Created
April 29, 2018 09:19
Sample for `gp_minimize` result problem
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-04-29T09:15:21.945886Z", | |
"start_time": "2018-04-29T09:15:21.586972Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from skopt import gp_minimize\n", | |
"from skopt.space import Integer" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-04-29T09:15:21.951330Z", | |
"start_time": "2018-04-29T09:15:21.948290Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"def obj_fun(x):\n", | |
" return 1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-04-29T09:15:21.967865Z", | |
"start_time": "2018-04-29T09:15:21.953400Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[Integer(low=-2.0, high=2.0)]" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dimensions = [Integer(low=-2.0, high=2.0, name=\"Foobar\")]\n", | |
"dimensions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-04-29T09:15:22.060883Z", | |
"start_time": "2018-04-29T09:15:21.969834Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
" fun: 1\n", | |
" func_vals: array([1])\n", | |
" models: [GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n", | |
" kernel=1**2 * Matern(length_scale=1, nu=2.5) + WhiteKernel(noise_level=1),\n", | |
" n_restarts_optimizer=2, noise='gaussian', normalize_y=True,\n", | |
" optimizer='fmin_l_bfgs_b', random_state=1854753297)]\n", | |
" random_state: <mtrand.RandomState object at 0x7f7df40d0b40>\n", | |
" space: Space([Integer(low=-2.0, high=2.0)])\n", | |
" specs: {'function': 'base_minimize', 'args': {'n_restarts_optimizer': 5, 'y0': None, 'base_estimator': GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n", | |
" kernel=1**2 * Matern(length_scale=1, nu=2.5),\n", | |
" n_restarts_optimizer=2, noise='gaussian', normalize_y=True,\n", | |
" optimizer='fmin_l_bfgs_b', random_state=1854753297), 'n_jobs': 1, 'func': <function obj_fun at 0x7f7dc8413158>, 'random_state': <mtrand.RandomState object at 0x7f7df40d0b40>, 'callback': None, 'xi': 0.01, 'n_random_starts': 1, 'dimensions': Space([Integer(low=-2.0, high=2.0)]), 'verbose': False, 'n_calls': 1, 'kappa': 1.96, 'acq_func': 'gp_hedge', 'x0': None, 'acq_optimizer': 'auto', 'n_points': 10000}}\n", | |
" x: [-1]\n", | |
" x_iters: [[-1]]" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"res = gp_minimize(obj_fun,\n", | |
" dimensions,\n", | |
" n_calls=1,\n", | |
" n_random_starts=1)\n", | |
"res" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-04-29T09:15:22.168280Z", | |
"start_time": "2018-04-29T09:15:22.062777Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"ename": "AssertionError", | |
"evalue": "", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-5-64e1417ccabc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"specs\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"args\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dimensions\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"Foobar\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;31mAssertionError\u001b[0m: " | |
] | |
} | |
], | |
"source": [ | |
"assert res[\"specs\"][\"args\"][\"dimensions\"].dimensions[0].name == \"Foobar\"" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
}, | |
"varInspector": { | |
"cols": { | |
"lenName": 16, | |
"lenType": 16, | |
"lenVar": 40 | |
}, | |
"kernels_config": { | |
"python": { | |
"delete_cmd_postfix": "", | |
"delete_cmd_prefix": "del ", | |
"library": "var_list.py", | |
"varRefreshCmd": "print(var_dic_list())" | |
}, | |
"r": { | |
"delete_cmd_postfix": ") ", | |
"delete_cmd_prefix": "rm(", | |
"library": "var_list.r", | |
"varRefreshCmd": "cat(var_dic_list()) " | |
} | |
}, | |
"types_to_exclude": [ | |
"module", | |
"function", | |
"builtin_function_or_method", | |
"instance", | |
"_Feature" | |
], | |
"window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment