Skip to content

Instantly share code, notes, and snippets.

@flacjacket
Created March 17, 2014 18:35
Show Gist options
  • Save flacjacket/9605481 to your computer and use it in GitHub Desktop.
Save flacjacket/9605481 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:2c007474495099124f6e77f59fd9715cda0b2ebc9ad9457b24f3efb95c62505e"
},
"nbformat": 3,
"nbformat_minor": 1,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import sys\n",
"sys.version"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1,
"text": [
"'3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)]'"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import IPython\n",
"IPython.__version__"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": [
"'2.0.0-dev'"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x = np.linspace(0, 5)\n",
"y = x**2\n",
"\n",
"plt.plot(x, y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 8,
"text": [
"[<matplotlib.lines.Line2D at 0x679bb38>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEACAYAAACTXJylAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHEhJREFUeJzt3Xt01OWdx/H3iIiywQsqCXIX5RICJOVaKxpuAZQgCIIo\nlUJQ69ZuQUTXbi3BthKWIoKoRdxFKHLrViICBhWYAFFBNKm4iiiSJWCCIKYSEsntt388QkQgmUxm\n5pnL53XO72QIk5kvA+dzHr6/5+JyHMdBRERCxgW2CxARkdpRcIuIhBgFt4hIiFFwi4iEGAW3iEiI\nUXCLiISYaoM7Ly+Pvn370qlTJ+Li4pg/fz4AqampNG/enISEBBISEsjIyAhIsSIiAq7q5nEXFBRQ\nUFBAfHw8RUVFdOvWjfT0dFavXk2jRo146KGHAlmriIgAF1b3mzExMcTExAAQFRVFx44dOXToEABa\ntyMiYofHPe7c3Fyys7Pp3bs3AM888wxdu3YlJSWFwsJCvxUoIiJn8ii4i4qKGDVqFPPmzSMqKooH\nHniA/fv3k5OTQ9OmTZk6daq/6xQRkVOcGpSWljpJSUnO3Llzz/n7+/fvd+Li4s76ftu2bR1Aly5d\nunTV4mrbtm1NsexUO+J2HIeUlBRiY2OZPHny6e/n5+effrxmzRo6d+581s/u27cPx3F0OQ7Tp0+3\nXkOwXPos9Fnoszj7+u47h27dHObOddi3b191sQzUcHMyKyuLZcuW0aVLFxISEgB48sknWbFiBTk5\nObhcLtq0acPChQtrfCMRETm3qVOhVSv4zW9gypSan19tcN94441UVlae9f0hQ4Z4XaCIiFRZtQoy\nMuD998Hl8uxnqg1u8Y3ExETbJQQNfRZV9FlUidTPYu9eePBB2LgRLrvM85+rdgFOXbhcLvz00iIi\nIa+kBHr1gl/9Cu6/v+r7nmSngltExIJJk0x4L1t2ZovEk+xUq0REJMCWLIGsLHjvPc/72j+kEbeI\nSAB99BH07QtbtkBc3Nm/70l2altXEZEA+fZbuP12eOqpc4e2pzTiFhEJAMeBUaOgSRN4/vnzP089\nbhGRIPHUU3DgACxfXvfXUnCLiPjZ1q0wezbs2AENGtT99dTjFhHxo/x8GDsWXnrJLGv3BQW3iIif\nlJXBmDFw330weLDvXlc3J0VE/GTaNDP9b/16uMDDYbJuToqIWPLKK/C3v5nNozwNbU9pxC0i4mOf\nfgo33ggbNkCPHrX7WS3AEREJsOPHYcQImDmz9qHtKY24RUR85NQimyuvhBde8O411OMWEQmg//xP\nOHjQN4tsqqPgFhHxgTffhHnzYOdO3yyyqY6CW0SkjnJzYdw4cwxZ8+b+fz/dnBQRqYOSErPj37//\nOwTqBDbdnBQR8ZLjwC9+YVZIvvyyd4ci/JhuToqI+NFzz0F2Nrzzjm9C21MacYuIeGHrVrjjDnj7\nbWjb1nevqwU4IiJ+cOCA2Tzqr3/1bWh7SsEtIlILxcVmZeTUqZCUZKcGtUpERDzkOGbaH8CyZf7p\na+vmpIiID82ZA598Atu3B/Zm5I8puEVEPLBxownuHTugYUO7tSi4RURq8PnncM89Zn/tli1tV6Ob\nkyIi1Tp+HIYPh+nT4aabbFdj6OakiMh5VFbCyJFmm9ZFiwLT19bNSRGROvj97+HIEVi50u7NyB9T\ncIuInMPKlWbKXyC2aa0ttUpERH5k1y4YMgTeegu6dg3se2vJu4hILX35pVkZ+cILgQ9tTym4RUS+\nV1JiQvv++83XYFVtcOfl5dG3b186depEXFwc8+fPB+DYsWMMHDiQdu3akZSURGFhYUCKFRHxF8eB\ne++Fa6+F//gP29VUr9oed0FBAQUFBcTHx1NUVES3bt1IT09n8eLFXHXVVTzyyCPMmjWLb775hrS0\ntDNfWD1uEQkhaWnw97+b7VovucReHXXuccfExBAfHw9AVFQUHTt25NChQ6xdu5bx48cDMH78eNLT\n031UsohI4K1dCwsWQHq63dD2lMezSnJzc7n55pv56KOPaNmyJd988w0AjuPQuHHj078+/cIacYtI\nCMjJMduzrlsHPXvarsaHC3CKiooYOXIk8+bNo1GjRme9ies8M9NTU1NPP05MTCQxUCdpioh4ID8f\nhg2DZ5+1F9putxu3212rn6lxxF1WVsbQoUMZMmQIkydPBqBDhw643W5iYmLIz8+nb9++7Nmz58wX\n1ohbRIJYcTHcfLPZhySYbkbWucftOA4pKSnExsaeDm2AYcOGsWTJEgCWLFnC8OHDfVCuiEhgVFbC\n+PHQsSP89re2q6m9akfc27dv56abbqJLly6n2yEzZ86kZ8+ejB49mgMHDtC6dWtWr17N5ZdffuYL\na8QtIkHqd78Dtxs2bQrC5eweZKeWvItIRFm6FGbMgHffhauvtl3N2RTcIiI/sG2b2abV7YbYWNvV\nnJv2KhER+d6+fTB6tNnxL1hD21MKbhEJe8eOwS23mFNskpJsV1N3apWISFg7eRIGDoRevWD2bNvV\n1Ew9bhGJaI4D48aZ8F69Gi4IgR6Dji4TkYg2fTp88QVs3hwaoe0pBbeIhKXFi+Hll+Gdd0Jj46ja\nUKtERMLOpk1w112QmQkdOtiupnY0HVBEIs7HH5vQXr069ELbUwpuEQkb+flw663w1FNmA6lwpeAW\nkbBw/LgJ7ZQUuPtu29X4l3rcIhLyysogORlatYK//AXOc0RASNA8bhEJe44DEyaY1ZGvvAIXhvhc\nOc3jFpGw9/vfwyefmLnaoR7anoqQP6aIhKOFC2HlSsjKgn/5F9vVBI5aJSISktatg3vvNVu1Xned\n7Wp8R60SEQlLO3eavva6deEV2p7SdEARCSl798Jtt8F//7fZ8S8SKbhFJGR8+SUMGgR/+IOZ/hep\nFNwiEhIKC2HIENPXnjTJdjV26eakiAS9khIYPBi6doV580J7gU1NtABHREJeRQWMGgUNGsDy5eG1\nr/a5aFaJiIQ0x4F//VcoKjLztcM9tD2l4BaRoDV9Orz/PmzZYkbcYii4RSQoPfssrFhhVkU2amS7\nmuCi4BaRoLN8OcycCVu3QpMmtqsJPgpuEQkq69fDlCnm+LFrr7VdTXBScItI0Ni2DX7xC3jtNYiL\ns11N8NI9WhEJCtnZMHKk6Wv37m27muCm4BYR6/buhVtuMafXDBhgu5rgp+AWEavy8iApCf70J7j9\ndtvVhAYFt4hYc+QIDBwIv/41TJxou5rQoeAWESsKC81OfyNHwtSptqsJLdqrREQCrqjItEe6dw//\nTaNqS5tMiUjQKSmBW2+FNm1g0SLtP/JjnmRnjR/ZxIkTiY6OpnPnzqe/l5qaSvPmzUlISCAhIYGM\njIy6VysiYa+01Oz0Fx0NL7yg0PZWjR/bhAkTzgpml8vFQw89RHZ2NtnZ2QwePNhvBYpIeCgvh7vv\nhvr1YelSqFfPdkWhq8bg7tOnD1dcccVZ31cbREQ8VVlpZo18+y2sWmXCW7zn9X9UnnnmGbp27UpK\nSgqFhYW+rElEwojjwK9+Bbm5sGaNtmf1Ba+C+4EHHmD//v3k5OTQtGlTpmouj4icg+PAww+bPbXX\nrYOGDW1XFB682mSqyQ/2WZw0aRLJ5zluOTU19fTjxMREEhMTvXk7EQlBjgOPPWYOQdi0CS691HZF\nwcntduN2u2v1Mx5NB8zNzSU5OZndu3cDkJ+fT9OmTQGYO3cu7733HsuXLz/zhTUdUCSiPf44rF0L\nmzfDlVfariZ0+OTMybFjx5KZmcnRo0dp0aIFM2bMwO12k5OTg8vlok2bNixcuNBnRYtI6HviCdPP\n3rJFoe0PWoAjIj41c6aZ7ud2m/naUjs65V1EAurPf4bFixXa/qbgFhGfmDcPnn8eMjPhmmtsVxPe\nFNwiUmcLFsDTT5uRdvPmtqsJfwpuEamTefNMaG/ZAq1a2a4mMii4RcRrTz8N8+ebkbZCO3AU3CLi\nlblzTYvE7YaWLW1XE1kU3CJSa3PmmBuRbje0aGG7msij4BaRWpk9GxYuND1thbYdCm4R8disWfDi\ni5o9YpuCW0Q88sc/Vq2IbNbMdjWRTcEtItVyHPjd7yA93Syu+X5/ObFIwS0i5+U4MHWq2eHP7Yar\nr7ZdkYCCW0TOo7ISHnwQdu0yNyLPcYKhWKLgFpGzVFTAvffC3r3w1ls6BCHYKLhF5Azl5TB+POTn\nQ0YGREXZrkh+TMEtIqedPAl33QXFxbB+PVxyie2K5Fy8PuVdRMLLiRMwbJjpbaenK7SDmYJbRCgs\nhEGDICYG/vY3aNDAdkVSHQW3SIT76ivo2xd+8hNzes2FaqAGPQW3SATLy4ObboKhQ82+2hcoEUKC\n/ppEItRnn0GfPjBpEvzhD+By2a5IPKX/FIlEoA8/hCFDIDXVzNeW0KLgFokw27fDyJHm5JoxY2xX\nI95QcItEkNdeg5QUWLYMkpJsVyPeUo9bJEIsXgz33Qfr1im0Q51G3CJhznHMqTXPPWc2i+rQwXZF\nUlcKbpEwVlkJ06bBxo2mt61Ta8KDglskTJWVwcSJ8MUXsHUrNG5suyLxFQW3SBgqKoI77oB69eDN\nN6FhQ9sViS/p5qRImCkogJtvNudCpqcrtMORglskjHz6KdxwA9x2GyxapH1HwpX+WkXCxNtvw+23\nw8yZMGGC7WrEnxTcImFgzRozR/uvf4XBg21XI/6m4BYJcQsWmFH2xo1ma1YJfwpukRBVWQmPPGJW\nQm7fDm3a2K5IAkXBLRKCioth3Dg4dsz0tjVHO7LUOKtk4sSJREdH07lz59PfO3bsGAMHDqRdu3Yk\nJSVRWFjo1yJFpMqp6X6NGsEbbyi0I1GNwT1hwgQyMjLO+F5aWhoDBw5k79699O/fn7S0NL8VKCJV\nPvoIevc2h/q+9BJcdJHtisQGl+M4Tk1Pys3NJTk5md27dwPQoUMHMjMziY6OpqCggMTERPbs2XPm\nC7tcePDSIuKhjRvh5z+Hp5+Gu+6yXY34iyfZ6dUCnMOHDxMdHQ1AdHQ0hw8f9uZlRMRDCxfC+PHw\nyisKbfHBzUmXy4VLh9WJ+EV5+ZkzR667znZFEgy8Cu5TLZKYmBjy8/Np0qTJOZ+Xmpp6+nFiYiKJ\niYnevJ1IRPrnP+HOO80uf+++q5uQ4crtduN2u2v1M171uB955BGuvPJKHn30UdLS0igsLDzrBqV6\n3CLe+/xzSE6GAQPgqaegfn3bFUmgeJKdNQb32LFjyczM5OjRo0RHR/PEE09w2223MXr0aA4cOEDr\n1q1ZvXo1l19+ea3fXETOtnkzjB0LM2bAL39puxoJNJ8Etz/fXETO9PzzkJoKK1ZAv362qxEbPMlO\nrZwUCQJlZTBlCmzaBFlZugkp1VNwi1h25Ig5raZhQ3MT8rLLbFckwU4HKYhY9MEH0KMH/Oxn8Npr\nCm3xjEbcIpYsW2baI88/D6NG2a5GQomCWyTATi2qWbsWtmyBuDjbFUmoUXCLBNDRozBmjDkLcudO\nLaoR76jHLRIg779v+tk9esCGDQpt8Z5G3CIB8OKL8Nhj6meLbyi4RfyopAQefNBM89u+Hdq3t12R\nhAO1SkT85Isv4IYbzDFjO3YotMV3FNwifrBuHfz0pzBxIixfDlFRtiuScKJWiYgPlZfD9OmwdCms\nWWNG3CK+puAW8ZEvvzS7+l10EezaBd8fEiXic2qViPjAxo3QrZvZPzsjQ6Et/qURt0gdnGqNLFkC\nK1fCzTfbrkgigYJbxEuHDpnWyMUXm82iznOCn4jPqVUi4oWMDOjeHQYPNo8V2hJIGnGL1MLJk2YF\n5P/8D6xaBTfdZLsiiUQKbhEP7dljWiPXXgs5OdprROxRq0SkBo4DixZBnz7wwANmtK3QFps04hap\nxrFjcN998NlnkJkJsbG2KxLRiFvkvDIzIT4emjc3e40otCVYaMQt8iPffQePP272GFm0CG65xXZF\nImdScIv8wD/+AePGQbt25vFVV9muSORsapWIABUVMGuWWbI+bZq5AanQlmClEbdEvP374Z57oF49\nszlUq1a2KxKpnkbcErFOTfPr2ROGD4fNmxXaEho04paIdOAATJpkpvtt2QJxcbYrEvGcRtwSUU6N\nsrt1g8REcxakQltCjUbcEjE0ypZwoRG3hD2NsiXcaMQtYe2zz+D+++H4cY2yJXxoxC1hqawM0tLM\nSevJyRplS3jRiFvCzq5dppcdHQ3vvQdt2tiuSMS3NOKWsHHiBEydCkOHwsMPm5NpFNoSjhTcEhbW\nr4fOneGrr2D3brPfiMtluyoR/6hTq6R169Zceuml1KtXj/r167Nz505f1SXikbw8+M1vTFj/5S+Q\nlGS7IhH/q1Nwu1wu3G43jXUciARYWRk8/bTZGOrf/s1swXrxxbarEgmMOt+cdBzHF3WIeGz7dnOE\nWLNmZrbIddfZrkgksOrU43a5XAwYMIDu3buzaNEiX9Ukck6HD8OECebA3unT4fXXFdoSmeo04s7K\nyqJp06YcOXKEgQMH0qFDB/r06XP691NTU08/TkxMJDExsS5vJxGqtBSeecbMy54wAT7+GBo1sl2V\niG+43W7cbnetfsbl+KjXMWPGDKKiopg6dap5YZdLbRSps4wMmDwZrr3W9LTbtbNdkYh/eZKdXrdK\niouLOX78OAAnTpzgjTfeoHPnzt6+nMgZ9u2D226DX/8a5syBDRsU2iKneN0qOXz4MCNGjACgvLyc\nu+++myTNxZI6+vZbmDnTbAo1bRqsXg0NGtiuSiS4+KxVctYLq1UitVBeDi+8AE88YU5V/+Mf4Zpr\nbFclEnieZKf2KhGrHMesepw2zUzvy8iA+HjbVYkENwW3WJOdbfYWKSiAP//ZjLS1TF2kZtqrRALu\n1KnqQ4bA6NHw4Ydw660KbRFPKbglYA4fNrNEunc30/v27oVf/hIu1P/7RGpFwS1+989/wuOPQ2ys\nCek9eyA1FS691HZlIqFJwS1+U1Ji5mBffz0cPAgffABz58LVV9uuTCS06T+p4nMlJWZq36xZ0Lu3\nOeuxUyfbVYmEDwW3+Mx335mFM2lp0KOHmeaXkGC7KpHwo+CWOjt5El580ax4/MlP4LXXzFcR8Q8F\nt3ituNgE9uzZ0LUrpKebGSMi4l8Kbqm1wkJ47jmYNw9uvBHWrFFgiwSSZpWIx776Cn77W2jbFj79\n1Nx0/PvfFdoigabglhp98YVZONOhg5mT/f77sGSJmZctIoGn4JbzevttGDkSevaEqChz8syzz0Lr\n1rYrE4ls6nHLGSoqTM96zhyzRH3KFDO6joqyXZmInKLgFsC0QF56ydxwjImBhx+G4cOhXj3blYnI\njym4I9z//q9pf6xYAUlJ8PLL8NOf2q5KRKqj4I5A5eWwdi0sWACffAL3328CXCfOiIQGBXcEOXQI\nFi82+4i0bAkPPgi33w4XXWS7MhGpDQV3mCsvh9dfN3uIbN9uDi549VXtISISyhTcYSo3F/7rv8wI\nu0ULuPdeWL5cs0NEwoGCO4wUFZmpfEuXmvMc777bjLY7d7ZdmYj4ksup6Rx4b1/YgyPmpe4qKsDt\nNmH96qvQp485zzE5GS6+2HZ1IlJbnmSngjsEOQ7s3m2m8C1bZk6UueceGDsWoqNtVycideFJdqpV\nEkI++QRWrTJXcTGMGQMbNqgVIhJpNOIOcp9/XhXWX38Nd9xhArt3b3C5bFcnIr6mVkkIchzIyTE3\nGdPTzX4ho0aZsL7xRrhA24KJhDUFd4goL4dt20xQp6dD/fowYoTZK6R3b+0XIhJJ1OMOYocPQ0aG\nma735pvQpo0J6vXrzYnoaoOIyPloxB0g5eWwY4cJ6tdfh337oH9/GDIEBg+G5s1tVygiwUCtEosc\nxxw8sGkTbN4MmZlmf5AhQ8x1ww2mJSIi8kMK7gByHDMDJDOzKqyjoqBfP3MlJkLTprarFJFgp+D2\no9JS+OADyMqquho0MCsX+/c3Ya0jvkSkthTcPuI4ZtOmXbvM9e675sDc66+Hn/2s6mrZ0nalIhLq\nFNxeqKyE//s/+Mc/TEi/9575eskl0L27uXr2NNP0Lr3UdrUiEm78GtwZGRlMnjyZiooKJk2axKOP\nPlrrN7ftm2/Mnh8ffmi+7t4NH30El10GXbpUBXX37upPi0hg+C24KyoqaN++PW+99RbNmjWjR48e\nrFixgo4dO9bqzQPh5Ekz9W7vXvj0U/P11FVSAnFxJqQ7d666rrjCtzW43W4SExN9+6IhSp9FFX0W\nVfRZVPHbApydO3dy3XXX0fr7u2933nknr7766hnBHQiOY0bN+fmQl2daHLm5Z349etTcJGzXDtq3\nh1694Oc/N49jYgKz0EX/KKvos6iiz6KKPova8Sq4Dx06RIsWLU7/unnz5uzYsaNOhVRUmB3vjh83\nYXzs2NlfjxyBggIT1AUF5mrY0ARwixbQqpW5brml6vE118CFWh8qImHEq0hzeThMHTzYBHJ5+Zlf\ny8rgxAkT1MXF5nFpqQnhRo2gcWPTrjj19dTVtSsMGmT6zTExZu/pSy7x5k8gIhLCHC+88847zqBB\ng07/+sknn3TS0tLOeE7btm0dQJcuXbp01eJq27ZtjRns1c3J8vJy2rdvz6ZNm7jmmmvo2bPnWTcn\nRUTEP7xqlVx44YUsWLCAQYMGUVFRQUpKikJbRCRA/LYAR0RE/MMv56lkZGTQoUMHrr/+embNmuWP\ntwgJEydOJDo6ms46FJK8vDz69u1Lp06diIuLY/78+bZLsua7776jV69exMfHExsby2OPPWa7JOsq\nKipISEggOTnZdilWtW7dmi5dupCQkEDPnj3P/0Rvbk5Wp7y83Gnbtq2zf/9+p7S01Onatavz8ccf\n+/ptQsLWrVudDz74wImLi7NdinX5+flOdna24ziOc/z4caddu3YR++/CcRznxIkTjuM4TllZmdOr\nVy9n27Ztliuya86cOc5dd93lJCcn2y7FqtatWztff/11jc/z+Yj7h4tz6tevf3pxTiTq06cPV/h6\nGWaIiomJIT4+HoCoqCg6duzIl19+abkqexo2bAhAaWkpFRUVNG7c2HJF9hw8eJANGzYwadKkoFht\nbZsnn4HPg/tci3MOHTrk67eREJabm0t2dja9evWyXYo1lZWVxMfHEx0dTd++fYmNjbVdkjVTpkxh\n9uzZXKCTsHG5XAwYMIDu3buzaNGi8z7P55+Up4tzJDIVFRUxatQo5s2bR1RUlO1yrLngggvIycnh\n4MGDbN26FbfbbbskK9atW0eTJk1ISEjQaBvIysoiOzub119/nWeffZZt27ad83k+D+5mzZqRl5d3\n+td5eXk014GKApSVlTFy5EjGjRvH8OHDbZcTFC677DJuvfVWdu3aZbsUK95++23Wrl1LmzZtGDt2\nLJs3b+aee+6xXZY1Tb/fhvTqq69mxIgR7Ny585zP83lwd+/enc8++4zc3FxKS0tZtWoVw4YN8/Xb\nSIhxHIeUlBRiY2OZPHmy7XKsOnr0KIWFhQCUlJTw5ptvkpCQYLkqO5588kny8vLYv38/K1eupF+/\nfixdutR2WVYUFxdz/PhxAE6cOMEbb7xx3hlpPg/uHy7OiY2NZcyYMRG7OGfs2LHccMMN7N27lxYt\nWrB48WLbJVmTlZXFsmXL2LJlCwkJCSQkJJCRkWG7LCvy8/Pp168f8fHx9OrVi+TkZPr372+7rKAQ\nya3Ww4cP06dPn9P/LoYOHUpSUtI5n6sFOCIiIUa3cUVEQoyCW0QkxCi4RURCjIJbRCTEKLhFREKM\ngltEJMQouEVEQoyCW0QkxPw/A9N7QiiWYaEAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x66549b0>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from IPython.display import set_matplotlib_formats\n",
"set_matplotlib_formats('svg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.plot(x, y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 10,
"text": [
"[<matplotlib.lines.Line2D at 0x68203c8>]"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"c:\\users\\seanvig2\\documents\\ipython-git\\IPython\\core\\formatters.py:249: FormatterWarning: image/svg+xml formatter returned invalid type <class 'bytes'> (expected (<class 'str'>,)) for object: <matplotlib.figure.Figure object at 0x00000000041AF320>\n",
" FormatterWarning\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"text": [
"<matplotlib.figure.Figure at 0x41af320>"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment