-
-
Save evfro/4ec1d1dd59e3eaf1716581718fa6a4c4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"import ctypes\n", | |
"import numpy as np\n", | |
"from numpy.ctypeslib import ndpointer" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"mkl = ctypes.cdll['libmkl_rt.dylib']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"# cblas constants, according to\n", | |
"# https://github.com/nicholas-moreles/blaspy/blob/master/blaspy/helpers.py\n", | |
"ROW_MAJOR = 101\n", | |
"NO_TRANS = 111" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"cblas_dgemm_batch = mkl.cblas_dgemm_batch\n", | |
"cblas_dgemm_batch.argtypes = [\n", | |
" ctypes.c_int, ndpointer(dtype=np.int32), ndpointer(dtype=np.int32), # layout, transA, transB\n", | |
" ndpointer(dtype=np.int32), ndpointer(dtype=np.int32), ndpointer(dtype=np.int32), # m, n, k\n", | |
" ndpointer(dtype=np.float64), # alpha\n", | |
" ctypes.POINTER(ctypes.POINTER(ctypes.c_double)), ndpointer(dtype=np.int32), # a, lda\n", | |
" ctypes.POINTER(ctypes.POINTER(ctypes.c_double)), ndpointer(dtype=np.int32), # b, ldb\n", | |
" ndpointer(dtype=np.float64), # beta\n", | |
" ctypes.POINTER(ctypes.POINTER(ctypes.c_double)), ndpointer(dtype=np.int32), # c, ldc\n", | |
" ctypes.c_int, ndpointer(np.int32), # group_count, group_size\n", | |
"]\n", | |
"cblas_dgemm_batch.restype = None" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"sz = 10000\n", | |
"m, n, k = 9, 9, 9\n", | |
"A = np.random.randn(sz, m, k)\n", | |
"B = np.random.randn(sz, k, n)\n", | |
"C = np.empty((sz, m, n), dtype=np.float64)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"# set up arguments\n", | |
"i = lambda x: np.array([x], dtype=np.int32)\n", | |
"d = lambda x: np.array([x], dtype=np.float64)\n", | |
"\n", | |
"t = ctypes.POINTER(ctypes.c_double) * sz\n", | |
"a_array = t()\n", | |
"b_array = t()\n", | |
"c_array = t()\n", | |
"for idx in range(sz):\n", | |
" a_array[idx] = A[idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double))\n", | |
" b_array[idx] = B[idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double))\n", | |
" c_array[idx] = C[idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"The slowest run took 45.63 times longer than the fastest. This could mean that an intermediate result is being cached.\n", | |
"1000 loops, best of 3: 1.22 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"cblas_dgemm_batch(\n", | |
" ROW_MAJOR, i(NO_TRANS), i(NO_TRANS),\n", | |
" i(m), i(n), i(k),\n", | |
" d(1),\n", | |
" a_array, i(k),\n", | |
" b_array, i(n),\n", | |
" d(0),\n", | |
" c_array, i(n),\n", | |
" 1, i(sz)\n", | |
")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1 loop, best of 3: 183 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%%timeit\n", | |
"C = [np.ctypeslib.as_array(ary, (m, n)) for ary in c_array]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"C = [np.ctypeslib.as_array(ary, (m, n)) for ary in c_array]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.allclose(C, A @ B)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"10 loops, best of 3: 37.4 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit A @ B" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"For reference, here's the equivalent call to `dgemm`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false, | |
"deletable": true, | |
"editable": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"cblas_dgemm = mkl.cblas_dgemm\n", | |
"cblas_dgemm.argtypes = [\n", | |
" ctypes.c_int, ctypes.c_int, ctypes.c_int, # layout, transA, transB\n", | |
" ctypes.c_int, ctypes.c_int, ctypes.c_int, # m, n, k\n", | |
" ctypes.c_double, # alpha\n", | |
" ndpointer(dtype=np.float64, ndim=2), ctypes.c_int, # a, lda\n", | |
" ndpointer(dtype=np.float64, ndim=2), ctypes.c_int, # b, ldb\n", | |
" ctypes.c_double, # beta\n", | |
" ndpointer(dtype=np.float64, ndim=2, flags='WRITEABLE'), ctypes.c_int, # c, ldc\n", | |
"]\n", | |
"cblas_dgemm.restype = None\n", | |
"\n", | |
"A = np.random.randn(9, 9)\n", | |
"B = np.random.randn(9, 9)\n", | |
"C = np.empty((A.shape[0], B.shape[0]))\n", | |
"\n", | |
"cblas_dgemm(\n", | |
" ROW_MAJOR, NO_TRANS, NO_TRANS,\n", | |
" A.shape[0], B.shape[1], A.shape[1],\n", | |
" 1,\n", | |
" A, A.shape[0],\n", | |
" B, B.shape[0],\n", | |
" 0,\n", | |
" C, C.shape[0]\n", | |
")\n", | |
"\n", | |
"np.allclose(C, A @ B)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment