm5JAIRhtSQLNHgeA57axntg9coE/b9VAr7dQDtCEQg66tZMDDKG4b1Vr8ZKdDTFQb/81N4U5XA8XKFfprcfIFWLrZJs51LdPYd2G256GdSkVoFZjhEpjhFZnRKhMiDqdATwuF2qNEXq9AZHhUpRXa6GQCqHW6PD2tlOQSwVIH9QZHdvK0F4pAQAH+1DAWicr56RAJuJRg/FarRF/ltTgg68LA0Z/BLqe8FgOBMDtch0qa7QIl4sZHRx6g2t31Dh44jrSB3ehvIbv++0KRiV3vHu82IuotAas+/fvTv4blj08AApxy5nwsWHDDcCh/UvFAsq3RWSYGPcN7YJwuRiRYWLweFxodAZwOVxcKVHBbLYgJlIGPp+DMJkIeoMRIgEfOoMRMrGAFQdpgd4umSA23I1zrUyNW2U16BwTTo0TrhZXol2knBW94Q4NfRwAjYyFfQGx4W6VBIUNt7dYt24dvv/+e9y8eRO5ubmIi7Metf7pp5/wzjvvwGg0IjQ0FGvXrkXHjh0BWMOOLV++HFVVVQgLC8O6devQpUuXRq81GSZ7RQsgFfAgDeWhXajjylyUTAiV1kg5q5g+Jg5cLr39FuORlRYWo5jgBp7axnpg96hSG/DGv4971MnV0cSLpey+QxkSMgNKmfCuzXaATLZ9TsO6NAMyEd8hrJJSKrQOzEUGVKm54HM52LD9pINzJV2VCdv2nqfqiunom9FogiJMTMmMTMRHv67hRH+wiQFoqxAhITbSOvBh0RN/mFyEI6dv48DxYuo7kYCHrBGxrKRXVk3vv6GsWteiJtysYdf+r925G7u+rEqLf39nDe01PT0O2/ddoHa69QYzuncIRaRCZNdWbTtsQuq9BIK7hMlEWPtpAW2/7y/KVDraPqxMpfPfhJuMtwleIKAn3GPGjMFf/vIXPPTQQ9R31dXVWLZsGbZt24auXbsiJycHq1evxpYtWwAAq1atwsyZM5GVlYWcnBy8+OKL+Ne//tXoNa/Dse4iqfUmWCwWmEwWaHRGSER8iIU8mC1mPDGtP3b/8id6dQ6H1mD0PH4tcU7UuvA0LIXdDrcyVIyoUOYd7qpaPTq1k2HSqO5U3O5vfrrk0kaJzhZZJOAhMpjj4wYKDXbA+DwOuFwOHn+gH0rK1A5lbou7fatS07itf/17azUGiIR8qLUGSMUC1GoMAIdDQp14k/rTHBdvFSNCLrLGNWdpgUkRwsczM5NRVKyiQunExihYGxSGiPi0ciZmK35vMIfkscXcvnQHEhHfMe8cQBoioC3Lzu3kmJ4eh/0F1xAqE0EWIoBMIkBptRY6oxkGowmyECEUEhIelNA0fK033MHnusVdyHib0EwCesI9cOBAp++uXr2KyMhIdO3aFQAwatQo/P3vf0dFRQUsFgv++OMPfPLJJwCACRMm4JVXXmn0WkREhHczzgGKimtQVq0BAKf42/MmJUAWwsel6xUYO6QL1v27gDaO92MP9INCKmi9u4CEu3hqQsADTl6scIrbndgjgnbSrYwQIyOli0Pc7nlZCVCGMzsqITGXWYKmrm0OzzJHdEOXmFBqQBIZJsb9w7pScbejlRLMzUrAZrt46k8/mEwdWf+zpAZf7D1PG6vbZuMdiGYpQQcXOFVU4RATeeGUvugfG8GOPucCtVqDUzxdcMGKR+9QuQALJvd10i9hchZ2oILIfMoJV3mH9dp/9pzDjLFxDu0xe2wcPsk7ixq1Adlj46BUiHC7UoN//Pe4Q5vNP1uCe4d0cYq9HRRlQ/A/PtYb7hAWSq9bwkPJyRlCcMOK0zQ26dq1K8rKylBYaD1Pn5ubCwAoKSlBSUkJ2rZtCx7P6tyAx+OhTZs2jV7zNqo6A4qKVahWG1CtNlCTaMB6NObjnWcAcJGSEINN9R1lWZUWu45cxuTR3bF4eiKefjAZ3x+5DJWaxXOIhKCBKSyFqo5ePkqrdFSHZbt/0zenUVqlo71fXWfEx/WTNNv9H+ecgbqOOSyY/TGr1XNTsO7xYWSg5wXo6vqLvRcwIrEDPt11DiV3aikHa2kDOlEDdcAaFmjHgYtYPCMR2WPj8NL8IUjp0w7nrlbjyJnb+ODrQoxI7ODwjP37XckUwX3KVXpqEgRYy/jDHadRrtKzkl5plY42Pab23lxq64z48scLyBoZi+npccgaGYsvf7yAWlf6ool4qvsCCVd5t10rKa/D7iOXkTUyFk/NSMLk0d2xqz56gM5gXazX6M3Y8u1ZpzY7YUSsU70HS9kQ/I+v9YY7qGrodYuqxvu6hUDwJQG9w02HXC7H+vXrsXbtWuh0OowcORIKhQI8Hg9Go28apFIpc3n91qU7DvG06exRrpRUo0u0wimO7ra95/HsrAHY/O1plFVpUWcwIbaTl3fg/YA7DiWCjcbkwJvcunSH3l6aQT7+d5M+HnOlSoc+3SJp7q+mvb+C4X57otz9EUFAU+XUm7LAVNe2eLsavQn7C65h8YxEaHUmp3tLyutw9VYNtu+7gG7tQ3G7og7vbj+JrFGxLuP92r73p84Jdj1hk4OLt4rp21+tDr26Kr2erqft3Rvp0dlwu6MvPMVT3edtmqMTiiuZ8w7L3XZYVqXF9h8vUHbbDe9Xawy079Hqnds/G2UTrO0yEPLN1DcEQt58rTfc4dyNalrdUlmjRUKsf/LkLXw5ZgQCQ8aCnagoOTS3VBAInKfLQiHPozIOugk3AAwbNgzDhlmdOpSVlWHLli3o1KkTNBoNbt++DZPJBB6PB5PJhNLSUkRHR8NisTBe85TGPA1KRHxwORzqM509itkMSMT0tluAtQMWCXiQCHhB72kwGL0lBprHSQmDXROTfChD6W15wxUi2vuZbH9DZcKgq7um4lMv5S5gqmtbnF1YgBq1AVdLasDlOsfvtr83XCZChUpDXbcP/8L0jL90TqDrCU/kIIKhPYXL6Ntfc/G0vTeXMLlzDHiRgIcwFvSFp7rPmzRXJ7jKOzjObZdL851IwEOIiEdv1yqk/96bZRPo7ZIJ4qW8cXytN9whgsE3TJhcHBBlxkSgjRkDRcaCGVsZ6vUmGAzOG7p6vcmpjF3JQdAdKQeAO3fuAADMZjPeeustZGdnQyKRQKlUIj4+Hnl5eQCAvLw8xMfHIyIiwuU1b6MI4SM2RoFQqQCh9bbZ9gPdmRk9cfjkDVRW1znFQJyXlYCdBy81GmeZ0LpgOw63XCpwiBtvk0WFjMifr6Gra1uc3Yb/xsYoGO+1xTiPUIRAJOBhf8E167UT1ufpniE6xzv4Oua8p+29ucgl9PpCLvW+7Hiq+wIJV3mnuxYqFdDG4v7m4CXaNpt3uMhJzoKlbAj+x9d6wx3kUvrY4ApZUO4PEggUAR2He82aNfjhhx9QVlaG8PBwhIWFYdeuXXj++edx/PhxGAwGpKamYsWKFRCJrAqiqKgIy5cvh0qlgkKhwLp169CtW7dGr3mCW6tUdl7KOQB0ehNq6vTg87i4eacWse1DoQwVQyrmobz6blxisYiH8mote2EH2PT2yvDuYFxpC7TVSgDsxuHmAMUVdTCZAVWdHgqJEDwuEBMhafk22fXepCtqdbTepP0iCw28lOvs4u06xd3F3XvFIj7UGgMUEiEV41yplOHnkzfx7vaTVNzu2PYKRCjE0OhN0GgNkEoE1rBk4gb6wBv6ws13BLqe8FgO6uWqslaHcJmI/ZjzfOB2xd2oBG3CRQBbVlYc4FqpGnU6EzR6I0KEfEhEPHRqI2VHX9SXpa2fZL0s6/HKqZd6+a8zmCAR8Bz1dgOdzuVyoKrTQySwRhAIkwpxp0qLN/97HHKpAJnDu6FztAIGgwnSEAF4PA6EfB7UWiO0eiMi5SKvjxsCvV0yQXa43cSTcYIv4AC3qzUwmzmoqtUhTCYCl2tB29AQ/45FGunHAm3MGFAyFqR4Ow53QE+4A5UmNRoucPZKFd778pT/vImy6e3VxbujIoOv4Qea8mSdYPYE3Bzc8CYd7LIQFSXHnbIax8UaqQDnrjZS396QCQ/eEegDhIAeXPu6/dZH4mgYTig2Rs7KIrG/dJM3zUyaLAe2UH5aAypr9A5jiLlZCdhx4CJKyutYK5dAb5dMkAl3kMIFCv+sxAdfF96N2DO1H/p1C/dfxB43dFCgjROIjDUfb0+4g/JIeTCiUhuojhK46020vEYP2My9OYBKY8C1O2qotMa733srDyx6ew1mT7IEH9YfyzLuKb72Ju0TGpSx2WyhYoh2ipRCESKASk1f3+U1euq5Wq2x2TJB9IJv8HU5q+oM2PHTRXRsK0PbcAk6tZNhx08XWUmvVcqQfRvWGKGQCCATC5zGEJtzziB9cCfqc4svF4L34QLltXpcKFahXK33+6ygXKWnJtuAVa4/+LrQr31yq9RBrQwjgGqN0eHv2i0VqjVGr61fEqMIH1FVq6f1Bvn7+VJ0bCNHfOfQxnecWMpDlVoPRUjzbL5cvZsQ+FSp2ZMNigDcRS9XaWl/d7lKC6WMHXtbVqEp46cfTEZce8edR1f6aNveC9SuglwqgK7K5HCPJzLBps4h3MXX5azRG5E2qDPe/eKunM3NSoDGYPR6eq1Ohhj0pDSET1sOEYoQRIaJqTBiLbZcCN7HjRNeviYQ++RWp4MCECMAtcbZRkoawvfKRFZNs4stEPBhMBgxJ6uvF1Lw+1pW68HmBdoem7fyd7efRLlKz/oKGlMewqTNV2JsvpvAPtJ6j/n2iAQ8SMXe60wCcZVYWe8R1R6RgAelQuynHDUPujJe//lxpzJ2pY9sz33wdSHSB3V2useTNk30gm/wdTlzuFxszjnjtNvK4Xh/SNHaZIhJTzLp6NsVdUgb0In63FLLheB9AvGEVyD2ya1NBwUitglxwz+6SXigQibcPoLJ8/D+369Rq3ds7xCz6e01mD3JEgCd3kjrBVdHEwqhqQTiKQhfe5NmG3fL2JU+sn+uY1tZs9o00Qu+wdflXFWjo5ezGp3X02ptMsTUhnUGIx6b2s+pze7LvwpwWn65ELyPq91kfxGIfXJr00HBhFDAczoKXq0xsuYvtDmQI+W+oN7pSahUgJfmD8H5qxWIDJOgpEyNtIGdcPjEDSgVDLEHvbmCZgHiO4Vi3ePD3Pd0HQjvJjQNe8++oWIn79v2yCRC7D12FVkjY6121RZg77GrSO4xwGvZYYr17ddVYjPQPzYCaxYM9Z03aSa84BHcrTKuT0cawseaBUMpz+dvfX4cZVVah+faKyXNa9NEL/gGCxDfORRrFgz1iSdvZagY0UoJRiR2oPww2Poxr9PKZMi+DUeGiZE2oBO4XEAk4CO2gwiTR3eH2WL1y7D7yGXUqA3o1z0Sw/q0bdHlQvA+SoaY13494WUG+nePwEvzh6BCpYNSIUKUvz2ntzId5E+Yjo4zFXWdzogtOaedvqdzaOZvAis3LZEG9ljxncMwNqWLg+3bwil9oQwVYvH0RCe7La836nrnSZTdSbC8m+AZHtpmKUL4mDUunlX5s60Ssy7jnmIGlDIhenVVWr16+mmy7Q37droyfvrB5LtlzJROZ4nL+m9WmyZ6gX04YN0HiD1KhRDTxsRh0zd39cuCydZ+jJWBcWuRIQ5wp1KD7LFx+OHYVYxN6Ywv9l6AzmDCNz8VYfH0RMTGKPDmf4871HNMuNhaJi21XAisoFQIsWByX9+1Y3fgAOeuBJavFwCtRwf5GTpbagBes6P2J2TCzTIN7bH6dm9DKTfgrs3MuseHIb5TKN54IhUqjRFanRGRocFpR0rwP0y2WWsWDKV3PGK3gksbL9YbNGWVmM248QEEk93museHueeUxa6c2kdJ8cYTqaio0SFMKkTXDuEoL69tNB2ygh+8NFt+PE2v1uDUj2365jRr6bUWVHUGKub2oxP6UAvzwN06XbNgqEP7Ju2U0FRUtQYcO1OMFX8dBFWdHgqJELt/+RPdouV+a8e+1mUEgq8gE26WcbLH4oDZ26FEgOul6sBb2SMEHU3y9Fm/ghvbKcK608uGzHmyShyAXs3ZolleUBspJy73buy1xtIhK/jBia+96PokqkErxFaPuioTrt6qcR3ZxKYHSTslNJFajQE9uyjx2j/zqb5jxtg41GoNfmvHxCM4oaVCnKaxTEPvhmIhl9HbYbO9ONPFOA6wuMcE39AkT5/1snL60h33ZcVT+fIg5mcgejVni+Z4QfWknNxKx1s6g+genxEmFyG+cxienTUAT05LxN8fHoD4zmGs+UfwRVQDB3wtS03RhV4gTC5CtFKC6WPi0CVaTlvGHdvKcb20BuU1Vv3pUC4NP5M2R3CBSMinTBYAa9/xxd4LEAn8txcXsB7BSX/mNehiXtv+WvL6IdnhZhl7m0q5VACpWIjssXHYVq/kbPFuFVIBrt1We32XS8jnOtl7tcQdQoIjNk+fDW24GR0pNWU32dNnPLQrb00r3c2xb3d7t9HOPtRe/zik461TBa3odEIgoJDynXyDLJjcFwqZgBVbTFtUgy/s5OhuVAMvD4x9LUt+lF2FhI/p6XH4cMdpyKUCp7Y6NysB//nuHErK6/DNT0VYOKUvtu+7gJLyOkqf2n8mbY7gCrXWQNt3qLUGv8W8Vkj4tGMXhVTgt9jgpD/zLkx22kDLsNVmguxws42d3eqS7GRszT2LXUcuI2tkLKanx2Hy6O6ortVBpTawsstVVKxqFTvj0tMsAAAgAElEQVSEhAbYed9e/peBWLNgKOPEFmjabrKnz3ga8zNgV7rZwE5PrJ6bQtlUu9OZu7vbaLMPbah/OraRUul461RBazqdEAiUV+tpbarLq9kJuWcf1WB6ehyyRsZi77GrkLGww+1rWfKn7KrUBkpHllVpsevIZTw1IwnZY+OweEYidhy4iJLyOipfH+44bfUUz/CZtDmCK0JEfNq+Qyzy316cSm3A9n0XHHTL9n0XoFL7T45Jf0bwBmSH2xfU263a22dt//ECdXl6ehyq1Hp0ipI2fZeLYTfQbLE4fdcSdwgJNNR736ZWql2sDjdlN9nTZzy1Kw9Yr+Zs0UQvqO7uNjLpn16dwyCrH2B561RBazqdEAg0yWdDM/BFVAMbPrdP96PsNky7rEqLrXlnMGtcPK7frqEm2/b5sj/aSveZtDkCE7UaA23fodYYALnIL3mqqtWjpLzOoY8C4Fc5bm39GVNoLmkIP+gnjZ6GHfMmwV52gY+d92CpRIBopcSh0xQJeOByONZdu2bE+mOKv8vlOBqatNgdQkKzsNkONoyr60pWPI2r7XHMz9YW+7KJHtndjaHuTn15K1Z6QMZc9zX19Xnr0h1IRHxWPez7PJ6uL6Ia1ONrWfKn7DZMOzJMjPRBnSGXCBCtjMLB4zecxg/2ZU73uVW1OYJHKKRC5J8tweIZidDqTAgR8ZB7uAh9uyn9lqdA7DsCMU9swnTkOxBjW3uKP8OOkSPlbFJv97Hs/SNYveUYXvjwV0xPj0O0UgLA2mCzx8YhNkZhHawA1C5Xp0ipdeXMzQGMbTfQdjzItuMQG6Nw+o5Ki0Cox2Y7mHOoCNv3XUDOwSJMT4+z2k0xPcMgc0zyZbMrt7+fsitnoontIehooCuWbfwF565Vu+WYxbbbSNXdoSLMGhfvVA/u1JendeoqT954T9BiV58rPjjiUX02hSa1reZS3zb7xkax2jZ9LUv+lF37tCPDxBg/rCu++ekSXtn6G1786KjT+GHhlL44fPIG4+dW1eYIHqNUCCnfDxu+PIl3vjiJsSldrHG4/UQg9h2BmCdC8MGxWCwtdQjLGuXltTCbGy82lcaAZe8fcVoVW7NgKKrVeojrdz1kYi/tfNh2yOx3A0HznY9rPCpKbg0zFURERckbvcddOQgGmGS10diXdDLnqki4VlvucpUWSoWY2YmbH2CSU1/IQpPL34aLenD4Xe7Ul6d12oQ80RHoesITOWh2fTYFP7Utn9Sbt2TSw/SYdu+bohPcLqf6tGt1Jryy5Rjt+EGtNVjLQSqASm1XLg0/e6GcAr1dMuGLfDe1bwiUMvWLnnKHRtqfP/PE1LYCbczYHBmrZnmHm+n9gHWneUvO6WZ/z5RXprTp3iMQ8GEwGD1Kw5UcBPfZgACHye5DZzAiUiFCVa0eZrEXq4DBBpTE1iU0RpNtlDy1O/bArhxAk49ZBxvNthFztx7s72Mq2ybakjc5Ty2Qqlo95FIBsgbEUrva+wuusWvz52nbCiZ8LUv16cV2irAOWn0puxZAIRGgVmdC1qhYAFbZKavSUh6kO0VKrfeaG5RLw8+tqM0RPCfgbZMtADgsHQvylFbcnxG8A5lwswid3Ue0UoLKGj1e2ZpPwgsQAoaAtFFqRaE4fF7+rahs/UFEqPU4sH1Ip+yxcYjwkyMiQhBB0zZnjI3D7iOXUaM2tFi7UYLvIf0+wRswOSKThPBR5ycHZYEIseFmETq7j4VT+uG9L0+R8AKEgCIQbZRaUygOX5d/aypbf2A2manJNmAt3217L7QYExQCe9C1zS/2XkD6oM5+18mElgXp9wmeIBTwUK0xOv3V1h/TbvinUhtovzf5oB9kyqs/e2Cyw80mNF6Wq9QBfoSH0Drxoddhdwn4427exMce2VtV2foBUr6EpsIkO907hKJbO1nr3R4ieJ8AjARCdGfgUqczMtpRBxqBmFcy4WabhnYfHE7gHeEhEAD/2i3SEJDH3djEhzZira5sfQwpX0JTYZKdSIXI7zqZ0AIJMNtkojt9A9MxcMDvItBiIUfKfUwgHuEhEAIR0lbYg5Qtu5DyJTQVIjuE1gyRf+9iBDw6Bu6rI9+tEbLD7WsC8AgPgRCQkLbCHqRs2SUATTQIQQJpm4TWDNGdXkXtIgwWwbeQCXcT4HKbH6YgTCp0PCITIJEP2MIbZRZotMTfZCOQfpsv20pTf3cglRcdTPkLND0U6OXYGA3zHyYVIlYpQ3l5rfWL4P55jAR7vbnCmzrBk3cFUtsM1voNhHwz5SEQ8hbItETd6UmdGyyAWuPsKE4aIoCA5jUN79fcUsFgMMHSAsotUOFwPKtTjsViIetGBAKBQCAQCAQCgUAgeBliw00gEAgEAoFAIBAIBAILkAk3gUAgEAgEAoFAIBAILEAm3AQCgUAgEAgEAoFAILAAmXATCAQCgUAgEAgEAoHAAmTCTSAQCAQCgUAgEAgEAguQCTeBQCAQCAQCgUAgEAgsQCbcBAKBQCAQCAQCgUAgsACZcBMIBAKBQCAQCAQCgcACZMJNIBAIBAKBQCAQCAQCC5AJt5tcvnwZM2bMQEZGBmbMmIErV674O0uskpaWhnHjxiErKwtZWVk4fPgwAODkyZOYOHEiMjIyMHv2bJSXl1PP+Poawfsw1XtLYt26dUhLS0PPnj1x4cIF6vtgaOOVlZWYN28eMjIykJmZiSeeeAIVFRUAAreNvffeew5lHaj59DbBIE9NxZUctiQaym5TCRRZcFVvPXv2RGZmJqX7z58/Tz23f/9+jBs3DmPHjsWSJUug0WjcuuYtfDkeYZNAkYNAp7XoF3dhGrP89NNPmDx5MjIzMzFr1ixcv36duuZK1lqjHAbE2MlCcIuHH37YsnPnTovFYrHs3LnT8vDDD/s5R+xyzz33WM6fP+/wnclksqSnp1vy8/MtFovFsnHjRsvy5cv9co3ADnT13tLIz8+3FBcXO/3WYGjjlZWVlqNHj1KfX3/9dctzzz0XsG3szJkzljlz5lBlHaj5ZINgkKemwiSHLYmGstscAkUWXNVbXFycpba21umZ2tpay7BhwyyXL1+2WCwWy4oVKywbNmxo9Jo38dV4hG0CRQ4CndagXzyBbsxSVVVlGTx4sOXPP/+0WCxWeZo9ezb1jCtZa41yGAhjJzLhdoOysjLLgAEDLEaj0WKxWCxGo9EyYMAAS3l5uZ9zxh50HdypU6cs48ePpz6Xl5dbEhMT/XKNwA6tYcJtw/63Bmsb37Nnj+WRRx4JyDam0+ks06dPt1y/fp0q60DMJxsEqzw1FZscthToZLepBLIs2Ncb04R79+7dlvnz51OfCwsLLffff3+j17yJr8YjbBLIchDotDT90lTs28GpU6cc2lplZaUlLi7OUl5e7lLWiBxa8cfYiRwpd4OSkhK0bdsWPB4PAMDj8dCmTRuUlJT4OWfs8swzzyAzMxOrV6+GSqVCSUkJYmJiqOsREREwm82oqqry+TUCezSs99ZAMLZxs9mMzz//HGlpaQHZxt555x1MnDgRHTp0oL4LxHyyQTDKU1Oxl8OWAp3sNpVAlQW6env44YeRlZWFf/zjH9Dr9QCc22xMTAyVd1fXvI0vxiNsEqhyEOi0RP3iDbp27YqysjIUFhYCAHJzcwFY5cyVrBE59N/YiUy4CbR89tln+Pbbb/H111/DYrHg5Zdf9neWCD6A1Hvw8Morr0AikWDWrFn+zooTJ06cwJkzZzBz5kx/Z4XAMoEsh02htchuw3r76aefsGPHDnz22We4dOkSNm7c6Occ3oX0S62XlqZfvIVcLsf69euxdu1aTJkyBeXl5VAoFNREmsCMv2SKTLjdIDo6Grdv34bJZAIAmEwmlJaWIjo62s85Yw/bbxMKhZg5cyaOHz+O6OhoFBcXU/dUVFSAy+UiLCzM59cI7EBX762BYGvj69atw9WrV/H222+Dy+UGXBvLz89HUVERxowZg7S0NNy6dQtz5szB1atXAyqfbBFs8tRUGsphS4BJdn/++ecmvS8QZYGu3mz5kclkmDZtGqX7G7a94uJi6l5X17yJr8YjbBKIchDotET94k2GDRuGzz//HDt27MCsWbOg1WrRqVMnl7LW2uXQn2MnIsFuoFQqER8fj7y8PABAXl4e4uPjERER4eecsUNdXR1qamoAABaLBbt370Z8fDwSEhKg1WpRUFAAANi2bRvGjRsHAD6/RvA+TPXeGgimNv7WW2/hzJkz2LhxI4RCIYDAa2Pz58/Hzz//jP3792P//v1o164dtmzZgrlz5wZUPtkimOSpqdDJYUuASXaHDx/epPcFmizQ1Vt1dTW0Wi0AwGg04vvvv6d0/4gRI3D69GnKk/G2bdtw3333NXrNW/hyPMImgSYHgU5L1S/e5M6dOwCsR6TfeustZGdnQyKRuJS11iyH/h47cSwWi4WVX9bCKCoqwvLly6FSqaBQKLBu3Tp069bN39lihevXr+PJJ5+EyWSC2WxGbGwsXnjhBbRp0wbHjx/HqlWroNPp0L59e7zxxhuIjIwEAJ9fI3gXV/XeklizZg1++OEHlJWVITw8HGFhYdi1a1dQtPGLFy9iwoQJ6NKlC8RiMQCgQ4cO2LhxY0C3sbS0NHz44YeIi4sL6Hx6k2CQp6biSg5bGvay21QCRRaY6m3u3Ll48cUXweFwYDQakZSUhBUrVkAqlQIA9u3bhzfeeANmsxnx8fF4/fXXIZFIGr3mDXw9HmGTQJGDQKc16Rd3YBqzPP/88zh+/DgMBgNSU1OxYsUKiEQiAK5lrTXKYSCMnciEm0AgEAgEAoFAIBAIBBYgR8oJBAKBQCAQCAQCgUBgATLhJhAIBAKBQCAQCAQCgQXIhJtAIBAIBAKBQCAQCAQWIBNuAoFAIBAIBAKBQCAQWIBMuAkEAoFAIBAIBAKBQGABMuFuhaSlpeHIkSNef29BQQEyMjK8/l4CgeBbkpKScP36dX9ng0Ag+JGePXvi6tWr/s4Gwc/cuHEDPXv2hNFoBAA8/PDD+PLLL1lLj60xKiF4+PbbbzF79mzqc0vQRWTCHcQUFBQgOzsbAwYMwODBg5GdnY3CwkKvvd+mZJOSkpCUlIS0tDR89NFHjPcPHDgQ33//vdfSJwQmGzZswDPPPAPAuSNmm2PHjmHkyJE+SSvY2LVrF6ZNm4bExEQMHToU06ZNw2effQamyI/Lly/H+vXraa+dOHECHTt2dDvtHTt2oGfPnti9e3eT8k7wHE/r258UFhZi3rx5GDhwIAYPHowHHngAX3/9tb+zFbTY+uSkpCT06tUL/fr1oz5/++23tM80V3cuX74cCQkJVDpTpkzBb7/91uT3MUGXT5VKheeeew6pqalISkpCRkaGw1ikZ8+eSExMpPI2cOBAr+erJZGWluYgM0lJSbh9+3aT3rVjxw7Ex8dT7xkzZgz++9//uv28q36IwA7PPPMMnnvuOYfvfvvtN6SkpKC0tNQraRw7dgy9evWi5GLEiBF499133X5+4sSJ2Lp1K+21YJUZvr8zQGgatbW1WLhwIVavXo377rsPBoMBBQUFEAqFXk8rPz8ffD4fJ06cwF//+lf06tXLqUM0Go3g84k4scmOHTvwySef4Nq1a5DJZEhPT8fSpUuhUCj8nTUHDhw4gI0bN+LSpUsQiUQYMWIEnn32WbRt29bfWWuxbN26FZs3b8aLL76I4cOHQyqV4ty5c9iyZQumTZvmpBdMJpNX0//mm28QFhaGnTt34v7772e8j+gJ7+BpfbuC7To5ceIEZs+ejcceewzr1q1DeHg4zp49i48//hhTp0716F0WiwUWiwVcbuveKzhx4gT1/7S0NKxZswbDhg1jPd05c+bg6aefhsViwVdffYUnn3wSR44cAY/HYzXdtWvXoq6uDrt374ZcLsfly5dx8eJFh3tycnLQuXNnVvPRkvjwww+9JjOJiYn4/PPPAQB//PEHHnroISQmJqJ3795eeT/Buzz//POYMGECfvnlF6SmpkKn02HlypVYtmwZ2rRp0+z32zZg2rRpg0OHDgEArl+/joceegi9e/dGenp6s9MIRlp3rxXEXL58GQAwYcIE8Hg8iMViDB8+HL169cK1a9fwl7/8BSkpKUhJScHSpUuhUqlo32M2m/HRRx8hPT0dKSkpeOqpp1BVVUV7b1JSErp3746LFy9Sq9AfffQRUlNT8dxzzzmtTJeUlOCJJ57AkCFDkJKSgpdffpm69tVXX+G+++7DoEGDMGfOHNy8edOLpdPy2Lp1K9588008++yzKCgowBdffIHi4mI8+uij0Ov1XkunuTvVe/bswdKlS/HII4/g6NGjyMvLg0AgwMyZMxllkNA8ampq8O6772LVqlUYN24cZDIZOBwOevfujX/84x8QCoVYvnw5Vq1ahXnz5iExMRHHjh1z+U7b8a1Tp04hNTXVYYK+d+9eZGZmUp9v3ryJ/Px8vPzyy/j5559x584d6hqdnmhM5yxevBipqakYMGAAHnroIaeBdWvHnfr+6aefMGnSJCQnJ2PUqFHYsGED9bztVMqXX36J0aNH45FHHgHgutwrKyuxcOFCJCcnY+rUqVi/fj0efPBB6npRUREeffRRDB48GBkZGQ4nHf7v//4PkyZNwvz58xEREQEOh4OEhAS88847AIDq6mosWLAAQ4YMwaBBg7BgwQLcunWLev7hhx/G+vXrkZ2djf79++P69evYsWMHxowZQ528YtrVbW3o9Xq8+uqrGD58OIYPH45XX30Ver0edXV1mDdvHkpLSx12NAsLCzFjxgwMHDgQw4cPx8svv+xWf8LhcDBhwgRUVVWhrKwMAHD16lXMmjULAwYMQEpKCpYsWULd37NnT3z22We49957kZSUhLfffhvXrl1DdnY2kpOT8dRTT7nM5+nTp5GZmYnQ0FBwuVzExsZi3LhxrJVja6ThMW77k2ye0Lt3b8TGxqKoqIj6jkm3fPHFF8jNzcWWLVuQlJSEhQsXUs+cO3cOmZmZGDBgAJYsWQKdTteMX0ewJzw8HC+88AJWrlyJuro6vPfee+jYsSO6deuG7OxsDBw4EBMnTnQYJ3z99de47777qFMM27Zto67R9fMN6dixI5KSknDp0iUA9Kcj7U0VduzY4dDH2HAlM4EOmXAHKV27dgWPx8OyZctw8OBBVFdXU9csFgsWLFiAw4cP47vvvsOtW7ccBlz2/Pvf/8a+ffvwn//8B4cPH0ZoaKjDxNj+nb///jsuXbpErVqWlZWhuroaBw4cwCuvvOJwv8lkwoIFCxATE4P9+/fj0KFD1M7Xvn37sGnTJrz33nv49ddfMWDAACxdutRbRdPiqK2txYYNG/DCCy9g5MiREAgE6NChA95++23cvHkTW7duRb9+/RwmLX/88QdSUlJgMBgAuF7gsB8M3XvvvQCANWvWYNSoUUhOTsaUKVNQUFDQaD4tFgvWrVuHxx57DJmZmRCLxYiKisKrr76KkJAQ/Otf/wLg3JE3VLyuFDvBmRMnTkCv12PMmDEu78vLy8PChQtx/PhxDBgwwK139+/fHyEhITh69Cj1XW5ursOEe+fOnUhISEBGRgZiY2ORm5vr8I6GeqIxnTNy5Eh8//33+PXXX9G7d+8mDfpaMu7Ud0hICNatW4eCggJs2rQJn3/+Ofbt2+dwT35+Pnbv3o0tW7YAcF3uL7/8MkJCQvDLL79g3bp12LlzJ3Wtrq4Os2fPxoQJE3DkyBGsX78eL730Ei5dugSNRoOTJ0+69O1hNpsxZcoUHDhwAAcOHIBIJHLqg3JycvDKK6/g+PHjiIiIwJo1a/Dxxx/jxIkT2LZtG+Lj4z0qw5bKBx98gFOnTiEnJwfffvstTp8+jffffx8SiQQff/wx2rRpgxMnTuDEiRNo27YtuFwunnvuORw9ehTbtm3Dr7/+6tZxYJPJhJ07d6JDhw6IjIwEALzzzjtITU1Ffn4+Dh06hFmzZjk88/PPP2PHjh3Yvn07Nm/ejJUrV+KNN97AwYMHcfHiRezatYsxn/3798f69evx9ddf48qVK2wUHcFLFBYW4sqVK0hISKC+Y9ItM2bMQGZmJubMmYMTJ07gww8/pJ757rvvsHnzZvz44484f/48duzY4fPf0pK577770KdPH/ztb3/D9u3b8dJLL2HBggV47LHH8Ntvv2HZsmVYvHgxKioqAABKpRKbNm3C8ePHsXbtWqxduxZnz56l3udqPgAAV65cwfHjx9G/f/9m5duVzAQ6ZMIdpMhkMvz3v/8Fh8PBypUrMXToUCxcuBBlZWXo3LkzUlNTIRQKERERgUcffRT5+fm079m2bRuefvpptGvXDkKhEE888QS+//57h1WnIUOGYPDgwXjhhRewdOlSDB06FADA5XKxePFiCIVCiMVih/cWFhaitLQUf//73yGRSCASiSi7qm3btmH+/PmIjY0Fn8/HwoULce7cObLLzcDx48eh0+moybANqVSKUaNG4cKFC0hMTMQPP/xAXcvNzUVGRgYEAoFbCxz79u3D9u3bqZ2pvn37YufOnfjtt98wYcIEPPXUU42uMP/5558oLi522nngcrm499578fPPP7v1extT7ARHKisrER4e7nAs2LZK3a9fP6rtjxkzBgMGDACXy4VIJHL7/ePHj0deXh4A6+LPoUOHMH78eOp6Tk4OJkyYAMB64sZ+MgY464nGdM4DDzwAmUwGoVCIJ598Ev/73/9QU1PTtMJpgbhT3ykpKejZsye4XC569eqF8ePHO9nbPvnkk5BIJJTuZip3k8mEH374AU8++SRCQkLQvXt3TJo0iXrPTz/9hPbt22Pq1Kng8/no3bs3MjIysGfPHqhUKpjNZkRFRTH+nvDwcGRkZCAkJAQymQyPPfaYU381efJk9OjRA3w+HzweD1wuFxcvXoRWq0WbNm3Qo0cPbxRt0JObm4tFixZBqVQiIiICixYtcrn7n5CQgMTERPD5fHTo0AEzZsxgHCsA1pNWAwcORFJSEl577TU89dRT1HFyPp+P4uJilJaWOvT3NubOnQuZTIYePXogLi4Oqamp6NixI+RyOUaOHIk//viDMd2VK1ciMzMTn332GcaPH4+xY8fi4MGDDvdMnjwZAwcOxMCBA7FmzRp3iqtVs2jRIqq8Hn/88Wa969SpU5RcTJs2DVlZWejSpQt1vSk6/eGHH0bbtm0RFhaGe+65B+fOnWtWHgnOrFq1CseOHcPjjz+OXbt2YeTIkRg1ahS4XC5SU1ORkJBAtbPRo0ejU6dO4HA4GDx4MFJTUx02YujmA6WlpRg4cCCSk5ORkZGB/v37u73Y3xIhxnRBTGxsLF5//XUA1iN9zz77LF577TWsWLECr776KgoKCqBWq2GxWBjtfIuLi7Fo0SIHmzgul4vy8nLq89GjR2lt/MLDwxkH7iUlJYiJiaF9rri4GK+99hrWrVtHfWexWHD79m20b9/evR/fiqAbYNuIiorC2bNnkZmZidzcXEyfPh0WiwW7d+/Gm2++CcBxgQMAFi5ciE2bNuHmzZtUec+fPx9hYWHUe7Oysqj/z549Gx988AEuX76MXr16ucwnAFoboKioKOp6Y4wePZr6v71i79Onj1vPtzbCwsJQWVnpYItrOxUwcuRImM1mAEB0dHST3p+ZmYns7Gy89NJL2Lt3L3r37k3Jze+//44bN25QE/AJEyZg/fr1OHfuHLXr2FBPuNI5kZGRWL9+Pfbs2YOKigrqnsrKSsjl8iblv6XhTn2fOnUKb775Ji5evAiDwQC9Xu+0ENauXTvq/yaTibHctVotjEajg/zY///mzZsoLCx0mGCZTCZMnDgRCoUCXC4Xd+7cofRPQzQaDdauXYvDhw9TJ7XUajVMJhM1mbNPTyKRYP369di6dSuef/55JCcnY9myZYzvb02UlpYiJiaG+hwTE+PSCdLly5fx+uuv48yZM9BoNDCZTC717OzZsykb7osXL2L27NkIDQ3FqFGj8Oyzz+Kdd97BAw88gNDQUDz66KN44IEHqGdtO+EAIBKJnD7bjqbTIRaLsXDhQixcuBC1tbX46KOPsGTJEhw4cIDqt7755htiw+0BGzdudLDhTktLa/K7+vfvT9lwl5WV4W9/+xveeustLF261KVucaXT7RfpQkJCvObMi3CXyMhIhIeHo0ePHvjhhx+wZ88eHDhwgLpuNBqRkpICADh48CA2btyIK1euwGw2Q6vVIi4ujrqXbj5gb8NdU1OD1atXY/ny5Xjrrbd88OsCDzLhbiHExsZiypQp+OKLL/DWW2+Bw+EgNzcXYWFh2LdvH+0xccA66HrttddoV51u3LjhMk0Oh8N4LTo6GiUlJbQOeaKjo7Fw4UJMnDjRjV9GCA8Pdxpg27hz5w7Cw8Nx77334pVXXkFpaSmuXLkCLpdLDYDdWeBoOBnbsmULvvrqK5SWloLD4aC2trbRCXN4eDgA66CvoYdrWz7doTHFTnAkKSkJQqEQP/74Iyth+bp3746YmBgcOnQIeXl51G42YD1ObrFYHHY8Aevg1zbhbqgnXOmcnTt34scff8Qnn3yCDh06oKamBoMGDQpIz9v+wp36Xrp0KWbNmoXNmzdDJBLh1VdfdWq/9vWSm5vLWO4RERHg8/m4desWunbtCsC6oGojOjoagwYNwieffEKbF9vpmyFDhtBe37p1Ky5fvozt27cjKioK586dw6RJkxzqvKEMjRgxAiNGjIBWq8Xbb7+NlStXeuQZuaXSpk0bFBcXUzv+JSUl1AIoXX+9evVqyvZfJpPhn//8p1uRRjgcDuLi4pCcnIyDBw9i1KhRiIqKonaWCwoK8Oijj2LQoEEeT4JdjSsA6+m+BQsWYNOmTbhx44bDQjGh6YSEhECj0VCf7X1xeEJkZCQyMjLw+eefY+nSpS51C9B4fRN8Q3R0NLKysmhPh+j1eixevBjr1q3DmDFjIA9W6tIAAAdhSURBVBAI8Pjjj7vU0Q2Ry+XIzMzE008/DcC6cAoAWq0WMpkMgPsyF6wyQ46UBylFRUXYunUr5VympKQEeXl56N+/P9RqNSQSCeRyOW7fvo3NmzczvufBBx+kbIEBoKKiwsnWryn069cPUVFR+Mc//oG6ujrodDr8/vvvAKzHHz/66CPKcUZNTQ2+++67ZqfZUrENsO2PjAPWXaBDhw5h6NChCA0NRWpqKnbv3o28vDzcf//9lFKKjo7GSy+9hIKCAuqvsLAQycnJ1LvsFVhBQQE2b96Mt99+G/n5+SgoKIBcLm900tOtWze0a9cOe/bscfjebDbjhx9+wODBgwFYO3atVktdt9/ZsCn22bNn45dffkFBQQFGjhxJJlwuUCgUWLRoEV566SXs2bMHtbW1MJvNOHfunMMAig6z2QydTkf9MTlMmjBhAj799FPk5+dTO6U6nQ7fffcdXn75ZezcuZP6W7lyJfLy8hgd8LnSOWq1GkKhEOHh4dBoNK12JdwV7tS3Wq1GaGgoRCIRCgsLKZMAJlyVO4/Hw9ixY/Hee+9Bo9GgqKgIOTk51PXRo0fjypUr2LlzJwwGAwwGAwoLCymnSc8++yy++eYbbN68mZr0/+9//6MGXmq1GiKRCAqFAlVVVXjvvfdc5rWsrAz79u1DXV0dhEIhJBJJq/dabmP8+PH44IMPUFFRgYqKCmzcuJHyt6BUKlFVVeVwlFetVkMqlUIqlaKoqIjapXSHoqIiHD9+HN27dwcAyl8MAISGhoLD4TSpXujyuXHjRhQWFkKv10On0+Ff//oXFAoFtQBEaD69evXC7t27YTAYcPr06SaHeK2srMTevXspuWhMpyuVykY3dwjsM3HiRBw4cACHDx+GyWSCTqfDsWPHcOvWLej1euj1emrx9eDBg/jll188er9arcauXbsouYiIiEDbtm2Rk5MDk8mEr776CtevX3frXcEqM6SXClJkMhlOnTpFxWGdPn064uLisHz5cjzxxBP4448/MHDgQMyfP9/J9teev/zlL0hLS8Ps2bORlJSE6dOneyWWN4/Hw4cffoirV6/innvuwciRI6lJ9dixYzF37lz87W9/Q3JyMiZMmEAdOyE4I5fLsWjRIqxZswaHDh2CwWDAjRs3sGTJErRr1446/p2ZmYmcnBx8//33Dk6tPF3gUKvV4PF4iIiIgNFoxHvvvYfa2tpG88nhcLBs2TJ88MEHyM3NhU6nw507d/D888+jsrKScqITHx+P/Px8FBcXo6amBps2baLe4Q3F3hqZN28eli9fjs2bNyM1NRXDhg3Diy++iGeeeQZJSUmMz3300Ufo168f9WfzWN2QCRMmID8/H0OGDEFERAQAq92/WCzGpEmTEBUVRf1NnToVJpMJhw8fpn2XK50zadIkxMTEYMSIERg/fjwSExObWTItk8bqe9WqVXj33XeRlJSEjRs34r777nP5vsbK/cUXX0RNTQ1SU1Px97//HePHj6dCj8lkMmzZsgW7d+/GiBEjMHz4cLz55pvU4k1ycjI+/fRTHD16FOnp6Rg8eDBWrlyJUaNGAQAeeeQR6HQ6DBkyBDNmzMCIESNc5tVsNuOf//wnRowYgcGDByM/Px+rV69uYkm2LB5//HEkJCRg4sSJmDhxIvr06UPZ58bGxmL8+PFIT0/HwIEDcfv2bSxbtgx5eXlITk7GypUrXYb0A0B5Bk5MTMScOXMwZcoUZGdnAwBOnz6NadOmISkpCY899hief/55p5NO7kCXTw6HgxUrVmDIkCEYMWIEjhw5gk2bNkEqlXpeSARalixZgmvXrmHw4MHYsGGDwxiiMU6ePEl5lb///vsRERGBlStXAmhctzzwwAO4dOmSV2zJCU0nOjoa77//PjZt2oShQ4di1KhR2LJlC8xmM2QyGV544QUsWbIEgwYNQl5enlsmCPbRBtLS0lBdXU2ZOgLAK6+8gi1btiAlJQWXLl1yOVaxJ1hlhmMhW0cEQlDw5Zdf4tNPP3WKwx0aGgrAejRn6NChiImJwa5duxye3blzJ7Zs2YKbN29CLpdj2LBhWPv/7d2hiqphEAbgyTaxG7Z4HaL3ICaTdvnZpsEgG9Yii1gt4gWYFDFtsSo2DYJF2SvYVdhw4IcDJx34j2fheS7gY+o7zDfz8hIRv7aUL5fLdPTvfr9Hp9OJxWIRuVwuGo1GzGaz9Nbr29tbnE6nGAwGcT6fo1KpxH6/T8fdV6tVjMfjOBwO6Tj4cDiMp6entJ5erxfz+Tzy+Xw0m83odrvpG9PpNEajUXx+fka5XI7b7RbFYjHa7XZsNpt4fn7WoIEHen19jY+Pj9++qQAAfyZwA5l5f3+PJEliMpk43QM/1PF4jK+vryiVSrHb7aLZbEa/349qtfro0gDgvydwA5lar9dxuVyiXq8/uhTgL2y320iSJK7XaxQKhajVatFqtX7s8hoA+JcEbgAAAMiApWkAAACQAYEbAAAAMiBwAwAAQAYEbgAAAMiAwA0AAAAZELgBAAAgA99kkkHFl3QDAgAAAABJRU5ErkJggg==\n" | |
}, | |
"metadata": {} | |
} | |
], | |
"source": [ | |
"sns.pairplot(df_train[cols],height = 2.0,)\n", | |
"plt.show()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.8" | |
}, | |
"colab": { | |
"name": "Análisis exploratorio de Datos - Precios Vivienda.ipynb", | |
"provenance": [], | |
"include_colab_link": true | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment