Skip to content

Instantly share code, notes, and snippets.

@bennyistanto
Last active August 24, 2024 07:46
Show Gist options
  • Save bennyistanto/32348d9a108898e30670a1f3924defc1 to your computer and use it in GitHub Desktop.
Save bennyistanto/32348d9a108898e30670a1f3924defc1 to your computer and use it in GitHub Desktop.
Enhanced Night Time Light (NTL) Classification for GEEST

Enhanced Night Time Light (NTL) Classification for GEEST

Approach and Rationale

We propose refining the NTL classification in GEEST to better reflect local conditions, particularly for small island countries. Instead of using fixed thresholds or coverage percentages, we'll employ local statistics to create a more contextually relevant classification. This approach is supported by Elvidge et al. (2013), who emphasize the importance of considering local context in night-time light analysis.

Standard Classification Procedure:

  1. Clip the global NTL raster to the country boundary.
  2. Calculate statistics for the clipped raster: min, max, mean, median, and 75th percentile.
    • The use of percentiles in NTL analysis is supported by Levin & Zhang (2017).
  3. Apply the classification scheme based on local statistics.

Standard Classification Scheme:

GEEST Class Description NTL Value Range
0 No Access 0 - 0.05
1 Very Low > 0.05 - 0.25 * Median
2 Low > 0.25 * Median - 0.5 * Median
3 Moderate > 0.5 * Median - Median
4 High > Median - 75th percentile
5 Very High > 75th percentile

This classification approach aligns with the methods used by Chen & Nordhaus (2011) in using luminosity data as a proxy for socio-economic factors.

QGIS Implementation:

For implementation in QGIS, use the Raster Calculator with the following expression:

(NTL <= 0.05) * 0 + 
(NTL > 0.05 AND NTL <= [0.25 * median]) * 1 + 
(NTL > [0.25 * median] AND NTL <= [0.5 * median]) * 2 + 
(NTL > [0.5 * median] AND NTL <= [median]) * 3 + 
(NTL > [median] AND NTL <= [75th_percentile]) * 4 + 
(NTL > [75th_percentile]) * 5

Replace [median] and [75th_percentile] with the actual calculated values.

Example Python Script for Calculating Statistics:

Here's a simple Python script to calculate the required statistics for a GeoTIFF raster:

import rasterio
import numpy as np

def calculate_raster_stats(raster_path):
    with rasterio.open(raster_path) as src:
        data = src.read(1)
        data = data[data != src.nodata]  # Remove no data values
        
        min_val = np.min(data)
        max_val = np.max(data)
        mean_val = np.mean(data)
        median_val = np.median(data)
        percentile_75 = np.percentile(data, 75)
        
        return {
            'min': min_val,
            'max': max_val,
            'mean': mean_val,
            'median': median_val,
            '75th_percentile': percentile_75
        }

# Usage
raster_path = 'path/to/your/iso3_ntl.tif'
stats = calculate_raster_stats(raster_path)
print(stats)

This script can be integrated into the GEEST QGIS plugin to automatically calculate the statistics needed for the classification.

Benefits:

  • Adapts to local lighting conditions
  • Provides meaningful classification for areas with varying NTL intensities
  • Maintains consistency with the original GEEST approach while improving granularity

Additional Note: Handling Areas with Low NTL Values:

If the NTL values within the Area of Interest (AOI) are predominantly or entirely below 0.05, which is our baseline for electricity access, we need to adjust our approach. Here's how to proceed:

  1. Check the data range: After clipping the NTL raster to our AOI, examine the statistics, particularly the maximum value.

  2. If max value < 0.05:

    • This indicates that the entire area falls below our standard threshold for electricity access.
    • In this case, we need to create a relative scale based on the available data. This approach is informed by Small et al. (2005), who discuss methods for analyzing areas with low light emissions.
  3. Adjusted classification for low-value areas: Use this modified classification scheme based on the local maximum value:

Low NTL Classification Scheme:

GEEST Class Description NTL Value Range
0 No Light 0
1 Very Low > 0 - 0.2 * max_value
2 Low > 0.2 * max_value - 0.4 * max_value
3 Moderate > 0.4 * max_value - 0.6 * max_value
4 High > 0.6 * max_value - 0.8 * max_value
5 Highest > 0.8 * max_value - max_value

This adaptive thresholding approach is conceptually similar to methods described by Otsu (1979) for image classification.

QGIS Implementation:

For implementation in QGIS, use the Raster Calculator with the following expression:

with_variable('max_val', maximum("NTL@1"),
    (NTL = 0) * 0 + 
    (NTL > 0 AND NTL <= @max_val * 0.2) * 1 + 
    (NTL > @max_val * 0.2 AND NTL <= @max_val * 0.4) * 2 + 
    (NTL > @max_val * 0.4 AND NTL <= @max_val * 0.6) * 3 + 
    (NTL > @max_val * 0.6 AND NTL <= @max_val * 0.8) * 4 + 
    (NTL > @max_val * 0.8) * 5
)

Note: Replace "NTL@1" with our actual raster layer name.

Additional Considerations:

Temporal Variability:

It's important to note that NTL data can vary seasonally and annually. As Xie et al. (2019) demonstrate, temporal variations in artificial nighttime lights can provide insights into urbanization patterns and socio-economic changes. For GEEST, consider using multi-year averaged NTL data to mitigate short-term fluctuations and capture more stable patterns of lighting infrastructure.

Limitations and Caveats:

Users of this enhanced NTL classification in GEEST should be aware of certain limitations:

  • Overglow Effect: NTL data can suffer from the "overglow" effect, where light appears to extend beyond its actual source (Small et al., 2005). This may lead to overestimation of lit areas in some regions.
  • Saturation in Urban Centers: In highly urbanized areas, NTL sensors may saturate, leading to a loss of differentiation in the brightest areas (Elvidge et al., 2013).
  • Rural Underrepresentation: In sparsely populated or rural areas, the resolution of NTL data may not capture small-scale lighting infrastructure adequately.

Overall workflow

Clear visual representation of the decision-making process in the classification of NTL data, accounting for different scenarios based on the data characteristics.

graph TD
    A[Download NTL data] --> B[Gunzip data]
    B --> C[Clip using country boundary]
    C --> D[Check max_value]
    D -->|max_value > 0.05| E[Check median and 75th percentile]
    D -->|max_value <= 0.05| F[Use modified classification scheme]
    E -->|Difference > 5% of max_value| G[Use original classification scheme]
    E -->|Difference <= 5% of max_value| F
    G -->|Use median and percentile| H[Classify NTL data]
    F -->|Use max_value| H
    H --> I[Output classified NTL map]

    style A fill:#f9f,stroke:#333,stroke-width:2px
    style B fill:#bbf,stroke:#333,stroke-width:2px
    style C fill:#bbf,stroke:#333,stroke-width:2px
    style D fill:#fbb,stroke:#333,stroke-width:2px
    style E fill:#fbb,stroke:#333,stroke-width:2px
    style F fill:#bfb,stroke:#333,stroke-width:2px
    style G fill:#bfb,stroke:#333,stroke-width:2px
    style H fill:#fbf,stroke:#333,stroke-width:2px
    style I fill:#ff9,stroke:#333,stroke-width:2px
Loading

This diagram illustrates the process as follows:

  1. Download the NTL data from the provided URL.
  2. Gunzip the downloaded data.
  3. Clip the data using the country boundary.
  4. Check the max_value of the clipped NTL data.
  5. If max_value > 0.05:
    • Check if the median or 75th percentile is within 5% of the max_value.
    • If the difference is > 5% of max_value, use the original classification scheme (median and percentile based).
    • If the difference is <= 5% of max_value, use the modified classification scheme.
  6. If max_value <= 0.05:
    • Use the modified classification scheme directly.
  7. Classify the NTL data using the selected scheme.
  8. Output the classified NTL map.

References:

  1. Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F.-C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network, 35(0), 62. https://doi.org/10.7125/APAN.35.7
  2. Levin, N., & Zhang, Q. (2017). A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sensing of Environment, 190, 366–382. https://doi.org/10.1016/j.rse.2017.01.006
  3. Small, C., Pozzi, F., & Elvidge, C. D. (2005). Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sensing of Environment, 96(3-4), 277-291. https://doi.org/10.1016/j.rse.2005.02.002
  4. Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21), 8589-8594. https://doi.org/10.1073/pnas.1017031108
  5. N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979, https://doi.org/10.1109/TSMC.1979.4310076
  6. Xie, Y., Weng, Q., & Fu, P. (2019). Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sensing of Environment, 225, 160-174. https://doi.org/10.1016/j.rse.2019.03.008
Display the source blob
Display the rendered blob
Raw
{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMgfET/7w07ru725/7wFzMy"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"w48bC0NpPqd-","executionInfo":{"status":"ok","timestamp":1724418254613,"user_tz":-420,"elapsed":24184,"user":{"displayName":"Benny Istanto","userId":"03708743020708969207"}},"outputId":"77118623-bf2b-45c8-fd84-7e7ebc33289d"},"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}],"source":["from google.colab import drive\n","import os\n","\n","# Check if the drive is mounted\n","if os.path.exists('/content/drive'):\n"," # Try to unmount\n"," try:\n"," drive.flush_and_unmount()\n"," print(\"Successfully unmounted\")\n"," except:\n"," print(\"Unmount failed, the drive might not be mounted or busy\")\n","\n","# Mount the drive\n","drive.mount('/content/drive')"]},{"cell_type":"code","source":["# Install package\n","!pip install rasterio"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"LOujGPbVV6H2","executionInfo":{"status":"ok","timestamp":1724418368811,"user_tz":-420,"elapsed":7552,"user":{"displayName":"Benny Istanto","userId":"03708743020708969207"}},"outputId":"e36e6816-466a-444e-ba16-cfce2741e28e"},"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting rasterio\n"," Downloading rasterio-1.3.10-cp310-cp310-manylinux2014_x86_64.whl.metadata (14 kB)\n","Collecting affine (from rasterio)\n"," Downloading affine-2.4.0-py3-none-any.whl.metadata (4.0 kB)\n","Requirement already satisfied: attrs in /usr/local/lib/python3.10/dist-packages (from rasterio) (24.2.0)\n","Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from rasterio) (2024.7.4)\n","Requirement already satisfied: click>=4.0 in /usr/local/lib/python3.10/dist-packages (from rasterio) (8.1.7)\n","Requirement already satisfied: cligj>=0.5 in /usr/local/lib/python3.10/dist-packages (from rasterio) (0.7.2)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rasterio) (1.26.4)\n","Collecting snuggs>=1.4.1 (from rasterio)\n"," Downloading snuggs-1.4.7-py3-none-any.whl.metadata (3.4 kB)\n","Requirement already satisfied: click-plugins in /usr/local/lib/python3.10/dist-packages (from rasterio) (1.1.1)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from rasterio) (71.0.4)\n","Requirement already satisfied: pyparsing>=2.1.6 in /usr/local/lib/python3.10/dist-packages (from snuggs>=1.4.1->rasterio) (3.1.2)\n","Downloading rasterio-1.3.10-cp310-cp310-manylinux2014_x86_64.whl (21.5 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.5/21.5 MB\u001b[0m \u001b[31m52.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading snuggs-1.4.7-py3-none-any.whl (5.4 kB)\n","Downloading affine-2.4.0-py3-none-any.whl (15 kB)\n","Installing collected packages: snuggs, affine, rasterio\n","Successfully installed affine-2.4.0 rasterio-1.3.10 snuggs-1.4.7\n"]}]},{"cell_type":"code","source":["# Import libraries\n","import numpy as np\n","import rasterio\n","from rasterio.mask import mask\n","import geopandas as gpd\n","\n","def clip_ntl(input_global_tif, country_boundary_shp, output_clipped_tif):\n"," try:\n"," # Open the input global NTL raster\n"," with rasterio.open(input_global_tif) as src:\n"," # Read the country boundary shapefile\n"," country = gpd.read_file(country_boundary_shp)\n"," country = country.to_crs(src.crs)\n","\n"," # Mask the raster with the country boundary\n"," out_image, out_transform = mask(src, country.geometry, crop=True, nodata=np.nan)\n","\n"," out_meta = src.meta.copy()\n"," out_meta.update({\n"," \"driver\": \"GTiff\",\n"," \"height\": out_image.shape[1],\n"," \"width\": out_image.shape[2],\n"," \"transform\": out_transform,\n"," \"nodata\": np.nan\n"," })\n","\n"," # Save the clipped raster\n"," with rasterio.open(output_clipped_tif, 'w', **out_meta) as dest:\n"," dest.write(out_image)\n","\n"," print(f\"Clipped NTL raster saved to {output_clipped_tif}\")\n","\n"," except Exception as e:\n"," print(f\"An error occurred during clipping: {str(e)}\")\n","\n","# Main directory on Google Drive\n","dir = '/content/drive/MyDrive/geest'\n","input_global_tif = f'{dir}/ntl/VNL_npp_2023_global_vcmslcfg_v2_c202402081600.average.dat.tif'\n","country_boundary_shp = f'{dir}/bnd/lca_admbnda_adm0_gov_2019.shp'\n","output_clipped_tif = f'{dir}/ntl/lca_VNL_npp_2023_global_vcmslcfg_v2_c202402081600.average.dat.tif'\n","\n","# Usage\n","clip_ntl(input_global_tif, country_boundary_shp, output_clipped_tif)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"HmFRHeHKP0K4","executionInfo":{"status":"ok","timestamp":1724419090432,"user_tz":-420,"elapsed":1802,"user":{"displayName":"Benny Istanto","userId":"03708743020708969207"}},"outputId":"2fa64364-70f8-4aad-f805-a68265545e18"},"execution_count":10,"outputs":[{"output_type":"stream","name":"stdout","text":["Clipped NTL raster saved to /content/drive/MyDrive/geest/ntl/lca_VNL_npp_2023_global_vcmslcfg_v2_c202402081600.average.dat.tif\n"]}]},{"cell_type":"code","source":["# Import libraries\n","import numpy as np\n","import rasterio\n","\n","def classify_ntl(input_clipped_tif, output_classified_tif):\n"," try:\n"," # Open the clipped NTL raster\n"," with rasterio.open(input_clipped_tif) as src:\n"," ntl_data = src.read(1)\n"," out_meta = src.meta.copy()\n","\n"," # Get valid data (non-NaN values)\n"," valid_data = ntl_data[~np.isnan(ntl_data)]\n","\n"," max_value = np.max(valid_data)\n"," median = np.median(valid_data)\n"," percentile_75 = np.percentile(valid_data, 75)\n","\n"," # Determine classification scheme\n"," if max_value <= 0.05 or (max_value - percentile_75) <= 0.05 * max_value:\n"," print(\"Using max_value classification scheme\")\n"," classification = np.full_like(ntl_data, 0, dtype=np.uint8)\n"," classification[(ntl_data > 0) & (ntl_data <= 0.2 * max_value)] = 1\n"," classification[(ntl_data > 0.2 * max_value) & (ntl_data <= 0.4 * max_value)] = 2\n"," classification[(ntl_data > 0.4 * max_value) & (ntl_data <= 0.6 * max_value)] = 3\n"," classification[(ntl_data > 0.6 * max_value) & (ntl_data <= 0.8 * max_value)] = 4\n"," classification[ntl_data > 0.8 * max_value] = 5\n"," else:\n"," print(\"Using original classification scheme\")\n"," classification = np.full_like(ntl_data, 0, dtype=np.uint8)\n"," classification[(ntl_data > 0.05) & (ntl_data <= 0.25 * median)] = 1\n"," classification[(ntl_data > 0.25 * median) & (ntl_data <= 0.5 * median)] = 2\n"," classification[(ntl_data > 0.5 * median) & (ntl_data <= median)] = 3\n"," classification[(ntl_data > median) & (ntl_data <= percentile_75)] = 4\n"," classification[ntl_data > percentile_75] = 5\n","\n"," # Set NaN values in the original data to 255\n"," classification[np.isnan(ntl_data)] = 255\n","\n"," # Update metadata for output\n"," out_meta.update(dtype=rasterio.uint8, nodata=255)\n","\n"," # Create the output classified raster\n"," with rasterio.open(output_classified_tif, 'w', **out_meta) as dest:\n"," dest.write(classification, 1)\n","\n"," print(f\"Classified NTL raster saved to {output_classified_tif}\")\n","\n"," return max_value, median, percentile_75\n","\n"," except Exception as e:\n"," print(f\"An error occurred during classification: {str(e)}\")\n"," return None, None, None\n","\n","# Main directory on Google Drive\n","dir = '/content/drive/MyDrive/geest'\n","input_clipped_tif = f'{dir}/ntl/lca_VNL_npp_2023_global_vcmslcfg_v2_c202402081600.average.dat.tif'\n","output_classified_tif = f'{dir}/ntl/lca_ntl_geest_class.tif'\n","\n","# Usage\n","max_value, median, percentile_75 = classify_ntl(input_clipped_tif, output_classified_tif)\n","\n","# Print the statistics\n","if max_value is not None:\n"," print(f\"Max Value: {max_value:.6f}\")\n"," print(f\"Median: {median:.6f}\")\n"," print(f\"75th Percentile: {percentile_75:.6f}\")\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Mb-F-ZY5ULTQ","executionInfo":{"status":"ok","timestamp":1724420908799,"user_tz":-420,"elapsed":320,"user":{"displayName":"Benny Istanto","userId":"03708743020708969207"}},"outputId":"60894f5f-0585-410a-c02e-e4237326654c"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["Using original classification scheme\n","Classified NTL raster saved to /content/drive/MyDrive/geest/ntl/lca_ntl_geest_class.tif\n","Max Value: 28.618135\n","Median: 1.060158\n","75th Percentile: 2.263107\n"]}]},{"cell_type":"code","source":["# Import libraries\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import rasterio\n","\n","def visualize_classified_ntl(input_classified_tif, output_map_png):\n"," try:\n"," # Open the classified NTL raster\n"," with rasterio.open(input_classified_tif) as src:\n"," classified_data = src.read(1)\n"," bounds = src.bounds\n","\n"," # Create a custom colormap (6-class Reds)\n"," colors = ['#a50f15', '#de2d26', '#fb6a4a', '#fc9272', '#fcbba1', '#fee5d9']\n"," cmap = plt.cm.colors.ListedColormap(colors)\n","\n"," # Set 255 (previous NaN values) to be masked\n"," classified_data = np.ma.masked_where(classified_data == 255, classified_data)\n","\n"," # Create the plot\n"," fig, ax = plt.subplots(figsize=(12, 8))\n","\n"," # Plot the classified data\n"," img = ax.imshow(classified_data, cmap=cmap, vmin=0, vmax=6,\n"," extent=[bounds.left, bounds.right, bounds.bottom, bounds.top])\n","\n"," # Add colorbar\n"," cbar = plt.colorbar(img, ax=ax, ticks=[0.5, 1.5, 2.5, 3.5, 4.5, 5.5])\n"," cbar.set_label('GEEST Safety Class')\n"," cbar.ax.set_yticklabels(\n"," ['0 (No Access)', '1 (Very Low)', '2 (Low)', '3 (Moderate)', '4 (High)', '5 (Very High)']\n"," )\n","\n"," # Set title and labels\n"," plt.title('GEEST Safety Classification based on Night Time Lights', fontsize=16)\n"," plt.xlabel('Longitude')\n"," plt.ylabel('Latitude')\n","\n"," # Save the plot\n"," plt.tight_layout()\n"," plt.savefig(output_map_png, dpi=300, bbox_inches='tight')\n"," print(f\"Map saved to {output_map_png}\")\n","\n"," # Display the plot (useful when running in Colab)\n"," plt.show()\n","\n"," except Exception as e:\n"," print(f\"An error occurred during visualization: {str(e)}\")\n","\n","# Main directory on Google Drive\n","dir = '/content/drive/MyDrive/geest'\n","input_classified_tif = f'{dir}/ntl/lca_ntl_geest_class.tif'\n","output_map_png = f'{dir}/ntl/lca_ntl_geest_class_map.png'\n","\n","# Usage\n","visualize_classified_ntl(input_classified_tif, output_map_png)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":824},"id":"ce8EV0oaU1C6","executionInfo":{"status":"ok","timestamp":1724420918357,"user_tz":-420,"elapsed":1623,"user":{"displayName":"Benny Istanto","userId":"03708743020708969207"}},"outputId":"a5763395-29ca-460f-c497-7075457779f1"},"execution_count":19,"outputs":[{"output_type":"stream","name":"stdout","text":["Map saved to /content/drive/MyDrive/geest/ntl/lca_ntl_geest_class_map.png\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 1200x800 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtgAAAMWCAYAAADLRvF1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjEUlEQVR4nOzdd3yN9///8ecRMiQSEipCEDNm7BotUbGqWkHVqN1t1KhZtVX1U6OKqlaN4tPqoJuWj9hqxiwqtWfVSEMEyfX7wy/n2yM5J8nJlUEe99vt3G6u6z2u93WW13nnfb0ui2EYhgAAAACYIldWDwAAAAB4mBBgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAE6UrwI6IiNCLL76oihUrqkCBAsqTJ4/8/PxUp04d9e3bV2vWrFFyN4rs0aOHLBZLio8ePXqY0k6Srl+/rokTJ+rRRx+Vj4+P8uTJo8KFC6tKlSrq2rWrPvroI924cSNNx7n/ceLEiVQ9b2kZixm+//57Pf744/L29raONSIiwrT+M9vff/+tyZMnKzQ0VP7+/nJ1dZW3t7cqV66sF198Uf/73/+StClZsmSaXqOsFBoaavc1Onv2rLp27aqAgADlzp3b5v2e+L5duHBhpo43LRydW3bxIIzRbA/Ce8eRsWPHWr/bnnrqKbv1lixZIovFotDQ0CRlie3Nktnvo8TjpfUh/d/zN3bs2EwZa0ZI/I5P7XvY7HOOiIiw+95CzpTbmUaXL19Wly5d9Msvv0iSihYtqgYNGsjHx0fXr1/XgQMHNHv2bM2ePVvVq1fX7t27k+2ndOnSeuyxx+wex15ZWtsdOXJEYWFhOnPmjNzc3PToo48qICBAt27d0u+//64lS5ZoyZIlatCggSpXrmy376+++ko3btxQgwYNVKZMmSTlXl5edsfk7FjSKzIyUu3atVNCQoKeeOIJFSlSRBaLRf7+/k73uXDhQvXs2VPdu3fP9P+QP/vsM7322muKiYmRm5ub6tSpo6JFiyo2NlaHDx/WJ598ok8++UTPPvusli9fnqljy2iGYaht27bavn27KlasqMaNGytPnjwOPwuZaezYsRo3bpzGjBnzQP9HjQfbjz/+qA0bNqhhw4ZZPRSnOPs5atGihUqWLJlk/6JFiyRJzZs3T9f3PjJO4g+d5CYk8eBKc4B97do1PfbYYzpy5IiCg4M1Z84cNW7cOEm9AwcOaPr06fr888/t9vXYY485FaCltd3zzz+vM2fOqHHjxvriiy9UqFAhm/JTp05p0aJF1gD5hRde0AsvvJCkn4iICN24cUMvvPBCsrPkGTGW9Fq5cqXu3LmjkSNHatKkSab0mVXmzp2rV199VRaLRcOGDdPIkSPl7e1tU+fQoUMaO3as/vjjjywaZfotXrxYN2/eVPHixW32nzx5Utu3b1fx4sW1d+9e5c5t+/GdPHmyhg8friJFimTmcNPE3rkBZsibN69u3rypYcOGaevWrWlq+/vvv2fQqDLH8OHDk92fGGAPHz7c7uxq37591bFjRxUsWDCjhpft5MRzRuZKc4Ddr18/HTlyRKVKldKWLVtUoECBZOtVrlxZ8+fP18svv5zuQaZHVFSUdu7cKelegHZ/QCtJxYsX11tvvfVQjuXUqVOSpLJly5rWZ1Y4fPiw+vfvL0maOnWqBg4cmGy9ihUravny5dqwYUNmDs9U9oLPxNcyKCgoSXAtSUWKFMnWwbVk/9wAM4SHh2vDhg3atm2bVqxYofDw8FS3DQ4OzsCRZW8FCxbMcYFmTjxnZK40rcGOiorSsmXLJEnTp0+3G1z/W506dZwbmUkuXrxo/fcjjzyShSNJ31j++usvzZw5U08++aSCgoLk4eEhb29v1apVS1OmTNGtW7ds6ieuL1uwYIEkqWfPntY1d/fPYly9elVjxoxRtWrVlC9fPuXNm1dVqlTRxIkTdfPmTZu6JUuWVM+ePSXdmxn591q+0NBQJSQkqFSpUrJYLA5nkF577TVZLBYNHTo0Vec/ZcoU3blzRyEhIRowYECK9VP75+GTJ09qypQpeuKJJ1S8eHG5ubkpf/78euyxx/TRRx8pISEh2Xa7du3Sc889p2LFilnXgJcqVUrt2rXTt99+a1M3ISFB8+bNU4MGDZQ/f37lyZNHjzzyiEJCQtSvX78k68LvX7t54sQJWSwWNWrUSJK0fv36ZNf+p7SOdteuXerevbuCgoLk7u4uX19fhYSEaMiQITp58qRN3W+++UYvvPCCKleurAIFCsjd3V1BQUHq1auXjhw5kqRvi8WicePGSZLGjRtn95oIR+tS7969q7lz56p+/fry8fGRu7u7ypYtq/79++vs2bPJntO/15F+/fXXeuyxx+Tt7S1PT081aNBAP/30U7LtUmv9+vVq1qyZfH19lTdvXtWpU0efffZZsnXT+hlN9Mcff6hXr14KCgqSm5ubvLy8VKJECbVq1cr6+b3f0aNH9fLLL6t06dJyd3eXj4+PGjZsqCVLltg9lytXrmjAgAEqUaKE3NzcVLx4cfXt21dXrlxJ+xPzL59//rmaNGkiX19fubm5qUSJEurVq5eOHj2abP1/Xw+xbt06NWvWTAUKFJCHh4dq1KihxYsXOz0Wd3d3jR8/XpI0cuRIxcfHp7qtozXYJ0+eVI8ePeTv7299X44ZM0a3bt1K1VrryMhItW3bVgULFpSbm5sqVqyoqVOnJlkSkNrPkdnsrUdeuHCh9djXr1/XoEGDVLJkSetzMGXKFOt35NmzZ/Xyyy8rMDBQbm5uKl++vD744AOHx/3qq6/UokULFSpUSK6uripatKief/55HTp0KKNO1crRGmzDMPTpp5+qVq1ayps3r/z8/NSyZUtt2bIlVWut79y5oylTpqhSpUry8PCQn5+f2rZtm+SvJIljSOTouq4vv/xSYWFh8vPzs17vVrFiRb344ovat29fep8OZAQjDWbMmGFIMgoUKGDEx8enpamN7t27G5KM7t27Z3i706dPG5IMScbYsWPTNtD7lChRwpBkLFiwwKn26RnLZ599ZkgyihYtajRq1Mjo2LGj0aRJE8PLy8uQZNSrV8+4deuWtf6KFSuM7t27G6VLlzYkGQ0aNDC6d+9udO/e3Zg8ebK13sGDB43AwEBDklGkSBGjRYsWRuvWrY3ChQsbkoxq1aoZ165ds9YfPHiw0aBBA0OSUbp0aWuf/+536tSphiSjc+fOyZ7L9evXDS8vLyNXrlzG8ePHUzz3hIQEw8/Pz5BkTJ06NU3PW6LE1+7+402YMMGQZAQFBRlNmjQxOnbsaDRq1MhwdXU1JBlt27Y1EhISbNqsWbPGyJMnjyHJCAkJMdq3b2+Eh4cbderUMdzc3IxnnnnGpn7Pnj0NSYa7u7sRFhZmdOrUyWjevLlRtmxZQ5KxYsUKm/qNGjUyJBnr1q0zDMMw/vrrL6N79+5G8+bNDUlG4cKFbZ73v/76yzCM//t8JPf+fPfdd41cuXIZkoxy5coZHTp0MFq3bm1UqFAh2TYuLi5G3rx5jVq1ahlt27Y1nn76aaNUqVKGJMPT09PYvHmzTf3u3bsbISEh1ufk3+P7+OOP7Z5bolu3bhlhYWHW56lly5bGc889Z31vFixY0Ni1a1eS80r8PI0ePdqwWCxGgwYNjOeee846FovFYnzzzTdJ2jmSOMb+/fsbuXLlMipWrGh07NjRaNiwofU5HDRoUJJ2af2MGoZh7N+/3/D29jYkGeXLlzfatm1rPPvss0a9evUMLy8vIyQkJMlxli9fbri7uxuSjODgYCM8PNx44oknDE9PT0OS0bNnzyRtLly4YH2/FShQwGjbtq3Rpk0bI3/+/Ebp0qWNp59+Os3fbQkJCUa3bt0MSUbu3LmNJ554wujYsaNRrlw5Q5KRN29e4+eff07SLvGz+NZbbxkWi8WoWbOm0bFjR6Nu3brW13P69OmpHodhGMaYMWMMSUbv3r2N+Ph4o3LlyoYkY968eTb1El+jRo0aJekj8dj3O3jwoFGwYEFDkhEQEGB06NDBaNWqleHp6Wk89thjRv369ZN9Tye+j4YPH264uroaFSpUsH6/uLi4GJKM119/3aZNaj9HaZF4XveP798Sn78xY8bY7F+wYIEhyXjmmWeMChUqGI888ojRrl07o1mzZoaHh4chyejbt69x7Ngxw9/f3wgMDDQ6dOhgNG7c2HqO77zzTpLj3blzx+jQoYMhyXBzczPq169vPPvss9Zz9/DwSPa940ha/3+2d86GYRivvvqqIcnIlSuX9bNcqVIlw8XFxRg8eHCy76F169YZkoz69esbYWFhRt68eY0WLVoY7dq1s36P5c+f3+b/oMT/pxNfo3+/3v/+bh83bpz1c9awYUOjU6dOxpNPPmlUrlzZsFgsaf68IHOkKcDu2rWrIclo0qRJug6amQG2YRjGM888Y30DV6xY0XjjjTeML774wjh27Fia+klvgJ2esRw6dMjYunVrkv1XrlwxmjVrZkgy3n333STljoKumzdvWgPwUaNGGXFxcdayGzduGJ06dUr2P+zEL117r8O1a9cMT09Pw9XV1bhw4UKS8g8++MCQZLRu3drhOSeKioqyPmcbNmxIVZv72Quwt2/fbuzfvz9J/bNnz1q/7JcvX25T1rhxY0OSsWTJkiTtrl27ZvM6nTx50pBkFCtWzDh//nyS+ocOHTJOnjxps89eEJr4BZ5ccGAY9l/rb7/91hq4fvHFF0naHTx40Dh06JDNvs8//9yIiYmx2ZeQkGDMnj3bkGRUqlQpyQ8PR/9hpXRuw4YNs/5o+/drdPv2baN3797WH0H/fo8axv8FD/nz5ze2bduW7HjKlStndzyOxijJePvtt23KIiIirIHFqlWrbMqc+Ywm/viaOHFiknY3b9401q9fb7Nv3759hpubm+Hu7m58/fXXNmUnTpwwqlSpYkgyFi1aZFPWvn17Q5Lx+OOP2/xg/vvvv41HH33Uer5p+W778MMPrT9+9uzZY92fkJBgfe7z589vXLp0yaZd4mcxT548xvfff29Tlvjd4uPjY9y8eTPVY/l3gG0YhvHdd99Zf+z8ux9nAuwaNWoYkoyOHTva/EA6c+aMUb58ebsB7L/fR3PnzrUpW7t2rWGxWAwXFxfj9OnTyZ6Lo89RWpgRYCd+X9+4ccNatmvXLiN37tzWH6GvvPKKcefOHWv5ypUrDUmGt7e3TTvDMIyRI0cakoxHH33U+PPPP23KvvzyS8PFxcUoUKCAcfXq1VSfp1kBduL3pZeXV5KJhMTJI0cBtiSjevXqNt/3sbGx1gmSl156KclY7L33DOPe5IOHh4fh5eVlHD58OEn5iRMnjN9//z1V54zMlaYAu2XLltYvmuRERkYm+QXWvXt3Y+PGjTb1/v2LzdHj/pk9Z9tFR0cbzz//vGGxWJLULVasmDFixAjjypUrKZ6/GQG2WWP5tyNHjhiSjNq1aycpcxRgJ/4H+dRTTyXb7z///GM88sgjRu7cuW3GlFKAbRiG8dprrxmSjAkTJiQpCw4ONiQZq1evTvnkDMPYtm2b9TlK7gsmNewF2I6sXr3akGQ8++yzNvsrVqxoSErV67R9+3ZDkvH000+n+rhmB9jVqlUzJOdn/+9Xr149Q5Jx8OBBm/3OBtixsbHWWd7vvvsuSZsbN25Y/6KydOlSm7LE98XMmTOTtLt165bh4+NjSDJOnTqV6vNLHGP16tWTLU+cwWratGmq+7T3GX3yyScNScbu3btT1c9zzz1nSDLee++9ZMsT3281a9a07jt16pSRK1cuw2KxJHnNDMMw9uzZ41SAnfjjPLnnPiEhwahataohyZg0aZJNWeJnMbm/AhjG/30/pOXH9P0BtmEYxuOPP25IsvmLXVoD7A0bNliDrb///jtJmx9++CHFALtt27bJjrlFixaGJGPx4sXJnkt2CrC9vLyMixcvJmmX+JeP4sWLG7GxsUnKE3/w/fuH4t9//214eHgY7u7uxpkzZ5IdT+L/Hx988EHqTtIwL8B+4oknDEnGiBEjkm1Xu3ZthwG2xWIxIiMjk7RL/H+sVKlSScocBdiXLl0yJBlVq1ZN1Xkh+3AqTZ89p0+ftl6x/G+hoaHJphJLKd2evQui0touX758+uyzzzR+/HitXLlSW7Zs0e7du/Xnn3/qzJkzmjx5spYuXar169cnm+bITOkZS3x8vCIiIrRlyxadP39esbGxMu79SJKkZNfGOvLjjz9Kkp577rlky728vFSrVi399NNP2rFjh5o1a5bqvvv3768PP/xQH330kYYPH269KG/t2rU6fPiwypcvr6ZNm6ZpvBklLi5Ov/zyi3bs2KFLly4pLi5OhmHon3/+kZT0ea1Tp44OHTqkLl26aOTIkapbt26yFx1K9y6cypcvn3766SdNmjRJnTt3VlBQUIafU6ILFy4oMjJSuXLlUu/evdPU9tixY1q1apWOHTumf/75x7qeNfFagiNHjqhixYrpHuPOnTsVExMjX19ftW7dOkl53rx51bFjR73//vtat26dOnfunKROcu3c3NxUqlQp7dmzR2fPnlVgYGCaxtWtW7dk93fv3l1Tp07Vpk2bFB8fLxcXF2tZWj+jderU0U8//aRXX31V48aNU6NGjeTu7p7scRMSEvTzzz9Lsv+ZrVWrlry8vLRnzx7dunVL7u7u2rBhgxISElSzZs1kX69q1aqpatWqaVrHeebMGUVFRVmfj/tZLBb17NlTAwcO1Lp16zRy5MgkdZJ7zSSpQoUKOnz4sN1196k1ZcoU1a9fX1OmTNFLL70kX1/fNPexfv16SfdS4CXXvlWrVsqfP7+uXbtmtw9H57lq1ap0n2dmqFmzZrLXDSVePN+4ceNk37dly5bV/v37de7cOeu+devWKTY2Vk2aNFHRokWTPV5oaKjmzJmjLVu2qG/fviadRcru3r2rLVu2SJK6dOmSbJ3OnTtrx44ddvsoXry4QkJCkuyvUKGCJKX59S5UqJBKliypffv2afDgwerdu7cp37vIeGkKsBOvuP3rr7+SLX/qqadsLtoICwvT2rVr7faXWWn6EgUFBWngwIHWDBQnT57U/Pnz9e677+rUqVPq06ePNejMaGkdyx9//KHw8HAdPHjQbp/R0dFpGsOff/4pSeratau6du3qsK6919ye8uXLq1mzZlq9erVWrlyp9u3bS5Jmz54t6f8uckyNf2dbuXTpksqXL5+msTiybds2Pffcc9YMHcm5/3mdPHmy9u3bp59//lk///yz9eKs0NBQdenSxfpFKt37QbVgwQL17NlTo0aN0qhRo1SkSBHVrVtXLVq0UOfOnU1LyZicxPMqUqSIfHx8UtUmPj5effv21UcffeQwL2ta32/2JP6H4+iHR+nSpW3q3s/ej/HENI72LjB0xN54EvfHxsbq77//tgYeznxGhwwZok2bNmnNmjVq0aKF8uTJo5CQEDVs2FAdO3ZU7dq1rXX//vtva/vU/Fj4+++/VbRoUZ05c8bh+SSWpSXATnwd/Pz8kqTKTJQVr9m/1atXT23atNHKlSv19ttv67333ktzH4nPnaOJlxIlSjgMsDP6PDODvXNI/O6yV54vXz5JtueY+P/O2rVrU/w/IK3/76TX5cuXrWO195qnNAmX0usdFxeX5nEtXrxY7du317Rp0zRt2jT5+vrq0UcfVdOmTdW1a1eyoWRTaQqwa9Sooc8++0y7d+9WQkKCcuV6sO+0XqJECY0fP14FChTQoEGD9Msvvyg2NlYeHh7Zbizt27fXwYMH9dRTT2no0KGqWLGivL29lSdPHt2+fVtubm5pPmbi1d8tWrRQ4cKFUxxfWr3++utavXq1Zs+erfbt2+v06dP67rvv5OXllaYr4kuWLClfX19duXJFO3bs0OOPP57msSTn5s2batOmjS5evKiePXvq1VdfVZkyZeTt7S0XFxcdPXpU5cuXTxJk+vv7a+fOnVq/fr3WrFmjzZs367ffftPmzZv19ttva/LkyRo2bJi1frt27RQWFqbvvvtOGzdu1ObNm7VixQqtWLFCo0eP1q+//qoqVaqYck5meP/99zV37lz5+/tr2rRpql+/vgoXLmydoercubP++9//ZqubImTVd9G/nwNnPqN58+bVr7/+qh07dmjVqlXasmWLtmzZop07d2ratGl67bXXrD9K/53RJrlZ4/s5852QmTLjNXv77bf1/fffa/bs2Xr99ded7sdRIJhSkPig/z8ppXwOaTnHxPdxmTJl1KBBA4d1s2PqxKx4vR9//HGdOHFCP/74o9avX68tW7Zo9erV+vnnnzVmzBitWLFCTZo0Mf24SJ80BdhPPfWUBg8erKtXr+qnn35yeEvaB0ni0oe7d+/q2rVrWRJgOxrL4cOHtW/fPj3yyCNasWJFkuUIzt5UJTAwUIcPH1bv3r2tM8xmatGihcqVK6eIiAgdPHhQy5YtU3x8vLp27Wp31is5uXLlUuvWrbVo0SItXrxYgwYNMmV8GzZs0MWLF1WjRg19+umnScodPa+JaZoSUzXdunVLCxcuVJ8+fTRy5Ei1b9/eOoMnST4+PjZ/KTh9+rT69eunb7/9Vn379rX+KdpsibMp58+f1/Xr11M1i514B8yPPvpITz/9dJJys2/ik/hn4uPHj9utkzjrZe9PyhnB3ngSU2e5u7vLz89PktL9Ga1du7Z1tvru3btauXKlunXrpjlz5qh9+/Zq3LixChYsKA8PD8XGxuq9995L9axV4nN2fzrI5M4ptRL7TJxVT+7znBWv2f0qVKigHj16aP78+Ro9enSag5DUPHf3p7iEY4l/fSlfvnym3wk4JX5+fnJzc1NcXJxOnjyZ7FKMtH5WzOLh4aH27dtb/6/+66+/NGrUKM2bN0+9evXifZgNpemnVpkyZaxr/wYNGqTr169nyKDMlJpZtsQ/o7u5uWXon1qcHUtintqAgIBk1/o6yn3rSMuWLSUpzbcUd3V1lXQvEHDEYrGoX79+kqRp06bpk08+kSSn1tQNGzZMefLk0d69ezVjxowU62/cuDHFOonPq70/6aXleXV3d9crr7yiqlWrKiEhIcU/twcGBlrz3UZGRqb6OGnl7++vkJAQJSQkJPsjIjmJz0tyf7U4ePCg3fGm9n1xv8R1w1euXNF3332XpDw2NtZ6R9jk7hqbUey9/ol5mh977DHr59HMz2ju3LnVvn17NW/eXNL/vT9cXFys1y2k5TPbsGFDWSwW7d69W4cPH05Svnfv3jTn0S1WrJj1B2RyQZJhGNb9mfmaJWfcuHHy8PDQ4sWLHS7fSU5iPv1Vq1bp6tWrScp//vnnZPenh7OfowdFkyZN5OrqqoiICF26dCmrh2MjT548qlevniRZ7/lxv//+978Zclwpba95oUKF9O6770q6FzeY/T5E+qX5bxmzZ89WmTJl9Mcff6h+/fp2Z95OnDhhXb+Wlfbt26fGjRtrxYoVun37dpLyvXv3Wv902K5dO+sbPTuNpVy5cnJxcdH+/fuT3Mzg+++/1/Tp050az0svvaQSJUroyy+/1LBhw6wX9f3bhQsX9PHHH9vsK1asmCSl6mYAPXr0kI+Pjz799FNdunRJjRs3duoCjQoVKmjatGmS7v24GzlyZLLjPXr0qDp16mS962NKfUr31gLefy7z5s3TF198kWy79957L9k124cPH7bOVCYGp3v27NEXX3yh2NjYJPW///57m7oZZcyYMZKkN998U19//XWS8kOHDtncACHxeZk9e7bNsoTz58+rW7dudv8TSHxfpDWIcXd3V58+fSRJgwcPtpmJuXPnjl5//XVduHBBQUFBGfKXFnt27dpl/Q8s0aZNm6xLNv59N1FnP6Nz5sxJ9uLkCxcuWO/6+u/3x5gxY+Tq6qohQ4Zo0aJFyd4I6cCBA/rmm2+s28WLF1d4eLgSEhL06quv2qwDv3r1ql577TWnlvu88cYbkqQJEyZo79691v2GYWjixImKjIxU/vz59eKLL6a5bzMVLVpU/fr1U0JCgmbOnJmmtg0bNlRISIj++ecf9evXz+Z7+9y5cxo8eLDZw3X6c/SgKFy4sPr166cbN26odevW2r9/f5I6cXFx+u6775L9QZjREv/vmDlzprZt22ZT9v777+u3334z/ZiOXvOTJ0/qk08+Sfaal8T/QwoUKJCmvwojc6Q5i0iBAgW0efNmde7cWWvXrlVoaKiKFSumatWqKX/+/IqNjdUff/yh/fv3yzAMValSRbVq1Uq2r02bNjlci1u8eHHrXbmcbWcYhiIiIhQRESFPT09Vr15dRYsW1e3bt3X8+HHr7FC1atVSNTOaHs6OpWDBgurbt6/ef/99NWnSRI8//rgCAgJ05MgR7d69W6NGjdLEiRPTPB5PT0/9+OOPeuqpp/Tuu+9q3rx5qlq1qooVK6abN2/q6NGj+v333/XII4/Y/CdZt25dBQQEaM+ePapRo4aqVKmiPHnyqHz58hoyZIjNMby8vNSzZ0/r+aTnivC+ffvK09NT/fr10+TJkzV9+nTVqVNHRYsW1a1bt3T48GFroNixY8cU+6tevbqeeeYZffvtt6pevbpCQ0Pl6+uryMhIHTlyRCNHjtSkSZOStJs4caKGDBmi4OBgVahQQR4eHjp37pw2bdqku3fvqlu3bqpRo4ake1+OHTt2tF4IGRgYqLt372r//v06cuSIXF1dkwRxZgsPD9ekSZM0atQotW/fXsHBwQoJCVFsbKyOHTumQ4cOacGCBdbAeuTIkVq1apU+/vhjrVu3TjVq1FB0dLTWr1+vUqVKKTw8XCtWrEhynObNm8vT01MrV67UY489prJly8rFxUUNGjSw3v3TnnHjxmnnzp1au3atKlSooMaNGytfvnzaunWrTp06JT8/P3355ZfW2b3M0L9/f40YMUKLFy9W1apVde7cOW3cuFEJCQl6/fXX9eSTT1rrOvsZnTdvnvr06aOgoCBVrlxZ3t7e+uuvv7Rx40bFxsbqiSeesFmmU6NGDS1ZskQ9evRQjx49NGrUKFWsWFGFChXSlStXtH//fp05c0bPPfec2rZta203e/Zs7d27VxEREQoKClJoaKgMw9C6devk5+enp59+Otm/Hjjy8ssva8uWLfrss89Uq1YtNWrUSI888oh2796tI0eOyMPDQ8uWLbO5SDmrjBgxQh9//HGaZ/ksFouWLFmiRo0aaenSpYqIiFCDBg108+ZNrVu3TtWqVVO9evW0detW096b6fkcPSjeeecdnT9/XsuWLVO1atUUEhKiUqVKKXfu3Dpz5owiIyN148YN/fzzz2lehz1hwgTNnTvXbvmcOXOs38/JCQ8P10svvaR58+bpscce0+OPP64iRYpo//79+v333zVw4EBNnz7d1O+idu3a6b333lNYWJieeOIJ68WhU6ZM0dWrV/Xiiy/qtddeU7Vq1awXK//xxx/as2ePLBaL/vOf/9hkM0I2kZ4cf2vWrDF69epllC9f3vD29jZy585tFChQwKhRo4bx8ssvG7/++muyd3xMbT7r++9i5ky7O3fuGOvXrzdGjx5thIaGGqVKlTLy5s1ruLq6GgEBAUaLFi2MefPmGbdv307xfNObBzs9Y0lISDDmz59v1KxZ0/Dy8jJ8fHyMxx57zPj8888Nw7CfR9NRHuxE0dHRxrvvvmvUq1fPyJ8/v5EnTx6jSJEiRu3atY0hQ4YYW7ZsSdJm//79xtNPP20UKlTIenc7e/mZf/75Z0OSERgYaNy9ezd1T5YDf/31lzFx4kTj8ccfNwoVKmTkzp3b8PLyMipXrmy89NJLSW7OYRj282Dfvn3b+M9//mNUqVLFyJs3r+Hr62s0a9bM+OWXX4zjx48bkowSJUrYtFmyZInRs2dPo3Llyoavr6/h5uZmlChRwmjZsqWxYsUKmxuwnD9/3njnnXeMJ5980ggKCjLy5s1reHt7GxUrVjT69OmTbF5vs/NgJ9q6davRqVMno2jRokaePHkMX19fIyQkxBg6dGiSm93s27fPePrpp40iRYoY7u7uRtmyZY2hQ4ca0dHRDo+zYcMGIywszChQoID1ffHvfOn2zs0w7n0+5syZY9StW9fIly+f4erqapQuXdro16+f3Xy59t73qTleatqsXbvWaNKkieHj42N4eHgYtWrVMhYuXJhsO2c+oz/88IPx6quvGtWrVzcKFSpkuLq6GsWKFTNCQ0ONRYsW2f1eOn78uDFw4ECjcuXKhqenp+Hu7m6UKFHCCA0NNd55551kb1x1+fJlo1+/fkaxYsWsx3nllVesdwp19rtt2bJlRmhoqPW7IzAw0OjRo4fdnPUp5aR3ZizJ5cG+37vvvmt9DdJyoxnDuPd8d+3a1XjkkUes78uRI0caN2/etN7h9MiRIzZtUnrvOcp3ndLnKC0Szys9ebDtHTulnN0pvZY//fST0bZtW+t3Uv78+a13vFy2bFmSG9Q4kvi+SumR+Dw4GntCQoLx8ccfGzVq1DDc3d2N/PnzG82aNTM2bNhgLF682JBkdOrUyaZNSt/PhmH/PRYbG2sMHTrUKFOmjPUuwomfkejoaGPGjBlGeHi4UbZsWcPLy8vw9PQ0ypUrZ3Tr1s3YuXNnqp8jZC6LYWSjVAB4KD3//PNaunSp3n77bY0YMSKrhwMApjh+/LjKlCmjfPny6cqVKw9FxhA41qtXLy1YsEBTp0417YJ7PJz4NkCG2r9/v7744gt5eXnp5ZdfzurhAECa3Lhxw+7a2C5duighIUHdu3cnuH6IHDx4UDdu3LDZl5CQoI8//lgLFy6Uu7u7OnXqlEWjw4PC1Ds5AoleeOEF6xq6u3fvatSoUU7dSQ0AstJff/2lypUrq3Tp0ipXrpy8vb116tQp7d69W3FxcQoJCdGECROyepgw0X/+8x8tX77cep3UjRs3dOjQIZ04cUIuLi6aM2eOihQpktXDRDbHEhFkCIvFoly5cikwMFAvvPCC3nzzzVTfuREAsouYmBiNGzdO//vf/3Tq1Cldu3ZNefPmVfny5dWuXTv169dPefPmzephwkQ///yzPv74Y+3atUuXL1/W3bt39cgjj6hBgwYaMGCA6tatm9VDxAOAABsAAAAwEYvGAAAAABMRYAMAAAAm4iJH2JWQkKBz584pX758rJ8GgAeAYRj6559/FBAQ8NBnNrl161ayd0XOCq6urnJ3d8/qYSAbIcCGXefOnVNgYGBWDwMAkEanT5+23oL7YXTr1i0FlSiuC5f+yuqhSJL8/f11/PhxgmxYEWDDrsTbtZ4+fVre3t5ZPBoAQEqio6MVGBho/f5+WN2+fVsXLv2lUzvWyzufV5aOJfqfGBWv3Ui3b98mwIYVATbsSlwW4u3tTYANAA+QnLKszzufV5YH2EByHu4FWgAAAEAmI8AGAAAATESADQAAAJiIABsAAAAwERc5AsADxjh3NFOPZwko57A8fs1iu2UuYd3MHg4AZHvMYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEBNiZYMOGDWrdurUCAgJksVi0cuVKu3VfeeUVWSwWzZgxI919Goah0aNHq0iRIvLw8FBYWJj++OOP9J0MgBzHOHfU4cOR+DWL7T4A4GFFgJ0Jbty4oZCQEM2ePdthvRUrVmjbtm0KCAgwpc93331XM2fO1Ny5c/Xbb7/J09NTzZs3161bt9J8DgAAAEgdbjSTCVq2bKmWLVs6rHP27Fn169dPq1evVqtWrdLdp2EYmjFjhkaNGqVnnnlGkrR48WIVLlxYK1euVMeOHdN2EgAAAEgVZrCzgYSEBHXt2lVDhgxRpUqVTOnz+PHjunDhgsLCwqz7fHx89Oijj2rr1q3JtomLi1N0dLTNAwAAAGlDgJ0NTJkyRblz51b//v1N6/PChQuSpMKFC9vsL1y4sLXsfpMnT5aPj4/1ERgYaNp4AAAAcgoC7Cy2a9cuvf/++1q4cKEsFkuWjmXEiBG6fv269XH69OksHQ8AAMCDiAA7i23cuFGXLl1S8eLFlTt3buXOnVsnT57U4MGDVbJkSaf79ff3lyRdvHjRZv/FixetZfdzc3OTt7e3zQMAAABpQ4Cdxbp27ap9+/YpMjLS+ggICNCQIUO0evVqp/sNCgqSv7+/1q5da90XHR2t3377TfXq1TNj6AAAAEgGWUQyQUxMjI4dO2bdPn78uCIjI+Xr66vixYvLz8/Ppn6ePHnk7++v8uXLW/c1adJE4eHh6tu3b6r6tFgsGjBggCZOnKiyZcsqKChIb731lgICAtSmTZuMPWEA6ZJSbmkAQPZGgJ0Jdu7cqcaNG1u3Bw0aJEnq3r27Fi5cmKo+oqKidPny5TT1OXToUN24cUMvvfSSrl27pscee0yrVq2Su7t7Os8IAAAA9lgMwzCyehDInqKjo+Xj46Pr16+zHhvIRA/aDHbCoW1OtXMJ62bySJBTvrcTz/Pa4V3yzueVtWP5J0b5g2s+9M850oY12AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRBYRAEgHRxckWgLKZeJIsk6uinXtljm6ADL+g8F2y1z6TU3XmAAgKzGDDQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAiQiwAQAAABORpg8A0sHZVHyO0vs9aBw9By6Onp+wDBgMAGQDzGADAAAAJiLABgAAAExEgA0AAACYiAAbAAAAMBEBNgAAAGAiAmwAAADARKTpAwCkS/yaxXbLXMK6ZeJIACB7YAYbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiJNHwBkAUtAObtlxrmjmTiS9MtVsa7dMlL4AciJmMEGAAAATESADQAAAJiIABsAACAbu337tsqUKaMtW7Zk9VDSZezYsapWrVqa2oSGhmrAgAF2y2/fvq2SJUtq586d6RucyQiwAQAAMsHYsWNlsVhsHsHBwSm2mzt3roKCglS/fn1dvHhRefLk0eeff55s3d69e6tGjRpmD90he0HwwoULlT9/fuv2G2+8obVr15p6bFdXV73xxhsaNmyYqf2mFwE2AABAJqlUqZLOnz9vfWzatMlhfcMwNGvWLPXu3VuSVLhwYbVq1Uqffvppkro3btzQ8uXLrXXTwjAM3b17N83t0sLLy0t+fn6m99ulSxdt2rRJBw8eNL1vZxFgAwAAZJLcuXPL39/f+ihYsKDD+rt27VJUVJRatWpl3de7d2+tXbtWp06dsqn75Zdf6u7du+rSpYsSEhI0efJkBQUFycPDQyEhIfrqq6+sdSMiImSxWPTzzz+rZs2acnNz05IlS5QrV64kyy1mzJihEiVKKCEhIV3nfv8Skbt376p///7Knz+//Pz8NGzYMHXv3l1t2rSxaZeQkKChQ4fK19dX/v7+Gjt2rE15gQIF1KBBA7uz+lmBNH0AkAUcpeJzlMIvpbYPElL4ISf6448/FBAQIHd3d9WrV0+TJ09W8eLF7dbfuHGjypUrp3z58ln3PfnkkypcuLAWLlyo0aNHW/cvWLBAbdu2Vf78+TVp0iQtWbJEc+fOVdmyZbVhwwY9//zzKlSokBo1amRtM3z4cL333nsqVaqUChQooLCwMC1YsEC1atWy6bdHjx7KlcvcedkpU6Zo6dKlWrBggSpUqKD3339fK1euVOPGjW3qLVq0SIMGDdJvv/2mrVu3qkePHmrQoIGaNm1qrVOnTh1t3LjR1PGlBzPYAAAA6RQdHW3ziIuLS1Ln0Ucf1cKFC7Vq1Sp9+OGHOn78uB5//HH9888/dvs9efKkAgICbPa5uLioe/fuWrhwoQzDkCRFRUVp48aN6tWrl+Li4vT222/r008/VfPmzVWqVCn16NFDzz//vD766CObvsaPH6+mTZuqdOnS8vX11QsvvKD//ve/1vHv3r1b+/fvV8+ePR2e/5w5c+Tl5WXzeOWVVxy2+eCDDzRixAiFh4crODhYs2bNslmznahq1aoaM2aMypYtq27duqlWrVpJ1nIHBATo5MmTDo+XmQiwAQAA0ikwMFA+Pj7Wx+TJk5PUadmypZ599llVrVpVzZs3108//aRr165p+fLldvuNjY2Vu7t7kv29evXS8ePHtW7dOkn3ZplLliypJ554QseOHdPNmzfVtGlTm4B38eLFioqKsunn3zPVktSmTRu5uLhoxYoVku5dqNi4cWOVLFnS4fl36dJFkZGRNo/x48fbrX/9+nVdvHhRderUse5zcXFRzZo1k9StWrWqzXaRIkV06dIlm30eHh66efOmwzFmJpaIAAAApNPp06fl7e1t3XZzc0uxTf78+VWuXDkdO3bMbp2CBQtq//79SfaXLVtWjz/+uBYsWKDQ0FAtXrxYL774oiwWi2JiYiRJP/74o4oWLWrT7v5xeXp62my7urqqW7du1uUmy5Yt0/vvv5/iufj4+KhMmTI2+x555JEU26VGnjx5bLYtFkuS9eBXrlxRoUKFTDmeGZjBBgAASCdvb2+bR2oC7JiYGEVFRalIkSJ261SvXl2HDx+2LgX5t969e+vrr7/W119/rbNnz6pHjx6SpIoVK8rNzU2nTp1SmTJlbB6BgYEpjuuFF17QmjVrNGfOHN29e1dt27ZNsU1a+fj4qHDhwtqxY4d1X3x8vHbv3u1UfwcOHFD16tXNGl66EWADAABkgjfeeEPr16/XiRMntGXLFoWHh8vFxUWdOnWy26Zx48aKiYlJNgXds88+qzx58ujll19Ws2bNrMFzvnz59MYbb2jgwIFatGiRoqKitHv3bn3wwQdatGhRiuOsUKGC6tatq2HDhqlTp07y8PBw/qQd6NevnyZPnqxvv/1WR44c0euvv66rV6/KYrGkua+NGzeqWbNmGTBK5xBgAwAAZIIzZ86oU6dOKl++vDp06CA/Pz9t27bN4dIGPz8/hYeHa+nSpUnK8ubNq44dO+rq1avq1auXTdmECRP01ltvafLkyapQoYJatGihH3/8UUFBQakaa+/evXX79u0k/ZopMYDv1q2b6tWrJy8vLzVv3jzZNeeObN26VdevX1f79u0zaKRpZzGS+5sDoHtXRPv4+Oj69es268oApF9OSdOXcGibU+1I0+ecnPK9nXie1w7vknc+r6wdyz8xyh9cM0Of83379qlp06aKioqSl1fmnO+ECRP05Zdfat++fZlyPOlevusKFSqoQ4cOmjBhQqrbPffccwoJCdHIkSMzcHRpw0WOAJAOzuZydhREP0gBdEYhRzbwf6pWraopU6bo+PHjqlKlSoYeKyYmRidOnNCsWbM0ceLEDD3WyZMn9csvv6hRo0aKi4vTrFmzdPz4cXXu3DnVfdy+fVtVqlTRwIEDM3CkaccSEQAAgGyuR48eGR5cS1Lfvn1Vs2ZNhYaGZujyEEnKlSuXFi5cqNq1a6tBgwbav3+/1qxZowoVKqS6D1dXV40aNSrD1ok7ixlsAAAASLqX93rhwoWZcqzAwEBt3rw5U46V2ZjBBgAAAExEgA0AAACYiAAbAAAAMBEBNgAAAGAiLnIEgHTIVbGu3TLS7QFAzsQMNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiLABgAAAExEmj4AECn10iPh0LasHoJV/AeDnW7r0m+qiSMBkJMxgw0AAACYiAAbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATkaYPQI5AGr6Mk6tiXbtlTqfw+32v3aL4351PxeeIsyn+SO8H4H7MYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEpOkDkCNYAso5LCeNXzZTIcR+mYMUfgCQHTCDDQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAiQiwAQAAABMRYGeCDRs2qHXr1goICJDFYtHKlSvt1n3llVdksVg0Y8aMFPudPXu2SpYsKXd3dz366KPavn27TXloaKgsFovN45VXXknn2QAA/i3+g8F2HwByJgLsTHDjxg2FhIRo9uzZDuutWLFC27ZtU0BAQIp9fvHFFxo0aJDGjBmj3bt3KyQkRM2bN9elS5ds6r344os6f/689fHuu++m61wAAADgGDeayQQtW7ZUy5YtHdY5e/as+vXrp9WrV6tVq1Yp9jlt2jS9+OKL6tmzpyRp7ty5+vHHH/Xpp59q+PDh1np58+aVv79/+k4AAAAAqcYMdjaQkJCgrl27asiQIapUqVKK9W/fvq1du3YpLCzMui9XrlwKCwvT1q1bbeouXbpUBQsWVOXKlTVixAjdvHnTbr9xcXGKjo62eQAAACBtmMHOBqZMmaLcuXOrf//+qap/+fJlxcfHq3Dhwjb7CxcurMOHD1u3O3furBIlSiggIED79u3TsGHDdOTIEX3zzTfJ9jt58mSNGzfO+RMBAAAAAXZW27Vrl95//33t3r1bFovF1L5feukl67+rVKmiIkWKqEmTJoqKilLp0qWT1B8xYoQGDRpk3Y6OjlZgYKCpYwIAAHjYsUQki23cuFGXLl1S8eLFlTt3buXOnVsnT57U4MGDVbJkyWTbFCxYUC4uLrp48aLN/osXLzpcb/3oo49Kko4dO5ZsuZubm7y9vW0eAAAASBsC7CzWtWtX7du3T5GRkdZHQECAhgwZotWrVyfbxtXVVTVr1tTatWut+xISErR27VrVq1fP7rEiIyMlSUWKFDH1HAAAAPB/WCKSCWJiYmxmjY8fP67IyEj5+vqqePHi8vPzs6mfJ08e+fv7q3z58tZ9TZo0UXh4uPr27StJGjRokLp3765atWqpTp06mjFjhm7cuGHNKhIVFaVly5bpySeflJ+fn/bt26eBAweqYcOGqlq1aiacNYCHRcKhbQ7Lc1Wsm0kj+f8qhNgv+31v5o0DAOwgwM4EO3fuVOPGja3bieucu3fvroULF6aqj6ioKF2+fNm6/dxzz+mvv/7S6NGjdeHCBVWrVk2rVq2yXvjo6uqqNWvWWAPvwMBAtWvXTqNGjTLvxAAAAJAEAXYmCA0NlWEYqa5/4sSJVO3r27evdUb7foGBgVq/fn2qjwkAAABzsAYbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIm4yBEAcoiU0u1lt37tIhUfgGyOGWwAAADARMxgAwCAB1LC4R1K8PTI2jHciM3S4yN7YgYbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIm4yBEAkP1ks1R8Lv2mZvUQADxAmMEGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAiUjTBwBwKFfFug7LEw5ty6SRZJ34DwbbLSOFH4D7MYMNAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAE5GmD0COYJw7mtVDyHIppduDfaTiA5AWzGADAAAAJiLABgAAAExEgA0AAACYiAAbAAAAMBEBNgAAAGAiAmwAAADARKTpA/DQIBUfMkr8B4Odakd6PyBnYgYbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiLABgAAAExEHmwADmVUbmlLQLlMPyYyRq6Kde2WJRzalokjAYDsgRlsAAAAwEQE2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIg0fQAcyqh0eqTiw8PCpd/UrB4CgGyGGWwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiLABgAAAExEgA0AAACYiDR9ABxylE7PUQq/jDomMl/CoW0Oy3NVrOtUmcN+K4TYL/t9r8PxZLb4DwY71Y70fsDDixlsAAAAwEQE2AAAAICJCLABAAAAExFgAwAAACYiwAYAAMjGbt++rTJlymjLli1pbhsaGqoBAwakqY3FYtHKlSvtlh86dEjFihXTjRs30jyenIIAGwAAIJO98847slgsqQp+586dq6CgINWvX9+6z14Q3KNHD7Vp08a6/c0332jChAkmjPj/VKxYUXXr1tW0adNM7fdhQpo+AE4jnV7O4CjVnpRyGr+cjFR8SM6OHTv00UcfqWrVqinWNQxDs2bN0vjx4506lq+vr1PtUtKzZ0+9+OKLGjFihHLnJpy8HzPYAAAAmSQmJkZdunTRxx9/rAIFCqRYf9euXYqKilKrVq2cOt79S0TOnz+vVq1aycPDQ0FBQVq2bJlKliypGTNm2LS7fPmywsPDlTdvXpUtW1bfffedTXnTpk115coVrV+/3qlxPewIsAEAADJJnz591KpVK4WFhaWq/saNG1WuXDnly5fPlON369ZN586dU0REhL7++mvNmzdPly5dSlJv3Lhx6tChg/bt26cnn3xSXbp00ZUrV6zlrq6uqlatmjZu3GjKuB42zOkDAACkU3R0tM22m5ub3NzcbPZ9/vnn2r17t3bs2JHqfk+ePKmAgIBkyzp16iQXFxebfXFxcXZnuw8fPqw1a9Zox44dqlWrliTpk08+UdmyZZPU7dGjhzp16iRJevvttzVz5kxt375dLVq0sNYJCAjQyZMnU30uOQkBNgAAQDoFBgbabI8ZM0Zjx461bp8+fVqvv/66fv31V7m7u6e639jYWLv1p0+fnmQmfNiwYYqPj0+2/pEjR5Q7d27VqFHDuq9MmTLJLlX59/pwT09PeXt7J5np9vDw0M2bN1N9LjkJATYAAEA6nT59Wt7e3tbt+2evd+3apUuXLtkEt/Hx8dqwYYNmzZqluLi4JLPRklSwYEHt378/2WP6+/urTJkyNvvy5cuna9eupeNM7smTJ4/NtsViUUJCgs2+K1euqHTp0uk+1sOINdgAAADp5O3tbfO4P8Bu0qSJ9u/fr8jISOujVq1a6tKliyIjI5MNriWpevXqOnz4sAzDSPcYy5cvr7t372rPnj3WfceOHdPVq1ed6u/AgQOqXr16usf1MGIGG8ghSKkHAFknX758qly5ss0+T09P+fn5Jdn/b40bN1ZMTIwOHjzosF5qBAcHKywsTC+99JI+/PBD5cmTR4MHD5aHh4csFkua+jpx4oTOnj2b6os1cxpmsAEAALIpPz8/hYeHa+nSpab0t3jxYhUuXFgNGzZUeHi4XnzxReXLly9N68Il6b///a+aNWumEiVKmDKuhw0z2AAAAFkgIiIiVfXefPNNNW3aVG+++aa8vLwkye6SkYULFzo8RpEiRfTTTz9Zt8+cOaNLly7ZrOVOru9/r+u+ffu25s6dq2XLlqVq/DkRATYAAEA2VrVqVU2ZMkXHjx9XlSpV0tXX//73P8XExKhKlSo6f/68hg4dqpIlS6phw4ap7uPUqVMaOXKkGjRokK6xPMwIsAEAALK5Hj16mNLPnTt3NHLkSP3555/Kly+f6tevr6VLlybJGuJImTJlkmQvgS0CbAAAgByiefPmat68eVYP46HHRY4AAACAiQiwM8GGDRvUunVrBQQEyGKxaOXKlXbrvvLKK7JYLJoxY0aK/c6ePVslS5aUu7u7Hn30UW3fvt2m/NatW+rTp4/8/Pzk5eWldu3a6eLFi+k8GwA5TcKhbQ4fAABbBNiZ4MaNGwoJCdHs2bMd1luxYoW2bdumgICAFPv84osvNGjQII0ZM0a7d+9WSEiImjdvbnMb04EDB+r777/Xl19+qfXr1+vcuXNq27Ztus8HAAAA9hFgZ4KWLVtq4sSJCg8Pt1vn7Nmz6tevX6ovNJg2bZpefPFF9ezZUxUrVtTcuXOVN29effrpp5Kk69eva/78+Zo2bZqeeOIJ1axZUwsWLNCWLVu0bRszTgAAABmFADsbSEhIUNeuXTVkyBBVqlQpxfq3b9/Wrl27bO6elCtXLoWFhWnr1q2SpF27dunOnTs2dYKDg1W8eHFrnfvFxcUpOjra5gEAAIC0IcDOBqZMmaLcuXOrf//+qap/+fJlxcfHq3Dhwjb7CxcurAsXLkiSLly4IFdXV+XPn99unftNnjxZPj4+1kdgYGDaTwYAACCHI8DOYrt27dL777+vhQsXymKxZOlYRowYoevXr1sfp0+fztLxAAAAPIgIsLPYxo0bdenSJRUvXly5c+dW7ty5dfLkSQ0ePFglS5ZMtk3BggXl4uKSJCPIxYsX5e/vL0ny9/fX7du3bW5ten+d+7m5ucnb29vmAQAAgLQhwM5iXbt21b59+xQZGWl9BAQEaMiQIVq9enWybVxdXVWzZk2tXbvWui8hIUFr165VvXr1JEk1a9ZUnjx5bOocOXJEp06dstYBAACA+biTYyaIiYnRsWPHrNvHjx9XZGSkfH19Vbx4cfn5+dnUz5Mnj/z9/VW+fHnrviZNmig8PFx9+/aVJA0aNEjdu3dXrVq1VKdOHc2YMUM3btxQz549JUk+Pj7q3bu3Bg0aJF9fX3l7e6tfv36qV6+e6tatmwlnDeBhkaui4++MTM+FXSHE+ba/7zVvHKkQ/8Fgu2Uu/aZm4kgAZCYC7Eywc+dONW7c2Lo9aNAgSVL37t21cOHCVPURFRWly5cvW7efe+45/fXXXxo9erQuXLigatWqadWqVTYXPk6fPl25cuVSu3btFBcXp+bNm2vOnDnmnBQAAACSZTEMw8jqQSB7io6Olo+Pj65fv8567IeAce5oVg8BD6kH6m6OmTyD7UhGzGDnlO/txPO8snKuvD09snYsN2Ll2+aVh/45R9qwBhsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAicgiAgAPmAfqokIAyIGYwQYAAABMRIANAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJSNMH4KHhKH1drop1M/2YSMHve7N6BFkq/oPBDstd+k3NpJEAMBsz2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARafqAbMY4d9RumSWgnNP9Omrr6JgPkhyTii+Hp7d7kBiHD2f1EABkAWawAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCLS9AHZjKOUcPwizjjOpuJzNjVgtkv9BwAwDf9fAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJyIMNZDe/77VblJCObp3N1wzHHOYtz6jnvEKI/TIH7x84Zhw+nNVDAPCQYAYbAAAAMBEBNgAAAGAiAmwAAADARKzBBgAAD6Yj+yUPt6wdQ2xc1h4f2RIz2AAAAICJCLABAAAAE7FEBMhuHKVgS4csSSeXyRydY1bIsPGQii9HuNunld2y3LN/zMSRAEgrZrABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARATYAAABgItL0AdnMw5IyL6Nkt1R8DpFO74FiCQ62W2YcPpyJI7mHVHzAg4sZbAAAAMBEBNgAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiINH1AFohfs9huGWn6MiYVX3qeV6fHUyHEuXak98t2MiKFH2n4gIcXM9gAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEWn6AGSJ7JaKLyP6zYhzzBLOphtMyQOUjtDZVHyO3O3TymE5afyABxcz2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARafqAdIhfszirh5DhHppUc+nAc+CYozSGDp+7jEr/54iTqQEtwcF2yzIihR+ABxsz2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARAXYm2LBhg1q3bq2AgABZLBatXLnSpnzs2LEKDg6Wp6enChQooLCwMP32228O+/znn380YMAAlShRQh4eHqpfv7527NhhU6dHjx6yWCw2jxYtWph9egAAAPgX8mBnghs3bigkJES9evVS27Ztk5SXK1dOs2bNUqlSpRQbG6vp06erWbNmOnbsmAoVKpRsny+88IIOHDigzz77TAEBAVqyZInCwsJ06NAhFS1a1FqvRYsWWrBggXXbzc3N/BPMwRzl/31YOJ3jOJ1tM1t2G8/DIrM/Iym+jo5yb2dAjmxHyJ8NPLwIsDNBy5Yt1bJlS7vlnTt3ttmeNm2a5s+fr3379qlJkyZJ6sfGxurrr7/Wt99+q4YNG0q6Nwv+/fff68MPP9TEiROtdd3c3OTv72/SmQAAACAlLBHJZm7fvq158+bJx8dHISHJz7TcvXtX8fHxcnd3t9nv4eGhTZs22eyLiIjQI488ovLly+vVV1/V33//bffYcXFxio6OtnkAAAAgbQiws4kffvhBXl5ecnd31/Tp0/Xrr7+qYMGCydbNly+f6tWrpwkTJujcuXOKj4/XkiVLtHXrVp0/f95ar0WLFlq8eLHWrl2rKVOmaP369WrZsqXi4+OT7Xfy5Mny8fGxPgIDAzPkXAEAAB5mBNjZROPGjRUZGaktW7aoRYsW6tChgy5dumS3/meffSbDMFS0aFG5ublp5syZ6tSpk3Ll+r+XtGPHjnr66adVpUoVtWnTRj/88IN27NihiIiIZPscMWKErl+/bn2cPn3a7NMEAAB46BFgZxOenp4qU6aM6tatq/nz5yt37tyaP3++3fqlS5fW+vXrFRMTo9OnT2v79u26c+eOSpUqZbdNqVKlVLBgQR07dizZcjc3N3l7e9s8AAAAkDYE2NlUQkKC4uLiUqzn6empIkWK6OrVq1q9erWeeeYZu3XPnDmjv//+W0WKFDFzqAAAAPgXsohkgpiYGJtZ4+PHjysyMlK+vr7y8/PTpEmT9PTTT6tIkSK6fPmyZs+erbNnz+rZZ5+1tmnSpInCw8PVt29fSdLq1atlGIbKly+vY8eOaciQIQoODlbPnj2txxw3bpzatWsnf39/RUVFaejQoSpTpoyaN2+euU8A0iSj0sVlRco8R/0+SCn8nE3f5jAl3EPE2dcrJ6S5dCSl9H53+7SyW5Z79o9mDweAiQiwM8HOnTvVuHFj6/agQYMkSd27d9fcuXN1+PBhLVq0SJcvX5afn59q166tjRs3qlKlStY2UVFRunz5snX7+vXrGjFihM6cOSNfX1+1a9dOkyZNUp48eSRJLi4u2rdvnxYtWqRr164pICBAzZo104QJE8iFDQAAkIEIsDNBaGioDMOwW/7NN9+k2MeJEydstjt06KAOHTrYre/h4aHVq1eneowAAAAwB2uwAQAAABMRYAMAAAAmIsAGAABAjrV7927t37/fuv3tt9+qTZs2GjlypG7fvu1UnwTYAAAAyLFefvllHT16VJL0559/qmPHjsqbN6++/PJLDR061Kk+ucgRSIFx7qjpfTqdhi6ldHEO0sJlt9R32W08GcLZ9H4PkYxIxZcj3jsiFR+QWY4ePapq1apJkr788ks1bNhQy5Yt0+bNm9WxY0fNmDEjzX0ygw0AAJCN3b59W2XKlNGWLVsy9bg9evRQmzZtMvWYaVW3bl19/fXX6erDMAwlJCRIktasWaMnn3xSkhQYGGiTIjktCLABAAAywYcffqiqVavK29tb3t7eqlevnn7++ecU282dO1dBQUGqX7++dZ/FYpHFYtG2bbZ/0YmLi5Ofn58sFosiIiLMPoUMU7JkSadmikeNGqXhw4dbA2Rn1KpVSxMnTtRnn32m9evXq1Wrezd5On78uAoXLuxUnwTYAAAAmaBYsWJ65513tGvXLu3cuVNPPPGEnnnmGR08eNBuG8MwNGvWLPXu3TtJWWBgoBYsWGCzb8WKFfLy8jJ97M4wDEN3797N0GO0bNlS//zzT6p+qNgzY8YM7d69W3379tWbb76pMmXKSJK++uormx81aUGADQAAkAlat26tJ598UmXLllW5cuU0adIkeXl5JZmF/rddu3YpKirKOqv6b927d9fnn3+u2NhY675PP/1U3bt3T1J3//79euKJJ+Th4SE/Pz+99NJLiomJsZbHx8dr0KBByp8/v/z8/DR06NAkN8lLSEjQ5MmTFRQUJA8PD4WEhOirr76ylkdERMhisejnn39WzZo15ebmpk2bNikqKkrPPPOMChcuLC8vL9WuXVtr1qyxtgsNDdXJkyc1cOBA68x8ok2bNunxxx+Xh4eHAgMD1b9/f924ccNa7uLioieffFKff/653ecwJVWrVtX+/ft1/fp1jRkzxrr/P//5jxYtWuRUnwTYAAAA6RQdHW3ziIuLc1g/Pj5en3/+uW7cuKF69erZrbdx40aVK1dO+fLlS1JWs2ZNlSxZ0roG+dSpU9qwYYO6du1qU+/GjRtq3ry5ChQooB07dujLL7/UmjVr1LdvX2udqVOnauHChfr000+1adMmXblyRStWrLDpZ/LkyVq8eLHmzp2rgwcPauDAgXr++ee1fv16m3rDhw/XO++8o99//11Vq1ZVTEyMnnzySa1du1Z79uxRixYt1Lp1a506dUrSvTtaFytWTOPHj9f58+d1/vx5SVJUVJRatGihdu3aad++ffriiy+0adMmm3FLUp06dbRx40aHz7cjp0+f1pkzZ6zb27dv14ABA7R48WLlyZPHqT4JsAEAANIpMDBQPj4+1sfkyZOTrbd//355eXnJzc1Nr7zyilasWKGKFSva7ffkyZMKCAiwW96rVy99+umnkqSFCxfqySefVKFChWzqLFu2TLdu3dLixYtVuXJlPfHEE5o1a5Y+++wzXbx4UdK9ZRIjRoxQ27ZtVaFCBc2dO1c+Pj7WPuLi4vT222/r008/VfPmzVWqVCn16NFDzz//vD766COb440fP15NmzZV6dKl5evrq5CQEL388suqXLmyypYtqwkTJqh06dL67rvvJEm+vr5ycXFRvnz55O/vL39/f0n3AvouXbpowIABKlu2rOrXr6+ZM2dq8eLFunXrlvV4AQEBOn36tNPrsDt37qx169ZJki5cuKCmTZtq+/btevPNNzV+/Hin+iRNH5BBHKYSy6j0bc726yC9Hx4iGfQ6Z0QqPmelNBaHn0tHzw8pF5GC06dPy9vb27rt5uaWbL3y5csrMjJS169f11dffaXu3btr/fr1doPs2NhYubu72z3u888/r+HDh+vPP//UwoULNXPmzCR1fv/9d4WEhMjT09O6r0GDBkpISNCRI0fk7u6u8+fP69FHH7WW586dW7Vq1bIuEzl27Jhu3ryppk2b2vR9+/ZtVa9e3WZfrVq1bLZjYmI0duxY/fjjjzp//rzu3r2r2NhY6wy2PXv37tW+ffu0dOlS677EjB/Hjx9XhQoVJEkeHh5KSEhQXFycPDw8HPaZnAMHDqhOnTqSpOXLl6ty5cravHmzfvnlF73yyisaPXp0mvskwAYAAEinxMwgKXF1dbVeRFezZk3t2LFD77//fpJZ4EQFCxa0ucvg/fz8/PTUU0+pd+/eunXrlvWiP7Mlrtf+8ccfVbRoUZuy+39M/DuQl6Q33nhDv/76q9577z2VKVNGHh4eat++fYp3SYyJidHLL7+s/v37JykrXry49d9XrlyRp6enU8G1JN25c8d6DmvWrNHTTz8tSQoODrYuV0krlogAAABkkcSZV3uqV6+uw4cPJ7ng8N969eqliIgIdevWTS4uLknKK1SooL1799pcHLh582blypVL5cuXl4+Pj4oUKaLffvvNWn737l3t2rXLul2xYkW5ubnp1KlTKlOmjM0jMDDQ4Tlu3rxZPXr0UHh4uKpUqSJ/f3+dOHHCpo6rq6vi4+Nt9tWoUUOHDh1KcrwyZcrI1dXVWu/AgQNJZtHTolKlSpo7d642btyoX3/9VS1atJAknTt3Tn5+fk71SYANAACQCUaMGKENGzboxIkT2r9/v0aMGKGIiAh16dLFbpvGjRsrJibGYSq/Fi1a6K+//rK7XrhLly5yd3dX9+7ddeDAAa1bt079+vVT165drXmeX3/9db3zzjtauXKlDh8+rNdee03Xrl2z9pEvXz698cYbGjhwoBYtWqSoqCjt3r1bH3zwQYqZNsqWLatvvvlGkZGR2rt3rzp37pxkvXTJkiW1YcMGnT171npzl2HDhmnLli3q27evIiMj9ccff+jbb79NcpHjxo0b1axZM4djcGTKlCn66KOPFBoaqk6dOikk5N5yse+++866dCStWCICAACQCS5duqRu3brp/Pnz8vHxUdWqVbV69eok65r/zc/PT+Hh4Vq6dKndCyctFosKFixot4+8efNq9erVev3111W7dm3lzZtX7dq107Rp06x1Bg8erPPnz6t79+7KlSuXevXqpfDwcF2/ft1aZ8KECSpUqJAmT56sP//8U/nz51eNGjU0cuRIh+c9bdo09erVS/Xr11fBggU1bNgwRUdH29QZP368Xn75ZZUuXVpxcXEyDENVq1bV+vXr9eabb+rxxx+XYRgqXbq0nnvuOWu7s2fPasuWLVqyZInDMTgSGhqqy5cvKzo6WgUKFLDuf+mll5Q3b16n+rQYjv7mgBwtOjpaPj4+un79eqrWlT2sjHNHnWqXJRc5OushucgxPRfbPVCvl7MekoscHb1W6brI0ZEseA+49Jua5jY55Xs78TyvTOkjb4/kLybMtLHExsl32OwMfc737dunpk2bKioqKtvcRCa7GDZsmK5evap58+Zl9VBsMIMNAACQjVWtWlVTpkzR8ePHVaVKlaweTrbyyCOPaNCgQenu56uvvtLy5ct16tSpJBdf7t69O839EWAjx4tfszhjOn6QZj2zIr1fBjw/jjKgpmuWNbPTtz0kM83pkZ5ZakcctXV6dhvIBD169MjqIWRLgwcPTncfM2fO1JtvvqkePXro22+/Vc+ePRUVFaUdO3aoT58+TvXJRY4AAADIsebMmaN58+bpgw8+kKurq4YOHapff/1V/fv3t1mDnhYE2AAAAMixTp06pfr160u6d9OaxDziXbt21X//+1+n+iTABgAAQI7l7++vK1euSLp3A5tt2+4tFzt+/LjD/OOOEGADAAAgx3riiSf03XffSZJ69uypgQMHqmnTpnruuecUHh7uVJ9c5AgAAIAca968edYb3/Tp00d+fn7asmWLnn76ab388stO9UmADQAAgBwrV65cypXr/xZ1dOzYUR07dkxXnwTYeKDEf5D+dDxJZLNUc+lhHD7sVDtLcLBzB8xm5+9oPI5S+KVLFtykJ7ul28vs9HYZlcLPoQxI1ejMjWQAmGPfvn2prlu1atU090+ADQAAgBylWrVqslgsKV7EaLFYFB8fn+b+CbABAACQoxw/fjxD+yfABgAAQI5SokSJDO2fNH0AAADIcXbt2qXGjRsrOjo6Sdn169fVuHFj7d3r3DUWBNgAAADIcaZOnaonnnhC3t7eScp8fHzUtGlT/ec//3GqbwJsAAAA5Di//fabnnnmGbvlrVu31pYtW5zqmwAbAAAAOc7Zs2eVL18+u+VeXl46f/68U31zkSMeKI7yxmZIjuxsxtk81xnVr9P5s6UMySvsUHr6zIJc145kdt7pdMnkXOkZlu/cAfJZAw+mQoUK6ciRIwoKCkq2/PDhwypYsKBTfTODDQAAgBwnLCxMkyZNSrbMMAxNmjRJYWFhTvXNDDYAAABynFGjRqlmzZp69NFHNXjwYJUvX17SvZnrqVOn6ujRo1q4cKFTfRNgAwAAIMcpXbq01qxZox49eqhjx46yWCyS7s1eV6xYUb/++qvKlCnjVN8E2AAAAMiRatWqpQMHDigyMlJ//PGHDMNQuXLlVK1atXT1S4ANAACAHK1atWrpDqr/jYscAQAAABMxg40HisNUfFmRSi0DUs1lVCq+B0pmp/BLSVYcExkiV8W6WT0EADkAM9gAAACAiQiwAQAAABMRYKcgKipKo0aNUqdOnXTp0iVJ0s8//6yDBw9m8cgAAACQXiVLltT48eN16tQp0/okwHZg/fr1qlKlin777Td98803iomJkSTt3btXY8aMyeLRAQAAIL0GDBigb775RqVKlVLTpk31+eefKy4uLl19EmA7MHz4cE2cOFG//vqrXF1drfufeOIJbdu2LQtHBgAAADMMGDBAkZGR2r59uypUqKB+/fqpSJEi6tu3r3bv3u1UnwTYDuzfv1/h4eFJ9j/yyCO6fPlyFowIAAAAGaFGjRqaOXOmzp07pzFjxuiTTz5R7dq1Va1aNX366acyDCPVfZGmz4H8+fPr/PnzCgoKstm/Z88eFS1aNItGlcM5SN+WUem3Eg5l7l8rLMHBdstyTAq/BygtnqPXxNFrCQDIXu7cuaMVK1ZowYIF+vXXX1W3bl317t1bZ86c0ciRI7VmzRotW7YsVX0RYDvQsWNHDRs2TF9++aUsFosSEhK0efNmvfHGG+rWrVtWDw8AAADptHv3bi1YsED//e9/lStXLnXr1k3Tp09X8L8mScLDw1W7du1U90mA7cDbb7+tPn36KDAwUPHx8apYsaLi4+PVuXNnjRo1KquHBwAAgHSqXbu2mjZtqg8//FBt2rRRnjx5ktQJCgpSx44dU90nAbYDrq6u+vjjj/XWW2/pwIEDiomJUfXq1VW2bNmsHhoAAABM8Oeff6pEiRIO63h6emrBggWp7pMAOxWKFy+u4sWLZ/UwAAAAYLLGjRtrx44d8vPzs9l/7do11ahRQ3/++Wea+yTAvs+gQYNSXXfatGkZOBIAAABktBMnTig+Pj7J/ri4OJ09e9apPgmw77Nnzx6b7d27d+vu3bsqX768JOno0aNycXFRzZo1s2J4AAAAMMF3331n/ffq1avl4+Nj3Y6Pj9fatWtVsmRJp/omwL7PunXrrP+eNm2a8uXLp0WLFqlAgQKSpKtXr6pnz556/PHHs2qID4X4DwbbL8zkVHzpSsP3AKWTy3Yy+bnLihSHOSatogM5IVWhce6oU+0sAeVMHgmAtGjTpo0kyWKxqHv37jZlefLkUcmSJTV16lSn+ibAdmDq1Kn65ZdfrMG1JBUoUEATJ05Us2bNNHiwgyARAAAA2VZCQoKkexlCduzYoYIFC5rWNwG2A9HR0frrr7+S7P/rr7/0zz//ZMGIAAAAYKbjx49b/33r1i25u7unu09ule5AeHi4evbsqW+++UZnzpzRmTNn9PXXX6t3795q27ZtVg8PAAAA6ZSQkKAJEyaoaNGi8vLysmYNeeuttzR//nyn+iTAdmDu3Llq2bKlOnfurBIlSqhEiRLq3LmzWrRooTlz5mT18AAAAJBOEydO1MKFC/Xuu+/K1dXVur9y5cr65JNPnOqTANuBvHnzas6cOfr777+1Z88e7dmzR1euXNGcOXPk6emZ1cMDAABAOi1evFjz5s1Tly5d5OLiYt0fEhKiw05erM4a7FTw9PRU1apVs3oYAAAAMNnZs2dVpkyZJPsTEhJ0584dp/okwHagcePGslgsdsv/97//ZeJoHi4u/eynvXE25ZUjDlPxkWrvgULqO2Q3pNsDHmwVK1bUxo0bk9wu/auvvlL16tWd6pMA24Fq1arZbN+5c0eRkZE6cOBAknyJAAAAePCMHj1a3bt319mzZ5WQkKBvvvlGR44c0eLFi/XDDz841ScBtgPTp09Pdv/YsWMVExOTyaMBAACA2Z555hl9//33Gj9+vDw9PTV69GjVqFFD33//vZo2bepUn1zk6ITnn39en376aVYPAwAAAE6YOXOmbt26JUk6deqUHnvsMf3666+6dOmSbt68qU2bNqlZs2ZO90+A7YStW7eakoQcAAAAmW/QoEGKjo6WdO9OjsndWDA9WCLiwP03kzEMQ+fPn9fOnTv11ltvZdGoAAAAkB4BAQH6+uuv9eSTT8owDJ05c8Y6o32/4sWLp7l/AmwHvL29bbKI5MqVS+XLl9f48ePT9WcDAAAAZJ1Ro0apX79+6tu3rywWi2rXrp2kjmEYslgsio+PT3P/BNgOLFy4MKuH8NDK6an4SDUHZJAUPusJDspyVaxr7lgAZFsvvfSSOnXqpJMnT6pq1apas2aN/Pz8TOufANuBUqVKaceOHUme8GvXrqlGjRrWe9UDAIDMZ/xxVIZrnqwdw23nbkSCrJcvXz5VrlxZCxYsUIMGDeTm5mZa3wTYDpw4cSLZPwvExcXp7NmzWTAiAAAAmCkj7m1CgJ2M7777zvrv1atXy8fHx7odHx+vtWvXqmTJklkwMgAAAJgpPj5e06dP1/Lly3Xq1Cndvn3bpvzKlStp7pMAOxlt2rSRJFksliS/avLkyaOSJUtq6lT7t/oGAADAg2HcuHH65JNPNHjwYI0aNUpvvvmmTpw4oZUrV2r06NFO9UmAnYyEhHuXwQQFBWnHjh0qWLBgFo8IAAAAGWHp0qX6+OOP1apVK40dO1adOnVS6dKlVbVqVW3btk39+/dPc5/caMaB48ePE1wDAAA8xC5cuKAqVapIkry8vHT9+nVJ0lNPPaUff/zRqT4JsO/z71tnzpw50+EjtTZs2KDWrVsrICBAFotFK1eutCkfO3asgoOD5enpqQIFCigsLEy//fabwz7/+ecfDRgwQCVKlJCHh4fq16+vHTt22NQxDEOjR49WkSJF5OHhobCwMP3xxx+pHjcAAMDDrlixYjp//rwkqXTp0vrll18kSTt27HA6swhLRO4zffp0denSRe7u7po+fbrdehaLJdV/Mrhx44ZCQkLUq1evJHeHlKRy5cpp1qxZKlWqlGJjYzV9+nQ1a9ZMx44dU6FChZLt84UXXtCBAwf02WefKSAgQEuWLFFYWJgOHTqkokWLSpLeffddzZw5U4sWLVJQUJDeeustNW/eXIcOHeJW78jWyBP+8HD2tbQEB5s8kv/PQZ5sZ3Nkx69ZbLfMJaxbakYFIAuFh4dr7dq1evTRR9WvXz89//zzmj9/vk6dOqWBAwc61afFMAzD5HHCAYvFohUrVlgvpExOdHS0fHx8tGbNGjVp0iRJeWxsrPLly6dvv/1WrVq1su6vWbOmWrZsqYkTJ8owDAUEBGjw4MF64403JEnXr19X4cKFtXDhQnXs2DHFsSaO4/r16/L29k77yTrAjWYejgAyo4Kgh+X5gfMyLMB2pEKI3SJHAbaj757MDrAz8ns7O0k8z79faCrvLM6DHX37jvw++fWhf85zkq1bt2rr1q0qW7asWrdu7VQfLBFxYPz48bp582aS/bGxsRo/fnyGHPP27duaN2+efHx8FBKS/Jf93bt3FR8fn2QW2sPDQ5s2bZJ0b/34hQsXFBYWZi338fHRo48+qq1btybbb1xcnKKjo20eAAAAOUm9evU0aNAgp4NriQDboXHjxikmJibJ/ps3b2rcuHGmHuuHH36Ql5eXdWnKr7/+avcCy3z58qlevXqaMGGCzp07p/j4eC1ZskRbt261riG6cOGCJKlw4cI2bQsXLmwtu9/kyZPl4+NjfQQGBpp4hgAAANnH0aNHtX37dpt9a9euVePGjVWnTh29/fbbTvdNgO2AYRiyWCxJ9u/du1e+vr6mHqtx48aKjIzUli1b1KJFC3Xo0EGXLl2yW/+zzz6TYRgqWrSo3NzcNHPmTHXq1Em5cjn/ko4YMULXr1+3Pk6fPu10XwAAANnZsGHD9MMPP1i3jx8/rtatW8vV1VX16tXT5MmTNWPGDKf6JsBORoECBeTr6yuLxaJy5crJ19fX+vDx8VHTpk3VoUMHU4/p6empMmXKqG7dupo/f75y586t+fPn261funRprV+/XjExMTp9+rS2b9+uO3fuqFSpUpIkf39/SdLFixdt2l28eNFadj83Nzd5e3vbPAAAAB5GO3fuVMuWLa3bS5cuVbly5bR69Wq9//77mjFjhhYuXOhU32QRScaMGTNkGIZ69eqlcePG2dwq3dXVVSVLllS9evUydAwJCQmKi4tLsZ6np6c8PT119epVrV69Wu+++66kezfJ8ff319q1a1WtWjVJ9y4K+e233/Tqq69m5NABAACyvcuXL6tYsWLW7XXr1tmsuw4NDdXgwYOd6psAOxmJt0cPCgpS/fr1lSdP+q5QjomJ0bFjx6zbx48fV2RkpHx9feXn56dJkybp6aefVpEiRXT58mXNnj1bZ8+e1bPPPmtt06RJE4WHh6tv376SpNWrV8swDJUvX17Hjh3TkCFDFBwcrJ49e0q6l61kwIABmjhxosqWLWtN0xcQEOAwg4lZ7vZp5bDcYYYAJ6/kR+Yj2wcySoal98vk7xdS+AHZl6+vr86fP6/AwEAlJCRo586dGjRokLX89u3bcjbZHgG2A40aNbL++9atW7p9+7ZNeWqXUOzcuVONGze2bie+eN27d9fcuXN1+PBhLVq0SJcvX5afn59q166tjRs3qlKlStY2UVFRunz5snX7+vXrGjFihM6cOSNfX1+1a9dOkyZNsvkxMHToUN24cUMvvfSSrl27pscee0yrVq0iBzYAAMjxQkNDNWHCBM2ZM0dffvmlEhISFBoaai0/dOiQSpYs6VTfBNgO3Lx5U0OHDtXy5cv1999/JymPj49PVT+hoaEOfwF98803KfZx4sQJm+0OHTqkuA7cYrFo/PjxGZZSEAAA4EE1adIkNW3aVCVKlJCLi4tmzpwpT09Pa/lnn32mJ554wqm+CbAdGDJkiNatW6cPP/xQXbt2tS7d+Oijj/TOO+9k9fAAAADgpJIlS+r333/XwYMHVahQIQUEBNiUjxs3zmaNdloQYDvw/fffa/HixQoNDVXPnj31+OOPq0yZMipRooSWLl2qLl26ZPUQAQAA4KTcuXPbvbGfvf2pQZo+B65cuWJNe+ft7a0rV65Ikh577DFt2LAhK4cGAACAbIoA24FSpUrp+PHjkqTg4GAtX75c0r2Z7X+n7gMAAAASsUTEgZ49e2rv3r1q1KiRhg8frtatW2vWrFm6c+eOpk2bltXDe6A5SsGV9N6Z/yfB2QM6SM2l3/c626tDpLADsiEHn3env18A4D4E2A4MHDjQ+u+wsDAdPnxYu3btUsGCBbVkyZIsHBkAAADSY/z48XrjjTeUN29e0/tmiUgalChRQm3btpWPj4/D25gDAAAgexs3bpxiYmIypG8CbAAAAOQ4zt6lMTUIsAEAAJAjWSyOrvxyHmuwAQAAkCOVK1cuxSA7MU1zWhBgJ6Nt27YOy69du5Y5AwEAAECGGTduXIakXibATkZKT7SPj4+6deuWSaPJvu72aZUh/Tqbwi+jkG4PeHCk9Hm1BAfbL3Q2ZaejNKAAsrWOHTvqkUceMb1fAuxkLFiwIKuHAAAAgAyUUeuvJS5yBAAAQA6UkVlEmMEGAABAjpOQkPz9W0+ePKkbN24oODhYuXI5NxfNDDYAAABynE8//VTTpk2z2ffSSy+pVKlSqlKliipXrqzTp0871TcBNgAAAHKcefPmqUCBAtbtVatWacGCBVq8eLF27Nih/Pnza9y4cU71zRIRAAAA5Dh//PGHatWqZd3+9ttv9cwzz6hLly6SpLfffls9e/Z0qm8CbDxQSJkH4EHiEkZKVyC7io2Nlbe3t3V7y5Yt6t27t3W7VKlSunDhglN9s0QEAAAAOU6JEiW0a9cuSdLly5d18OBBNWjQwFp+4cIFp29Cwww2AAAAcpzu3burT58+OnjwoP73v/8pODhYNWvWtJZv2bJFlStXdqpvAmwAAADkOEOHDtXNmzf1zTffyN/fX19++aVN+ebNm9WpUyen+ibABgAAQI6TK1cujR8/XuPHj0+2/P6AO019O90SAAAAeEBt375d8fHxdsvj4uK0fPlyp/omwAYAAECOU69ePf3999/WbW9vb/3555/W7WvXrjm9RIQAGwAAADmOYRgOt+3tSw3WYCNDWIKDM6TfrMiD7ehcyMsNZC8pfvdUCHGqX/JZAzmTxWJxqh0z2AAAAICJmMEGAABAjnTo0CHr3RoNw9Dhw4cVExMj6d7NZ5xFgA0AAIAcqUmTJjbrrJ966ilJ95aGGIbh9BIRAmwAAADkOMePH8+wvgmwAQAAkOOUKFEiw/rmIkcAAADkOO+++65iY2Ot25s3b1ZcXJx1+59//tFrr73mVN/MYCNDpJS+ztk0fhmV/s9ZpPADAODBNGLECPXo0UMeHh6SpJYtWyoyMlKlSpWSJN28eVMfffSR5syZk+a+mcEGAABAjpOaG804iwAbAAAAMBEBNgAAQDZ2+/ZtlSlTRlu2bMmS43fs2FFTp07NkmM/qFiDDQAAkAkmT56sb775RocPH5aHh4fq16+vKVOmqHz58g7bzZ07V0FBQapfv751n8Vi0YoVK9SmTZsMHrU0atQoNWzYUC+88IJ8fHwy/HiZ6ZNPPpGXl5ck6e7du1q4cKEKFiwo6d5Fjs4iwAYAAMgE69evV58+fVS7dm3dvXtXI0eOVLNmzXTo0CF5enom28YwDM2aNUvjx4/P5NH+n8qVK6t06dJasmSJ+vTpk2XjMFvx4sX18ccfW7f9/f312WefJanjDJaIAAAAZIJVq1apR48eqlSpkkJCQrRw4UKdOnVKu3btsttm165dioqKUqtWrVJ9nISEBI0fP17FihWTm5ubqlWrplWrVlnL27dvr759+1q3BwwYIIvFosP/P/vV7du35enpqTVr1ljrtG7dWp9//nlaTjfbO3HihI4fP57iwxnMYCNLOJvCLkPS9FUIcb7t73vNGweALOUS1i2rh4AHWHR0tM22m5ub3NzcHLa5fv26JMnX19dunY0bN6pcuXLKly9fqsfy/vvva+rUqfroo49UvXp1ffrpp3r66ad18OBBlS1bVo0aNdJHH31krb9+/XoVLFhQERERCg4O1o4dO3Tnzh2bJSl16tTRpEmTFBcXl+J5gRlsAACAdAsMDJSPj4/1MXnyZIf1ExISNGDAADVo0ECVK1e2W+/kyZMKCAhI01jee+89DRs2TB07dlT58uU1ZcoUVatWTTNmzJAkhYaG6tChQ/rrr7909epVHTp0SK+//roiIiIkSREREapdu7by5s1r7TMgIEC3b9/WhQsX0jSW7Cw2NlY//PCDdXvEiBEaNGiQ9TFkyBDdunXLqb6ZwQYAAEin06dPy9vb27qd0ixvnz59dODAAW3atMlhvdjYWLm7u6d6HNHR0Tp37pwaNGhgs79Bgwbau/feX10rV64sX19frV+/Xq6urqpevbqeeuopzZ49W9K9Ge3Q0FCb9ok3Y7l582aqx5LdLVq0SD/++KOeeuopSdKsWbNUqVIl67kePnxYAQEBGjhwYJr7ZgYbAAAgnby9vW0ejgLsvn376ocfftC6detUrFgxh/0WLFhQV69eNXWsFotFDRs2VEREhDWYrlq1quLi4nTgwAFt2bJFjRo1smlz5coVSVKhQoVMHUtWWrp0qV566SWbfcuWLdO6deu0bt06/ec//9Hy5cud6psAGwAAIBMYhqG+fftqxYoV+t///qegoKAU21SvXl2HDx9O9V0Gvb29FRAQoM2bN9vs37x5sypWrGjdbtSokSIiIhQREaHQ0FDlypVLDRs21H/+8x/FxcUlmQE/cOCAihUrZk1h9zA4duyYqlSpYt12d3dXrlz/FxrXqVNHhw4dcqpvlogAAABkgj59+mjZsmX69ttvlS9fPut6Zh8fH+uyhPs1btxYMTExOnjwYJK12sePH1dkZKTNvrJly2rIkCEaM2aMSpcurWrVqmnBggWKjIzU0qVLrfVCQ0M1cOBAubq66rHHHrPue+ONN1S7du0kaQM3btyoZs2apfcpyFauXbumuLg46/Zff/1lU56QkGBTnhYE2AAAAJngww8/lKQk65sXLFigHj16JNvGz89P4eHhWrp0aZILJwcNGpSk/saNG9W/f39dv35dgwcP1qVLl1SxYkV99913Klu2rLVelSpVlD9/fpUrV856o5XQ0FDFx8cnGd+tW7e0cuVKm1R/D4NixYrpwIEDdm/0s2/fvhSX8NhjMVL7NwfkONHR0fLx8dH169dtLtxIFL9msf3GWZG+Lj3p9hzJgHNxNk0hkFM4nZIzm30PuPTL3NtLp/S9/bBIPM+/X2gqb9c8WTuW23fk98mvGfqc79u3T02bNlVUVJQ1GM5MH374oVasWKFffvkl04+dkV5//XWtWbNGu3btSnIhaWxsrGrVqqWwsDC9//77ae6bGWwAAIBsrGrVqpoyZYqOHz9us2Y4s+TJk0cffPBBph83o40cOVLLly9X+fLl1bdvX5UrV06SdOTIEc2aNct6t01nEGADAABkc/aWkGSGF154IcuOnZEKFy6sLVu26NVXX9Xw4cOtF5JaLBY1bdpUc+bMUeHChZ3qmwAbAAAAOVJQUJBWrVqlK1eu6NixY5KkMmXKOLy7ZmoQYAMAACBH8/X1VZ06dUzrjzzYAAAAgIkIsAEAAAATsUQE2Y+DNFu5KtY1/XAJh7aZ3mdKHKUgI4Ufcopsl4oPAEzCDDYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRJo+OM0lrJv9wjDHbeM/GGy3LCNS8TmS0vESnO34971ONXM6dVkKSP+HrJDZqfjS8/2RESk7HX3XpfSZzD37R7OHAyCTMIMNAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAExFgAwAAACYiDzayhEu/qU61M84dNXkkKXOUV9dh3lxHeXydzJGdHhmRX5vc2pAyLne7Pdkt17Ujzn7XAXiwMYMNAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJCLAzwYYNG9S6dWsFBATIYrFo5cqVNuVjx45VcHCwPD09VaBAAYWFhem3335z2Gd8fLzeeustBQUFycPDQ6VLl9aECRNkGIa1To8ePWSxWGweLVq0yIhTBAAAwP9Hmr5McOPGDYWEhKhXr15q27ZtkvJy5cpp1qxZKlWqlGJjYzV9+nQ1a9ZMx44dU6FChZLtc8qUKfrwww+1aNEiVapUSTt37lTPnj3l4+Oj/v37W+u1aNFCCxYssG67ubmZf4IPgMxOzSUpS1LxAVnBUbpGZ1P4pScVHwBkNQLsTNCyZUu1bNnSbnnnzp1ttqdNm6b58+dr3759atKkSbJttmzZomeeeUatWrWSJJUsWVL//e9/tX37dpt6bm5u8vf3T+cZAAAAILVYIpLN3L59W/PmzZOPj49CQuzfqKR+/fpau3atjh69d+OVvXv3atOmTUkC+YiICD3yyCMqX768Xn31Vf399992+4yLi1N0dLTNAwAAAGnDDHY28cMPP6hjx466efOmihQpol9//VUFCxa0W3/48OGKjo5WcHCwXFxcFB8fr0mTJqlLly7WOi1atFDbtm0VFBSkqKgojRw5Ui1bttTWrVvl4uKSpM/Jkydr3LhxGXJ+AAAAOQUBdjbRuHFjRUZG6vLly/r444/VoUMH/fbbb3rkkUeSrb98+XItXbpUy5YtU6VKlRQZGakBAwYoICBA3bt3lyR17NjRWr9KlSqqWrWqSpcurYiIiGSXnowYMUKDBg2ybkdHRyswMNDkMwUAAHi4sUQkm/D09FSZMmVUt25dzZ8/X7lz59b8+fPt1h8yZIiGDx+ujh07qkqVKuratasGDhyoyZMn221TqlQpFSxYUMeOHUu23M3NTd7e3jYPAAAApA0BdjaVkJCguLg4u+U3b95Urly2L5+Li4sSEhLstjlz5oz+/vtvFSlSxLRxAgAAwBZLRDJBTEyMzazx8ePHFRkZKV9fX/n5+WnSpEl6+umnVaRIEV2+fFmzZ8/W2bNn9eyzz1rbNGnSROHh4erbt68kqXXr1po0aZKKFy+uSpUqac+ePZo2bZp69eplPea4cePUrl07+fv7KyoqSkOHDlWZMmXUvHnzzH0CTOR0uj1S5jnkKM0akBWyJLWmIxXsX3TO9wuA+xFgZ4KdO3eqcePG1u3Edc7du3fX3LlzdfjwYS1atEiXL1+Wn5+fateurY0bN6pSpUrWNlFRUbp8+bJ1+4MPPtBbb72l1157TZcuXVJAQIBefvlljR49WtK92ex9+/Zp0aJFunbtmgICAtSsWTNNmDAhx+bCBgAAyAwE2JkgNDTU5g6L9/vmm29S7OPEiRM22/ny5dOMGTM0Y8aMZOt7eHho9erVaRkmAAAATMAabAAAAMBEBNgAAACAiQiwAQAAABMRYAMAAAAm4iJHPDxIlQU8PBx9nh2lzAOAbIAZbAAAAMBEBNgAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiINH3IduI/GJzVQ8h4GZVmzMlUhZbgYLtlxuHDzo4GyH5I5wkgEzCDDQAAAJiIABsAAAAwEUtEAADAA+nMlj+Vz8UlS8fwT3x8lh4f2RMz2AAAAICJCLABAAAAExFgAwAAACZiDTayxN0+reyWOUoZl2Hp7RxxNq1XVowVyAIOP7POyqjPj5P9uoR1s1uWI1KLAkgTZrABAAAAExFgAwAAACYiwAYAAABMRIANAAAAmIgAGwAAADARATYAAABgIgJsAAAAwETkwUaWyFa5rlPKc50R43E2t3Y6GIcPZ/ox8XDIkDzXksPPVq6Kde2WJRza5vQhne3XUa5rl35TnR4PgIcTM9gAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEWn6kCWcTWsVv2ax/UJnU99ldlpAIItkWLq9DOBsKj5HafhS4hLWzX5hmNPdAsiBmMEGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAiUjTh2wn/oPB5ndKKj6HKdqMw4czcSRISZak0+MzAgCmYQYbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiJNH5AOuSrWtVuWcGhbJo4kfZxNC0d6P+eRis/x5ycrGOeOOtXO0WfdJaybs8MB8ABjBhsAAAAwEQE2AAAAYCICbAAAAMBEBNgAAACAiQiwAQAAABMRYAMAAAAmIk0fMsTdPq0ypF+nU5v9vtd+WTZLXfYgSU+qOVL8ZQE+Bw5ZAso51c7FyXYAHl7MYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBEpOmD07JdKj5HslsKMkfjeZBSqTkaawqcfZ2zIr1fhrwnHcmo19nR65WO19LZ8SYc2ub8MTPC1x/ZLXLpNzUTBwLgQccMNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiLABgAAyOYaNmyoZcuWZfUwstyqVatUrVo1JSQkZPVQHCLABgAAyAQbNmxQ69atFRAQIIvFopUrV6aq3XfffaeLFy+qY8eOun37tgoWLKh33nkn2boTJkxQ4cKFdefOHRNH7liPHj3Upk2bTDlWixYtlCdPHi1dujRTjucs8mDjwZLd8kA7kKtiXbtlDvP/PkDnmBUc5aROT47sTM91nQ6O3luOZNh8T2bnbn+QcsUD/3Ljxg2FhISoV69eatu2barbzZw5Uz179lSuXLnk6uqq559/XgsWLNDw4cNt6hmGoYULF6pbt27KkydPmsd3584dp9plth49emjmzJnq2rVrVg/FLmawAQAAMkHLli01ceJEhYeHp7rNX3/9pf/9739q3bq1dV/v3r119OhRbdq0yabu+vXr9eeff6p3796SpE8++UQVKlSQu7u7goODNWfOHGvdEydOyGKx6IsvvlCjRo3k7u6uefPmydvbW1999ZVNvytXrpSnp6f++ecfZ05b69evV506deTm5qYiRYpo+PDhunv3riTphx9+UP78+RUfHy9JioyMlMVisfnx8MILL+j555+3brdu3Vo7d+5UVFSUU+PJDATYAAAA6RQdHW3ziIuLM6XfTZs2KW/evKpQoYJ1X5UqVVS7dm19+umnNnUXLFig+vXrKzg4WEuXLtXo0aM1adIk/f7773r77bf11ltvadGiRTZthg8frtdff12///672rZtq44dO2rBggVJ+m3fvr3y5cuX5vGfPXtWTz75pGrXrq29e/fqww8/1Pz58zVx4kRJ0uOPP65//vlHe/bskXQvGC9YsKAiIiKsfaxfv16hoaHW7eLFi6tw4cLauHFjmseTWQiwAQAA0ikwMFA+Pj7Wx+TJk03p9+TJkypcuLBy5bIN2Xr37q0vv/xSMTExkqR//vlHX331lXr16iVJGjNmjKZOnaq2bdsqKChIbdu21cCBA/XRRx/Z9DNgwABrnSJFiuiFF17Q6tWrdf78eUnSpUuX9NNPP1n7Tas5c+YoMDBQs2bNUnBwsNq0aaNx48Zp6tSpSkhIkI+Pj6pVq2YNqCMiIjRw4EDt2bNHMTExOnv2rI4dO6ZGjRrZ9BsQEKCTJ086NabMQIANAACQTqdPn9b169etjxEjRpjSb2xsrNzd3ZPs79Spk+Lj47V8+XJJ0hdffKFcuXLpueee040bNxQVFaXevXvLy8vL+pg4cWKSZRW1atWy2a5Tp44qVapknelesmSJSpQooYYNGzo1/t9//1316tWTxWKx7mvQoIFiYmJ05swZSVKjRo0UEREhwzC0ceNGtW3bVhUqVNCmTZu0fv16BQQEqGzZsjb9enh46ObNm06NKTMQYAMAAKSTt7e3zcPNzc2UfgsWLKirV68me7z27dtbl3MsWLBAHTp0kJeXl3VW++OPP1ZkZKT1ceDAAW3bZnuRvaenZ5K+X3jhBS1cuNDab8+ePW0CZLOFhoZq06ZN2rt3r/LkyaPg4GCFhoYqIiJC69evTzJ7LUlXrlxRoUKFMmxM6UWAnQlSSsszduxYBQcHy9PTUwUKFFBYWJh+++03h33Gx8frrbfeUlBQkDw8PFS6dGlNmDBBhmFY6xiGodGjR6tIkSLy8PBQWFiY/vjjj4w4RQAAkAGqV6+uCxcuJBtk9+7dW5s2bdIPP/ygLVu2WC9uLFy4sAICAvTnn3+qTJkyNo+goKAUj/n888/r5MmTmjlzpg4dOqTu3bs7Pf4KFSpo69atNvHJ5s2blS9fPhUrVkzS/63Dnj59ujWYTgywIyIibNZfS9KtW7cUFRWl6tWrOz2ujEaavkyQUlqecuXKadasWSpVqpRiY2M1ffp0NWvWTMeOHbP762zKlCn68MMPtWjRIlWqVEk7d+5Uz5495ePjo/79+0uS3n33Xc2cOVOLFi1SUFCQ3nrrLTVv3lyHDh1K9s9NaZV79o9Ot43/YHC6j5/dOUzF9yBxlBItm3mQUu2lJ52co/eWoxR+Tqf3S+m97OBcMuSYpOLDAyomJkbHjh2zbh8/flyRkZHy9fVV8eLFk21TvXp1FSxYUJs3b9ZTTz1lU9awYUOVKVNG3bp1U3BwsOrXr28tGzdunPr37y8fHx+1aNFCcXFx2rlzp65evapBgwY5HGeBAgXUtm1bDRkyRM2aNbMGwo5cv35dkZGRNvv8/Pz02muvacaMGerXr5/69u2rI0eOaMyYMRo0aJB1XXmBAgVUtWpVLV26VLNmzbKeW4cOHXTnzp0kM9jbtm2Tm5ub6tWrl+K4sgoz2JkgpbQ8nTt3VlhYmEqVKqVKlSpp2rRpio6O1r59++z2uWXLFj3zzDNq1aqVSpYsqfbt26tZs2bavn27pHuz1zNmzNCoUaP0zDPPqGrVqlq8eLHOnTuX6sT2AADAPDt37lT16tWtM6+DBg1S9erVNXr0aLttXFxc1LNnz2RvrGKxWNSrVy9dvXo1yUWIL7zwgj755BMtWLBAVapUUaNGjbRw4cJUzWBL92bHb9++neqLGyMiIqznlvgYN26cihYtqp9++knbt29XSEiIXnnlFfXu3VujRo2yad+oUSPFx8dbZ6t9fX1VsWJF+fv7q3z58jZ1//vf/6pLly7KmzdvqsaWFZjBzmZu376tefPmycfHRyEh9mdp6tevr3nz5uno0aMqV66c9u7dq02bNmnatGmS7v0qvnDhgsLCwqxtfHx89Oijj2rr1q3q2LFjkj7j4uJs0gpFR0ebeGYAAORsoaGhNkslUmvgwIGqVKmSTp48qRIlStiUjRgxwu4FlZ07d1bnzp2TLStZsqTDsZw9e1Z+fn565plnUhzfwoULrWu2k9OoUSPrBKA9M2bM0IwZM2z23T8jLkmXL1/WV199pZ07d6Y4rqxEgJ1N/PDDD+rYsaNu3rypIkWK6Ndff1XBggXt1h8+fLiio6MVHBwsFxcXxcfHa9KkSerSpYsk6cKFC5LurcP6t8KFC1vL7jd58mSNGzfOpDMCAABm8Pf31/z583Xq1KkkAbbZbt68qfPnz+udd97Ryy+/LFdX1ww9XlqdOHFCc+bMSfVMfFZhiUg20bhxY0VGRmrLli1q0aKFOnTooEuXLtmtv3z5ci1dulTLli3T7t27tWjRIr333ntJEsinxYgRI2xSDJ0+fdrpvgAAgHnatGmjxx9/PMOP8+677yo4OFj+/v6mpRo0U61atfTcc89l9TBSRICdTXh6eqpMmTKqW7eu5s+fr9y5c2v+/Pl26w8ZMkTDhw9Xx44dVaVKFXXt2lUDBw60Jrb39/eXJF28eNGm3cWLF61l93Nzc0uSZggAAOQcY8eO1Z07d7R27Vp5eXll9XAeWATY2VRCQoLD26zevHkzyV2dXFxclJCQIEkKCgqSv7+/1q5day2Pjo7Wb7/9lq2vugUAAHjQsQY7EzhKy+Pn56dJkybp6aefVpEiRXT58mXNnj1bZ8+e1bPPPmtt06RJE4WHh6tv376SpNatW2vSpEkqXry4KlWqpD179mjatGnWq30tFosGDBigiRMnqmzZstY0fQEBAWrTpk2mnn+aPUApuJxOxfcApb5DOmTBe9nZFH6OONsuPTIspaADLv2mOt0WAP6NADsT7Ny5U40bN7ZuJ+af7N69u+bOnavDhw9r0aJFunz5svz8/FS7dm1t3LhRlSpVsraJiorS5cuXrdsffPCB3nrrLb322mu6dOmSAgIC9PLLL9uk+hk6dKhu3Lihl156SdeuXdNjjz2mVatWmZIDGwAAAMmzGM7ki0GOEB0dLR8fH12/ft309dgObzTzAM1gO40Z7Jwhm72Xs2ImOrOlawY7rJuJI8kaGfm9nZ0knufeiqWVz8UlS8fyT3y8Qg5FPfTPOdKGNdgAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATEQWEWSNbHbxFzKIo9c5h1/o6eiCw/RcqOdIRvX7IHkYLmQEkP0xgw0AAACYiAAbAAAAMBEBNgAAAGAiAmwAAADARATYAAAAgIkIsAEAAAATkaYPWcJRqqz4Dwbbb/iwpPfLbunrHpbn9QGSY1LmOft+zqD3pKPvF5d+UzPkmAByHmawAQAAABMRYAMAAAAmIsAGAAAATESADQAAAJiIABsAAAAwEQE2AAAAYCICbAAAAMBE5MFGtuMoF63DHNmO5JQ8zw/SeWZ2LvAH6bnJKI6e1/Q8P1mRux0AsjFmsAEAAAATEWADAAAAJiLABgAAAExEgA0AAACYiAAbAAAAMBEBNgAAAGAi0vThgeIwhd+axU71matiXWeH47SEQ9vsF5JOjucgo2R2asSskMJ5OPoOAQCzMIMNAAAAmIgAGwAAADARATYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAE5GmDw8Nl7BudsuMc0czcSQpc5Qa0GEKPyCjpCc1oqPUeBmRcvFhSSkI4KHFDDYAAABgIgJsAAAAwEQE2AAAAICJCLABAAAAExFgAwAAACYiwAYAAABMRJo+5AiWgHJ2y7JbCr8skdlp1pAujtI8OpJhKSCzUSo+l35TTR4IAKQdM9gAAACAiQiwAQAAABMRYAMAAAAmIsAGAAAATMRFjgAA4IG0/cw15bVk7VzhTSMhS4+P7IkZbAAAAMBEzGAjx0tP6rJsly7NESfTnjndLiUZkNrN2ddDyqLXJBtJz3PnKA2mI/EfDHb6mM72SRo/AJmBGWwAAADARATYAAAAgIkIsAEAAAATEWADAAAAJiLABgAAAExEgA0AAACYiDR9yPFcwro53TZ+zWK7ZY7SnqUnJZoj/6+9ew+rqkr8P/45oIggKIJcLNS8YF7RHDVG85KgojapTDcbB1MzJ5UmmQQnx1s5NTU6Npo6GV6mnHQa0xqnLLQwRAdNRbTElMBLouaYIaiAnP39o5/n5wkBxX04XN6v5znP09lrr7XXWu4HP672XpS51VxZ2+JVo634HKVabblYQY4ao2sFt+kra8u8srbbY6s9AFUdK9gAAACAiQjYAAAAgIkI2AAAAICJCNgAAACAiQjYAAAAgIkI2AAAAICJCNgAAACAidgHG7gdZewfba1gk7ezR3ZZdSu8R/ZtcNR+31VJhee8GrmdveIrfE32ugZQjbGCDQAAAJiIgA0AAACYiIANAAAAmIiADQAAAJiIgA0AAACYiIANAAAAmIht+oDbUNGtxIoXxZZaVtb2fuVte+eIbeFqw1Z7jlKdtvArsz/l9NUZ2/gBQFXGCjYAAABgIgI2AAAAYCICNgAAAGAiAjYAAABgIgI2AAAAYCICdiX4/PPP9cADD6hp06ayWCzauHGjXfns2bN19913y9PTUz4+PgoPD1dqamqZbbZo0UIWi6XEZ9KkSbZz+vXrV6J84sSJjhgiAAAA/h+26asE+fn5Cg0N1dixYzVy5MgS5SEhIVq8eLFatmypy5cv6y9/+YsGDhyoo0ePqkmTJjdsc/fu3SouLrZ9P3jwoCIiIvTQQw/Znffkk09q7ty5tu8eHh4mjQq3o6Lb+5XbbtOQCtUr3vL3UsssFWxTkoxTX1e4bk1XnbY/ZBs+ALg1BOxKEBkZqcjIyFLLR40aZfd9wYIFSkhIUHp6ugYMGHDDOj8N3i+//LJatWqlvn372h338PBQYGBgBXsOAACAW8UjIlVMYWGh3njjDTVs2FChoaE3Xeftt9/W2LFjZbFY7MrWrFkjPz8/dezYUdOnT9elS5dKbaegoEC5ubl2HwAAANwaVrCriE2bNunRRx/VpUuXFBQUpMTERPn5+d1U3Y0bN+rChQsaM2aM3fFRo0apefPmatq0qdLT0xUXF6fDhw/rvffeu2E7L730kubMmXO7QwEAAKjVCNhVRP/+/ZWWlqZz585p+fLlevjhh5Wamip/f/9y6yYkJCgyMlJNmza1Oz5hwgTbf3fq1ElBQUEaMGCAMjMz1apVqxLtTJ8+XVOnTrV9z83NVXBw8G2MCgAAoPbhEZEqwtPTU61bt9a9996rhIQE1alTRwkJCeXWO3bsmLZs2aLx48eXe27Pnj0lSUePHr1heb169eTt7W33AQAAwK0hYFdRVqtVBQUF5Z63cuVK+fv7a+jQoeWem5aWJkkKCgq63e4BAACgFDwiUgny8vLsVo2zsrKUlpamxo0by9fXV/PmzdMvfvELBQUF6dy5c3r99df17bff2m25N2DAAI0YMUKTJ0+2HbNarVq5cqWio6NVp479H2VmZqb+8Y9/aMiQIfL19VV6erqeffZZ9enTR507d3b8oFGtOGobNutX/y21rDptU1cb8OcBAOYhYFeCL774Qv3797d9v/acc3R0tJYtW6aMjAytXr1a586dk6+vr7p3767k5GR16NDBViczM1Pnzp2za3fLli06fvy4xo4dW+Kabm5u2rJlixYuXKj8/HwFBwcrKipKM2bMcNAoAQAAIBGwK0W/fv1kGEap5aXt6nG97OzsEscGDhxYarvBwcHatm3bTfcRAAAA5uAZbAAAAMBEBGwAAADARARsAAAAwEQEbAAAAMBEvOQIwGHK2v6veFFs6RXbhZZaxHZyjmFpGuLsLgBAjcEKNgAAAGAiAjYAAABgIgI2AAAAYCICNgAAAGAiAjYAAABgIgI2AAAAYCK26QPgFK5T5pdaVtYWftYy2mQLv7KxFR8AVA5WsAEAAKqwwsJCtW7dWjt27HB2V6q8+Ph4TZkyxdndIGADAABUltdff10tWrSQu7u7evbsqV27dpVbZ9myZbrrrrv085//3HbMYrHI3d1dx44dszt3+PDhGjNmjCl9feedd+Tq6qpJkyaZ0l5l+N3vfqfVq1frm2++cWo/CNgAAACVYN26dZo6dapmzZqlvXv3KjQ0VIMGDdLZs2dLrWMYhhYvXqxx48aVKLNYLJo5c6bD+puQkKBp06bpnXfe0ZUrVxx2HTP5+flp0KBBWrp0qVP7QcAGAACoBAsWLNCTTz6pJ554Qu3bt9eyZcvk4eGhFStWlFpnz549yszM1NChQ0uUTZ48WW+//bYOHjxYav2CggLFxMTI399f7u7u6t27t3bv3l1uX7OysrRjxw7Fx8crJCRE7733XolzVqxYoQ4dOqhevXoKCgrS5MmTbWUXLlzQU089pYCAALm7u6tjx47atGmTrXz79u267777VL9+fQUHBysmJkb5+fm28iVLlqhNmzZyd3dXQECAfvnLX9rK/vWvf6lTp06qX7++fH19FR4eblf3gQce0Nq1a8sdoyMRsAEAAG5Tbm6u3aegoMCuvLCwUHv27FF4eLjtmIuLi8LDw7Vz585S201OTlZISIi8vLxKlPXq1UvDhg1TfHx8qfWnTZum9evXa/Xq1dq7d69at26tQYMG6fz582WOZ+XKlRo6dKgaNmyoX/3qV0pISLArX7p0qSZNmqQJEybowIED+uCDD9S6dWtJktVqVWRkpFJSUvT222/rq6++0ssvvyxXV1dJUmZmpgYPHqyoqCilp6dr3bp12r59uy2gf/HFF4qJidHcuXN1+PBhbd68WX369JEk5eTk6LHHHtPYsWN16NAhJSUlaeTIkTIMw9a3Hj166OTJk8rOzi5zjI7ELiIAAAC3KTg42O77rFmzNHv2bNv3c+fOqbi4WAEBAXbnBQQEKCMjo9R2jx07pqZNm5Za/tJLL6lz585KTk7WfffdZ1eWn5+vpUuXatWqVYqMjJQkLV++XImJiUpISNBzzz13wzatVqtWrVqlRYsWSZIeffRRxcbGKisrS3fddZck6cUXX1RsbKyeeeYZW73u3btLkrZs2aJdu3bp0KFDCgn5cfeili1b2vX58ccf129/+1tJUps2bfTXv/5Vffv21dKlS3X8+HF5enpq2LBh8vLyUvPmzdW1a1dJPwbsq1evauTIkWrevLkkqVOnTnb9vzZfx44dU4sWLUqdO0diBRsAAOA2nThxQj/88IPtM336dFPavXz5stzd3Ustb9++vX7961/fcBU7MzNTRUVF6tWrl+1Y3bp11aNHDx06dKjUNhMTE5Wfn68hQ4ZI+vG55oiICNujLGfPntWpU6c0YMCAG9ZPS0vTnXfeaQvXP7V//36tWrVKDRo0sH0GDRokq9WqrKwsRUREqHnz5mrZsqVGjx6tNWvW6NKlS5Kk0NBQDRgwQJ06ddJDDz2k5cuX6/vvv7drv379+pJkq+MMrGADqHLK2iO7ooxTX5veJgBc4+3tLW9v71LL/fz85OrqqjNnztgdP3PmjAIDA8usd+DAgTKvPWfOHIWEhGjjxo231OfSJCQk6Pz587agKv24qp2enq45c+bYHb+R8srz8vL01FNPKSYmpkRZs2bN5Obmpr179yopKUmffPKJZs6cqdmzZ2v37t1q1KiREhMTtWPHDn3yySdatGiRnn/+eaWmptpW1689/tKkSZNbHbppWMEGAABwMDc3N3Xr1k1bt261HbNardq6davCwsJKrde1a1dlZGTYPWP8U8HBwZo8ebJ+//vfq7i42Ha8VatWcnNzU0pKiu1YUVGRdu/erfbt29+wrf/97396//33tXbtWqWlpdk++/bt0/fff69PPvlEXl5eatGihd1Yrte5c2edPHlSX39944WNe+65R1999ZVat25d4uPm5iZJqlOnjsLDw/XKK68oPT1d2dnZ+vTTTyX9uHtKr169NGfOHO3bt09ubm7asGGDrf2DBw+qbt266tChQ6lz5misYAMAAFSCqVOnKjo6Wj/72c/Uo0cPLVy4UPn5+XriiSdKrdO/f3/l5eXpyy+/VMeOHUs9b/r06Vq+fLmysrL0yCOPSJI8PT31m9/8Rs8995waN26sZs2a6ZVXXtGlS5duuO2fJL311lvy9fXVww8/LIvFYlc2ZMgQJSQkaPDgwZo9e7YmTpwof39/RUZG6uLFi0pJSdGUKVPUt29f9enTR1FRUVqwYIFat26tjIwMWSwWDR48WHFxcbr33ns1efJkjR8/Xp6envrqq6+UmJioxYsXa9OmTfrmm2/Up08f+fj46MMPP5TValXbtm2VmpqqrVu3auDAgfL391dqaqq+++47tWvXztbPa8+jl7eS7kisYAMAAFSCRx55RH/+8581c+ZMdenSRWlpadq8eXOJFx+v5+vrqxEjRmjNmjVltt24cWPFxcWV2K/65ZdfVlRUlEaPHq177rlHR48e1ccffywfH58btrNixQqNGDGiRLiWpKioKH3wwQc6d+6coqOjtXDhQi1ZskQdOnTQsGHDdOTIEdu569evV/fu3fXYY4+pffv2mjZtmm11vXPnztq2bZu+/vpr3XffferatatmzpxpezmxUaNGeu+993T//ferXbt2WrZsmd555x116NBB3t7e+vzzzzVkyBCFhIRoxowZmj9/vu0lTklau3atnnzyyTLny9EsRln/zwG1Wm5urho2bKgffvihzOfKgOqAZ7AlS9Mbv3CEmqO2/Ny+Ns7l3r7ysDh3rfCSYdWTuf9z6Jynp6crIiJCmZmZatCggUOuUVN89NFHio2NVXp6uurUcd6DGqxgAwAAVGGdO3fWn/70J2VlZTm7K1Vefn6+Vq5c6dRwLfEMNgAAQJU3ZswYZ3ehWrj+Nz46EwEbQK1gXf+3sk9oF1qhdl3a31uhegCAmotHRAAAAAATEbABAAAAExGwAQAAABMRsAEAAAATEbABAAAAExGwAQAAABOxTR+AWsF1ynxnd8GOo36zJL+tEQCcjxVsAAAAwEQEbAAAAMBEBGwAAADARARsAAAAwEQEbAAAAMBEBGwAAADARGzTBwBOUNZ2euVt4cdWfABQtbGCDQAAAJiIgA0AAACYiIANAAAAmIiADQAAAJiIgA0AAACYiIANAAAAmIht+gCgmine8vdSy1zDf12JPQEA3Agr2AAAAICJCNgAAACAiQjYAAAAgIkI2AAAAICJCNgAAACAiQjYAAAAgInYpg8Aqhjr+r9VuG7xodhSy1ynzK9wuwCAm8cKNgAAAGAiAjYAAABgIgI2AAAAYCICNgAAAGAiAjYAAABgIgI2AAAAYCICNgAAAGAi9sEGACe4OmloqWV1Xv9PmXWLF5W+1zUAwPlYwQYAAABMRMAGAAAATETABgAAAExEwAYAAABMRMAGAAAATETABgAAAEzENn0A4ATlbcVXFtcp803sCQDAbKxgAwAAACYiYAMAAAAmImADAAAAJiJgAwAAACYiYAMAAAAmYhcRlMowDElSbm6uk3sCALgZ135eX/v5XdNdNgxJ1irQB8AeARulunjxoiQpODjYyT0BANyKixcvqmHDhs7uhsO4ubkpMDBQMadPO7srkqTAwEC5ubk5uxuoQixGbflnLm6Z1WrVqVOn5OXlJYvF4uzumCY3N1fBwcE6ceKEvL29nd2dGoN5dQzm1TFq6rwahqGLFy+qadOmcnGp2U+BXrlyRYWFhc7uhqQfA7+7u7uzu4EqhBVslMrFxUV33nmns7vhMN7e3jXqL9aqgnl1DObVMWrivNbklevrubu7E2pRZdXsf94CAAAAlYyADQAAAJiIgI1ap169epo1a5bq1avn7K7UKMyrYzCvjsG8AnAkXnIEAAAATMQKNgAAAGAiAjYAAABgIgI2AAAAYCICNmqE//znP+rZs6fq168vHx8fDR8+3K48JiZG3bp1U7169dSlS5ebavPKlSuaNGmSfH191aBBA0VFRenMmTN251gslhKftWvXmjQq53PWvB4/flxDhw6Vh4eH/P399dxzz+nq1asmjcr5ypvXiox/7969ioiIUKNGjeTr66sJEyYoLy/P7pzafr86al5r+v0K4NYRsFHtrV+/XqNHj9YTTzyh/fv3KyUlRaNGjSpx3tixY/XII4/cdLvPPvus/v3vf+vdd9/Vtm3bdOrUKY0cObLEeStXrlROTo7t89O/1KsrZ81rcXGxhg4dqsLCQu3YsUOrV6/WqlWrNHPmTFPG5WzlzWtFxn/q1CmFh4erdevWSk1N1ebNm/Xll19qzJgxJc6trfero+a1pt+vACrIAKqxoqIi44477jDefPPNmzp/1qxZRmhoaLnnXbhwwahbt67x7rvv2o4dOnTIkGTs3LnTdkySsWHDhlvtdpXnzHn98MMPDRcXF+P06dO2c5YuXWp4e3sbBQUFtzaQKuZm5rUi4//b3/5m+Pv7G8XFxbZj6enphiTjyJEjtmO1+X511LzW5PsVQMWxgo1qbe/evfr222/l4uKirl27KigoSJGRkTp48OBttbtnzx4VFRUpPDzcduzuu+9Ws2bNtHPnTrtzJ02aJD8/P/Xo0UMrVqyQUQN2vnTmvO7cuVOdOnVSQECA7ZxBgwYpNzdXX3755W1d39luZl4rMv6CggK5ubnJxeX//0ivX7++JGn79u1259bW+9VR81qT71cAFUfARrX2zTffSJJmz56tGTNmaNOmTfLx8VG/fv10/vz5Crd7+vRpubm5qVGjRnbHAwICdPr0adv3uXPn6p///KcSExMVFRWlp59+WosWLarwdasKZ87r6dOn7cLKtfJrZdXZzcxrRcZ///336/Tp03r11VdVWFio77//XvHx8ZKknJwc23m1+X511LzW5PsVQMURsFElxcfH3/CFrOs/GRkZslqtkqTnn39eUVFR6tatm1auXCmLxaJ3333X4f38wx/+oF69eqlr166Ki4vTtGnT9Oqrrzr8uhVVXea1unH2vHbo0EGrV6/W/Pnz5eHhocDAQN11110KCAiwW33lfr01NzuvAPBTdZzdAeBGYmNjb/iC1vVatmxpW0Vq37697Xi9evXUsmVLHT9+vMLXDwwMVGFhoS5cuGC32nrmzBkFBgaWWq9nz5564YUXVFBQUCV/BXN1mNfAwEDt2rXLrt61XUbKmntnMnNeKzr+UaNGadSoUTpz5ow8PT1lsVi0YMECtWzZstQ6tel+ddS8Vsf7FYDjEbBRJTVp0kRNmjQp97xrW8QdPnxYvXv3liQVFRUpOztbzZs3r/D1u3Xrprp162rr1q2KioqSJB0+fFjHjx9XWFhYqfXS0tLk4+NTJcOKVD3mNSwsTPPmzdPZs2fl7+8vSUpMTJS3t7ddgKpKzJzX2x3/tccTVqxYIXd3d0VERJR6bm26Xx01r9XxfgVQCZz9liVwu5555hnjjjvuMD7++GMjIyPDGDdunOHv72+cP3/eds6RI0eMffv2GU899ZQREhJi7Nu3z9i3b5/tLf+TJ08abdu2NVJTU211Jk6caDRr1sz49NNPjS+++MIICwszwsLCbOUffPCBsXz5cuPAgQPGkSNHjCVLlhgeHh7GzJkzK2/wDuSseb169arRsWNHY+DAgUZaWpqxefNmo0mTJsb06dMrb/AOVN683sz4U1NTjbZt2xonT560HVu0aJGxZ88e4/Dhw8bixYuN+vXrG6+99pqtvLbfr46a15p+vwKoGAI2qr3CwkIjNjbW8Pf3N7y8vIzw8HDj4MGDduf07dvXkFTik5WVZRiGYWRlZRmSjM8++8xW5/Lly8bTTz9t+Pj4GB4eHsaIESOMnJwcW/lHH31kdOnSxWjQoIHh6elphIaGGsuWLbPb0qs6c9a8GoZhZGdnG5GRkUb9+vUNPz8/IzY21igqKnL0kCvFzcxreeP/7LPP7ObZMAxj9OjRRuPGjQ03Nzejc+fOxt///ne7NrlfHTOvN9MugNrHYhg1YI8mAAAAoIrgNWgAAADARARsAAAAwEQEbAAAAMBEBGwAAADARARsAAAAwEQEbAAAAMBEBGwAAADARARsAAAAwEQEbAC1TnZ2tiwWi9LS0hzSvsVi0caNGx3SNgCg6iNgA6h0Y8aM0fDhw512/eDgYOXk5Khjx46SpKSkJFksFl24cMFpfQIA1Bx1nN0BAKhsrq6uCgwMdHY3AAA1FCvYAKqUbdu2qUePHqpXr56CgoIUHx+vq1ev2sr79eunmJgYTZs2TY0bN1ZgYKBmz55t10ZGRoZ69+4td3d3tW/fXlu2bLF7bOP6R0Sys7PVv39/SZKPj48sFovGjBkjSWrRooUWLlxo13aXLl3srnfkyBH16dPHdq3ExMQSYzpx4oQefvhhNWrUSI0bN9aDDz6o7Ozs250qAEAVRcAGUGV8++23GjJkiLp37679+/dr6dKlSkhI0Isvvmh33urVq+Xp6anU1FS98sormjt3ri3YFhcXa/jw4fLw8FBqaqreeOMNPf/886VeMzg4WOvXr5ckHT58WDk5OXrttdduqr9Wq1UjR46Um5ubUlNTtWzZMsXFxdmdU1RUpEGDBsnLy0vJyclKSUlRgwYNNHjwYBUWFt7K9AAAqgkeEQFQZSxZskTBwcFavHixLBaL7r77bp06dUpxcXGaOXOmXFx+XBPo3LmzZs2aJUlq06aNFi9erK1btyoiIkKJiYnKzMxUUlKS7TGQefPmKSIi4obXdHV1VePGjSVJ/v7+atSo0U33d8uWLcrIyNDHH3+spk2bSpL++Mc/KjIy0nbOunXrZLVa9eabb8pisUiSVq5cqUaNGikpKUkDBw68tUkCAFR5BGwAVcahQ4cUFhZmC6KS1KtXL+Xl5enkyZNq1qyZpB8D9vWCgoJ09uxZST+uQgcHB9s9Y92jRw+H9Tc4ONgWriUpLCzM7pz9+/fr6NGj8vLysjt+5coVZWZmOqRfAADnImADqHbq1q1r991ischqtZp+HRcXFxmGYXesqKjoltrIy8tTt27dtGbNmhJlTZo0ua3+AQCqJgI2gCqjXbt2Wr9+vQzDsK1ip6SkyMvLS3feeedNtdG2bVudOHFCZ86cUUBAgCRp9+7dZdZxc3OT9OPz29dr0qSJcnJybN9zc3OVlZVl198TJ04oJydHQUFBkqT//ve/dm3cc889Wrdunfz9/eXt7X1TYwAAVG+85AjAKX744QelpaXZfSZMmKATJ05oypQpysjI0Pvvv69Zs2Zp6tSptuevyxMREaFWrVopOjpa6enpSklJ0YwZMyTJ7tGT6zVv3lwWi0WbNm3Sd999p7y8PEnS/fffr7feekvJyck6cOCAoqOj5erqaqsXHh6ukJAQRUdHa//+/UpOTi7xQuXjjz8uPz8/Pfjgg0pOTlZWVpaSkpIUExOjkydPVmTqAABVHAEbgFMkJSWpa9eudp8XXnhBH374oXbt2qXQ0FBNnDhR48aNswXkm+Hq6qqNGzcqLy9P3bt31/jx422h193d/YZ17rjjDs2ZM0fx8fEKCAjQ5MmTJUnTp09X3759NWzYMA0dOlTDhw9Xq1atbPVcXFy0YcMGXb58WT169ND48eM1b948u7Y9PDz0+eefq1mzZho5cqTatWuncePG6cqVK6xoA0ANZTF++oAhANQwKSkp6t27t44ePWoXkAEAcAQCNoAaZ8OGDWrQoIHatGmjo0eP6plnnpGPj4+2b9/u7K4BAGoBXnIEUONcvHhRcXFxOn78uPz8/BQeHq758+c7u1sAgFqCFWwAAADARLzkCAAAAJiIgA0AAACYiIANAAAAmIiADQAAAJiIgA0AAACYiIANAAAAmIiADQAAAJiIgA0AAACYiIANAAAAmOj/AOg5B39YEYVeAAAAAElFTkSuQmCC\n"},"metadata":{}}]}]}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment