Skip to content

Instantly share code, notes, and snippets.

@i-namekawa
Created April 27, 2015 09:53
Show Gist options
  • Save i-namekawa/e5c3f38d4cd67e7460bb to your computer and use it in GitHub Desktop.
Save i-namekawa/e5c3f38d4cd67e7460bb to your computer and use it in GitHub Desktop.
Basel Weekend Weather Analysis IPython NB version
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:762f6823316be2a1c4eda470341d045763f9fd510a942ea0caf1d3db6c67e826"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Do we have more precipitations on Weekends in Basel?"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import datetime\n",
"\n",
"from bs4 import BeautifulSoup\n",
"import pandas as pd\n",
"import requests\n",
"import scipy.stats as stats"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def getData(year=2014, month=1, proxies={}):\n",
" \n",
" url = 'http://en.tutiempo.net/climate/%02d-%d/ws-66010.html' % (month, year)\n",
" \n",
" r = requests.get(url, proxies=proxies)\n",
" \n",
" soup = BeautifulSoup( r.text )\n",
" table = soup.find('table', 'medias mensuales')\n",
" rows = table.findAll('tr')\n",
" \n",
" # Getting labels for cols\n",
" index = list()\n",
" for th in rows[0].findAll('th'):\n",
" index.append( th.text )\n",
" #th.contents[0].attrs['title']\n",
" \n",
" # Parsing the table\n",
" temp = dict()\n",
" for rowind, tr in enumerate(rows[1:-1]): # first and last contain no data\n",
" row = dict()\n",
" for coln, td in enumerate(tr.findAll('td')):\n",
" try:\n",
" row[index[coln]] = float(td.text)\n",
" except:\n",
" row[index[coln]] = td.text\n",
" if index[coln] == 'Day':\n",
" day = int(td.text)\n",
" weekday = datetime.datetime(year=year, month=month, day=day).weekday()\n",
" row['WD'] = weekday\n",
" temp[rowind] = row\n",
" \n",
" return pd.DataFrame(temp)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def sortByWeekday(data, years, months, label='RA'):\n",
" # sort by weekday\n",
" week = [[],[],[],[],[],[],[]]\n",
" for year in years:\n",
" for month in months:\n",
" for n in range(7):\n",
" weekday = (data[(year,month)].T['WD'] == n).values\n",
" if label=='PP':\n",
" sublist = data[(year,month)].loc['PP'][weekday].tolist()\n",
" week[n] += [ele for ele in sublist if type(ele) == float]\n",
" elif label=='RA': # RA (rain or not)\n",
" sublist = data[(year,month)].loc[label][weekday].tolist()\n",
" week[n] += [1 if ele == 'o' else 0 for ele in sublist]\n",
" return pd.DataFrame(week)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"years = range(2011, 2015) # past 5 years till 2014\n",
"months = range(1,13) # all months"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# proxies = {\"http\": \"http://proxy.of.yours:port\"} # if needed"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"data = dict()\n",
"print 'Processing: ', \n",
"for year in years:\n",
" for month in months:\n",
" print (year, month),\n",
" data[(year,month)] = getData(month=month, year=year, proxies=proxies)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Processing (2011, 1) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 2) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 3) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 4) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 5) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 6) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 7) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 8) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 9) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 10) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 11) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2011, 12) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 1) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 2) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 3) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 4) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 5) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 6) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 7) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 8) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 9) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 10) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 11) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2012, 12) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 1) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 2) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 3) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 4) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 5) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 6) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 7) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 8) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 9) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 10) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 11) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2013, 12) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 1) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 2) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 3) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 4) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 5) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 6) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 7) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 8) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 9) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 10) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 11) "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(2014, 12)\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def myplot(x,y,ax,_title):\n",
" bar(x, y, facecolor='none')\n",
" xticks(x+0.4, ['Mon', 'Tue', 'Wed', 'Thr', 'Fri', 'Sat', 'Sun'])\n",
" ax.spines['right'].set_visible(False)\n",
" ax.spines['top'].set_visible(False)\n",
" tick_params(direction='out', right='off', top='off')\n",
" title(_title)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"figure(facecolor='w')\n",
"x = np.arange(7)+0.4\n",
"\n",
"ax = subplot(221)\n",
"Data2014 = sortByWeekday(data, years=[2014], months=months, label='RA')\n",
"myplot(x, Data2014.T.sum(), ax, '2014')\n",
"\n",
"ax = subplot(222)\n",
"Data2013 = sortByWeekday(data, years=[2013], months=months, label='RA')\n",
"myplot(x, Data2013.T.sum(), ax, '2013')\n",
"\n",
"ax = subplot(223)\n",
"Data2012 = sortByWeekday(data, years=[2012], months=months, label='RA')\n",
"myplot(x, Data2012.T.sum(), ax, '2012')\n",
"\n",
"ax = subplot(224)\n",
"Data2011 = sortByWeekday(data, years=[2011], months=months, label='RA')\n",
"myplot(x, Data2011.T.sum(), ax, '2011')\n",
"\n",
"tight_layout()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEaCAYAAABEsMO+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcFPe9P/7XcElULgIKqKDBE0XQXZcV1GBjXdoC3jAk\nsVprFQE1zdGkRXt6mtPjEZKoeEwePWqSU5M0ijUxF5MYa4wPNBGMgiUoetBo0dRVYoAoN8NNbvP7\nw5/zFWWXvc3u7O7r+XjweLC7w3veu8ybN/OZmc8IoiiKICIiUhgPRydARETUGzYoIiJSJDYoIiJS\nJDYoIiJSJDYoIiJSJDYoIiJSJDYoIiJSJDYohWpvb0dmZiYiIiLg7+8PrVaLgwcPSq9//vnniIqK\ngo+PD37yk5/g6tWr0mtHjhxBQkICAgICMHLkSIPrKCwshIeHB9asWSPreyFyJDlrKSEhASEhIfD3\n90d0dDTeeOMNu7wnd8EGpVCdnZ0YMWIEjh49ips3b+LFF1/EvHnzcPXqVdy4cQNPPPEE1q1bh/r6\nesTFxWH+/PnSz/r6+mLp0qXYtGmTwfgdHR34zW9+g0ceeQSCINjjLRE5hJy1tGXLFly7dg03b95E\nXl4ennnmGfzjH/+w11tzeQJnknAeGo0Ga9euxY0bN7Bz504cO3YMANDS0oLBgwfj9OnTiIyMlJY/\nfPgwli1bhsuXL98XKzc3Fw0NDaipqUF4eDheeOEFu70PIkezZS3dUVJSgpkzZ6K8vBxDhw6V/T24\nA+5BOYmamhpUVFRApVLh3Llz0Gg00msDBgzAqFGjcPbsWZNiXblyBdu3b8eaNWvA/0/I3diylgBg\n9uzZ6N+/P3Q6Hd566y02Jxtig3ICHR0dWLhwIZYsWYLIyEg0NzfD39+/xzL+/v5oamoyKd6zzz6L\nF198ET4+PhAEgUN85DZsXUsAsH//fjQ1NWHnzp1YsmRJj2NYZB02KIXr7u7GokWL0K9fP7zyyisA\nbo+L37x5s8dyjY2N8PPz6zPe3/72NzQ1NeHnP/85AEAURe5FkVuwdS3dzdPTE3PnzsXkyZPx8ccf\n2yxnd+fl6ATIMFEUkZmZievXr+PAgQPw9PQEAIwbNw55eXnScs3Nzfjmm28wbty4PmN+8cUXKC0t\nlYYhGhsb4enpibNnz7KwyGXJUUu96ejogI+Pj01yJu5BKdrTTz+NCxcuYN++fXjwwQel5x9//HGc\nPXsWH330Edra2pCTk4OYmBjpoK4oimhra0NHRwdEUcStW7fQ3t4OAHjhhRdw8eJFnDlzBqdPn8ac\nOXOwfPlybN++3SHvkcge5Kilf/zjH/jss8/Q2tqKjo4O7Nq1C6WlpUhKSnLIe3RJIimSXq8XBUEQ\n+/fvL/r6+kpf77zzjiiKonj48GExKipK7N+/v5iQkCBeuXJF+tkjR46IgiCIgiCIHh4eoiAIYkJC\nQq/rWbJkibhmzRq7vCciR5Crls6fPy9OnjxZ9PPzE4OCgsRp06aJx44dc8h7dFVGTzOvrKzE4sWL\n8f3330MQBCxfvhzPPvsssrOz8eabbyI4OBgAsGHDBkyfPt1uTZXI2Riqpbq6OsyfPx9XrlxBREQE\n3n//fQQEBDg6XSJFMNqgqqurUV1djZiYGDQ1NSE2NhZ79+7F+++/Dz8/P6xatcqeuRI5LUO1tH37\ndgwePBi///3vsXHjRtTX1yM3N9fR6RIpgtFjUEOGDEFMTAyA22e7REdH49q1awDAM7+IzGColvbt\n24e0tDQAQFpaGvbu3evINIkUxeSTJPR6PcrKyvDII48AALZu3QqNRoPMzEw0NDTIliCRq7lTS5Mn\nT0ZNTQ1CQ0MBAKGhoaipqXFwdkTKYdJUR01NTdDpdPjP//xPpKam4vvvv5eOP61ZswZVVVX4y1/+\n0uNnCgoKUFBQID3W6/XYsWOHTZMncjZNTU2YNm0a1qxZg9TUVAQGBqK+vl56PSgoCHV1dT1+hrVE\n7qrPBtXR0YHZs2djxowZ+O1vf3vf63q9HikpKSgvLze+IkHgsCC5td5qKSoqCgUFBRgyZAiqqqqQ\nkJCACxcuGI3DWiJ3YXSIT/z/L24bO3Zsj+ZUVVUlff/xxx9DrVbLlyGRCzBUS3PmzJEuFM3Ly0Nq\naqqjUiRSHKN7UMeOHcOPf/xjjB8/Xpqvbf369di9ezdOnz4NQRAwcuRIbNu2TRpHN7gi/tdHbqy3\nWtqwYQMmTZok3frB1NPMWUvkLux2uw0WFZFtsJbIXXCqIyIiNxIUFCTdxcCar6CgINlz5R4UkZNh\nLZE1bLX92GM75B4UEREpEhsUEREpEhsUEREpEhsUEZGFnOmEA2fEkySInAxrSTmc6YQDW6+LJ0kQ\nEZHbYoMiIiJFYoMiIiJFYoMiIlIgnoDRR4OqrKxEQkICxo0bB5VKhS1btgAA6urqkJiYiMjISCQl\nJfGGhSRhURHZRn19PURRtPrr7vuNORujZ/FVV1ejuroaMTExaGpqQmxsLPbu3Yvt27dj8ODB+P3v\nf4+NGzeivr4eubm5xlfEM4/cgjOdIeSs+Nkoh5zbu1yxnalGje5BDRkyBDExMQAAX19fREdH49q1\na9i3bx/S0tIAAGlpadi7d6+sSRIRkfsx+RiUXq9HWVkZJk+ejJqaGun+T6GhoaipqZEtQSIick9e\npizU1NSEJ598Eps3b4afn1+P1+4cM7hXQUEBCgoKbJIkkbPLyMjAp59+ipCQEJSXlwMAsrOz8eab\nbyI4OBjA7RsYTp8+3ZFpOlRQUJBNjpcEBgairq7OBhmRo/U5k0RHRwdmz56NGTNmSLeqjoqKQkFB\nAYYMGYKqqiokJCTgwoULxlfEcXO34Ezj2/b05ZdfwtfXF4sXL5YaVE5ODvz8/LBq1SqzYrnaZ3OH\nM247PAblwGNQoigiMzMTY8eOlZoTAMyZMwd5eXkAgLy8PKSmpsqaJJGzmzp1KgIDA+973hUbDZGt\nGG1Qx48fx65du3DkyBFotVpotVocPHgQf/jDH3Do0CFERkbiiy++wB/+8Ad75UvkUrZu3QqNRoPM\nzExerkF0D0VNFmurMWjAvuPQHDv/f5xp+MDe9Ho9UlJSpCG+77//Xjr+tGbNGlRVVeEvf/lLn3Fc\n8bMBnHPb4RCfvJ+zSSdJ2MudC9NsobcTN+Riq7ztmTM5XkhIiPT90qVLkZKS0utyPOHIevwn0jkp\nqkERuZOqqioMHToUAPDxxx9DrVb3upxOp4NOp5Me5+Tk2CM9l8J/Ip0TGxSRHSxYsACFhYW4ceMG\nhg8fjpycHBQUFOD06dMQBAEjR47Etm3bHJ0mkaIo6hiULcc0740l5y6+M43pyo2fhfxc9bPh8Rzn\nz9nW3GYPirv4RETOhbfbICIiRWKDIiIiRWKDIiIiRWKDIiIiRWKDIiKz8K7JZC99NqiMjAyEhob2\nuIgwOzsb4eHhPebnIyL3wFuRk7302aDS09Pva0CCIGDVqlUoKytDWVmZW9/DhoiI5NFng+JtAoiI\nyBEsPgbF2wQQEZGcLJpJ4umnn8Z//dd/Abh9m4DVq1ffd5sAzsBsPTmnZ+Lszq6Nv19yBSbNxXfv\nfWxMfa3Hihw8Fx/nzHL+nOk2e9aSq2w7zNk5a9SiIb6qqirpe2O3CSAiIrJUn0N8vE0AERE5gtvc\nboO74s6fM93GIT7z4soZmzkrcIiPiIhIbmxQRHbQ24wsdXV1SExMRGRkJJKSkni5BtE92KCI7KC3\nGVlyc3ORmJiIiooK/PSnP0Vubq6DsiNSJjYoIjvobUaWffv2IS0tDQCQlpaGvXv3OiI1IsVigyJy\nkJqaGoSGhgIAQkNDUVNT4+CMiJTFopkkiMi27tyCojeclYXcFRsUkYOEhoaiuroaQ4YMQVVVFUJC\nQnpdTqfTQafTSY9zcnLslCGRY3GIj8hB5syZg7y8PABAXl4eUlNTHZwRkbLwQl0r48oZmzm7zoW6\nd8/IEhoaiueffx6PPfYY5s2bh6tXryIiIgLvv/8+AgIC+ozFC3XNiytnbOYsb42yQVkZV87YzNl1\nGpQtsUGZF1fO2MzZwTNJ8AJDIiJyBItu+c4LDMkRgoKCpLPdrPkKCgpy9FshIhNYdD+oqKgoFBYW\nSmch6XQ6XLhwwfiKOMRndmzmbJ+cnQ2H+MyLK2ds5qzAyWJ5gSEREcnN6uugDF1gyIsLiYjIGhY1\nKFMuMOTFhUREZA2Lhvh4gSEREcmtz5MkbHWBIU+SMD82c+ZJEr3hSRLmxZUzNnPmhbo2WR83JOZs\n6ziOwgZlXlw5YzNnBZ7FR0REJDc2KCIiUiQ2KCIiUiQ2KCIiUiQ2KCIiUiQ2KCIiUiTe8p3IwSIi\nIuDv7w9PT094e3ujpKTE0SkRKQIbFJGDCYKAgoIC3gaE6B4c4iNSAGe+cJhILmxQRA4mCAJ+9rOf\nIS4uDm+88Yaj0yFSDA7xETnY8ePHMXToUFy/fh2JiYmIiorC1KlTpdd56xpyV1bNxWfOwV3OxWd+\nbObsfnPx5eTkwNfXF6tXrza4DOfiMy+unLGZs4Ln4rtzcLesrIxnHhFZoKWlBT/88AMAoLm5Gfn5\n+VCr1Q7OikgZrB7iU+p/okTOoKamBo8//jgAoLOzEwsXLkRSUpKDsyJSBquG+P7lX/4FAwcOhKen\nJ5566iksW7bM8Io4xGd2bObsfkN8puAQn3lx5YzNnOWtI6v2oIwd3OWBXSIisobNbljY18Fd7kGZ\nH5s5cw+qN9yDMi+unLGZs0JPkuDBXSIikpPFQ3w8uEtERHKy2RBfnyviEJ/ZsZkzh/h6wyE+8+LK\nGZs5K3SIj4iISE5sUEREpEhsUEREpEhsUEREpEhsUEREpEhsUEREpEhsUEREpEhsUEREpEhsUERE\npEhsUEREpEgWN6iDBw8iKioKo0ePxsaNG22ZE5FbYS0R9c6iufi6urowZswYHD58GGFhYZg4cSJ2\n796N6OhowyviXHxmx2bOrj8Xn9JriduO8djMWYFz8ZWUlGDUqFGIiIiAt7c3fvGLX+CTTz6xdW5E\nLo+1RGSYRQ3q2rVrGD58uPQ4PDwc165ds1lSRO6CtURkmEX3gxIEoc9l7r3lu0ajMennTFnGVPfG\nslXs3uLIFZs59/2crWKba+3atcjOzpY9D0fXErcd43GYs/UM1pJogeLiYjE5OVl6vH79ejE3N9eS\nUGZbu3YtY9shrpyxnTFnubCWlBFXztjM2XIWDfHFxcXh4sWL0Ov1aG9vx3vvvYc5c+ZY2UOJ3A9r\nicgwi4b4vLy88MorryA5ORldXV3IzMw0etYREfWOtURkmEUNCgBmzJiBGTNm2DIXk+h0Osa2Q1w5\nYztjznJiLTk+rpyxmbPlLLoOioiISG6c6oiIiBSJDYqIiBSJDYqIiBRJUQ3Kw8MDixYtkh53dnYi\nODgYKSkpNolfW1sLrVYLrVaLoUOHIjw8HFqtFhMmTEBHR4fZ8bKysrB582bpcXJyMpYtWyY9Xr16\nNf70pz/1GUev10OtVpuVc2BgIMaNG2d2zoZ4enpK69Fqtbh69ep9y8yaNQs3b940Oea6deugUqmg\n0Wig1WpRUlJicNm8vDxUVVXZNKY7k7OWbF1HgPy1xDqyLq7DOPpCrLv5+vqKWq1WbG1tFUVRFA8c\nOCDGxMSIKSkpNl9Xdna2+PLLL1sVY8+ePeK8efNEURTFrq4uMTY2VpwyZYr0enx8vPj3v/+9zziX\nL18WVSpVn8vdnbNerzfpZzo7O/tcRhRvf/aGdHd3i93d3SbFuaOoqEiMj48X29vbRVEUxdraWvG7\n774zuLxOpxNLS0ttGtOd2auWbFFHomjfWnL3OrIkrqMoag8KAGbOnIlPP/0UALB7924sWLBAmjG3\nrq4Oqamp0Gg0iI+PR3l5OQAgOzsbGRkZSEhIwMMPP4ytW7eatC5RFJGeno4PP/xQes7X11f6ftOm\nTZg0aRI0Gk2v03DEx8ejuLgYAHDu3DmoVCr4+fmhoaEBt27dwvnz5wHcPmUzLi4O06dPR3V1NQDg\n5MmT0Gg0iImJwWuvvWby53PnsxBFEV1dXVi+fDlUKhWSk5PR1tYmrS8rKwsTJ07Eli1bTI59N71e\njzFjxiAtLQ1qtRqVlZWIiIhAXV2dST9fXV2NwYMHw9vbGwAQFBSEoUOH4oUXXsCkSZOgVqvx1FNP\nAQD27NmD0tJSLFy4EBMmTJDeh6kx786rtLQUCQkJACzfLlyFvWrJ2joC7F9L7lxHxuIqrZYU16Dm\nz5+Pd999F7du3UJ5eTkmT54svbZ27VrExsbizJkzWL9+PRYvXiy9VlFRgfz8fJSUlCAnJwddXV0W\nrf/O3FL5+fm4dOkSSkpKUFZWhpMnT+LLL7/sseywYcPg5eWFyspKFBcXIz4+HpMmTUJxcTFKS0sR\nHR2NrKwsacNJT0/HH//4RwBAeno6Xn31VZw+fdqiPAHg4sWLWLlyJc6ePYuAgADpD4QgCOjo6MBX\nX32FrKwsk2K1trZKwxJPPvkkBEHApUuXsGLFCpw9exYjRowwa96tpKQkVFZWYsyYMVixYgWOHj0K\nAFi5ciVKSkpQXl6O1tZW7N+/H3PnzkVcXBzeeecdnDp1Cv369TMrprG8bLVdOCNH1pI5dQQ4tpbc\nrY6MxVVaLVl8oa5c1Go19Ho9du/ejVmzZvV47fjx4/joo48AAAkJCaitrcUPP/wAQRAwa9YseHt7\nY9CgQQgJCUFNTQ2GDRtmcR75+fnIz8+HVqsFADQ3N+PSpUuYOnVqj+WmTJmCoqIiFBUVYdWqVbh2\n7RqKioowcOBAhIWFIT8/H4mJiQBu3/tn2LBhaGxsRGNjIx599FEAwKJFi/DZZ5+ZnePIkSMxfvx4\nAEBsbCz0er302vz5882K1b9/f5SVlUmP9Xo9HnroIUyaNMnsvADAx8dH+mN05MgRzJ8/H7m5ufD1\n9cWmTZvQ0tKCuro6qFQqzJ49GwD6vLdMbzE3bNhgcHk5tgtnooRaMrWOAMfVkrvVkaG4SqwlxTUo\nAJgzZw5+97vfobCwENevX+/xmqEP/4EHHpC+9/T0RGdnp0nr8vLyQnd3NwCgu7sb7e3t0mvPPfcc\nli9fbvTnf/SjH+H48eMoLy+HWq3G8OHD8dJLL2HgwIHQ6XRSkd2toaHBpPfUlwcffFD63tPTs8cu\nvY+Pj0Ux72ZtDA8PD0ybNg3Tpk2DWq3Gn//8Z5SXl+PkyZMICwtDTk5Oj5xN+c/y3pg7duzo8Tu8\nd1jD0u3CVdirlqytI8BxteSOddRbXCXWkuKG+AAgIyMD2dnZ951dM3XqVLz99tsAbt+CIDg4GH5+\nflbd1TEiIgInT54EAOzbt086Cyk5ORlvvfUWmpubAdy+b8+9BQ7c/q9v//79GDRoEARBQGBgIBoa\nGlBcXIwFCxbg+vXrOHHiBACgo6MDX3/9NQICAhAQEIDjx48DgPSerGXN52BrFRUVuHjxovS4rKwM\nUVFREAQBgwYNQlNTEz744APpdT8/vz7PbOotZkREBCIiIlBaWgoAPY6DKOnzcBR71ZK1dQQop5aU\ntN3IUUeG4iqxlhS1B3Wn84eFhWHlypXSc3eev3OgTqPRwMfHB3l5efctY+76li1bhsceewwxMTGY\nPn26dHA3MTER58+fR3x8PIDbv/hdu3YhODi4RwyVSoXa2lr86le/kp4bP348WlpaEBwcjD179uDZ\nZ59FY2MjOjs7kZWVhbFjx2L79u3IyMiAIAhISkoyOf+7l7PlPV5MuReNOfGbmprwzDPPoKGhAV5e\nXhg9ejS2bduGgIAAqFQqDBkypMcxkSVLluDXv/41BgwYgKKiol7Hz3uL+frrr+Prr79GZmYm/P39\nodPppDwt3S5cgT1ryRZ1BNi3lty5jgzFVWItcS4+IiJSJEUO8REREbFBERGRIrFBERGRIrFBERGR\nIrFBERGRIrFBERGRIrFBERGRIrFBERGRIrFBERGRIrFBERGRIrFBERGRIrFBKVh7ezsyMzMREREB\nf39/aLVaHDx4UHr9888/R1RUFHx8fPCTn/wEV69elV47cuQIEhISEBAQgJEjR/aIe/36dSxYsABh\nYWEICAjAo48+ipKSEru9LyJ7kquOAGDNmjVQq9Xw9vZGTk6OXd6PO2GDUrDOzk6MGDECR48exc2b\nN/Hiiy9i3rx5uHr1Km7cuIEnnngC69atQ319PeLi4nrcXM3X1xdLly7Fpk2b7ovb1NSEyZMn49Sp\nU6ivr0daWhpmzZol3RKByJXIVUcAMHr0aGzatAmzZs1y25nz5cTZzJ2MRqPB2rVrcePGDezcuRPH\njh0DALS0tGDw4ME4ffo0IiMjpeUPHz6MZcuW4fLly0bjDhw4EAUFBdKdT4lcma3raNGiRRg1ahTW\nrl1rl/zdBfegnEhNTQ0qKiqgUqlw7tw5aDQa6bUBAwZg1KhROHv2rNlxT58+jfb2dowaNcqW6RIp\nklx1RLbHBuUkOjo6sHDhQixZsgSRkZFobm6Gv79/j2X8/f3R1NRkVtybN29i0aJFyM7Ohp+fny1T\nJlIcueqI5MEG5QS6u7uxaNEi9OvXD6+88gqA22Pj997aubGx0awm09raipSUFEyZMgX//u//btOc\niZRGrjoi+bBBKZwoisjMzMT169fx4YcfwtPTEwAwbtw4nDlzRlquubkZ33zzDcaNG2dS3Fu3biE1\nNRUjRozAtm3bZMmdSCnkqqO78SQJ22ODUrinn34aFy5cwL59+/Dggw9Kzz/++OM4e/YsPvroI7S1\ntSEnJwcxMTHSgV1RFNHW1oaOjg6Ioohbt26hvb0dwO1hjrlz52LAgAHYsWOHI94WkV3JUUfA7TME\n29ra0NXVhY6ODrS1taG7u9vu789liaRYer1eFARB7N+/v+jr6yt9vfPOO6IoiuLhw4fFqKgosX//\n/mJCQoJ45coV6WePHDkiCoIgCoIgenh4iIIgiAkJCaIoimJBQYEoCILo4+PTI+6xY8cc8j6J5CRX\nHYmiKKalpUmv3/nKy8uz+3t0VX2eZp6RkYFPP/0UISEhKC8vBwCUlJRg5cqV6OjogJeXF1577TVM\nnDjRLg2VyBmxjogs0FcHO3r0qHjq1ClRpVJJz02bNk08ePCgKIqieODAAVGn08nVQIlcAuuIyHx9\nHoOaOnUqAgMDezw3dOhQNDY2AgAaGhoQFhYmT/ckchGsIyLzmTSThF6vR0pKijQ0ceXKFTz66KMQ\nBAHd3d0oLi7G8OHDZU+WyJmxjojM42XJD2VmZmLLli14/PHH8cEHHyAjIwOHDh3qsUxBQQEKCgqk\nx3q9vs8zxoKCglBfX29JSvcJDAxEXV2dzWPfG1dOzLlnzs74eRhjSh0BltUSkSuwaA/K399furhN\nFEUEBARIQxUGVyQI6GtVpixjqntj2Sq2LXO017pcJWdn/DzuZos6AhyXP5G9WXQd1KhRo1BYWAgA\n+OKLL3pMqkhEpmEdERnX5xDfggULUFhYiBs3bmD48OF4/vnn8frrr2PFihW4desW+vfvj9dff90e\nuRI5LdYRkfnsdrsNDvE5bl2ukrMzfh5ycPb8iUzFqY6ISBGCgoIgCILVX0FBQY5+K2QjFp3FR0Rk\na/X19TbbQybXYHQPKiMjA6GhoVCr1T2e37p1K6Kjo6FSqXibBiITsJaIzGd0Dyo9PR3PPPMMFi9e\nLD135MgR7Nu3D//3f/8Hb29vXL9+XfYkiZwda4nIfEb3oHqbnuV///d/8dxzz8Hb2xsAEBwcLF92\nRC6CtURkPrNPkrh48SKOHj2KRx55BDqdDqWlpXLkReTyWEtExpl9kkRnZyfq6+tx4sQJfPXVV5g3\nbx7++c9/3rfcvdOzEFFPrCUi48xuUOHh4XjiiScAABMnToSHhwdqa2sxaNCgHsvpdDrodDrpcU5O\njnWZErkY1hKRcWYP8aWmpuKLL74AAFRUVKC9vf2+giKivrGWiIwzugd1Z3qW2tpaaXqWjIwMZGRk\nQK1W44EHHsDOnTvtlSuR02ItEZmPUx1ZGVdOzJlTHfXG2fM3hL9fuhenOrIBTtFCRM7Cmf5eWTST\nBAC8/PLL8PDwUMSN3xztzhQt1n7Z6maNpDysJVIKZ/p7ZbRBpaen4+DBg/c9X1lZiUOHDuGhhx6S\nLTEiV8JaIjKf2TNJAMCqVavw3//937IlReRqWEtE5jP7GNQnn3yC8PBwjB8/Xo58iNwGa4nIOLMu\n1G1pacH69etx6NAh6TmeLUNkPtYSUd/MalDffPMN9Ho9NBoNAODbb79FbGwsSkpKEBIS0mNZTs+i\nbEFBQTY5yBkYGMiD+xZgLRH1rc/roPR6PVJSUlBeXn7fayNHjsTJkydNOt3Qla+Dkis2c3at66Ds\nWUvOyNl/v87CmT5no8egFixYgClTpqCiogLDhw/H9u3b70uQiPrGWiIyH2eSsDKunLGZs2vtQdmK\ns+dvCH+/9uFMnzNnkiAiIkVigyIiIkXqs0H1NkXLv/3bvyE6OhoajQZPPPEEGhsbZU2SyNmxjojM\n12eD6m2KlqSkJJw7dw5nzpxBZGQkNmzYIFuCRK6AdURkvj4bVG9TtCQmJsLD4/aPTp48Gd9++608\n2RG5CNYRkfmsPgb11ltvYebMmbbIhchtsY6I7mfWTBL3WrduHR544AH88pe/vO81Xv1OZBpjdQSw\nlsh9mXQdVG9XwO/YsQNvvPEGPv/8c/Tr16/vFfE6KLNjM2fXug7KFnUEuO51Ps7++3UWzvQ5W7QH\ndfDgQWzatAmFhYUmFxUR9cQ6IjKuzz2oBQsWoLCwEDdu3EBoaChycnKwYcMGtLe3S/OGxcfH47XX\nXjO+Iu5BmR2bObvOHpSt6ghw3T0EZ/79OhNn+pw51ZGVceWMzZxdp0HZkrPnbwh/v/bhTJ8zZ5Ig\nIiJFYoMiIpcXFBQEQRCs/rr3dihyxaXbLJrqqK6uDomJiYiMjERSUhIaGhpkTZLI2bGOHKu+vh6i\nKFr9de9NPuWKS7dZNNVRbm4uEhMTUVFRgZ/+9KfIzc2VLUEiV8A6IjKfRVMd7du3D2lpaQCAtLQ0\n7N27V54oUVmnAAAOrElEQVTsiFwE64jIfBYdg6qpqUFoaCgAIDQ0FDU1NTZNisgdsI6IjLNqqiMA\n0kG+e3F6FiLTGaojwLJaCgoKsslxjcDAQNTV1Vkdh8zH36GFDSo0NBTV1dUYMmQIqqqqEBISct8y\nOp0OOp1OepyTk2NxkkSuyJQ6AiyrpTsH761lqGmS/Pg7tHCIb86cOcjLywMA5OXlITU11aZJEbkD\n1hGRcWZPdfT888/jsccew7x583D16lVERETg/fffR0BAgPEVcSYJs2MzZ9eZScJWdQTYt5bs+Vk5\n47bDnDnVkU3Wxw2JOds6jqOwQZkfh9u7czYoziRBRESKxAZFRESKZHGD2rBhA8aNGwe1Wo1f/vKX\nuHXrli3zInIbrCWi3lnUoPR6Pd544w2cOnUK5eXl6Orqwrvvvmvr3IhcHmuJyDCLroPy9/eHt7c3\nWlpa4OnpiZaWFoSFhdk6NyKXx1oiMsyiPaigoCCsXr0aI0aMwLBhwxAQEICf/exnts6NyOWxlogM\ns2gP6ptvvsH//M//QK/XY+DAgfj5z3+Ot99+GwsXLpSW4VRHRH1zxlriFDxkLxZdB/Xee+/h0KFD\nePPNNwEAf/3rX3HixAm8+uqrhlfE66DMjs2cXf86KKXXErcd47GZswKvg4qKisKJEyfQ2toKURRx\n+PBhjB071ta5Ebk81hKRYRY1KI1Gg8WLFyMuLg7jx48HACxfvtymiRG5A9YSkWGc6sjKuHLGZs6u\nP8RnCQ7xmRdXztjMWYFDfERERHKzuEE1NDRg7ty5iI6OxtixY3HixAlb5kXkNlhLRL2z+I66v/nN\nbzBz5kzs2bMHnZ2daG5utmVeRG6DtUTUO4uOQTU2NkKr1eKf//yn6SviMSizYzNn1z8GpfRa4rZj\nPDZzVuAxqMuXLyM4OBjp6emYMGECli1bhpaWFlvnRuTyWEtEhlnUoDo7O3Hq1Cn867/+K06dOgUf\nHx/k5ubaOjcil8daIjLMomNQ4eHhCA8Px8SJEwEAc+fOva+olDY9C5ESsZaIDLP4Oqgf//jHePPN\nNxEZGYns7Gy0trZi48aNhlfEY1Bmx2bOrn8MClB2LXHbMR6bOctbRxY3qDNnzmDp0qVob2/Hww8/\njO3bt2PgwIGGV8QGZXZs5uweDUrJtcRtx3hs5qzQBmX2itigzI7NnN2jQZmLDcq8uHLGZs4KPIuP\niIhIbmxQRESkSFY1qK6uLmi1WqSkpNgqHyK3xFoiup9VDWrz5s0YO3YsBEGwVT5Ebom1RHQ/ixvU\nt99+iwMHDmDp0qVOfcCZyNFYS0S9s7hBZWVlYdOmTfDw4GEsImuwloh6Z9FMEvv370dISAi0Wq3B\nK9x59TtR31hLRIZZdB3Uf/zHf+Cvf/0rvLy80NbWhps3b+LJJ5/Ezp07Da+I10GZHZs5u/51UEqv\nJW47xmMzZ4VfqFtYWIiXXnoJf/vb34yviA3K7NjM2fUb1N2UWEvcdozHZs5OcKEuzzwisg3WEtH/\nw6mOrIwrZ2zm7F57UKbiHpR5ceWMzZydYA+KiIjI1tigiIhIkSxuUJWVlUhISMC4ceOgUqmwZcsW\nW+ZF5BZYR0SGWXwMqrq6GtXV1YiJiUFTUxNiY2Oxd+9eREdH974iHoMyOzZzdv1jUObWEcBjUObG\nlTM2c1boMaghQ4YgJiYGAODr64vo6Gh89913NkuMyB2wjogMs8kxKL1ej7KyMkyePNkW4YjcEuuI\nqCeLpjq6W1NTE+bOnYvNmzfD19dXep7TsxCZzlAdAawlcl9WXQfV0dGB2bNnY8aMGfjtb39rfEU8\nBmV2bObs+segAPPqCOAxKHPjyhmbOSv0GJQoisjMzMTYsWNNKioiuh/riMgwixvU8ePHsWvXLhw5\ncgRarRZarRYHDx60ZW5ELo91RGQYpzqyMq6csZmzewzxmYtDfObFlTM2c1boEB8REZGc2KCIiEiR\nLG5QBw8eRFRUFEaPHo2NGzfaMicit8JaIuqdRcegurq6MGbMGBw+fBhhYWGYOHEidu/erZjpWXqL\nxbFi5mzrOLag9FritmM8NnNW4DGokpISjBo1ChEREfD29sYvfvELfPLJJ7bOjcjlsZaIDLOoQV27\ndg3Dhw+XHoeHh+PatWs2S4rIXbCWiAyzaKojQej7ttT3Ts+i0WhM+jlTljHVvbFsFbu3OHLFZs59\nP2er2OZau3YtsrOzZc/D0bXEbcd4HOZsPYO1JFqguLhYTE5Olh6vX79ezM3NtSSU2dauXcvYdogr\nZ2xnzFkurCVlxJUzNnO2nEVDfHFxcbh48SL0ej3a29vx3nvvYc6cOVb2UCL3w1oiMsyiIT4vLy+8\n8sorSE5ORldXFzIzM42edUREvWMtERlm8e02ZsyYgRkzZtgyF5PodDrGtkNcOWM7Y85yYi05Pq6c\nsZmz5ew2Fx8REZE5ONUREREpEhsUEREpEhsUEREpkqIalIeHBxYtWiQ97uzsRHBwMFJSUmwSv7a2\nVrop3NChQxEeHg6tVosJEyago6PD7HhZWVnYvHmz9Dg5ORnLli2THq9evRp/+tOf+oyj1+uhVqvN\nyjkwMBDjxo0zO2dDPD09pfVotVpcvXr1vmVmzZqFmzdvmhxz3bp1UKlU0Gg00Gq1KCkpMbhsXl4e\nqqqqbBrTnclZS7auI0D+WmIdWRfXYRx9IdbdfH19Ra1WK7a2toqiKIoHDhwQY2JixJSUFJuvKzs7\nW3z55ZetirFnzx5x3rx5oiiKYldXlxgbGytOmTJFej0+Pl78+9//3mecy5cviyqVqs/l7s5Zr9eb\n9DOdnZ19LiOKtz97Q7q7u8Xu7m6T4txRVFQkxsfHi+3t7aIoimJtba343XffGVxep9OJpaWlNo3p\nzuxVS7aoI1G0by25ex1ZEtdRFLUHBQAzZ87Ep59+CgDYvXs3FixYIM2YW1dXh9TUVGg0GsTHx6O8\nvBwAkJ2djYyMDCQkJODhhx/G1q1bTVqXKIpIT0/Hhx9+KD3n6+srfb9p0yZMmjQJGo2m12k44uPj\nUVxcDAA4d+4cVCoV/Pz80NDQgFu3buH8+fMAbp+yGRcXh+nTp6O6uhoAcPLkSWg0GsTExOC1114z\n+fO581mIooiuri4sX74cKpUKycnJaGtrk9aXlZWFiRMnYsuWLSbHvpter8eYMWOQlpYGtVqNyspK\nREREoK6uzqSfr66uxuDBg+Ht7Q0ACAoKwtChQ/HCCy9g0qRJUKvVeOqppwAAe/bsQWlpKRYuXIgJ\nEyZI78PUmHfnVVpaioSEBACWbxeuwl61ZG0dAfavJXeuI2NxlVZLimtQ8+fPx7vvvotbt26hvLwc\nkydPll5bu3YtYmNjcebMGaxfvx6LFy+WXquoqEB+fj5KSkqQk5ODrq4ui9Z/Z26p/Px8XLp0CSUl\nJSgrK8PJkyfx5Zdf9lh22LBh8PLyQmVlJYqLixEfH49JkyahuLgYpaWliI6ORlZWlrThpKen449/\n/CMAID09Ha+++ipOnz5tUZ4AcPHiRaxcuRJnz55FQECA9AdCEAR0dHTgq6++QlZWlkmxWltbpWGJ\nJ598EoIg4NKlS1ixYgXOnj2LESNGmDXvVlJSEiorKzFmzBisWLECR48eBQCsXLkSJSUlKC8vR2tr\nK/bv34+5c+ciLi4O77zzDk6dOoV+/fqZFdNYXrbaLpyRI2vJnDoCHFtL7lZHxuIqrZYsvlBXLmq1\nGnq9Hrt378asWbN6vHb8+HF89NFHAICEhATU1tbihx9+gCAImDVrFry9vTFo0CCEhISgpqYGw4YN\nsziP/Px85OfnQ6vVAgCam5tx6dIlTJ06tcdyU6ZMQVFREYqKirBq1Spcu3YNRUVFGDhwIMLCwpCf\nn4/ExEQAt+/9M2zYMDQ2NqKxsRGPPvooAGDRokX47LPPzM5x5MiRGD9+PAAgNjYWer1eem3+/Plm\nxerfvz/Kysqkx3q9Hg899BAmTZpkdl4A4OPjI/0xOnLkCObPn4/c3Fz4+vpi06ZNaGlpQV1dHVQq\nFWbPng0Afd5bpreYGzZsMLi8HNuFM1FCLZlaR4Djasnd6shQXCXWkuIaFADMmTMHv/vd71BYWIjr\n16/3eM3Qh//AAw9I33t6eqKzs9OkdXl5eaG7uxsA0N3djfb2dum15557DsuXLzf68z/60Y9w/Phx\nlJeXQ61WY/jw4XjppZcwcOBA6HQ6qcju1tDQYNJ76suDDz4ofe/p6dljl97Hx8eimHezNoaHhwem\nTZuGadOmQa1W489//jPKy8tx8uRJhIWFIScnp0fOpvxneW/MHTt29Pgd3jusYel24SrsVUvW1hHg\nuFpyxzrqLa4Sa0lxQ3wAkJGRgezs7PvOrpk6dSrefvttALdvQRAcHAw/Pz+r7uoYERGBkydPAgD2\n7dsnnYWUnJyMt956C83NzQBu37fn3gIHbv/Xt3//fgwaNAiCICAwMBANDQ0oLi7GggULcP36dZw4\ncQIA0NHRga+//hoBAQEICAjA8ePHAUB6T9ay5nOwtYqKCly8eFF6XFZWhqioKAiCgEGDBqGpqQkf\nfPCB9Lqfn1+fZzb1FjMiIgIREREoLS0FgB7HQZT0eTiKvWrJ2joClFNLStpu5KgjQ3GVWEuK2oO6\n0/nDwsKwcuVK6bk7z985UKfRaODj44O8vLz7ljF3fcuWLcNjjz2GmJgYTJ8+XTq4m5iYiPPnzyM+\nPh7A7V/8rl27EBwc3COGSqVCbW0tfvWrX0nPjR8/Hi0tLQgODsaePXvw7LPPorGxEZ2dncjKysLY\nsWOxfft2ZGRkQBAEJCUlmZz/3cvZ8h4vptyLxpz4TU1NeOaZZ9DQ0AAvLy+MHj0a27ZtQ0BAAFQq\nFYYMGdLjmMiSJUvw61//GgMGDEBRUVGv4+e9xXz99dfx9ddfIzMzE/7+/tDpdFKelm4XrsCetWSL\nOgLsW0vuXEeG4iqxljgXHxERKZIih/iIiIjYoIiISJHYoIiISJHYoIiISJHYoIiISJHYoIiISJHY\noIiISJH+Pz9B6Bo5erWUAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x12dbee50>"
]
}
],
"prompt_number": 11
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In 2013, we tend to have bad weather toward the end of week. And, what just happend to Saturdays in 2014!"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Data2014.T.sum()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 20,
"text": [
"0 19\n",
"1 18\n",
"2 19\n",
"3 15\n",
"4 15\n",
"5 21\n",
"6 11\n",
"dtype: float64"
]
}
],
"prompt_number": 20
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#[Mon=0 to Sun=6], [# of rainy days in 2014]\n",
"#0 19\n",
"#1 18\n",
"#2 19\n",
"#3 15\n",
"#4 15\n",
"#5 21 (10 more days to be significant at 5%)\n",
"#6 11\n",
"chi, p = stats.mstats.chisquare( Data2014.T.sum() )\n",
"# p = 0.665\n",
"# Chill, it's not statistically significant at all. it's all by chance."
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 21
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"years = [2015]\n",
"months = range(1,4)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 14
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for year in years:\n",
" for month in months:\n",
" print 'Processing ', year, month\n",
" data[(year,month)] = getData(month=month, year=year, proxies=proxies)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Processing 2015 1\n",
"Processing "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 2015 2\n",
"Processing "
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" 2015 3\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"figure(facecolor='w')\n",
"ax = subplot(111)\n",
"Data2015 = sortByWeekday(data, years=years, months=[1,2,3], label='RA')\n",
"myplot(x, Data2015.T.sum(), ax, '2015')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEOCAYAAACgvV2vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFSJJREFUeJzt3GtwVHcdxvHn5CKQC+TS0AZCDbaFAAnJcjUUWqKFQCkq\nwogMIg2XeilaU/vC6ouEqbXtpDOVWh1vU6gXcJR2tFJlUhy2lxAnEiiGUCdFG4hYGMgNEgi5HV/Q\nroQm2QV3s7+F72eGGXbPyX+fPWfPsyf/PRvHdV1XAACzosIdAAAwOIoaAIyjqAHAOIoaAIyjqAHA\nOIoaAIyjqAHAOIoaEamzs1Pr169XZmamRo4cKY/Ho927d/uW/+Uvf1FWVpbi4+P1iU98QsePH/ct\n27t3rwoKCpSUlKTx48d/aOzMzEzFxcUpMTFRiYmJWrRo0ZA8J2AgFDUiUnd3t2699Va9/vrrOnv2\nrL773e/qc5/7nI4fP64zZ87os5/9rB5//HE1NzdrxowZWrlype9nExIStGHDBpWVlfU7tuM42rVr\nl86dO6dz5871eQMAwiEm3AGAaxEXF6eSkhLf7SVLlmj8+PHav3+/zpw5o5ycHC1fvlySVFpaqptu\nukl1dXWaMGGCZs6cqZkzZ2rPnj0Djs8XdmEJZ9S4Lpw6dUp1dXXKzs5WbW2tcnNzfcvi4uJ0++23\n6/DhwwGPt3r1ao0ePVqFhYX6+9//HorIQMAoakS8rq4urV69Wvfff78mTJig9vZ2jRw5ss86I0eO\nVFtbW0Djbd++XceOHdOxY8dUUFCgwsJCtba2hiI6EBCKGhGtt7dXa9as0fDhw/Xcc89JujQHffbs\n2T7rtba2KjExMaAx8/PzNWzYMI0YMULf+ta3lJSUpDfeeCPo2YFAUdSIWK7rav369Tp9+rRefPFF\nRUdHS5KmTJmiQ4cO+dZrb2/XP//5T02ZMuWaHsdxnKDkBa4VRY2I9ZWvfEX/+Mc/9PLLL2vYsGG+\n+5ctW6bDhw/rpZdeUkdHhzZv3qy8vDxNmDBB0qWC7+joUFdXl1zX1cWLF9XZ2SlJamhoUEVFhTo7\nO9XR0aGysjI1NjbqzjvvDMtzBCRJLhCB6uvrXcdx3BEjRrgJCQm+f9u3b3dd13X37NnjZmVluSNG\njHALCgrcY8eO+X527969ruM4ruM4blRUlOs4jltQUOC6ruvW1ta6U6dOdePj493U1FT3nnvucaur\nq8PyHIEPOK47+HVILS0t2rBhg2pra+U4jp5//nl9/OMfH6r3EQC44fm9jvqhhx7Svffeq507d6q7\nu1vt7e1DkQsA8L5Bz6hbW1vl8Xj0r3/9aygzAQAuM+iHie+++67S0tJUVFSkadOmaePGjTp//vxQ\nZQMAyE9Rd3d368CBA/rqV7+qAwcOKD4+Xk8++eRQZQMAyM8cdUZGhjIyMjRz5kxJ0ooVKz5U1F6v\nV16v13e7vr5e27ZtC3pQAIFLSUlRc3NzuGMoOTlZTU1N4Y4R8fxe9XHXXXfp5z//uSZMmKDS0lJd\nuHBBTz311MADOg5/0AYIMyvHoZUckc5vUR86dEgbNmxQZ2enbrvtNm3dulWjRo0aeEB2DBB2Vo5D\nKzkind+ivuoB2TFA2Fk5Dq3kiHR8hRwAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4\nihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoA\njKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcC4mEBWyszM1MiRIxUdHa3Y2FhVVVWFOhcA\n4H0BFbXjOPJ6vUpJSQl1HgDAFQKe+nBdN5Q5AAADCKioHcfRPffcoxkzZuhnP/tZqDMBAC4T0NRH\nRUWF0tPTdfr0aS1YsEBZWVmaN29eqLMBABRgUaenp0uS0tLStGzZMlVVVfmK2uv1yuv1hiwgANzo\nHNfP5PP58+fV09OjxMREtbe3a+HChSopKdHChQv7H9BxmM8GwszKcWglR6Tze0Z96tQpLVu2TJLU\n3d2t1atXD1jSAIDg83tGfdUD8g4KhJ2V49BKjkjHNxMBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCM\no6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gB\nwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwDiKGgCMo6gBwLiAirqnp0cej0dL\nly4NdR4AwBUCKuotW7Zo8uTJchwn1HkAAFfwW9T//ve/9ac//UkbNmyQ67pDkQkAcBm/RV1cXKyy\nsjJFRTGdDQDhEDPYwl27dmn06NHyeDzyer39ruP1egdcBlyNlJQUNTc3hzVDcnKympqawprhRmJh\nn0v297vjDjKf8e1vf1u//OUvFRMTo46ODp09e1bLly/XL37xi4EHdBymSHBNLLx2LGQIBivPw1+O\nSMkZboMW9eVee+01Pf300/rjH/84+IDGnzDssvDasZAhGKw8D4o6OK5q4pmrPgBg6AV8Rh3wgMbf\nmWCXhdeOhQzBYOV5cEYdHFzKAQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDG\nUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQA\nYBxFDQDGUdQAYBxFDQDGUdQAYBxFDQDGUdQAYJzfou7o6NDs2bOVl5enyZMn69FHHx2KXACA98X4\nW2H48OHau3ev4uLi1N3drblz5+rNN9/U3LlzhyIfANzwApr6iIuLkyR1dnaqp6dHKSkpIQ0FAPif\ngIq6t7dXeXl5uvnmm1VQUKDJkyeHOhcA4H1+pz4kKSoqSm+99ZZaW1tVWFgor9er+fPnS5K8Xq+8\nXm8IIwLAjc1xXde9mh947LHHNGLECD3yyCP9D+g4usohAUk2XjsWMgSDlefhL0ek5Aw3v1MfZ86c\nUUtLiyTpwoULevXVV+XxeEIeDABwid+pj/fee09r165Vb2+vent7tWbNGn3yk58cimwAAF3D1Iff\nAY3/CgG7LLx2LGQIBivPg6mP4OCbiQBgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR\n1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABg\nHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMZR1ABgHEUNAMb5LeqGhgYVFBRoypQpys7O1rPPPjsUuQAA\n73Nc13UHW+HkyZM6efKk8vLy1NbWpunTp+v3v/+9Jk2a1P+AjiM/QwL9svDasZAhGKw8D385IiVn\nuPk9o77llluUl5cnSUpISNCkSZP0n//8J+TBAACXXNUcdX19vQ4ePKjZs2eHKg8A4Aoxga7Y1tam\nFStWaMuWLUpISPDd7/V65fV6gxoqJSVFzc3NQR3zWiQnJ6upqSncMWCMhdcnr80bi985aknq6urS\nfffdp8WLF+sb3/jG4AMGYa7HynyRlRw3CgvbO5AMkZDTQsZAckRKznDzW9Su62rt2rVKTU3VM888\n439AihrXyML2pqiD63rJGW5+i/rNN9/UXXfdpalTp8pxHEnSE088oUWLFvU/IEWNa2Rhe1PUwXW9\n5Ay3gKY+rmpAihrXyML2pqiD63rJGW58MxEAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOo\nAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4\nihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4ihoAjKOoAcA4v0W9bt063XzzzcrJyRmKPACAK/gt\n6qKiIu3evXsosgAA+uG3qOfNm6fk5OShyAIA6Adz1ABgHEUNAMbF/L8DeL1eeb3eIESJPCkpKWpu\nbg53DCUnJ6upqWnA5RZy+ssIYGCO67quv5Xq6+u1dOlS1dTU+B/QcRTAkCEfIxj85SBn4ALJQM7A\nRcI+DyRHpOQMN79TH6tWrdKcOXNUV1encePGaevWrUORCwDwvoDOqK9qQM6oh1wk5LxezlQDXSfU\nImGfB5IjUnKGGx8mAoBxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdR\nA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4BxFDUAGEdRA4Bx\nFDUAGEdRA4BxFDUAGEdRA4BxFDUAGOe3qHfv3q2srCzdcccdeuqpp4YiEwDgMo7ruu5AC3t6ejRx\n4kTt2bNHY8eO1cyZM7Vjxw5NmjRp4AEdR4MMGVioIIwRDP5ykDNwgWQgZ+AiYZ8HkiNScobboGfU\nVVVVuv3225WZmanY2Fh9/vOf1x/+8IehygYAkJ+iPnHihMaNG+e7nZGRoRMnToQ8FADgfwYtasdx\nhioHAGAAMYMtHDt2rBoaGny3GxoalJGR0Wcdr9crr9fru52bmxuUgrfyJuEvBzkDF0gGcgYuEva5\ndP3kDLWSkhKVlpb2v9AdRFdXl/uxj33Mfffdd92LFy+6ubm57pEjRwb7ETNKSkrCHSEg5AyuSMgZ\nCRldl5yWDHpGHRMTo+eee06FhYXq6enR+vXrB73iAwAQfIMWtSQtXrxYixcvHoosAIB+RJcOOCkS\n+TIzM8MdISDkDK5IyBkJGSVyWjHoF14AAOHH3/oAAOMoagAwLuKKOioqSmvWrPHd7u7uVlpampYu\nXRrGVANrbGyUx+ORx+NRenq6MjIy5PF4NG3aNHV1dYU1W3FxsbZs2eK7XVhYqI0bN/puf/Ob39Qz\nzzzjd5z6+nrl5OSEJOPlBtqWycnJmjJlSsgf/1pER0f7Mns8Hh0/fvxD6yxZskRnz54NQ7pLHn/8\ncWVnZys3N1cej0dVVVUDrvvCCy/ovffeG8J0V5fveuX3qg9r4uPjVVtbq46ODg0fPlyvvvqqMjIy\nwn6x+kBSU1N18OBBSdLmzZuVmJiohx9+OMypLpk7d65++9vf6qGHHlJvb68aGxvV1tbmW15ZWanv\nf//7YUzY10Db8tixY7rvvvv8/nxPT4+io6NDHbOPuLg4X+YrffDx0CuvvDKUkfqorKzUK6+8ooMH\nDyo2NlZNTU26ePHigOtv27ZN2dnZSk9PN5nvehVxZ9SSdO+99/pe3Dt27NCqVat8L/qmpiZ95jOf\nUW5urvLz81VTUyNJKi0t1bp161RQUKDbbrtNP/jBD8KS3XVdFRUV6cUXX/Tdl5CQ4Pt/WVmZZs2a\npdzc3IG/pRQk+fn5qqyslCTV1tYqOztbiYmJamlp0cWLF/X2229LkubPn68ZM2Zo0aJFOnnypCSp\nurpaubm5ysvL049+9KOQ5hzIB/vcdV319PTogQceUHZ2tgoLC9XR0eHLXlxcrJkzZ+rZZ58NS87L\n1dfXa+LEiVq7dq1ycnLU0NCgzMxMNTU1hSXPyZMnddNNNyk2NlaSlJKSovT0dD322GOaNWuWcnJy\n9KUvfUmStHPnTu3fv1+rV6/WtGnTfNs4HPku32b79+9XQUGBJDvHebBFZFGvXLlSv/nNb3Tx4kXV\n1NRo9uzZvmUlJSWaPn26Dh06pO9973v64he/6FtWV1en8vJyVVVVafPmzerp6QlH/A/54LeB8vJy\nHT16VFVVVTp48KCqq6v1xhtvhOxxx4wZo5iYGDU0NKiyslL5+fmaNWuWKisrtX//fk2aNEnFxcW+\nA7SoqEjf+c53JElFRUX64Q9/qLfeeitk+a7GO++8o02bNunw4cNKSkryvRE6jqOuri797W9/U3Fx\n8ZDnunDhgm/aY/ny5XIcR0ePHtWDDz6ow4cP69Zbbw3rb4MLFy5UQ0ODJk6cqAcffFCvv/66JGnT\npk2qqqpSTU2NLly4oF27dmnFihWaMWOGtm/frgMHDmj48OFhyzfYNrN6nP8/Im7qQ5JycnJUX1+v\nHTt2aMmSJX2WVVRU6KWXXpIkFRQUqLGxUefOnZPjOFqyZIliY2OVmpqq0aNH69SpUxozZkw4nkK/\nysvLVV5eLo/HI0lqb2/X0aNHNW/evJA95pw5c7Rv3z7t27dPDz/8sE6cOKF9+/Zp1KhRGjt2rMrL\ny7VgwQJJl6YOxowZo9bWVrW2tmru3LmSpDVr1ujPf/5zyDIGYvz48Zo6daokafr06aqvr/ctW7ly\nZZhSSSNGjOgz9VFfX6+PfvSjmjVrVtgyXS4+Pt53QrB3716tXLlSTz75pBISElRWVqbz58+rqalJ\n2dnZvumlobyit798TzzxxIDrR8Jxfi0isqgl6VOf+pQeeeQRvfbaazp9+nSfZQO9kD7ykY/4/h8d\nHa3u7u6QZhxITEyMent7JUm9vb3q7Oz0LXv00Uf1wAMPDFmWO++8UxUVFaqpqVFOTo7GjRunp59+\nWqNGjdL8+fN9xX25lpaWPrctXIo/bNgw3/+jo6P7/FoeHx8fjkgDspYnKipKd999t+6++27l5OTo\nxz/+sWpqalRdXa2xY8dq8+bNfbbnUP8GcGW+bdu29TmGrpyCsXKcB1NETn1I0rp161RaWvqhT/vn\nzZunX//615Iu/WW/tLQ0JSYmmiiTD2RmZqq6ulqS9PLLL/uu/igsLNTzzz+v9vZ2SZf+HviVb0LB\nNmfOHO3atUupqalyHEfJyclqaWlRZWWlVq1apdOnT+uvf/2rJKmrq0tHjhxRUlKSkpKSVFFRIUm+\n7W2Jpf1tWV1dnd555x3f7YMHDyorK0uO4yg1NVVtbW363e9+51uemJg4pFeo9JcvMzNTmZmZ2r9/\nvyT1+bznet3vEXdG/cG7+dixY7Vp0ybffR/c/8GHCbm5uYqPj9cLL7zwoXXCyXEcbdy4UZ/+9KeV\nl5enRYsW+T5MXLBggd5++23l5+dLunRQ/OpXv1JaWlrI8mRnZ6uxsVFf+MIXfPdNnTpV58+fV1pa\nmnbu3Kmvf/3ram1tVXd3t4qLizV58mRt3bpV69atk+M4WrhwYVi27eWPeeXjW9jXUv85LGVta2vT\n1772NbW0tCgmJkZ33HGHfvKTnygpKUnZ2dm65ZZb+nwGdP/99+vLX/6y4uLitG/fvpDPU/eX76c/\n/amOHDmi9evXa+TIkZo/f75vG1o5zoONr5ADgHERO/UBADcKihoAjKOoAcA4ihoAjKOoAcA4ihoA\njKOoAcA4ihoAjPsvg3pTgLNb43EAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x930fc70>"
]
}
],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In 2015 Jun-Mar, so far we have again rainy Saturdays."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"figure(facecolor='w')\n",
"ax = subplot(111)\n",
"Data2014_2015 = Data2014.T.sum() + Data2015.T.sum()\n",
"myplot(x, Data2014_2015, ax, '2014-2015Mar')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEOCAYAAACQMUyOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG3JJREFUeJzt3X1wFPXhx/HPJkEhD+QJcgkEDIo8mIQk8qAgCNHy1ABC\noSIDGCGKWqkKtlpr+ZHUJxx1LGgdsQ8YR8VSRYraUmzroQKdGEyYADqoY0iGIRkgD3ABQh7u9wfD\n1pinI1xy9w3v1wwzud293U/22E8239u9WG632y0AgHECfB0AANAxFDgAGIoCBwBDUeAAYCgKHAAM\nRYEDgKEocAAwFAWOTnH27FllZWUpISFBvXv3VlpamrZt22bP//e//61hw4YpJCREN910k0pKSux5\nH3/8sdLT0xUREaFBgwa1uo0dO3YoICBAq1atanWZo0ePasGCBerfv78iIiI0fvx45eXlNVnmrbfe\n0hVXXKHQ0FDNmTNHlZWV9rxNmzZp3LhxCgkJUXp6erP1BwQEKDQ0VGFhYQoLC9OyZcvsednZ2QoI\nCNC6deuaPGft2rUKCAhQTk5Oq7kBT1Dg6BT19fUaOHCgPvnkE504cUJPPPGEbr31VpWUlOjYsWP6\nyU9+oieffFKVlZUaNWqU5s+fbz83NDRUd955p5599tlW119XV6cHHnhA119/vSzLanU5l8ul6667\nTl988YUqKyuVmZmpjIwM1dTUSJL279+ve+65R2+++abKy8sVHBysn/3sZ/bzo6OjtXLlSv3qV79q\ndRtFRUU6efKkTp48qVdffdWeblmWhgwZotdff73J8rm5uRo6dGibuVvjdrvFvXc4jwJHpwgODtbq\n1as1cOBASVJGRoYGDRqk/Px8bd68WcnJyZo7d64uu+wyZWdna+/evTp48KAkafTo0Vq4cGGbZ9/P\nP/+8pk2bpqFDh7ZZaIMGDdKDDz4oh8Mhy7J011136ezZs/a23nzzTc2aNUvjx49XSEiIHn/8cW3e\nvNku+Jtvvlnz5s1TXFxcq9tobGxsdd7o0aN16tQpHThwQNK5Hxi1tbUaNWqUnbuyslIzZsxQTEyM\noqKiNHPmTB0+fNhex6RJk/Sb3/xGN9xwg0JCQvTdd9+1uj1cWihwdIny8nIdPHhQSUlJ2r9/v1JS\nUux5wcHBGjx4sPbt2+fRug4dOqQNGzZo1apVF3w2WlhYqLNnz2rw4MGSpAMHDjTJcuWVV+ryyy+3\nC94TN954o+Li4jR37lwdOnSo2fzFixfbZ+G5ublavHhxk/lut1tZWVkqKSlRSUmJevXqpeXLlzdZ\n5o033tAf//hHuVwu+4ciQIGj09XV1WnhwoW64447NGTIENXU1Kh3795Nlundu7dcLpdH67v//vv1\nxBNPKCQkRJZleTwUceLECS1evFjZ2dkKCwuTdG6IJTw8vFmWkydPerTOTz75RIcOHdJXX32lfv36\nacaMGfYZ+fkfLosWLdLGjRtVX1+vv/zlL1q0aFGTdURFRWnOnDnq2bOnQkND9etf/1o7duyw51uW\npTvuuEPDhw9XQECAgoKCPMqG7o8CR6dqbGzU4sWL1bNnT7300kuSzo1xnzhxosly1dXVdqm25f33\n35fL5dJPf/pTSc3HhBMTE+03FHfu3GlPP336tGbOnKlx48bpkUcesaeHhoaqurq6Q1kkafz48QoK\nClJ4eLjWrl2r4uJiffnll/Z8y7I0YMAADR48WI8++qiGDBmi+Pj4Jus4deqU7r77biUkJCg8PFwT\nJ05UdXV1k+9rwIABHuXBpYUf5eg054cGjh49qr///e8KDAyUdK5kc3Nz7eVqamr07bffKjExsd11\n/uc//1F+fr49Jl1dXa3AwEDt27dP7733nvbv39/sObW1tZo9e7YGDhyo9evXN5mXmJiovXv32o+/\n/fZbnT17VkOGDGmynCdn+ecL9/vFe/7r22+/XUuXLtVrr73WbJ3PP/+8Dh48qLy8PMXExKiwsFDX\nXnut3G63vUxH3vBE98cZODrNvffeq6+++kpbt27V5Zdfbk+fM2eO9u3bp82bN+vMmTPKyclRamqq\nXZput1tnzpxRXV2d3G63amtrdfbsWUnS448/rq+//lp79+5VYWGhZs2apWXLlmnDhg0tZqirq9O8\nefMUHBzcpDzPW7hwod5//3199tlnqqmp0apVqzR37lyFhIRIOvcbxPksjY2Nqq2tVV1dnaRz4+eF\nhYVqaGiQy+XSypUrFR8fr+HDhzfbzvz58/XRRx+1+JuDy+VSr169FB4eroqKihYvL+TKE7SEAken\nOHTokF599VXt3btXsbGx9rDGxo0b1adPH7377rt67LHHFBUVpfz8fL399tv2c3fs2KHg4GBlZGSo\ntLRUvXr10rRp0ySdG/KIiYlRTEyMHA6HevXqpZCQEEVERLSYY9euXfrwww/10UcfKSIiotnwyjXX\nXKNXXnlFCxculMPh0OnTp/Xyyy/bz3/99dftSws//fRT9erVS3fffbekc2/M3nbbbQoPD9dVV12l\n0tJSffDBB/ZvGt8fn+/Zs6duuukm9ezZs9m8Bx98UKdPn1afPn00btw4TZ8+vdkZN2fgaInV1h90\nOHPmjCZOnGifAd1yyy16+umnVVFRofnz5+vQoUNKSEjQpk2bWj2AAACdo80Cl869wRIcHKz6+nqN\nHz9ezz33nLZu3ao+ffro4Ycf1jPPPKPKykqtWbOmqzIDAOTBEEpwcLCkc7dGNzQ0KDIyUlu3blVm\nZqYkKTMzU1u2bOnclACAZtot8MbGRqWmpsrhcCg9PV2JiYkqLy+Xw+GQJDkcDpWXl3d6UABAU+1e\nRhgQEKDCwkJVV1dr6tSp+vjjj5vMv5AbKQAA3uPxdeDh4eHKyMjQnj175HA4VFZWptjYWB05ckQx\nMTHNlnc6nXI6nfbj4uLiFi/jAgB0TJtvYh47dkxBQUGKiIjQ6dOnNXXqVK1evVr//Oc/FR0drUce\neURr1qxRVVVVu29iWpbFtawA4EVtFnhRUZEyMzPV2Nho3xL9y1/+UhUVFfZHg3p6GSEFDgDe1e5l\nhF7bEAUOAF7FnZgAYCgKHAAMRYEDgKEocAAwFAUOAIaiwAHAUBQ4ABiKAgcAQ1HgAGAoChwADEWB\nA4ChKHAAMBQFDgCGosABwFAUOAAYigIHAENR4ABgKAocAAxFgQOXkKioKFmW5fN/UVFRvt4V3QJ/\nExO4hPjLcegvOUzHGTgAGIoCBwBDUeAAYCgKHAAMRYEDgKEocAAwFAUOAIaiwAHAUG0WeGlpqdLT\n05WYmKikpCStW7dOkpSdna34+HilpaUpLS1N27Zt65KwAID/afNOzLKyMpWVlSk1NVUul0sjR47U\nli1btGnTJoWFhWnlypWeb4g7rwCf85fj0F9ymC6orZmxsbGKjY2VJIWGhmr48OE6fPiwJLHzAcDH\nPB4DLy4uVkFBga6//npJ0osvvqiUlBRlZWWpqqqq0wICAFrmUYG7XC7NmzdPa9euVWhoqO699159\n9913KiwsVFxcnB566KHOzgkA+IE2h1Akqa6uTnPnztWiRYs0e/ZsSVJMTIw9/84779TMmTObPc/p\ndMrpdHovKQCgiTbfxHS73crMzFR0dLReeOEFe/qRI0cUFxcnSXrhhRf0+eef66233mp7Q7xpAfic\nvxyH/pLDdG0W+GeffaYbb7xRI0aMkGVZkqSnnnpKGzduVGFhoSzL0qBBg7R+/Xo5HI62N8QLBvic\nvxyH/pLDdPxBB+AS4i/Hob/kMB13YgKAoShwADAUBQ4AhqLAAcBQFDgAGIoCBwBDUeAAYCgKHAAM\nRYEDgKEocAAwFAUOAIaiwAHAUBQ4ABiKAgcAQ1HgAGAoChwADEWBA4ChKHAAMBQFDgCGosABwFAU\nOAAYigIHAENR4ABgKAocAAxFgQOAoShwADCUUQUeFRUly7J8/i8qKsrXuwIAZLndbneXbMiydLGb\n8sY6vMFfcgAXyl/+7/pLDtMZdQYOAPifNgu8tLRU6enpSkxMVFJSktatWydJqqio0OTJkzVkyBBN\nmTJFVVVVXRIWAPA/bQ6hlJWVqaysTKmpqXK5XBo5cqS2bNmiDRs2qE+fPnr44Yf1zDPPqLKyUmvW\nrGl7QwyhAD7nL/93/SWH6do8A4+NjVVqaqokKTQ0VMOHD9fhw4e1detWZWZmSpIyMzO1ZcuWzk8K\nAGjC4zHw4uJiFRQU6LrrrlN5ebkcDockyeFwqLy8vNMCAgBaFuTJQi6XS3PnztXatWsVFhbWZN75\nS+t+yOl0yul0eiUkOkdUVJQqKyt9miEyMlIVFRU+zQCYqt3LCOvq6jRjxgxNnz5dDz74oCRp2LBh\ncjqdio2N1ZEjR5Senq6vvvqq7Q0xBu53/OH78IcMlxJ/2d/+ksN0bQ6huN1uZWVl6ZprrrHLW5Jm\nzZql3NxcSVJubq5mz57duSkBAM20eQb+2Wef6cYbb9SIESPsYZKnn35aY8aM0a233qqSkhIlJCRo\n06ZNioiIaHtDnIH7HX/4Pvwhw6XEX/a3v+QwHXdiGpzjYvnD9+EPGS4l/rK//SWH6bgTEwAMRYED\ngKEo8E7ApyZ6lz/sz+6yL9G9MAbeCTnI6TlPMpiS0wT+8n34Sw7TcQYOAIaiwAHAUBQ4ABiKAgcA\nQ1HgAGAoChwADEWBA4ChKHAAMBQFDgCGosABwFAUOAAYigIHAENR4ABgKAoc8BI+9hZdLcjXAYDu\norKy0ucfkXr+b9fi0sAZOAAYigIHAENR4ABgKAocAAxFgQOAoShwADAUBQ4AhqLAAcBQFDgAGKrd\nAl+6dKkcDoeSk5PtadnZ2YqPj1daWprS0tK0bdu2Tg0JAGiu3QJfsmRJs4K2LEsrV65UQUGBCgoK\nNG3atE4LCABoWbsFPmHCBEVGRjab7uvPfACAS12Hx8BffPFFpaSkKCsrS1VVVd7MBADwQIc+jfDe\ne+/V//3f/0mSVq1apYceekh/+tOfmizjdDrldDovOiCAS09UVJQqKyt9HUORkZGqqKjwdYxWWW4P\nxkKKi4s1c+ZMFRUVXdC8JhuyrIsedvHGOryhvRzk9JwnGcjpORNec09ymJLT1zo0hHLkyBH76/fe\ne6/JFSoAgK7R7hDKggULtGPHDh07dkwDBgxQTk6OnE6nCgsLZVmWBg0apPXr13dFVgDA93g0hOKV\nDTGE0uVMyNldhiY8XaazmfCae5LDlJy+xp2YAGAoChwADEWBA4ChKHAAMBQFDgCGosABwFAUOAAY\nigIHAENR4ABgKAocAAxFgQOAoShwADAUBQ4AhqLAAcBQFDgAGIoCBwBDUeAAYCgKHAAMRYEDgKEo\ncAAwFAUOAIaiwAHAUBQ4ABiKAgcAQ1HgAGAoChwADEWBA4ChKHAAMFS7Bb506VI5HA4lJyfb0yoq\nKjR58mQNGTJEU6ZMUVVVVaeGBAA0126BL1myRNu2bWsybc2aNZo8ebIOHjyom2++WWvWrOm0gACA\nlrVb4BMmTFBkZGSTaVu3blVmZqYkKTMzU1u2bOmcdACAVnVoDLy8vFwOh0OS5HA4VF5e7tVQAID2\nBV3sCizLkmVZzaY7nU45nc6LXT0AoBUdKnCHw6GysjLFxsbqyJEjiomJabbMpEmTNGnSJPtxTk5O\nh0MCAJrr0BDKrFmzlJubK0nKzc3V7NmzvRoKANA+y+12u9taYMGCBdqxY4eOHTsmh8Oh3/72t7rl\nllt06623qqSkRAkJCdq0aZMiIiLa3pBlqZ1NtR/WC+vwhvZykNNznmQgp+dMeM09yWFKTl9rt8C9\ntiEKvMuZkLO7FKOny3Q2E15zT3KYktPXuBMTAAxFgQOAoShwADAUBQ4AhqLAAcBQFDgAGIoCBwBD\nUeAAYCgKHAAMRYEDgKEocAAwFAUOAIaiwAHAUBQ4ABiKAgcAQ1HgAGAoChwADEWBA4ChKHAAMBQF\nDgCGosABwFAUOAAYigIHAENR4ABgKAocAAxFgQOAoShwADAUBQ4Ahgq6mCcnJCSod+/eCgwMVI8e\nPZSXl+etXACAdlxUgVuWJafTqaioKG/lAQB46KKHUNxutzdyAAAu0EUVuGVZ+tGPfqRRo0bpD3/4\ng7cyAQA8cFFDKDt37lRcXJyOHj2qyZMna9iwYZowYYK3sgEA2nBRBR4XFydJ6tu3r+bMmaO8vDy7\nwJ1Op5xO50UHBAC0zHJ3cBD71KlTamhoUFhYmGpqajRlyhStXr1aU6ZMaXlDlnXR4+XeWIc3tJeD\nnJ7zJAM5PWfCa+5JDlNy+lqHz8DLy8s1Z84cSVJ9fb0WLlzYankDALyvw2fgF7whzsC7nAk5u8uZ\nrafLdDYTXnNPcpiS09e4ExMADEWBA4ChKHAAMBQFDgCGosABwFAUOAAYigIHAENR4ABgKAocAAxF\ngQOAoShwADAUBQ4AhqLAAcBQFDgAGIoCBwBDUeAAYCgKHAAMRYEDgKEocAAwFAUOAIaiwAHAUBQ4\nABiKAgcAQ1HgAGAoChwADEWBA4ChKHAAMBQFDgCG6nCBb9u2TcOGDdPVV1+tZ555xpuZAAAesNxu\nt/tCn9TQ0KChQ4fqX//6l/r376/Ro0dr48aNGj58eOsbsix1YFNeX4c3tJeDnJ7zJAM5PWfCa+5J\nDlNy+lqHzsDz8vI0ePBgJSQkqEePHrrtttv0t7/9zdvZAABt6FCBHz58WAMGDLAfx8fH6/Dhw14L\nBQBoX4cK3LIsb+cAAFygoI48qX///iotLbUfl5aWKj4+vskyTqdTTqfTfpySkuKV4veXHx7t5SCn\n5zzJQE7PmfCaS90nZ2dbvXq1srOzW57p7oC6ujr3lVde6f7uu+/ctbW17pSUFPeBAwc6sqout3r1\nal9H8Ag5vceEjG43Ob3NlJwXo0Nn4EFBQXrppZc0depUNTQ0KCsrq80rUAAA3tehApek6dOna/r0\n6d7MAgC4AIHZrQ6udF8JCQm+juARcnqPCRklcnqbKTk7qkM38gAAfI/PQgEAQ1HgAGCoblPgAQEB\nWrx4sf24vr5effv21cyZM32YqnXHjx9XWlqa0tLSFBcXp/j4eKWlpenaa69VXV2dT7OtWLFCa9eu\ntR9PnTpVd911l/34oYce0gsvvNDueoqLi5WcnNwpGb+vtX0ZGRmpxMTETt9+RwQGBtqZ09LSVFJS\n0myZjIwMnThxwgfppCeffFJJSUlKSUlRWlqa8vLyWl02NzdXR44c6cJ051xIxu6qw1eh+JuQkBDt\n379fZ86cUc+ePfXRRx8pPj7e5xfhtyY6OloFBQWSpJycHIWFhWnlypU+TnXO+PHjtWnTJj3wwANq\nbGzU8ePH5XK57Pm7d+/W7373Ox8mbKq1fXno0CHNmDGj3ec3NDQoMDCws2M2ERwcbGf+ofNvS334\n4YddGcm2e/duffjhhyooKFCPHj1UUVGh2traVpd/7bXXlJSUpLi4OL/N2F11mzNwSfrxj39s/6ff\nuHGjFixYYB8MFRUVmj17tlJSUjR27FgVFRVJkrKzs7V06VKlp6frqquu0osvvuiT7G63W0uWLNG7\n775rTwsNDbW/fvbZZzVmzBilpKS0fleWl4wdO1a7d++WJO3fv19JSUkKCwtTVVWVamtr9eWXX0qS\nJk2apFGjRmnatGkqKyuTJO3Zs0cpKSlKTU3Vyy+/3Kk5W3P+NXe73WpoaNCyZcuUlJSkqVOn6syZ\nM3b2FStWaPTo0Vq3bp1Pcn5fcXGxhg4dqszMTCUnJ6u0tFQJCQmqqKjo8ixlZWXq06ePevToIUmK\niopSXFycHn/8cY0ZM0bJycm6++67JUnvvPOO8vPztXDhQl177bX2/vVVxu/vs/z8fKWnp0vyn+Pc\n27pVgc+fP19vv/22amtrVVRUpOuuu86et3r1ao0cOVJ79+7VU089pdtvv92ed/DgQW3fvl15eXnK\nyclRQ0ODL+I3c/63h+3bt+ubb75RXl6eCgoKtGfPHn366aedtt1+/fopKChIpaWl2r17t8aOHasx\nY8Zo9+7dys/P1/Dhw7VixQr74F2yZIkee+wxSdKSJUv0+9//XoWFhZ2W70J8/fXXWr58ufbt26eI\niAj7B6RlWaqrq9Pnn3+uFStWdHmu06dP28Mnc+fOlWVZ+uabb3Tfffdp3759GjhwoM9+e5wyZYpK\nS0s1dOhQ3Xffffrkk08kScuXL1deXp6Kiop0+vRpffDBB5o3b55GjRqlt956S1988YV69uzp04xt\n7TN/Pc4vRrcZQpGk5ORkFRcXa+PGjcrIyGgyb+fOndq8ebMkKT09XcePH9fJkydlWZYyMjLUo0cP\nRUdHKyYmRuXl5erXr58vvoUWbd++Xdu3b1daWpokqaamRt98840mTJjQadscN26cdu3apV27dmnl\nypU6fPiwdu3apfDwcPXv31/bt2/X5MmTJZ0bgujXr5+qq6tVXV2t8ePHS5IWL16sf/zjH52W0ROD\nBg3SiBEjJEkjR45UcXGxPW/+/Pk+SiX16tWryRBKcXGxrrjiCo0ZM8Znmc4LCQmxTxI+/vhjzZ8/\nX2vWrFFoaKieffZZnTp1ShUVFUpKSrKHqLr6auSWMj799NOtLm/Ccd4R3arAJWnWrFn6xS9+oR07\ndujo0aNN5rX2n+yyyy6zvw4MDFR9fX2nZmxNUFCQGhsbJUmNjY06e/asPe/RRx/VsmXLuizLDTfc\noJ07d6qoqEjJyckaMGCAnnvuOYWHh2vSpEl2oX9fVVVVk8f+cIvB5Zdfbn8dGBjY5Ff8kJAQX0Rq\nlT/lCQgI0MSJEzVx4kQlJyfrlVdeUVFRkfbs2aP+/fsrJyenyb70xW8LP8z42muvNTmGfjic4y/H\nuTd1qyEUSVq6dKmys7ObXX0wYcIEvfnmm5LOfVJi3759FRYW5hclc15CQoL27NkjSdq6dat9NcrU\nqVP15z//WTU1NZLOfR77D384edu4ceP0wQcfKDo6WpZlKTIyUlVVVdq9e7cWLFigo0eP6r///a8k\nqa6uTgcOHFBERIQiIiK0c+dOSbL3tz/xp9fbXx08eFBff/21/bigoEDDhg2TZVmKjo6Wy+XSX//6\nV3t+WFhYl18t01LGhIQEJSQkKD8/X5KavJ/UXV/3bnMGfv4MoH///lq+fLk97fz0829ipKSkKCQk\nRLm5uc2W8SXLsnTXXXfplltuUWpqqqZNm2a/iTl58mR9+eWXGjt2rKRzB8wbb7yhvn37dlqepKQk\nHT9+XIsWLbKnjRgxQqdOnVLfvn31zjvv6P7771d1dbXq6+u1YsUKXXPNNdqwYYOWLl0qy7I0ZcoU\nn+zb72/zh9v3h9daajmHv2R1uVz6+c9/rqqqKgUFBenqq6/W+vXrFRERoaSkJMXGxjZ5f+mOO+7Q\nPffco+DgYO3atatLxsFbyvjqq6/qwIEDysrKUu/evTVp0iR7H/rLce5t3EoPAIbqdkMoAHCpoMAB\nwFAUOAAYigIHAENR4ABgKAocAAxFgQOAoShwADDU/wP+iKv3hdr3/QAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x12ec41f0>"
]
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Data2014_2015"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 18,
"text": [
"0 21\n",
"1 19\n",
"2 20\n",
"3 19\n",
"4 17\n",
"5 27\n",
"6 15\n",
"dtype: float64"
]
}
],
"prompt_number": 18
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"chi, p = stats.mstats.chisquare( Data2014_2015 )\n",
"print p"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.631664737015\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Still not significant. But p value decreased."
]
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment