Skip to content

Instantly share code, notes, and snippets.

@avivajpeyi
Last active May 22, 2025 04:45
Show Gist options
  • Save avivajpeyi/687b7ac854fc8005506276e7f121b9b0 to your computer and use it in GitHub Desktop.
Save avivajpeyi/687b7ac854fc8005506276e7f121b9b0 to your computer and use it in GitHub Desktop.
sgvb_lvk.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/avivajpeyi/687b7ac854fc8005506276e7f121b9b0/sgvb_lvk.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lIYdn1woOS1n",
"outputId": "4853a186-5a3c-40f8-fa15-84a3431256f5"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/983.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m563.2/983.9 kB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m983.9/983.9 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/108.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m108.2/108.2 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.4/47.4 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.4/1.4 MB\u001b[0m \u001b[31m41.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.3/40.3 MB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m84.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.7/295.7 kB\u001b[0m \u001b[31m22.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m128.6/128.6 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.1/50.1 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m98.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"pydrive2 1.21.3 requires cryptography<44, but you have cryptography 45.0.2 which is incompatible.\n",
"pyopenssl 24.2.1 requires cryptography<44,>=41.0.5, but you have cryptography 45.0.2 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"! pip install bilby[gw] sgvb_psd -q"
]
},
{
"cell_type": "markdown",
"source": [
"# SGVB for LVK"
],
"metadata": {
"id": "KHjmhs4HMIhG"
}
},
{
"cell_type": "markdown",
"source": [
"## Compare against Welch"
],
"metadata": {
"id": "-yU36PN9MYjH"
}
},
{
"cell_type": "code",
"source": [
"import os\n",
"os.environ[\"GWPY_RCPARAMS\"] = \"FALSE\"\n",
"\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\", \"Wswiglal-redir-stdio\")\n",
"\n",
"import bilby\n",
"from gwpy.timeseries import TimeSeries\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import scipy.special\n",
"import scipy.interpolate\n",
"import scipy.signal\n",
"\n",
"print(bilby.__version__)\n",
"\n",
"%matplotlib inline\n",
"\n",
"\n",
"#### HELPER FUNCTIONS\n",
"\n",
"def empirical_cdf(data):\n",
" \"\"\" Compute the empirical cumulative distribution function (ECDF). \"\"\"\n",
" sorted_data = np.sort(data)\n",
" n = len(data)\n",
"\n",
" def ecdf(x):\n",
" return np.searchsorted(sorted_data, x, side='right') / n\n",
"\n",
" return ecdf, sorted_data\n",
"\n",
"def anderson_darling_statistic(data):\n",
" \"\"\" Compute the Anderson-Darling test statistic for normality. \"\"\"\n",
" n = len(data)\n",
" ecdf, sorted_data = empirical_cdf(data)\n",
"\n",
" # Transform data to standard normal quantiles\n",
" mean = np.mean(data)\n",
" std = np.std(data, ddof=1) # Sample standard deviation\n",
" standardized = (sorted_data - mean) / std\n",
"\n",
" # Compute theoretical normal CDF values\n",
" normal_cdf = 0.5 * (1 + scipy.special.erf(standardized / np.sqrt(2))) # Standard normal CDF\n",
"\n",
" # Compute Anderson-Darling test statistic\n",
" s = np.sum((2 * np.arange(1, n + 1) - 1) * (np.log(normal_cdf) + np.log(1 - normal_cdf[::-1])))\n",
" A2 = -n - s / n\n",
"\n",
" return A2\n",
"\n",
"def anderson_p_value(data, freqs=None, fmin=0, fmax=np.inf):\n",
" \"\"\" Approximate the p-value for the Anderson-Darling test for normality. \"\"\"\n",
"\n",
" # If provided, cut the frequencies to a min/max value\n",
" if freqs is not None:\n",
" idxs = (freqs > fmin) & (freqs < fmax)\n",
" data = data[idxs]\n",
"\n",
" # Concatenate the real and imaginary parts together\n",
" data = np.concatenate([data.real, data.imag])\n",
"\n",
" if len(data) == 0:\n",
" return np.nan\n",
"\n",
" A2 = anderson_darling_statistic(data)\n",
"\n",
" critical_values = [\n",
" 0.200, 0.300, 0.400, 0.500, 0.576, 0.656, 0.787, 0.918,\n",
" 1.092, 1.250, 1.500, 1.750, 2.000, 2.500, 3.000, 3.500,\n",
" 4.000, 4.500, 5.000, 6.000, 7.000, 8.000, 10.000\n",
" ]\n",
"\n",
" significance_levels = [\n",
" 0.90, 0.85, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40,\n",
" 0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0.01, 0.005,\n",
" 0.0025, 0.001, 0.0005, 0.0002, 0.0001, 0.00005, 0.00001\n",
" ]\n",
"\n",
" # Approximate p-value using interpolation\n",
" if A2 < critical_values[0]:\n",
" pval = significance_levels[0]\n",
" elif A2 > critical_values[-1]:\n",
" pval = significance_levels[-1]\n",
" else:\n",
" pval = np.interp(A2, critical_values, significance_levels)\n",
"\n",
" return float(pval)\n",
"\n",
"def fbins_anderson_p_value(freq, data, bin_width_Hz=8, fmin=0, fmax=np.inf):\n",
" \"\"\"\n",
" Compute Anderson-Darling p-values for frequency bins.\n",
"\n",
" Parameters\n",
" ----------\n",
" freq : array-like\n",
" Frequency values.\n",
" data : array-like\n",
" Data corresponding to frequencies.\n",
" bin_width_Hz : float, optional\n",
" Width of frequency bins in Hz. Default is 8.\n",
" fmin : float, optional\n",
" Minimum frequency for analysis. Default is 0.\n",
" fmax : float, optional\n",
" Maximum frequency for analysis. Default is np.inf.\n",
"\n",
" Returns\n",
" -------\n",
" tuple\n",
" A tuple containing frequency bins and corresponding p-values.\n",
" \"\"\"\n",
" bin_width = int(bin_width_Hz * duration)\n",
" idxs = np.arange(0, len(data), bin_width)[:-1]\n",
" pvals = [anderson_p_value(data[ii:ii+bin_width], freq[ii:ii+bin_width], fmin=fmin, fmax=fmax) for ii in idxs]\n",
" fbins = [freq[ii + bin_width // 2] for ii in idxs]\n",
" return fbins, pvals\n",
"\n",
"def get_window_like(data, roll_off=0.1):\n",
" \"\"\"\n",
" Generate a Tukey window with a specified roll-off.\n",
"\n",
" Parameters\n",
" ----------\n",
" data : array-like\n",
" Input data to determine window size.\n",
" roll_off : float, optional\n",
" Roll-off factor for the Tukey window. Default is 0.1.\n",
"\n",
" Returns\n",
" -------\n",
" array\n",
" A Tukey window of the same length as the input data.\n",
" \"\"\"\n",
" psd_alpha = 2 * roll_off / duration\n",
" return scipy.signal.get_window((\"tukey\", psd_alpha), len(data))\n",
"\n",
"def whiten(timeseries, asd, asd_frequencies, roll_off=0.1):\n",
" \"\"\"\n",
" Whiten a time series by dividing by the amplitude spectral density (ASD).\n",
"\n",
" Parameters\n",
" ----------\n",
" timeseries : array-like\n",
" The input time series data.\n",
" asd : array-like\n",
" The amplitude spectral density.\n",
" asd_frequencies : array-like\n",
" Frequencies corresponding to ASD values.\n",
" roll_off : float, optional\n",
" Roll-off factor for windowing. Default is 0.1.\n",
"\n",
" Returns\n",
" -------\n",
" tuple\n",
" The original frequency series and the whitened frequency series.\n",
" \"\"\"\n",
" duration = timeseries.duration.value\n",
" timeseries_windowed = timeseries * get_window_like(timeseries, roll_off)\n",
" frequency_series = timeseries_windowed.fft()\n",
" whitened_frequencyseries = frequency_series * np.sqrt(4 / duration) / asd\n",
" return frequency_series, whitened_frequencyseries\n",
"\n",
"def plot_whitening(frequencies, asd, h_f, wh_f, label=None, bin_width_Hz=8):\n",
" \"\"\"\n",
" Plot whitening analysis, including the frequency domain signal, ASD, p-values, and histogram.\n",
"\n",
" Parameters\n",
" ----------\n",
" frequencies : array-like\n",
" Frequency values.\n",
" asd : array-like\n",
" Amplitude spectral density.\n",
" h_f : array-like\n",
" Frequency-domain representation of the original signal.\n",
" wh_f : array-like\n",
" Frequency-domain representation of the whitened signal.\n",
" label : str, optional\n",
" Label for the ASD plot. Default is None.\n",
" bin_width_Hz : float, optional\n",
" Width of frequency bins for p-value computation. Default is 8.\n",
"\n",
" Returns\n",
" -------\n",
" None\n",
" \"\"\"\n",
" fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(8, 5))\n",
" ax1, ax2 = axes[:, 0]\n",
" gs = axes[1, 0].get_gridspec()\n",
" axes[0, 1].remove()\n",
" axes[1, 1].remove()\n",
" ax3 = fig.add_subplot(gs[0:, 1])\n",
"\n",
" ax1.semilogy(frequencies, np.abs(h_f), label=r\"|htilde(f)|\")\n",
" ax1.semilogy(frequencies, asd, label=label)\n",
" ax1.set(ylabel=\"Strain data [Hz-1]\")\n",
" ax1.legend()\n",
"\n",
" fbins, pvals = fbins_anderson_p_value(frequencies, wh_f, bin_width_Hz=bin_width_Hz)\n",
" ax2.scatter(fbins, pvals, s=2)\n",
" ax2.axhline(1e-2, color=\"r\")\n",
" ax2.set(xlabel=\"Frequency [Hz]\", ylabel=\"p-value\", yscale=\"log\")\n",
"\n",
" bin_width = 0.025\n",
" bins = np.arange(0, 1 + bin_width, bin_width)\n",
" ax3.hist(pvals, bins=bins)\n",
" ax3.set(xlabel=\"p-values\", ylabel=\"Density\", xlim=(0, 1))\n",
" fig.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"\n",
"### DEFINE FS AND DURATION\n",
"\n",
"sampling_frequency = 4096\n",
"duration = 4\n",
"frequencies = np.fft.rfftfreq(sampling_frequency * duration, d=1/sampling_frequency)\n",
"\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "X87blJoGMRFQ",
"outputId": "e05ffe65-0a75-41b3-ef0e-e811227f5ca4"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"2.5.1\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Starting with known PSD....\n",
"\n",
"\n",
"And then, we construct another bilby psd object, but this time from the extrapolated PSD array. This ensures that when we simulate the data it will contain low-frequency noise.\n",
"\n"
],
"metadata": {
"id": "0G3Y_pH1M74O"
}
},
{
"cell_type": "code",
"source": [
"\n",
"# Create a bilby PSD object: the argument points to a named ASD file packaged as part of bilby\n",
"# This file can be replaced by a path to a specific ASD on file\n",
"psd = bilby.gw.detector.PowerSpectralDensity.from_amplitude_spectral_density_file(\"aLIGO_O4_high_asd.txt\")\n",
"\n",
"psd_array = psd.power_spectral_density_interpolated(frequencies)\n",
"psd_array[np.isinf(psd_array)] = psd.psd_array[0]\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.loglog(frequencies, psd_array)\n",
"ax.set(xlabel=\"Frequency [Hz]\", ylabel=\"PSD [Hz-1]\")\n",
"plt.show()\n",
"\n",
"#### Extrapolating for low noise\n",
"\n",
"psd = bilby.gw.detector.PowerSpectralDensity.from_power_spectral_density_array(frequencies, psd_array)\n",
"\n",
"# We generate a random noise realization in the frequency domain h_f\n",
"h_f_sim, _ = psd.get_noise_realisation(sampling_frequency, duration)\n",
"\n",
"# Inverse FFT to get the timeseries\n",
"h_t_sim = np.fft.irfft(h_f_sim)\n",
"time = np.arange(0, duration, 1 / sampling_frequency)\n",
"\n",
"fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 4))\n",
"ax1.loglog(frequencies, np.abs(h_f_sim), label=r\"|htilde(f|\")\n",
"ax1.loglog(frequencies, psd.asd_array, label=r\"sqrt(S(f))\")\n",
"ax1.set(xlabel=\"Frequency [Hz]\", ylabel=\"Strain data [Hz-1]\")\n",
"ax1.legend()\n",
"\n",
"ax2.plot(time, h_t_sim)\n",
"ax2.set(xlabel=\"Time [s]\", ylabel=\"Strain []\")\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 835
},
"id": "mmPTWgs5M6Xj",
"outputId": "e92ff17d-c624-42e9-a0a4-91a84bbd5a97"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAGwCAYAAABSN5pGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAStlJREFUeJzt3XtcVHX+P/DXMDDDHQRkAEHwhokXMEQkSzFpDYuvZrV+t90ELdtaaNsl2vT77YfdlG2zcqsp2/abdtesVbut1tIF8xKoYRniLVSUiyBymQFmYOb8/kBGh4vMwAznDPN6Ph7zeHAuc+YNp+Dl53ZkgiAIICIiIiITF7ELICIiIpIaBiQiIiKiLhiQiIiIiLpgQCIiIiLqggGJiIiIqAsGJCIiIqIuGJCIiIiIunAVuwBHZTQaUVFRAR8fH8hkMrHLISIiIgsIgoCmpiaEhYXBxaX3diIGpH6qqKhARESE2GUQERFRP5SXlyM8PLzX4wxIVlKr1VCr1WhvbwfQ8QP29fUVuSoiIiKyRGNjIyIiIuDj43PV82R81Ej/NDY2ws/PDw0NDQxIREREDsLSv98cpE1ERETUBQOSldRqNWJiYpCQkCB2KURERGQn7GLrJ3axEREROR52sRERERH1EwOSldjFRkRENPSxi62f2MVGRETkeNjFRkRERNRPDEhWYhcbERHR0Mcutn5iFxsREZHjYRcbERERUT8xIBERERF1wYBkJY5BIiIiGvo4BqmfOvswS05VwodjkIisMtxHCaWrXOwyiMgJWToGyXUQaxqS5q3bBRelp9hlEDkUla8S7y2fgTHDvcUuhYioRwxIA6RwdYHclT2VRJYyGAVUN+pw31v78XHW9fBS8tcQEUkPfzMN0MH/dxOn+RNZ4XxTK9Je+g4na7TYcbgKt8eHi10SEVE3bPqwEgdpEw1MsI875k5QAQBOX9CKXA0RUc8YkKyUmZmJkpISFBUViV0KkcMKH+YBADh7sUXkSoiIesaARESDLmJYx8QGBiQikioGJCIadJ0tSOUXm0WuhIioZwxIRDTowi+1IFU1tkLfbhS5GiKi7hiQiGjQBXkr4O7mAkEAKurZzUZE0sOAZCXOYiMaOJlMZmpF4jgkIpIiBiQrcRYbkW1wHBIRSRkDEhGJonMmW3kdAxIRSQ8DEhGJIjKwIyCV1XKxSCKSHgYkIhLFOJUPAOBYdZPIlRARdceARESiiFZ5AwBOXWiGrt0gcjVEROYYkIhIFCG+7vBRusJgFHCqluOQiEhaGJCISBQymQzjLrUisZuNiKSGAYmIRDMuuGMc0nEGJCKSGAYkK3GhSCLb6WxBOn5eI3IlRETmGJCsxIUiiWwnmjPZiEiiGJCISDTjOJONiCSKAYmIRMOZbEQkVQxIRCQazmQjIqliQCIiUXWOQ+JMNiKSEgYkIhLV2GDOZCMi6WFAIiJRcSYbEUkRAxIRiWpkgCcAoKK+VeRKiIguY0AiIlEF+SgBAC1tBjTr20Wuhoiog9MEpObmZkRGRiInJ8ds/2233YZhw4bhjjvuEKkyIufmpZDD3a3jV1Ftk17kaoiIOjhNQFq9ejVmzJjRbf9DDz2Et956S4SKiAjomOof5N3RilSj0YlcDRFRB6cISMePH0dpaSlSU1O7HUtOToaPj48IVRFRp86AVNtHQBIEAdmbi/HAOwcgCMJglEZETkr0gFRQUIC0tDSEhYVBJpNh27Zt3c5Rq9WIioqCu7s7EhMTUVhYaNVn5OTkIC8vz0YVE5GtWRqQztW34F8/nMO/D1extYmI7MpV7AK0Wi1iY2OxbNkyLFq0qNvxzZs3Izs7G+vXr0diYiLWrVuHefPm4ejRowgODgYAxMXFob29++DOL774AkVFRYiOjkZ0dDT27NnT7zp1Oh10usu/kBsbG/t9LSIyN9xHAaDvMUjF5fWmr1v0fHYbEdmP6AEpNTW1x66vTs8//zyWL1+OpUuXAgDWr1+Pzz77DG+88QZWrFgBACguLu71/fv27cOmTZuwZcsWaDQatLW1wdfXF7m5uVbVmZeXhyeeeMKq9xCRZSxtQSo+U2/6WqtjQCIi+xG9i+1q9Ho9Dhw4gJSUFNM+FxcXpKSkYO/evRZdIy8vD+Xl5Th16hTWrl2L5cuXWx2OAGDlypVoaGgwvcrLy62+BhH1zOKAdEULkpZLAhCRHYnegnQ1tbW1MBgMUKlUZvtVKhVKS0tt8hkpKSk4dOgQtFotwsPDsWXLFiQlJXU7T6lUQqlU2uQzichcoPelLrY+AtKVjyPR6hiQiMh+JB2QbC0jI6Pbvv/85z9WXUOtVkOtVsNgYPM+ka1cbkG6+hiklrbL/9+xi42I7EnSXWxBQUGQy+Worq42219dXY2QkBBRasrMzERJSQmKiopE+XyiocgUkJp6b0ESBAH6dqNpmy1IRGRPkg5ICoUC8fHxyM/PN+0zGo3Iz8/vsRtsMKjVasTExCAhIUGUzycaioJ9OwJSk64dZy4093iO3mA02+YYJCKyJ9EDkkajQXFxsWkmWllZGYqLi3HmzBkAQHZ2Nl5//XW8+eabOHLkCB544AFotVrTrLbBxhYkItvzdXfDrOjhAIB/fvdLj+dc2XoEsAWJiOxL9DFI+/fvx5w5c0zb2dnZAID09HRs3LgRixcvRk1NDXJzc1FVVYW4uDjs2LGj28BtInJs988ajYJjNfhgfzkemjsOgd7mkyK6BSSug0REdiR6QEpOTu7zkQFZWVnIysoapIqujoO0iewjaUwgpoT74cezDXhz72lk3xRtdlzHFiQiGkSid7E5GnaxEdmHTCbD72eNAQC8tfdUt5Wyu3ex8R8pRGQ/DEhEJBk3TwrBcB8l6pvbUFLZYHas2yBttiARkR0xIBGRZMhdZBjh7wGg+5pI3ccgMSARkf0wIFmJ0/yJ7CvQq2NV7TqteUDStZt3qbEFiYjsiQHJShyDRGRfnY8dudDlsSPdB2lzDBIR2Q8DEhFJSoBXx/T+C1p2sRGReBiQiEhSgkwtSF272DoCko+yY3USdrERkT0xIFmJY5CI7CuglzFInS1I/l5uALhQJBHZFwOSlTgGici+OlfQru0yBqkzIPm6u5m2+1pkloiovxiQiEhSepvF1rkOko+7a7d9RES2xoBERJLSOYutTqs3ayHStXV0qXkr3S7va2dAIiL7YECyEscgEdlX5xikdqOA13f9YgpJPbUg6doYkIjIPhiQrMQxSET2pXSVm75e83kpCo7XArg8Bknp6gKFa8evLnaxEZG9MCARkeS4ushMXx88fRHA5e40hasLlJcCUme3GxGRrTEgEZHkPLVwkunrnys6Hlrb2YKkkF8OSGxBIiJ7YUAiIsn5zfSR2HJ/EgDg8LlGAJdbkJRuLqZuOI5BIiJ7YUAiIkmaEOoLmQyoamxFTZPO1FqkkMsvd7FxFhsR2QkDEhFJkrfSFaOCvAB0dLN1thYprhykzYBERHbCgGQlTvMnGjyTR/gBAA6fazC1ICmvHKTdzkHaRGQfDEhW4jR/osEzKawzIDVCfykMsQWJiAYDAxIRSdbEEb4AgMMVDV2m+V8apM2ARER24tr3KURE4ph4qQXp7MUW00Nq2cVGRIOBLUhEJFl+Hm6IDPQEAJRUdkz3V7KLjYgGAQMSEUna3GtUZttmK2kzIBGRnTAgEZGkLUmKhOzyk0egdJWbWpAYkIjIXhiQiEjSooK8cMvkUNM2B2kT0WBgQCIiyVt922SM8PeAm1yGkQGeHKRNRHbHWWxWUqvVUKvVMBj4i5losPh5uCH/4dlobGlDsK87B2kTkd2xBclKXCiSSBzubnIE+7oDALvYiMjuGJCIyOEo3S51sbUxIBGRfTAgEZHDUcgvdbEZGJCIyD4YkIjI4VxuQeJYQCKyDwYkInI4bEEiIntjQCIih6N0uzRIm2OQiMhOGJCIyOFwHSQisjcGJCJyOKZ1kNjFRkR24jQBqbm5GZGRkcjJyTHtKy8vR3JyMmJiYjBlyhRs2bJFxAqJyFKmFiR2sRGRnTjNStqrV6/GjBkzzPa5urpi3bp1iIuLQ1VVFeLj4zF//nx4eXmJVCURWaJzochWdrERkZ04RQvS8ePHUVpaitTUVLP9oaGhiIuLAwCEhIQgKCgIdXV1IlRIRNbwUnYEpBY9AxIR2YfoAamgoABpaWkICwuDTCbDtm3bup2jVqsRFRUFd3d3JCYmorCw0KrPyMnJQV5e3lXPOXDgAAwGAyIiIqy6NhENPi9FR+O3VseARET2IXpA0mq1iI2NhVqt7vH45s2bkZ2djVWrVuHgwYOIjY3FvHnzcP78edM5cXFxmDRpUrdXRUUFtm/fjujoaERHR/daQ11dHZYsWYJ//OMfNv/+iMj2PBSXWpDaDDAaBZGrIaKhSPQxSKmpqd26vq70/PPPY/ny5Vi6dCkAYP369fjss8/wxhtvYMWKFQCA4uLiXt+/b98+bNq0CVu2bIFGo0FbWxt8fX2Rm5sLANDpdFi4cCFWrFiB6667rtfr6HQ66HQ603ZjY6M13yYR2VBnCxLQEZK8lKL/KiOiIUb0FqSr0ev1OHDgAFJSUkz7XFxckJKSgr1791p0jby8PJSXl+PUqVNYu3Ytli9fbgpHgiAgIyMDN954I+6+++4+r+Pn52d6sSuOSDzubi6QyTq+1urbxS2GiIYkSQek2tpaGAwGqFQqs/0qlQpVVVUDvv7u3buxefNmbNu2DXFxcYiLi8NPP/3U47krV65EQ0OD6VVeXj7gzyei/pHJZKZWpGaOQyIiO3CqdumMjAyz7euvvx5Go2XrqCiVSiiVSqjVaqjVahgM/KVMJCZPhRwaXTtbkIjILiTdghQUFAS5XI7q6mqz/dXV1QgJCRGlpszMTJSUlKCoqEiUzyeiDp4KTvUnIvuRdEBSKBSIj49Hfn6+aZ/RaER+fj6SkpJErIyIxObZOdWfAYmI7ED0LjaNRoMTJ06YtsvKylBcXIyAgACMHDkS2dnZSE9Px7Rp0zB9+nSsW7cOWq3WNKttsLGLjUgaOheLbNaxi42IbE/0gLR//37MmTPHtJ2dnQ0ASE9Px8aNG7F48WLU1NQgNzcXVVVViIuLw44dO7oN3B4smZmZyMzMRGNjI/z8/ESpgYjYgkRE9iV6QEpOToYgXH2ht6ysLGRlZQ1SRUTkCC6PQWILEhHZnqTHIEmRWq1GTEwMEhISxC6FyKmxBYmI7IkByUqcxUYkDRyDRET2xIBERA6JLUhEZE8MSFZiFxuRNHhdGoPUzIBERHbAgGQldrERSYOHKSCxi42IbI8BiYgckpfyUhcbn8VGRHbAgEREDsnHvSMgNba2iVwJEQ1FDEhW4hgkImkI9FICAGo1OpErIaKhiAHJShyDRCQNw30UAIDaJgYkIrI9BiQickhB3h0tSI2t7Wht4zgkIrItBiQickh+Hm5wk8sAABe0epGrIaKhhgGJiBySTCYztSKxm42IbI0ByUocpE0kHaaAxIHaRGRjDEhW4iBtIukI8r40UJsBiYhsjAGJiBzW5RYkjkEiIttiQCIihzXcpyMgVTa0iFwJEQ01DEhE5LAmhPoCAH44Uy9uIUQ05DAgEZHDmj4qAABQUtmIhhY+coSIbIcByUqcxUYkHSpfd0QFekIQgP2n6sQuh4iGEAYkK3EWG5G0xEX4AwCOVjeJWwgRDSkMSETk0EYM8wAAVNa3ilwJEQ0lDEhE5NBC/S4FJM5kIyIbYkAiIocW5u8OAKhgCxIR2RADEhE5NLYgEZE9MCARkUML8+8ISBeb29CiN4hcDRENFQxIROTQfN1d4aWQAwAq2IpERDbCgEREDk0mkyHEr2McUlUDxyERkW0wIFmJC0USSU+wT0dAqtXoRK6EiIYKBiQrcaFIIunpfGhtTRMDEhHZBgMSETm8IG8GJCKyLQYkInJ4phYkdrERkY0wIBGRwwvyVgBgCxIR2Q4DEhE5PI5BIiJbY0AiIofXGZBqNXqRKyGioYIBiYgc3vBLg7TrtDoYjILI1RDRUMCAREQOL8BLAbmLDEaB3WxEZBsMSETk8FzlLgjx7Vgs8lx9s8jVENFQ4DQBqbm5GZGRkcjJyTHtq6+vx7Rp0xAXF4dJkybh9ddfF7FCIhqI8GEdD609e5HPYyOigXMVu4DBsnr1asyYMcNsn4+PDwoKCuDp6QmtVotJkyZh0aJFCAwMFKlKIuqvEcM8gDIGJCKyDadoQTp+/DhKS0uRmppqtl8ul8PT0xMAoNPpIAgCBIEDPIkcUfiwjv+XGZCIyBZED0gFBQVIS0tDWFgYZDIZtm3b1u0ctVqNqKgouLu7IzExEYWFhVZ9Rk5ODvLy8no8Vl9fj9jYWISHh+ORRx5BUFBQf74NIhLZ5S42jkEiooETPSBptVrExsZCrVb3eHzz5s3Izs7GqlWrcPDgQcTGxmLevHk4f/686ZzOMURdXxUVFdi+fTuio6MRHR3d4/X9/f1x6NAhlJWV4b333kN1dXWP5+l0OjQ2Npq9iEg6Ii61IO06XoufzjaIXA0ROTqZYEGfUnZ2ttUXfuyxxxAQEGBdMTIZtm7dioULF5r2JSYmIiEhAS+//DIAwGg0IiIiAg8++CBWrFjR5zVXrlyJd955B3K5HBqNBm1tbXj44YeRm5vb7dw//OEPuPHGG3HHHXd0O/b444/jiSee6La/oaEBvr6+VnyXRGQP7QYj0l7ejSOVjbh1SihevutasUsiIglqbGyEn59fn3+/LQpILi4uSEpKgkKhsOjDv/vuOxw9ehSjR4+2vGJ0D0h6vR6enp748MMPzUJTeno66uvrsX37dquuv3HjRhw+fBhr164FAFRXV8PT0xM+Pj5oaGjAzJkz8f7772Py5Mnd3qvT6aDTXV5fpbGxEREREQxIRBLy758q8cC7BxEb4Y/tmTPFLoeIJMjSgGTxLLatW7ciODjYonN9fHwsvexV1dbWwmAwQKVSme1XqVQoLS0d8PVPnz6N++67zzQ4+8EHH+wxHAGAUqmEUqmEWq2GWq2GwWAY8OcTkW11DtSurOdAbSIaGIsC0oYNG+Dn52fxRV977bVuoUYKMjIyzLanT5+O4uJiq66RmZmJzMxMUwIlIukI9e9YLLJGo4O+3QiFq+jDLInIQVn02yM9PR1KpdLii951113w8vLqd1GdgoKCIJfLuw2crq6uRkhIyICvT0RDS6CXAgpXFwgCUN3YKnY5ROTAJP3PK4VCgfj4eOTn55v2GY1G5OfnIykpSZSa1Go1YmJikJCQIMrnE1HvZDIZwvw6HznCbjYi6j+bBaRDhw5BLpdb/T6NRoPi4mJTV1dZWRmKi4tx5swZAB0z6F5//XW8+eabOHLkCB544AFotVosXbrUVqVbJTMzEyUlJSgqKhLl84no6sL8O9ZDqmxgQCKi/rPpo0b6swr1/v37MWfOHNN255IC6enp2LhxIxYvXoyamhrk5uaiqqoKcXFx2LFjhyTHOBGR+EL9OgJSRT272Iio/ywOSIsWLbrq8YaGBshkMqsLSE5O7jNYZWVlISsry+pr2wNnsRFJ24hLA7Ur2MVGRANgcRfbJ598gtbWVvj5+fX48vb2tmedksEuNiJpCzV1sbEFiYj6z+IWpAkTJuD222/HPffc0+Px4uJifPrppzYrjIioP0L92IJERANncQtSfHw8Dh482OtxpVKJkSNH2qQoKeMsNiJpG+HfOQaJAYmI+s+iR40AHY/aMBgM8PT0tHdNDsHSpcqJaHBpdO2YtGonAODwE/PgrbTpXBQicnCW/v22uAVJqVQyHBGR5HkrXeHr3hGKymq0IldDRI5qQOsg3XLLLaisrLRVLURENjFjdCAAYPP+MyJXQkSOakABqaCgAC0tztXPzzFIRNKXfl0UAOCzH/kPOCLqH0k/akSKOM2fSPquCfEBAFxsboPBaP0CtkREAwpIkZGRcHNzs1UtREQ24etx+fdSY0ubiJUQkaMa0PSOw4cP26oOIiKbcZO7wEshh1ZvQH1LG4Z5KcQuiYgcjNUtSKNHj8bSpUuh0+nM9tfW1mL06NE2K4yIaCD8LrUiNbAFiYj6weqAdOrUKezevRs33HADqqqqTPsNBgNOnz5t0+KkiIO0iRyDLwMSEQ2A1QFJJpNhx44dCA8PR3x8vNMNVuYgbSLHwBYkIhoIqwOSIAjw9vbGv/71LyxZsgSzZ8/GO++8Y4/aiIj6zd+TAYmI+s/qQdoymcz0dV5eHiZOnIjly5fjN7/5jU0LIyIaiM4WJM5iI6L+sDogdX102+9+9zuMGTMGt912m82KIiIaKHaxEdFAWB2QjEZjt31JSUk4dOgQSktLbVIUEdFAmQJSMwMSEVnPZo+5VqlUUKlUtrqcZKnVaqjVahgMBrFLIaKr8PPsWPuoosG5HodERLYhE7r2mfVi6tSpZuOPenPw4MEBF+UIGhsb4efnh4aGBvj6+opdDhF1ceK8BinPfwu5iwx7VtwIla+72CURkQRY+vfb4hakhQsXmr4WBAF5eXm4//77ERAQMKBCiYjsYWywN+Ijh+HA6YvIP3IedyWOFLskInIgFgekVatWmW0/99xzeOihh7h6NhFJVrTKGwdOX0StRtf3yUREVxjQw2qJiKTMz6NjHFI9B2oTkZUYkIhoyBp2abHI+ma9yJUQkaNhQCKiIatzNe16roVERFayeAzSiy++aLbd3t6OjRs3IigoyGz/H//4R9tURkQ0QJ1dbBfZgkREVrI4IL3wwgtm2yEhIXj77bfN9slkMgYkIpKMzi42LhZJRNayOCCVlZXZsw6HwYUiiRyHvydbkIiofzgGyUqZmZkoKSlBUVGR2KUQUR9MLUgtbTAaLVoTl4gIgIUB6cUXX0Rra6vFF12/fj2ampr6XRQRkS34Xnoem1EAmnTtIldDRI7EooD05z//2arA85e//AU1NTX9LoqIyBbc3eTwUsgBAOcbLf9HHhGRRWOQBEHA3Llz4epq2ZCllhY+HJKIpCE6xAc/nKlHSWUjxql8xC6HiByERYmn62NG+rJgwQI+o42IJGFSmB9+OFOPnysasSBuhNjlEJGDsEtAIiKSikkjOp7W/dPZBpErISJHwllsRDSkxYT6AQCOVnPiCBFZjgGJiIa0McFeAIA6rR51Wq6HRESWYUAioiHNU+GKEf4eAIAT5zUiV0NEjsJpAlJzczMiIyORk5Nj1TEicnxjg70BMCARkeWcJiCtXr0aM2bMsPoYETm+zoD0Sw0DEhFZxqqApNVqkZubi0mTJsHb2xs+Pj6YMmUKnnzySTQ3N9urxgE7fvw4SktLkZqaatUxIhoaIoZ1dLGdvcg12ojIMhYHJL1ej9mzZ+Nvf/sbxo0bhwcffBCZmZkYNWoUVq9ejblz56KtzfonZhcUFCAtLQ1hYWGQyWTYtm1bt3PUajWioqLg7u6OxMREFBYWWvUZOTk5yMvLs/oYEQ0N4cM8AQDn6hmQiMgyli2NDeDVV1/F2bNncejQIYwfP97sWGlpKZKTk7F+/Xo8+OCDVhWg1WoRGxuLZcuWYdGiRd2Ob968GdnZ2Vi/fj0SExOxbt06zJs3D0ePHkVwcDAAIC4uDu3t3Z+z9MUXX6CoqAjR0dGIjo7Gnj17zI5v376912Nd6XQ66HQ603ZjY6NV3ycRiWeEqQVJui3dRCQxgoVmzZolvPzyy70ef/HFF4VZs2ZZerkeARC2bt1qtm/69OlCZmamadtgMAhhYWFCXl6eRddcsWKFEB4eLkRGRgqBgYGCr6+v8MQTT/R5rKtVq1YJALq9Ghoa+vfNEtGgaWjRC5GPfipEPvqpoGltE7scIhJRQ0ODRX+/ZYIgCJYEqeHDh+Obb77BxIkTezx++PBhzJkzZ0APqZXJZNi6dSsWLlwIoKNbz9PTEx9++KFpHwCkp6ejvr4e27dvt+r6GzduxOHDh7F27VqrjgE9tyBFRESgoaEBvr6+VtVBRINvyuM70djaji/+PAvRfCYbkdNqbGyEn59fn3+/LR6DVF9fj8DAwF6PBwYGoqHBtkv519bWwmAwQKVSme1XqVSoqqqy6Wf1RalUwtfX1+xFRI5jROc4JA7UJiILWDwGyWg0Qi6X93rcxcUFBoPBJkXZS0ZGRr+OXUmtVkOtVkv+eyUic+HDPHCkspHjkIjIIhYHJEEQMHfuXLi69vyWngZJD1RQUBDkcjmqq6vN9ldXVyMkJMTmn2eJzMxMZGZmmproiMgxdK6mfZYz2YjIAhYHpFWrVvV5zu233z6gYrpSKBSIj49Hfn6+aQyS0WhEfn4+srKybPpZlmILEpFjCr80k41dbERkCZsGpP7QaDQ4ceKEabusrAzFxcUICAjAyJEjkZ2djfT0dEybNg3Tp0/HunXroNVqsXTpUrvU0xe2IBE5pnAuFklEVrA4IPXm22+/hVarRVJSEoYNG2b1+/fv3485c+aYtrOzswF0zFTbuHEjFi9ejJqaGuTm5qKqqgpxcXHYsWNHt4HbRERXM8Kfi0USkeUsnub/zDPPQKPR4KmnngLQMSYpNTUVX3zxBQAgODgY+fn5vS4DMFRc2cV27NgxTvMnchAXtXpMfepLAEDpUzfD3a33SSdENHTZfJr/5s2bMWnSJNP2hx9+iIKCAuzatQu1tbWYNm0annjiiYFV7QAyMzNRUlKCoqIisUshIiv4e7rBU9ERiirYikREfbA4IJWVlWHKlCmm7c8//xx33HEHZs6ciYCAADz22GPYu3evXYokIhoomUzGcUhEZDGLA1J7ezuUSqVpe+/evbjuuutM22FhYaitrbVtdRKkVqsRExODhIQEsUshIit1TvXnOCQi6ovFAWnMmDEoKCgAAJw5cwbHjh3DrFmzTMfPnj171ZW2hwp2sRE5rnCupk1EFrJ4FltmZiaysrKwa9cu7Nu3D0lJSYiJiTEd/+qrrzB16lS7FElEZAuh/u4AgIoGBiQiujqLA9Ly5cshl8vxySefYNasWd3WRaqoqMCyZctsXiARka0E+3QEpJomXR9nEpGzs2odpGXLlvUagl555RWbFCR1XEmbyHEF+3SMo2RAIqK+WDwGyWAw4JlnnsHMmTORkJCAFStWoKXF+ZqpOQaJyHEF+3YEpPMMSETUB4sD0po1a/A///M/8Pb2xogRI/D3v/8dmZmZ9qyNiMimhnt3BKQ6rR76dqPI1RCRlFkckN566y288sor2LlzJ7Zt24ZPPvkE7777LoxG/pIhIscwzFMBVxcZAKBWw1YkIuqdxQHpzJkzmD9/vmk7JSUFMpkMFRUVdimMiMjWXFxkGO7DbjYi6ptVC0W6u7ub7XNzc0NbW5vNi5IyLhRJ5NgiLq2FVFarEbkSIpIyi2exCYKAjIwMs9W0W1tbcf/998PLy8u071//+pdtK5SYzMxMZGZmmh52R0SO5ZpQHxSeqkNpZRPApduIqBcWB6T09PRu+373u9/ZtBgiInu7JqTj6d0llY0iV0JEUmZxQNqwYYM96yAiGhQTQn0AAKVVTSJXQkRSZvEYJCKioSBa5QOZrGOxSM5kI6LeMCARkVPxUroiMqBjoHZpJVuRiKhnDEhE5HQ6xyGVVnEcEhH1jAHJSpzmT+T4okM6xiGdOM+p/kTUMwYkK/FZbESOLyqwo4vt9IVmkSshIqliQCIipxMZ2LF22+kLWpErISKpYkAiIqcTeakFqbKxFbp2g8jVEJEUMSARkdMJ9FLASyGHIADldS1il0NEEsSARERORyaTsZuNiK6KAYmInFJnN9sbu8vQbjCKXA0RSQ0DEhE5pc4WpN0nLmDrD+dEroaIpIYByUpcB4loaAjwcjN9vfPnahErISIpYkCyEtdBIhoarhsTZPp6hL+7iJUQkRQxIBGRU5o0wg83xagAAA0tbSJXQ0RSw4BERE6rMyDVMyARURcMSETktPw9OsYh1TczIBGROQYkInJafpcCUiNbkIioCwYkInJa/p4KAOxiI6LuGJCIyGn5e3Z2selhNAoiV0NEUsKAREROq7OLzSgAdc16kashIilhQCIip+XuJjc9cuRYVZPI1RCRlDhNQGpubkZkZCRycnLM9kdFRWHKlCmIi4vDnDlzRKqOiMRyTYgPAOAIAxIRXcFV7AIGy+rVqzFjxowej+3Zswfe3t6DXBERScGEUF/s/LkaP59rELsUIpIQp2hBOn78OEpLS5Gamip2KUQkMdMiAwAAu07UcqA2EZmIHpAKCgqQlpaGsLAwyGQybNu2rds5arUaUVFRcHd3R2JiIgoLC636jJycHOTl5fV4TCaTYfbs2UhISMC7777bn2+BiBzY9FEB8FLIUdOkQ0llo9jlkITs/LkKGRsKUavRiV0KiUD0gKTVahEbGwu1Wt3j8c2bNyM7OxurVq3CwYMHERsbi3nz5uH8+fOmc+Li4jBp0qRur4qKCmzfvh3R0dGIjo7u8frfffcdDhw4gI8//hhr1qzBjz/+aJfvk4ikSeHqgokj/AAAJ2s0IldDUvL7tw/gm6M1ePrTErFLIRGIPgYpNTX1ql1fzz//PJYvX46lS5cCANavX4/PPvsMb7zxBlasWAEAKC4u7vX9+/btw6ZNm7BlyxZoNBq0tbXB19cXubm5AIARI0YAAEJDQzF//nwcPHgQU6ZM6XYdnU4Hne7yvyIaG/kvTaKhImKYJwrL6nD2YovYpZAE1bAFySmJ3oJ0NXq9HgcOHEBKSoppn4uLC1JSUrB3716LrpGXl4fy8nKcOnUKa9euxfLly03hSKvVoqmpY+aKRqPBV199hYkTJ/Z6HT8/P9MrIiJigN8dEUlF+DAPAGBAoh4ZjWJXQGKQdECqra2FwWCASqUy269SqVBVVTXg61dXV+P6669HbGwsZsyYgSVLliAhIaHHc1euXImGhgbTq7y8fMCfT0TScDkgNYtcCUmRQeDgfWckehfbYMrIyDDbHj16NA4dOmTRe5VKJZRKJdRqNdRqNQwGgx0qJCIxhA/rWCyyrFYrciUkScxHTknSLUhBQUGQy+Worq42219dXY2QkBBRasrMzERJSQmKiopE+Xwisr2YMF/IZB1dbDVNHG9CXcjELoDEIOmApFAoEB8fj/z8fNM+o9GI/Px8JCUliVKTWq1GTExMr11xROR4/DzcEB3csaL2gdMXRa6GiKRA9ICk0WhQXFxsmolWVlaG4uJinDlzBgCQnZ2N119/HW+++SaOHDmCBx54AFqt1jSrbbCxBYloaJo60h8A8HMFV9QmIgmMQdq/f7/ZM9Cys7MBAOnp6di4cSMWL16Mmpoa5ObmoqqqCnFxcdixY0e3gdtERAMx/tIz2Y5V85lsRCSBgJScnAyhjxkCWVlZyMrKGqSKro6DtImGpmhVR0A6yofWEhEk0MXmaNjFRjQ0dbYgnbrQjAOn60SuhojExoBERAQgyFuJW6aEAgA+PHBW5GpISjiJzTkxIBERXTJ73HAAQEV9q8iVEJHYGJCsxGn+REOXys8dAFDdyIBE5OwYkKzEMUhEQ1eIb0dAqmJAInJ6DEhERJeofJUAgPrmNrS2caYqkTNjQCIiusTPww3ubh2/Fs9ebBG5GiISEwOSlTgGiWjokslkiA33BwDsPlFr188qrWrEQvVuu38ODZyM09icEgOSlTgGiWhou/GaYABAwbEau37OvW/uR3F5PX77z+/t+jlE1D8MSEREV5gWNQwA8NM5+z6T7YJGb9frE9HAMCAREV1hQqgvZDLgfJMO55s4m43IWTEgERFdwVPhilFBXgD4XDbqIONa2k6JAclKHKRNNPRFDPMEAFTacUVtDvwlkjYGJCtxkDbR0Bd6aUXtygZ2sRE5KwYkIqIuQvw6V9TmWkhEzooBiYioC7YgEREDEhFRF51jkA6V16NZ326Xz+AQJCJpY0AiIupi+qgARAR44GJzG977/oxdPkNmx1Ha7QYjXvv2JH48W2+3z3AmHFDvnBiQrMRZbERDn6vcBX9IHgsA2LD7FARBELki62zeX468f5fiv17eLXYpRA6LAclKnMVG5BxumzoC7m4uOFffglIHWw+ptNKx6iWSIgYkIqIeuLvJMWN0IADg+18uiFwNEQ02BiQiol6MHe4NADh70fbT/TmshUjaGJCIiHoRPswDAPDlkWqHG4dERAPDgERE1IvwS9P9T19oxqaicpGrIbFwFptzYkAiIupFRICn6es1nx0RsRIiGmwMSEREvYhWeePuGZEAgCZdO2o1OpErIqLBwoBERNQLmUyGpxZOwqggLwBAwbEaG17cdpciIttjQLISF4okcj4TQn0AANkfHILByMHaRM6AAclKXCiSyPksmznK9HVpVaOIlRDRYGFAIiLqw7SoAMyKHg4A2F5cIXI1RDQYGJCIiCzw62nhAID/+64MZbVakashIntjQCIissCtU8KQPH44DEYBKz76EcYBjkWy5xhtrttDNHAMSEREFvrvhJEAgO/L6vDwlkP49McKPP1pyYDDkq1x0W/bknHKoVNyFbsAIiJHMeea4Zg+KgCFZXX4+FAFtv5wDgCQODoQN8WoRK6OiGyJLUhERBZSusrxwe+TEOrnbjbd/3xTq4hVEZE9MCAREVlp3sQQs+0LGr3V15BxoBCRpDlNQGpubkZkZCRycnLM9peVlWHOnDmIiYnB5MmTodVydgoRXd3K+ddgQVyYaftYdZOI1XTH7EU0cE4TkFavXo0ZM2Z025+RkYEnn3wSJSUl+Pbbb6FUKkWojogcidJVjr//91Ss/108AGDnz1W4oNHhVK0WrW0GkasjIltwioB0/PhxlJaWIjU11Wz/zz//DDc3N9xwww0AgICAALi6ctw6EVnm5kkhiAn1RZtBQOZ7B5G89hv8bcdRscviLDYbY4uccxI9IBUUFCAtLQ1hYWGQyWTYtm1bt3PUajWioqLg7u6OxMREFBYWWvUZOTk5yMvL67b/+PHj8Pb2RlpaGq699lqsWbOmv98GETmptNiOrrZ9v9QBAN7YXWbR+/hHl0jaRA9IWq0WsbGxUKvVPR7fvHkzsrOzsWrVKhw8eBCxsbGYN28ezp8/bzonLi4OkyZN6vaqqKjA9u3bER0djejo6G7Xbm9vx65du/DKK69g7969+PLLL/Hll1/a7XsloqFn+Q2jMC7Y22yfJQ+0ZT4ikjbR+5NSU1O7dX1d6fnnn8fy5cuxdOlSAMD69evx2Wef4Y033sCKFSsAAMXFxb2+f9++fdi0aRO2bNkCjUaDtrY2+Pr6Ijc3FyNGjMC0adMQEREBAJg/fz6Ki4tx0003dbuOTqeDTqczbTc28oGVRAS4yl2g/u21eHbnUXxZUg0A+O5ELWZfenabGNg6RTRworcgXY1er8eBAweQkpJi2ufi4oKUlBTs3bvXomvk5eWhvLwcp06dwtq1a7F8+XLk5uYCABISEnD+/HlcvHgRRqMRBQUFmDBhQq/X8fPzM706QxURUbTKB68vmYYlSZEAgB2HK0WuiIgGStIBqba2FgaDASqV+Qq1KpUKVVVVA76+q6sr1qxZg1mzZmHKlCkYN24cbr311h7PXblyJRoaGkyv8vLyAX8+EQ0t140JAgC8X1iOH85cFLkaIhoI0bvYBlNGRka3fX118XVSKpVQKpVQq9VQq9UwGDiVl4jMJY4KgI+7K5pa23HbK3uwbOYo5KbFDHodnMVGNHCSbkEKCgqCXC5HdXW12f7q6mqEhIT08i77yszMRElJCYqKikT5fCKSrmFeCuQ/PBuRgZ4AOma0teh7/scUV9ImkjZJBySFQoH4+Hjk5+eb9hmNRuTn5yMpKUnEyoiIehbs446Ps643bYvR1cbsRTRwogckjUaD4uJi00y0srIyFBcX48yZMwCA7OxsvP7663jzzTdx5MgRPPDAA9BqtaZZbYNNrVYjJiYGCQkJonw+EUmfn4cb5k/uaOW+65/f4z8l1X28g4ikRvSAtH//fkydOhVTp04F0BGIpk6dappptnjxYqxduxa5ubmIi4tDcXExduzY0W3g9mBhFxsRWSL7pstrrz2zo1TESogcT7O+HeqvT6DdYBStBtEHaScnJ0PoY0RhVlYWsrKyBqkiIqKBGxvsg6TRgdj7ywVUNbSiRW+Ah0I+KJ/NQdrkyE5f0OL3bx9AaVUTGlvbsDK15+V37E30FiRHwy42IrLUO/cmYmSAJ5p07Vj3n2Nm/xpWyPnr11FwQP3gKThWg7SXvkNpVROG+yiRMkGc3iKAAclq7GIjIkvJXWRYfsMoAMBrBb9g7P/+G5//1LGIpNLt8q9fSx5NYg3+PSdHIwgC/lFwEhkbCtHY2o6pI/3x6YPXIyEqQLSaGJCIiOzojvgIjBnuZdr+w7sHcby6Ce6ul7vbWtq4rho5rxa9AQ9tKsaaz0thFIDF0yKw6b4ZUPm6i1oXA5KV2MVGRNbwUMiR/3AyXlgca9p30wsFOFrdZNruba0koqHuXH0L7li/Bx8fqoCriwxPLZiIv94+GUrXwRmvdzUMSFZiFxsR9cdtU8Px9MJJPR5r0RsgCAIyNhQi/Y3CPieuEA0F+0/VYcHL3+HnikYEeCnwzr2JuDspSjJjvkSfxUZE5Cx+NyMSaVPCcOvLu1Be12La39JmwAWtHt8crQEA1Gn1CPRWilUmkV0JgoANu09hzedH0G4UMCHUF68viUf4ME+xSzPDFiQiokHk5+mGbX+YiWUzR5n2aXTtaL1iHJJexLVfqDtptGcMDVpdO/64qRhPflqCdqOAW6eE4qMHkiQXjgAGJKtxDBIRDVSgtxK5aTGIVnkDANb95xg0unbT8WaOSaIh6MR5DRaqd+OTS+ONVqXF4KXfTIWnQpqdWQxIVuIYJCKyldumhgMAdh2vRe62n037OWibhpp//1SJBS9/h+PnNQj2UWLTfTOwdOYoyYw36ok0YxsRkRN4IHkMymo1+GD/WRSeqjPt117RmkTkyNoNRjyzoxSv7yoDACSOCsBLd01FsI+4U/gtwYBERCSiJ/5rEtoNAv71wznTvtN1zTh7sQULp46A3EW6/8ImuprzTa3Ieu8HFJZ1hP/7Zo3GX+aNh6uDrCLPgEREJCIPhRzPL45DzrzxuO6vXwEA/vLhjwCAi8163HvDaDHLI3Bl8v74+uh55HxwCBe0engrXfHsHVOQOjlU7LKs4hgxTkI4SJuI7CHM3wN/u32K2b6nPzuCo1VNvbyjZ7/UaPDW3tOmba6pNHD8EVrOYBTwtx2lWLqhCBe0elwT4oPtWTMdLhwBDEhW4yBtIrKXXydE4J17EhEVeHnK87x1BThx3vKQ9Nt/fm+23WbgX3caHNWNrbj7/77HK9+cBACkJ0ViW+ZMjBnuLXJl/cOAREQkIdePC8I3j8zBh/cnmfalPF+ANZ8fMVsrqTeVDa1m221cU4kGwVel1Uj9+y7sOXkBHm5y/P2/4/DEgklwdxP/kSH9xYBERCRB06ICsC1zJgK8FACAfxT8gpjcHfj3T5VWXUffzoBE9qNvN+J/tv6EZRv3o06rR0yoLz794/VYEDdC7NIGjAGJiEii4iL8kZ892zSTzSgAD7x7EC/mH7d4bBFbkMhefqnR4PZX9+C9788AAJbOjMLWzOsctkutKwYkIiIJG+alwMk18/Fx1kyM8PcAADz/5TGMWvk5jlQ2QtduwM6fq1Be19zj+/nYErI1QRCwZX85bn3pO/x0rgH+nm54fck0rEqbCKWr43apdcVp/lZSq9VQq9UwGLjSLRENninh/vg6JxmPfvQjtl5aMyn177vMzukMUFdiFxvZUkNLGx7bdhifHKoAAMwYHYAXFsch1K/7f3uOji1IVuIsNiISi8LVBS8sjsO79yb2ePxcfUu3fZzFRrby7bEa3LyuAJ8cqoDcRYZH5o3Hu/fOGJLhCGALEhGRw5k5NgjHnk7Fq9+cxIkaDc7UNeNQeX2P5za0tA1ucTTkNLa2Yc1nR7CpqBwAEBnoiXWL4zB15DCRK7MvBiQiIgekcHXBQynjTNv/OngW2R8c6nber1/bi/+dPwHLZ3FFbrJcnVaPa5/6EgAQ6uduWj4i47oo/OXm8fBUDP34MPS/QyIiJ7Do2nDcPCkEmtZ2BPu646MDZ/Hwlo7AtPrzI1j9+RG8d28irhsbJHKl5AjW/eeY6evKhlaMDPDEs3dMQeLoQBGrGlwMSEREQ4SnwtX0L/tF146AwtUFD77/g+n4Xf/8HjPHBuLV38XD191NrDIdjjON4hIEAR8dPIf3C8+Y9j0ybzyWzoxyilajKznXd0tE5CRkMhnSYsMwLWoYkvK+Mu3ffeICpjz+BTbfN8PUGqDVteN8kw6jgrzEKpck4Iufq3Df2wdM29eNCcQ/lkyDt9I5o4JzftdERE4i1M8Dv6yZj4NnLuKO9XtN+xf/Yx/c3Vxw29QR2PdLHcpqtdiQkYA51wSLWK00ycQuwM507Qb8c1cZnt15FAAgd5Hhzynj8EDyWNMipc6I0/yJiIY4FxcZpkUF4NRfb0HOr6JN+1vbjHi/sBxltVoAwGPbDotVotOqadKJ+vmlVY249cXvTOEIALbcn4SsG8c5dTgCGJCsplarERMTg4SEBLFLISKyWtaN43D06Zvx+9mjEeStNDt2rr4FUSs+wz0bi3BRq7f4cSbUPy/mH0fC6v9gw+6yQf/s1jYDXvjyGP7rpd04fl6DAC8FnlowEWV583HtEJ++bymZwP8D+qWxsRF+fn5oaGiAr6+v2OUQEfWLVteONZ8fwbvfn+nxeO6tMfjN9JHwUAydR0hYKmrFZwCAWdHD8day6Xa7PgCc+ustNr9+TwRBQP6R83jy0xKcufR4mhuvCcYzt0/BcB9lH+8eGiz9+80xSERETsxL6YrVt03Gkwsm4avS81j+1n6z409+WoInPy0BAAT7KPGPJdMQF+EvQqU0UD9XNGD1Z0ew5+QFAIDKV4n/d2sMbpkcCpnMubvTesKAREREkLvIcFOMCqf+egta9AZ8UVKF5744ZmplAIDzTTosVO/GwrgwLE4YiWsj/YfUw0mHquPVTXit4Bd8dPAsBAFQyF2w9PooPHjjOKedoWYJ/mSIiMiMh0KOBXEjsCBuBBqa2/DY9ssPJwWAbcUV2Fbcsf3ozddg2fVRDEoSVF7XjFe/PYn3C8+gczDNrVNC8ejN1yAiwFPc4hwAAxIREfXKz9MNL/1mKl76zVS0GYz4564ybCo6g9MXOlqWntlRitcKTmLGqEDMHj8cc68JRrCvu8hV25ajdT6V1zXj7X2n8eaeU9C1GwEAv4pR4f7kMRyAbQUGJCIisoib3AUPJI/BA8ljcKpWi4e3HEJZrRZ1Wj12/FyFHT9XQSYDpkcFIHl8MCaP8MO0qGFwd2Pr0mA4Xt2EN3afwpb95Wg3djQZxUcOwx/njsPs6OEiV+d4GJCIiMhqUUFe+OiB69BmMOJQeT12Ha/Ft8dqUFxej+/L6vB9WZ3p3OTxw3HL5FDERvgjWuUjYtX9I+Wp3oIgYO/JC9iw5xS+LKk27b9+bBAyrovC3AnBHIDdTwxIRETUb25yF0yLCsC0qAD8+aZolNc14+uj5/HFz9X47kQtAOCbozX45mgNAMDH3RWuLjLMjh6OGaMDcUd8OFzlXJLPWgajgI8PncPjH5egoaUNACCTATdNUOHeG0Zj+qgAkSt0fAxIRERkMxEBnliSFIUlSVFoNxhx8Ew9viypwq7jtSitakJTazuAywO9V/zrJ9x+bTjSr4vEpDA/uDj56s1XIwgCSiobsbmoHN8crTGbYfjbxJFYOnMUxgZ7i1jh0OI0Aam5uRkTJkzAnXfeibVr1wIAjh49isWLF5vOOXr0KN5//30sXLhQpCqJiIYOV7kLpo8KMLVmXNDooP76JN7osnL0RwfP4qODZ+Hn4YbxIT64fmwQZkUPR0yoLxSuQ6t1qaK+BQdOX8T8yaFXPe9cfQv2nKjFIx/+2Os5fh5umDzCD3mLJnNWmh04TUBavXo1ZsyYYbZv/PjxKC4uBgBoNBpERUXhpptuEqE6IqKhL9Bbidy0GOSmxQAASioa8c73p/He92fgqZCjoaUNhWV1KCyrw/NfHoPS1QWx4f6YGumPmFBfXDtyGMKHeTj0mJq5z32LljYDNLr2Xs9Z/+1J/PXfpb0enz85BGlTwjB7/HB4Kpzmz/igc4qf7PHjx1FaWoq0tDQcPtzzwxg//vhjzJ07F15eXoNcHRGRc4oJ88Wa2yZjzW2T0WYworSyCbtP1qKorA4HzlxEfXMbCk/VofDU5QHfgV4K+Hu6IWWCCvGRwzA+xAcRwzwdpmuupc0AAKbxWZ3e+/4MNu4pw7FqTa/vfWjuONxzwyj4urvZtUbqIHpAKigowLPPPosDBw6gsrISW7du7dbFpVar8eyzz6KqqgqxsbF46aWXMH265c/FycnJwbPPPos9e/b0es4HH3yAJUuW9PfbICKiAXCTu2ByuB8mh/vh/tljIAgCfqnV4sDpiygur0dJRSN+rmjABa0eF7R6nKz5xfReDzc5xqm8Ea3ywXiVD8aHdLyCfZQdrTWt7T2uzXTifBMCvZQY5qWw6/d2qLweAV4Ks26wz36sNDvnf7b+ZLYd5K3EqCBPPHZLDGL5aBdRiB6QtFotYmNjsWzZMixatKjb8c2bNyM7Oxvr169HYmIi1q1bh3nz5uHo0aMIDg4GAMTFxaG9vXtz5RdffIGioiJER0cjOjq614DU2NiIPXv2YNOmTb3WqdPpoNPpzN5DRET2IZPJMGa4N8YM98avp0UA6HgC/aHyejx3qfvtgkaPEzUatLQZ8OPZBvx4tsHsGn4ebmhoaYOriwwpE1QI9XfH9WODcO3IYTh0th4ZG4pM5279w3UYH+IDT4UrNLp2uNto7NOZC81YoN7d53kj/D2gcHWBi6xjdfKUCSqHaRUbqmSCIEhmiQeZTNatBSkxMREJCQl4+eWXAQBGoxERERF48MEHsWLFij6vuXLlSrzzzjuQy+XQaDRoa2vDww8/jNzcXNM5b7/9Nnbu3Il33nmn1+s8/vjjeOKJJ7rt7+tpwEREZD/tBiNO1zXjWFUTjlY34Vh1E45WNaGsVgtjP/663ZU4Eu99fwbjgr1x/HxHd1eYnzveuTcRchcZ2gxGnL3Ygha9AftPX8S5iy0Y7qPED+UXEeStRFSgFzS6dtQ363H6QrPpGj2ZGOaLzb9P4vPQBlljYyP8/Pz6/Pst6YCk1+vh6emJDz/80Cw0paeno76+Htu3b7fq+hs3bsThw4dNs9g6paWl4b777kNaWlqv7+2pBSkiIoIBiYhIglrbDDhZo8FPZxtQWFaHyEAvnL3YjC0HzopW03iVDxZOHYH5k0Mgd5EhzM+DrUQisDQgSTq21tbWwmAwQKVSme1XqVQoLe19hL81GhoaUFhYiI8++uiq5ymVSiiVSqjVaqjVahgMBpt8PhER2Z67mxwTw/wwMcwP/z19pGn/s3fGQqNrR1NrG36p0WL/qYv4z5Fq1DTpEObvjuE+Suz8uRoebnLTgGp/TzcYDAKMggCZTIZAbwWGeyshd5HBUyGHn4eb6eG9i6aOQGSgFwK8FYgM8ERUoBfC/N25GKYDknRAsrWMjIxu+/z8/FBdXd395F5kZmYiMzPTlECJiMixeCtd4a10RaifB2aODcJDKeMGfM11/z3VBpWRlEg60gYFBUEul3cLMNXV1QgJCRGpKiIiIhrqJB2QFAoF4uPjkZ+fb9pnNBqRn5+PpKQkUWpSq9WIiYlBQkKCKJ9PRERE9id6F5tGo8GJEydM22VlZSguLkZAQABGjhyJ7OxspKenY9q0aZg+fTrWrVsHrVaLpUuXilIvu9iIiIiGPtED0v79+zFnzhzTdnZ2NoCOmWobN27E4sWLUVNTg9zcXFRVVSEuLg47duzoNnCbiIiIyFYkNc3fEVw5i+3YsWOc5k9ERORAHHIdJEdi6Q+YiIiIpMPSv9+SHqRNREREJAYGJCtxFhsREdHQxy62fmIXGxERkeNhFxsRERFRPzEgEREREXXBgGQljkEiIiIa+jgGqZ84BomIiMjxcAwSERERUT+J/qgRR9XZ8NbY2ChyJURERGSpzr/bfXWgMSD1U1NTEwAgIiJC5EqIiIjIWk1NTVd96DzHIPWT0WhERUUFfHx8IJPJ+jw/ISEBRUVFNq2hv9e05n2WnNvXOVc73tuxrvsbGxsRERGB8vJySYz5svX9lMq97Os83kv7Xc/a9w30/03eS/teTyq/Z63ZL6X7ac+/mYIgoKmpCWFhYXBx6X2kEVuQ+snFxQXh4eEWny+Xy23+H1x/r2nN+yw5t69zrna8t2O97ff19RX9f1zA9vdTKveyr/N4L+13PWvfN9D/N3kv7Xs9qfyetXY/II37ae+/mVdrOerEQdqDJDMzUzLXtOZ9lpzb1zlXO97bMXv8vGzJ1vVJ5V72dR7vpf2uZ+37Bvr/Ju+lfa8nld+zvJf9vya72MghcFmFoYP3cujgvRxaeD/NsQWJHIJSqcSqVaugVCrFLoUGiPdy6OC9HFp4P82xBYmIiIioC7YgEREREXXBgERERETUBQMSERERURcMSERERERdMCCRpBUUFCAtLQ1hYWGQyWTYtm2b2CWRhSy5d2q1GlFRUXB3d0diYiIKCwsHv1Dqxlb3jvd3cA3mfXOGe8uARJKm1WoRGxsLtVotdilkpb7u3ebNm5GdnY1Vq1bh4MGDiI2Nxbx583D+/PlBrpS6ssW94/0dfIN135zm3gpEDgKAsHXrVrHLoH7o6d5Nnz5dyMzMNG0bDAYhLCxMyMvLG+Tq6Gr6e+94f8Vlz/vmLPeWLUhENOj0ej0OHDiAlJQU0z4XFxekpKRg7969IlZGfbHk3vH+So+t7psz3VsGJCIadLW1tTAYDFCpVGb7VSoVqqqqRKqKLGHJveP9lR5b3TdnurcMSERERERdMCAR0aALCgqCXC5HdXW12f7q6mqEhISIVBVZwpJ7x/srPba6b850bxmQiGjQKRQKxMfHIz8/37TPaDQiPz8fSUlJIlZGfbHk3vH+So+t7psz3VtXsQsguhqNRoMTJ06YtsvKylBcXIyAgACMHDlSxMqoL33du+zsbKSnp2PatGmYPn061q1bB61Wi6VLl4pYNQG2uXe8v4NvsO6b09xbsafREV3N119/LQDo9kpPTxe7NOqDJffupZdeEkaOHCkoFAph+vTpwr59+8QrmExsde94fwfXYN43Z7i3MkEQhMGNZERERETSxjFIRERERF0wIBERERF1wYBERERE1AUDEhEREVEXDEhEREREXTAgEREREXXBgERERETUBQMSERERURcMSEREIsnIyIBMJoNMJsO2bdtseu1vvvnGdO2FCxfa9NpEzoABiYhs5so/+Fe+rnw+FJm7+eabUVlZidTUVNO+3gJTRkaGxWHnuuuuQ2VlJX7961/bqFIi58KH1RKRTd18883YsGGD2b7hw4d3O0+v10OhUAxWWZKlVCoREhJi8+sqFAqEhITAw8MDOp3O5tcnGurYgkRENtX5B//Kl1wuR3JyMrKysvCnP/0JQUFBmDdvHgDg8OHDSE1Nhbe3N1QqFe6++27U1taarqfVarFkyRJ4e3sjNDQUzz33HJKTk/GnP/3JdE5PLS7+/v7YuHGjabu8vBy//vWv4e/vj4CAACxYsACnTp0yHe9snVm7di1CQ0MRGBiIzMxMtLW1mc7R6XR49NFHERERAaVSibFjx+L//u//IAgCxo4di7Vr15rVUFxcbLcWtFOnTvXYWpecnGzzzyJyRgxIRDRo3nzzTSgUCuzevRvr169HfX09brzxRkydOhX79+/Hjh07UF1dbdYt9Mgjj+Dbb7/F9u3b8cUXX+Cbb77BwYMHrfrctrY2zJs3Dz4+Pti1axd2794Nb29v3HzzzdDr9abzvv76a5w8eRJff/013nzzTWzcuNEsZC1ZsgTvv/8+XnzxRRw5cgSvvfYavL29IZPJsGzZsm4tZxs2bMCsWbMwduzY/v3AriIiIgKVlZWm1w8//IDAwEDMmjXL5p9F5JQEIiIbSU9PF+RyueDl5WV63XHHHYIgCMLs2bOFqVOnmp3/1FNPCb/61a/M9pWXlwsAhKNHjwpNTU2CQqEQPvjgA9PxCxcuCB4eHsJDDz1k2gdA2Lp1q9l1/Pz8hA0bNgiCIAhvv/22MH78eMFoNJqO63Q6wcPDQ9i5c6ep9sjISKG9vd10zp133iksXrxYEARBOHr0qABA+PLLL3v83s+dOyfI5XLh+++/FwRBEPR6vRAUFCRs3Ljxqj+vBQsWdNsPQHB3dzf7OXp5eQmurq49nt/S0iIkJiYKt956q2AwGCz6DCK6Oo5BIiKbmjNnDl599VXTtpeXl+nr+Ph4s3MPHTqEr7/+Gt7e3t2uc/LkSbS0tECv1yMxMdG0PyAgAOPHj7eqpkOHDuHEiRPw8fEx29/a2oqTJ0+atidOnAi5XG7aDg0NxU8//QSgo7tMLpdj9uzZPX5GWFgYbrnlFrzxxhuYPn06PvnkE+h0Otx5551W1drphRdeQEpKitm+Rx99FAaDodu5y5YtQ1NTE7788ku4uLBjgMgWGJCIyKa8vLx67VK6MiwBgEajQVpaGp555plu54aGhlo8dkcmk0EQBLN9V44d0mg0iI+Px7vvvtvtvVcOIHdzc+t2XaPRCADw8PDos457770Xd999N1544QVs2LABixcvhqenp0XfQ1chISHdfo4+Pj6or6832/f0009j586dKCws7BYAiaj/GJCISDTXXnstPvroI0RFRcHVtfuvozFjxsDNzQ3ff/89Ro4cCQC4ePEijh07ZtaSM3z4cFRWVpq2jx8/jubmZrPP2bx5M4KDg+Hr69uvWidPngyj0Yhvv/22W8tOp/nz58PLywuvvvoqduzYgYKCgn59lqU++ugjPPnkk/j3v/+NMWPG2PWziJwN22KJSDSZmZmoq6vDb37zGxQVFeHkyZPYuXMnli5dCoPBAG9vb9xzzz145JFH8NVXX+Hw4cPIyMjo1o1044034uWXX8YPP/yA/fv34/777zdrDfrtb3+LoKAgLFiwALt27UJZWRm++eYb/PGPf8TZs2ctqjUqKgrp6elYtmwZtm3bZrrGBx98YDpHLpcjIyMDK1euxLhx45CUlGSbH1QPDh8+jCVLluDRRx/FxIkTUVVVhaqqKtTV1dntM4mcCQMSEYkmLCwMu3fvhsFgwK9+9StMnjwZf/rTn+Dv728KQc8++yxuuOEGpKWlISUlBddff323sUzPPfccIiIicMMNN+Cuu+5CTk6OWdeWp6cnCgoKMHLkSCxatAgTJkzAPffcg9bWVqtalF599VXccccd+MMf/oBrrrkGy5cvh1arNTvnnnvugV6vx9KlSwfwk+nb/v370dzcjKeffhqhoaGm16JFi+z6uUTOQiZ07bgnIpK45ORkxMXFYd26dWKX0s2uXbswd+5clJeXQ6VSXfXcjIwM1NfX2/wxI4P9GURDEVuQiIhsQKfT4ezZs3j88cdx55139hmOOn366afw9vbGp59+atN6du3aBW9v7x4HphNR3zhIm4jIBt5//33cc889iIuLw1tvvWXRe/72t7/hscceA9Axa8+Wpk2bhuLiYgDocRkFIro6drERERERdcEuNiIiIqIuGJCIiIiIumBAIiIiIuqCAYmIiIioCwYkIiIioi4YkIiIiIi6YEAiIiIi6oIBiYiIiKiL/w/H0X40BCUVRgAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x400 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAGCCAYAAAAfeXmxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd8FGX+xz+zNT0BAgmBQEInlCQg1QaKIiIK3Hno3U8FT84CKsd5HugJ6t2Jp6KcGuXEgnoWbGBBKUaRIh1C76QRkpAQkpC2dX5/zD4zz8zObEl2synP+/XKK7uzszPP9uf7fL7fz5fjeZ4Hg8FgMBgMBoPBYDCCii7UA2AwGAwGg8FgMBiM9gALvhgMBoPBYDAYDAajGWDBF4PBYDAYDAaDwWA0Ayz4YjAYDAaDwWAwGIxmgAVfDAaDwWAwGAwGg9EMsOCLwWAwGAwGg8FgMJoBFnwxGAwGg8FgMBgMRjPAgi8Gg8FgMBgMBoPBaAZY8MVgMBgMBoPBYDAYzQALvhgMBoPBYDAYDAajGWDBF4PBYDAYbYzNmzdjypQpSEpKAsdxWLNmTVDPt2TJEowYMQLR0dHo0qULpk6dihMnTsj2uf/++9G7d2+Eh4ejc+fOuO2223D8+PGgjovBYDBaGiz4YjAYDAajjVFbW4v09HRkZWU1y/l++eUXzJkzBzt27MDGjRths9lw4403ora2Vtxn+PDheO+993Ds2DGsX78ePM/jxhtvhMPhaJYxMhgMRkuA43meD/UgGAwGg8FgBAeO47B69WpMnTpV3GaxWPDkk0/ik08+QWVlJQYPHox///vfGDduXEDOWVZWhi5duuCXX37BNddco7rPwYMHkZ6ejtOnT6N3794BOS+DwWC0dJjyxWAwGAxGO2Pu3LnYvn07Pv30Uxw8eBC33347brrpJpw6dSogx6+qqgIAdOzYUfX22tpavPfee0hNTUVycnJAzslgMBitAaZ8MRgMBoPRhlEqXwUFBejVqxcKCgqQlJQk7jdhwgSMHDkSzz33XJPO53Q6ceutt6KyshJbt26V3fbGG2/g8ccfR21tLfr374+1a9cy1YvBYLQrmPLFYDAYDEY74tChQ3A4HOjXrx+ioqLEv19++QVnzpwBABw/fhwcx3n8W7Bggerx58yZg8OHD+PTTz91u+0Pf/gD9u/fj19++QX9+vXD7373OzQ0NAT18TIYDEZLwhDqATAYDAaDwWg+ampqoNfrsXfvXuj1etltUVFRAIBevXrh2LFjHo/TqVMnt21z587Fd999h82bN6N79+5ut8fGxiI2NhZ9+/bF6NGj0aFDB6xevRp33nlnEx4Rg8FgtB5Y8MVgMBgMRjsiMzMTDocDFy5cwNVXX626j8lkwoABA3w+Js/zePjhh7F69Wps2rQJqampPt2H53lYLBafz8NgMBitHRZ8MRgMBoPRxqipqcHp06fF67m5ucjJyUHHjh3Rr18//OEPf8Ddd9+NpUuXIjMzE2VlZcjOzsbQoUMxefJkv883Z84cfPzxx/j6668RHR2NkpISAILSFR4ejrNnz2LVqlW48cYb0blzZ5w7dw7PP/88wsPDcfPNNwfscTMYDEZLhxluMBgMBoPRxti0aRPGjx/vtv2ee+7BypUrYbPZ8M9//hMffPABioqKEB8fj9GjR+OZZ57BkCFD/D4fx3Gq29977z3MnDkT58+fx3333Ye9e/fi0qVLSEhIwDXXXINFixahf//+fp+PwWAwWiss+GIwGAwGg8FgMBiMZoC5HTIYDAaDwWAwGAxGM8CCLwaDwWAwGAwGg8FoBpjhRiNxOp04f/48oqOjNXPdGQwGgxF4eJ7H5cuXkZSUBJ2OrSHSsN8mBoPBCA2+/jax4KuRnD9/HsnJyaEeBoPBYLRbCgsLVXtJtWfYbxODwWCEFm+/TSz4aiTR0dEAhCc4JiYmxKNhMBiM9kN1dTWSk5PF72GGBPttYjAYjNDg628TC74aCUnniImJYT9wDAaDEQJYWp077LeJwWAwQou33yaWLO8nWVlZSEtLw4gRI0I9FAaDwWAwGAwGg9GKYMGXn8yZMwdHjx7F7t27Qz0UBoPBYLRgNm/ejClTpiApKQkcx2HNmjUe99+0aRM4jnP7KykpaZ4BMxgMBiPosOCLwWAwGIwgUFtbi/T0dGRlZfl1vxMnTqC4uFj869KlS5BGyGAwGIzmhtV8MRiMNo3D4YDNZgv1MBh+YjQaodfrQz2MJjFp0iRMmjTJ7/t16dIFcXFxgR8Qg8FgMEIOC74YDEabpaamBufOnQPP86EeCsNPOI5D9+7dERUVFeqhNDsZGRmwWCwYPHgwnn76aVx55ZWa+1osFlgsFvF6dXV1cwyRwWAwGI2EBV8MBqNN4nA4cO7cOURERKBz587MGa8VwfM8ysrKcO7cOfTt27fVK2C+0rVrVyxfvhxXXHEFLBYL3n77bYwbNw47d+7EsGHDVO+zZMkSPPPMM808UgaDwWA0FhZ8MRiMNonNZgPP8+jcuTPCw8NDPRyGn3Tu3Bl5eXmw2WztJvjq378/+vfvL14fO3Yszpw5g1deeQUffvih6n0WLlyI+fPni9dJnxkGg8FgtExY8MVgMNo0TPFqnbDXTWDkyJHYunWr5u1msxlms7kZR8RgMBiMpsDcDhkMBoPBaKHk5OSga9euoR4Gg8FgMAIEU778JCsrC1lZWXA4HKEeCsNHyi5bUN1gQ+/O7a9wn8FghI6amhqcPn1avJ6bm4ucnBx07NgRPXr0wMKFC1FUVIQPPvgAALBs2TKkpqZi0KBBaGhowNtvv42ffvoJGzZsCNVDYDAYfsLzPHIKKzEgMQbhpvaRMs3wDxZ8+cmcOXMwZ84cVFdXIzY2NtTDYXihqt6GKa9tRUWdFdv+dh06R7P0nPaE1eHEqQs1MJtbjtV8j44RCDN6/kHetGkTZs6ciby8POTl5SE1NRX79+9HRkaGX+dKSUnBvHnzMG/ePABCKt/q1asxdepU1f0be66LFy9i4MCB2LVrF1JSUgAA27ZtwwMPPIDjx49j8uTJWLNmDcaNG4eZM2di5syZfj2O1sqePXswfvx48TqpzbrnnnuwcuVKFBcXo6CgQLzdarXiL3/5C4qKihAREYGhQ4fixx9/lB2DwWC0bD7bU4i/fXkI/ROisf7P14R6OIwWCAu+GG2apRtOoKS6AQCQd7GWBV/tjOJqOx74385QD0PGhj9fg34J0QE95sqVKzFv3jxUVlbKtu/evRuRkZEBPZca//rXv3DbbbeJgRcgBBoZGRn44Ycf2qVdPACMGzfOY5uDlStXyq4//vjjePzxx4M8KgaDEUz+9uUhAMCJ0sshHgmjpcKCL0ab5eC5Sny4I1+8frHGGsLRMBjNT+fOnYN+jrq6OrzzzjtYv369bPuZM2fwwAMPoHv37kEfA4PBYLREaix2RJnZVJshhxluMNokDiePJ1cfBr3ofLHWon2HIFJ22YITJWwFjNE0zp49i/HjxyMiIgLp6enYvn07ACFFcdasWaiqqgLHceA4Dk8//TQAIe1w2bJlmsfctWsXMjMzERYWhiuuuAL79+932+fw4cOYNGkSoqKikJCQgLvuugvl5eXi7d9//z3MZjNGjx4NQEhd5DgOFy9exL333guO49wUHgaDwWgP2OzOUA+B0QJhwRejTfLxznwcKqpCdJgBEwZ2ARAa5etwURVGPfcjbn51Cy640h8ZjMbw5JNP4rHHHkNOTg769euHO++8E3a7HWPHjsWyZcsQExOD4uJiFBcX47HHHvN6vJqaGtxyyy1IS0vD3r178fTTT7vdr7KyEtdddx0yMzOxZ88erFu3DqWlpfjd734n7rNlyxYMHz5cvJ6cnIzi4mLExMRg2bJlKC4uxowZMwL3RDAYDEYrwcKCL4YKTAtltEk+3lUIAJh/Qz9crLHix2MXcLEm8MpXrcWOY8XVGN6zg1tfIqeTx/0f7oWTB8DzKLxUhy4xYQEfA6N98Nhjj2Hy5MkAgGeeeQaDBg3C6dOnMWDAAMTGxoLjOCQmJvp8vI8//hhOpxPvvPMOwsLCMGjQIJw7dw4PPviguM/rr7+OzMxMPPfcc+K2d999F8nJyTh58iT69euH/Px8JCUlibfr9XokJiaC4zjExsb6NSYGg8Fo7VzRswP25F8CABRU1CExlv3uM+Qw5YvR5qi3OnDSVeh60+BEdIoyAQDKawOrfBVcrMOU17fit8u3Y+2hYrfba612FFXWi9er6+3YX3AJ//zuKGos9oCOhdH2GTp0qHiZ9H26cOFCo4937NgxDB06FGFh0sRgzJgxsn0OHDiAn3/+GVFRUeLfgAEDAAg1XQBQX18vOwaDwRCwO5xIWbAWM9/bFeqhMJqRepvUiuijnfke9mS0V9p88FVYWIhx48YhLS0NQ4cOxeeffy67/bvvvkP//v3Rt29fvP322yEaJSOQHC2uhsPJo3O0GYkxYegUJTgcBlL5arA5MOOt7ThbVgsA+Om4+yRYmW5Q3WDDtDd+xdtbc7F805mAjYXRPjAajeJlorI6ncFNaampqcGUKVOQk5Mj+zt16hSuuUawUI6Pj8elS5eCOg4GozUy9BmhP9umE2UhHgmjOWmggq/kDhEhHAmjpdLmgy+DwYBly5bh6NGj2LBhA+bNm4faWmHCbLfbMX/+fPz000/Yv38/XnzxRVy8eDHEI2Y0lUPnKgEAQ7sJqVjxkYLy5W/NV2WdVdMm+vSFGhRXSTVcO89WuO3jFnzVS72mmAUtI5CYTCa/G78PHDgQBw8eREOD9D7esWOHbJ9hw4bhyJEjSElJQZ8+fWR/xMI+MzMTR48ebfqDYDDaGHVW6TN54TKr+W0vNNik3/4VW86GcCSMlkqbr/nq2rWrmKKTmJiI+Ph4VFRUIDIyErt27cKgQYPQrVs3AMCkSZOwYcMG3HnnnaEcMsMDNocTTp6H2aDdpPbguSoAwJDuQhNsUfnyI+1wy6ky3PXOLjx2Yz/Mva6v2+3kh7RXfCTyK+pQVFmPwoo6JHeUVrksNvlk+NwlKQUxgnW9bxa6xhjw7UOjYDa3nP5uPToGfiU0JSUFNTU1yM7ORnp6OiIiIhAR4fk8v//97/Hkk09i9uzZWLhwIfLy8vDSSy/J9pkzZw5WrFiBO++8E48//jg6duyI06dP49NPP8Xbb78NvV6PiRMnYuHChbh06RI6dOgQ8MfGYLQFii7Vo0s0S89tD9DK10Pj+oRwJIyWSsiDr82bN+PFF1/E3r17UVxcjNWrV2Pq1KmyfbKysvDiiy+ipKQE6enpeO211zBy5Ei/z7V37144HA4kJycDAM6fPy8GXgDQrVs3FBUVNenx+DyW/AoUVtQjOsyAKLMB0WFGRIcZxOsGfZsXJf2itLoB723Lw0c78xETZsS6eVcjOsyouu/BIiH4GioGX4LydanOCrvD6dNzuydPSKPKKaxUvb2kSkhhTI2PRGyEEfsLKrEztwKdo83Iu1iLAYkxbsoXfazLDazmqzkw6XVI7RLV5muSxo4diwceeAAzZszAxYsXsXjxYtFuXouoqCh8++23eOCBB5CZmYm0tDT8+9//xm9+8xtxn6SkJGzbtg1/+9vfcOONN8JisaBnz5646aaboNMJn6MhQ4Zg2LBh+Oyzz3D//fcH82EyGK2WCFPIp1uMZoKu+YqPNoVwJIyWSsi/DWpra5Geno57770X06dPd7t91apVmD9/PpYvX45Ro0Zh2bJlmDhxIk6cOIEuXQQL8YyMDNjt7pPZDRs2iC5cFRUVuPvuu7FixYrgPiAvnCq9jH99f8xrDni4UY+oMAOiza6ALMyAaLNR+C9ul66rBXCRJgN0Os7jeVo6py9cxvJfzuLrnCLYHEIK4OUGO344VILfjUh227/GYseZshoAwJBucQCADhEmcBzA88ClOhs6R3tXQcpc9WFVVKogTYnLNj4hNgx9E6KF4OvsRRwrrsY7W3Pxwm+Hol9CtOw++6ngq6SKpaAwfCMlJcUt/TUuLs5t25tvvok333xTti0vL092XXmf0aNHIycnx+M+ffv2xVdffeVxjIsWLcJf//pXzJ49WwzKKisrPd6HwWjrZCTHiYtu3xwowl8TB4R2QIygw/O8TPlifb4YaoQ8+Jo0aRImTZqkefvLL7+M2bNnY9asWQCA5cuXY+3atXj33XexYMECAHCbPCixWCyYOnUqFixYgLFjx4rbk5KSZEpXUVGRpqJmsVhgsUiGDdXV1V4fG015jQXLfjyJT3YVwuHkYdRzGNajAxpsDlxusOOyxY7LDTYxV7je5kC9zYGyy403idBxQJfoMCTFhSEpLhzd4sKRJP6FoVtcOGLDjW4W6S2Fw0VVmP7mr7C6vrxGpHRA19hwfHPgPL7Yd041+DpSVAWeB5Jiw8QgS6/j0CHChIpaKypqrT4FXxeqhee9sk49+CI9uxJjwjC4WwyW/wIcOFeJk6VC4Pf31Yfx4R/l7yUr9SVcynp+MdoQkydPxqlTp1BUVCRmFjAY7Z3YcCk7I61rbAhHwmgurA6n0F7GxdbTFzHzytTQDYjRIgl58OUJq9WKvXv3YuHCheI2nU6HCRMmYPv27T4dg+d5zJw5E9dddx3uuusu2W0jR47E4cOHUVRUhNjYWPzwww946qmnVI+zZMkSPPPMM34/hgabAyt/zUPWT6dx2WUvPnFQAhZMGojU+Ei3/W0OJ2oa7Kix2FHdYENNgx2XXdcvN9hcQZrdtd3m2s913SLtb3fycPKCQlNS3YB9BZWq44sw6cWArFtcGJJihcvpybHo0yVa9T7NgdXuxGOfH4DV7sSIlA5YePNADOvRAcVV9fj24Hnsyq1wq7EC3Ou9CJ0iheBLcDyMxgfb8/DT8Qt44w/DVNNBylw1XV6VrxgzeneOAgDkX6yTxu9wemyueLHWCovd4bF2jcFoTcybNy/UQ2AwWhS0ArI7rwKTh3YN4WgYzQFttgEAPx4rDdFIGC2ZFh18lZeXw+FwICEhQbY9ISEBx48f9+kY27Ztw6pVqzB06FCsWbMGAPDhhx9iyJAhMBgMWLp0KcaPHw+n04nHH38cnTp1Uj3OwoULMX/+fPF6dXW1xxVenuex9lAxnv/huGi0MLhbDP4+OQ2je6mfAwCMeh06RJrQIbLxecI8z8Nid6Kq3oaSqgacr6xHUWU9zlcKl89X1eN8ZT3Ka6yoszpw+kINTl+ocTvOpMGJmDehH/onNn8Q9vpPp3C85DI6Rpqw/P+Gi6YZXWPDcVWfeGw5VY6v9hXh0QlyMwyp3itOtr1TlAmnLki9vt7cdAbFVQ3YcqocEwe5N4G9cNlz2mGpSxlLiBEURIOOcwu26B5falyotrgFjwwGIKQatsVgZubMmcjIyAj1MBiMZoH+Tdh8itnNtweURlsMhhotOvgKBFdddZXHXji33norbr31Vq/HMZvNMJvNyMrKQlZWlkdb5/0Fl/DPtcew19XhPCHGjMcnDsC0zG7NUoPFcRzCjHqEGfVIiAlDenKc6n4NNgeKZcGZ8FdQUYeduRX44XAJ1h0pwS1Dk/Do9X3Rp0tU0McOCOmGWa4+WP+4bbAYeBGmD+smBF/7z+GR6/vI0iZFm3ml8kX1+iKPG4DYp4vG6eTFdE+L3YkGmwNhRrlCVSoqX2Ew6HVI7hiB3HL5sbafEdoW6DjI0hDoY7Dgi6FGWw6+GIz2Ah183T26ZwhHwmgu6hXB1/Rh3TT2ZLRnWnTwFR8fD71ej9JSuWxbWlqKxER3taI5mDNnDubMmYPq6mrExson+EWV9Xhh3XF8nXMegGCa8cC1vTH7mtQW6XQUZtQjNT5SNf3xRMll/Cf7JL4/VIJvD5zH2oPnMTWjGx65vi9SVPYPFCTd0OHkMXlIV9U0jYmDEhFpOoz8i3XYk38JI1I6AgCq6mzIc6X+Dekmf23oXl90eiAx56CprLfBTkVLVfU2WfBlsTtQ4VLQEmMEF72endyDr19dwVfnaLOolAFAevdYHDhXhb35l3CFa+wMBoPBaFtY7NJEXL1jJKOtoUw7NBuYczXDnRb9rjCZTBg+fDiys7PFbU6nE9nZ2RgzZkxIxpSVlYW0tDSMGDFC3FZjsePF9cdx3Uub8HXOeXAc8Nvh3bHpr+Pw6IS+LTLw8kb/xGi88YfhWPvIVbghLQFOHvhqfxGuf/kX/PXzAyisqPN+kEZApxs+e9sg1X0iTAbcPEQIyr7ce07cfsiVctijYwTiIuRpm1KvLwvyLkpB0lmV4EvZDJNOPdybf0msKzMZdIiLEAqqUzq5B6TlLsfEeEq56xxtxm+GdwcALN14EoddY2YwGAxG28JCTcRtDuZ61x5QKl+ear8Z7ZeQB181NTXIyckRHQtzc3ORk5ODgoICAMD8+fOxYsUKvP/++zh27BgefPBB1NbWiu6Hzc2cOXNw9OhR7N69GwDw+Z5CjHvxZ2T9fAYWuxOje3XEt3Ovwku3pyMhpvX3FhqUFIsVd1+Bb+ZeifH9O8Ph5PH53nMY/9ImLPzqkNe6Jn/wlm5IM32YEMCsPVgsFjUfLKoE4J5yCEi9vsprrMingq8zZbVu1toXquUOk8TxsOBiHX7z5q+4fblg9pIQYxZTHnt2ktIHSUBGoN0Vu0SbcdfonpgwsAusdifmfLwPdVbW84vBYDDaGrTyRVqlMNo2DYrgy8qCL4YKIQ++9uzZg8zMTGRmZgIQgq3MzEwsWrQIADBjxgy89NJLWLRoETIyMpCTk4N169a5mXCEime+PYryGitS4yPx1l3D8cns0Rjcre1Zyg7tHof3Zo3EVw+NxdV942F38vhkVwEmLP0FB111Vk2B53ks+Oqgx3RDmlGpHdEtLhyXLXZ8vLMAPx0vxcajpa6xqgRfkVLNV265pNpV1dtw0ZVCWFLVAJvDKZpt0PsAQO5FeVphIhVc08pXf0V/r46UCkes/ZfenoH4KLOQOulq6MxgMBiMtgOtfLFJePtAqXCy152hBscrl/0ZHqENN06ePImSBZ3QMVwPg16HltktKzg4eB42u9DPguOE+rGmPH6Hkxfl+XCjHr60HrM5nKqriWajDnrFARw8D4vNCY4Txkt7sJiNOoAX0gMMeg4c5KuUJoMOBh0nGyMg9A8j+dxOnhdzvQ16Dnbq/vR1+j4NNgecvOv4iWnAtP8C8XL3RkbjaWhoQG5uLlJTUxEW1vpV6PaGp9eP1NxWVVUhJiYmRCNsmbDnpuXQ78kfYHVNxh8c1xt/u4k1WW7r/HS8FPeu3CNeH9e/M1bOUu8fy2h7+Pr92/qKkUKM0nAjHFYYnRzQzhY39K4/MeJSd2T363gR5Fg+ZuEZARjVgjSV+8uOzwOySNG1fwQH8XWUHdch/MmOQY7jetw6+jYnYKL3o69T9wmDaxwOAEV7gf9NBx45AOhCLkgz2hnXXHMNHnjgAfz+97/3635PPfUUSktL8dZbbwEQFOz7778fX3zxBS5duoT9+/fj+eefx4gRI/CXv/xFvN+6deuwYMEC7Nu3Dzr2fme0QRxOXgy8AMDGFJB2gXJBmClfDDVY8NVUHtgGxISuGXGo+eVkGZ5ccxg6AG/+33AMSvJ/pfV8ZQPueGs7nAA+vHekqvuiFg6npCh5orrBjptf3SLbduPABGw4VooZVyRjy6kynHfZzw/pFotDRVXQQYjFZo7pifuu7oXs4xew+Jsj4v1nX5WKe8amiNdf++k08i/W4oFre2Pmyt3i9j+M7IkfDp9HRZ0NS29Px6hUweHwL58fwM7cCiyamIobt/wOqCwALuUCnXr7/PgZnuEcFnBlxwGzdv1gs9MhFTA2vxLHcRxWr16NqVOnyrZ/8803KC0txR133CFuO3DgAJ566ins2LED1dXVSExMxKhRo/Daa6+hS5cuAICSkhL85z//waFDh8T7rVu3DitXrsSmTZvQq1cvxMfH4+9//zuuueYa3HfffaJD7E033YSnnnoKH330Ee66667gP3gGo5lRTrqZ4Ub7wK4IvpQGHAwGwIIvv3Hr89WhJ9COUzuuHZWC4bkGfJ1zHo+sq8DaRwa59cTyxsrtx1DAd8HVfeOR2lfd4VALX88UzfMo1Z0UV6WizQb07j8A547yWJNnwJnKGADC63juHAB0Qa/4SJwtr0UB3wXokIJKkwHn+DL0S4jC1MxuuH1sCkA5WT78mxQAQsuBc3y+uL0hqjtWPDoWZy7UYFSfeHF7dVg5zvEGlIf3AhLSgPP7gZKDLPgKIMaaIpi/8E/NCToP7QC6DGy201mtVphM2k3bX331VcyaNUtUoMrKynD99dfjlltuwfr16xEXF4e8vDx88803qK2V6h7ffvttjB07Fj17Sv2Lzpw5g65du2Ls2LHitsGDB6N379743//+hzlz5ojbZ86ciVdffZUFX4w2CW22AQBWZrjRLlAG2fsLKkMzEEaLhuV7+InS7ZABPD1lEOKjzDhTVotXfjzp133rrHZ8uktwtrxnTEoQRifAcZxougEAPeMj0Luz0DT6jEqjZQBiU2liuEHqvXp2isRD4/pothCINMlDQrNRh4SYMIylAi9AqPUCAKvdASQOFTYWH/T6WNYfKcHXOUVe92O0Xr744gsMGTIE4eHh6NSpEyZMmIDa2lo4HA7Mnz8fcXFx6NSpEx5//HHcc889MjVr3LhxmDt3LubNm4f4+HhMnDgRKSkpAIBp06aB4zjxellZGX766SdMmTJFvP+2bdtQVVWFt99+G5mZmUhNTcX48ePxyiuvIDU1Vdzv008/ld1v5syZePjhh1FQUCA7BwBMmTIFn376qewxTpkyBXv27MGZM2cC98QxGC0EpcU4Sz9rHzCFk+ELLPhiNJkOkSY8N20wAGDF5rPYV+C7e9+a/edR3WBHj44RGD+gS7CGCECymweEAIoEX4S+XeTX+7lcC0nwZXWtZJq8NE1UBmUmvfr+Ztd2q8MJdE0XNhYf8HjsBpsD93+4F49+moOquiYW2jFaJMXFxbjzzjtx77334tixY9i0aROmT58OnuexdOlSrFy5Eu+++y62bt2KiooKrF692u0Y77//PkwmE7Zt24bly5eLi0XvvfceiouLxetbt25FREQEBg6UlLjExETY7XasXr3arQ0DoaKiAkePHsUVV1whbvvPf/6DZ599Ft27d5edAwBGjhyJXbt2wWKRnER79OiBhIQEbNkiTwdmMNoCFhtLO2yPkOyaeNd8o1tceCiHw2ihsOCLERBuHJSIaZnd4OSBxz4/4NbrQg2e57Hy11wAwN1jenqt22oqdN+w1E6RiI8yISaMShu8Xu40SJQv0ueLrGR661hvMuhg1EuPxayRhikpX04gKUPYWLQHcMqfO/q5pBs+W9mPeZukuLgYdrsd06dPR0pKCoYMGYKHHnoIUVFRWLZsGRYuXIjp06dj4MCBWL58uVhHRdO3b1+88MIL6N+/P/r374/OnTsDAOLi4pCYmChez8/PR0JCgsz0YvTo0XjiiSfw+9//HvHx8Zg0aRJefPFFlJaWivsUFBSA53kkJSWJ22JjYxEdHQ29Xi87BwAkJSXBarWipKRENs6kpCTk5+eDwWhrNCjSDlnw1T6wu6yUw10ZMKQuncGgYcGXn2RlZSEtLQ0jRowI9VBaHIunpKFLtBlny2rx8kbv6Yfbz17EydIahBv1uP2K5KCPLz6SVr4iwHEcersCrEiTHpMGJ4q9uyJMeiS5VqyqReXLt+ALEOzyCVr7y4KvxHTAFA00VAGlh8V9nlpzGAMXrcPpCzUAgEt1VvE21iWibZKeno7rr78eQ4YMwe23344VK1bg0qVLqKqqQnFxMUaNGiXuazAYZOoTYfjw4T6dq76+XtWG/1//+hdKSkqwfPlyDBo0CMuXL8eAAQNEc436eqG5uq8W/uHhwmeprq7ObbtyG4PRFmDKV/uEKF8RRoPrOnvdGe6w4MtPWM2XNnERJiyZPgQAsGLLWezNr/C4/8pteQCA3wzvhthwY7CHJ0s7THE5KvaKF4Kv0b06wajXYXhKBwBAl2izOCZlzZfZ4N3mI9IsKWqawZcr7fDVn07jsa+OgO85BgBwYsf3otr14Y588Dzw5iahLuZSraR82dmKWptEr9dj48aN+OGHH5CWlobXXnsN/fv3R15ens/HiIz0zTE0Pj4ely6ppwl36tQJt99+O1566SUcO3YMSUlJeOmll8T7AdC8r5KKCuG7gFbDyHblNgajLcAMN9onJNiKNAvzBJahwlCDBV+MgHL9wARMH9YNPA889vlB1FvV0w8LK+rw4zEhjSmYRhs0dNphz04RAITAr1tcOGZdKRgJDO/hCr5iwsTgq7LeBp7nxR9TX5SvCBOtfHlOOwSAL/aeQ3EHQcEo3LceL6w7IduXpDHSypfS0pbRduA4DldeeSWeeeYZ7N+/HyaTCdnZ2ejatSt27twp7me327F3716fjmk0GiWXVheZmZkoKSnxGkSZTCb07t1bdDvs3bs3YmJicPToUZ/OffjwYXTv3l0M2gChifKZM2eQmZnp0zEYjNaEu+EGsxxvD5B+bmQBlilfDDVY8MUIOItvGYSEGDNyy2vx3PfHUEkFDIT/7ciHkweu6hOPvgnN0yetkyvtMNKkR2dXIDa2dzy2LbgOV/UVJoXTh3XDLUO74sFxvREXIQRfDiePWqtDTDv0ZrgBKJQvo+e0Q8L9W4SAcKTuOD749bTsNqNLJZMFX072pd4W2blzJ5577jns2bMHBQUF+Oqrr1BWVoaBAwfi0UcfxfPPP481a9bg+PHjeOihh1BZWenTcVNSUpCdnS0LtjIzMxEfH49t27aJ+3333Xf4v//7P3z33Xc4efIkTpw4gZdeegnff/89brvtNgCATqfDhAkTsHXrVp/OvWXLFtx4442ybTt27IDZbMaYMWN8OgaD0ZpQ1j0rm+8y2iYk2CILsOx1Z6jB+nz5iVufL4YbsRFGPD99KGat3I0Pd+Tjwx35iIswIqVTJFLjI5HSKRKf7i4EAMykmhQHG+I61CchGhynbu4RF2HC678fJl43GXSw2p2orLP6bLgBKJUv34KvI3wKqvkIxHB1GKyTmxAYiPJVKwVfrJDXO7aobrD88ReYW1qTZQ/ExMRg8+bNWLZsGaqrq9GzZ08sXboUkyZNwg033IDi4mLcc8890Ol0uPfeezFt2jRUVVV5Pe3SpUsxf/58rFixAt26dUNeXh70ej1mzZqFjz76CLfccgsAIC0tDREREfjLX/6CwsJCmM1m9O3bF2+//basJ9d9992H2bNn44UXXpAZdihpaGjAmjVrsG7dOtn2Tz75BH/4wx8QERHhdewMRmtDqXwxBaR9QNJLieuxw8nD4eSDbijGaF2w4MtP5syZgzlz5qC6ulrVZYwhMH5AF/ztpgFY+WsuSqstqKyzIaeuEjmFleI+zWEvTzO6Vyc8c+sgXOGq6/KF2HAjyi5bUFVv86/my0TXfGmkHSos6J3QYadzAG7Q78MVOIbpb2xz2/dSHav58gdebwbfORXw0RiiJTBw4EC3QIVgMBiwbNkyLFu2TNw2c+ZM2T6bNm1Sve+UKVNkfbkIf/7znzFo0CDk5+ejZ8+e6NWrF9566y2v47zpppuQlJSEVatW4c477wQAzJs3D/PmzZPt995772HkyJEYPXq0uK28vBxffPEF9uzZ4/U8DEZrhKSpcxzA86zPV3uBBNnRlJNyndWO6LDg17UzWg8s+GIEjQfH9caD43qjzmpHXnkd8i/WIvdiLfLKa1FSbcG9V6Y062qQTsfhHj+Vtjgq+PIn7TDCF8MNle1H+RTcgH3ozZ3H2wWV4naifF2skfokMeWLEQgSExPxzjvvoKCgAD179vT5fhzH4a233hIdELUwGo147bXXZNvy8vLwxhtvyJo2MxiEp9YcRky4AX+dOCDUQ2k0xO0wymzA5QY7U77aCZLhhjQHYL/VDCUs+GIEnQiTAWlJMUhLign1UPxGdDyss/lluBFJpR2GadV8qTRfzncKSmBPrlS23UDSunI34QPjl/ir7X6mfDECxtSpUxt1v4yMDGRkZHjc57777nPbdsUVV6ha5DMYn+8pxIc7hLTraZnd0KdL89QEBxpS8xXtCr6Y6137gNR4hVEZL+y3mqGEBV8Mhgdou3mLH8pXuJ9uh4R8PgEA0EN3QbbdoOOQf7EWyyxPA3rgUf4r2B2TfXoMjLbNypUrQz0EBiNg/PWLg+Ll93/Nxz+mDg7haBoP+b2ICjMAVYDNzibg7QGifJkMOhh0HOxOnjkTM9xgbocMhgdiI9yDL19qvhpjuAEABa7gqysuwgi7uN3u5JF36jC1J89W0xgMRpuGKGCtESuzHG+XkNfZqOfEcgH22jOUsODLT7KyspCWloYRI0aEeiiMZiDa9cNZa7H75XZIB2i+Gm4AQBliUceboed4dOfKxO12pxPm8iOyfVkeuW/wPHueWiPsdWOM6996G3DbXN/PxHyJpR22D8iiqF7HwegqF2C/1QwlLPjykzlz5uDo0aPYvXt3qIfCaAaIcYa/fb5oIxFf+3wJcGLq4XhdjrjV5uDhtNSI1ztwNUz58oJeLwS9Vqt7nzlGy4e8buR1ZLQ/Np0o875TC0XZ74m5HbYPnK7fZYOOg96lfLGenAwlrOaLwfBAhFH44ayz2v0y3DBQwZeawgVoB3GfOMbjWd37eNzwKX5xDsUZvhtsDiecljpxnw5cDerYF7pHDAYDIiIiUFZWBqPR6LEXFaNl4XQ6UVZWhoiICBgMrfdnavPmzXjxxRexd+9eFBcXY/Xq1V7NTTZt2oT58+fjyJEjSE5Oxt///ne3dgJtmSizATUWu/cdWzh2t2a77Pu6PUAWRXU6TjTKYo2WGUpa768ag9EMiMqXxSFaB5uN3lfiaeVLp2GnrxbEmfQ6fOi4ARN0+3CN/hAWGz7A3baFsDmc4K214n4dcBlV7AvdIxzHoWvXrsjNzUV+fuutHWmv6HQ69OjRQ7MhemugtrYW6enpuPfeezF9+nSv++fm5mLy5Ml44IEH8NFHHyE7Oxv33XcfunbtiokTJzbDiENPWwi8AGnCTX5DnDxYs912AK18lbtawzDVk6GEBV8MhgeIZXydVbIK1lKyaAw+/MCaVNKpXp6Rjg+35+P5vDtxjf4QhurOAgDsDh6cTa58nWFph14xmUzo27cvSz1shZhMplavVk6aNAmTJk3yef/ly5cjNTUVS5cuBSA03N66dSteeeWVdhN8tRXEfk+U+ZLN4YRex9Jo2zJSzZf03bWv4BLSk+NCNCJGS4QFXwyGB+TKlyvtUKOGi0bvQ4BmNLgHaJEmA8JNehziEwEAcVwtolEHm4MHZ5OUrzhcFtNaGJ7R6XQICwsL9TAYDK9s374dEyZMkG2bOHEi5s2bp3kfi8UCi0Vqvl5dXR2s4TULQ7rF4lBRVaiH0WSIvXi4SZpmWR1OhPmQOcFovTjE4Eva1reV9qpjBI/WvazIYAQZWvkS+3z5EFiNTu3odR+140SY9Agz6FGHMJTzQlPqZO4CbA4nOFu9dF/OAc5a43Z/BoPReikpKUFCQoJsW0JCAqqrq1FfX696nyVLliA2Nlb8S05Obo6hBg3SnLi1s2pPIQAgp7BS3MbSz0KD08ljzsf78M7W3KCfy0EpX2ldhd9wB3NuZShgwReD4YEIE+V26CA1X94/Nn0TorH2kauw+8kJmvuoGW5Emg1ig+ZzfDwAoDtXBrvTCZ2jTr4zC74YjHbPwoULUVVVJf4VFhaGekhNos4qD75au013YUUdjKzfU0j5aFcB1h4sxj++Oxr095MYfHGc+LqzLBWGEhZ8MRgeiDQLgVBVvQ1k8cqXJssAMCgpFp2jzZq3awVfJC2lyBV8vWV6BRENF2C0y4MvugaMwWC0fhITE1FaWirbVlpaipiYGISHh6vex2w2IyYmRvbXmqlXKF+11tZpwDGmVycAwJ+u6SVmOdjsrTuQbK08teaweHlPXkVQz0VULr2Og0HP3A4Z6rDgy09Yk+X2BbEJvlQrGTb4YjXvC2YVw41Ikx5hLmWtgJfSj0Zd3gCDQ5F2RNWAMRiM1s+YMWOQnZ0t27Zx40aMGTMmRCNqfuoVytfag8UhGknTMLhUD7NBB6PrN4M1Wg49+woqg3p8O+V2SIy3WJ8vhhIWfPkJa7LcviBph3RDY19qvnxBM+3QpXx95hgnbk+v2wGDo0G2r87KlC8GoyVTU1ODnJwc5OTkABCs5HNyclBQUABASBm8++67xf0feOABnD17Fo8//jiOHz+ON954A5999hn+/Oc/h2L4zQ7P827K14Vqi8beLRuSYmjU62AUFRA2CQ81/153PKjHd7gCLb2OE193O1O+GApY8MVgeCDSJDcENeo5zb5d/qIWfIUb9WLwlct3xQNdPgQA9LEeQ2eHPB1JZ2fKF4PRktmzZw8yMzORmZkJAJg/fz4yMzOxaNEiAEBxcbEYiAFAamoq1q5di40bNyI9PR1Lly7F22+/3W5s5qvr3VMMPaVut2RIqplRrxMX7JjhRtuHxNdC2iGr9WOow6zmGQwPhJvkqYG+1nv5grLZ5gPX9oZOx8msiK0RXXHE2RODdPnowpfL9tfZ1N3PGAxGy2DcuHHgPTidrVy5UvU++/fvD+KofMfp5LG/sBLDesQ1S7Nrm0p6Vo+OEUE/bzAgE26TgWOGG+0INeWLpZsylLDgi8HwgMkgrFqKTocBqvdS8sTNA/Cna3oDAMKogC/CpMePzmEYpMsXt1VycYjjK5nyxWAwgkqvJ74XL+c9Pzno56PbeQzpHou9+ZdQY2mdhhtE5TLodGKWA5uEt30kq3lOet2Z4slQwNIOGQwvRJilYEgtVTAQ6KhV5XBK+YoyG/CNYyxsvLTtsj4OAKBnbocMBiNIVDfYmv2cZJJqMugQ5Wpw31qDL/WaL1b7Ewq6NGPqKh18GV3ZLa29XQIj8LDgi8HwAl33FSzlSyv4ijAZcIbvhlfsvxW3XQ5LBADolX2/GAwGI0A89tmBZj+nLPgKE753L4cgCAwExKRJSDskVvNMAQkFzVk3yKzmGb7A0g4ZDC/QdV+BrPmiSYmX6hrCqCbOpM/YG47bcIbvighYcGf4BaAGMNhZ8MVgMILDhqNyg58Gm0NWjxoMrFTaYTRRvhpaqfJll5QvE6v9CSlHzlc327kcDslqnjVZbj5SFqwFAHwyezTG9O4U4tF4p80rX4WFhRg3bhzS0tIwdOhQfP7557Lbp02bhg4dOuC3v/2txhEY7Z1IU/DSDj+6bxQWThqA8f27iNto5SvSLK2PrHeOxJHOk+AwCM1W9cq+XwwGgxEkpry2NejnsDoEm/m2kHZopdwOjQZmuNFSGJnSMajHJ4qnjuNg0LmUL5Z22GzcuWJHqIfgE20++DIYDFi2bBmOHj2KDRs2YN68eaitlYwKHn30UXzwwQchHCGjpRMRxLTDK/vE4/5re8ucxGjDjUiF2+J/7siEXS+oZEz5YjAYzUV+RfC/byxU2mFEKw++pJovjlnNtyB25VUE9fhOV9qhQS9ZzTPlK7g0KHoDtgbafPDVtWtXZGRkAAASExMRHx+Pigrpwzdu3DhER0eHaHSM1kBkMxhu0IQZ5DVfhOemDcHArjGi8mVkyheDwWgmmiNwoN0ODxdVAQA+2lng6S4tFjsz3GiXEOVLz3EwuAw37Ez5CiqnL9SEegh+E/Lga/PmzZgyZQqSkpLAcRzWrFnjtk9WVhZSUlIQFhaGUaNGYdeuXY061969e+FwOJCcnNzEUTPaE8FUvtSga8zotMOYcOGy3SAoX0ZmuMFgMNoQFtcKdrhJj5+OXwjxaJqGTZZ2SJSv1rdC39rx1GcvGNBuh8Rww86C7qBCFMbWRMiDr9raWqSnpyMrK0v19lWrVmH+/PlYvHgx9u3bh/T0dEycOBEXLkhfzBkZGRg8eLDb3/nz58V9KioqcPfdd+Ott94K+mNitC1o5StYhhs08pov6XJsuBEAYDfGCGNxXA76WBgMBqO5IHVSZoMOQ7rFhng0jYfnedFcgzbcYMpX89PcJick+DLodKLVvF2leTijfRNyt8NJkyZh0qRJmre//PLLmD17NmbNmgUAWL58OdauXYt3330XCxYsAADk5OR4PIfFYsHUqVOxYMECjB07tlHjtFgssFgs4vXq6uZzz2GEFlr5apa0Q8rtkA72YsKE4MtmihP2s7Pgi8FgtB1oh8BHru+L2R/sERedWhN0mplJrxNd75jbYfOjli7rdPLQ6YKjloiGGzowq/lmorJO3o7Canc2y1ytKbTo0VmtVuzduxcTJkwQt+l0OkyYMAHbt2/36Rg8z2PmzJm47rrrcNdddzV6LEuWLEFsbKz4x1IX2w+RMqv55gi+pPPpqdORvjd2k7AiHMGULwaDEQS0UrUsQU6bo00qyHdtVX3w+3wFOjWNdjU06DnoXa53rNlu81NndX/PBjMIdlLKFzPcaB4KLspLMHbmXtTc1+nk8e2B86gNsZFPiw6+ysvL4XA4kJCQINuekJCAkpISn46xbds2rFq1CmvWrEFGRgYyMjJw6NAh8fYJEybg9ttvx/fff4/u3btrBnULFy5EVVWV+FdYWNj4B8ZoVYQ3s/JlNujQJdqMCJMeyR2k/l+k2bPdTIIvpr4yGIzAY6HUgkeu6yNeDnYgZKNS9fbmXwrquQhvbDqN1IXf4463fFvQ9QVa6TBSyhczXmh+yi5b3LZZbMELhmTKl0tdY0F3cPloZ77sulrATej1xPd4+JP9GLR4fbCH5ZGQpx0Gm6uuugpOD/m2P/74o0/HMZvNMJvNyMrKQlZWFhwOVjjbXmjumi+O47Dlb+PB88IPd3yUCTYHj/goEwDAYY4DAJh4C2CrB4zhQR8Tg8FoP9CTl9+P6olXfzoNAPhybxEeHNc7aOelTSqmZXbDf7JPARCUKbodRyB5Yd0JAMCOs4GzIKeVL6Oeg16chDMFpLmhm4WbDDpY7U5UN9gQGxH4dFYnFWQZdDrW56uZ+N2IZBw4VyVeDw9yM/hA0KKDr/j4eOj1epSWlsq2l5aWIjExMSRjmjNnDubMmYPq6mrExrbegmCG78jcDo3NIxbTQd7Wv10HjpPyx53GaNh5HQycE6ivZMEXg8EIKMt+PCleTogxi5dPlgY31ZlWvjpEmqjtPEyG1uNoRqdPcsxyPKTQNYNRZgMq7FbUB6kvFP366nWcpHiytMOgokw7jDCpB1/VDXLl3mJ3NMuCuhotOu3QZDJh+PDhyM7OFrc5nU5kZ2djzJgxIRlTVlYW0tLSMGLEiJCcn9H80DVfJn3zf2TCjHrZF4TBoEMlooQr9c2TmsNgMNoPPTpK6c604hTsXl8kaDEZOFl9rXLS1NKx2SUFD4BY88Usx5ufod2lRXKiiNR7SEtrCg5F8CVazbOgO6j8d/NZ2fW8i+ptePYoGmy/svFU0MbkjZAHXzU1NcjJyREdC3Nzc5GTk4OCAqGx4vz587FixQq8//77OHbsGB588EHU1taK7ofNzZw5c3D06FHs3r07JOdnND8R5uZXvjxh1HOo4iMBAF9sO4QnVx9q9l4mDAaj7dKnS5Tq9u1ntQvZAwGxmjfodLKFrtzy2qCelxCo71Fi6EAUL1b7EzpIQN+nS5ToJBws5cvB02mHUropU74ax/6CS3joo71+P3//yT6pun3jUXnvwOW/nGn02JpKyNMO9+zZg/Hjx4vX58+fDwC45557sHLlSsyYMQNlZWVYtGgRSkpKkJGRgXXr1rmZcDAYwULudhj6XGKjXlK+ftxzFOucUZg5NgV9E6JDPDIGg9EW+N+OfNXtFbXWoJ6XTjukrcCDlXGgnNTtL6zEsB4dmn5cJ1HwiPLF+j2FCrsY0EtKVNCUL0rZ1HEcM1ppAk4nj2lv/AoA+P7QD8h7frLP971jRA/V7f0S1BeVQkHIg69x48Z5XW2aO3cu5s6d20wj8gwz3Gh/NHefL28YdDoU8fEYjlNI5oSVHAdTvhgMRoD48dgF7zsFAbHPl6u+q19CFE6W1gTNFrq6QX5cZ4Amycq0QzIJZ8pX80MCXqNeJ6ayNjST8iUabgRJ+dp4tBSHi6rw5xv6BeX4oaTXE983+r5aNV+kV2pLIPQzyVYGSztsf0Q0c58vb5gMHPJ5QfntyQlmNPogOYExGIz2x8jUjiE5L0nXM7uClvIaQWkrq3G3Cw/I+RQ1bFq1In4fl1LwAFbzFUqIg6ZBzyHc9VveEKR+dSTQ4zhAp+OCmm7K8zxmf7AH/8k+ha/2nQv48UOJv4st1/brLLv++R7156PWGtreXjShn0kyGC2cCHPLCr4MOh0K+C4AgB4u5cvGftQZDEaA2JUrL0z/ePYo8XJdECcwNkXQQtIc396SG5TzKY08enaK0NjTP2i3QwDM7TCEkIDXqNOJZQMNQerzRbJKyWIoSXMMxu/zO1ulz8T8zw4E/PihZM7H+9y2qfVrI8Qp2gaUVDeo7ne5wf27K9gmQlqEfibZymBuh+2PSNpqvgUEX0a9DvlOQfnqpSsGIK20MhgMRqC4boCwyJMaHylu26kIzAKJRUw7FL5no11mR1ekNL0OS42PdxbIrgeqFsjukKcdEqMmS5AUl7ZAVb0NhRWBUR5piBpl0HOS4UaQar7IuUiNn0EfvFq/lpRCF2g2nShz2/Z1TpHm/qRpNmkrcGt6kup+ZDFnbO9O4rb7P9zT6HE2hdDPJFsZLO2w/UE37GsZhhscjvM9YOX16M6VYyCXH7SccgaD0X756bigrMdHSb2+nv7mSNDOpwxaxruCP0uQVqfpHlBA4FzwlAqegaUdeiX9mQ24+oWfUVKlrlo0FintUCf+lgcr7ZCkF5LgyxjE1/3xLw+Kl+OjTB72bBvkFFZq3rbuSAkAIYAHtL8viFrYifo++1kl0GsOWPDFYHhBp+PEuq8WYbih16Eakch2DgMA3KTfJRaqMxgMRqAxUm6D+QGqi1JDMkcQJq95FwWL+R1ngmNx//2hYtn1QCkiVpZ26Bd0+ufO3MC+1mIgrOMQRoKvIPf5IsGXvpled1Ib2Zap8aEOLMxHhfnbA+cDMqamEPqZJIPRCiCOhy0j7VD4Qt/hTAMADOQKWNohg8EIONHm5jVEtlF9vgBgbO94AEDfIFlEd+8QLrseLOWruSbhrZWV2/LEy5/uKvTpPseKq/HeNu+1gKSdgNxwIzi/lyT4IsG2aDUfhN/n2Venipf7t6E2Mwcoheu1OzPFyzcP7qp5n4zkOADAiBTBKChUdVz+EPqZZCuD1Xy1T/onRsGo59CjY2AKspsC+UE/yXcHAPTjzuHQuSocOlfFmi0zGIyAMevKlGY9Hz1RBtyDo0Bz0+BE2fW6ACkiJPgimRIG0Wq+5U8KQ4EvqgaN3eHEpP9swTPfHsXLG9Ub6hLotEPiCZx/MThNu4nVvFTzFTzDDQOlRp8ovRzw44eKosp68fK4/pKLoadaU5JmGB1mkF3X4vnpQ2TXz5bV+D3OpsKCLz9hNV/tk3fuGYFtC65Dl5iwUA9FDL5OOJMBCI6Hb2w8iCmvbxVrNBgMBqOxkM4Vt1+R3KznJcoQUQzIZErNpSwQWBWT4kD1f7I55AqI1O+JLY6pUXRJmnBvP+s97fBMmRQ8vZp9yuO+YiqrjsN/N58FAKw/UtqYYXqF1HaJwVcQm2vXBan3XXPxavYpLPzqkNuCsZ5qrh5NmYr8dFz7NSNphlEupV5L+erbRVDQe3SKQJ8ukpp+3dJfmn3hmgVfDIYPhBn16BId+sALkL7QKxCDCj4KOo5Hiqvf16rdvqVsMBgMhho2hxNkHkKCHyXBmqiQSRMJVoIdfFkUwVagar600g5Zk2V11ipq77wx6T+bfd6XVr6CnZ4n1nxxJO0weEF3oFTaUGBzOPHyxpP4ZFcBDhdVy27bckpugDFzbAoA4CYPaYfE7ZA4QGotohBFzGzQY/VDY2W3Ld3gWUENNCz4YjBaGbTpRx4vpM2QZsud2oHrEYPBCB50g9NIquZrzvje4mVi2Rxo3JUvYTLlb1qaryjTkwKWdqiwzGeGG77TKdL7b1i0HzbrtIPm+ap6L3s3DTHtUC+v+QqGG3FrDr4+2SW1eNisCLaUNvNEzcor104VJTXvpN+XVu0mUcjCjDq399DrP5/2ZegBgwVffsJqvhihxkDJ8iT4SuEEq9Vg9S9hMBjtA6IyhRl1MpfDOeP7iJdPlganRkKs+XJTvmya92kKbspXgNMOTXpW8+ULM6j01iHdY73uT/dp8gbtoDn/hn4AILoXBxrJcEPnOmfwrObpZufNbYzTVL7OkdwGX1x/QnbbuUvyAHnTSaGUwlM6KvneiPSSdkiaa5OWQTmLbvBn2AGFBV9+wmq+GKGGLrQlzZZJ8HXBQxd4BoPB8AYpeCcTFUIE1Wz+zhU7gnJuKUVMCFbIqnd1kNIOiesdqXELWM2XwjKf9fnyzI/HpHqeGh9e6x8Ol/h8bNpBs2usUDqQ1jXGzxH6Bgm+yPpoMJss11ILrcHqWxYs9uZf8nnfyUOEhskdPSii5HMVafIcfBHli7hWx0WELlOIBV8MRivDRAVfZ3khD7qvTuj+zoIvBoPRFP659mjIzi2pFET5ElKDrHan1949jYEoX3GuZsu0mtAUbHapzghgVvPeuEilse7xY2LuC3aq5xpRPILVtFupfNFGK4Guk6SzXGwOvtXWE948JNHj7cRhmjbIUEI+V6SVgNrry/O8uKBE+r0BwB+vkiz7q+qCo7Cr4VPw1bFjR7/+OnXqhPz8/GCPncFol5DVNAA4yvcEAAzgCqCDE5eCVIvBYDDaB3nlwWui7A27wiUwikqnUqYjBQIySevgWgGvtwVmUi5azetJ+hkz3PDE9MxuQTs2mZgb9JyoeAQjkKfPpVP0+QIC/9ofKqqSXQ/WYwoGEwcliJe3azRQ/90VQisdkiLqqaSCLNpEmoV91fqe0tvMRin0mTehr3j5fzubL27xKVG0srISy5YtQ2ys91xcnufx0EMPweFoPW8EBqM1Qdd85fJdUc+bEMlZcINuD361j/VwTwaDwfBMsMwtfIGk6ykVIwD453dH8d6skQE9H0kzJIX6DQF3OxTGTx5HMIwX2gIWP5+XHh0jUFAhLRLYHE5ZfSKNjaojJPFPsGoWnYomy3SJgN3JwxCcUjMAguNfCLPo/KJrrNS/75KG2jS4mxBvEJXKkypNgt4ID2mHtBpmpkzLaOON5b+ckdW2BhOfq/TuuOMOdOnSxad9H3744UYPiMFgeIbjpAmJEzpscw7CBP1+zDN8hU2O0SEcGYPBaMskdwxHYUXwHOPIsU0qE2mDxuS6KZAJWYwr7XBXnnYjV3+wKqzmSfoZU77UOXiuUrxMB9xaKBcIahrs6KBREyS5HXLIKQxsSqPbuYjVvKLPFyAEgXS6W6BpTXVfvqR9fr7nHO4ek+JV+XI4ebE1Bqn5qqp3D+jIQgvHqX+/AMFraaGGT99mTqfT58ALAC5fvoxevXo1elAtGeZ2yGhp/Mv+fwCAvtw5wGFp9maBDAajffDy7zKa5TzlNe61q9OCkJpGJoE7zwYm6CLQ9uYAbbzAvpvVoAN6h5MX67S0UJpyVHtww6TV1JGpvrskNgaHIvii1bhAm60og1RLgFJmm4NNJy6Il6/uG6+6z4SBQmoiCVgbNAI22syEVseUKrNFdDrUyRawQwUz3PAT5nbIaGnk8omo4iNg4JzohfPsB57BYDQaslqvZsfdu7NU9B7MFLpIFevsbyh76kDx03FhEsgjsN+ZyrRDA2uy7BdnPfR0stgdbjU9nuoB6TrCfgnBff8qgy+9jhOdNAN5PrvD6fZe8sdBMFj85bMDSFmw1qtxRXFVg3hZSwW7abBgxOGtVxod1CbEhImXleZjdINlJZ7MPIJFwIKvS5cu4YMPPgjU4RgMhs9wOM73AAD05wo1bVYZDAbDG2TxRq2JK3EFBIAdHvruNJVuHcLdtq074ru9uL8obfWbijLtkNV8eSZckY5H1+QoUbOiP31Bu4aLdtAMpxYUgtGkWGyyTCkr5D1gC2DgrWYosXp/UcCO31i+3HcOAJD+7Aaf70MHX3RASVQs8fnTCr6o+yTFSd8byvcQSTsMM7q/t8b16+zzeANFwIKvgoICzJo1K1CHYzAYfnDCKTSp7K9jwReD0ZLIyspCSkoKwsLCMGrUKOzatUtz35UrV4LjONlfWFiY5v7NjY5KddpwpNTDno08PumPpFL340stkL+Q81zVRz31qbHYlGmHrObLI52jzT7vSzcB7xUfCQDo4uH+dO84k14nvuae3PMai0NMcaSCL9JmIICBt9pvfN+E5ldvaFbtLmjU/Q4UVoqX6T57fROiAQAmg2TXrwb9vBpdrzHg/hx5Ur7Ugtlg43PwVV1d7fHv8uXLwRwng8HwwElesGXtzxWG5IuEwWC4s2rVKsyfPx+LFy/Gvn37kJ6ejokTJ+LChQua94mJiUFxcbH4F6q2LRnJcR5v7xfgyZ7TyYtudHSgld5dcD1LjAl8ENqzk9BDKCHAx7a5JnpGA6v58gXlRNmTEnnKpXI12JxieuKHO7Q/I2KfL51Q60PUr9oA9XSTn0uedghIRjFawUNjIM+XjgOiXSm6Y3oFt57NG3/78pDP+w5IjFbdTgdfES41lCxgOJzqvczoVE+O46hgTRl8yRss0/zuimTxcnO5vfocfMXFxaFDhw6af9dcc00wx8lgMDxw3KV8DdedhK0msMXjDAajcbz88suYPXs2Zs2ahbS0NCxfvhwRERF49913Ne/DcRwSExPFv4SEBM19g8n916ibZpECeb0usCXjDsooyEgd+8A5oZ9RUWXgXRbJhHhod6mNjjMAARJJdTMpar4CqX60JZQLhvQkXMnq/efctv2q0SsKkPf5AqTJfAlVdxQonKpphyTwDtxrT1QcJw9cdgULpZfdTWpCiafPkVZ2Tr1NCpDUeqWppR7a3ExOONVzWFQaLBPofoInS5tHSPL52zM6OhpLlizBTz/9pPr31ltvBXOcDAZDhfTkOFzTrzPm/t8MFCABsVwdzMe/CvWwGIx2j9Vqxd69ezFhwgRxm06nw4QJE7B9+3bN+9XU1KBnz55ITk7GbbfdhiNHjng8j8VicctEaSxnyqTaGYeGa+qWU+UAgCdW+77S7Qv0qraemnDNHJsCAEiKDbzyRSZzdMpWIDIHrKLJg7zmy8kHJrhra9goJQeQJuFqjOvnu/M2QPX5cgVdFbVWAMFJNVNazQPSeyCQbodqVupPrTnc6OOlLFiLlAVrAxp4VNRZNW/TMtloUAmQaMdIteDLQVJ8Xc+5zhX4Kl9fT8pXiit9FQAOnatyuz0Y+Bx8DRs2DABw7bXXqv6NGDGCWVwzGM1McodwfHDvSIwb1B1bOKH9ga6ycbnXDAYjcJSXl8PhcLgpVwkJCSgpUTeP6N+/P9599118/fXX+N///gen04mxY8fi3Dn31X7CkiVLEBsbK/4lJydr7uuNt7ecFS9f2TuwdVDeoCdWdM1XerKgSvXqHPiaFnJOeuU7EJNy97RDaaqlFdS2Z0iT5ViXoYsn5YsYMaR7SYsl2BWT8yGu5r0WD+doLE614MuLW19jUHsLNXZxgh7Xja9sbuyQ3PBkyKMMvsjCC3ndwzWDL/cHTloJkOf8oiu4PlMmd8wUa75UDDdoFn9zBNvPXAx6PONz8PX73//eY+FvYmIiFi9eHJBBMRgM36AnKRV6YbKkq5UmdqXVDVizv4i5bDEYrYAxY8bg7rvvRkZGBq699lp89dVX6Ny5M/773/9q3mfhwoWoqqoS/woLCxt9/jX7JTv36DB3u3ctCivqmpxSJ1O+qO810jg1GLUYJDWJttUPhGER+b5Vph0CzHRDCc/z4nN+yWVRfrFGWzV5+tujAASjhtsykgAA04dp94CziWmHwnQ3LkII8Dypa41FTfkiwUMg6/2sDmHsPTpGYGxvodbr/8b0bNSx3tuWG7Bx0Tz/w3HN2yyKhtDk9VdzJNTrOFERVVW+nHJzG4IyeBKPrWK4oeTOFTu87tNUfA6+Zs+ejUceeUTz9oSEhHYRfLEmy4yWwJ0jBWv5h8b3EbdV6TsCAPS1kgvZpP9swbxVOXhr81kwGIzmIz4+Hnq9HqWlclfA0tJSJCYm+nQMo9GIzMxMnD59WnMfs9mMmJgY2V9j+e3w7uJlg159enBjmlzJ++8vZ3D1Cz+jz5M/NPq8gHxySgcrRJWqDULwVd0g2VmTQn2tlCh/sCkmhPRknBkiyVFTM/6x9qhP981xOeV9tU/bZt0uph0KrwFJaQuK1TwJ9GRphy7lK4AuxFa7cB6TQYfurrYMjRVqzpZp91TzFTWVyFPvNXcnQuG1UEs7BKTPkdrCCAnIyGdscDfh+y+GaoshnMM35YsQ7EbMTaqYPXfuHJwBLCJsDbAmy4yWwHPTBuPYszehX4LkGlRpEFbAjFTwRfLbSTNRBoPRPJhMJgwfPhzZ2dniNqfTiezsbIwZM8anYzgcDhw6dAhdu3YN1jBlLJ6Sht8O7473ZmkvLqYlyYO7JdQK9/kmmGIoXcsIkUEKvmgFqriqAWYPEzx/IRNtEsDSq/L55XVNPn5bQi0Y7e0hxZS4+g1KikH+Re/PpZR2KLwGpOZHrV9YUyHvKZ2a22EQ+nyZ9DqvfbC8sTuv6QZdairiHSPU0595nndb4CBBl6R8yYMvk4fHqFS+xH01DDfUrOaF7YE1EPJGk86WlpaGvLy8AA2FwWD4Cm2ZS6g2CmmH5tpzQJ38CzW4azgMBkON+fPnY8WKFXj//fdx7NgxPPjgg6itrRV7Yt59991YuHChuP+zzz6LDRs24OzZs9i3bx/+7//+D/n5+bjvvvuaZbwGvQ4v3Z6O8f21TQ0q66Rif6V5RFMavaqlbAFS8BXotMNKyhCgd+cocUVcmRLVGMgkkTiv0Y8pPtrU5OO3JdQUob35lzT3J+0BbhqUKNqsezy+ovfWdweLAcgXDQKFXUX5IqmnwejzZTQ0PfhS1kY1hsIKadGFGOR0iFR/n6spneQzV6/RCJnUTqqlbtoU9v5GDWt/T02WAWAOlUXUHDQp+GIGGwxGy+GisRtOOrtB57Th/KYVoR4Og9HumTFjBl566SUsWrQIGRkZyMnJwbp160QTjoKCAhQXF4v7X7p0CbNnz8bAgQNx8803o7q6Gr/++ivS0tJC9RDcuLZfZ/Gy0nWtrAl216JapAi+xLRDqyOgc46yGvlYy111RrWWwAVfJkrxIpO+QLretQXUVJPkjuGa+5MUw/IaCxbcPMDr8UXlSx/8JUh1w43A9/kigZyZSpcNhGLbWI4VSw6rm04IWTZvbjqjui+9uBHpWkB2r/lSph2q28cDVKqnax/x+XDI31eemiwDwMPXtaLgi8FgtByMRgPWOYV0oaNHDshuC3L6MoPB0GDu3LnIz8+HxWLBzp07MWrUKPG2TZs2YeXKleL1V155Rdy3pKQEa9euRWZmZghGrU0/qkHqxqPyeraVv+Y1+rgNdnenMwCINAvXHU73dKWmQJ8nJlxSUA6dq2zysW0OdxMAkvbWFhstP/TRXqQsWItTjbAqP31Bam/wh1FCLfNt6doGGiTl7v3t+bJJvxZizVeA+9KpnkvVaj7wfb7Ic2A0cGJgEqjgrjEKWiSlQCprrZTQAVSUy9SHfK4bXP+V3wGe1D3p9VUoX3b58yFazWsoXxzH4buHr8J/7xqOvOcne3wMgaBJ78YnnngCHTt2DNRYGAxGE6iss6GYd3W5rz4flAJ1BoPRvqEtrcNM3p3DfIUoFAaFQkHcDgHgchDqdAD5anj3DhFNPp6UdihNsQxBSD9rKXx/SHDYvaERVuVdYsziZaJy+pr6OaaX93YINqf6+6ox8Dzv8fUjTZbpQE90Owyg8mWj+siZ9C71KEDvq8YscGw7XS5ennVlCgAgnWpcrnZ8k14nfu5Eww2rt5ov9+dQSvUk9ZXqfb4avNR8AcDgbrGYOMg3M6Sm4nfwtXnzZly4IMiKCxcuRFxcHADAZrNh8+bA9QhgMBj+cbzkMop5YTGkK1eBu97ZGeIRMRiMtgZthvHIJ/sDdlzlJIqg03GiFXwgF5Rsit5SI1OE786A9PlS1HwBwUk/awk0tUaOKBSJMWGi6QGZKHvi8Zv6Iz5KqCvq1TlScz+7IhCm3Tof/+IAUhasxW/e/NWnsU55fSuG/WOj5vuQvId1HP26a/f5ev/XPDyx+pDf6bR0cG80aKfkNQa1Bs7e+PmEZOhFXrsDGs2KrWL6nw6XXIZgxBlRqy7Lo/KlqOkjgZuyV5ynJsuhwO9RjBs3Dunp6dixQ+6DX1FRgfHjxwdsYAwGw39KXMpXIleBfQWV4naOWW4wGIwWjNISnCYqCKYbxK5bdEkLYO2Metph4NPPWgI/HFJvGO4rtCGG2ShXQtTolyA4IWZ0jxNNpxo82MaLiqrr+T9dJqU5frZHaF7uyeCDUFRZj8NF1ahusOPbA+dV91HWHwnn1U43XfzNEXy8swCv/6TdSkIN8lkxGTiPToCNoTHNp2/LkNJEO0eZPexJKV8GHS67Ps8kTbNeq+bLoK5mAe6vL3k+tBwVlccOFY0KAe+44w5cf/31slx1oGUacBQWFmLcuHFIS0vD0KFD8fnnn/t0G4PR2rh7TE8U8fFw8hw6cZfRGd5/UBgMBiNQ3KDoAeYPWm6HQHB6fZHJKlkJN4t9vppuuCHV5FDNYgNcm9NS8CVw8YSdClR9Ub7E9DGjXqwN8tQwmQR3JBBecJO6SYdSKVHy1d5z4uUFXx1S3cehonwZNdJNd5y9KF5euvGkx3MrsVLPWaANN3xRHZWQ1+13V3QX3ShJM2sltPJF2gaQ94C3Pl9qzphKxZw8H8pgtNUrXxzHYeHChfjwww8xd+5czJ8/Xwy6gt2UrDEYDAYsW7YMR48exYYNGzBv3jzU1tZ6vY3BaG38fXIaHp08HEd4odP9VbrD0o0t76PJYDDaGJcb/E9ZIoj9elSMEcReX9bAB19GpUtaACaxdpW0Q/K4HG3McKPwUtP6ltGvQ5gPyhcJtMKNeirFTPs1U9YSagVqb2i48xF+OOxd4VNtskz6xymC7lW7C70eTwsbZSLSVKv5oYrarMYsPpBFkUizQTTR0FooIcc3GXSicinWfLn+hxm0DDc81Hx5+Rxb7PLFllDj9yhIoDV9+nRs2bIFX3zxBSZNmoTKyspAjy0gdO3aFRkZGQCAxMRExMfHo6KiwuttDEZrw2TQYWzveGx1DgEAXKVXX51jMBiMYLDjbON/P8nkUU35Io6HNQGwgSdYFbVAkvLVtODL4eRB4itTOzDc6EoZsAD+T97pQMI35UuqCwqjlC+1zCue592UkZRO6vVhr2af8jhO2hHz1vQk1X0cKuqtlvI1rn9nNBabmLonpR0qgztfKa5qkF1vjPJV50r7jDQZxIUSm4NXfS9YKct3syJQIumj4SZ5aOIptdKu+N4Qnw+3tEP1lMZQ0aQQMDMzE7t27UJlZSWuv/76Rh1j8+bNmDJlCpKSksBxHNasWeO2T1ZWFlJSUhAWFoZRo0Zh165djTrX3r174XA4kJzs3nnb020MRmvBbNRhCwm+dIcBuFTpEI6JwWC0LUamBt7lWK1ehhCMtEOxUa2i5qupwRc9QTTQwZdr8m9rY8rXJ7vkCk69h/orNeg+XEQJ8ZRGSCbR4Sa9uD+g/rrRdVYkCCJpcf7SKVKqZfpGo+ZLLXVWq8VAU9wPyXtIMNwgwUbjFiaUvfkaGnGcGkr5ot1Ja1TcSS2UTb7yMycqX1p9vlQNN9RrN93TDlu58nXPPfcgPFxqgJeYmIhffvkF119/PXr06OH3AGpra5Geno6srCzV21etWoX58+dj8eLF2LdvH9LT0zFx4kTRcREAMjIyMHjwYLe/8+elD0hFRQXuvvtuvPXWW27n8HQbg9GaSO0UifBeY+GADglcJRLBlFwGgxFYtFb+m4JdJWWLEBmUmi/XpM0QWMMNeoIoSztso8qXki9dTZB9hXbuIzVcWqYPdodTfN3CDHqEURPpOpWgjw5wSCAcF2Hya3yEtYeKve7jcLqrt1puh00xj6GfM1OAawkbY7hBPpdRZj30Ok58HdUaltspm3yl2izWfCnSDg0e7PrJNr2iz5cyULNQtYItAb+Dr/feew/R0dGybWazGe+//z5yc3P9HsCkSZPwz3/+E9OmTVO9/eWXX8bs2bMxa9YspKWlYfny5YiIiMC7774r7pOTk4PDhw+7/SUlCT8QFosFU6dOxYIFCzB27FjZ8T3dptyvurpa9sdgtDR0Og7v3Hc10Lk/ACBNlw+ANVlmMBiB4/9G95Rd/+z+MU0+Jj0pUxIZBLdDMoElk1ep51ATlS/q/nT9Wlu1mleyO9e/BT+6D5e316CB2h5u0suUxeKqerf9aWdJtaA+0JD5vjztUD1waEp9JHmPGfRcwBYNusUJokpj0g5p5Yv+r/Z5peshla83UU2V/QM9pR06nNLxAHoRRf58S/VkLUP5MnjfReDgwYM+7Td06NBGD0aJ1WrF3r17sXDhQnGbTqfDhAkTsH37dp+OwfM8Zs6cieuuuw533XWXz7cpWbJkCZ555hn/HwSDEQL4LoOAsmNI4/LxE4aFejgMBqMNkxov1NFwHOB08tA1YqJrV1ENCKLVfACbLIvBV4CVLxtlfU0/D4Y2ajWvRCV29gjdh8ts9Jz6Sac0KtPH6Po6Am1uohV8xUeZUF5j9W/QGpBAwKDyutsUr/vlAChfJn3TDDdoFTYpLgxFlfVeXR/VIKpjhCvlMDrMgPIai2rwRddamhQOo6LVvOK1NXrolWYTlS/X57itKV8ZGRnIzMxERkaGeJlcp/8HkvLycjgcDiQkyO1rExISUFLiW2+Jbdu2YdWqVVizZo049kOHDnm9TcnChQtRVVUl/hUWNt6phsEINnyiUPc1kChfrOqLwWAEEJJ6GGbUiU2Qeb5xNSOA55ovUkcSSLdDZc1XoKzmLZp1K9qpU22Ja/r6ZyRBp9CJr4FGAEBP5om7dkKMUIulFrDRKiMd1P/0l2vRo2MEVj80FqNSO4nbPbVL6qBhnU5DTqdXcTt0V77k72V/XDDpmi+tYMMXaCWRNBtvTPAlpR0Kn1NPLQAk90n69RbGkVNYCQAoqZabgGilEgK0SyonG8sPijTRllbz5bPyRacU8jyPwYMH4/vvv0fPnj093Cv0XHXVVXBqrDR5uk2J2WyG2WxGVlYWsrKy4HAEznWJwQg0ukRBgU7jhOCrrdkbMxiM0PLqnZlYNiMDOh0HJ/X9Umd1iCvg/qBslkpD7KsD6XaobIQcKMMNrUmep9X7YONw8vhkVwFGpXZE34Ro73doArV+Gm7QSiFJQzuvcOAjrNnvXk9GghhPE3O9jpO1QurVOQqbHx8PAJgzXi/Wc50tr0XvzlGq575U5z1NUK3mS6vWT6ni1tscYvDiDRu1cGBsgmJLB7kxJPhqxHGktEPh9RONU9Tq8EiaoE47zfTMhRrZdfIYbXb3eYxN8Zy//vNp13nk+1paq9thz549xb+UlBRwHIfu3bvLtgc6EIuPj4der0dpaalse2lpKRITEwN6Ll+ZM2cOjh49it27d4fk/AyGL+i6CspXqq4UkajHrrwKvLT+RIhHxWAw2hIkrU5HFdnXNTJAkpzi3KclUWZSwB+Mmi/hfGEBqvkiq/gmRfAVypqvGf/djr+vOYwbXtkc9HOt3n/O+04UYtqhQec1MO0SY3bbRlLetpwsdz+2Shqgkh6U+2GpRtCnxKiizgLu5g/CudWt4JU1X/4oTnRvNE/1UN6Q1dCJPdP8//yeuyTU25Far+p64bFdrLW47Wuj+q6RNFNl4Dg1s5vsuseaL0pJA4AJGo3eW5ry1TJGoYHJZMLw4cORnZ0tbnM6ncjOzsaYMU0v8G0MWVlZSEtLw4gRI0JyfgbDF7iozijmBTvoAVwBAGlFiMFgMAJNmLFpaXvKwnmaYBhuSGmHLsMNI+kxFZi0Q62apFAoX3vyLwXt2JEulYM83iPn/TMjExVIHSfrGeZUydZIihVMIfoluKtTyn5jgHrTYyW02rT1tHsAR0iMkY5vc/Cqr6PTlbao5+i0Q3Xl6+cTZbLr/gT9tGorWav7H9RvPCKV7/jSsFoNOlWTBHCnXMrVk6sPu+0vd2qUf2d0jhaCa7Nbk2UPNV+K1zi3rNZtH6eTF5VRFny5qKmpQU5ODnJycgAI6Y05OTkoKBAmjPPnz8eKFSvw/vvv49ixY3jwwQdRW1uLWbNmhWS8TPlitBaO8YISPVBXEOKRMBiMtk5T3QJtKqoBIRhW88omy0T58hR8vbj+OFIWrMWlWm2DBmmFXWmXHbq0Q5pzl+oCdiye58U0w7tcDphThvrXhoCkjRn0OllKmNr7iGyLDpPqr0a5es5FmN3TydT6bnnCU/iiPISqtb3K+UiAoUyDU9I45Usy3GhM2mEF9T4Oa+TiA53uGetDXRwZp8ngbrBCUgPJdoLnmi/J+REAHp3Q120f+r3U6tIO1eAC4F+9Z88e0bwDEIKtzMxMLFq0CAAwY8YMvPTSS1i0aBEyMjKQk5ODdevWuZlwMBgMOWfQHQDQm1NvCMlgMBiBorGTN4JD0SyVJhhNlm1UuhsgTcq0gkenk0fWz2cAAJn/2Kh5XDLG8hp5ypUxhGmHNE+oqBGNpYx6jB0ihf5Zh4qq/DqGnVJxaFVC7X1kVaSKApJ7nUVFsZFMXHyb6r656Yzmbco6NLXxqZnG+Bp0+9Ocmk479NSA2BsjqGbpUtqtf59fWilT9udSw0YpUGSBggRkaq8vAI+Ojspa0ThX7VqvzpHiPvRjainKl89VsZmZmbJgq76+HlOmTIHJJG9Yt2/fPr8GMG7cOI8OMwAwd+5czJ0716/jBgtmuMFoLRSiKwAglfPNGZTBaCu8+uqrft9n1qxZbj0sGb6Td1FQVMouu9d5+IInlYK4HQbWcENR80VW4TWCx3e3+dbHdJerz9VFhToWqibLSrOlQE4+6dd6yykhjS633D3tyxN0IGHQ62DQcbA7eVXXTFo1ISgb9dKo1WCpER9lRnmNBaN7dVS9XW2OWmOxQykBkOdaJ0s79M3l0j/lyz3t0Gp3gud5v0QR8twP7R7b6LRDetzkPT7ryhS8ty0Ptw/v7rY/7TJKO4zyPC+e2y1l14Phhl0RYKsZkJD3hkHH+RyIBxufg6+pU6fKrt92222BHkurYM6cOZgzZw6qq6sRGxsb6uEwGJoUckLw1YspX4x2xrx589C9e3fo9b6lmBQWFuKWW25hwVcA+O5gMSYN6er3/UhQoup2GBTlS5i0mRTKV2OazNL0dBk4KB9HU/oxNYWTpZdl1zeduBCwY9Mq3hmVWht/jkGMKcKMetRY7KpKVp2r1YBZJfiyqgRrvtR8AZJKueOseoNoWlUKN+pRb3N4Vtoo0xhiga7s7xZm1KHB5kRMmAHVDXa/XCKtKnVT5PxqrRo0j2OXFiAaq1wfOS8pnSTwI+/xn1XeaxZq0YN2GKUfvzJDU6z5UnEnV35vqNVWksfUUlQvwI/ga/HixcEcB4PBCDCnuJ5w8hx66MqQgAqUoiOmvbENS6YPwYDEmFAPj8EIKnv27EGXLl182pcFXU0n0qRHrdWBsX06ed9ZBbunPl9mqW+Q3eEMyOq11S6ftJGJmVafsn+uPebTcYkD5HUD5O89MiG3NXPbj1JFz6S0roH77qcns12izY1SPaX0T+F5CzPqUGNRfx1Iah5tkuGpRYCnxt3+QKso0WEG1NscquOTrO2lbWoul7TK0ynKjOoGO+r8WFiwK9RCgs3Bw4fMPxFStxZu0ovpm/4GX6cVtvAA8L8dQp25WvNqol4ZDfI+X7T1fpyidsxTyq5dEfCaPShfLaXBMtACDDdaG8ztkNFaqNVF4yCfCgC4Wi80D99fUImHPvIvNZjBaG0sXrwYUVHq/XrUeOKJJ9Cxo3rKEcM3ruwT36T7q6kGhEhqsu1vHyktNh4VWtjkXRQUmzAvk88renbw6bhqqXGAFFzYmmhl7y/bFA5+o3s3LjhWgzxX3eLC0SHC5GVvdcRAQpw8a/eIOnCuEgBQTU3UPRm9+Kp8LZuRAUAIrNRQBl+Aeo2ZWrsEMd3U6R4MAFLzZjUDDy3EtEODTvbY1JQhT5AAMMyob7Tyq9UXTQurq2THpKdqvhxOmVKlWfPlIbWULNqYVIIv8j4Na0HKl08jGTZsGC5d8t2q9KqrrkJRkXszvLYAcztktBb0Oh02O4Vmy1frDonbPTl1MRhtgcWLFyMiIsL7ji4WLlyIuLi44A2oHaA26fEHZbNUGrNBJ05iA5V6WFQp9Cb6/pBQExtm1FZQAN/t2itdzXiV6YUkuGjutMMVW+S1aqQHUyDId9X5FVXW49Z0yeXQWx0/jU1htBJhklROJeS1+vGY1PtVVCxV9vfV7bBTlBA4Xm5Qf29ZZOl52sYUxGreoNLni1Zt6MCto8uohKRU+oKNClhpgxpvdWVKyGMIM+rFwERL+dWCKL2DkiRF9c6RyZr7E+XLZKDTDh3ic2fUc+IxCZ6s5u2KAFv8HnK0bOXLp7TDnJwcHDhwwOeVwZycHFgsjSu6ZTAYgUGvA7Y5huARwxqM0R2FYKTL4VKdDS+tP4HHJvYP9RDbDTaHEz8cLsHoXh3RJdq9Hw2D0dppqtW8cgWbhuM4RJoNqKyzicHXiZLLmLhsM96/dySu7de5kaMGBncTJo1mH6zmfeE/2acAAOuPlMq2i6v3zZx22C0uXAw0Ablq1FReXH9CvNw1Tvpeq7c5EGHyraqFqBnkdQ83aStfamg16gU8q6k0tOW6mmlFPWWB7kkhIu9hOnhQczskxzPoOFHV9edzY6XSDvU6DjpOqJPyN7CnGw832nDD9TqRoBkAJg3uik92FWJAons6N+1oSKcdkvPGhLnb1XuymlemltIpik4nD52OE4PdllTz5fNIrr/+emRkZPj0V19f7/2ADAYjqHDgcJBPhZ3XoQtXiURIxcSv/3waB10pHIzgs2Z/ER75ZD8mvrI51ENpF7BsjeaHpITtPHuxUfdXpp8piXBNDkl61sRlwmfpnnd3Nep8N6YJXnV3jOgBQG64oabc0JNLwP+JrjgJb+a0w5uHJMquNwQobROALKgbnCQZkNX4EeDZnZLiAUiNetWUL5L6+fSUNHGb2J9NRbHxVEdIc01fKXhXCz5IIBhu1FPjc3+MasqX5HIpvaeIyhVh0nt0a9TCTqUdAnRdmfsxrHYnxr+0SXSjpKGNKDwZl3hCqhuTgm0SAKkpiXRaLlGbrQ6nZnNy+nielC+yD53uS4I18XG2NuUrN9c3i1Wa7t3dLSbbAsxqntFa4DigHmE4yScjjcvHtfqDWOUYL95eXR+4FVCGZ344LKTLXKoLXMoPQxuWrdH8kMJ7Lcc4b9i8TJSJIqJWG+Nw8n6bKpBJG6kvoRu7WuxOt2asyvPWNNjF3la+4Guz3UBT5Uoz7BRpwsVaK7KPB87tcMYVyVi1pxAAZM9FjcUO36xu5A2DASnIVXudyWvcKcosbjOLLn3enfC0iA2X1JZzl+rQN0Gu2JBJvNmoUzV0EM+nYjWvFjjUiWqRoVGKsU2xUGHS62C1O1XTDvv9/QcAwF3v7ELe85Nlt9ENwUkg528fOhIkh1Ofn8sNwnuODs4JtFOj+NhtTo+pgR4NNxxy5cskMyARPse0wtdS8Cn46tmzZ7DH0WpgVvOM1sYRZ0+k6fLxb+MK/OgYhosQ3rc8Qtvsk8EIJtdff73PtSf+9MZhqPOna3rhrc1nMW1Yt0bd366YhCshaWxqikNpdQOS4sL9Oh+ZwJJgj24Qa7G5B19u4/USRE3LlD8PhiY0w20KFbXCRFjZdywQ9E0QzBZuyxDqvZJiw3C+qgE1ftTlSa+D8Lp7SjskE31ahQzzELz4WvNFpwnuL6x0C76ktDW9R3dF1SbLOvegWwxYZMpXI5osu0xcDCqmHmqcKauRGWSQptLfHyrGdNfn1t+azQabpAoSKj3UFdLKF13z5Sk10GTQrvlyKJRTOvgi5/KkqoWKljMSBoMRFA7wvcXLA3QFHve1OZz4dFcB8i82rmcLQx1/CtAZTSc3Nxdnz55Fbm6uT39nz55li4xNJNpVu9LY97pY86UxUSYTbrVGy2ty/E8ZVSouRr1QOwP4NhHWCqKud1nMKxv2enJsCyYVtYKie/+1vQJ+bLp+BwCiXE6AfqUdkhQ6HUk7FI6hpnzVU9boBLOH5ti+1nzRPP7FQbdtpA/Y6Qs1HpUvh0qwp9Zcmw40pPH7o3zJU+3I47OqNCGmec1Vj6gkOszQ6D50aq/J1X21nU/pptrkuXTyQC3p4eZB+VJ7zm1iI21hH52OE59zKe1QcnVsKfjc54vBYLROPndci38a3wMAJECqg1GbI73/a57Yz0aZosBgtBZYINX8mL24BXrDm0pBLL7V+iEdKKz0/3wO+Yo5x3EIM+pRZ3WoprB1iTbjAtXHSm2yD1ABidJqXlQnmnchZl9BJQCgZ8dIAE3veUUjBhGu156YR/ilfPnhdkin6xF8qQdq6mP++5rD4mVflC89paSr9fmia5CaknZIgl6Tj8rX3gJ5Heyt6Un45sB53DGyh1vA4ivkdaIDG1pFVvblo8dupvYjLpxmFeXb02usVL7IsW0OB1O+2hKszxejtWGBCV84rgEAJHLSl6+T53GhugH/WnsUeeWC0rUzt3H1GgwGo31DJoKNDb4cikm4kjDKcMPh5EFniv5y0t1MwBvEOp5WRUTTDRXlq7pBnkqlNUndckroq6WcBzdWWWgKtArpcF12OAUXuEDwxd5zAIBdrt+NqMYEX5puh+7HUEs7NKtYixMcTvmxG0sVlUbnS18xvcxq3j0wIu+vMLrRcCPSDsnjImNR1kRdVrxnCyvkNVhi/yujlALo7/uTOEXSAScdiCn78lkp1Y5eoCAunHTtJcHooV7Spqj5AiQjEin4ktJGWwos+PIT1ueL0Rop4QWXqEROHlzN/Xg/VmzJxW/e/BUAwCpfggNLOmS0dUi6kD/pUzRKy2gltCJSXW+TKffxlAGDv+RX1ImXtXpG2R1ONzVst5eFqne2yo3KPDnSBQs6COoSLT1H/vZy0oI8FjInJuqkP8EXed3JBDvcqG24QVwC6foiKZ1TzYwhMMrX/ddIKZv+Km1i4CBTvqQ0OH/dDnmed0s7JPV8O3PlTqOXaj0bPNFBiclDap8nPt0tGK58uCNf3BZGBVDK2j07FTjqdZwYnIrKl0qAZPKQsquWWio+FoXbYZhKYBcqWs5IGAxGQKF/bk46BffR4bqT4jYewJ58YQIRjGJshgQr+WK0dZqq7EiTKPWJMpkoniy97FbQP+MK7aau3sjsESde1up1dLbcvQaWTDq1iDTLJ5EmFcvxYENPvtO7x4mX/e3lpMXVLov23w4Xfl8iTY1Qvhy+pR06nbw4blr5IvVlu/Lcg2Fv7ylf6ewKXKdmJHlsJi4qbSp9vmhljrRj+OVkmd+LFrT6o1SJTYrrxVWe2z4RxbimwSYey8lLz5s/0L32OI5DpEm9bx55/4suowa5Lb2q8mUgz6GK8qXyGitfozahfDkcDrz00ksYOXIkEhMT0bFjR9kfg8FoeWxzDoaT5zBIl49e3HkAwKz3dkP5HctM34IDxztxre4AOqA61ENhMIJCY9OWCN7qc77OOS/+v1QnXyxauvGk2l08khAjTKjpOhCtFLBwlUL9P16V6vH4U5Vuh7rmV77KahrEy4mxUhPkOpWUvsZAp88BjTPcUKbQRWi4HdLBGF3zdfh8leax/an5GkYF4e5jpFLlVJomE1QNN3TuytfnrnRNQPs9pz0W6bwkgElPFsae3DFCti+tRnmiqLJeTNUD/FO/bnD1y7u2v7zRuRhUKo6ldLck+5G0Xn/7fKmllroFX4raxJaA3yN55pln8PLLL2PGjBmoqqrC/PnzMX36dOh0Ojz99NNBGCKDwWgqFxGLn5wZAIBb9b9q7qdj0VdQGFezFu+b/o215idCPZR2i9Vqxblz51BQUCD7YwQGMin1N22JYFcoIJ6oCkC/PNHymjqflvJFT/yv7NMJgPqEnq6xumFgguw2sclyMypfBa6UyoFdY2TbDxdpByz+0KBwuiOOl7X+pB2KbofC6xCmkXZIX6fTx5SW/jT+uB326RKleZtk7a7zonyp1HypmGHQboBEjfH1c0OnV5Jjk4BFqaqO6tXJ47E6unqzXTcgQRb0+FN/ZtVQlcI0UnhtimCJfP6ktEMVq3lPqZ4O7bRDEvhJiwStWPn66KOPsGLFCvzlL3+BwWDAnXfeibfffhuLFi3Cjh07gjFGBoMRALY6hwAABnHaq2Es9goOw+u3AgCSOPfUmLYGz/N4/IsDeGPT6VAPBQBw6tQpXH311QgPD0fPnj2RmpqK1NRUpKSkIDXVs3rB8J2mph16q/madWWKeLmyvulp0sp0N0BIaQSEvmE0H++UgnS6MawSOmgjzn8ETxPIYPHnVQcAAMeK5Yp75+gwtd39RpzUugIm8pgv++V2KFmPA1Q/N6XyRQI9o17Wl48EQ3RNG8Ef5Wvy0CTxsjL4INeNOk6yPVdTYXjtmi+bgxeDc2LKAsDvmi/6vCTVzqjhdlimeB8rISpjmFEHo14njlvNaVJzPFTfLhppIUMRfNnVm5uLaYcqAZIvdXa08hWuSHlsE8pXSUkJhgwRJnFRUVGoqhJWUG655RasXbs2sKNrgTC3Q0Zr5YgzBQCQrjsDDs3ba4bRfqLavfmX8Nmec3hh3Qm32wLlsuYPM2fOhE6nw3fffYe9e/di37592LdvH/bv3499+/Y1+3jaKqIi0Ehlx1t9zvCegmnQyNSOXo0EfEHNEp6oK/9TpGvRfcQ8pYnRtU7KVMVQGG4o6etSd/xRNjxBAiIy0W5a2qHnmi81p0PAc1Drj9thvwRJ+Tp3SV4rlfWz0Ix41Z5Cv5Uv2gJdrZbK3xYNJMAy6XViECqltMqPr5Z2SI+BnJO8flqmGydKLiNlwVqkLHCf45P3krLezCw6h8qPZVe8JuTzRNIOlUEcvS8dwIrHI+8f6jknChd5z7QJq/nu3bujuLgYANC7d29s2LABALB7926YzY13HGotMLdDRmvlAN8b1XwEunCVGM6p10hwzRwk8DyPdYdLcO5SnfedWzF8Owq+6PQgevX61zPlSH9mA1bvP6d2t6CRk5OD//73v5g0aRIyMjKQnp4u+2MEBqkRauMm9t5UCroWiBhukAlfcsdwv87F87w4waSVr66uuqiJgxJl+08aLF0/5ErZO6pQkwC5Hb1O8TiMzZh2mH2sVHWirFQEmkq9onkteS43HC31+RhKAwYy0T6kSI0UnQ5N6kHtJZVUVLsfhhsxYUbx8n5XbzQCcdPslxDtU88pedqh9P4i4yHmFBMGJlDW9T7WfNnd+1qpNXIG1J8T+rdW7DfmCkq03qMTl20WL1+sschuI4sYSlUpTKP5tfJzRx4/+eyEeaj5UhubpHxRtZtGeRDZEpss+x18TZs2DdnZ2QCAhx9+GE899RT69u2Lu+++G/fee2/AB8hgMAKDFUb87Kr7uk6f43Z7vdWB0xdqmnVM3x0sxgP/24ur/v1zs563uWlPZof0Y71zxQ7wPI+KWivuXbkbly12MRWquUhLS0N5ebn3HRlNgkw4z5S5OwP6gkMlfYgm3OiqJ7LaUeky3OjRSTAYoCfOvkArG/Qk+so+Qi2OciLZPyEaADCuf2fxvsoJOuC52bPUqygwypenuqo/vr9HdTtRBALldkgm1kTl23CkxO9jkMm0VtBFOHxeCHaVqlRlnXYKqkO0mvc+1aXTRJWq5TX9hPfFzUO6aipfPM+LBlayJstUIEbea8TsJbNHnKSk+viaWBVKoXAOV0CoUNZuci0iTBwk1R+u3i+puKILoCJ49vQePV8pT2UUa74Uyhf5fJB+egQSLJEaP/J8VtcTt0Ntq3nAPeiVar6k51nZ+61NKF/PP/88nnhCKBqfMWMGtmzZggcffBBffPEFnn/++YAPkMFgNA6l3A8AW1x1X3frNyAacrXp+R+O4YSr5qG52HqqvUyK26byVWOx40BhJXiex568CrdamZzCSlz74iYM+8dG2YQvZcFa3PLaFreV2mDw73//G48//jg2bdqEixcvorq6WvbHCAzEPruxqBXO05AGvnUWBypdK/qkSP/Ief9eR7q2laTKAVLT4Jc3yDMDnv72KABg04ky3DmyBwC5aQIh+9gFzXPStT9N5ZeTZRi0eD3uXelbBs7aR64CIAWVynqqxlKvCL58MbZQIppZuIIv2hyETlP+5YT6c5saHyleVn6fqNmQ+8I/vjsquy6m5xl0VJqjugIDyAMjWrUh73HJpELnd9qh9HxRwZeG8kXU4mE9OojbSMNop1NSf4naZPChHUJRpTz4PVkqLNgaNQKbD7fLUx9FgxWDPO3wsge3Q3pBxi34Ulm0MSnqMpXplS0Bvz8pmzdvht0urbiMHj0a8+fPx6RJk7B582YP92QwGM2JWt79144rUclHIoprwCBdnuy2jX6kigQKW4BWgVs6bTXtcPKrW3Bb1jYs+eE4frt8O0Y9l+22T0GFekrp4aJq/OhhshooJkyYgB07duD6669Hly5d0KFDB3To0AFxcXHo0KGD9wM0kaysLKSkpCAsLAyjRo3Crl27PO7/+eefY8CAAQgLC8OQIUPw/fffB32MgWD8gC5Nur+3mi/SN6ukukG0mr9w2aK6rxrHS6rFNKsy6n5RJoPbvnYPtYlxEUbXeN1vW3uoWPN+YkqXYpK97XQ5UhasxbuKpsyeuOdd4T3003H3z4/SXAMABiYKAU24WIcTmOBL2bz2uoH+vwfsimBiVKrUsqiOSlkb21sIdqOVRia0RbriRXF4MXHRIjZcrqRabFJtm5byRddS0e9hvY4Tg30SOND1hv6mHUppmp4bOQPuhigAxOwW+rkyK4JnT3WJv5xU/87eq1C4BncT3nP3X9tL3MbzvKTc6UjaofCfPH1qyhf9fCrr5uwqvdWUJiYWWxtQvsaPH4+KCnfHrqqqKowfPz4gg2IwGE1H+UO09PZ02GDAXmc/AEAfrkh2+/kqz85ImjShg3Bz2i6HkrYafOVfFAKrtzafFbcpC6I9EajCf0/8/PPP+Pnnn/HTTz/J/si2YLJq1SrMnz8fixcvxr59+5Ceno6JEyfiwgX1Ccyvv/6KO++8E3/84x+xf/9+TJ06FVOnTsXhw4eDOs5A0NTmwUR15zQsV+k2GMQtjq7F8sQjn+zHTcu2YMBT68DzPOIiTNJx/ZyY+9uXiSAqX4oFpz+8vRMA8Ox3RxtVi6W03Z//mXtaL3mMZBIeKOWL1BSR446jGu36+j0gpR0Kzw+d8neZqqEj5hFKJ0VZPZBdXY3yVfnq6Upj/c1wuX29lJ6n03Q7pAN2ZbBnVKQFiu57Bl2j3Q7laYeuwF7x3pJqnaR9ifJFvwfCFDVfnhYftp5Wz1YhqbmEoa6m3nQdOR04kXMpDTbUXiuO48TnVBl8OdSs5hUBcoP4fLdi5YvnedUvx4sXLyIyMlLlHgwGoyVxnE8GAFyr8157U1RZj+uXbsIH2/PUd9iyFHhlEFDVOBMF5Sowo/XT1El4oLn22ms9/gWTl19+GbNnz8asWbOQlpaG5cuXIyIiAu+++67q/v/5z39w00034a9//SsGDhyIf/zjHxg2bBhef/31oI4zENANXtVc3XxFy3ynY5TJbVvXWN+MNr45cF68PPK5bHFS1ilSfsypGYLduFFRdzbe1UB27vg+lFLh33eXWtrh2oNypWzAU+v8OiYAFCqeL1r5WjBpAA4svlG8Hq7R+LYx0K8xmRLSqoWyNksL0WreNbmm55ebTpSJl3PL1WsJDZSyZHHIg0qx5ssHt0MAGJ0q9MVSqlokWDLpPShfDu3gS5kWKFe+pOP5ErCK7n7UYxKdNBXBZ4PNXfma7uqLRlJGTXqdeH/xPerh/VFYIb2u9HiHdI+V7ad0HATk732l4QZB2d+NQJ5TZWBoU1E3lQskZGEnlE6jStz1dg2mT58OQPhgzJw5U+Zs6HA4cPDgQYwdOzbwI2QwGAFhkCsN4CvH1Zhj+AbjdTmIQQ2qod1c8qX1J3CmrBaLvj6Cu8ekuO+Q/azw/6d/AtOW+z2mQBWft3TamvL11b5zmquI932gXuyvRhNEU48cPHgQgwcPhk6nw8GDBz3uO3To0KCMwWq1Yu/evVi4cKG4TafTYcKECdi+fbvqfbZv34758+fLtk2cOBFr1qwJyhgDCb2CbXM4odc1bpV5UFKs6nZluhkguRwqba49UXbZolmAP35AF6zJOY+RVOobIJk9dIoyiUGHp4ncoKQYt20koHM4eTidPHQ6DnM+bnqrgy/3ncPgburP2QPX9pZdJwpIINwOSb0dIE2YaYXl9IUaWUCuhsPJi98Bas21fz5+Qayx04LjhN5bVrtT2wnPR+WLTNJf/ek05l7XV9xOB0uSI6C6hTogN9ygz0/GZ6GUGDpgvVhrFZ0VtVAaVgBSCqLy95QOvrrGhqG4qkF8jKLTIfWaiUGcj4sndBCvrKcKN7m/12hlTmk1T+ir0ezaoONghYryRZ4PvbbypTxnS8Dn4Cs2Vvhw8zyP6OhohIdLK04mkwmjR4/G7NmzAz9CBoMREAYkxsCo53DG0Q0nnd3QT1eEMbpjWO9U71l3ucEmc0byiLNxP+b0F2nZZQs6qzTKbAu0LC2oaZTXWFRTmxpDoCyvlWRkZKCkpARdunRBRkYGOI5TXVXmOA4OR3DGUF5eDofDgYSEBNn2hIQEHD9+XPU+JSUlqvuXlGi7yFksFlgsUg1TqExEjIqieH+L2+MijKiss8FkUJ8gqWXcDHDVMlkdTjicvGptT3GVuwJjVbi8EYipx7bTcvMQUiN2uKga6cnCXMhT8KVmAEIbEticTpg1gtM6q11sNKyGslfe6v1FWDxlkOb+NGGmwKYdEnp3FibMnlzp1KD3UZsY9+ocBavdqdr7icbsCr606rB8cTsEBIMgwH3STpuCKJ30xHO5vl84zj2VlYyfBEcWEszpdbLnrLiywWvwZVNRvkwaY6It1kmdpJh6qjBLASTV9MyFGtEOXwkdLNHf38ogSnLWlPahsyJI8OhuUa/+uVBTvnieFwNaufIlV3jDjDo02JzoFudfS4pg4nPw9d577wEAUlJS8Nhjj7XbFMOsrCxkZWUF7QebwQgmo3t1wpZT5TjI90Y/FKE/V4j1UA++Hv/Cs2IgRz4h4MUfIt9Xmh7831588SBTz1sy+wouobiykbWBKignC4EiNzcXnTt3Fi+3ZZYsWYJnnnkm1MOQrcQ3ppbTm9uhGqSoHxBSjNSCluMl7g6uxLGNrikCBDMPT9w4KAEVtcIk1mrXfoxqQgv9/JTXWDUngmmL1iPv+cmaxz5bLm8HEh3m8zROmhAHoNaSfHb1Oqkeh/6+7xDpniaqhA6+aOViREoH7M67hOW/nMHyX87I7rPoljS345gMOsDiHjT5q3x5G6egfKmn5hFRR6l6CeeXG2KQcZoMOllgSdQiT9gVNXIAnS6oYbhh0OH3I3vi3W25YnBDgiJl3zRAaCp+71Wpquen1S5yWa/j3JRLtZ5yJVRdOQlQTXr5+cOM6s+BQaz5ks5Pr0PQiz/KtENPZh6hwu+ar8WLF7fbwAtgTZYZrYfP7h+D0b06Ij7KhL9O7C+77aRTyPseqTsGLV3mh8P+92wBhB+qm5ZtwewP9gIQArGTpZdlKte6wyUY8a8f8fOJMnRCFXRwuvUDYbQMjhVX44u951BVb8P0N34NSKoUIVhphz179hQngj179vT4Fyzi4+Oh1+tRWip3ES0tLUViorpRRGJiol/7A8DChQtRVVUl/hUWFjZ98I1Ap+PECZJyEuwLomuZH6lBdLCl1buKTo8jXKwRAqjyGnmPqDqLelBCAqXEmDCPTXYJKZ3c50j05NBTbypvKB/ntIxuqvvdM8b9vS0ZbjR90UMMIBST7gGJgvGCpz5kBLtKDRAA7M7T/i24pPLcab0mDj/fU2qBnXBcqRG0lspElC81AxeDIlVRK+3Vl8VKu6JGDtB+/A1WKe2wpFpYcHhvm7AYRd5H9GtAxjMtU3pPKdP8IqhgTUxrVFEmzUb3mq96lUwHpfKllc5O1Eta+aIfr1rNF6mj03qvhhLfl0wovvjiC3z22WcoKCiA1Sr/IOzbF7gfZgaD0XhGpnbEp38ao3rbz85M/JX/DFfpj+A2xzZ87bzK6/G2nS4Xm5B6Yn9BJU6UXhZzy9/YdAYvrj+BO0cmY8l0ob7mgf8JgdkgLhdrzU9ih3Mg7rA+5etDa3W0lrRDh5OHjhMmAbUWO17eeBLvuCywpw9Tn+Q1hR+PleKesSkBP64aR48eVf3NuvXWW4NyPpPJhOHDhyM7OxtTp04FADidTmRnZ2Pu3Lmq9xkzZgyys7Mxb948cdvGjRsxZoz65xgAzGazrAY7lBj1OtidjkYVtjdG+RJW3DnYHLxmCuur2afctj2/Tj3tk/5+s9gd4kSQKGWRZoNmzQ8dcP5z2mC3Y9NKRYcIuSp0Rc8OssUnLWMz4Tb59Zxz6k2JO6mkr4WTmq8AKF8kCFJOqInSuO10Ocb192w9T55DjvPdDn7CwAS3bSYNx0B/la/+rsCxX4K87oi8tkY95XaoYbihdi6pebG78gUA8VEmlNdYfUzVVOtrpRF8Uf2tvj8kLKaSoIuUFNB9u8b374J1R0pkj6HOKg+iE2PCxMvKJs00YlsDarFATaVVBqARKkocID2vdLAod0+UjkM7SNJBsrf01ebE75G8+uqrmDVrFhISErB//36MHDkSnTp1wtmzZzFp0qRgjJHBYASYU3x3vGafBgCYZfDNYYtYIhO0nJmc1Hae57F0wwkAwCe7Ct1+sO7UC1bfo3XHfBs4I2jUWOwYvSRbVLZeoQIvAPhqn4/1f35wuEh94hhIzp49i/T0dAwePBiTJ08W7dunTZuGadOmBfXc8+fPx4oVK/D+++/j2LFjePDBB1FbW4tZs2YBAO6++26ZIcejjz6KdevWYenSpTh+/Diefvpp7NmzRzNYa2loqQLe4HletVmqL4R5cR+MDjO6bbteoydZSrxkELHXpb7QQZ2T58XVc6UrG630JHlxYbxYY5VNHJXGGLty3dv5EG7N2iq7vvlkmew6mbxep/IYifJlCUCtZd5FdVdKwoot3tN9bSrmEQAw68oUzfvEhLu/nt56b/la8xXpqvmrVSigJEDhIaknWsqXetqhUvmSW5+bNNIG1RCVL1naIac6JmUfNpqjHuoS6bRhZXB9lnKd9KR8kXPK3Q6F8XWharuVSlekirEOAFWrebuGwyT9fqDfE626z9cbb7yBt956C6+99hpMJhMef/xxbNy4EY888giqqoL/Q8pgMALDl46rAQAZurPI5NxXh72x/giVHkUFXHTwZXfKV3Df/zXP/4EymoUNR0pQdtkirpAe1FhRDyTNoQg++uijSE1NxYULFxAREYEjR45g8+bNuOKKK7Bp06agnnvGjBl46aWXsGjRImRkZCAnJwfr1q0TTTUKCgpQXCzZjY8dOxYff/wx3nrrLaSnp+OLL77AmjVrMHiwu5LSEvElJU8NrQa1vmA2uteW0BATBRqSGnbL0K6y7XRaEplwV1N1Yb3iI0ULdeVxL9ZKpicp8Z5LM4wGDjmFktI1rGcHfP6ApG5mqzRPJnhL1SXPpbJRMCDV4ailf/lLR5d6R5pONwY7ZWRB8+TNAzXv00PFQVErIPJX+Yp0PT9KtUd2LpUABZCed/W0Q/l9lMqX0Y9FC5uKwqamxvE8L3M7nDNeHuD/fpTgIkkHQkadu6q746z2QoAvypdFxXCDDhyVapim8qXi6EhfNmgYbtCLMi0p7dDvkRQUFIiW8uHh4bh8WZCY77rrLnzyySeBHR2DwQgaRZBSbN41vQh/p8J5F6UVsLIaC97cdAYNNodscmB38LLi8zNl8mJxJb9fsQMXLgfO0KG9Y3c48ceVu7Hsx5Nutyld05STOmUz02CgHEMw2L59O5599lnEx8dDp9NBp9PhqquuwpIlS/DII48E/fxz585Ffn4+LBYLdu7ciVGjRom3bdq0CStXrpTtf/vtt+PEiROwWCw4fPgwbr755qCPMVAQy2tfVvBp6DoOg58TJLJ7ZZ17bRfNmF6dxMsWjaar9Or5O1tzcbnBhpXb8mRj0zIEoBuNa0FqxxpsTmw+KTWrjQ4zYESKZG/v6Vhzx/fRvM1KTTZjVBQ/s8E9FayxkIl9Ty928p6QnPsUjXb1Orx0ezruGJHsdh+19ERvvbd8TWmMIMqXhhtkUlyYOIF3OHnZogFZdFQ7l1HZ50tUvoRjkWb1ZT789nk03KCCJpuDF40mwox6XNlb+L0nVu5k5EOp/lzK9EhAnmZIII9btKtXVb7cA321uk5lsKWlTulV0g7tTuk5pxd5acMNMkaTQed3Q/Vg4nfwlZiYiIoKIRLu0aMHduzYAUBwlPK1ozmDwWgJcHjedgcAoANXg5n69X7dm3Z7+vXMRfx73XG8sO4E9lK1CzanU9bh3tuX369nLuK5tfIUxFW7CzDjv9ubVKQeakLV5+vnE2XIPn4By348BYeTR6nLze30hRpk/mMjsn4+jbUHi3Hb61vxE7XaXlVva5bAqDl+MRwOB6KjhVqO+Ph4nD8vNNzt2bMnTpw40QwjaD9IK/j+KSt2H5Wvpbenu20rrRYUpxoviwW0UcPuPGEOoyz2pydwx0suY8jTG1CpMOxIT44D4N6g+WyZehNgGnI+i82BKuq4aj2utOjowUWQTn2MNKuoEU2wmlcqi/UabnkTBnZx/XevzVJiU1FCCL8d3h3P/8a3HnxawVdjlS+hZ5hwLFldkU4nbxlABTt2D4GeW58vDcONV7NPex2jlHZIpdmpNPCm6/rCjDrxdTp1QVgAfWWjsCD34zHpe58ERfTzSB4OvehAbidBvJryFaZS86Wm2imt5bVqHQ1qaYcary/9fiDv20gNRS1U+B18XXfddfjmm28AALNmzcKf//xn3HDDDZgxY0bQ8+cZDEbTmDRYnmaz3HErtjmEHjF/MnyHKHjO46dZulFSUzjXNPrdbbl4mdr+5OrDslQKX34DL1Er2CVVDfjbl4ewM7fCpx+m5sLbRK+lQE+Y7v9wD0Y9l41fTpbhb18eRFW9DS+uP4E5H+/DgXNVWHtISn9Lf2aDaJjS2hk8eDAOHBD6ko0aNQovvPACtm3bhmeffRa9evUK8ejaFlL6k5/Kl0M9fUgJ7cJ2/B83AZBW5tXuRqcMvvy7DPEyCXwKK7x/3525IFfrtYr2L9Z6Xxyi06FWNjIFW2mWQfdjojML1BREUpvjr+FGyoK1GPDUOgx8SqoPVusTBQCjUgWFMUol+FMipaFpv+bfzL3S63HMGkE/CVR8Vr4o90xS06fsRUanrtEpbU4PNV+SouSE3eEUFSnle2niIG1XU8J5V6uPfKrmzmhwTxck3/0cJwRnpFcdIKQkVqi8X9UUNBI8de8gKZwkeLTY/av5Iot/Z6iFCrVxqKHmdki+N5TfGfTnrEFD5Q41fgdfb731Fp588kkAgu36u+++i4EDB+LZZ5/Fm2++GfABNpXCwkKMGzcOaWlpGDp0KD7//HPxtsrKSlxxxRXIyMjA4MGDsWLFihCOlMEIPneMSMbKWSPw5YNSfcEcm5B6lcRVYKd5DjrjEpJQrnUIv/j2wHnZ9WPFl3HkvO+1RKOXZIuX6Z48ueW1qgXDzcGz3x7F4MXrsfVUYJ6jxsLzvPjjp7kPdZmscC778aRMnQwpzSB9/f3vf4fTNQl79tlnkZubi6uvvhrff/89Xn311eAPoB3R2JovekLlaaKs03HIe34y8p6fLK6Yd+8gpPKp2dsPfXqDeLlPlyi3250+ZOvsVJhfGDXqi3LLvStfZELaYHPgzpE9ZNuUaNUdXW4QtpOJ+y+U4cZmL99Johrhh/JFf8fU2xxihpOFqieiITU8ZJyesDrc09CUDO0eh9G9hJTMjX++RnUfEhBZFOmUDj9NXIQ+XsK+REVU9iJTNhNXnkvt/SvarlsdHt33tpySm6eoQfqe0Y28iUMoPR7yXIQZ9OA4TqZQ2jWyGtRcE0nwRBthELMVuomzknCVWkw1hXNg12jVsSghz7uq8qU4rprypfU5CxV+W82TnHnCHXfcgTvuuCOggwokBoMBy5YtQ0ZGBkpKSjB8+HDcfPPNiIyMRHR0NDZv3oyIiAjU1tZi8ODBmD59Ojp16uT9wAxGK0Sn4zCufxfZSnMlojHd8jS+Mj+NSM6C3WFzAAB3WP+OHU71vifPfntUdp3zcRa9N/8SJr8quXWppeOVVjfgmwPncfNg7VXA8S9tAgDse+oGj2k4weBdV5+Uf687jqv6erfoB4KTdnjXO7uwM/ci5ozvgwabEw+O6y0W2ddbHbj19a2qq/H7CyoDPpbG0hxphxMnThQv9+nTB8ePH0dFRQU6dOjgVxNwhne0LK+9YafSkfx9TXx1WFRTrK4b4J4at+HP1+DGVzZrH0fDalzHyZu+qkFbYH+yqwCAPC0rpVOEOLH9Oue8GKDRkKBALdik1Q01xMa3fvRh+5OrXyPhsz2FmDGih6byRdwllcFXndWOF9adwC1Du+IKV32bZLjheWKs1TKFQNI53Qw3xFRA3yfeESYDquptYvB7gmrSbdTrwHGC+mV1yJ30pD5fKuOj3qNWFQOISJMetVYHpmZ6b+dBWisotwHyeqh6RdAxOEmq7Tp9oQYDu8bgWHE1RqVKtYbK9EhA3dFw88kyZCTHaaZPCud1D77IJ3skVd/YK959UUQNseZLxe3QXfkSxnOx1urmLNlS8OkdefDgQZ//Whpdu3ZFRkYGAKFeLT4+XqxZ0+v1iIgQpFSLxQKe51ndGqNdoFyd28f3wz9sf5Bte8zwmeb9SQBCCOQU9njJZTzyyX68RxW6a3Ge6lFyrLgad7+7CwfPVQZwNNoom08qaaBWiZsSZZy7VIf7P9yDLafKMDVrG5ZuOIE6qx1bT5fD5uCx7MdTWP7LGUykJozfHCjCqQs1Pqd0hIpgf9/abDYYDAYcPnxYtr1jx44s8AoCl13pfEobdm80psEygQ5oaHx5b63Z794+oV9CtKbCAmgHmLe5mh2rNTcmiFbvGsHPtw9Lizn/dSkcSshzS5oZ01zbTzBV0FIPwwzuE2Jv/KKwsl/rckMljZrDTOrKF53yCQBpi9Zj5a95+O3y7eI2MpFWWs37i1ZA7PCz5gsAohR283TaHHle1YIdp3gu98civmco63MdJyk2Y/t4ft1o7rtaSJUmboX0OW1OlaDJ9Z6jlS8nz6OXy5FzMuX4qZ526K5wEsXYF+XL5pCMSUhwTNIkASBKpfeXGlLNl7vbofJ7g3y+quptUoDYwpQvn0aTkZGBzMxM8b+nP3/ZvHkzpkyZgqSkJHAchzVr1rjtk5WVhZSUFISFhWHUqFHYtWuX3+cBgL1798LhcCA5WXLQqaysRHp6Orp3746//vWviI/33kSWwWjtqE0833FMlgVgg7lc/MvwDm7Q7QneODxEJf/6Xr33Fz2psjmc4urp71fswOaTZZj2xq8AgJ9PXMD0N7Z5dVgEgB8OFfudxugpZelEyWUMeGodUhd+j8NFVR4f58KvDuI5jccKAPNXHcD6I6W4651dyCmsxGs/ncbLG9zdC0tc+fT1VofXFfiWQrCHaTQa0aNHDzj8NIBgNA7SA+jNTeqBgxaNabBM0DJb8CUA1Krf6psQjfuvVa8HJBN9Jy+vVSPfB8ke3P9IoEgHP49e31e8TPck0+qjRcwyRvdyz9Ahk05azaAJM0l1OI1d+CB1cj8eE1qN0MoQIAVfx0u0a0bJuX1JO/QF7SbL/tV8AVKLgeIq4X+BSl2gmjU8CSTVTkVb4ZMx0t/RJj/SdUmQRxtIGBRuioB7YEQHSDvOVqDWpezRyqXawoLUqFn6rJC6Nl+UL2EspH7O3WDFV7MZz8qX/BgnSqTfcqnmqxUGX7m5uTh79ixyc3Px5ZdfIjU1FW+88Qb279+P/fv344033kDv3r3x5Zdf+j2A2tpapKenIysrS/X2VatWYf78+Vi8eDH27duH9PR0TJw4ERcuSA4tpGZL+UdcrQCgoqICd999N9566y3Z8ePi4nDgwAHk5ubi448/RmlpKRiM9sCfJ/Rz2/aOYzIyGv6LC3wcwjgb/mDIxgrTy+AgfIF9sD2vWVzwPEHPGaa98SuufXETfjhULBp1OJw8/r3uOGa9txv7Ciox9+P9bseorLOC53lcqrUiZcFaPPjRPtz86hbxdrsPP4Ke5i7LqVXrW17bqrnfvoJL+GRXId7afFZTSduV595nRVmHQrjn3V0YuGgdnlpzWPX2loYvNTdN5cknn8QTTzwhZjwwgg8prPeVxjZYBgCTQXKoo3noo33i5UW3COnTyjWnGg91SQtuGiC7/vB1fVzno1zfqO8JEixFaTSJBeRGAIT05Fit3VUh6XDEbZFWdb47KJjm/Hrmoup9yYSY533rKXVB5XUktW2HXA3SlfWj9Cda67eCKPJqfZ8ag7cmy54MPbRY/M0RAMCFavdUTjWFyOmh5ot2I9x41H2OaVRxGdRCslf3bDXvyQY+LtyIOot7LZeaokfX9pH6ygFdY1zn0Fa+6PPWi8EXMchQf73/c0eG6nb6Puo1X/LnnF6YqFHUSLYUfNL7evaUZPTbb78dr776qqz3yNChQ5GcnIynnnoKU6dO9WsAkyZNwqRJkzRvf/nllzF79mzMmjULALB8+XKsXbsW7777LhYsWAAAyMnJ8XgOi8WCqVOnYsGCBWKPMiUJCQlIT0/Hli1b8Nvf/lb1GBaL9CGsrg5NsT+DESi0FgMrEY051kfwP9NzMHPCF9ctuh341jkWi74+4lM/G1/xpxbq873ncGWfeExJT5JtL6qsx4PURAuQr7xXuJqfnimrwf6CSnSIMOKP7+/BXaN7ujV4BIC73tmJLafK8eWDYzC8p/oKMuBf4FBRZwMUv085hZWY7lLpAGGV9vM9RYgNN2JXXgWmZXbD0O5xqscjEx8lJEVIq6C6PfL666/j9OnTSEpKQs+ePREZKW+Au2/fPo17Mvwls0cc9hdU4t6rUv26n5g+1Ig+PFoNdul0uRsHCbVdceFGmZvqw9dr98xSZgc8cK3QpJYOFGx2HnCVnB5wNV0+7MFQiFjc08YKx4ovq9aeaUF6UHVwBV92Jw+bwwmjXue151YYVffSYHV6rYN5w4OCeW2/zvjlZBkeoZQ7QOplBgiuirSDIGHzqTJMy+yu2WTZX0x69XROtUDFV4gKObpXJ/wn+5TifO7BjljzpZJVQitzagsTyibMnlB7zsjnxq5Sq6VsBQAAJy9cRp3N7na7mpkMcQbVcxy6xYXj3KV6MUi0eAjwdDoOZoPO5TgoD75MBvlzlLvkZtRZHbJAUIlqny+HurLZs5P0HU/G3xhVPZj4bbhx6NAhpKa6f7Gmpqbi6NGjKvdoPFarFXv37sXChQvFbTqdDhMmTMD27ds93FOC53nMnDkT1113He666y7ZbaWlpYiIiEB0dDSqqqqwefNmPPjgg6rHWbJkCZ555pnGPxgGo4XhqefWbn4ArrW8gmWmNzBadwyvmV7HCPsJLLbfg3OX6lXu0TyT/XmrcmQ56r5QWm3B5pNluPtdebryhzvy8adr5KlFx0uqscXlGPabN7fjvqtScaL0Mp65dRB6dZYXBp+6UINxL/6MT/40Gl1jw+EvH2zPk11//9c8PPf9cfH6e9vykPf8ZL+P25pojhLb2267jdV3NRP9ukQ3ytAlGGmHNMQm++4xKbKJdJprBV+LXU9cj5HPCY6rZGJIT3otDgcAeTPjYT06aB6vuEqYeG86IQVfSsMKb5CJbHyUWdxWZ3EgNkInKnvK7zWCUc9Br+PgcPJosDsQC/dGzDSe7PDJhDshxizbTo+rweZEhIofUo+OwuTY6kUJ8RWtOrzG1HyFGXVosDkxyWX4RI5B19gRpUXN7VBNvaWVqSKV309/XEJtKrVlYvBG1UOJ6YJUgB0fZUZ5jQWDkmKx8YigwEVSwbFBZRyv/SS0ePlqf5FolEGULItdW/mib/eUdggICx2eAi/h8bq7HTo0agbpzygpX1DWLoYav4OvgQMHYsmSJXj77bdhMgmfKqvViiVLlmDgwIEBHVx5eTkcDgcSEuSrQgkJCTh+/LjGveRs27YNq1atwtChQ8V6sg8//BBDhgxBfn4+/vSnP4lGGw8//DCGDBmiepyFCxdi/vz54vXq6mpZ7RiD0dpQW6GjKUEn/MX6AD40LUEvXQnuNmyEAQ48Yb+vmUaoTmMm7MrASwtl3dfbWwVjkeuW/oJf/jpOtqIGCKlGL6w7gfuuTkXfLtHiJMCXn3pOsdcujVTCtkxzhOxPP/10M5yFAcibCHvis92FePxLwaAr7/nJlELhf5Cc7ao9+mxPoZsKo2T8gC6y4CtOLTKg6BIThl1PXi/r7cRxHEwGHax2uXNd9w6CKpASH6l2KADA9GHd8NW+ImQkxyHHpZSlKvYnwREgLB4rFw5ILVtMuAEcJ3wfkiCQqGIRGg1lOY5DmEGHWqvD70bLk4d0lfUCJBNw5bno17CyzqrqRvtNThGG9+wgpR02MSXMW5Nlf95X0zK745NdBW727XTamlo/O9Fq3oPyZbU73X5DAMCkEsxp4XC4B3lq6YJqFusZybH48dgF1Frs4vuIfv2kcXhOgf9wRz5+O7y7zzbuX+wtwoJJA7ymHXpCrebLpvH6tobFNr+fgeXLl2P9+vXo3r07JkyYgAkTJqB79+5Yv349li9fHowxNomrrroKTqcTOTk54h8JsEaOHImcnBwcOHAABw8exP333695HLPZjJiYGHz44YcYPXo0rr/++uZ6CAxGUPAlzb4InXG99SVU8cLK8e8NP+Fa3YEgj8wzgawTqqqTO3LN/0z7sV374ia8sM590Wf1/iJMfnUr/vj+bnGbcoR0euWo537EB9vz8OW+c7J9SB+utg4HJybrdmCl8d/Q8zbvd2givXr1wsWL7jUwlZWVrMlygBGdB71MIkngBQgBRlPSz8prhLRidUVezuAkudIVF+5Z+QGALtFhbkGaSSVNjJxfK/ABgBTXxJsEXgBwDdUkGQBW3D1cvKyW4l0vTpoN0vPtqr0ht0WqpPoRJLt5z8GX0ik1MTZMvGxzOMXJe7hR+1yk9kwZFL2/PV88DgAYGxF002gFL41RvsjrR9LyRIc+FZMINeVLLaOEHt9IlxkKPSat3nFq2FRSdI0q70e1Pmzk8sUai2i4Qb9fSXrmyVLJLOXGNEH8oA1oersWDHy1cd/sUp1sdvdA1lcMYp8v+jn3/r1BSguuG9DF73MGE7+fgZEjR+Ls2bP45z//iaFDh2Lo0KH417/+hbNnz2LkyJEBHVx8fDz0er2bCUZpaSkSE713Ag8Gc+bMwdGjR7F7927vOzMYLRhvyheBhw7XWJaJ1983/RvPGt5DFCQXKD386+vTFD7fUxiwY63y81ieaiC2nCoXJ1WVddoW76XVFiz6+ohP59t2OrSNnAMLj6t1B/GN6e/IMr2KcfoDmM79EvSz5uXlqbodWiwWnDt3TuUejMZiUgQDvnDhsqVJytf8GwTjoN9d0V3cRqcmrZlzpXhZ2YzVU+q1J5RKC+0c6KkFhVqNqfIxj0yVzAKW/OC+2FNHTZqJ4QFxnVvtss7Pvajd8Nks2s17fo2G/WOj7PrjN/UXL2spJ0p6dhIW7S4rbOdvHiLM32xNMFqh0Va+/Hc7JI+HBLLEsIGu1VIL9siioDfliwRYI6heVyTQPXROu16QIPUuU1G+qMCkXiX4IoYsL204KQvipdsFkzp6IYME652jzOJnrLerYbmvyhep0xZVxEa83iQwlClfKs8FIbmjUAqQECMsGlyRop0OHAr8TjsEgMjISPzpT38K9FjcMJlMGD58OLKzs0UjD6fTiezsbMydOzfo51cjKysLWVlZzLqY0erxNfgCgCpEYVjDcqw3/w2duSrcbdiIuw3Sj3MkhB8mI+ywNe5rxWee8jFwCQVTs7Zh8pCu2JN3yfvOPvCHt3cG5DihJoM7jccNn2KsXqgLvsyHY4V9MtY4xuBfQTrnN998I15ev349YmMlVzmHw4Hs7GzV+mVG41Fz8/NGRa1VUkAa4Xon1ftIk7Lccqm9hLe6rsag7CtFKxZJHuo/aSt5LTy5JQJQbW68en8R/jpRcmf8eGcBnpumXkIRrggufGH/UzfI1I3DRdWoV1FOCN3iwlFUWY/CCmESX61wlSSvia9Nlr2hpRw5PEzOtSBx9M6zQordG5uEmic6IFFTmsip1c5Fj080qaAClq9cQbOWSyWN5OBI1XyRwESWduhuEU9DgpgIs/T6qT1LVkqtClc0TvamfI1M7YhduRXo5nJJtIopk41QvjzUfKkdj4yp0pXd4m9tZbAJ7izJB2pqanD69Gnxem5uLnJyctCxY0f06NED8+fPxz333IMrrrgCI0eOxLJly1BbWyu6HzY3c+bMwZw5c1BdXS37MWcwWhv0b8Ty/xuGB/7n2fWtAjGYaf0bXja+gf46uWIQyTXgTn02nja8j/tsj2GLc2gwhtwqoOsi2jv9uEI8ZvgMN+r3AgAsvAEfOm7AG/bbUIHAT4ppyIIdx3G45557ZLcZjUakpKRg6dKlQR1De8Psg/mFkjkf7cPfbxkou78/qDXY/cHVCBgIjsU0aRJLJvt0sOnJOEBN+fIHp5MXJ9V00KMM6uaM7615DDIZ95Z2SNNBUbdVWW+V0g5Vgi/SK+uJ1Yfw+1E9UF0vV76W/XgKc6/r26Sgm8ZbzZc/NUakTcgJV+rd1X0740yZXElUSzv0pLKpKV90HWGHCLkLpyfEuim65kul75hkNe856IiggpLpw7rj5xNyYwox+NLrxIbaJHBvUAkkaUjAQ47RlNebPK90wCvVkLk/5+S7pKpeUBW1TEFCRciDrz179mD8+PHidWJqcc8992DlypWYMWMGysrKsGjRIpSUlCAjIwPr1q1zM+FgMBj+Qf9IeGoMSnOET8FE6wsYyR3D34yfYrhOKF4frjslXn7V+DoyLW95Oky7o70Zv/fmivCo4SvcotsBHcfDwXP4ynE1ltl/gyJ09n6AAOB0TYZSU1Oxe/duxMfHN8t52zOSpbbvE/uz5bWicUHjlC93tS02QlthOvnPSdiTV4ERGo2IfeFSrTBRJipGIdWI15f6k8ZSTxmZhJv0osJEasn6JUThZGkNruyt/V4n7ncNHpSvGot2/zMA+GhHAZV26P0xVSvSDmNdtXaS+13T0g613AI9ORBq8cerU/HfX6RaO/LbeFuG1OJEze1QTDv0oHzZHE4xJddMBQOzrkzFyxtPoku02e2+Six29+CNtr4nJi1qPbieuHmAzFHXZNDJVCO61otAXmda+SLvQ28BnlnxfdCUtENJ+VJzmFRTvuTqpKf02FAQ8uBr3LhxXjutz507N2RphkpY2iGjrUA7Avk76dnFD8RvrM/gRt1uvGV6JdBDa3O0fO+lwNCTK8EjhtWYqtsKPSd8r691jMTL9ttxhu/mtn9TJ12+kJubG/RzMAR8STtU/t4/PSWtSSviRpWJsKeaSpNBh7F9mhaIk+Dk410FGNsnHj8fl8xyPDmtxfiQdugJOvgKM+jRs1MEiirrxcltrUVbjSL4YrgxePF68bKaW+GlOqv4HMSqmJYQx0YSjFfXy4O5a/sLCzD2JqSh0ZhVlB+gcW6Hmcny2iASYBg1gh0CuaiWzh8mBi2S8kWrvEQtHeBDiqya+yIZD88LAYlBz4mvL51ud0Th5qtUCq/p11m0lidsPyukQp6+UIMY12vtbjWv/vopFUktq3lfUHM7FF9flZdXacDjyYQmFLSsrmOtAGa4wWgr0D9IjSl0B4ANzhF41PoQanlpxa4DV4Nd5ofQFd7z1ztxrFl5WyCFK8ZLxuXINj2G3+i3QM/x2OAYjkmWJZhjm6caeAHAH0b1DNqYtm/fju+++0627YMPPkBqaiq6dOmCP/3pT7BYLEE7f3vEl55bSlXl7a25UvDViBRBoiDQatuMK5qnDQzpHXThsm/vI6XylRgTprpfD41MhLNU+ptOx4mTetHt0DUp9pT6SALkeqtvqaH7nrrBbdvxEkkhiVFR84giQd4HSuXre1dqdqDcDiVbeHlg3xi3Q6XJkUWlxk6q4ZLO5/RwLsmV0iG+VnTwRBQvqw+KsV0lgDFSTYvJc6BmhjEg0XNwR45JN8omJMaGic8BeQwNKqYeNOT1veQyFGnK59xTzZdaE22lwQZd29YSaHTwZbVace7cORQUFMj+GAxG64D+jVA2KfSHr51XYYzldax2SK5iXbhKrIv4O/6g/xHRlCsiTVdcxM163/pvMVomvbkiLDW+gWzTY/itfjMMnBM/O9Jxq+Uf+JPtLzjGew6ugpkK8uyzz+LIEUkBOXToEP74xz9iwoQJWLBgAb799lssWbIkaOdvjyjTjNQg6gzhfGV9k9KR1Gq+/HUxbSwPjesDALh+oG9lEMrarBLKQY/m5iHqjeT3FciNfH5yKW578gVzCOKa58lcQFS+vPRiU2OC63EO6xEHQDAH8UW1UtZ8kZQ4m7PxiieNQexzpe526I+5VKniNbGoKFUkeLBR7zm7J6t5qgk0+WzQx/Nl0YJgValzop8/cgyLStohed20UFOR+7qcDft0iRLfV8RxUzLcUH/91rsaOb/qUtOaVvPl7nZo9xDwktRgQrS5aapzoPFbhzt16hTuvfde/Prrr7LtJM+0rafjsbRDRluB/kFqqtVvNSLxZ9scfOG4Bvfrv8M1+kOIdVbhX8Z38S/ju1hlH4eX7b9FKaQ6iwkuE4b2ANfGqr6GcGfxkOFrTNTtgc6VXpjtyMSr9mk4wPcJ8egEcnJy8I9//EO8/umnn2LUqFFYsWIFACA5ORmLFy9mTZgDiBR8yQv/zQadmI6ntB2/a3RPUUFozKRMbOzsh8lHUxnXvzM2nShDpyghJY+oHkO6eTbh8rXmKyZcfb+BGmlpe/MvyQIPT816wwyeDTc8lYGQuqZ9BZUA1FMOAcHmmzgdAsDlBilFsareJr5PApV2KFmtayhffvy+JSlUH6tKbypyPjrN0eHJap5yO1Q7nkkjbVINElDS6hEdfJBjqClfxHWQEK1QSNXSKekAS3TKFGu+3AM8T5DH3ph0c6nPl7vaqFc5HkmXFM/tw3PbnPgdfM2cORMGgwHfffcdunbt2io6SQcS5nbIaCvIgi8PaRlfPjgWv3nzV83babY5h2CbcwiMNjsWJ/6K/6sUGq/PMGzCDMMm7HQOwCAuD1FcAyy8/IdbDwccaFmpAYGibQRfPMbqjuAB/be4Rn9I3LrOMQJv2G/FQV7bYS0UXLp0SWbM9Msvv2DSpEni9REjRqCwsHkUkvaCcgU/t7wW41/aBADIe34yAOCyIu3Q5uRFBaFRwZdKwDc9sxu+2l+EJ24eoHW3JqFU28hklPfyOVc+vnuvVG918IeRPfHCuhMAhEk0mdwSG/r4KCFN7Y4Ryfh0dyEmDe4qqwdTBhA0ovKlYbiRf1HKVHj/Xnnv1iPn5X2oYjSCr9uHJ+PljSfF6yTtMDU+EjmFlUh1NemVlJDAGG4olSNHI2q+fndFMlb+mideVwuWlOmeABUIeFK+7DyKXcqag0pZNGuMXw0x7ZDKVuE4Dia9DlaHU3xO1fp8KZuFKz+LJAimLeutYvClpww3iLrmruLRPHxdH7z202n8flQPxbEan3ZIj02q+fL++iqbhocav4OvnJwc7N27FwMGBOdLjcFgNA/095WnlcfhPTuI/Tp8xQYDsmN/g8UlV2K8Lgd/M3yKvroijNJJTktmTr4CnoBLOA/mSNeSCEcDOAC36LfjXv06DNAJwYqd1+Eb51i8ab8Vp/jung8SIhISEpCbm4vk5GRYrVbs27cPzzzzjHj75cuXYTS2rFSU1o7ScIMEXoDQeDwuwiQ2rSV8vLMACycJ84nGBV9yO2tA6ptkaqKiooUyyCR1QoeL/KthvWuMelourXytPViM3wwXPmMXXBP38hqLaz/h/Wt1OMXJNsd5ntySyXiDxkR/Z66kGGQq0tRmX90L/1x7TLweq6HQjVQ4SZK0w86u2iZLAAwYaAwqKWlOJw9y1R+reaVTpqryJZo/uDvvebSadzix1tXo+O2tufj7LWny230IvtSs5skx6OBLzYkw0kuat5qiR6dJSj3ihM8wCd60lC/ihCmmQnrpC+YJNbdDT3V2Sq7u27LmFn6/49PS0lBeXu59RwaD0aKhMzS8pWV8Onu03zbJOo6DA3r86ByOG6wv4BHrXGx2qDf+BIBfwx7BWfMf0Jc7p7kPo/m4QbcHx8LuxdGwe/GCcQUG6ApRx5vxgf0GjLcuxXzbQy028AKAm2++GQsWLMCWLVuwcOFCRERE4OqrrxZvP3jwIHr3bllqXWtHSgF0V1Ve2iAoOZcb3G3MJQc3/xUQT3VmytSjQKFMEyOKlL++EVrGGnRG0TtbJbdO8hwSyKSztLpBqvEx6D1mJJG0Q60my6t2S2qw0p1RWTul5d7YwaWwkN1Jk2ViLEECA7tGIOEvRpWaLweVPumP8kWbf9RbHZLVOm1wodLU2VPwpaXMEfwJvkiAqVQLxcDJToIvdydCb5lqntIOTYq0Q3ofreAn3HVusjCgFsj6iqeaL7U6u7G9O8muN0ZtCyZ+K1///ve/8fjjj+O5557DkCFD3FYOY2KC2zgz1LCaL0ZbwUn9OHlbOdLpONVJkyfk3/McvnGOxTfOsYANiEEN7jWsQxxq0I87h7H6o8J5OB4bzY8DAJ633YGPHBPQjytENSJb9ES/7cBjtO4Y7tD/hKl6KdX0HB+P9+03YpVjHP6/vTsPj6LM+gb8q+5Od/aE7AkEAiTsIQlbBNmJrCKI4jpAwMHRCSovOq8w46AyjjCMOrjkFUdl0c8FHZUZcUQUgSiibEaQHUwElCRAICvppLvr+6O7qqurq/eqXpJzX1cu6K3qSSXprlPnPOepR7SMe1POX/7yF8yaNQtjxoxBdHQ0Nm7cCK3WWnazbt06TJw4UcERdDxSzS84ZSfNF20b9faLyfo054ubw9Rmv09xu2m5iBeT5jJQswd71mXRnaDg6AVrNk284O9VS0bpmzOX+RNcZ23mAfAL5TpquMHN55Iys6AzVmw5yt92NOeLOz4saz5GXOYrJSbcZt/Wboe+Ntyw73YonBvkSbdDrqQTMDeW+MTSmbH83FW7/QlL4LhgT6q5B/d38cvVa+iZHIUzF5vw4IQc/nGpYM4RrkRXnM0THwNuTp8niwtz4zBZWtarVYz0Ol+tJv5+wPG6etbyTK41vfMyRWek5nxxWTCpn29OSjS+OWO9+BJsU6Q8Dr6KiooAABMmTLC5v6M03KA5X6S9YG2CLyWuCjl+s6tHNNYYbuVvp7VdxpvaVchR/cLftzTsXSwNe5e//WzbrXjVOA0tcL0QZbCR621/rKocP7OpqGClu6F5Kw6NmKHejTvVO9BXZe1a+5MpDc8ZZuNT07CQm4+XlJSEsrIy1NXVITo6Gmq17fjff/99REfLF0gS61V2qeYXZy0LEXMXcSK1ajS3GhETrvGpC5pU2SFn6RT/zPni1vk6IbFIrdik/qn47Ei1x1kyAOhp6Tw3oU8KAKCT5aS3W0KktcGCixNbfpFlLxqUdBKdZIvXjeIIg8pLjXp+zldKLJf54rodyrPIMvdZ9stVa7AtzJB4kvlSqRjoNCroDbYBhvBipVYq08Znvuy3eaXZOt+oa0IkzlxsQhdB8wutxLxFR1r5JiWiskNR1orLhDrrfCmmE2TJWg0mCE8LWtpM/LZa2ow2f2+OynvFDTr0PmW+7JuqcIdf6ueb7MaC1YHkcfC1Y8cOJcZBCPEzm7JDH9dZkeLJhaYqJOKG1r8jHHr8Tr0F/xP2ARrZcEQz1ra/D4f9Cw+H/QsA8IFxFGrZGHxpKsBeU5+QCwy8UcCcwgbtagBAVsvbPm9PBRNGqg7jNvUu3KDaDx1jaR/MhuFj03BsNEzEYbaHz/txxkljNdk4ukiWkJAgeT/xHj/nSyILxdlfaW6Xzp3YpsTofGq4ES4odeQuAseGa1DfYnDaeMIX4rLDysvmbJQ77dtL7xqE7ypqkZ8Z7/F+uSYZXKaNK1uMjwzjywjDXWS+rPN2PL9QLs4eCLNyQsLAou5aGx9w82WHlp+VtezQt4t/J6rsg15hQwtP17GM1KqhN5hsfp7CRXo1fKZKovOexIVM4fucVHt2qYyx0cRi1svf4N5RPTBtoPViW6uD7JG146N7a3ABwO/H2pZdC4OoljajTYCXHhfOZzCbWw38775W0MlUjHs/4ILtVlnmfNlnvqR+vgtH98Az207a3R8sPA6+xowZo8Q4CCF+JrySJ1Uz7YlbB3fBL1eu2cyx8GaTLdDheeMteN54CwAghzmPd7RPoQVadGGsc01vUX8FAFiI/+JXNgFfGAfjG1N/HDTloAadJLcd6gaoKlw/yQ3dmQuYpf4Kt6jLkMFYm6gcNXXD+8bR+Mg4ElcRI8u+XHHVHY6EFmFQYjRJ/2y3HqmyuX3mYhNGZnu/zhd3ImdizSVXYWprYCc8YZaTeI7O6JxkfPj9L5iel+HytRq1Ctdnu578X9g9Ad9V1No0SRB3sAvn110yWh9zcWIb7mRenlDP5CiXY3REeDJuYlm7skOWhaU5hDyZL6njaTPny8OSsyvN5vEKF4cWZtWk1hUzOMl85WVaLwBdtWxbGBRxGadWo4m/gNDzj/8FAJS8fRDTBk7jn8sHPaJMvnVemeNFlgHgrd8W4u7XvgMA/M8NvWwe06hVUDHc35IJrKAtRJhaxQf2JhZ84xxnTW3Egb7smS+uvb/kwtbBfUHWrXemQ4cOYcCAAVCpVDh06JDT5w4cOFCWgQUrmvNF2guTg5OjPmkxqGnQe9SalYEyJ9Kn2C4Yoje3q1fBhPGq7zFWVY5eqvMYpjJPPs9gajFX8znm4nMAwBlTOg6z3fGjqTt+ZLvjqKkb6uH9iUToY9GfqcQN6gOYoDqIXFUl/8hVNgqbjdfjfeNYHGGz/D4yRraCTBIMuKvxRhOLumv2c7sAc8nc9uM1SIrW8V375FjnCzAHFCZWxZ+gReqUOQETd3Xkyuc8KfFy5TtLd9kmQYbqmuiEmjte35y5jCkD0gA4zkZxuOBMKvPVJGg9PqKnb93heiRF4adLTbja3MZ/D1zZIWDOhvhSbiokfD0XvFgXWPb+4uK7e63NRwYI1nCTakxhcrLOlzAQ4EoQowVrbHGBGBeUigOHspMXMbpXMgBB9kgUVGkEY2JZli8rFWe+rs9OwomnJkOjUjnszNjSZoLeYOKrY9QqBmoVY/P7XXGpEQDQqHc8F1y8ppyrRZmdkep26G6r+T9bukoGE7eCr/z8fFRVVSElJQX5+flgGEZyIT6a80VI6HAQe3mFhX0JWbTMK8qboMIXpsH4wjSYvy8OjShUHcP1qh8xVHUSvZmz6Km6gJ64YNMw4gKbgFOmzjjBZuIU2xl1bBR2mfJCav6YwYPSSh1aMVG1H5PVe5Gn+skma2hgVfjalIv3jWPwhWkQ9NA62ZKyKPPVvghPGi9bAisxbq2hm/IysG63OZvLnVB6U34mvPKuN5jQpLeeg4gXkZWLOPNVeclcduhJcwNvcNkM7iRYGOD++d9H3NoG33BDIvN1SfAzm5Kb5nJbr8wZ7PCxnyzHZIultTpgbtDBMObPCn2bUbZFloVBdpuRhVbDWBdYlmk+842C0j8uEGizKYFz3HkvTM3w3/flRnPwFSX43RQGNS2t9sHXW9/9jNG9kmEwWgMiccaJyxq3WTKK3HikMqHOskJatTn4Ejb/4DKTYWoVNCoGBhOLqroWR5uwfl+iNeW4kklfuh3aNFUxOl5kGQD2/mkCfr7cjKFZwVdi7tY7U0VFBZKTk/n/E0JCn8nJhBtPrxNKbWpM72R8cND7tvET+6Vi29Fqp8+pQzS2mYZim2koAHMXxUGq0+jPVGKAqgK5qgp0YS4hnalFuroWo3HY5vWnTRmoYNNQwaajkk1DBZuGn0zpqEYnyNcmA/Clr58WbRiv+h4REGYiWQAMElGH61VH0E/1Myaq9iGFuYqLbBwymYvQMNYPz2usFrtMedhuKsCXxgJcRnBcOPLHnC/iP8KTqkuN0pnza23mK+WJ0dagn+uAKC6RcodKxZjXODKYr9bvPmW90KBUhzPuxJcr3Tv8i3nx4R0navgFZX21YkZ/LBcFVM2WwDLSclIrnDfWJy0GxyXmPok5y3wJO9pmdpJug//FkjEoem4XAPN7tCvv7LU28NGqVfzffKPeYF1iwNdW84IAq81oglaj4gM7T+d7Aeb1sJpajRiS1Qk7TtTgUmOr7Tpf/KLJ9q3tpbIwDMMgXKPGtTYjH9QIy0mFQc21NiPiYHvh8rMj5s9BYUAkDmDCBJkvYWAtzpC5IrywwP2shJ1EI7Rqm9+TPmmOS9TFa8rxZYdeBNuSc75Y5+t8pcSE86Wuwcat4Ktbt26S/yeEhC55M1/2OQw1w6By1TS0Gkzo9dinDl+bHKPDxQbbq+R3DstE8YjuLoMvsXpEY6cpHzuRD1g+f2LQjBzmPHJUv6AXcx79VZW4TmVeKDRb9Suy8avddppZHSrZNPzEpuGkKRMXkIAathOq2U6oZuNxBTGQNzhz7BHNe7hX84nNfSs0G5DI1GGc6gdEMrbHjmtSUs9G4AzbGS8ZZmC3aUBQZvmkKihI6FKrGP4k8nKTdObrguWKObcWFGCdB+PNFXHAXMbUajBB32ZEzxTlS4z5OTqi7nRpsfKd6EllbLgSrxjL+lrcyW2MToOpuek4XtWAmfnO553x2QiJpiiPbf6R/3+Ug6xhdko0KldNk3zMFWFWaHP5r3zmyNfslHDOGBfQWTNfnr9PX5+dhG1Hq2EwsZIBAxfo2Mw/8jCLJz6+4WFqNOoNTpu22HQYFP2tCDsmtri54LYUYUnlSYnunRFh5uCr2vKZ7azs0Nqa3txghQsePQ0IAUfdDt0rOwxGXufkjx49irNnz6K11fbq1k033eTzoAghynN04hvpoluW9Lbst8d95rk6oQpz8OHozTikNCASB9leOGi0Ti5mYEI6apGlqkIP5gK6M1XIYqrQnbmArkwNIhk9+jE/ox9+BtTf2W2zlVXjMuKQztRij7EfKthUnGK7IJW5gvs0WwAAZcZcvGy8CQloQC8HC0eHQ48MxtykpJnVQQUWsUwzEph6/EWzHj1VFyRfN1fzueT97xjG4RPTdThl6qxA9k5+UmvikNDGnRztq6iVfPx7yzpSV69Zzx24+U3eTpLXadRogIGfqwKYgwSliOd8cReQhF3pfDUky9o4iJvHxK05xbW0F7b25064E6KcX2Rx1nBDuJZVQpRv5chZiZGovNyMbomR+Plys93jQ7M64QvLxTVfF1lWq6xlfVxZmrMFeF3hAoufLjbxWR6tRHfCNomGG46CvWuioMo++FKhUW8uB3UUgHHBF8PY78ea+WL5bqM6J50IHRFmvqrr7UsLueD95Z1nADhfS08nWGTZ3EzEcr/a879z6zpf9u39fW0YFggeB18//fQTbr75Zhw+fNhm7hf3A27vc74IaS/EZYfP35GPF788jdW35uGOf+7xaFt5XeJwrtb2A9bd93ypN06WBTITpMte5MBChV+RhF9NSfgGA2we08CALsxFdGeqkMOcRzbzK1KYq5avK0hi6qFljEiH+YRxuPoohuOo3T5Gqw9jtPqw3f2HdfdAh1ZoGe/eK382peB7NhtHTFk4wmbhLJuKarYT2ry/lhYwwbbwJZHPxj0/290nvEBT12zfkMObifjC1+kNRr6cTq6LN872x50MN0qcoPsqWbDYb21TKxIFtw/+fMUyDssaZ0YT3ywjQut8DMJshJKqLCfu4sArJyUap2oaoRI0xfCmDE2IYRiEqc3ZT3Hmy5tOij9YgtDXv7ZOsxHOJeQCAWEmyuCk7bmUKNHvp7Dd/CUH8yWFWTjxe6cwaBLPDfSEcDvcwuhCnmxT+Nyaeuv35FPmS2IhbV8btgSCx5/WDz30ELp3747t27eje/fu2Lt3Ly5fvoyHH34YzzzzjBJjDCrU7ZC0F+Kywxn5nTEjv7NX2/rNdd3w8SHbLI27J9ZSTwtkNZoBGlSy6ahk07EDBXaPh8GAZFxFKnMFw1VHkMzUoR6R6MWcRzJThyEq52uLxDC2VwpNLAMVY/6G9awG9YhEHRuNSKYFsWjGKsOdiEUzTrJdsMuUF5JBFiGAbamb1Pwkb4MvYQbomg8nnu4SBnuANatxtdn9DrGudBJknhpaDEiM1iEzIQLnaq/hgfE5NuMArO3RXX3fwnk4XEZNCeKyRi64CBcs1CtXww1u+8Lgy9NgyJXuSdZy1jCJzJerYC+vSxx+OG+eGxgeprL7noVBT+mOM5LbEK6tJWZ9vZE/9t40gOG+N73RhNlDuuDr07YBGPd36062V7j/HSdqrGOVac6Xtb1/6F3E8/hTfM+ePfjyyy+RlJQElUoFlUqFkSNHYuXKlXjwwQfx/fffKzHOoEHdDkl7ccfQTLz2VQVu6Jci8ahnb2Yatcqu7HBUjnutiqVKz4K5C14bNOasGZuE7405Lp/PwIRotECHNkQyLVDBBD2rRRs0aIMadZY2+FoY0Ap5O0QS4m9902NxTNTunFs7qEGwbtJ9Y3ri16vXcKqmkb9P52XAJCwD5Nb4ilAy8xVmW3bIcdRkxFeby3/B4qJeOFdrvnDDNRoQBl//+cE8d1VYOiiFa7hhNLF8Z0AlXJ+diN2nres+coGDMFBu5RdZ9n0MGkG3P8CaIfFmPlmYmrHpqqdipMsOhfOPrA0+pPcn/H2UWn9OGHzVXZP+PbIuUiwRfAnKDrmGG94EX1pBMxHus7mwu323QG6etnjeo5AwI8VlDsPUjFdlgtxxtT3mlt+fEAy+PP6tNBqNiIkxdzdJSkrCr7+a/+C7deuGEydOyDs6Qohi4iO1+O6PE7Byljxr84nDpUg3FzhdNC7bflvBG3t5jIUKDYjEJcThLJuKSjYdF5CIS4hDHaJhDnSZDhl4BXOQTbwjPjG8bUgXvkFEfUsb4iLM/0+O0dmVBnpbfsaVMbW0+afs0Nrt0GRz8jmpn+v27N5Y88Upm9vcMZbKGH1xrMbuPqFwQVmiVLt5udxc0EV6/xKZL1/LDgFrJ0hukWF+DpYXgd3SKX0BmEskAftgKUxQIshxNefr25+scyClmpmcrG60/NuASf2lf49aJZp/cPiyRaO17NCbTLJwO/z+nGznczebYv10sdFm+55qb5kvj4/CgAED8MMPPwAACgsLsXr1auzevRsrVqxAjx49ZB8gIUQ5cr5peRsw3TrY/kN6UDfzZPOMuOBsE0sIkSbOvLy3/zxiI8wnm/UtBr5UT6dR2V2Z92YuCLctQFx2qFx5rjDYa261dnuLUmhRZw6XNcpx0kxk5axcp9swzxcy/7/FwbwvYYmdt86K5gD/fmxPANYsZUubiS8NlCPzxWXRTtWYy+KMPpyYc+vDceuoiX8vw0RZNsCzQMBRJ0kAWLe7km+YIeZO2aHeYOIvQPiS+RKWcHpbDiwUa7no0uTlXEPud0Sq22GHyHw99thjMFn+YFasWIGKigqMGjUK//3vf/HCCy/IPkBCiP+5Ow2gX3osPvr9CADer2QlnnPQJy0Gtw3JBABMzZWvexgJQpT46hBiLAuu1zW38fNRIrRq7Lc0juB4P+fLUgbYZhSUHSo3CV/Y7Y47mdRp7OfxyIllWT4T4ezk3dWcL4Zh+OdItZsHgArLAsm+uHNYps1trntiuCBw5RfXlmkhZMCapfKlJI0LqGsspXXiclKNoMSPw3XhczTna8511mWaoiWCdG6Y86/PwtOfHpPchrNMlO06X7Ylnp4QNpNxFuxxXAXq0ZbfVVflsK6o+cyXRLYxBBtueDziSZMmYdasWQCA7OxsHD9+HJcuXUJNTQ3Gjx8v+wAJIcHrtXlDUNC1k+snemD2kMyQLCMghNifjP1xah8+81XTYG1dHalV25QQAd5dqQdsM19cyZW7Zc++7K/VYEKzpcugs4DIW78bba4munNYJvQGE98kyVlJ5fbjzssOAWHTDekshBxt+oXdGgHgiqUZiXDf3MmzHGWH/dJjzdvS2M4N8iawiw53XgIu2WrexZyvDw5alxuR+l2ZPCDN8nqGX/dOzFnwJdXt0JeGG22CskPh3K3JopJI8d+wWG/LIsyJPi5doJGY8+VLdjPQPPqtbGtrg0ajwY8//mhzf0JCArUMJqQDsrmqqMBELXpbaefa8c+3trYWd999N2JjYxEfH4977rkHjY2NTl8zduxYMAxj83Xffff5acTyGJplezGmpl6PWMvJbFWdtd10uEaNgq7xNs+VakTgDtuGG5aW6wp2OxSe6DYpOMcs3VJ2XX/NYLOYrbPA0p2SwXDL+B21m39q5gDJ+z1h183PsrYTV8pXcbFJ0O3Q9zeCMFH7f6MPc756Jjs/hmEaruzQfv6Ro0xbs+BYS/2eC+fCSTE6WPCZI/yd1HPBlxfr5gnLF/nMl2B/4oB96ZQ+TrfHZd+4eZ/dEr1bQkbtZM5Xuy87DAsLQ9euXanNOiEEgO0aXWN7S3VNdOzGgem43zIPQEjYNdHRIrxLp/TBihn9PdofCULtuOzw7rvvxpEjR/D5559jy5YtKCsrw7333uvydQsXLsSFCxf4r9WrV/thtPI5IColPPRLHX/iVW3JfEWEqaFSMRiaZdtFLdLLOVNcJqqlzYj/9+1ZAL6XOTnDn+garZkvJYIvrt38leZWfh0vwPmV/u5Jrk9uw7X2J/qna6yt/+WY4yPGnbRzDRreP3Be1m6HWtE8LO5fb7Ii3MLKjki1mnfV4ENYhvnNGfv1s8L59ddMmNQ/FQDw2LS+/OPNrQbnc74E37+wtNdTwoYb9dfMx8Eo+EweJup82CnSeUaLm3tZ22S+8BIf4V1jKY3kOl/yLifgTx7/hf3pT3/CH//4R9TWSq9eTwjpOIRXnH4/zj6Qcualuwbh0cn2V81mDxHMFRC9pw7sEod7R/fAfWN6Yu7wLI/2R4i/HDt2DFu3bsVrr72GwsJCjBw5Ei+++CLeffddvkOwI5GRkUhLS+O/YmNj/TRqeZy5aDtfKCMunC87rK4zB19coCJuUx3pZbYqXKL1+66TF73aljuEbb0b+OBL/rJDrjPkleY2fFfh3jlXTkqMy+dwGZFrguDrl6vWktC+6fL/zj00wbwsBxeECJci0XmRoRELEwQNgGDdLS/KDtNcNHqSKjt0FQj8Kji+VyTKCiME5ZifHTEHqCqG4as/rrUaBWWH9sdLuuzQi26Hgu18bFm+oEzwtyQuiXTVZCY23Px3ccHyt3/+yjVnT3dIMvPlw3ICgebxiF966SWUlZUhIyMDvXv3xqBBg2y+2rvS0lL069cPQ4cODfRQCFGMu9eRhJkvnUbNX7ETu3e0806o7/1uOHI7x+HD34/gTzik/GfRSPxxal+Hj5PQ0l4TX3v27EF8fDyGDBnC31dUVASVSoXvvvvO6WvfeustJCUlYcCAAVi2bBmam5udPl+v16O+vt7mK5DuGGrbaGHeiCw+81V52RyYXW4yz//Z8E0l/zxfGlaIFz1WmnCaS6WlOYUSnQ65rMKxC/W40iS99tPEfrbvuf0zXAdOEVr7hhunqpXNfHEBclZilM1tufbHr09ltG01701WRDxfTUy8pphwv44CgX4ufi4RfObL+jt8+Jc6/oJEszD4kvg74YKbD7//hc8yehPUCtvocyWs+Znx/OPiTpuu5jpy2WxucebLDn6PXXHW7TAUM18eX6qZMWNGh57fRYssE2IlrrUe1LUTf9VOKCXG+YfZsO4J+PiBkXb3Oyo7JCSYVVVVISXFtgxXo9EgISEBVVVVDl931113oVu3bsjIyMChQ4fw6KOP4sSJE/jwww8dvmblypV48sknZRu7r3om256c9cuI5UsRxVkxIV/K9rhW4MIW3c/MzvN6e64ImwdwJ+BKZL6E5WVXr0k3YdgmWmfJnfMzrpvh+SvWwP6pT6wd9uQ6xzv51BSUnbyIMb2T+fu4oKtRUNonR8MNcSmgL23s4yOdl8aFCTKfLMuCYRiXgcDCUT3w8s4zAKwdAIWEXSA5rQYTIrQaNLUaLcGX4/W7Pv7hAv//H87VAXBdPilFp7Eex8wEcwnrwC7x/OM9RcGXq79bb+dxivFlh1LdDjtC8PXEE08oMAxCSDBx97NXHBzNv747IrRqXJ+dZHO/yctmHMKt73+syOPXj8pJwlenbOvrbxyYji2HLjh4BSGOLV26FH/729+cPufYMek20e4QzgnLzc1Feno6JkyYgDNnzqBnT+my3mXLlmHJkiX87fr6emRmZko+1x/e+LbS5rZOo+bX+HHGl+DF2nDDiKzESFRebkaWlxP73aFSMdCqVWg1mlDbZA6KohSY8yW8aMWduMuh1pJ9WL+7Er8dpdz6rFqNCkWizBwXZDTozcdNo2JsKii83pdo4WNr90HPt+0q+BR2/zOYWISpGT4QcNRqPkEQsL95zzC7x6Uabtw7ugcO/2IOpK61OZ/zVdA1np9P9/Vp82feBwfP49nbPLsIISw7lOquKP4oj3Sxnp5cFyW4jGKbQVjqafkZyzBn0N88vtzQo0cPXL582e7+q1ev0iLLhHQw4itOWo0Kc4dn2V39dtGN1iHhZ2CSi1IQsW6JkXjznkKbrmezBnWWvTU+6TgefvhhHDt2zOlXjx49kJaWhpoa25bfBoMBtbW1SEtLc7B1e4WFhQCA06dPO3yOTqdDbGyszVcgSXXQ4+Z9cLjy5MHdrH+LvpTthQsyX5WXzdkcOeYROcNl27hGApEKtJpPdOM9z1GptzNcx7lxfZJdPFN+XJDBZWXCZFqjSbzwsdGHVvOuCDN11v25bv7w9aPj8N7vhkt+Buksx+Vio7UjaJhaxWeWXJUd3lzQGQCQHKPjP/NmWe7zhLDhhlS3Q/HfsqumHuK/6+IRWR6PCbAvKwVCO/Pl8W9lZWWlZLdDvV6P8+fPS7yCENJeuXtVUYEu9G5jBTOLGDDtubs5UVhycjL69Onj9Eur1WL48OG4evUqDhw4wL/2yy+/hMlk4gMqd5SXlwMA0tNDZ7Hx//db++8vVrRuEnc1/I9TrQ13fCkxjrBsr6nVWmZVVd/i6Omy4IIIbg6LEpkvdxy94PkcvzG9zEFXgotOdUrgSkN/tgTJjjJFnhI33GiT8cQ8WVQ2LyxlbDNY5pi50fyhS6dIu26BnG/PmJMau09bkxvpceGSwZdOopEG97yUGB1GWpqZDM7y/EKjTat5S5mjMPPFlSKKn++IOIvoTQdGQNBwg20f3Q7dvlTzn//8h///Z599ZjPfyWg0Yvv27ejevbu8oyOEBIS7IYq7cwO8LTuUe86XivFs7bAHxmfjxS8dZx2Ib9hARuUK6tu3LyZPnoyFCxdi7dq1aGtrw6JFi3DHHXcgIyMDAPDLL79gwoQJeOONNzBs2DCcOXMGb7/9NqZOnYrExEQcOnQI//M//4PRo0dj4MCBAf6O3CfVbS9GFHxxTXWE2WxuQr43IgRNCTiJ0coGFtzcGK6ET8lFnZ15+IbeWLyp3KPXCBel9rdw0cl3vRfzkqRw63xxwZCRazUvQ3AnLmEVBnSt/Bwz39Ysy+0Sh08O25fDc79Xza0G6CUyURzJckEvsopcEKtvM+GaJVAWNkfxdOHmLYdsu7sKG7t4QtjtkJtn58tC2oHm9rvFzJkzAZhPtubNm2fzWFhYGLKysvDss8/KOjhCSPvg7Um23Nez5o3IwsUGvesnAlhfPBTj+qRQ8EW88tZbb2HRokWYMGECVCoVbrnlFrzwwgv8421tbThx4gTfzVCr1eKLL77AmjVr0NTUhMzMTNxyyy147LHHAvUteEXqKjTXat562xx8ZXaSZ14WV3YobIPt7XpC7u/TfBLKBV9KdDt0x7g+nq2vCACXGs1jfqXsJyzzc/fYzE4RimxX3P6dn4MlQ1bk1blDbG4zjHXOn32Zo3f762dp769irGX6cRFhfKbIpuxQItukE6w95+x5rnDr431y+AKGWdbh86UZjvgCao2bn79iasF2TCygZjpIt0OTJb3XvXt37Nu3D0lJSS5eQQgJVXI3GfR2zpccA+mfEcd3W+ubHov+Ge69zpuTGuKZdpr4AgAkJCTg7bffdvh4VlaWzUWJzMxM7Nq1yx9DU1x+ZjzKz13F1sWjANiXHXKZLzkaLQDW+V1Xmq1trLmW5krhTkgvWebo+CvztWyK7dqIwqU5vlgyxq1tcN0OpUzu7/6cRG8oNRdPuPA1IGw1711W5Mmb+uPx/xwBAMRLlGeGqRm0Gq3lhr4s6gxYM2bCz0qVikFDi/mCws+Xm50GVVq1pelMmwl7fjKXLnJBtif+84M1U8WtAxchynZNGZCGT3+swoLrXVe73dAv1Wbh9buGdfV4TIBtBtNoYqFWMYJSz9ALvjz+rayoqAipwOvcuXMYO3Ys+vXrh4EDB+L999+3e05zczO6deuGRx55JAAjJCT43Dq4CwBzByU5eHvlTI631Acti3ty25OrjfJfZg6QZTuEtDebS65H5app6JNmvpofLZqkL/V+0Dne+4wIN2+IW8A1UquWLbBzJMbyPXENAPyV+ZJaALly1TRUrpqGbFEbcEfuKjSfAHNzv4SLXf/mum4yjNIxbxb+dQf3O8B9L75mouaNyMI7C6/D3j9NkN6fKNjztcHHsQvS5Xjf/mReXPufZT/xZaKSwZflPuFcx8+POl7WwpGZ+dark9f4xZptf7df/s1gVK6ahuXT+7ncnrjph3Bhb08IM1/csQ7lzJfbvyV79uzBli1bbO5744030L17d6SkpODee++FXu9dOlFJGo0Ga9aswdGjR7Ft2zYsXrwYTU22V33++te/4rrrrgvQCAkJPg9OyMH64qHYuMC+Ja43fnNdN4zulcwv2uiuWwaZg8DrekhPUnaGezsWroki5wnZHIVPUjoCWsatYxB3tPtcsDbVV/87Dv+4PQ9fPzrO6+2LS5l8KZNyl3itpggXLbflIszueYt7T9x18iIAoE6whtjwnok+b98ZceDQw8PPBEfs1vky+jYHCzAfi5SYcMnH+NbnMs35Ei+WLcXZXC7hmm2cB8fn2N3nyk2W4KtXajTf9t6XgDkhSmvzPr+/8orjJzshDLC4phu+rOUWaG4f0RUrVuDIkSP87cOHD+Oee+5BUVERli5dio8//hgrV65UZJC+SE9PR35+PgAgLS0NSUlJqK2t5R8/deoUjh8/jilTpgRohIQEnzC1CuP6pNiVC3krPEyNNxYM8zhg6ZoYicNPTMTbv/X+4ojJ65pHorT2XHZIHBOWMWUmROLmgi4+ZaTzBIvAAv4pARTvQ6nM1wt3FtjcntjP97LAMzWNNreFZYhKZxFaRJmPrjKtx6bViIMhy4m5Qt+P1mFre+/2J1wHTEi44DPf7VAi89U/I87uvqQYz5ZnAazliwwY/mflbYdCANCoVegkKNv83RjvlqSyCb6MXPDVAcoOy8vLMWGCNf367rvvorCwEK+++iqWLFmCF154Ae+9957HAygrK8P06dORkZEBhmGwefNmu+eUlpYiKysL4eHhKCwsxN69ez3eDwAcOHAARqPRZgHKRx55JCiDRkLaI2/Or2LCw3zKWBnpDJ+QoPLIpN6ybk+c6fJH5ktciqVUwCfOiPhyIswZK5rPevdr3/q8TXelxtpmkrzpyCfFbpFlH+d8uRImCvZ8nfPl6Hd20bhsAMCM/AyniyxLdRT2Zg21CK35NS0GI79mn3jOl6e4pjSA9x2MbcoOWa6jpbI/YyW5PeIrV64gNdX6JrBr1y6bbNHQoUNx7tw5jwfQ1NSEvLw8lJaWSj6+adMmLFmyBI8//jgOHjyIvLw8TJo0yWYBy/z8fAwYMMDu69dfrRMHa2trMXfuXPzzn//k7/v3v/+NXr16oVevXh6PmxASGgKV+NrywMjA7DiEUFjcMcndBj5KVAJ40st21p745eo10RiUCfg8be3tDuEJsMnE2ixcqzRxww2dTN+ftezQdj6QXOuIub8/7wIBR5lf7uff0ua822GKRJarU6TnlSvhgmUbmlql53z5wt15iWIqFcNfvOWymqGc+XL7Uk1qaioqKiqQmZmJ1tZWHDx4EE8++ST/eENDA8LCPP9BT5kyxWnJ33PPPYeFCxdi/vz5AIC1a9fik08+wbp167B06VIA1oUoHdHr9Zg5cyaWLl2KESNG8Pd/++23ePfdd/H++++jsbERbW1tiI2NxfLlyyW3IZzTVl/v+cKGhLQXDAMM76Hs3AC5KFl22CkyDFcE7a05swZ1xoDO9mUghBD77oe+EmcN/HHBpcwyX4oTpWCp45rb87F4UzkmyNSBVbhosLcNELwlDhxky3yJ1i7zNRPlit0cM4WaP3CBz7U24fpd9sGQRuI4epMl5bJcVwVzC+XItnJ8CeTUDAMDy8ISe1lLPdvznK+pU6di6dKl+Oqrr7Bs2TJERkZi1KhR/OOHDh1Cz549ZR1ca2srDhw4gKKiIuuAVSoUFRVhz549bm2DZVkUFxdj/PjxmDNnjs1jK1euxLlz51BZWYlnnnkGCxculAy8uOfGxcXxX8LSRUI6gn/dNxz9M2Lxr/uG49iKyXjrt4UebyMQb5Fcx8Z4L64CuiJePJZ4hipCOw6uoUafNPtFmH2l06hsSprzuih/4UPcxU3JUseZBZ3xw/KJeL14qCzby4izlv7Vt1gvHimVJXLGm458UviyQ5nmYLkSJprzZTAqM8csQpD50jspOxRTMd4Ftlz5rDAbGu3jhYXfj5UnNuACW2vmS9kAW0luH9G//OUvmDVrFsaMGYPo6Ghs3LgRWq21dGDdunWYOHGirIO7dOkSjEajTbkjYM7CHT9+3K1t7N69G5s2bcLAgQP5+WRvvvkmcnNzPRrLsmXLsGTJEv52fX09BWCkQxmSlYBPHhzl+olB4ndjzG/48ZFalC+/QZHyHerW55th3T3vYklCU5dOkahcNU2RbTMMYxPI/3C+TpH9CI3rk4IPv/+Fvy0ufZRbnIwXj4QlbrtOWDN4UutZKa2+xSDLdvg5WAZx90GlWttzc8xYmEwsn22VKxDg5vpxc7Ca9AZ+H+4EX5FajVdNbMTzu7Qalc9dgh8qysH12Uko9PH9nstqmkywOebetvcPJLffLZKSklBWVoa6ujpER0dDLUp7vv/++4iO9q6WU0kjR47kF4h2pri42OnjOp0OOp0OpaWlKC0thdHo31Q9IcQ9j03ri3F9UmxaGAfipIK4ptVQ9EpCk7jVvFQHulCw9MPD/P8vNvhnuaB+6bE4esE8dYNbTsRX4syXQfGyQ2sWRtjUSa5g79nb8gBYS3Qb9QY+q+ZORkv8++mucK1o2zJUJ+g0alyfLd/6wAfPXkF6vDV7G4qZL49/S+Li4uwCLwBISEiwyYTJISkpCWq1GtXV1Tb3V1dXIy1N2VXYHSkpKcHRo0exb9++gOyfEOKcRsWgZ3K0V1f9Bnm4qLSrsrlN99L6gYS0R+KFo+VavD2Q3vailNwbXOAFAP0y7BeN9gYX/Iq7HSpXdmid82UUTDL0ZX/vLLR+XnAl7VxGtbHF4LTboZi3ZbBatQrCb4HbZzBJiNLKdswDJagv1Wi1WgwePBjbt2/n7zOZTNi+fTuGDx8ekDGVlpaiX79+GDpUntprQjoSf5yg+LKPvunynAhwCnskYki3TrJukxDiXJZMa0c5421mIZiNkDE74a6KS42un+QGcQMMo8Jlh1z2qc3A8vsEfMvCDO+ZiMpV02zKc7nfs0a9wek6X4DtxcOfBGu3eYJhGJ9byyslLsIckHaK1PLBNdBBMl9ya2xsRHl5Od+xsKKiAuXl5Th79iwAYMmSJXj11VexceNGHDt2DPfffz+ampr47of+RpkvQkLf6/OG2N3XPSlKtjlciYIFM1+dOwSPT++HnY+MlWfjhBCn8jLjFd9Hewy+AuH/fXtWlu1oHWS+lOohwnXYaxVlvrxtNe8I93umN5jQbGn97ijzdapGnkBWzu6GcoqxZJuNLMuv8QVQ5ssr+/fvR0FBAQoKzKu4L1myBAUFBXzXwdtvvx3PPPMMli9fjvz8fJSXl2Pr1q12TTgIIcGP9UN7O3cCqAl9bd8/dj4yFjscBEeenMiV3jUIN/RLxQMTcvj7OkVpMf/67sgSzEELJeKulp3jI2TbNhOQ/pekvfPHb5U/FnJur4Qny6N7JcuyzTBBMAQIFuBVuOFGm9Fkk4WROw4QNnJpsDQncTTnq0HQvMSXZkZKNKeSA/d7YzSZ+E6HQGhmvgJ+6Wbs2LEuT8gWLVqERYsW+WlEzlHDDUKCV+f4CNwsagHtDi4wSo0Jt3vsX/cNR+mO01jzxSm7x8SB3rSB6Zg2MN3j/QezHC8XxXRHsH7Ik9D28MTeiu+DK4EKVf0zYnHk18CsVyoMVv40ta8s2xRnvn6tMy+CrdQFPy4AMhhZGIzW+WVyl9ZrNSpoNSr+++Luc2VvRa1P++QosTSEt/hW80aWzzaqFTjm/hDwzFeoobJDQryn9Jvk14+O82ntrd+O6oFZBZ2x9jeD+fvC1CrcP7YnRuXYz4cIvbd89215YCS2PzwGKbG2AWkIfs6RDmDvnybw/89MUH7Ol3Au0R8mKR/sye2VOYNtbg/L8t+yD7mCBei7yTQ/j5sHVWPp2HjIstzA//v2Z1m2LxYm6K6o9HpT/u6s+dNF63yxtDj7C5KBwrWUN5pYxRa19hcKvggh7YavwV2EVo3nbs/H5AG23VR1GjXevMc/ncCCRUqsDj2Tg2/5EEKkpMSE2zUrUNpbvy3E70b3wPzrs/y2T7l06WQb9Gz6nf86s/7f3YP4/8uV/W7SS1cjnayWZx6UWJjGusgyl4WRe74XJ0pnv/aWv1TX+2f5AXdYF1lmFV9EW2kUfHmIuh0S0nGFUtaHW6QTAJ6Znefx62MdZBD9eYWckGB2fXYSlk3ti0htwGdweCUlRgfAnLnzZ+lWZkIkjq6YhJ+enirbNjMEc1GFpYaPTZOnrFGMy8II53wplYWJEv1++TP4GiDTUgBy0AjWVqPMVwdDZYeEeC+UgpdQJ+xYlWw5yfKEoyvST8zo7/WYCCHBY++filC5ahpKxmX7fd+RWg1UMp44C5tQGEwsCixt17sqVILKBUBtojlfSogRrSnnqOHGX28ewP//zXuGybLvq9faZNmOHGznfJlLPSnzRQghJGgIP5JG9Ey0mWfhi9jwMMn5b4QQEihcGSBg25BBqVJArrtim2DOl0ahvvZROvcW9J6el8H/f1SOPF0kd5++JMt25BAmmPPVxnWzVIVmGBOaoyaEEJGPF41UfB/OGmf9+cZ+iu/fW2FqFT5+QPnjQwghgaARnIS3Gk2Ck3NlAiJhq3nr/COl5ny5V9YaGx6GH5+chNN/nSLbvsfItBSAHGjOVwdGc74ICU65XeTJ7DjzkGX9rtuHZNo95k2Le3/L88MxIoQQfwtTCzNfJmtZmkLZKD74MrCKB3oxHizoHa3T2HTi9EYPwZqUi4t6+bQtOXE/S+p22AHRnC9CvBeab5NWD03IwX8fHIWnZ+UCsC3/8McC0r66f6x3czu+//MNuG1IF2yxZM9CcV0VQkj7xTAMP6fYdh6W8mWHSmdh3M18yWXFDOvcsd7BuM6XiVU8uFZaaLboIYSQAFCpGPQLgu5PseEa1LcYnD7HlwBJfDWxU5QWq2+1dkwMzY87Qkh7pmIYGFkWTa0GPjOidOarNQBzvpQ2MicJr80dItsabHLhglujyaR4kxOlUfBFCPGb4M8NhYYBnePwzZnLAMwLlh7+pc7NV7r+Cbx4ZwEGd+vk9DmU+CKEBBsuA9VmNMFgVLYbHhd8CZt7KNX8QelFlaUUCZYqCRbcRcE2I6v4PDulheaoA4jmfBFCOMKPdV8Cy5wUzxYzFlY4+tJIY4VE2/jpeRk2a+YQQkgoSI8LBwC0Gkz4ta4FgHIn51pBww2lszAfHDivyHZDjUbQ7ZDmfHUwNOeLEO+F5tukY52itPz/EwX/99S6Yvkv5rhzrOcOz8KAzp6XUf5pqjILlxJCiLe4tbdaDSb+PpNCc3G5EsNWwSLLSpUdBkOpezCwLrIsyHyF6JwvCr4IIUQGvsyxyvRwIVDWyzybXOchOakxOLpikjwbI4QQGXDZKGHwFRcRpsi+bFvNK1viGKrzmuSmFs75oswXIYQQJTx9c67dff+cM9it16ZZSnAcef6OfG+GxFMJgs3B3Tphc8n1Pm2PEEJ8wWW+9EYTH4gp3mreqHyr+VW3DFRku6FGYzPnS9mAV2kUfBFC/EfmTg2dIs1XNQMxIVluC67vbnffXYVdbW4vm9IHE/unubW9knHZmDWoM16fN0Ty8Rn55nXJGBmKQbslRvInO4QQEgjCssM2y8m5UgGRVmMpgfPDIsvhYWr+/75eNAtlaprzRQghnuspWLxRDu/cex3G90nBB/eP8Pi1f7vFnFV6dnaei2f6x59v7Itvl02wu/8ftwtavFs+Z3oku27QEaXT4Lnb8jGhr7Vr1eheyYgJ12BEz0SfxyuOo70thSSEEDlwF4Ba2ox8iXWYYut8ca3mWcXnfAHA8b9MRtkfxvEXzToibm01fwS8SqNW8x4qLS1FaWkpjEZjoIdCSMgZkZ2E1bcMRHaqZ939HOmTFut1s4rbh3bFjPzONlcVPSXnRy3DMJKlgjcXdMH/bPrB5r5HJ/eBigFmevhBHKXT4OCfb5C9VEOcPRvTKxmDu3XCc5+flHx+eJgKLW0myccIIcQbXOarudV6fqZWKCDiTvr9MecLMGe/ugbZulv+Jlxk2aBwqafSQjNkDCDqdkiIb24bmolBXZ2vI+UvvgRegRQXEYanZuZiSFaCx68NU6t8ag4iRZz12rhgGH4/tqfD52d26tgnEYQQ+ekkgi+lMl9c2WGb0aT4nC9ixq+tJux2GKLHnIIvQgghHhNnu8S3NWoV8jPj/TgiQkhHxme+9Ab+PsUbbhhCvwQuVHCBlsFIc74IIaTD8naW0wt3FuDhG3rJOhahhaPsm3cEgjDBNi03HQAwqX+qg2cTQoj3uDlfDZbgi2GUy4zwwZfJP3O+iCD4MglKPUP0mFPwRQghfqZmGMSEez7l1t3OhMNlaKjhiZsLXM89+/vsgXj57kF47rZ85QdECOlwdBpzGXldcxsAIFyjlr3EmiNc58tgVLazIjHTCNr7WzNfoRnGhOaoCSEkhCnZGfDmgs4Y2ytFse1zhFeU3ZnDF6nVYEpuOqJ01OeJECI/ruywsdVgc1sJXOe9NoN1wd9QnX8UKmwWWTaG9jGnT0FCCGknuiVG4h+35/tlXyoVg+/+OAFtRpPDgCo0PxYJIaGIC7aaLGWHYQquPShcZJmf80VrHSrK2mqe5nwRQghRgHiBZaX4UpWTGhuOLk46FypV8hMK/vrXv2LEiBGIjIxEfHy8W69hWRbLly9Heno6IiIiUFRUhFOnTik7UELaCT7z1WLJfCk4H8g658tadhiqWZhQwTU0MXc7DO1jTsEXIYQEkQfGZ6NfeiyevKl/oIdCfNDa2orZs2fj/vvvd/s1q1evxgsvvIC1a9fiu+++Q1RUFCZNmoSWlhYFR0pI+8A13GjUK192yO2LZQG9geZ8+QPXXMNgMoV85ovKDj1EiywTQji+vO3npMZI3v/wxN54eGJvv42HFUw/S4u1X+SZeOfJJ58EAGzYsMGt57MsizVr1uCxxx7DjBkzAABvvPEGUlNTsXnzZtxxxx1KDZWQduFqcysA4HhVAwBlyw6FizdfbNADCN0sTKiwLmxtLfVU8mespNAcdQDRIsuEEI4vbTOuz07Cs7Pz8PGikbKNx1ebS673+rVSFYZ0KuK+iooKVFVVoaioiL8vLi4OhYWF2LNnj8PX6fV61NfX23wR0hF9f+6qzW0lT8yjtGr+/yaW5nz5g4ZvuEFzvgghhHjplsFdkNslLtDD4KXFyZv56sBTvjxWVVUFAEhNtV0HLTU1lX9MysqVKxEXF8d/ZWZmKjpOQoLVLNGSF2EKlh0yDMM3gLjWZq6EosyXsriywzajcGHr0DzmFHwRQkiIoGAmsJYuXQqGYZx+HT9+3K9jWrZsGerq6vivc+fO+XX/hASLxGidzW2dgsEXYM2sXWujOV/+wGUWjSaWbzUfqsec5nwRQghRhLuLQoeKhx9+GMXFxU6f06NHD6+2nZaWBgCorq5Geno6f391dTXy8/Mdvk6n00Gn0zl8nJCOQhxsKR18cVmXa63Kt7Yn1uNtMIZ+t0MKvgghhBA3JCcnIzk5WZFtd+/eHWlpadi+fTsfbNXX1+O7777zqGMiIR2VuMxQp1E7eKY86i0t7Rv15rJDLQVfiuICrTabboehecxDc9SEEEJkoWQpY2xEx72+d/bsWZSXl+Ps2bMwGo0oLy9HeXk5Ghsb+ef06dMHH330EQDzHJLFixfjqaeewn/+8x8cPnwYc+fORUZGBmbOnBmg74KQ0HHJ0nWQo3Tmi3PsgrnJTZiC64oRa2bRYLOwdWge8477yUgIIQHC+tImUcK84d2wcc/P+N/JfeTdsI+enDEAlxoPYsHI7oEeit8tX74cGzdu5G8XFBQAAHbs2IGxY8cCAE6cOIG6ujr+Of/7v/+LpqYm3Hvvvbh69SpGjhyJrVu3IjyclgAgxJWuCbYLvvt7jqySDT6IbcONUO922O6Dr3PnzmHOnDmoqamBRqPBn//8Z8yePZt/PCsrC7GxsVCpVOjUqRN27NgRwNESQkJJsLztP3FTfzxU1AsJUdpAD8VG5/gIn9rXh7INGza4XOOLFUXhDMNgxYoVWLFihYIjI6R9arEsdszZcugCXrrLf/unOV/K4tb5MpjYkO922O6DL41GgzVr1iA/Px9VVVUYPHgwpk6diqioKP4533zzDaKjowM4SkJIKJI5geU1hmGCLvAihBB/6pMmvXC9UtJiw1FV38LfpjlfyuLKOg3tIPPV7n9T0tPT+cnLaWlpSEpKQm1tbWAHRQgh7Qy1wSeEBFK4qMFGosIXpHJSbS/an7/SrOj+Ojqu1XybkYXBGNrdDgMefJWVlWH69OnIyMgAwzDYvHmz3XNKS0uRlZWF8PBwFBYWYu/evV7t68CBAzAajTaLUDIMgzFjxmDo0KF46623vP02CCFEcQxFOIQQIkkXZntK++CEHEX3R5ku/+JbzZtMaLMEX6Fa6hnwssOmpibk5eVhwYIFmDVrlt3jmzZtwpIlS7B27VoUFhZizZo1mDRpEk6cOIGUlBQAQH5+PgwGg91rt23bhoyMDABAbW0t5s6di1dffdXmOV9//TU6d+6MCxcuoKioCLm5uRg4cKAC3ykhhBBCCFGCuLthhFbZVvPiYO+ni02K7q+jE3Y7bDVy3Q4p+PLKlClTMGXKFIePP/fcc1i4cCHmz58PAFi7di0++eQTrFu3DkuXLgUAlJeXO92HXq/HzJkzsXTpUowYMcLmsc6dOwMwlydOnToVBw8elAy+9Ho99HprG9P6+nq3vj9CCBETd+UKpJQYWqCXEBL6xJUBkUoHX6Iyx5sHdVZ0fx2dTbdDPvMVmtUgQR0ytra24sCBAygqKuLvU6lUKCoqwp49e9zaBsuyKC4uxvjx4zFnzhybx5qamtDQ0AAAaGxsxJdffon+/ftLbmflypWIi4vjv4Sli4QQ4o4P7h+Of9yeh7zM+EAPhffUzFyM7Z2M9fOHBnoohBDiE2H8pXTwJS47jI+gpkdKChN0OzRYMl+hWnYY1KO+dOkSjEYjUlNTbe5PTU1FVVWVW9vYvXs3Nm3ahM2bNyM/Px/5+fk4fPgwAKC6uhojR45EXl4errvuOsydOxdDh0qfgCxbtgx1dXX817lz53z75gghHc7gbgm4uaCL169X4hpfWlw4NswfhnG9UxTYOiGE+I9w9YaIMGWLu8Rlh1pa50tRGr7bIYs2U2g33Ah42aHSRo4cCZPJJPlYjx498MMPP7i1HZ1OB51Oh9LSUpSWlsJoNMo5TEJICArNt31CCGn/rrXZ9wKQU6TW9hSagi9l8WWHJhNlvpSUlJQEtVqN6upqm/urq6uRlpYWkDGVlJTg6NGj2LdvX0D2TwgJHsGyzlcwiFT4KjMhhHiipl7v+kk+iNbZljVS8KUsrsyTZYGWNnMCRENzvuSn1WoxePBgbN++nb/PZDJh+/btGD58eEDGVFpain79+jksTySEkI6oa2IkHhifjcem9Q30UAghBJMHKHuRPlonynyFaBYmVAg7G17jgi9VaB7zgF+qbGxsxOnTp/nbFRUVKC8vR0JCArp27YolS5Zg3rx5GDJkCIYNG4Y1a9agqamJ737obyUlJSgpKUF9fT3i4uICMgZCSMcU7Mt8PTyxd6CHQAghAIDY8DBFtx8lCr6UbvDR0Qnnd3GZL60myD8UHQh48LV//36MGzeOv71kyRIAwLx587BhwwbcfvvtuHjxIpYvX46qqirk5+dj69atdk04CCGEEEIIAQCVws0YYsKtp9AMA0SEUfClJOH8rmutlPnyydixY8GyzmdOLFq0CIsWLfLTiJyjhhuEEEIIIcFnw/yhKF7vnzn5wsxXZJha8WCvo1OrGDCMec5XkyX4CtWGGwEPvkINlR0SQgghhASfsb1TsHXxKGR2Un4he+GcLy4YIMoKU6nQarR2MA/VJicUfBFCCCGEkHahT1qsX/YjbrhBlCcMvABAF6LBV2iOOoCo2yEhhBBCSMcWHU7BV6CFauYrNEcdQLTOFyGEEEJIxybudkj8L1Tb+4fmqAkhhBBCCAmQKC0FX4EWRpkvQgghSqJeWoQQEhzU1N3Q71JidDa3KfPVQdCcL0IIIYQQMqCzubnH6lsGBngkHUNqbLjN7TB1aAbAlDP1ELWaJ4QQQgghWx4YhbprbYiLCAv0UDoEYYMNrUYFhgnN4IsyX4QQQgghhHiBAi//EZYZhmrJIUDBFyGEhIxQvcpHCCGE+EoXZpv5ClWhO/IAoTlfhBBOaqzO9ZMIIYQQ4rP2kvmiOV8eojlfhBDOEzf1R6uBxW+u6xrooRBCCCHtmnjOV6ii4IsQQryUEhOO1+YNCfQwCCGEkHZPGHCFaqdDgMoOCSEkZNCUL0IIIR2VTqPm/68V/D/UUPBFCCGEEEIICWpRWmvApQvhssPQHTkhhBBCCCGkQ4jUWWdLnattDuBIfEPBl4eo2yEhhBBCCCH+Fa2zZr4uN7UGcCS+oeDLQyUlJTh69Cj27dsX6KEQQjoYmvJFCCGko4rUto8+gRR8EUIIIYQQQoJatI6CL0IIIYQQQghRXKSg4caonKQAjsQ3FHwRQgghhBBCglqUIPM1NCshgCPxDQVfhBASKmihL0IIIR2UiWX5//969VoAR+IbCr4IIYQQQgghQS09LoL//7v7zgVwJL6h4IsQQgghhBAS1DITIlw/KQRQ8EUIISEiPiIs0EMgbvrrX/+KESNGIDIyEvHx8W69pri4GAzD2HxNnjxZ2YESQkiI0GmsDTfWF4fuervto2ejH5WWlqK0tBRGozHQQyGEdBB/v3Ug9ldewdTc9EAPhbiptbUVs2fPxvDhw/H666+7/brJkydj/fr1/G2dTqfE8AghJCQ9Nq0vztU2Y2zv5EAPxWsUfHmopKQEJSUlqK+vR1xcXKCHQwjpAGYPycTsIZmBHgbxwJNPPgkA2LBhg0ev0+l0SEtLU2BEhBAS+n47qkegh+AzKjskhBBCgsTOnTuRkpKC3r174/7778fly5edPl+v16O+vt7mixBCSPCi4IsQQggJApMnT8Ybb7yB7du3429/+xt27dqFKVOmOC1zX7lyJeLi4vivzEzKkBJCSDCj4IsQQghxw9KlS+0aYoi/jh8/7vX277jjDtx0003Izc3FzJkzsWXLFuzbtw87d+50+Jply5ahrq6O/zp3LnTbLxNCSEdAc74IIYQQNzz88MMoLi52+pwePeSbj9CjRw8kJSXh9OnTmDBhguRzdDodNeUghJAQQsEXIYQQ4obk5GQkJ/uvw9b58+dx+fJlpKdTl0tCCGkvqOyQEEIIkdnZs2dRXl6Os2fPwmg0ory8HOXl5WhsbOSf06dPH3z00UcAgMbGRvzhD3/At99+i8rKSmzfvh0zZsxAdnY2Jk2aFKhvgxBCiMzaffB17tw5jB07Fv369cPAgQPx/vvv2zxeUVGBcePGoV+/fsjNzUVTU1OARkoIIaS9WL58OQoKCvD444+jsbERBQUFKCgowP79+/nnnDhxAnV1dQAAtVqNQ4cO4aabbkKvXr1wzz33YPDgwfjqq6+orJAQQtqRdl92qNFosGbNGuTn56OqqgqDBw/G1KlTERUVBQAoLi7GU089hVGjRqG2tpY+5AghhPhsw4YNLtf4YlmW/39ERAQ+++wzhUdFCCEk0Np98JWens7Xy6elpSEpKQm1tbWIiorCkSNHEBYWhlGjRgEAEhISAjlUQgghhBBCSDsW8LLDsrIyTJ8+HRkZGWAYBps3b7Z7TmlpKbKyshAeHo7CwkLs3bvXq30dOHAARqORXwfl1KlTiI6OxvTp0zFo0CA8/fTTvnwrhBBCCCGEEOJQwDNfTU1NyMvLw4IFCzBr1iy7xzdt2oQlS5Zg7dq1KCwsxJo1azBp0iScOHECKSkpAID8/HwYDAa7127btg0ZGRkAgNraWsydOxevvvoq/7jBYMBXX32F8vJypKSkYPLkyRg6dChuuOEGhb5bQgghhBBCSEcV8OBrypQpmDJlisPHn3vuOSxcuBDz588HAKxduxaffPIJ1q1bh6VLlwIAysvLne5Dr9dj5syZWLp0KUaMGMHf37lzZwwZMoTPhE2dOhXl5eWSwZder4der+dvc5Ok6+vr3ftGCSGEAAAMLU0w6ZvR1NCA+vowj1/Pve8K50wRM+6Y0GcTIYT4l7ufTQEPvpxpbW3FgQMHsGzZMv4+lUqFoqIi7Nmzx61tsCyL4uJijB8/HnPmzLF5bOjQoaipqcGVK1cQFxeHsrIy/O53v5PczsqVK/Hkk0/a3c8FboQQQjxzwxrfXt/Q0IC4uDhZxtJeNDQ0AKDPJkIICRRXn01BHXxdunQJRqMRqampNvenpqbi+PHjbm1j9+7d2LRpEwYOHMjPJ3vzzTeRm5sLjUaDp59+GqNHjwbLspg4cSJuvPFGye0sW7YMS5Ys4W+bTCbU1tYiMTERDMNIvmbo0KHYt2+fW+P09nWunuvocXfvd3a7vr4emZmZOHfuHGJjY90arzcCfRw9fcyd+9rjcfT2d9HRY3QcPX88VI6jt8eQe+3evXvR0NDAl5UTq4yMDJw7dw4xMTEOP5uc8dffUXtFx883dPx8Q8fPN74eP5Zl3fpsCurgSw4jR46EyWRy+LirskeOTqeza0MfHx/v9DVqtdqrH54nr3P1XEePu3u/q9sAEBsbq+gfeaCPo6ePuXNfezyO3v4uOnqMjqPnj4fKcfT2GHKvjYuLo4yXAyqVCl26dPF5O0r/HbV3dPx8Q8fPN3T8fOPL8XPnsyng3Q6dSUpKglqtRnV1tc391dXVSEtLC9Co3FdSUqL461w919Hj7t7v6rY/BPo4evqYO/e1x+Po7e+io8foOHr+eKgcR1/2F4ifOSGEECIXhg2iGcsMw+Cjjz7CzJkz+fsKCwsxbNgwvPjiiwDM5X5du3bFokWL+IYbJDDq6+sRFxeHuro6usLiAzqO8qDjKA86jh0b/fx9Q8fPN3T8fEPHzzf+On4BLztsbGzE6dOn+dsVFRUoLy9HQkICunbtiiVLlmDevHkYMmQIhg0bhjVr1qCpqYnvfkgCR6fT4fHHH7crxySeoeMoDzqO8qDj2LHRz983dPx8Q8fPN3T8fOOv4xfwzNfOnTsxbtw4u/vnzZuHDRs2AABeeukl/P3vf0dVVRXy8/PxwgsvoLCw0M8jJYQQQgghhBDvBTz4IoQQQgghhJCOIKgbbhBCCCGEEEJIe0HBFyGEEEIIIYT4AQVfhBBCCCGEEOIHFHwRj5WVlWH69OnIyMgAwzDYvHlzoIcUEtw5bqWlpcjKykJ4eDgKCwuxd+9e/w80iMh1zDracfXncetox7Y9o5+l9+hz0XsrV67E0KFDERMTg5SUFMycORMnTpwI9LBCyssvv4yBAwfyiwMPHz4cn376aaCHFZJWrVoFhmGwePFixfZBwRfxWFNTE/Ly8lBaWhrooYQUV8dt06ZNWLJkCR5//HEcPHgQeXl5mDRpEmpqavw80uAhxzHriMfVX8etIx7b9op+lr6hz0Xv7dq1CyUlJfj222/x+eefo62tDRMnTkRTU1OghxYyunTpglWrVuHAgQPYv38/xo8fjxkzZuDIkSOBHlpI2bdvH1555RUMHDhQ2R2xhPgAAPvRRx8FehghR+q4DRs2jC0pKeFvG41GNiMjg125cqWfRxecvD1mHf24KnncOvqxbU/oZykf+lz0TU1NDQuA3bVrV6CHEtI6derEvvbaa4EeRshoaGhgc3Jy2M8//5wdM2YM+9BDDym2L8p8ERIEWltbceDAARQVFfH3qVQqFBUVYc+ePQEcWfBy55jRcbUn13GjY9t+0M+SBJO6ujoAQEJCQoBHEpqMRiPeffddNDU1Yfjw4YEeTsgoKSnBtGnTbN4HlaJRfA+EEJcuXboEo9GI1NRUm/tTU1Nx/PjxAI0quLlzzOi42pPruNGxbT/oZ0mChclkwuLFi3H99ddjwIABgR5OSDl8+DCGDx+OlpYWREdH46OPPkK/fv0CPayQ8O677+LgwYPYt2+fX/ZHwRchhBBCCAm4kpIS/Pjjj/j6668DPZSQ07t3b5SXl6Ourg7/+te/MG/ePOzatYsCMBfOnTuHhx56CJ9//jnCw8P9sk8KvggJAklJSVCr1aiurra5v7q6GmlpaQEaVXBz55jRcbUn13GjY9t+0M+SBINFixZhy5YtKCsrQ5cuXQI9nJCj1WqRnZ0NABg8eDD27duH559/Hq+88kqARxbcDhw4gJqaGgwaNIi/z2g0oqysDC+99BL0ej3UarWs+6Q5X4QEAa1Wi8GDB2P79u38fSaTCdu3b6eabQfcOWZ0XO3Jddzo2LYf9LMkgcSyLBYtWoSPPvoIX375Jbp37x7oIbULJpMJer0+0MMIehMmTMDhw4dRXl7Ofw0ZMgR33303ysvLZQ+8AMp8ES80Njbi9OnT/O2KigqUl5cjISEBXbt2DeDIgpur47ZkyRLMmzcPQ4YMwbBhw7BmzRo0NTVh/vz5ARx1YMlxzDricfXXceuIx7a9op+lb+hz0XslJSV4++238e9//xsxMTGoqqoCAMTFxSEiIiLAowsNy5Ytw5QpU9C1a1c0NDTg7bffxs6dO/HZZ58FemhBLyYmxm5+YVRUFBITE5Wbd6hYH0XSbu3YsYMFYPc1b968QA8tqLlz3F588UW2a9eurFarZYcNG8Z+++23gRtwEJDrmHW04+rP49bRjm17Rj9L79HnovekjhsAdv369YEeWshYsGAB261bN1ar1bLJycnshAkT2G3btgV6WCFL6VbzDMuyrDJhHSGEEEIIIYQQDs35IoQQQgghhBA/oOCLEEIIIYQQQvyAgi9CCCGEEEII8QMKvgghhBBCCCHEDyj4IoQQQgghhBA/oOCLEEIIIYQQQvyAgi9CCCGEEEII8QMKvgghiikuLgbDMGAYBps3b5Z12zt37uS3PXPmTFm3TQghhBCiBAq+CPGAMJgQfp0+fTrQQwtakydPxoULFzBlyhT+PkfBWHFxsduB1IgRI3DhwgXcdtttMo2UEEKINzx575bThg0b+M/hxYsXu/UaJS8KEuIOTaAHQEiomTx5MtavX29zX3Jyst3zWltbodVq/TWsoKXT6ZCWlib7drVaLdLS0hAREQG9Xi/79gkhhJgvljnz+OOP4/nnnwfLsn4aka3Y2FicOHECUVFRbj3/+eefx6pVq5Cenq7wyAiRRpkvQjzEBRPCL7VajbFjx2LRokVYvHgxkpKSMGnSJADAjz/+iClTpiA6OhqpqamYM2cOLl26xG+vqakJc+fORXR0NNLT0/Hss89i7NixNlfxpK7QxcfHY8OGDfztc+fO4bbbbkN8fDwSEhIwY8YMVFZW8o9zVyafeeYZpKenIzExESUlJWhra+Ofo9fr8eijjyIzMxM6nQ7Z2dl4/fXXwbIssrOz8cwzz9iMoby8XLHMX2VlpWSWcezYsbLvixBCiLQLFy7wX2vWrEFsbKzNfY888gji4uIQHx8fkPExDIO0tDTExMS49fy4uDhFLggS4i4KvgiR0caNG6HVarF7926sXbsWV69exfjx41FQUID9+/dj69atqK6utimV+8Mf/oBdu3bh3//+N7Zt24adO3fi4MGDHu23ra0NkyZNQkxMDL766ivs3r0b0dHRmDx5MlpbW/nn7dixA2fOnMGOHTuwceNGbNiwwSaAmzt3Lt555x288MILOHbsGF555RVER0eDYRgsWLDALuO3fv16jB49GtnZ2d4dMCcyMzNtPuC///57JCYmYvTo0bLvixBCiDThhca4uDg+2OG+oqOj7coOx44diwceeACLFy9Gp06dkJqaildffRVNTU2YP38+YmJikJ2djU8//dRmX64uVrrr//7v/5CTk4Pw8HCkpqbi1ltv9fUwECIbCr4I8dCWLVsQHR3Nf82ePZt/LCcnB6tXr0bv3r3Ru3dvvPTSSygoKMDTTz+NPn36oKCgAOvWrcOOHTtw8uRJNDY24vXXX8czzzyDCRMmIDc3Fxs3boTBYPBoTJs2bYLJZMJrr72G3Nxc9O3bF+vXr8fZs2exc+dO/nmdOnXCSy+9hD59+uDGG2/EtGnTsH37dgDAyZMn8d5772HdunW4+eab0aNHD0yYMAG33347AHPm7MSJE9i7dy8Ac8D39ttvY8GCBV4dxzvvvNPmOEZHR+Ott97iH1er1fyHe3x8PO677z4MHz4cTzzxhFf7I4QQ4j8bN25EUlIS9u7diwceeAD3338/Zs+ejREjRuDgwYOYOHEi5syZg+bmZgBw62KlO/bv348HH3wQK1aswIkTJ7B161a6aEeCCs35IsRD48aNw8svv8zfFtaZDx482Oa5P/zwA3bs2IHo6Gi77Zw5cwbXrl1Da2srCgsL+fsTEhLQuzvL0foAAAX0SURBVHdvj8b0ww8/4PTp03ZlFy0tLThz5gx/u3///lCr1fzt9PR0HD58GIC5hFCtVmPMmDGS+8jIyMC0adOwbt06DBs2DB9//DH0er1N8OmJf/zjHygqKrK579FHH4XRaLR77oIFC9DQ0IDPP/8cKhVdMyKEkGCXl5eHxx57DACwbNkyrFq1CklJSVi4cCEAYPny5Xj55Zdx6NAhXHfddTYXKznr1q1DZmYmTp48iV69erm137NnzyIqKgo33ngjYmJi0K1bNxQUFMj/DRLiJQq+CPFQVFSUwzI78YTfxsZGTJ8+HX/729/snpuenu72XCmGYewmMwvnajU2NmLw4ME2mSOOsBlIWFiY3XZNJhMAICIiwuU4fvvb32LOnDn4xz/+gfXr1+P2229HZGSkW9+DWFpamt1xjImJwdWrV23ue+qpp/DZZ59h7969btf0E0IICayBAwfy/1er1UhMTERubi5/X2pqKgCgpqYGgOuLle4GXzfccAO6deuGHj16YPLkyZg8eTJuvvlmrz+rCJEbBV+EKGjQoEH44IMPkJWVBY3G/s+tZ8+eCAsLw3fffYeuXbsCAK5cuYKTJ0/aZKCSk5Nx4cIF/vapU6f4Ug1uP5s2bUJKSgpiY2O9Gmtubi5MJhN27dpll5HiTJ06FVFRUXj55ZexdetWlJWVebUvd33wwQdYsWIFPv30U/Ts2VPRfRFCCJGP1MU+4X1cF0XuAqCri5XuiomJwcGDB7Fz505s27YNy5cvxxNPPIF9+/YFrCkIIUJUv0OIgkpKSlBbW4s777wT+/btw5kzZ/DZZ59h/vz5MBqNiI6Oxj333IM//OEP+PLLL/Hjjz+iuLjYrrRu/PjxeOmll/D9999j//79uO+++2w+xO6++24kJSVhxowZ+Oqrr1BRUYGdO3fiwQcfxPnz590aa1ZWFubNm4cFCxZg8+bN/Dbee+89/jlqtRrFxcVYtmwZcnJyMHz4cHkOlIQff/wRc+fOxaOPPor+/fujqqoKVVVVqK2tVWyfhBBCAmPQoEE4cuQIsrKykJ2dbfPlbht5jkajQVFREVavXo1Dhw6hsrISX375pUIjJ8QzFHwRoqCMjAzs3r0bRqMREydORG5uLhYvXoz4+Hg+wPr73/+OUaNGYfr06SgqKsLIkSPt5o49++yzyMzMxKhRo3DXXXfhkUcesSmhiIyMRFlZGbp27YpZs2ahb9++uOeee9DS0uJRJuzll1/Grbfeit///vfo06cPFi5ciKamJpvn3HPPPWhtbcX8+fN9ODKu7d+/H83NzXjqqaeQnp7Of82aNUvR/RJCCPE/Vxcr3bVlyxa88MILKC8vx88//4w33ngDJpPJ47nUhCiFyg4J8YCwLbuYsKugUE5ODj788EOHr4uOjsabb76JN998k7/vk08+sXlORkYGPvvsM5v7xHOj0tLSsHHjRof7kRr7mjVrbG6Hh4fjueeew3PPPedwO7/88gvCwsIwd+5ch89xxdFinMIxFhcXo7i42Ot9EEIICR3cxcpHH30UEydOhF6vR7du3TB58mSPGi3Fx8fjww8/xBNPPIGWlhbk5OTgnXfeQf/+/RUcPSHuo+CLEOIWvV6Pixcv4oknnsDs2bP5ydKucK353333Xdx4442yjeerr77ClClToNfrMW3aNNm2SwghRJqji2Lii3tSFyMrKyvt7hNfiHN1sdIdI0eOdHgxlJBgQGWHhBC3vPPOO+jWrRuuXr2K1atXu/Wa1atX4/jx4ygvL8e4ceNkHc+QIUNQXl6OY8eOYe3atbJumxBCSGioq6tDdHQ0Hn30Ubeef99990l2VCTEXxjWUf0PIYQQQgghQaqhoQHV1dUAzOWGSUlJLl9TU1OD+vp6AOYuip428yDEVxR8EUIIIYQQQogfUNkhIYQQQgghhPgBBV+EEEIIIYQQ4gcUfBFCCCGEEEKIH1DwRQghhBBCCCF+QMEXIYQQQgghhPgBBV+EEEIIIYQQ4gcUfBFCCCGEEEKIH1DwRQghhBBCCCF+8P8B1VO12m5c+7AAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Check if whitened datta is normal"
],
"metadata": {
"id": "UdY0VmvFNTLy"
}
},
{
"cell_type": "code",
"source": [
"wh_f_sim = h_f_sim * np.sqrt(4 / duration) / np.sqrt(psd.psd_array)\n",
"\n",
"fig, ax = plt.subplots()\n",
"\n",
"kwargs = dict(bins=\"auto\", alpha=0.5, density=True)\n",
"ax.hist(wh_f_sim.real, label=r\"real\", **kwargs)\n",
"ax.hist(wh_f_sim.imag, label=r\"imag\", **kwargs)\n",
"\n",
"xs = np.linspace(-5, 5, 1000)\n",
"ax.plot(xs, np.exp(-xs**2 / 2) / np.sqrt(2 * np.pi), label=\"Standard normal PDF\")\n",
"ax.set(xlabel=\"Whitened strain\")\n",
"ax.legend()\n",
"plt.show()\n",
"\n",
"\n",
"### QUANTIFY\n",
"print(\"anderson_p_value:\")\n",
"print(anderson_p_value(wh_f_sim))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 485
},
"id": "hM5PJx8TNV0y",
"outputId": "91a50ada-0eb1-4c24-efdc-cbf53c850a87"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGwCAYAAACKOz5MAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZs9JREFUeJzt3Xl8VNX9//HXncm+h4QkBANhCZsCYY24ARoNWv2i1RbRivK1+HWtNrUqVkF/+i0uiLSKUG1Vql/rUq21VkEaiQtGQFZRdoisWSErZJu5vz/CDIwEyIQkdzJ5P/uYh5k79955z5RkPnPOuecYpmmaiIiIiPgwm9UBRERERE5FBYuIiIj4PBUsIiIi4vNUsIiIiIjPU8EiIiIiPk8Fi4iIiPg8FSwiIiLi8wKsDtAanE4n+/btIzIyEsMwrI4jIiIizWCaJpWVlSQnJ2OznbwNxS8Kln379pGSkmJ1DBEREWmB3bt3c8YZZ5x0H78oWCIjI4HGFxwVFWVxGhEREWmOiooKUlJS3J/jJ+MXBYurGygqKkoFi4iISAfTnOEcGnQrIiIiPk8Fi4iIiPg8FSwiIiLi8/xiDIuIiK9xOBzU19dbHUPEcoGBgdjt9tM+jwoWEZFWZJomBQUFlJWVWR1FxGfExMSQlJR0WnOlqWAREWlFrmIlISGBsLAwTWYpnZppmhw6dIiioiIAunXr1uJzqWAREWklDofDXazExcVZHUfEJ4SGhgJQVFREQkJCi7uHNOhWRKSVuMashIWFWZxExLe4fidOZ1yXChYRkVambiART63xO6GCRURERHyeChYRERHxeRp0KyLSDp5dsqVdn+/XF/dr1+drSn5+Pr169WLNmjWkp6dbHUc6OLWwiIiIiM9TwSIiIsepq6uzOoKIBxUsIiLCuHHjuPPOO7nnnnuIj48nKyuLDRs2cOmllxIREUFiYiI33HADJSUl7mMWLVrEeeedR0xMDHFxcVx++eVs377dwlch/kwFi4j4lqWzmr5Jm1u4cCFBQUEsW7aMJ554ggsvvJBhw4bxzTffsGjRIgoLC/n5z3/u3r+6uprs7Gy++eYbcnJysNlsXHXVVTidTgtfhfgrDboVEREA0tLSeOqppwB4/PHHGTZsGL///e/dj7/88sukpKSwZcsW+vXrx9VXX+1x/Msvv0zXrl35/vvvOeuss9o1u/g/tbCIiAgAI0aMcP+8bt06li5dSkREhPs2YMAAAHe3z9atW5k8eTK9e/cmKiqK1NRUAHbt2tXu2cX/qYVFREQACA8Pd/9cVVXFFVdcwZNPPnncfq4F7K644gp69uzJSy+9RHJyMk6nk7POOksDdqVNqGAREb90onlPfGF+ko5g+PDhvPvuu6SmphIQcPxHRWlpKZs3b+all17i/PPPB+DLL79s75jSiahLSEREjnPHHXdw4MABJk+ezMqVK9m+fTuLFy9m6tSpOBwOYmNjiYuL48UXX2Tbtm18+umnZGdnWx1b/JhaWERE2kFHa9lJTk5m2bJl3H///VxyySXU1tbSs2dPJkyYgM1mwzAM3nzzTX71q19x1lln0b9/f/74xz8ybtw4q6OLn1LBIiIi5ObmHrctLS2N995774THZGZm8v3333tsM03T/XNqaqrHfZHToS4hERER8XkqWERERMTnqWARERERn6eCRURERHyeBt2KiE/J21Ha5PYx49s5iIj4FLWwiIiIiM9TC4uIdGgnmtFWRPyLWlhERETE56mFRUSssXSW1QnkGOPGjSM9PZ25c+daHUWkSS0qWObNm8fTTz9NQUEBQ4cO5bnnnmP06NGnPO7NN99k8uTJTJw4kffff9+93TRNZs6cyUsvvURZWRnnnnsu8+fPJy0trSXxRER8T3sXaOOne7X7e++9R2BgYBuFETl9XncJvfXWW2RnZzNz5kxWr17N0KFDycrKoqio6KTH5efnc++997pX9TzWU089xR//+EcWLFjA8uXLCQ8PJysri5qaGm/jiYhIC3Tp0oXIyEirY4ickNcFy5w5c5g2bRpTp05l0KBBLFiwgLCwMF5++eUTHuNwOLj++ut59NFH6d27t8djpmkyd+5cHnroISZOnMiQIUP461//yr59+zxaYUREpO2MGzeOe+65B2hcA+jxxx9nypQpRERE0LNnTz744AOKi4uZOHEiERERDBkyhG+++cZ9fGlpKZMnT6Z79+6EhYUxePBg/va3v3k8R2VlJddffz3h4eF069aNZ5991uN5RU7Gq4Klrq6OVatWkZmZefQENhuZmZnk5eWd8Lj/9//+HwkJCdx8883HPbZz504KCgo8zhkdHU1GRsYJz1lbW0tFRYXHTUT8TwW1fGeUsMLYz1d7v6K8ttzqSJ3Gs88+y7nnnsuaNWv4yU9+wg033MCUKVP4xS9+werVq+nTpw9TpkxxL25YU1PDiBEj+Pe//82GDRu45ZZbuOGGG1ixYoX7nNnZ2SxbtowPPviAJUuW8MUXX7B69WqrXqJ0MF6NYSkpKcHhcJCYmOixPTExkU2bNjV5zJdffslf/vIX1q5d2+TjBQUF7nP8+Jyux35s1qxZPProo95EF5EOZCsH+dC2nU1GKabRuO3P//kfbIaNc5LP4bahtzGk6xBrQ/q5yy67jP/5n/8BYMaMGcyfP59Ro0bxs5/9DID777+fMWPGUFhYSFJSEt27d+fee+91H3/XXXexePFi3n77bUaPHk1lZSULFy7kjTfe4KKLLgLglVdeITk5uf1fnHRIbXqVUGVlJTfccAMvvfQS8fHxrXbe6dOnk52d7b5fUVFBSkpKq51fRKxR42xgoW0Dy2x73du6meFEmkHUBTWQ31DJl3u/5Mu9X/KLyP78OiYd+Lllef3ZkCFHC0LXF8rBgwcft62oqIikpCQcDge///3vefvtt9m7dy91dXXU1tYSFhYGwI4dO6ivr/e4QCM6Opr+/fu3x8sRP+BVwRIfH4/dbqewsNBju6vC/rHt27eTn5/PFVdc4d7mdDobnzgggM2bN7uPKywspFu3bh7nTE9PbzJHcHAwwcHB3kQXER93wFHDbcW5fG87gGHCeeYZXOrsRTyNH3hjkuP4ob6CFyu+44PqnbxeuZnv6w4wKPZygmxhFqf3P8deMWQYxgm3uf6mP/300/zhD39g7ty5DB48mPDwcO655x7q6uraMbX4M6/GsAQFBTFixAhycnLc25xOJzk5OYwZM+a4/QcMGMC3337L2rVr3bf/+q//Yvz48axdu5aUlBR69epFUlKSxzkrKipYvnx5k+cUEf9T5qhlWtGnfF93gHAzkF87R3KD80x3seLSMzCK/40bw/NdxxJpBLK6tphFpY9S7zxsUXJxWbZsGRMnTuQXv/gFQ4cOpXfv3mzZcnQW4t69exMYGMjKlSvd28rLyz32ETkZr7uEsrOzufHGGxk5ciSjR49m7ty5VFdXM3XqVACmTJlC9+7dmTVrFiEhIZx11lkex8fExAB4bL/nnnt4/PHHSUtLo1evXjz88MMkJydz5ZVXtvyViUiHUG86uLvkc7bUlxFvC+FXdSNJIvykx4wN7c5fEi/if4qWUlK/jdyDz3JRl/uxGfZ2Si0/lpaWxt///ne++uorYmNjmTNnDoWFhQwaNAiAyMhIbrzxRn7729/SpUsXEhISmDlzJjabzd1aI3IyXhcskyZNori4mBkzZlBQUEB6ejqLFi1y92fu2rULm827q6Xvu+8+qqurueWWWygrK+O8885j0aJFhISEeBtPRDqYJw+uZnVtMeFGAC8lXEjxHkezjhsY1IXnu45lSmEuu2tXsbryTUZGXd/GaeVEHnroIXbs2EFWVhZhYWHccsstXHnllZSXH72ya86cOdx6661cfvnlREVFcd9997F79279rZdmMUzXNWkdWEVFBdHR0ZSXlxMVFWV1HBFpjqWz+PzwXu4o/gwDeK7rWMaGdidvR2mTu4/pHdfk9rsqE8k9+CxgMCFuBsnBJ7966NcX9zvN4CdWU1PDzp076dWrlz6Em6G6upru3bvzzDPPNDnthfiPE/1uePP5rcUPRcQSZY5aZpYuB+CGyAGMDe3eovP0Dj2PfmGZgMkXZfM0nsWHrVmzhr/97W9s376d1atXc/31jS1iEydOtDiZdAQqWETEEk+XrabEWUPvgCh+FTP0tM6VETWVCHtXqh0lrKl8u5USSluYPXs2Q4cOJTMzk+rqar744otWnfZC/JdWaxaRdreueB0fVO/EAB6LO5vg0xwsG2gLYUz0NJYc+D3fVX9In7ALiAvs1TphpdUMGzaMVatWWR1DOii1sIhIu3KaTp5a8RQAE8N7MyS4db5dp4SMIDVkDCZOVpS/ih8MzxORY6iFRUTa1cc7P2Z9yXrCjADuPs2uoB8bHTWFXTUr2V+3gX216+gekn7cPs8uaXrej7YcjCsip08tLCLSbhqcDcxfNx+AX0adSbw9tFXPHxGQwMDwCQB8U/k6puls1fOLiHVUsIhIu/l458f8UPEDMcExXB/ZNi0aQyJ+SqARSmn9TvJrvm6T5xCR9qeCRUTaRYOzgT+t/xMAN515E2G2wFMc0TKh9mjODP8JAOur/qGxLCJ+QmNYRKRtLZ0FwCfV+Y2tK7ZgJhfthTYqWAAGhf+Eb6s/oLR+B/tq19M9pHXHyohI+1MLi4i0i9crNwNwXWS/NmtdcQmxR9E/LBNobGWRjic/Px/DMFi7dm2HOreVDMPg/ffftzpGm1ELi4i0uXW1JXxbV0ogNn4ekdYuz3lW+BVsrF7M/rpvKa3fQVxg73Z5XoBaRy17Du5pt+drjpSoFILtwSd83LVG3L///W8KCwuJjY1l6NChzJgxg3PPPRdo/ED8xz/+oYVpO6ibbrqJhQsXAhAYGEiPHj2YMmUKDz74IAEBAeTm5jJ+/Hig8f/ryMhIevfuzcUXX8yvf/1runXr5j7XI488wqOPPnrccyxZsoTMzMw2ya+CRUTa3OuVmwD4SXgqcfb2WWMnIiCBXqFj2HH4SzZWL+a8mNva5XkB9lTt4dpF17bb8zXHP/7rH/SN7XvCx6+++mrq6upYuHAhvXv3prCwkJycHEpLm17bqSOoq6sjKCjI6hhuvpBnwoQJvPLKK9TW1vLRRx9xxx13EBgYyPTp0937bN68maioKCoqKli9ejVPPfUUf/nLX8jNzWXw4MHu/c4880z+85//eJy/S5cubZZdXUIi0qYKGqpZcmg3AL+I7N+uzz0grPES5+2HP6fWWd2uz92RlJWV8cUXX/Dkk08yfvx4evbsyejRo5k+fTr/9V//BUBqaioAV111FYZhuO9v376diRMnkpiYSEREBKNGjTruQyw1NZXf//73/Pd//zeRkZH06NGDF1980WOfFStWMGzYMEJCQhg5ciRr1qzxeNzhcHDzzTfTq1cvQkND6d+/P3/4wx889rnpppu48sor+d///V+Sk5Pp379/s87dlOZk/vbbb7nwwgsJDQ0lLi6OW265haqqqpPmcXVHvf3225x//vmEhoYyatQotmzZwsqVKxk5ciQRERFceumlFBcXu8+1cuVKLr74YuLj44mOjmbs2LGsXr36lK/jx4KDg0lKSqJnz57cdtttZGZm8sEHH3jsk5CQQFJSEv369ePaa69l2bJldO3aldtu8yz6AwICSEpK8ri1ZUGmgkVE2tRbVVtxYDIqOIH+QbHt+tyJQQOIDeiBw6xj26Gl7frcHUlERAQRERG8//771NbWNrnPypUrAXjllVfYv3+/+35VVRWXXXYZOTk5rFmzhgkTJnDFFVewa9cuj+OfeeYZd7Fw++23c9ttt7F582b3OS6//HIGDRrEqlWreOSRR7j33ns9jnc6nZxxxhm88847fP/998yYMYMHH3yQt9/2XDsqJyeHzZs3s2TJEj788MNmnftETpa5urqarKwsYmNjWblyJe+88w7/+c9/uPPOO0+ax2XmzJk89NBDrF69moCAAK677jruu+8+/vCHP/DFF1+wbds2ZsyY4d6/srKSG2+8kS+//JKvv/6atLQ0LrvsMiorK5v1Wk4kNDSUurq6U+5z6623smzZMoqKik7r+U6HuoREpM00OBt4v2oHAJN/NO9K3o6272owDIOB4RP4qvxFNlYvZlD4ZRiGvqf9WEBAAK+++irTpk1jwYIFDB8+nLFjx3LttdcyZMgQALp27QpATEwMSUlJ7mOHDh3K0KFHr8J67LHH+Mc//sEHH3zg8eF92WWXcfvttwNw//338+yzz7J06VL69+/PG2+8gdPp5C9/+QshISGceeaZ7Nmzx+MbfWBgoMeYiV69epGXl8fbb7/Nz3/+c/f28PBw/vznP7u/6b/44ounPPeJnCpzTU0Nf/3rXwkPDwfg+eef54orruDJJ58kMTGxyTz5+fkA3HvvvWRlZQFw9913M3nyZHJyctzjhW6++WZeffVVd5YLL7zQI9uLL75ITEwMn332GZdffvkpX8uPmaZJTk4Oixcv5q677jrl/gMGDHDnT0hIABpbmCIiItz7DBo0iBUrVnidpbn0mysibeaLPV9Q4qyhiy2YcaHdLcnQJ/QCAo1QKhz72Ff3rSUZOoKrr76affv28cEHHzBhwgRyc3MZPny4x4dmU6qqqrj33nsZOHAgMTExREREsHHjxuNaWFyFDzQWkklJSe5v6xs3bmTIkCGEhBwd3zRmzJjjnmvevHmMGDGCrl27EhERwYsvvnjc8wwePNijW6K5527KqTIPHTrUXawAnHvuuTidTncrTFN5mjq3q7g5dnxIYmKiR2tGYWEh06ZNIy0tjejoaKKioqiqqjru9Z/Khx9+SEREBCEhIVx66aVMmjSJRx555JTHueYzMgzDva1///6sXbvWfXv33Xe9yuIttbCISJv5x7bGS4ovD+9F4GmuyNxSgbZQ+oSOZdOhRWw99CndgzUny4mEhIRw8cUXc/HFF/Pwww/zy1/+kpkzZ3LTTTed8Jh7772XJUuWMHv2bPr27UtoaCjXXHPNcd0MgYGel7IbhoHT2fylE958803uvfdennnmGcaMGUNkZCRPP/00y5cv99jv2ALidJ1u5pPlOfbcriLgx9uOfa4bb7yR0tJS/vCHP9CzZ0+Cg4MZM2bMKbtzfmz8+PHMnz+foKAgkpOTCQhoXhmwceNG4OhYJoCgoCD69j3xQO7WphYWEWkTJYdL+HzP5wD8NKKPpVnSwhov1fzh8ArqnIcszdKRDBo0iOrqo4OVAwMDcTgcHvssW7aMm266iauuuorBgweTlJTk7vZoroEDB7J+/Xpqamrc277+2nNZhWXLlnHOOedw++23M2zYMPr27cv27dtb5dwtMXDgQNatW+fx/ixbtgybzeYe7Nuali1bxq9+9Ssuu+wyzjzzTIKDgykpKfH6POHh4fTt25cePXo0u1g5fPgwL774IhdccIG7a9AKKlhEpE18sP0DHKaDIUFx9AmMbvfnP3vXi+7b5QU5dDPDcVBH/uGv2j2LrystLeXCCy/k9ddfZ/369ezcuZN33nmHp556iokTJ7r3S01NJScnh4KCAg4ePAhAWloa7733HmvXrmXdunVcd911XrdCXHfddRiGwbRp0/j+++/56KOPmD17tsc+aWlpfPPNNyxevJgtW7bw8MMPuwf+nu65W+L6668nJCSEG2+8kQ0bNrB06VLuuusubrjhBncXT2tKS0vjtddeY+PGjSxfvpzrr7+e0NDWXTzUpaioiIKCArZu3cqbb77JueeeS0lJCfPnz2+T52sudQmJSKszTZP3t70PwNDDSe0ywPZkDAzGOJN5z76VrYdz6RfeNhNbuZwRcQb/+C/fmmE3JSrlhI9FRESQkZHBs88+y/bt26mvryclJYVp06bx4IMPuvd75plnyM7O5qWXXqJ79+7k5+czZ84c/vu//5tzzjmH+Ph47r//fioqKrzKFhERwb/+9S9uvfVWhg0bxqBBg3jyySe5+uqr3fv8z//8D2vWrGHSpEkYhsHkyZO5/fbb+fjjj0/73C0RFhbG4sWLufvuuxk1ahRhYWFcffXVzJkz57TOeyJ/+ctfuOWWWxg+fDgpKSn8/ve/b/bVTt7q378/hmEQERFB7969ueSSS8jOzvYYbG0Fw/SDlcEqKiqIjo6mvLycqKgoq+OIdHobSzfy8w9/TpAtiKfrzie0Fb4bjekd1+T2Zxua/uA5e5fnnBkHqeEB+2eYBlyTMI+oAM8/vr+++PRXj66pqWHnzp306tXLY5CnSGd3ot8Nbz6/1SUkIq3u452N33rHpoxtlWKlNcQSwgCzsejZfvhzi9OIiLd84y+JiPgNp+nk4/zGguXSXpfC9sVt+nw/bkk5mTFmMhspZcfhL0iP+JnHJZoi4tvUwiIirWpt0VoKqgsIDwzn/O7nWx3Hw1AzATuBlDfs42DDD1bHEREvqIVFRFrH0lkAfHSg8cqNi4ISCPniWSsTHSeUALqHDGNXzQp2Hv6KLoGpVkcSkWZSwSIirabBdPLJocaZNy8L69mq526tK416h57rLliGR05uk24hP7iWQaRVtcbvhLqERKTV/DV/GwedtYSbgZj7Ay2/nLkpKcEjsBNEhWM/BxryW/XcrplKDx3S5HQix3L9Tvx49mBvqIVFRFrNGqMQgHQzAbuPfh8KtIWSEjKc/Jqv2Xn4K+ICe7Xaue12OzExMe41YMLCwjSwVzo10zQ5dOgQRUVFxMTEYLe3fIkOFSwi0iqcpslao/GDepiZYHGak0sNPcddsIyIvK5ViwrX5FrHLlwn0tn9eJXvllDBIiKt4ru6UsqMWoJNOwPNpid58xWN3UKBVDoKKGvYTWxgj1Y7t2EYdOvWjYSEBOrr61vtvCIdVWBg4Gm1rLioYBGRVpFzeA8Ag82uBGLNyszNFWgLITl4CLtrV7GrZmWrFiwudru9Vf5Ii0ijFnUyz5s3j9TUVEJCQsjIyGDFihUn3Pe9995j5MiRxMTEEB4eTnp6Oq+99prHPjfddBOGYXjcJkyY0JJoImKRnEONBUu6j3cHufQIGQXADzWnXkBPRKzndQvLW2+9RXZ2NgsWLCAjI4O5c+eSlZXF5s2bSUg4/g9Vly5d+N3vfseAAQMICgriww8/ZOrUqSQkJJCVleXeb8KECbzyyivu+8HBwS18SSLS3naU7SC/oYIA02Cwad3y895ICRkJ5VBSv5VDjoNWxxGRU/C6YJkzZw7Tpk1j6tSpACxYsIB///vfvPzyyzzwwAPH7T9u3DiP+3fffTcLFy7kyy+/9ChYgoODmz0gp7a2ltraWvd9b1cGFZHWlbMrB4ABZpzPrB10KmH2WLoGplFcv5VdNSth6adN7zh+evsGE5EmedUlVFdXx6pVq8jMPLo0u81mIzMzk7y8vFMeb5omOTk5bN68mQsuuMDjsdzcXBISEujfvz+33XYbpaUnnr9h1qxZREdHu28pKSdeNl1E2t6nuxo/7H396qAf6xEyGqCxYBERn+bVV6GSkhIcDgeJiYke2xMTE9m0adMJjysvL6d79+7U1tZit9t54YUXuPjii92PT5gwgZ/+9Kf06tWL7du38+CDD3LppZeSl5fX5KC16dOnk52d7b5fUVGhokXEIiWHS9hQugGAIR2gYDl2scQeVLEqAApq1nLI2YcwW8sntRKRttUubbeRkZGsXbuWqqoqcnJyyM7Opnfv3u7uomuvvda97+DBgxkyZAh9+vQhNzeXiy666LjzBQcHa4yLiI/4at9XAAwMjCW6oWP9XnYjnK5mKMXGYb6qKSAzTF98RHyVV11C8fHx2O12CgsLPbYXFhaedPyJzWajb9++pKen85vf/IZrrrmGWbNmnXD/3r17Ex8fz7Zt27yJJyIW+GLPFwCcH5pscRLvGRgMPdIqtPTIZdki4pu8KliCgoIYMWIEOTk57m1Op5OcnBzGjBnT7PM4nU6PQbM/tmfPHkpLS+nWrZs38USknTU4G1i2bxnQMQsWgCFHrmpadng/Ti1aKOKzvO4Sys7O5sYbb2TkyJGMHj2auXPnUl1d7b5qaMqUKXTv3t3dgjJr1ixGjhxJnz59qK2t5aOPPuK1115j/vz5AFRVVfHoo49y9dVXk5SUxPbt27nvvvvo27evx1VEIuJ71hevp7KukujgaAYHxbGCjnd5cF8zlmDTTqmzhrd35tOTKI/Hx4y3KJiIePC6YJk0aRLFxcXMmDGDgoIC0tPTWbRokXsg7q5du7DZjjbcVFdXc/vtt7Nnzx5CQ0MZMGAAr7/+OpMmTQIaZ4Ncv349CxcupKysjOTkZC655BIee+wxjVMR8XFf7G3sDjo3+VzsDt9c7PBUArAxwIxjnVHEd0YJPc2oUx8kIu3OMM2O3wZaUVFBdHQ05eXlREXpj41Ie7nmg2vYfHAzs86fxeU/fEvejhNPR+DLPjN283/27+lrxnCfI8PjsTE3z7YolYj/8+bzu2N+JRIRyxVWF7L54GYMDM5NPtfqOKflTDMegB2UcwgtWCjii1SwiEiLfLn3SwAGdx1MbEisxWlOTzyhJJnhOA2TjUbHbCUS8XcqWESkRVzjV87vfr7FSVrHWUdaWTYYJRYnEZGmqGAREa/VO+vJ29e4HIe/FSzfGSWYdPihfSJ+RwWLiHjt2+JvOdRwiNjgWAbGDbQ6TqtIM2MJMu2UGbXspcrqOCLyIypYRMRrefsbW1cyumVgM/zjz0ggdvqbXYDGVhYR8S3+8ZdGRNrV1/u+BuDsbmdbnKR1DTxSsGzSwFsRn6OCRUS8UlVXxbcl3wIwJrn5S3J0BAPNOAC2GAepx2lxGhE5lgoWEfHKyoKVOEwHPSJ7kBzRMdcPOpFkIogyg6g3nOygzOo4InIMFSwi4pWv9/tndxA0rt484EgryyabuoVEfInXawmJSOf29bYPAeiycQt5399rcZrWN9CMYwX72WiUMpE0q+OIyBEqWESkaUtnHbepoOEQOxoqMEzcV9T4mwFHXlc+FZqmX8SHqEtIRJpteU0BAD2JIpxAi9O0jThCSTDDcBomW4yDVscRkSNUsIhIs319pGAZeGRWWH/lulpIlzeL+A4VLCLSLKZpHlOw+Gd3kIurYNFCiCK+QwWLiDTL9vpySpw1hBh2+pgxVsdpU/3NLhgm7DeqKTpUZHUcEUEFi4g008raxg/u9OCuBGK3OE3bCieQHkQBsHz/covTiAioYBGRZlpZUwjAqOAEi5O0D1e3kAoWEd+ggkVETsk0Tb450sIyKiTR4jTtw3XZ9jeF31icRERABYuINMP2+nIOOmsJMeycFeTfA25d+pgx2EyDvVV72V+13+o4Ip2eChYROSWP8SuGf49fcQkhgJ5HxrGolUXEeipYROSUOtv4FZd+ZizQuOCjiFhLBYuInFRnHL/i0k/jWER8htYSEpETyttRyj6qOBhQS6Bpo2ov5NF5JlPra8ZiN+zsrtxNQXUBSeFJVkcS6bTUwiIiJ7XZOAA0fngHdLI/GaEEMLDLQEDdQiJW61x/fUTEa66CxV9XZz6VUUmjAFhVuMriJCKdm7qEROSETEy2uAuWWIvTWGNk0Q5eAVbuXAy1wUcfGD/dskwinZFaWETkhPZTTZVRT5BppyfRVsexxLDgrtgw2NVQRWHDIavjiHRaKlhE5IRc3UF9zJhON37FJdIWxMCgxtYl19VSItL+OudfIBFpls4+fsVl5JH5Z1zz0YhI+2tRwTJv3jxSU1MJCQkhIyODFStWnHDf9957j5EjRxITE0N4eDjp6em89tprHvuYpsmMGTPo1q0boaGhZGZmsnXr1pZEE5FWYpom24yDAKR10vErLq75Z1aphUXEMl4XLG+99RbZ2dnMnDmT1atXM3ToULKysigqavoXuUuXLvzud78jLy+P9evXM3XqVKZOncrixYvd+zz11FP88Y9/ZMGCBSxfvpzw8HCysrKoqalp+SsTkdOyx1FNhVFHgGmQemSK+s5qWHBXDCC/oZJix2Gr44h0Sl4XLHPmzGHatGlMnTqVQYMGsWDBAsLCwnj55Zeb3H/cuHFcddVVDBw4kD59+nD33XczZMgQvvzyS6DxW9zcuXN56KGHmDhxIkOGDOGvf/0r+/bt4/333z+tFyciLbe2thiAHkQTSOdYP+hEomxB9A9sbGVafeR9EZH25VXBUldXx6pVq8jMzDx6ApuNzMxM8vLyTnm8aZrk5OSwefNmLrjgAgB27txJQUGBxzmjo6PJyMg44Tlra2upqKjwuIlI61pz5IO5jxljbRAfMTy4KwCra9QtJGIFrwqWkpISHA4HiYme64kkJiZSUFBwwuPKy8uJiIggKCiIn/zkJzz33HNcfPHFAO7jvDnnrFmziI6Odt9SUlK8eRki0gyugqWvChagsVsIjr4vItK+2uUqocjISNauXcvKlSv53//9X7Kzs8nNzW3x+aZPn055ebn7tnv37tYLKyJU1FWwvb4cUAuLi6uFZXN9GVXOeovTiHQ+Xs10Gx8fj91up7DQ89K+wsJCkpJOvCiYzWajb9++AKSnp7Nx40ZmzZrFuHHj3McVFhbSrVs3j3Omp6c3eb7g4GCCg4ObfExETt/64vWYQIIZRhT6XQNICAjjjIAI9jRUsa62mHOtDiTSyXjVwhIUFMSIESPIyclxb3M6neTk5DBmzJhmn8fpdFJbWwtAr169SEpK8jhnRUUFy5cv9+qcItJ61hStAdS68mPucSzqFhJpd16vJZSdnc2NN97IyJEjGT16NHPnzqW6upqpU6cCMGXKFLp3786sWbOAxvEmI0eOpE+fPtTW1vLRRx/x2muvMX/+fAAMw+Cee+7h8ccfJy0tjV69evHwww+TnJzMlVde2XqvVESabW3RWkAFy48ND+7KB9U7VbCIWMDrgmXSpEkUFxczY8YMCgoKSE9PZ9GiRe5Bs7t27cJmO9pwU11dze23386ePXsIDQ1lwIABvP7660yaNMm9z3333Ud1dTW33HILZWVlnHfeeSxatIiQkJBWeIki4o0GZwPflnwLQN9OPmHcj7kG3n5bV0q9o55Ae6DFiUQ6D8M0TdPqEKeroqKC6OhoysvLiYrq3BNciZyu70q/49oPryXSCOTp+vHYMKyOZKkxvePcP5umydi973HQWctrl75GekK6dcFE/IA3n99aS0hEPLi6g4YGx3f6YuXHDMM4ennzkXE+ItI+VLCIiAfXB7Hrg1k8uQfeFq62OIlI56KCRUQ8uFpYVLA0zVWwrCleg9N0WpxGpPPwetCtiPiv/VX7KTxUiN2wc1ZQHGsptzqS5fJ2lHrcb8Ak0G6jvLacneU76RPTx6JkIp2LWlhExM3VHTSgywBCbfo+05QAbPQ+crn3qsJV1oYR6URUsIiIm3v8SsIwi5P4tjQaL/fWwFuR9qOCRUTc1hWvA9DluqfgWhBSA29F2o8KFhEBoLq+ms0HNwOQ3jXd2jA+rrcZg82wsa96HwXVJ16pXkRajwoWEQEaFzx0mk6Sw5NJDE+0Oo5PCyGAAV0GAOoWEmkvKlhEBDh6ObO6g5pneMJwQANvRdqLChYRAWBt8VpAA26by/U+ucb9iEjb0nWLIp3d0lk4TCfr9q8AIP2H1bB/p8WhfJ+rJWrLwS1U11cTHhhubSARP6cWFhFhW3051WYD4UYAaYHRVsfpEBLCEkgOT8ZpOllfvN7qOCJ+TwWLiLCmthiAIcHx2A39WWiuoQlDgaPdaSLSdtQlJCKsrS0BtH6QV5bOIr2yiI+BdZv+AQfKGrePn25lKhG/pa9SIsLaIy0sQ4PiLU7SsaQfKfDW1ZbgNE2L04j4N7WwiHRyRQ2H2OuoxjChdr+NPEpPfZAA0C8whlAjgCqznu315aQFxVgdScRvqYVFpJNbU9fYHXQGkYToO4xXAgwbQ4LiAFh75H0UkbahgkWkk3N1B/U5sj6OeGdocGM3mut9FJG2oYJFpJNTwXJ6jh3HIiJtRwWLSCd2uOEwm+oOAtDXjLU4Tcc05EgLyw8NlZQ6aixOI+K/VLCIdGIbSjbQgEmMGUwXQqyO0yFF24Loc2SyPbWyiLQdFSwinZhrwcO+ZiwGhrVhOrD0II1jEWlrKlhEOrE1RWsAjV85Xa6Bt+t0pZBIm1HBItJJOU2ne0p5FSynxzXwdkNtKfWOeovTiPgnTbog0kntKNtBZV0loYadM4i0Ok6HlhoQSYwtmDJnLTMWLSYhqN9x+/z64uO3iUjzqYVFpJNyta6cFRRHgP4UnBbDMEg/0i1UVLfZ4jQi/kl/pUQ6Kdf4lXQteNgqXOswqWARaRsqWEQ6KdcVQlqhuXW4Cr/Cuk2YWghRpNWpYBHphEoOl7Crchdw9AoXOT1nBnUhAIPDzoNUOXR5s0hra1HBMm/ePFJTUwkJCSEjI4MVK1accN+XXnqJ888/n9jYWGJjY8nMzDxu/5tuugnDMDxuEyZMaEk0EWmGdcXrAOgb05coW5DFafxDqC2AAUGNswWrW0ik9XldsLz11ltkZ2czc+ZMVq9ezdChQ8nKyqKoqKjJ/XNzc5k8eTJLly4lLy+PlJQULrnkEvbu3eux34QJE9i/f7/79re//a1lr0hETsnVHZSekG5pDn/j6hYqqttkcRIR/+N1wTJnzhymTZvG1KlTGTRoEAsWLCAsLIyXX365yf3/7//+j9tvv5309HQGDBjAn//8Z5xOJzk5OR77BQcHk5SU5L7FxmpdE5HW9uySLTy7ZAsfbckDoLCoG3k7Si1O5T/cA2/r1cIi0tq8Kljq6upYtWoVmZmZR09gs5GZmUleXl6zznHo0CHq6+vp0qWLx/bc3FwSEhLo378/t912G6WlJ/4jWltbS0VFhcdNRJqnwayjpH47AIlBAyxO419cLSwH6n+g3nnY4jQi/sWrieNKSkpwOBwkJiZ6bE9MTGTTpuY1gd5///0kJyd7FD0TJkzgpz/9Kb169WL79u08+OCDXHrppeTl5WG32487x6xZs3j00Ue9iS4iR5TW7cBJAyG2aCLtiac+QJp0opapWHsIB40auu6dywAz7phHZrdPMBE/1a4z3T7xxBO8+eab5ObmEhJydGXYa6+91v3z4MGDGTJkCH369CE3N5eLLrrouPNMnz6d7Oxs9/2KigpSUlLaNryInyg8Mr4iMWgAhqEFD1tbXzOGlUYB2yljAHGnPkBEmsWrLqH4+HjsdjuFhYUe2wsLC0lKSjrpsbNnz+aJJ57gk08+YciQISfdt3fv3sTHx7Nt27YmHw8ODiYqKsrjJiLNU1TfWLAkqDuoTbjWZdpulFmaQ8TfeFWwBAUFMWLECI8Bs64BtGPGjDnhcU899RSPPfYYixYtYuTIkad8nj179lBaWkq3bt28iScip2CapvuSW41faRuugmWHUYYTTSAn0lq8vkooOzubl156iYULF7Jx40Zuu+02qqurmTp1KgBTpkxh+vTp7v2ffPJJHn74YV5++WVSU1MpKCigoKCAqqoqAKqqqvjtb3/L119/TX5+Pjk5OUycOJG+ffuSlZXVSi9TRAAqHPupcVZgJ5C4wF5Wx/FL3YkkyLRzyGiggGqr44j4Da/HsEyaNIni4mJmzJhBQUEB6enpLFq0yD0Qd9euXdhsR+ug+fPnU1dXxzXXXONxnpkzZ/LII49gt9tZv349CxcupKysjOTkZC655BIee+wxgoODT/PlicixXONX4oP6YjcCLU7jnwKwkWpGscU4yHbjIMlmhNWRRPxCiwbd3nnnndx5551NPpabm+txPz8//6TnCg0NZfHixS2JISJeck1olhDU3+Ik/q0PsWzhINuNMs43dUGASGvQWkIincixVwhJ23GNY9mmgbcirUYFi0gnUVZTRnlD45IYCYFqYWlLfcxoAIqMQ1RSZ3EaEf+ggkWkk3AteBgdkEyIXVMBtKVwguhmhgO6vFmktahgEekk1hStATT/Sns59vJmETl9KlhEOglXwaLxK+2jj9m4gOs246DFSUT8gwoWkU6g3lHPd6XfARq/0l5cLSz5VNCA09owIn5ABYtIJ7DxwEZqHbUE2yKJDuhudZxOIZEwws1AGgwnu9CK8iKnSwWLSCfgHr8S2F8LHrYTA0PrCom0onZdrVlE2sezS7Z43M858AWgCePaWx8zhvUUq2ARaQVqYRHxc1rw0Dp9jxl4a5paCFHkdKhgEfFzlY5CDjvLsBFAfFAfq+N0Kj2JwmYaVBh17K3aa3UckQ5NBYuIn3OtHxQX2JsAQwuKtqcg7PSgcZI+1zgiEWkZFSwifq7wSHeQxq9Yo++RgbeumYZFpGVUsIj4uSIteGgp15VCa4vWWppDpKNTwSLix2qd1Rxs2A2oYLGKq2DZWraVqroqa8OIdGAqWET8WHHdFsAk0p5EqD3G6jidUgwhxJmhOE0n60vWWx1HpMNSwSLixwqPdAdp/Iq11C0kcvpUsIj4Mc2/4hv6qmAROW2a6VbETzlNB8X1WwEVLFZztbB8U7CWZz7ZiM2wux/79cX9LEol0rGohUXETx2oz6fBrCHICCMm4Ayr43Rq3YkkwAih3jzsHgQtIt5RC4uIn3KNX+ka1B/DsHH2rhctTtR52TBICOzHvrr1FNVtIi4w1epIIh2OWlhE/JTGr/gW18Bn1/8vIuIdFSwifurohHG6QsgXuApHV8uXiHhHBYuIH6pqKKbaWYqBjfjANKvjCNA1KA0wqHIUcchx0Oo4Ih2OChYRP1R4zIKHgbYQi9MIQJAtnNiAHsDR1i8RaT4VLCJ+qFDrB/kkV/dcocaxiHhNBYuIHyqs2whAggoWn6KBtyItp4JFxM9U1lVysGEXoBYWX+MqIEvrd9Bg1lqcRqRjUcEi4mfWFa+jccHDRMLssVbHkWNE2hMJtcXgpIGSuh1WxxHpUFSwiPiZNUVrAEgMGmhxEvkxwzCO6RbSwFsRb6hgEfEzrgX2tEKzb3J1CxXVaxyLiDdaVLDMmzeP1NRUQkJCyMjIYMWKFSfc96WXXuL8888nNjaW2NhYMjMzj9vfNE1mzJhBt27dCA0NJTMzk61bt7YkmkinVu+sZ33xekAtLL4q8ZiBt6ZpWpxGpOPwumB56623yM7OZubMmaxevZqhQ4eSlZVFUVFRk/vn5uYyefJkli5dSl5eHikpKVxyySXs3bvXvc9TTz3FH//4RxYsWMDy5csJDw8nKyuLmpqalr8ykU5o84HN1DhqCDIiiAnobnUcaUJcYG/sBFLjrKDCsd/qOCIdhmF6WeJnZGQwatQonn/+eQCcTicpKSncddddPPDAA6c83uFwEBsby/PPP8+UKVMwTZPk5GR+85vfcO+99wJQXl5OYmIir776Ktdee+1x56itraW29ugI+4qKClJSUigvLycqKsqblyPiV/763V95+punGeLsyp3O4VbHkWN83eMW988flvyOorpNnB9zBy9MvNXCVCLWqqioIDo6ulmf3161sNTV1bFq1SoyMzOPnsBmIzMzk7y8vGad49ChQ9TX19OlSxcAdu7cSUFBgcc5o6OjycjIOOE5Z82aRXR0tPuWkpLizcsQ8Vtri9cC0MeMsTSHnNzRdYU0jkWkubwqWEpKSnA4HCQmJnpsT0xMpKCgoFnnuP/++0lOTnYXKK7jvDnn9OnTKS8vd992797tzcsQ8UumabK6cDUAfU1dzuzLEgJ1pZCItwLa88meeOIJ3nzzTXJzcwkJafn6JsHBwQQHB7diMpGOb0/lHkprSgnERirqGvVlriu4yhr2UF5bTnRwtMWJRHyfVy0s8fHx2O12CgsLPbYXFhaSlJR00mNnz57NE088wSeffMKQIUPc213HteScInLU6qLG1pVBQV0IxG5xGjmZUHs0UfZugGuiPxE5Fa8KlqCgIEaMGEFOTo57m9PpJCcnhzFjxpzwuKeeeorHHnuMRYsWMXLkSI/HevXqRVJSksc5KyoqWL58+UnPKSKeXBPGDQ/uanESaQ5XK4vr/zcROTmvu4Sys7O58cYbGTlyJKNHj2bu3LlUV1czdepUAKZMmUL37t2ZNWsWAE8++SQzZszgjTfeIDU11T0uJSIigoiICAzD4J577uHxxx8nLS2NXr168fDDD5OcnMyVV17Zeq9UxM+5JoxLV8HSISQFDWTb4Vz3uCMROTmvC5ZJkyZRXFzMjBkzKCgoID09nUWLFrkHze7atQub7WjDzfz586mrq+Oaa67xOM/MmTN55JFHALjvvvuorq7mlltuoaysjPPOO49Fixad1jgXEb+3dJb7x3JHLdvLtwOQHhzPZqqtSiXNlBg8CIBvS76l1lFLsF3j8kROxut5WHyRN9dxi/iNYwqWzw7v5c7iz0gNiOJfyZeTt6PUwmDSHCYmdwctp8ZZzqsTXmVE4girI4m0uzabh0VEfNPq2mJA41c6EgODpKDGVhZ1C4mcmgoWkQ4sb0cpeTtK+bx8HwCRFaFqXelAXOs9rSpaZXESEd+ngkWkg6vHST4VAPTVDLcdSlJwY8GytmgtDqfD4jQivk0Fi0gHt4tyGgwnkWYQCYRZHUe8EBvQk4jACKrrq9l8UNP0i5yMChaRDm6rcRBoXD/IwLA4jXjDZtgZmjAU0DgWkVNRwSLSwW05UrD00/pBHdLIxMbJNF0zFYtI01SwiHRgTky2uQuWLhankZbY+kPjlV1f7F7BnE828+ySLRYnEvFNKlhEOrDdVFJjOAgxAziDSKvjSAt0DeqLnUBqnOVUOPZbHUfEZ6lgEenAthoHgMarg2wav9Ih2Y1A4oP6AlBQ+73FaUR8lwoWkQ5sq8av+AXXfCyFdRstTiLiu1SwiHRQTtN0D7hN0/iVDs01421BnVpYRE5EBYtIB7Wjvpxqo54g005PtIZWR5YQ1B8DG1WOIqodmqlYpCkqWEQ6qFVH1g/qbUYToF/lDi3IFkaXwFRA3UIiJ6K/ciId1KraIkDjV/yFaxxLQa0KFpGmqGAR6YBM0+SbIwVLGhq/4g+S3ANvNY5FpCkqWEQ6oN2Vuyl2HCbANOhlRlsdR1pB4pGBtwcbdlFeW25xGhHfo4JFpANaVbgKgFSiCcJucRppDaH2aKIDkgFYU7TG4jQivkcFi0gH9E3hN4AuZ/Y3rlaWbwq+sTiJiO8JsDqAiHjP1cKiAbcd29m7XvS4bxiFbLHDioIVFiUS8V1qYRHpYPZX7Wdv1V7sGPQxY6yOI62o/5EWs00HNlFRV2FxGhHfooJFpINZVdTYujIwKJYQNZL6lRhCSDTDMDFZVbDK6jgiPkUFi0gH4+oOGhGcYHESaQuuVpaVhSstTiLiW1SwiHQwrgGZw1Ww+KV+roKlQAWLyLFUsIh0IIXVheRX5GMzbIwMUcHij1wtLJsPbNZ8LCLHUMEi0oG4rh4Z0GUAUbYgi9NIW4gmmF7RvTAx3Zevi4gKFpEOxdVNkJGUYXESaUujk0YDmo9F5FgqWEQ6EFcLy+huoy1OIm1pZNJIQPOxiBxLBYtIB7Gncg97q/YSYAQwPGG41XGkDY1KHAXAloNbKKspszaMiI9QwSLSQbi+bZ8VfxZhgWEWp5G2FBcaR9+YvgAaxyJyhAoWkQ5C3UGdy8jExm4hXd4s0qhFBcu8efNITU0lJCSEjIwMVqw4cT/rd999x9VXX01qaiqGYTB37tzj9nnkkUcwDMPjNmDAgJZEE/FLpmmyYn/j75kG3HYOrsJU41hEGnldsLz11ltkZ2czc+ZMVq9ezdChQ8nKyqKoqKjJ/Q8dOkTv3r154oknSEpKOuF5zzzzTPbv3+++ffnll95GE/FbOyt2Uny4mCBbEEMThlodR9qBq4VlW9k2DtQcsDiNiPW8LljmzJnDtGnTmDp1KoMGDWLBggWEhYXx8ssvN7n/qFGjePrpp7n22msJDg4+4XkDAgJISkpy3+Lj472NJuKfls5ixWePAZAeGEvw53Ng6SyLQ0lbiw2JJS02DdDlzSLgZcFSV1fHqlWryMzMPHoCm43MzEzy8vJOK8jWrVtJTk6md+/eXH/99ezateuE+9bW1lJRUeFxE/FnK2oKARgdkmhxEmlPrvlY1C0k4mXBUlJSgsPhIDHR849mYmIiBQUFLQ6RkZHBq6++yqJFi5g/fz47d+7k/PPPp7Kyssn9Z82aRXR0tPuWkpLS4ucW8XVO02RlbWOXa4YKls5h6SxYOouzi3cDkLf932pVk07PJ64SuvTSS/nZz37GkCFDyMrK4qOPPqKsrIy33367yf2nT59OeXm5+7Z79+52TizSfrbWl1HmrCXUCODMoDir40g7GhmSiB2DXQ1V7G2osjqOiKW8Klji4+Ox2+0UFhZ6bC8sLDzpgFpvxcTE0K9fP7Zt29bk48HBwURFRXncRPzV8iPdQSOCuxJo+MR3DGknEbZABh8pUl3/DkQ6K6/++gUFBTFixAhycnLc25xOJzk5OYwZM6bVQlVVVbF9+3a6devWaucU6ahW1DR2t2r8Suc0JqTxy2BezX6Lk4hYy+uva9nZ2bz00kssXLiQjRs3ctttt1FdXc3UqVMBmDJlCtOnT3fvX1dXx9q1a1m7di11dXXs3buXtWvXerSe3HvvvXz22Wfk5+fz1VdfcdVVV2G325k8eXIrvESRjqveWc83R8avjA5pvVZM6TjOPvL/+/KaQpym0+I0ItYJ8PaASZMmUVxczIwZMygoKCA9PZ1Fixa5B+Lu2rULm+1oHbRv3z6GDRvmvj979mxmz57N2LFjyc3NBWDPnj1MnjyZ0tJSunbtynnnncfXX39N165dT/PliXRs3xZ/S7XZQIwtmIGBsVbHEQsMDo4nzAjgoLOWLQe3MKCLJtWUzsnrggXgzjvv5M4772zyMVcR4pKamoppmic935tvvtmSGCJ+76t9XwFwdkgiNsOwOI1YIdCwMSo4gc9q9vH1vq9VsEin1aKCRUTawNJZ5O0o9di0xP41GHBOiMZzdWZnhyTxWc0+8vbncdNZN1kdR8QSKlhEfFQ19eykHDg68FI6hx8XrqGEQgCsLlxNraOWYPuJZw0X8Ve6RlLER20ySjEN6GaGkxQQbnUcsVA3wok2g6lx1LCuaJ3VcUQsoYJFxEd9bzR+yx5karK4zs7AYOCRfwd5+09vGRSRjkpdQiI+yMTke6MEgEFm/HFdBNL5DDS78DWNA2/vHn631XFE2p1aWER8UBGHKDVqsJsG/Uxdziww4EgLy3el31FeW25xGpH2p4JFxAe5uoP6mDEEqyFUgFhC6BvTFxOTvH3qFpLORwWLiA9ydQedacZbnER8yXndzwPgi71fWJxEpP2pYBHxMQ042WQcADTgVjy5CpZle5dpmn7pdFSwiPiYnZRTazgINwNJQSuRy1HDE4YTFhBGaU0pmw5ssjqOSLtSwSLiY76zNXYHDTTjsKHp+OWoQHsgGd0yAPhy75cWpxFpXypYRHzMt0YxAGdp/Io0wdUtpIJFOhsVLCI+pIwadhuVgAoWaZqrYFlXvE6XN0unooJFxIdsOHJ1UKoZRRRaL0aOlxyRTO/o3jhNJ1/v/9rqOCLtRhM8iPgQV3fQYGdXi5OIL3p2yRYAQhvOBHbwpxUf8f3WXvz64n7WBhNpBypYRHxEvelg45EJ4wabKljkeGfvehGAKKOU7+xQdGgZGZUBwDPWBhNpB+oSEvERq2uLqTEcRJpB9NDlzHISaWYswaadcqOWPVRaHUekXahgEfERXxzeBzQOttXlzHIygdjob3YBjo57EvF3KlhEfMTnRwoWdQdJc7iuIltvK7Y4iUj7UMEi4gN2V+5mZ0MFNtPQdPzSLEOOFLY7KONAzQGL04i0PRUsIj7ANQlYX2III9DiNNIRdCGUFDMS04Av9mgxRPF/KlhEfMBnuz8D4CxdzixeGGomAJC7O9fSHCLtQQWLiMWq6qpYXrAcgPQjH0AizTHU2fjvZdm+ZdQ6ai1OI9K2VLCIWOzLvV/S4GwgNSCKJMKtjiMdSA8iiTGDOdxwmBX7V1gdR6RNqWARsdinuz8F4MKwMyxOIh2NgaFuIek0VLCIWKjeUe8eMDk+tLvFaaQjGnrkaqHc3bmYpmltGJE2pIJFxEIrC1dSVV9FXEgcQ4K0OrN4r78ZR1hAGEWHi/j+wPdWxxFpMypYRCz06a7G7qBxKeOwGZrdVrwXiI1zks8B1C0k/k0Fi4hFTNNk6e6lAFzY40KL00hHNi5lHHC0ABbxRypYRCzyfen3FB0qIjQglIxuGVbHkQ5s7BljsRt2thzcwq6KXVbHEWkTLSpY5s2bR2pqKiEhIWRkZLBixYkvp/vuu++4+uqrSU1NxTAM5s6de9rnFPEHObtyADiv+3kE24MtTiMdWUzefEYFNw6+XbL0d7B0VuNNxI94XbC89dZbZGdnM3PmTFavXs3QoUPJysqiqKioyf0PHTpE7969eeKJJ0hKSmqVc4r4A1fz/fiU8RYnEX9wcWgKAEsOqYVF/JPXBcucOXOYNm0aU6dOZdCgQSxYsICwsDBefvnlJvcfNWoUTz/9NNdeey3BwU1/i/T2nCId3baD29hevp0AWwBjU8ZaHUf8wIVhZ2DD4Lu6A+xrqLY6jkir86pgqaurY9WqVWRmZh49gc1GZmYmeXl5LQrQknPW1tZSUVHhcRPpSD754RMAzkk+h6igKIvTiD+It4cy3NUtpFYW8UNeFSwlJSU4HA4SExM9ticmJlJQUNCiAC0556xZs4iOjnbfUlJSWvTcIlb5JL+xYMlKzbI4ifiTi8Nc3UK7LU4i0vo65FVC06dPp7y83H3bvVu/nNJxHNsd5LocVeR05O0oJW9HKbHFEQCsqyvhox17LU4l0roCvNk5Pj4eu91OYWGhx/bCwsITDqhti3MGBwefcDyMiK9zdQedm3yuuoOkVcUQQh8zhu1GGWuMQi6zOpBIK/KqhSUoKIgRI0aQk5Pj3uZ0OsnJyWHMmDEtCtAW5xTxZYvzFwPqDpK2MdzZ2L2+ylZ4ij1FOhavWlgAsrOzufHGGxk5ciSjR49m7ty5VFdXM3XqVACmTJlC9+7dmTWrcQ6Auro6vv/+e/fPe/fuZe3atURERNC3b99mnVPEX2w7uI0d5TsItAWqO0jaxHAzkXfYzDYO8r+LvibM3uW4fX59cT8LkomcHq8LlkmTJlFcXMyMGTMoKCggPT2dRYsWuQfN7tq1C5vtaMPNvn37GDZsmPv+7NmzmT17NmPHjiU3N7dZ5xTxF4t/aGxdOTf5XCKDIi1OI/4ojlB3t9COw19yVsR/WR1JpFUYph+sR15RUUF0dDTl5eVERWlMgPgm0zS58p9XsqN8B78/7/dc0ecKzx2WziJvR6k14cSv5Bq7eMO+kbjAPkzs+tRxj6uFRXyFN5/fXrewiEgz/Whq9E11B9hRvoMgW5C6g6RNjTCTeNPcRGn9dsob9hId0N3qSCKnrUNe1izSEf2reifQuLKuuoOkLUUSxCAzDoDth76wOI1I61DBItIOGkwnH1f/AMDlvS+3OI10BhlmNwB2HP4CP+j5F1HBItIeltcUUOKsIcYWzHndz7M6jnQCQ80EAoxgKhwFlNRvszqOyGnTGBaRdvBhdT4AE8J6EGgPtDaMdAohBDDcEcsKWwGHil7gbOfAYx6dbVkukZZSC4tIGzvkrCfncOPyEZeH97I4jXQmo81kAFYaBThwWpxG5PSoYBFpYzmH93DYdNAjIIIhQXFWx5FOZJAZR7gZSIVRx/eGLpmXjk0Fi0gb+/DI1UGXh/fCMAyL00hnEoDNPfh2maHFEKVj0xgWkTZU1HCIr2sa13S5PCzVvf3ZJVuO2/fsXfoGLK3vXGd3PrXtYp1RRCV1RBJkdSSRFlELi0gb+mf1TpyYDAvuSkqg5l6R9pdCFD3NKByGyXJjn9VxRFpMLSwiraCpFpPRu0p4L2Q7AFeH9zn6wNJZak2RdnWuszs/2CtYZtvLRY6eVscRaRG1sIi0kS3GAfY0VBFhBHJxWA+r40gnNtrsRqBpY69RxQ9UWB1HpEXUwiLSRr4w9gAwwpHEuvxyi9NIZxZGIMPMRFYY+1lm28tkqwOJtIBaWETaQI2zkjVG42Db85xnWJxGBM41GxdAXG7s53DDYYvTiHhPBYtIG9h+6DMaDJMUM5KenHzJdJH20N/sQpwZSo3RwCf5n1gdR8Rr6hISaWWmabL50BIAzlfrivgIGwbnO8/gfftW3lw5h4m7vz9+p/HT2z+YSDOphUWklRXUbaCsYQ/Bpp3RRybtEvEF55ndCTANNtQdYEOtrlSTjkUFi0gr+776YwDONpMJQwsdiu+IIpgRZhIAf6s6/lJ8EV+mgkWkFVU1FLOrZiUA4526lFl8z7gj/y4XVf/AQUeNxWlEmk8Fi0gr2nToE0ycdAsaTDIRVscROU5vohkYGEsdTv5RvcPqOCLNpoJFpJU0mHVsOfQfAAaGX2pxGpGmGRhMjuwHwNuVW3GYTosTiTSPChaRVrLz8JfUOCsIt8fTI2Sk1XFETujSsJ5E24LY66jm08N7rI4j0iwqWERagWmabKj6FwADwrKwGXaLE4mcWIgtgEkRaQC8WrER0zQtTiRyaipYRFrBnto1HGzYRYARwoDwLKvjiJxU3o5S+h3oSoBpsL6ulNd3bidvhy5zFt+mgkWkFXxb9T4A/cMuJtgWbm0YkWaIIpizzWQAPrHlWxtGpBk0063Iadqw6F4K6r7DZhrcUF5Ol/IXrY4k0iwXO1P50raXdUYRhVRbHUfkpNTCInKaXqncCECG2Y0uhFqcRqT5uhHBEGdXTEOtLOL7VLCInIYfKn7gP4d2A43fVkU6mixnLwC+MvZSUF1gcRqRE1PBInIaXlz/Ik5MznLGcwaRVscR8VoasfQzY3EYJn/59i9WxxE5IRUsIi30Q8UPfLjjQwCucPaxOI1Iy11+5N/vu1vfpbC60OI0Ik1TwSLSQn9a9yecppMLQpLpRYzVcURarL/Zhb5mDPXOel757hWr44g0qUUFy7x580hNTSUkJISMjAxWrFhx0v3feecdBgwYQEhICIMHD+ajjz7yePymm27CMAyP24QJE1oSTaTtLJ3lvuV/Mp1/H2lduT16sMXBRE6PgcHlzr4A/H3L3yk+VGxxIpHjeV2wvPXWW2RnZzNz5kxWr17N0KFDycrKoqioqMn9v/rqKyZPnszNN9/MmjVruPLKK7nyyivZsGGDx34TJkxg//797tvf/va3lr0ikXbwp/INODEZG5LMmcFxVscROW0DzS4M7TqUWkctL67XpfniewzTyzmZMzIyGDVqFM8//zwATqeTlJQU7rrrLh544IHj9p80aRLV1dV8+OGH7m1nn3026enpLFiwAGhsYSkrK+P9999vVoba2lpqa2vd9ysqKkhJSaG8vJyoqChvXo5I8y2dRd6OUvZQyWP2rzAN+F3D2fQk2upkIq3CntzAzUU5BGDwfref0DPwyN/T8dOtDSZ+q6Kigujo6GZ9fnvVwlJXV8eqVavIzMw8egKbjczMTPLy8po8Ji8vz2N/gKysrOP2z83NJSEhgf79+3PbbbdRWnriaaJnzZpFdHS0+5aSkuLNyxA5Le/aNmMaMMKZqGJF/MrokETODelGAybPla+3Oo6IB68KlpKSEhwOB4mJiR7bExMTKSho+vr9goKCU+4/YcIE/vrXv5KTk8OTTz7JZ599xqWXXorD4WjynNOnT6e8vNx92717tzcvQ6TFvjdK+M5Wit00uMrZz+o4Iq3u1zHpGMDiQ7vYUKv1hcR3+MTU/Ndee63758GDBzNkyBD69OlDbm4uF1100XH7BwcHExwc3J4RRXCaJn+3bQFgnJlCAmEWJxJpff2DYrkivBcfVO9kTtka/pJwEYbVoUTwsoUlPj4eu91OYaHndfqFhYUkJSU1eUxSUpJX+wP07t2b+Ph4tm3b5k08kTb1YfVO9hiVhJgBXKZ5V8SP3Rk9hCBsrKwt4tPDe6yOIwJ4WbAEBQUxYsQIcnJy3NucTic5OTmMGTOmyWPGjBnjsT/AkiVLTrg/wJ49eygtLaVbt27exBNpM5V1lTxbthaAy5y9iCTI2kAibahbQDhTogYA8NTB1RxuOGxxIpEWXNacnZ3NSy+9xMKFC9m4cSO33XYb1dXVTJ06FYApU6YwffrREeV33303ixYt4plnnmHTpk088sgjfPPNN9x5550AVFVV8dvf/pavv/6a/Px8cnJymDhxIn379iUrK6uVXqbI6Xlh7QuUOGtIMMO4yEy1Oo5Im5sWdRZJ9jD2Oao1Zb/4BK/HsEyaNIni4mJmzJhBQUEB6enpLFq0yD2wdteuXdhsR+ugc845hzfeeIOHHnqIBx98kLS0NN5//33OOussAOx2O+vXr2fhwoWUlZWRnJzMJZdcwmOPPaZxKuITNh3YxBub3gDgOudAAjVBtPipvB2eg2wnGmn8yb6OVza8wsQ+E0mJ0hWZYh2v52HxRd5cxy3iDafpZMrHU1hXvI5LwnpwTcVAqyOJtBsTk7m2VWy0lXJ+9/OZd9E8DENDcKX1tNk8LCKdzd+3/J11xesICwjjvpjhVscRaVcGBtc6BxBoC+SLvV+4F/sUsYJPXNYsYqVnl2xpcvvPx4TzzDfPAHDnsDtJLNzDDjT4UDqXbkRwa+RAnitfzxNfPcKYnSuJt4c2PqgZcKUdqYVFpAmm6WTmspkcajjE8IThXD/weqsjiVhmatQgBgbGUuGs4/EDK/GDkQTSAalgEWnCpkOfsLxgOSH2EB479zFshn5VpPMKNGw8Fnc2ARjkHN7DokM/WB1JOiH9FRb5kfKGvayseA2A9PDreXd5Dc8u2XLcFRQinUn/oFhuiW68uvOxAyvZ01BlcSLpbFSwiByjwazl0wPP0GDW0C1oMAPDJ1gdScRn/DLqTIYGxVNp1nN/yTLqnfVWR5JORAWLyDGWl7/KwYYfCLFFMzb2bgx1BYm4BRo2now/h0gjkPV1pcxbM8/qSNKJ6CohkSN2HF7G5kOfAAZjY+4mzB5rdSQRn9M9IIJH4jL4TcmX/GXDXxheuI0LQrt77qSrh6QNqGARAUrrd/BlWeO3xaERP6V7yFCLE4n4jh+P34oknHG2FHJtu7m/5Cv+L+kSegdGW5ROOgu1d0und8hxkP+UPkGDWUv34KEMi5xkdSQRn/dz5wCGB3elyqznV8WfU+6sszqS+Dm1sEinVuuoJefAk1Q7S4kOSGZc7G84Z7cWehM5lQBszIk/n8kFi/ihoZL7Sr7k+a7jCNS4L2kj+pclnVaDs4EHPn+A4vqtBBkRZHaZTrAt3OpYIh1GnD2EP3YdS6hh56uaAmaUfo1Tk8pJG1ELi3Qax07Bb5pOviybz9bDn2IjgIu6/JbogGQL04l0TAOCYnkm/nx+VfwZHx7KJ8YezH2mqUUSpdWphUU6HdM0WVGxkK2HP8XAxvjYbLoFn2V1LJEO6/zQZP5f3NkAvF65mQXrF1icSPyRWlikU2ksVl7lu+rGVWfPi7mDnqEZFqcS6fiuCO9FmaOWp8pW88LaF3Ds+Jw7ogd7trTocmc5DSpYpNNwmg6+Kn+RLYf+A8CY6GmkhY2zNpRIB/bjy5370pWrjX68a9/Cnyo2UGc6+HVMurqHpFWoS0g6hVpHLZ+V/YEth/6DgY3zY+7QtPsibSDL7MUDsSMAeKVyI48cWEG96bQ4lfgDFSzi90r/M5Ob357AzsPLsJkGv3ScxQ0l26yOJeK3ro/sz4wuo7Fh8F71dm4rWkqF5mmR06SCRfza5gObub5gMevqSggzA/iVcwSjzG5WxxLxez+L6MtzXS8g1AhgeW0hNxR8wo7yHVbHkg5MY1jEL5mmybtb3+WJFU9Q66glJSCCX9YMpRsRVkcT8XuusS2BhPAbRvG8fTU7Giq4+p+TODf6VvqEne+x/68v7mdFTOlg1MIifqe8tpz7P7+fR/MepdZRy7kh3XgjMUvFiogFehDF7xxj6OeMpcGs4bOyuXxZNp865yGro0kHo4JF/ErOrhyu/OeVfJz/MXbDzq9H/JoXuo4jxh5sdTSRTiuaYLKdoxgacQ1gsOXQf/hH8a/ZW7vO6mjSgahLSDqsY2eurWwoYnvBI6y2FQKQGhDFY3EZpBcXgi6pFLGcDYMRUZNJDh7MF2XzqHIUsbj0/9En9AKuq55BYnii1RHFx6mFRTq0OuchVla8xntFv2K1rRCbaXBz1CD+3u1S0oO7Wh1PRH6kW/BZXNV1DgPDLwUMth/+nCvev4IF6xZwuOGw1fHEh6mFRTqkyrpK1lW+y3fVH1LjrACgv7MLP3f2J+VAFKsPlFkbUEROKNAWypjoX5IWOp6vK16mqG4T89bO481Nb3LTmTfx8/4/JywwzOqY4mMM0+z4S2tWVFQQHR1NeXk5UVFRVscRby2d1fT2JqbxLqgu4O3Nb/O3TX+jqr4KgCh7MqOjp/CzotUYqPtHxFd93eOW47aZpsnAtB3MXTWXfdX7AIgJjuG6AddxTb9r6BqmllJ/5s3nt1pYxOc1OBv4at9XvLPlHT7f8znOI7NmxgScwZCIn9I79Dxshh2DNRYnFRFvGYbBpm19uCTqWbYFfsa6yvcoqy3ghXUv8OL6F7mwx4Vc0+8aRieNxm6zWx1XLKSCRXySw3Syav8KFucv5j+7/sOBmgPux0YmjuQXA3/Bus3dMQwNwxLp6M7e9SIA5wAOBrPKSGCpbRfbKeOTHz7hkx8+IS4kjqzULC7tdSlDug7Bpt/9TkddQmK9I11C+xuqyaspIK9mP1/XFFLmrHXvEmyLpG/oWPqHXcyE/R9ZlVRE2lGXq6bx9ua3WfzDYspry49uD+nCmOQxnJt8LmOSxxAfGm9hSjkd3nx+q2ARS9Q01LDpwCY2lGzg2+/e5Nu6UnY3VHnsExUURWbPTKpLz6Rb8FnYjMYGQde3MRHxb2Nung1AvaOevP15LNq5iE93f0p1fbXHfpH2JMb2HEl613QGdx1Mn5g+BGvupQ6hzQuWefPm8fTTT1NQUMDQoUN57rnnGD169An3f+edd3j44YfJz88nLS2NJ598kssuu8z9uGmazJw5k5deeomysjLOPfdc5s+fT1paWrPyqGDxTU7TyYGaA+yt2svO8p3kl+ezs3wnOyt2sqtiFw7T4bG/zTRIJZpBZhwDnXEUp/zGXaQcSwWLSOcwpnfccdvqTSdv7NzOd7YSNhgl7DYqj9vHZtjoEdmDtNg0+sb0pWdUT7pHdKd7RHfiQ+MxNDeTz2jTguWtt95iypQpLFiwgIyMDObOncs777zD5s2bSUhIOG7/r776igsuuIBZs2Zx+eWX88Ybb/Dkk0+yevVqzjrrLACefPJJZs2axcKFC+nVqxcPP/ww3377Ld9//z0hISGt+oKl5eZ8sokGs5Z68zA1zkpqj9zOGxBGeW05ZTVlFB0uonDfNxQ2HKLQcZgGTrysfJwthMHBcZwVFMdZQV2o2W8jjMB2fEUi0tFVU89Oo4wdRjnbKeMHo5xDRsMJ97cTRERAVwbEn0GX0C7EhcQRFxrn/m9kUCQRgRGNt6AIwgPDNV6mDbVpwZKRkcGoUaN4/vnnAXA6naSkpHDXXXfxwAMPHLf/pEmTqK6u5sMPP3RvO/vss0lPT2fBggWYpklycjK/+c1vuPfeewEoLy8nMTGRV199lWuvvbZVX7A3HE4HS3cvxaTxLTJN8+jPmBz5ERMT19toYnrs79LkOX70+LHn+PG2Y/f/8XO4fj52PxMTh9NBg9lAvbO+8WdnQ+PNbDj6s7MBh3n0sTpnHYcbDnO4/nDjfxsOc/hwKYfNBmp+1CLSHAbQ1R5Kr4AoUgOj6BUYRa+AKHoHRpNoD/X4puNaME1EpKVMTMqpY59RyV6q2GdUsT0khipHEdWOUsyTfIk6kUAjlC6hUYQGhBJkDyLYHnzcf10/B9mCsBk27IYdm81GgBFw9L5hw26zH/3ZsLvvu/4WGq7/HXPfxTCa8diRba77rl1+/FhL2AwbF/W4qEXHnkibXdZcV1fHqlWrmD796PwYNpuNzMxM8vLymjwmLy+P7Oxsj21ZWVm8//77AOzcuZOCggIyMzPdj0dHR5ORkUFeXl6TBUttbS21tUcHZJaXNw7Gqqio8OblnFKdo45fffyrVj2nPzBMCCMQe0BXgm0RjTej8b8h9miGlH1LrBlMNCFEEUTAjyZUPoTJBsrYQJk1L0BE/Fog0JNIehLZuKEaoCsNOCmjlgPGYSqo47uYodQ4K6hxVFDjLOOws5I68xA0HKSGehqMxi+DDqrYd6jqRE/XaQTZgvj82s9b9Zyuz+3mtJ14VbCUlJTgcDhITPRc8yExMZFNmzY1eUxBQUGT+xcUFLgfd2070T4/NmvWLB599NHjtqekpDTvhUib+j+rA4iINMvfrQ7Q4UT/T3SbnLeyspLo6JOfu0POwzJ9+nSPVhun08mBAweIi4vTYCoaK9aUlBR2796tMT1tSO9z+9D73H70XrcPvc9HmaZJZWUlycnJp9zXq4IlPj4eu91OYWGhx/bCwkKSkpKaPCYpKemk+7v+W1hYSLdu3Tz2SU9Pb/KcwcHBBAd7XrIWExPjzUvpFKKiojr9L0N70PvcPvQ+tx+91+1D73OjU7WsuHg19DkoKIgRI0aQk5Pj3uZ0OsnJyWHMmDFNHjNmzBiP/QGWLFni3r9Xr14kJSV57FNRUcHy5ctPeE4RERHpXLzuEsrOzubGG29k5MiRjB49mrlz51JdXc3UqVMBmDJlCt27d2fWrMbZS++++27Gjh3LM888w09+8hPefPNNvvnmG158sXEuDcMwuOeee3j88cdJS0tzX9acnJzMlVde2XqvVERERDosrwuWSZMmUVxczIwZMygoKCA9PZ1Fixa5B83u2rULm+1ow80555zDG2+8wUMPPcSDDz5IWloa77//vnsOFoD77ruP6upqbrnlFsrKyjjvvPNYtGhRs+ZgkeMFBwczc+bM47rNpHXpfW4fep/bj97r9qH3uWX8Ymp+ERER8W+avk9ERER8ngoWERER8XkqWERERMTnqWARERERn6eCpZOora0lPT0dwzBYu3at1XH8Tn5+PjfffDO9evUiNDSUPn36MHPmTOrq6qyO1uHNmzeP1NRUQkJCyMjIYMWKFVZH8iuzZs1i1KhRREZGkpCQwJVXXsnmzZutjuX3nnjiCfe0HtI8Klg6ifvuu69ZUx9Ly2zatAmn08mf/vQnvvvuO5599lkWLFjAgw8+aHW0Du2tt94iOzubmTNnsnr1aoYOHUpWVhZFRUVWR/Mbn332GXfccQdff/01S5Ysob6+nksuuYTq6mqro/mtlStX8qc//YkhQ4ZYHaVD0WXNncDHH39MdnY27777LmeeeSZr1qw54bIH0nqefvpp5s+fz44dO6yO0mFlZGQwatQonn/+eaBxZu2UlBTuuusuHnjgAYvT+afi4mISEhL47LPPuOCCC6yO43eqqqoYPnw4L7zwAo8//jjp6enMnTvX6lgdglpY/FxhYSHTpk3jtddeIywszOo4nUp5eTldunSxOkaHVVdXx6pVq8jMzHRvs9lsZGZmkpeXZ2Ey/1ZeXg6gf7tt5I477uAnP/mJx79raZ4OuVqzNI9pmtx0003ceuutjBw5kvz8fKsjdRrbtm3jueeeY/bs2VZH6bBKSkpwOBzuWbRdEhMT2bRpk0Wp/JvT6eSee+7h3HPP9ZiNXFrHm2++yerVq1m5cqXVUToktbB0QA888ACGYZz0tmnTJp577jkqKyuZPn261ZE7rOa+18fau3cvEyZM4Gc/+xnTpk2zKLmI9+644w42bNjAm2++aXUUv7N7927uvvtu/u///k/LzrSQxrB0QMXFxZSWlp50n969e/Pzn/+cf/3rXxiG4d7ucDiw2+1cf/31LFy4sK2jdnjNfa+DgoIA2LdvH+PGjePss8/m1Vdf9VhXS7xTV1dHWFgYf//73z0WQr3xxhspKyvjn//8p3Xh/NCdd97JP//5Tz7//HN69epldRy/8/7773PVVVdht9vd2xwOB4ZhYLPZqK2t9XhMjqeCxY/t2rWLiooK9/19+/aRlZXF3//+dzIyMjjjjDMsTOd/9u7dy/jx4xkxYgSvv/66/vi0goyMDEaPHs1zzz0HNHZZ9OjRgzvvvFODbluJaZrcdddd/OMf/yA3N5e0tDSrI/mlyspKfvjhB49tU6dOZcCAAdx///3qgmsGjWHxYz169PC4HxERAUCfPn1UrLSyvXv3Mm7cOHr27Mns2bMpLi52P5aUlGRhso4tOzubG2+8kZEjRzJ69Gjmzp1LdXU1U6dOtTqa37jjjjt44403+Oc//0lkZCQFBQUAREdHExoaanE6/xEZGXlcURIeHk5cXJyKlWZSwSLSCpYsWcK2bdvYtm3bccWgGjFbbtKkSRQXFzNjxgwKCgpIT09n0aJFxw3ElZabP38+AOPGjfPY/sorr3DTTTe1fyCRE1CXkIiIiPg8jQgUERERn6eCRURERHyeChYRERHxeSpYRERExOepYBERERGfp4JFREREfJ4KFhEREfF5KlhERETE56lgEREMw+D9998/4eO5ubkYhkFZWVm7ZfJGfn4+hmGwdu1aq6MAkJqayty5c62OIeJXVLCI+IkFCxYQGRlJQ0ODe1tVVRWBgYHHTbvuKkC2b9/erHOfc8457N+/n+joaABeffVVYmJiWiu65caNG8c999zTaudbuXIlt9xyS6udT0RUsIj4jfHjx1NVVcU333zj3vbFF1+QlJTE8uXLqampcW9funQpPXr0oE+fPs06d1BQEElJSRiG0eq5OwrTND2KwZPp2rUrYWFhbZxIpHNRwSLiJ/r370+3bt3Izc11b8vNzWXixIn06tWLr7/+2mP7+PHjPY4vKSnhqquuIiwsjLS0ND744AOP/V1dQrm5uUydOpXy8nIMw8AwDB555BEAamtruffee+nevTvh4eFkZGR45HG1zCxevJiBAwcSERHBhAkT2L9/v0eWP//5zwwcOJCQkBAGDBjACy+84PH4ihUrGDZsGCEhIYwcOZI1a9ac8v154YUXSEtLIyQkhMTERK655hoAbrrpJj777DP+8Ic/uF9Pfn6++zV//PHHjBgxguDgYL788ku2b9/OxIkTSUxMJCIiglGjRvGf//zH47l+3CVkGAZ//vOfT/j+ikgzmCLiN6677jrzkksucd8fNWqU+c4775i33nqrOWPGDNM0TfPQoUNmcHCw+eqrr7r3A8wzzjjDfOONN8ytW7eav/rVr8yIiAiztLTUNE3TXLp0qQmYBw8eNGtra825c+eaUVFR5v79+839+/eblZWVpmma5i9/+UvznHPOMT///HNz27Zt5tNPP20GBwebW7ZsMU3TNF955RUzMDDQzMzMNFeuXGmuWrXKHDhwoHnddde5s7z++utmt27dzHfffdfcsWOH+e6775pdunRx562srDS7du1qXnfddeaGDRvMf/3rX2bv3r1NwFyzZk2T78vKlStNu91uvvHGG2Z+fr65evVq8w9/+INpmqZZVlZmjhkzxpw2bZr79TQ0NLhf85AhQ8xPPvnE3LZtm1laWmquXbvWXLBggfntt9+aW7ZsMR966CEzJCTE/OGHH9zP17NnT/PZZ59t9vsrIqemgkXEj7z00ktmeHi4WV9fb1ZUVJgBAQFmUVGR+cYbb5gXXHCBaZqmmZOTYwIeH7CA+dBDD7nvV1VVmYD58ccfm6bpWbCYZmPhER0d7fHcP/zwg2m32829e/d6bL/ooovM6dOnu48DzG3btrkfnzdvnpmYmOi+36dPH/ONN97wOMdjjz1mjhkzxjRN0/zTn/5kxsXFmYcPH3Y/Pn/+/JMWLO+++64ZFRVlVlRUNPn42LFjzbvvvttjm+s1v//++00ec6wzzzzTfO6559z3mypYTvb+isipBVjRqiMibWPcuHFUV1ezcuVKDh48SL9+/ejatStjx45l6tSp1NTUkJubS+/evenRo4fHsUOGDHH/HB4eTlRUFEVFRc1+7m+//RaHw0G/fv08ttfW1hIXF+e+HxYW5jF2plu3bu7nqa6uZvv27dx8881MmzbNvU9DQ4N7wO/GjRsZMmQIISEh7sfHjBlz0mwXX3wxPXv2pHfv3kyYMIEJEya4u2dOZeTIkR73q6qqeOSRR/j3v//N/v37aWho4PDhw+zateuk5znd91eks1PBIuJH+vbtyxlnnMHSpUs5ePAgY8eOBSA5OZmUlBS++uorli5dyoUXXnjcsYGBgR73DcPA6XQ2+7mrqqqw2+2sWrUKu93u8VhERMRJn8c0Tfc5AF566SUyMjI89vvxOb0RGRnJ6tWryc3N5ZNPPmHGjBk88sgjrFy58pRXO4WHh3vcv/fee1myZAmzZ8+mb9++hIaGcs0111BXV3fS85zu+yvS2algEfEz48ePJzc3l4MHD/Lb3/7Wvf2CCy7g448/ZsWKFdx2222n9RxBQUE4HA6PbcOGDcPhcFBUVMT555/fovMmJiaSnJzMjh07uP7665vcZ+DAgbz22mvU1NS4W1mOHVB8IgEBAWRmZpKZmcnMmTOJiYnh008/5ac//WmTr+dEli1bxk033cRVV10FNBZZ+fn5zXuBItJiKlhE/Mz48eO54447qK+vd7ewAIwdO5Y777yTurq6464Q8lZqaipVVVXk5OQwdOhQwsLC6NevH9dffz1TpkzhmWeeYdiwYRQXF5OTk8OQIUP4yU9+0qxzP/roo/zqV78iOjqaCRMmUFtbyzfffMPBgwfJzs7muuuu43e/+x3Tpk1j+vTp5OfnM3v27JOe88MPP2THjh1ccMEFxMbG8tFHH+F0Ounfv7/79Sxfvpz8/HwiIiLo0qXLCc+VlpbGe++9xxVXXIFhGDz88MNqKRFpB7qsWcTPjB8/nsOHD9O3b18SExPd28eOHUtlZaX78ufTcc4553DrrbcyadIkunbtylNPPQXAK6+8wpQpU/jNb35D//79ufLKK1m5cuVx42VO5pe//CV//vOfeeWVVxg8eDBjx47l1VdfpVevXkBj99K//vUvvv32W4YNG8bvfvc7nnzyyZOeMyYmhvfee48LL7yQgQMHsmDBAv72t79x5plnAo3dPHa7nUGDBtG1a9eTjkeZM2cOsbGxnHPOOVxxxRVkZWUxfPjwZr8+EWkZw3R1HouIiIj4KLWwiIiIiM9TwSIiIiI+TwWLiIiI+DwVLCIiIuLzVLCIiIiIz1PBIiIiIj5PBYuIiIj4PBUsIiIi4vNUsIiIiIjPU8EiIiIiPk8Fi4iIiPi8/w/QPgH6AtjFBQAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"anderson_p_value:\n",
"0.9\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Freq dep test of normality (Gupta + Cornish)"
],
"metadata": {
"id": "oWQl9mTBNXE_"
}
},
{
"cell_type": "code",
"source": [
"plot_whitening(psd.frequency_array, psd.asd_array, h_f_sim, wh_f_sim, label=\"True ASD\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 507
},
"id": "K1DWc9_SNkHG",
"outputId": "69d17244-9241-40fd-9d1a-7564a1cc65c8"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 800x500 with 3 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqiFJREFUeJzs3Xtc0/X+B/DXxmXcQURuCuLdUG6iIqbmhTIs81aZdRS1Y2WzU6KVdEqzG51Ko8vSMi/Z6aJ2zM4vyzROSnlFlNRIS0Uh5aIiIEMGbPv9gfu6jQ02trEBr+fjsYfse31/vxv4eX8/N5FarVaDiIiIiIjIAmJ7B0BERERERG0fEwsiIiIiIrIYEwsiIiIiIrIYEwsiIiIiIrIYEwsiIiIiIrIYEwsiIiIiIrIYEwsiIiIiIrIYEwsiIiIiIrKYs70DaKtUKhUuXrwIb29viEQie4dDRGR1arUa165dQ2hoKMTijvMcin/fiai9s9XfdyYWLXTx4kWEhYXZOwwiIpsrLCxEt27d7B1Gq+HfdyLqKKz9952JRQt5e3sDaPhAfHx87BwNEZH1VVZWIiwsTPh711Hw7zsRtXe2+vvOxMJMMpkMMpkMSqUSAODj48P/eIioXetozYE018u/70TU3ln773vHaTRrJVKpFHl5ecjOzrZ3KEREREREDoOJBRERERERWYyJBRERERERWYx9LIjIIiqVCrW1tfYOg1rAxcUFTk5O9g6DiIjaCSYWRNRitbW1yM/Ph0qlsnco1EJ+fn4IDg7ucB20iYjI+phYmEl/VChzlVbWQPr5EfxtWHdMiu1q5eiIWo9arUZRURGcnJwQFhbWoSZQaw/UajWqq6tRWloKAAgJCbFzRERE1NYxsTCTVCqFVCpFZWUlfH19zd7/5e2/I/vcVWSfu8rEgtq0+vp6VFdXIzQ0FB4eHvYOh1rA3d0dAFBaWorAwEA2iyIiIovwEWMrK69mW3RqHzS1dq6urnaOhCyhSQrr6ursHAkREbV17T6xKCwsxOjRoxEZGYno6Ghs2bJFZ/23336Lfv36oU+fPvj4449bNbZvci+06vmIbIFt89s2fn5ERGQt7T6xcHZ2RkZGBvLy8rBz50489dRTkMvlABqacqSmpuJ///sfjh49ijfffBNXrlxptdje+fHPVjsXEREREZEttfvEIiQkBLGxsQCA4OBgBAQEoKysDABw6NAhDBgwAF27doWXlxeSk5Oxc+dOm8ajVt/8+exluU3PRUSG7d69GxEREQCAc+fOQSQSITc31+zjREREICMjQ3gvEomwbds2o9u39FxXrlxBYGAgzp07Jyzbu3cvoqKi4OLigsmTJyMvLw/dunUTHpxobNiwAaNHjzbrfERERC1h987bWVlZePPNN5GTk4OioiJ8/fXXmDx5ss42MpkMb775JoqLixETE4P33nsPQ4cONftcOTk5UCqVCAsLAwBcvHgRXbve7EDdtWtXXLhg2+ZJ9RyWk9qRWqUKf5ZWQSJxnPb54f4ecHOxbifkDRs24KmnnkJ5ebnO8uzsbHh6elr1XIa8+uqrmDRpkpAMAUBqaipiY2Px/fffw8vLC35+fhg2bBhWrlyJF154weYxERER6bN7YiGXyxETE4O5c+di6tSpjdZv2rQJqampWL16NRISEpCRkYHx48fj1KlTCAwMBADExsaivr6+0b47d+5EaGgoAKCsrAyzZs3CmjVrbHtBzThwtsyu5yeypqLKejz274P2DkPHzoWj0DfIu1XO1aVLF5ufo7q6GmvXrsUPP/ygs/zMmTN47LHH0K1bN2HZnDlzMG/ePKSlpcHZ2e5/3omIqIOxe1Oo5ORkvPLKK5gyZYrB9StXrsS8efMwZ84cREZGYvXq1fDw8MC6deuEbXJzc3HixIlGL01SoVAoMHnyZCxZsgTDhw8X9gsNDdWpobhw4YKwjz6FQoHKykqdFxG1H2fPnsWYMWPg4eGBmJgY7N+/H0BDs6k5c+agoqICIpEIIpEIL774IoDGTaH0HTp0CHFxcXBzc8PgwYNx9OjRRtucOHECycnJ8PLyQlBQEGbOnInLly8L67/77jtIJBIMGzYMwM3mVFeuXMHcuXMhEomwYcMGAMDtt9+OsrIy7Nmzxzo3hYiIyAx2TyyaUltbi5ycHCQlJQnLxGIxkpKShP/0m6NWqzF79myMHTsWM2fO1Fk3dOhQnDhxAhcuXEBVVRW+//57jB8/3uBx0tPT4evrK7w0zamIqH345z//icWLFyM3Nxd9+/bFjBkzUF9fj+HDhyMjIwM+Pj4oKipCUVERFi9e3OzxqqqqcPfddyMyMhI5OTl48cUXG+1XXl6OsWPHIi4uDocPH8aOHTtQUlKC+++/X9jm559/Rnx8vPA+LCwMRUVF8PHxQUZGBoqKijB9+nQADUP/xsbG4ueff7bSXSEiIjKdQ9eVX758GUqlEkFBQTrLg4KCcPLkSZOOsXfvXmzatAnR0dFCp8pPP/0UUVFRcHZ2xooVKzBmzBioVCo888wz6Ny5s8HjpKWlITU1FWvWrMGaNWugVCpx+vRpi66PiBzH4sWLcddddwEAli9fjgEDBuD06dPo378/fH19IRKJEBwcbPLxPv/8c6hUKqxduxZubm4YMGAA/vrrL8yfP1/Y5v3330dcXBxee+01Ydm6desQFhaGP/74A3379sX58+d1alKdnJwQHBwMkUgEX1/fRjGFhobi/PnzLb0NRERELebQiYU1jBgxAqomOkzfc889uOeee5o9jkQigUQiwaJFi7Bo0aIWz7xNRI4pOjpa+DkkJARAw4zU/fv3b9Hxfv/9d0RHR8PNzU1YlpiYqLPNr7/+ip9++gleXl6N9j9z5gz69u2L69ev6xyjOe7u7qiurm5RzERERJZw6MQiICAATk5OKCkp0VleUlJi1pNDa5LJZJDJZMKsw0TUPri4uAg/ayaNa+qhhDVUVVVh4sSJ+Ne//tVonSa5CQgIwNWrV00+ZllZGXr16mW1GImIyLiIJdubXH/u9btaKRLH4NB9LFxdXREfH4/MzExhmUqlQmZmZqMnf61FKpUiLy8P2dnZLdr/YafvkOb8GRY7b0I3UamVoyMiW3B1dTX7YcItt9yCY8eOoaamRlh24MABnW0GDRqE3377DREREejdu7fOSzOMbVxcHPLy8kw+74kTJxAXF2dWrERERNZg98SiqqoKubm5woRR+fn5yM3NRUFBAQAI/Ro++eQT/P7775g/fz7kcjnmzJljl3hlMhkiIyMxZMiQFu0/1elnPOq8HQucv0Gq81dWjo6IbCEiIgJVVVXIzMzE5cuXTWpq9OCDD0IkEmHevHnIy8vDd999h7feektnG6lUirKyMsyYMQPZ2dk4c+YMfvjhB8yZM0dIZMaPH4/ffvvNpFqLc+fO4cKFCzoDXhAREbUWuzeFOnz4MMaMGSO8T01NBQCkpKRgw4YNmD59Oi5duoSlS5eiuLgYsbGx2LFjR6MO3a1FKpVCKpW2uI/Ff5SjECT6BgGiSnTCNRtESNR6Qnyc8X+PJ0Aikdg7FEG4v4fVjzl8+HA89thjmD59Oq5cuYJly5YJQ84a4+Xlhf/7v//DY489hri4OERGRuJf//oXpk2bJmwTGhqKvXv34tlnn8Udd9wBhUKB7t27484774RY3PDcJyoqCoMGDcLmzZvx6KOPNnnOL774AnfccQe6d+9u8TUTERGZy+6JxejRo6FWq5vcZsGCBViwYEErRdQ0S/tYrFMm44raG++4fgBnKKFSqSEWi6wcJVHrcHUSo0egl1mdix1NREREo79Bfn5+jZatWrUKq1at0ll27tw5nff6+wwbNkyojTW2TZ8+fbB169YmY1y6dCmefvppzJs3T0g49GcBr62txerVq/H55583eSwiIiJbsXtTqLbG0j4WAFB/I59zESmx/XiRtUIjonbqrrvuwiOPPKIzoae+goICPPfcc7j11ltbMTIiIqKb7F5j0dZYY1So+hv5nBOUKKmsaWZrIiLgqaeeanK9ptM3ERGRvbDGwkzWqbFwAgC4QCkMa0lErSciIqLZgnp7ERsbi9mzZ9s7DCIi6gBYY2EHyhuJhROUYPcKotbX0RKL2NhYe4dBREQdAGsszGTpcLMAUHcjsXCGEk7MLIiIiIioHWBiYSarNIVSN1QU9RX9BaYVRERERNQeMLFoZR6uTjc7b4vU8KkusHNERERERESWY2LRykS42XkbAIKuHrVfMEREREREVsLEwkzW6GOhnVhwUCgiIiIiag+YWJjJmsPNAuBws0RERETULjCxsAPtxIK9t6ktEykVEF06CZT+7jivOuOTTopEoiZfL774YuvdvBu++OILODk5QSqVGly/Zs0axMTEwMvLC35+foiLi0N6erqw/sUXXxTid3Z2RkBAAEaNGoWMjAwoFIrWugy7eP311yESiXSGDq6pqYFUKkXnzp3h5eWFadOmoaSkxH5BEhF1IJzHwg50aiyYWVAb5lJ1AZKvHrR3GLoePwAE3mJwVVFRkfDzpk2bsHTpUpw6dUpY5uXlJfysVquhVCrh7GzbP5Nr167FM888gw8//BArVqyAm5ubsG7dunV46qmn8O677+K2226DQqHAsWPHcOLECZ1jDBgwAD/++CNUKhWuXLmC3bt345VXXsGnn36K3bt3w9vb26bXYA/Z2dn48MMPER0drbN84cKF2L59O7Zs2QJfX18sWLAAU6dOxd69e+0UKRFRx8EaCzuoV99MLMQitR0jIepYgoODhZevry9EIpHw/uTJk/D29sb333+P+Ph4SCQS/PLLL5g9ezYmT56sc5ynnnoKo0ePFt6rVCqkp6ejR48ecHd3R0xMDL766qtm48nPz8e+ffuwZMkS9O3bF1u3btVZ/9///hf3338/Hn74YfTu3RsDBgzAjBkz8Oqrr+ps5+zsjODgYISGhiIqKgpPPPEE9uzZgxMnTuBf//pXi++Xo6qqqsJDDz2ENWvWoFOnTsLyiooKrF27FitXrsTYsWMRHx+P9evXY9++fThw4IAdIyYi6hiYWNiBbo0FETmSJUuW4PXXX8fvv//e6Gm4Menp6di4cSNWr16N3377DQsXLsTf/vY37Nmzp8n91q9fj7vuugu+vr7429/+hrVr1+qsDw4OxoEDB3D+/Hmzr6N///5ITk5ulKy0B1KpFHfddReSkpJ0lufk5KCurk5nef/+/REeHo79+/e3dphERB0Om0KZSSaTQSaTQalUtmh/kUjExILIgb300ku4/fbbTd5eoVDgtddew48//ojExEQAQM+ePfHLL7/gww8/xG233WZwP5VKhQ0bNuC9994DADzwwANYtGgR8vPz0aNHDwDAsmXLMHXqVERERKBv375ITEzEhAkTcO+990Isbv65UP/+/bFz506Tr6Ut+PLLL3HkyBGDA2gUFxfD1dUVfn5+OsuDgoJQXFxs9JgKhUKnP0plZaXV4iUi6khYY2Ema4wKVaeVWDih3hphEZGVDB482KztT58+jerqatx+++3w8vISXhs3bsSZM2eM7rdr1y7I5XJMmDABABAQEIDbb78d69atE7YJCQnB/v37cfz4cTz55JOor69HSkoK7rzzTqhUqmZjU6vV7WrkucLCQjz55JP47LPPdPqiWCo9PR2+vr7CKywszGrHJiLqSEyqsfD39zfroCKRCEeOHEH37t1bFFR7VwOJ8LOT0vgINkTU+jw9PXXei8ViqNW6faHq6uqEn6uqqgAA27dvR9euXXW2k0gkMGbt2rUoKyuDu7u7sEylUuHYsWNYvny5To3EwIEDMXDgQDz++ON47LHHMHLkSOzZswdjxoxp8lp+//13ofajPcjJyUFpaSkGDRokLFMqlcjKysL777+PH374AbW1tSgvL9eptSgpKUFwcLDR46alpSE1NVV4X1lZyeSCiKgFTEosysvLkZGRAV9f32a3VavVePzxx1vcVMjaCgsLMXPmTJSWlsLZ2RkvvPAC7rvvPmH9lClTsHv3bowbN86kzpbWUKt1253rr7fKOYmoZbp06dJoFKbc3Fy4uLgAACIjIyGRSFBQUGC02ZO+K1eu4JtvvsGXX36JAQMGCMuVSiVGjBiBnTt34s477zS4b2RkJABALpc3eY6TJ09ix44dSEtLMymmtmDcuHE4fvy4zrI5c+agf//+ePbZZxEWFgYXFxdkZmZi2rRpAIBTp06hoKBAaKZmiEQiaTIJJCIi05jcx+KBBx5AYGCgSds+8cQTLQ7I2pydnZGRkYHY2FgUFxcjPj4eEyZMEJ5KPvnkk5g7dy4++eSTVozqZtOEKt++rXheIjLX2LFj8eabb2Ljxo1ITEzEv//9b5w4cQJxcXEAAG9vbyxevBgLFy6ESqXCiBEjUFFRgb1798LHxwcpKSmNjvnpp5+ic+fOuP/++xs1VZowYQLWrl2LO++8E/Pnz0doaCjGjh2Lbt26oaioCK+88gq6dOmiU1Cur69HcXFxo+FmY2Nj8fTTT9v2BrUib29vDBw4UGeZp6cnOnfuLCx/+OGHkZqaCn9/f/j4+OCJJ55AYmIihg0bZo+QiYg6FJMSC1Pa8mq7du1ai4KxhZCQEISEhABoGGElICAAZWVlQmIxevRo7N69u9Xi0RQh8lTdESk+D7WTa6udm8ja6ry6QvHwHsd62tvJuk1/xo8fjxdeeAHPPPMMampqMHfuXMyaNUvnyfnLL7+MLl26ID09HWfPnoWfnx8GDRqE5557zuAx161bhylTphjs/zBt2jTMnDkTly9fRlJSEtatW4dVq1bhypUrCAgIQGJiIjIzM9G5c2dhn99++w0hISFwcnKCr68vIiMjkZaWhvnz5zvWZ9MK3n77bYjFYkybNg0KhQLjx4/HBx98YO+wiIg6BJFav/FwK8vKysKbb76JnJwcFBUV4euvv240ZrxMJsObb76J4uJixMTE4L333sPQoUPNPldOTg5SUlIaNWvYvXs33n//fbOaQlVWVsLX1xcVFRXw8fExeb+oZT/gmqIe37g+jxjxWeSM+BDxSQ+YvD+Ro6ipqRFGMLJmR1pqXU19ji39O9fWddTrJiLzRSzZ3uT6c6/f1UqRmMdWf+esNirU1atXsXHjRrP3k8vliImJgUwmM7h+06ZNSE1NxbJly3DkyBHExMRg/PjxKC0tFbaJjY0VOjdqvy5evChsU1ZWhlmzZuGjjz4y/+JsQHXj1ovV5tUGERERERE5IqvNY1FQUIA5c+Zg1qxZZu2XnJyM5ORko+tXrlyJefPmYc6cOQCA1atXY/v27Vi3bh2WLFkCoKEjZVMUCgUmT56MJUuWYPjw4WbFp30Ma45zrrrRKEoEzrxNRERERG2fyTUWlZWVTb5s0a+itrYWOTk5OrOoisViJCUlmTyLqlqtxuzZszF27FjMnDmzxbFYbZzzG02qNYmFGKyxICIiIqK2z+TEws/PD506dTL6GjVqlNWDu3z5MpRKJYKCgnSWNzeLqra9e/di06ZN2LZtG2JjYxEbG6vT6TIpKQn33XcfvvvuO3Tr1s1owpKWloaKigq89dZb6NevH3r37t2yi7pRQaFpCuXUfuauIiIiIqIOzOSmUN7e3vjnP/+JhIQEg+v//PNPPProo1YLzFpGjBjR5KhWP/74o0nH0YxzvmjRIixatEjo9NJS6hs1Fk6ssSAiIiKidsDkxEIz06mxCaD8/PwazU5rqYCAADg5OaGkpERneXOzqNqSTCaDTCZr+QSAmqZQ6oYfiiuq0d9KsRHZg50HliMLmTucOBERkTEmJxYPPvggrl83Pkt0cHAwli1bZpWgNFxdXREfH4/MzExhCFqVSoXMzEwsWLDAqucylVQqhVQqtbjGQtPHYmtOIUZPs1Z0RK3HxcUFIpEIly5dQpcuXQzOyUCOS61Wo7a2FpcuXYJYLIarK+fUISIiy5icWMybN6/J9UFBQS1KLKqqqnD69GnhfX5+PnJzc+Hv74/w8HCkpqYiJSUFgwcPxtChQ5GRkQG5XC6MEtXaLK6xuEEYbpajQlEb5eTkhG7duuGvv/7CuXPn7B0OtZCHhwfCw8MhFltt9HEiIuqgLBpu9q+//kJoaKhF/yEdPnwYY8aMEd6npqYCAFJSUrBhwwZMnz4dly5dwtKlS1FcXIzY2Fjs2LGjUYfu1mKtGgs1R4WidsDLywt9+vRBXV2dvUOhFnBycoKzszNrm4iIyCosSiwiIyORm5uLnj17tvgYo0ePbraN9oIFC+zW9EmfpTUWmv++heFmRayxoLbNyckJTk5O9g6DiIiI7Myiuu+O2GlTKpUiLy8P2dnZFh1H0xSKE+QRERERUXvARrVmkslkiIyMxJAhQ1q0f4ivO4CbNRYcbpaIiIiI2gOLEovnnnsO/v7+1oqlTbC0xsJT0tBkRJggj4kFEREREbUDZicWWVlZKC0tBdAwG7Wfnx8AoK6uDllZWVYNrj2rFxILy0aXIiIiIiJyBGYnFqNHj0ZMTAwOHDigs7ysrExndKf2ytKmUBr1N/rNuzCxICIiIqJ2oEVNoR544AGMGzcOGzZs0FneETpzW6vzdj0amkQ5M7EgIiIionbA7MRCJBIhLS0Nn376KRYsWIDU1FQhoeBY6KarUzOxICIiIqL2w+zEQpNETJ06FT///DO++uorJCcno7y83NqxtWussSAiIiKi9sSiUaHi4uJw6NAhlJeXY9y4cdaKyaFZq49F3Y0+Fs4iJhZERERE1PaZnVikpKTA3d1deB8cHIw9e/Zg3LhxCA8Pt2pwjshafSyUN249O28TERERUXvgbO4O69evb7RMIpHgk08+sUpAHYVmVChn1Ns5EiIiIiIiy5mcWBw7dsyk7aKjo1scTEdSxz4WRERERNSOmJxYxMbGQiQSNRoBSq1WC8tFIhGUShaUTVF/Y1QoNoUiIiIiovbA5MQiPz9f+FmtVmPgwIH47rvv0L17d5sE5qhkMhlkMpnFCZSmxoIzbxMRERG1TxFLtje5/tzrd7VSJK3D5MRCP4EQiUTo1q1bh0sspFIppFIpKisr4evr2+LjaIabdeGoUERERETUDlg03Cy1nFKk6bzNxIKIiIiI2r52n1gUFhZi9OjRiIyMRHR0NLZs2WLSOltTclQoIiIiImpHzB5uVpumA7cjc3Z2RkZGBmJjY1FcXIz4+HhMmDABnp6eTa6zNYWa81gQERERUfthcmIRFxenk0hcv34dEydOhKurq852R44csV50VhASEoKQkBAADZP5BQQEoKysDJ6enk2us7V6DjdLRERERO2IyYnF5MmTdd5PmjTJKgFkZWXhzTffRE5ODoqKivD11183OpdMJsObb76J4uJixMTE4L333sPQoUPNPldOTg6USiXCwsLMWmcLteqGW++KulY5HxERERGRLZmcWCxbtswmAcjlcsTExGDu3LmYOnVqo/WbNm1CamoqVq9ejYSEBGRkZGD8+PE4deoUAgMDATTMsVFf37ivws6dOxEaGgoAKCsrw6xZs7BmzZpG2zW1zlZq0FDT4yZiYkFEREREbZ9FfSysITk5GcnJyUbXr1y5EvPmzcOcOXMAAKtXr8b27duxbt06LFmyBACQm5vb5DkUCgUmT56MJUuWYPjw4SavsyXFjcRCgtpWOycRERERka2YNCrUoEGDcPXqVZMPOmLECFy4cKHFQWnU1tYiJycHSUlJwjKxWIykpCTs37/fpGOo1WrMnj0bY8eOxcyZM01ep0+hUKCyslLnZYngzn4AADc2hSIiIiKidsCkGovc3Fz8+uuv8Pf3N+mgubm5UCgUFgUGAJcvX4ZSqURQUJDO8qCgIJw8edKkY+zduxebNm1CdHQ0tm3bBgD49NNPERUV1eQ6fenp6Vi+fLlF16OtXiwBALixxoKIiIiI2gGTm0KNGzcOarXapG0daRjaESNGQKVSmb1OX1paGlJTU7FmzRqsWbMGSqUSp0+fbnFctaIbiYWIiQURERERtX0mJRb5+flmH7hbt25m76MvICAATk5OKCkp0VleUlKC4OBgi49vDolEAolEgkWLFmHRokWorKyEr69vi49XpXRpOC5qcemaAl28JdYKlYiIiIio1ZmUWHTv3t3WcRjk6uqK+Ph4ZGZmCkPQqlQqZGZmYsGCBXaJSSaTQSaTQam0bP6J6+qGxMINtais51wWRERERNS22X1UqKqqKp0mRfn5+cjNzYW/vz/Cw8ORmpqKlJQUDB48GEOHDkVGRgbkcrkwSlRbVXtjVChXkRJQMbEgIiIiorbNpFGhbOnw4cOIi4tDXFwcACA1NRVxcXFYunQpAGD69Ol46623sHTpUsTGxiI3Nxc7duxo1KG7tUilUuTl5SE7O9ui49SKbs5YLqqvsTQsIqIOYdWqVYiOjoaPjw98fHyQmJiI77//Xlg/evRoiEQinddjjz1mx4iJiDoOu9dYjB49utlO4QsWLLBb0yd91moKpZkgDwD2nfoL9wV1sTQ0IqJ2r1u3bnj99dfRp08fqNVqfPLJJ5g0aRKOHj2KAQMGAADmzZuHl156SdjHw8PDXuESEXUodk8s2hqpVAqpVGpx5221SAyF2hkSUT1KrlRYMULrOfZXOXzdXdC9s6e9QyEiAgBMnDhR5/2rr76KVatW4cCBA0Ji4eHh0eoDfBARkQM0heqoRLg5+/Z/DrV82FpbKZPX4p739+K2N3ejXmnakLxERK1JqVTiyy+/hFwuR2JiorD8s88+Q0BAAAYOHIi0tDRUV1c3eRxrT4BKRNRRmV1joVQq8fbbb2Pz5s0oKChAba3uPAxlZWVWC84RWasplBoNzaF8UO2Qk+QVV9zs96GoV8HZiTkoETmG48ePIzExETU1NfDy8sLXX3+NyMhIAMCDDz6I7t27IzQ0FMeOHcOzzz6LU6dOYevWrUaPZ+0JUImIOiqzS4vLly/HypUrMX36dFRUVCA1NRVTp06FWCzGiy++aIMQHYu1Om8DQI3WkLOORnuOQ9OmRSQiah39+vVDbm4uDh48iPnz5yMlJQV5eXkAgEceeQTjx49HVFQUHnroIWzcuBFff/01zpw5Y/R4aWlpqKioEF6FhYWtdSlERO2K2YnFZ599hjVr1mDRokVwdnbGjBkz8PHHH2Pp0qU4cOCALWJsl9RqtdCB201Ui7+uNl1V39pMnGSdiKjVubq6onfv3oiPj0d6ejpiYmLwzjvvGNw2ISEBAHSGNdcnkUiEUaY0LyIiMp/ZiUVxcTGioqIAAF5eXqioaOh4fPfdd2P79u3Wjc4ByWQyREZGYsiQIRYdR9MUCmiYfbtO6VgleTXrKYiojVCpVFAoFAbX5ebmAgBCQkJaMSIioo7J7MSiW7duKCoqAgD06tULO3fuBABkZ2dDIpFYNzoHZNWmUJoaC9Q1O+SuPYwQH0eM6LRDxkZEHVNaWhqysrJw7tw5HD9+HGlpadi9ezceeughnDlzBi+//DJycnJw7tw5/Pe//8WsWbMwatQoREdH2zt0IqJ2z+zO21OmTEFmZiYSEhLwxBNP4G9/+xvWrl2LgoICLFy40BYxtls1ak1i4Xh9LJzlxfi3azoA4Boet3M0RNZVWlmDIwVXcXtkMJzEouZ3IIdRWlqKWbNmoaioCL6+voiOjsYPP/yA22+/HYWFhfjxxx+RkZEBuVyOsLAwTJs2Dc8//7y9wyYi6hDMTixef/114efp06eje/fu2LdvH/r06dNofHFqghpQ4EbnbZEDJhbXLws/q1VK4EasRO3B2BV7UKWox8uTBmBmYoS9w9FRU6fEX1evo3egl71DcUhr1641ui4sLAx79uxpxWiIiEib2U2hsrKyUF9fL7wfNmwYUlNTkZycjKysLKsG54is1ccCuDmPhQR1wrLTpVWY8sFe/HSy1OLjW0Z7WCjOY0HtS5Wi4W/YT6cuCcvW/pKPp7f8CpXK8qZ/lhxj6gf7kLRyD3afsvffACIiIvOYnViMGTPG4FwVFRUVGDNmjFWCcmTW6mOh3XlbuynUP744iqMF5ZizwfI+HNbCPhZkTWcvVeGrnL/MLnwXV9Rgw958ISmwBpXWd/vlb/OwJecv7D1zuYk9dKnVanx5qAB5F29OqPbxz2cR9eIPOHGhQmfbPX9cwvi3s3Dsr/Imj5lX1HCs57Yeb3SuHSeKcKr4ms69q6ypw8vf5uHA2Sv459fHsfe0bvzrfsnH7PWHUFNn2dw7REREzTG7KZRarYZI1LhN8pUrV+Dp6WmVoDoClVptcB6LMrljNItiKkG2MnZFQ1MVlUqN+4eEmbzfXe/+jCvyWpy4WIm37ouxSiyGcmbZT6cxsk8Xg9ufuVSFi+XXMbJPF9TUKXFnRhbOXWkYKvrc63dBqVLjle2/AwD+ue0EvpHeCqVKjXcz/8Q7mX8CAO55fy+G9fTHP8b1wfBeAUZju1hRg9Ol1+Dj5oJAHzf88FsJHvv3EQBAfPdO+M/84QCA178/ic8PFmDtL/kAgM8OFuDc63eh4Eo1Qv3c8NK3DfM7bDlc6HDNvoiIqH0xObGYOnUqAEAkEmH27Nk6I0AplUocO3YMw4cPt36E7ZRKax6LJKccBK0dDNy3ys5RadEucVmhaQi1X2q1Gmo1IDazE/Qz/zlmcmLx4n9/w5UbSfdXOX8ZTCwU9UocPFuGIRH+cHd1Mum4hr7ZB86WYfepUkR380NxRQ0Ony/DvfHd8PnBAiFp+PaJEbj7vV909su/LMdErWVKlQrxL+8S4tY/x4GzB3HmtQkoKKuGUqVGry6eyC0s19kuaWVD89LB3Tuhb7C3sDzn/FU89eVRbMu9aPC6Xvzvb9iw7xxG9L6ZuMhrWWNBRORoIpY0PVXDudfvaqVIrMPkxMLX1xdAQyHC29sb7u7uwjpXV1cMGzYM8+bNs36E7ZRKdbMpVJT4HFAD4NPJEEm22jWum9RGfibSNXPtIRRX1mDHkyPh7GR260qTbNh3Tuf9t8cuItDbDUN7+AvLXvn2d3x64DzGDwjChzMHC8vL5LX4JvcCJsV2hb+nq85x1Go1yuS18HXXHZxg9nrdpohLv/lN533O+auNYnzzh5M6zbROXKhstI2+qav24Ve9ZMKQw+ev4rDeOY0lFcDN+/XLadObdREREVnK5MRi/fr1AICIiAgsXry4wzZ7kslkkMlkUCote/rn5iIWhpvVVlRRY9FxbUHNztvtgrFmjMb8dKoUeRcr8fjoXqhTquHqbDhp0BRefy+6hqhuvhbH+VXOX1i95wzWzBqMHgGe2HGiuNE2Cz4/CgDY8lgihkQ0JBefHjgPAPjhtxKdbef/OwcH88uw40Qxpg3qhpe35wnrfv7zMga9vAuDwv3MinHZf39rtOy7443jbI4pSYW1XLh6vdXORUREHZPZfSyWLVtmizjaDKlUCqlUisrKSqEWpyUW3t4XuZsaJxbhohK84rwOq5T3ALBf9Zdu23PWWLSmOqUKLi148q9SqfHNrxcQF9YJEQG6if+n+89h5a4/8O+/J2BAqC9Kr9XAWSyGn7uLwSZM+89cwZwbT+3zL8vxVc5fAICUxO4QiUTY+Vsxlk8aiOG9OpsV4ze5F3Tev/bd70js2Rmj+3WBUqWGk1iExVt+BdDQefm5CbfgsX/nGD3egTNXENXVt1GH7qgXf8C1mnqM7BOAg/kNg00czC8TftZ3pKDcrOtoiz49cB4vTx5o7zCIiKgdMzuxAICvvvoKmzdvRkFBAWprddsPHzlyxCqBtXeuTmKhKZS2d1xkiBOfxiin4wCeaf3ABDeTCTX7WLSaV7fnYc3P+di5cBT6Bnk3v4OWrUcvCIXyJcn98dhtvYR1L9xoyvP0lmOI7uaLL7MLAQAjegfg339PaHSsGWsOCD9rkgoA+GT/eeHneRsP6+yjNpCArvslH2IREOzrhte+O4mCsmqd9R9lncVHWWcxNMIff5Re0+kTsP/sFUx8/xf9Q+pYsesPrNj1R6Pl12oaEo2f/2RTICIiotZi9mPRd999F3PmzEFQUBCOHj2KoUOHonPnzjh79iySk5NtEaNFCgsLMXr0aERGRiI6OhpbtmwR1pWXl2Pw4MGIjY3FwIEDsWbNmlaNTWFg0rkg0c0nqvVK+zVB6ig1Ft8dL8IHu09bfJyaOmWzw/I2dHJueps1PzeM7JPxY+PCcnMOn7v53Xn9+5M4e6mq0TZ5RZVCUgE0NGM6cPYK1Go1pJ8fwcg3/tfscKim2Hf6Ml7//iRe+jYPL/5fHh7795FGSYW2Q+fKUF5dh2+PFVl8biIiIrIPsxOLDz74AB999BHee+89uLq64plnnsGuXbvwj3/8AxUVFc0foJU5OzsjIyMDeXl52LlzJ5566inI5XIAgLe3N7KyspCbm4uDBw/itddew5UrV1otNoWBPhZqrYnpev/ze6TpjWXfWjpK1+3HPzuCN3acwtGCxp1xfy0sx/q9+c3Ot1BeXYsBy37Ag2sOGt1GrVYjZX027v9wf6PjnSyuxLNfHcPF8ubbwH977GKjeQoAQG5gbof7Vu/HM1/9qlPjYMgDHx3AgbNl2H6sCIVl13HP+3ubjcOQGR8dwOnSa1Cq1Hjw44NYvedMi45DREREbZPZTaEKCgqEYWXd3d1x7do1AMDMmTMxbNgwvP/++9aN0EIhISEICQkBAAQHByMgIABlZWXw9PSEk5MTPDw8AAAKhcKkJ8rWVAn3Rsu0EwsA+OJQASbGhCChR2c4mTmcp8bp0mtY8p/jeDKpj9Hx+RvF4SAdtuuVKlyrqUcnz8ZJmLlq6pRwczE8DOmVqsZDgk6SNRSw/T1dMSm2a6P13x67iI9/zsdtfRv6B+w/ewVpW49hYnQohvfWnZ+gpk6FrD8aZnn+1w8nseNEMVISIzB3RA8kv/Mz1Grgj9JrwvbfHS9GYVk1Fm7KRZCPGxJ6+iPE113otDyspz/uig5FYk9/vPe/0/jGwAhBV+S12Hz4L2w+3HRiAeg2fWopea1SGB6ViIiIOh6zayyCg4OFmbfDw8Nx4EBDgSQ/P79FhfKsrCxMnDgRoaGhEIlE2LZtW6NtZDIZIiIi4ObmhoSEBBw6dMjs8wBATk4OlEolwsJujp1fXl6OmJgYdOvWDU8//TQCAoxPWGVtpepOJm334JqDWLnrFA6cvdKi5lGPf3YEh89fxcy1pt83nY/SyslWRXWdzkzFlTV12HGiqNHMwHVKFUa/tRtxL+/CucsNtUyvffc7nvjiKN7L/BNbjzRfYNb44bdi9H9hBz7++azB9SIRcP6KHP/J+QsV1+t0ag9OFd8s8B8+V4Yl/zmGXwvLseDzo8gtLBcmPgOALw4V4sGPDwqdif994Dy+OFQA7cGYPtxzFuevVOOlb/MwPD1TuL1H9ToQj3zjJxw+fxXbjxdh6Te/6fRpOHC2DC9sO4GklVkGkwoiIiKi1mZ2jcXYsWPx3//+F3FxcZgzZw4WLlyIr776CocPHxYm0TOHXC5HTEwM5s6da3D/TZs2ITU1FatXr0ZCQgIyMjIwfvx4nDp1CoGBgQCA2NhY1Nc3bgqyc+dOhIaGAgDKysowa9asRv0o/Pz88Ouvv6KkpARTp07Fvffei6CgILOvoyX+VHczeVvZT2cg++kM/D1d8bdh3ZF6e19h3cXy69h7+jImRIXAU9L4IzX0NF7fL39eRurmXAyJ8L8xcoxWMmGk9uKH34px4OwV/HPCLWbNX5D4eiaqa5X4z/zhiO/eCQ9vyEb2uauYPTwCL94zQNju9pV78NeNITK3Hy+CdExvfJSlmxhMievaaAjViut1UKnUOrUcT32ZCwB4ZfvvKL2mwKOjeqKzl0Rnv9ve3G0wXu206t7V+wFAp5+CIQOX/YB/TYvC89tOAAC+PnLB4HYXHXB4YSIiIqKWMDux+Oijj6BSNRQ0pVIpOnfujH379uGee+7Bo48+anYAycnJTXb6XrlyJebNm4c5c+YAAFavXo3t27dj3bp1WLJkCQAgNze3yXMoFApMnjwZS5YsMTo7eFBQEGJiYvDzzz/j3nvvNXgMhUIhvK+sbH7yq+bUtWBQrjJ5Ld7N/BNJtwTiYvl15F2sxLv/a+h8vCuvBIO6d8KdA4J1hhs1Ze6Cv61t6B+w/XgR5LX1GOFxGbdoVurVWBSWVePL7ALIfmpoQ39LiA/uHxwGlUqNiut18PNwgVKlxtnLcvQJ9NI5/2cHz6P6xgzAe06VIr57J2Sfa+jfsGHfOdw3uBsGhDYM43vuys3Ovmq1Gl8eKmgU997TV3Ao/woyT5Zi86OJcHdxQszynQCAX5fdIUx8dl2rNuSjrLM4U1qFtbOHCMvqmqgJKq+uM37jmvDsf272jzl0zvAwp0RERETthdklW7FYDLH45tPpBx54AA888IBVg9Kora1FTk4O0tLSdM6flJSE/fv3m3QMtVqN2bNnY+zYsZg5c6bOupKSEnh4eMDb2xsVFRXIysrC/PnzDR4nPT0dy5cvb/nFWJmhDrY780qwM68Er39/EkN7+GPurRG4c2CITjOcv3+SjfdmDIK7q+G+BgCw+9QllIku4u83HujrDyN63+r9KK68+aT9jxtNhR759DB+/L1UZ9vn77oFfx/ZU3j/z69PCD+fNjBq0V3v/oIwf3fEh+s2E1OrgSUGOrKXVdcKidX7P52Gp9Z1fXbwPB4f3dvgNWaeLMUvWkORZvz4p8HtgIZ+Lv2CvFDICcaIiIiIjDIpsTh27JjJB4yOjm5xMPouX74MpVLZqGlSUFAQTp48adIx9u7di02bNiE6Olrov/Hpp58iKioK58+fxyOPPCJ02n7iiScQFRVl8DhpaWlITU0V3ldWVur01WipN+ruxzMum4X3arUIaFkfbR2H8stwKL8M/YO9cenazZqWH38vxS1Ld6B3oBf+M3+48ES/KaUVNfj2j3OYFt8Nbs5inaQCAM6XVaNKUd8oqQCAVbvP6CQW2r47XozfixrX/BSWXUdhmW4h3tBcBQDwjy+O6pxL2xs7TuGNHacwuLvhviyaWhoAOKnVj8KQF/8vr8n1RI7CGfXwgAIeqIGHqOFfTyighAj2nHSTiIjaP5MSi9jYWIhEIqjV6mab1SiVyibXt7YRI0YITbf0DR06tNlmVBoSiQQSiQQymQwymcxq1+kC294vYwXm06VVGPzKLux+egy6+jUenUqkVUsxY81+lMMbv/5VLvR50LYrrwQDl/1g8DxX5LX44lABpg7qisPnGg/pmvzOz6ZeSosdPt/4vET25gSlkAB4imrgDgU8UQMPUUMi0PBvjbC+YduG5do/e6IG7qKGfd2hgETUuL8ZAJxRhQBY1LoXSUREHYpJiUV+fr7w89GjR7F48WI8/fTTSExMBADs378fK1aswBtvvGHV4AICAuDk5ISSkhKd5SUlJQgODrbquexlg3I8Frr8R3jfmnNG1CnVuPX1/xlcZyh93GqkA3Jz0rYet9t8HETWo4YEdfDCdXiJrsMLNfDCdXiKrsML1+Etug5PA+u8byzz0EkcauAmalnfHVPVqZ1QDQnkcMN1tQQF6kD0an43IiKiFjMpsejevbvw83333Yd3330XEyZMEJZFR0cjLCwML7zwAiZPnmy14FxdXREfH4/MzEzhuCqVCpmZmViwYIHVzmMOqVQKqVSKyspK+Pr6Wny8CnjpvJfYuLDREqJ2PUUetXeuN5IBTSHfEzU3Cv8NBX5P1MD7xnudxOBGonBzXQ1cRNavYaxXi1ENN8jhhmp1QyJQDTfI1W6ohgTVN/7VrK+G7nJD21bDzeDgEOesHj0REdFNZnfePn78OHr06NFoeY8ePZCXZ3479KqqKpw+fVp4n5+fj9zcXPj7+yM8PBypqalISUnB4MGDMXToUGRkZEAulwujRLU2azeFAoB9ykgMd2q4d+5ofmjY1qCdTIiZWFArc0H9jUJ+w5N/L1QLP3uKahreGyr8i2puJA83kwZjTYMsUaV2QxXcIVe74RrcIVe7owruqIIbqtTukMMdVWr3G+tubAs3yNXuOgnEdUiggAus0rGKiIjIzsxOLG655Rakp6fj448/hqtrwzwBtbW1SE9Pxy233NLM3o0dPnwYY8aMEd5rOkinpKRgw4YNmD59Oi5duoSlS5eiuLgYsbGx2LFjR6vNNaHP2jUWAPBM/aP4xelJAICPqLqZrVuHbmLhGLNwU9vggnp4oxreomr4oBo+Ijl89N5747qw3EdUfSN5uJkY2KLmTq6WQA53XLtRuNckANqF/2taSUEVNMlD4wRBbf7cokRERO2e2YnF6tWrMXHiRHTr1k0YAerYsWMQiUT4v//7P7MDGD16dLMzdi9YsMBuTZ/02aLG4i91F1Sp3eAlcpzJ0py0kglnJhYdSEM/Ah/I4SOqhi/k8BZdF95730gEGr+/mTB4iBTNn8ZE19WuDTUBQqG+ofBfJRT0PbTWueGa2kNIGqqEBKFhnYrJABERkU2ZnVgMHToUZ8+exWeffSYM+Tp9+nQ8+OCD8PT0bGbvts8WNRYAMFzxLo65PWK141lKu/mTk0jVur3KqUWcUY9bxb/BG9UoVfuhHk5wE9U2dCzGdXjfSAS8RddvJAT6NQkNCYOrlfoRXFO7oxIeqFR74NqNfyvh2ej9Nb0kQFNbIIc7lDA+3woRERE5FvOnfgbg6emJRx5xnEJwe1AJL8ysXYJPXV8Xlv3X9Z94qPafuAaPVo9HLLpZS8GmUK1JDW9ch5/oGjqhCn6iKvihChJRHVRqMdxFCvhCjk6ia+gkqoIvqtDpxjaBonJ4i6wziZ9SLRIK/ZpkQP/9NXgIiUPDOg9U3HhfBQ/WEBAREXUwLUosOjJbNIXS+FkVjXsVS/GV5CUAQLQ4H8fd/o5xijdxRt3V6udrinYy4WTjxKKX6AIedPofVtdPxCX42fRcrUmCWp0kwA9V6CS6Bj/IhcShk6hK+NlXVAU/yC0aeahc7Ynz6iAEiCpQp3ZGDVxRDQmuqRuSAP1/G9ceNCyXww3sUExERETmYGJhJls1hdI4rO6PGbX/xBeurwrLMiVPo0jtj7/VprVagqHTFMrGk/htdV0GX1E1eosuIKVuiU3P1RJiqOADOTqJqtAJ1+ArkqMTbiQLN5b5ieTw01lWZVFfg+tqV1yFF8rV3riq9oICLhBDjRq4olztiXJ4o1ztiavwRrnaC1fVXiiDN/LVIWw+RERERHbBxMIB7VcNQETNZ3jC6WsscvkKABAiKkOm5GkcU/XAHlUMDqn6I1vVDzWQ2CQG3cTCtjUWvjdGwhom/t2m5wHUcIeiUU2Bn1CbUKVTk+Ar/CuHWNSyTiZKtQjl8Goo/KMhSShXe6EcDclAuWYZvHBVfTNZUMDVytdOREREZFtMLMxky6ZQukR4TzkV7ymnYKHzV7hbfAC9xEWIFucjWtwwE7pKLcI5dRBOqcNwUhWOk+ownFKHoUAdZHH7dls2hQrEVQSKruKEuqfOcmNDjDqjHoEoR2/xBfyl7oJQ0RV0wjWhRsAPVVBBhE6iKgCAB2qEEY00IxU1NEGqsmhOg2tqd1TAE1fVN5IAreSgXO2ps0xTk3AN7hyalIiIiDqEFicWtbW1KC0thUqlW+gMDw+3OChHZuumUI2J8Hb9fXgb96ELynGb06+432k3+oguoJOoCj1FxeiJYiQ7ZQt7XFe74rQ6FBfUXVCi9kOpuhNK4YdKtSf8RZXIU3XHJbUfquAOX1EVRopP4E9VV+So+0IFMURQ6SQWlnXeViNRnAcfyFGk7gwlnLBd8hwA4IP6e1Cp1u2Y/oXLK1AD8BXJ4SuSww9VVh+Gt1btpFNToGlKpFl2FV6oUOsmCOXwMjiTMRERERE1MLuk9Oeff2Lu3LnYt2+fznK1Wg2RSNQKT/I7rkvww1fK2/CV8jYAQAAq0F9cgH6iAvQXFaKfuBB9RX/BXVSLKNE5ROGc2ee4ovaGL+Q67fTTXT5GldoDYpEKzlDCCUpIUAc/kRy1amc4iVSoVkvggnq4iuohQR1cUQcJ6puc6Oxx5/82WpboZHj2dqVahEJ1IMJFpbgEX+SrQyCGCgq1Cy7BD26oxSW1L+rhjGpIUKH2FDopX4OH0C/hqtqLHZOJiIiIbMDsxGL27NlwdnbGt99+i5CQEIhEHauAZs2mUN4SZ1xTtLxpzmX44hdVFH5BlLBMDBUiRMXoKSpCiOgKgkRXEYhyBIrK4SOSY5D4NABAoXYxWOjvLLoGQHdSvCjxOeNBiPT+bUKR2h9iqBAkKgcAHFL1wyW1L06qwnFa3RXVcENX0WVUqd1RDk9UqD2FGoVrN4YvdUUdauFs2gmJSOAs5u8MERHZltmJRW5uLnJyctC/f39bxOPwrNkUauPDQzHlg33Nb2gGFcQ4qw7FWXVos9u6og5uUKCTqAphokuoVTtDARd4iBTwQI3QZ6FaLYEYaighhhJi1MEZSohRofaE041mUy4iJWrVzqiFCxRwQS2cUat2QS1cUAkP1MLFKtdnreMQdTRdO7nbOwQiImrnzE4sIiMjcfnyZVvE0uHEhXey6/lrcaPgr/bCeXXwzRUtGQCJM3MTOTRXJw4iQEREtmX2/zT/+te/8Mwzz2D37t24cuUKKisrdV5EROR4xB2s2SoREbU+s2sskpKSAADjxo3TWc7O20REholEgJq1ekRE1M6ZnVj89NNPtoiDiMhqPF2dIK/teA85YsP8kDK8OxZu+tXeoRARUQdkdmJx22232SKONqP1Jsgjapm05P5I//6kvcOwKxdnMdCCxMLSkdrsbZv0VgBAnVKNZ746ZudoiIioozGpj8WxY8eEifCOHTvW5Ku9k0qlyMvLQ3Z2dvMbW2BybPOjOhEZMrpfoL1DsJolyf3x6KiezW+op6XNjvY/N675jSz06cNDbX6O+weH4cfU9vkQaNWqVYiOjoaPjw98fHyQmJiI77//XlhfU1MDqVSKzp07w8vLC9OmTUNJSYkdIyYi6jhMSixiY2OFkaBiY2MRFxeH2NjYRq+4uDibBtuRsKMl2UtkiI+9QwAALBjTG4/d1gsuVhzNaGiEf5PrvSTOeHnyQKudT+OW4Jv31MOVM7hbolu3bnj99deRk5ODw4cPY+zYsZg0aRJ+++03AMDChQvxf//3f9iyZQv27NmDixcvYurUqXaOmoioYzDpf+z8/Hx06dJF+Pns2bPIz89v9Dp79qxNg22JwsJCjB49GpGRkYiOjsaWLVsabVNdXY3u3btj8eLFdoiQyDQSZzFmJXa36TnG9Q9EYq/ONj2HqTTzuf19ZA/06uJp1r5qA1UWU+K6YvNjiY2WB3pLdN7PHNYd80b2MOt8xkwb1A33xXfDhzPjrXI8AiZOnIgJEyagT58+6Nu3L1599VV4eXnhwIEDqKiowNq1a7Fy5UqMHTsW8fHxWL9+Pfbt24cDBw7YO3QionbPpMSie/fuwgzb3bt3b/LlaJydnZGRkYG8vDzs3LkTTz31FORyuc42r776KoYNG2anCIluCvN3h7EJknsHeiH19r7NHsPZSYSFSc1v11b4ebgic9Fo9An0MnkfQ02h3p4ea3Dbf90b3WiZyEo1hn2DvPDmfTEI8/fQOrZVDt2sjlDpqVQq8eWXX0IulyMxMRE5OTmoq6sTRi8EgP79+yM8PBz79+83ehyFQsGh04mIrKDFdfJ5eXkoKChAbW2tzvJ77rnH4qCsKSQkBCEhIQCA4OBgBAQEoKysDJ6eDU9A//zzT5w8eRITJ07EiRMn7BmqDktGpgzwkuBylcJqsVDraapvwJBmmvFo9AzwRHJUMN7+8Q+zz+/n4Wr2Pq3FnN+JprZNvb0vVu4y/940J/ufSbhQfh2TZXutfmzSdfz4cSQmJqKmpgZeXl74+uuvERkZidzcXLi6usLPz09n+6CgIBQXFxs9Xnp6OpYvX27jqImI2j+zGy+fPXsWMTExGDhwIO666y5MnjwZkydPxpQpUzBlyhSzA8jKysLEiRMRGhoKkUiEbdu2NdpGJpMhIiICbm5uSEhIwKFDh8w+DwDk5ORAqVQiLCxMWLZ48WKkp6e36HjWcE+M4U7aj97W0GF1alxXq53ryXF9rHYssg0PVyej6x4xoRPz2P6BEIlETSYoYf7uRtctSe6v8z7plvbTEVzjH+P64MGE8JsLDNwrUx72D4nopPO+i7cEsWF+FsVGpunXrx9yc3Nx8OBBzJ8/HykpKcjLy2vx8dLS0lBRUSG8CgsLrRgtEVHHYXZi8eSTT6JHjx4oLS2Fh4cHfvvtN2RlZWHw4MHYvXu32QHI5XLExMRAJpMZXL9p0yakpqZi2bJlOHLkCGJiYjB+/HiUlpYK28TGxmLgwIGNXhcvXhS2KSsrw6xZs/DRRx8Jy7755hv07dsXffvar9mIfuFEo3+wD/JeGo8V98dY7VydvRz3aTQ16N1Ecx/9TswTooKNbqs28sx+YVJfLBjT2+h+XbwlOknJwK6+Rre1uSba8gzu3gnSMb2MrjfUx0Kbu4vxBA4wrXaks6fE4PJB4X5N7mdqCyXty+8IzZrM4erqit69eyM+Ph7p6emIiYnBO++8g+DgYNTW1qK8vFxn+5KSEgQHG/99kUgkwihTmhcREZnP7KZQ+/fvx//+9z8EBARALBZDLBZjxIgRSE9Pxz/+8Q8cPXrUrOMlJycjOTnZ6PqVK1di3rx5mDNnDgBg9erV2L59O9atW4clS5YAAHJzc5s8h0KhwOTJk7FkyRIMHz5cWH7gwAF8+eWX2LJlC6qqqlBXVwcfHx8sXbrU4DEUipvNi6zVBle7AOPt5oxrNTfH0G/56DHmN6R6eEQPKOqV+PeBghaek6xB1Eyxs7n1k24MU2ysXB3oY7gwbK7bI4OwK89+Q3h+Nb/h91j20xmD61V2nOV686OJ6P3P742uD/JxM+k4+el3IWLJdgANyQgn7jZOpVJBoVAgPj4eLi4uyMzMxLRp0wAAp06dQkFBARITG3fcJyIi6zK7xkKpVMLb2xsAEBAQINQKdO/eHadOnbJqcLW1tcjJydHpiCcWi5GUlNRkRzxtarUas2fPxtixYzFz5kyddenp6SgsLMS5c+fw1ltvYd68eQaTCs22vr6+wku7OZUlbuvbRfh5bH/7NTt54e5IvDI5ym7npxtEDXMQGFwlMl4TAQDDevoLTetaMo9D+I0Oxj20RmDyNJDchvt74L0ZhoeWdnGy3aN1Q7UQz991i+FtmymGN3d/LLkKZyPD4/5nfiLWzR6MUD/jTdGoeWlpacjKysK5c+dw/PhxpKWlYffu3XjooYfg6+uLhx9+GKmpqfjpp5+Qk5ODOXPmIDExkQN0EBG1ArMTi4EDB+LXX38FACQkJOCNN97A3r178dJLL6FnT/MnsmrK5cuXoVQqERQUpLO8uY542vbu3YtNmzZh27Ztwnwbx48fNzsWW7XB7d7ZEwfSxuHky3eaXJj56rFErJ89xOh6Y4UmR2xNEdNO26SbMnqTISIAL94zAKseGtRonVszzXdiwvyE0YyMFayb+g48N6Ghf8WMIWF4clwfbH40EX8b1h0jegdg2cRIYbuhPfyNxnKfkaTIkKmDLO8/9PeRlv/NaS4JsZb47v4Y21/3b1m4vwcyjIxWRYaVlpZi1qxZ6NevH8aNG4fs7Gz88MMPuP322wEAb7/9Nu6++25MmzYNo0aNQnBwMLZu3WrnqImIOgazE4vnn39emIX7pZdeQn5+PkaOHInvvvsO7777rtUDtNSIESOgUqmQm5srvKKiGj+Znz17Nt566y2jx9G0wf30008xbNgwjBtnvRl6g33dmi00atwRGYTBEf4Y00TtxmAj/TZMaahtzc7ipgjr1P6e3ob7e+AfWh3lI0N8MGOoaQVukUgENxcnJEeFNOrI7SVx1vmeeEmMN5XTTi7HaX1XRCLgzoEhTe7j7CTGwtv7YmgPf7i7OuHff0/AnFtNm9fB1YzJ7LQ7iq9NGYwhEZ3w+lTjtWZ9Ar1NPvYTYy0cqMDCLFzzq3Zr74Amt3NxEmFyK//OtXVr167FuXPnoFAoUFpaih9//FFIKgDAzc0NMpkMZWVlkMvl2Lp1a5P9K4iIyHrMTizGjx8vzGLau3dvnDx5EpcvX0ZpaSnGjh1r1eACAgLg5OSEkhLdttzNdcRrz9y1CpuJPQ1PZOZppMCZ2LP54UpX3B+Dx2672Sm2Z0DzE5NNG9QN3k0UcrUtvTtS57215gswlZOxSSKsyFqXZKjmyc3FCV8+Mgyfz0uAl8TF6L7Bvjfb8a/UeiJ+S4gPfN1d8JD2qEgmGtqj4ftjapLUnEBvN+xbMhZfPjIM424JwpbHhuOBocbjenXKQMwYGo5vpLca3SbIR4IfnhqFx0cb79itL6abHwDzkqLmHHn+dnz3j5HNdn7v1aWhs/47D8RiZJ+mkxAiIiJHZ9b/pHV1dXB2dm4034O/v79NCoiurq6Ij49HZmamsEylUiEzM9NuHfGkUiny8vKQnZ1t9WObcg+1n2Kv1prNV380oZhujQs0vQ088fV0dUJ895s1HCKRCM/e2Q8/LR6N068mI7yzR6N99K24PwYvTR7Q7HYAMHeE7pPv1kwrhkR0wkoTRtkaEGrZiDBJt+g2dzH0scoeHGRwufYilZE2bcN6dsbwXgG4N76b0RgCvCT4z/xEfPePkfB1d0HmotvwydyhiL5RiG5JgvX53xNw8LlxiO9u2nwapgj1c8cwIwmyvs5eEqRPjWqy+dz0IeHoF+xt1t+jzl4SHH4+CbnLbm9+Yy1NxdHJ0xWRTXyPvpHeigeGhOG1GzU0k2K7YuPcoWbPMN4UibP1EiUiIiJTmPU/j4uLC8LDw6FUKq0WQFVVldBECQDy8/ORm5uLgoKG0YlSU1OxZs0afPLJJ/j9998xf/58yOVyYZSo1iaTyRAZGYkhQ4z3cbClRXf0E372db/5xHrp3ZHwdmuoNRjXPwifzRuGCBOSgqNL78BXj+kmaSKRCD0CPOHsJLZ5wb81Kyw2P5qIiM5NF9zOvX4X3jXSMdkUb9wbjafH92t2O1NGZ2qug3FkqA+y/5mEybGhEIuAWYkROuvju/sLhdteXbx0BgpoCWcnscERjWYldsesxO74MfU2i47fUlNa0JRIv19FgJfE5FHY7ooOwdK7I/HwCNOahxkSE+aH16dFI8Dr5vdAJBLpNKHTFmziSFLaunXywKO39cQwE2oqiYiIrMHsR1r//Oc/8dxzz6GsrMwqARw+fBhxcXGIi2sozKWmpiIuLk4YnWn69Ol46623sHTpUsTGxiI3Nxc7duxo1KG7tdiyxsIU2gURbWoAuxePxmd/T8CEqGB4SZyx46lRiGqmKYars9gqtU0tGYUIaJ0aC193F/QPNtw+38/jZnK26RHDo8Z8Pi+h0TJjTW3ui+9mcn8ZQ7QrEozVWGjr4i1BxgNxOPlyMrqaMdqQofve0i7Mfh6ueGnSQPQO9Go0clNnz5bPnWLqd+ONe6NbfA7j5zZ+9j6BXpg7ogdcW6FG4D/zE3Fr787YMHdoi/ZPS77F8v4mREREJjJ7ooT3338fp0+fRmhoKLp37w5PT90nwEeOHDHreKNHj252MqsFCxZgwYIF5oZqEzKZDDKZzKq1NtbS2UuCW3vfTDzcXJzwwt2RuP9D04bmtQf9pGZE7wD0CfLC+r3nTD6GxFmM+O6dsO/MlUbrvnxkGAZ37wSxSNToXFsfH46+Qd4oKr8OLzdnhPg2Lpi/dV8Mhvdq3PZd4mw4eTA1STO2lfb+2r8Vc5vpPN0ahVx9EZ09cO5Ktc5Efdox71syFtfrlBi3Yo9N49CeOLA1EtUUvZohW4rv7o/P/t70MKkDQn1wd3Qo+jQxuSIREVFrMDuxmDRpUqt3uHUkUqkUUqkUlZWV8PW146zEVqA/6pAhtv6stY/+wUODcHtkEJzFIozsE4C5Gw4DAKRjejWaCE0k0q0l2Th3KKJe3InrdboJn377fe2C76Dwhr4lfYJ0azPCOnnAWSyCl5szphkZElX7tkwb1A3/OfKX8Ws0cgubm/RMu8Zi6cTIJra0DnNrnX5YOApl8lqDCRnQ0H/i/BW5FSJzHAk9/NHJgloYS/yYOgpJK7MaLReJgPlmdFYnIiKyFbMTixdffNEGYbQdtqyxaK4IPyjcz+xjdvIwPnLQd/8Y2ez+pqYVLW0Kpa13oJfw9Lmz582aFx833Wvo2cUT/5oWjftW36yJcXYSo2snd5wurbI4DldnMU4sH2+wlkNDu8nSW/dFQw01/NybKnCaX5NhjXtqTM8ujZ9um9vZV+LsZDSp0LDlNViixU337PhMpXegN24J8cHvRZX2C4KIiKgJZicWPXv2RHZ2Njp31n0SXF5ejkGDBuHs2bNWC84R2bLGormyTlPj+BtrTtYnyBvP33ULAg10/owwYShZW9Np+qN1CV5uxr+a/1s02oYRNdDvJ/H9kyORf1mOxz9raOqnHbdIJMLK+2PNOr5+AdXdxQnX65QY3Uqzrz+YEI4yeS1G9AnAvtNXcPxCRZNzo7QVts5jHkrobuMzEBERtV1mJxbnzp0z+LReoVDgr7+MNwch+7HG7MTWMOfWiEbLjD0B7qX3RH3G0HB8cagAd0Tap9P+LSE+6Btk+gRt+vw9dWtd9PPArGfG4PeiSp25DD6eNRjzPj2MN+9tfohcc7ncmAQPAIZEWG/UIP3rsqSgb2ntwKHnxmFTdiFW7PrD7H17BBgeUW1iTKhlQdlAUx3NiYiIWpPJicV///tf4ecffvhB52m9UqlEZmYmevRo+fCLbYU9m0LpD5HZGpor3A25Mct3c5H9uuwOneFxheNr/Wzs+kQi4MV7InHHgCAM62F8zgNTilfNDRRg6r5iE0q9acn98dbOU3hlchR6dfHEqeJr+PH3UoPbdvGWoIu37nCwSZFB+POVZDhbceI2W9Mftczf42bzMCexCEpV632HA33cEGVgPhcAuGNAEDbsOwd/I/0l7o0PQ1FFDYb17IwHPjoAAPBpohattTCFICIiR2by/5STJ08G0NDsIyUlRWedi4sLIiIisGLFCqsG54js2Xm7qTKxvZqyr/5bfPMbAQaTCn1NPXmVODthTD/zmurc2tu0iddawpT+CI/e1gsPj+ghJAYfpwxBxJLtAEx/Gt+WkgoAmDeqB05fqsKdAxpGivL1cMGXjwyDq7MYfxRfw5Ktx00+lv6kj9Y0vFcAtv9jBML8DddMOIlFeCqpr83O31Khfu7IYx8LIiJyUCYnFiqVCgDQo0cPZGdnIyCg8RCcZKFmCpvWTB5Mn3i56Q0733hC7dnECFO3N9N86Z6YUFyuUhgdLrOlTT3WzBrcaFkX7+YnpjNG+/6P6huA2/p2Qf+QpptHNZUYiPSHtmoHPFyd8Z7eBIOakbkKrlSbdIyvHx+O3MJy3BUVYvb5zfmmDAhte6O6vTplIJzEDZMhPvTxQQD27VBORESkzey6/fz8fFvEQWiYKdeQQeF+OFJQjvsHhxndt0czM0q3lKmFltsjgzAhKhixYX547buTwvJjL94Bb0nTX7PmZrr2bqYJiqGi+cCuPgZnUu7WyQPvPxjXzAhOhjlp3Ywu3m74pIWTllHT4sI7Ie7GUMCWcjI9g3YIzeWZQT5u+HCmbsIc083PdgERERGZweTEYv/+/bhy5QruvvtuYdnGjRuxbNkyyOVyTJ48Ge+99x4kkpY/EW4LbNnHYv5tvXClSoHxA4J1lm96NBGXrikQamBm5Z0LR+FylcLsEZ6sPT+Fs5MYHzzU0CxKO7HQHyoWaBhhKfmdn2/EYfyYr04ZiL2nL2PqoG4mxWDqJd0d3bIOuGKxCNv/MQJ1SrVJTbua1rYKvG2Ffrk8sWdnxIb5oW9Qy5tVaeYpcbQZrHctHIXtx4scZnAGIiIikxOLl156CaNHjxYSi+PHj+Phhx/G7Nmzccstt+DNN99EaGhou5/nwpZ9LNxdnfDqlKhGy12cxAaTCgDoG+Rt0WhF5gj390BBmWnNWZpyS4iP8HNTT2gfSuje4uE93YzMjG2ptth8piNzdhJjm/RWi47xxr3RmD+6Z6ORyuytT5A3nmql330iIiJTmNwzNDc3F+PGjRPef/nll0hISMCaNWuQmpqKd999F5s3b7ZJkGQ/2s/Vv358OFY9NAid7TTzcHO0+2L8695oO0ZC7YmTWITegd42n4UeAIb0aBj617WNddonIiICzEgsrl69iqCgm51w9+zZg+TkZOH9kCFDUFhYaN3oyKF09pIgOSoEzk6O2Yzn2eR+AICUxO4O93SZdEd5MtSxnoCufu7Yt2Qsjiy93d6hEBERmc3kplBBQUHIz89HWFgYamtrceTIESxfvlxYf+3aNbi4WNrunByNrR/SWvP4Y/sH4deld8DH3f7zDZjCMdMz2xnY1Rer/xaPbp3cMbCrbZqUtYd7aqzZIxERkaMzucZiwoQJWLJkCX7++WekpaXBw8MDI0eOFNYfO3YMvXr1skmQZH22LIC9MnkgAKB7Z8OjXFmdVj8NXw+XVmmyQi1z58BgmyUVgP3mcyEiIiIzEouXX34Zzs7OuO2227BmzRqsWbMGrq4329qvW7cOd9xxh02CdCQymQyRkZEYMmSIvUOxG83oOFPiuhpc/7dh3XH4+STseXpMa4bVpohEwLN39gcAzBzWsg7qRERERI7E5DYjAQEByMrKQkVFBby8vODkpDvqzpYtW+Dl1f7btdtz5m17MDQ53UMJ4bi1dwDCjcxaDAABXu172GFr+PvIHrhjQFCT95GIiIiorTC7MbqxwrS/v7/FwVDrMbW1kKHtRCIRepg5b4bR47eLVvEtIxKJ0N1GExsSERERtba20cvVAoWFhZg5cyZKS0vh7OyMF154Affdd5+wPiIiAj4+PhCLxejUqRN++uknO0bbepqb4be1qNkqnoiIiBxUxJLt9g6hTWn3iYWzszMyMjIQGxuL4uJixMfHY8KECfD0vPmkeN++fR2iGVdLOHI/6GAfNxRX1iChJ2vLyD7uH9wNmw//hVF9u9g7FCIiIrtr94lFSEgIQkJCAADBwcEICAhAWVmZTmLRETlywmCqLY8l4qucvzArkZ2fyT5emjQQY/sHYUSfAHuHQkREZHd2n941KysLEydORGhoKEQiEbZt29ZoG5lMhoiICLi5uSEhIQGHDh1q0blycnKgVCoRFhYmLBOJRLjtttswZMgQfPbZZy29DGohS/pYhPl7YOHtfdG5DXYUbwd5HQFwc3HCnQOD4SVp989oiIiImmX3/w3lcjliYmIwd+5cTJ06tdH6TZs2ITU1FatXr0ZCQgIyMjIwfvx4nDp1CoGBgQCA2NhY1NfXN9p3586dCA0NBQCUlZVh1qxZWLNmjc42v/zyC7p27YqioiIkJSUhKioK0dHRNrjStqkjd64mIiIiItPZPbFITk5GcnKy0fUrV67EvHnzMGfOHADA6tWrsX37dqxbtw5LliwBAOTm5jZ5DoVCgcmTJ2PJkiUYPny4zrquXRvmYggJCcGECRNw5MgRg4mFQqGAQqEQ3ldWVpp0fY7K1IQh2NfNxpF0TOL20BaNiIiISIvdm0I1pba2Fjk5OUhKShKWicViJCUlYf/+/SYdQ61WY/bs2Rg7dixmzpyps04ul+PatWsAgKqqKvzvf//DgAEDDB4nPT0dvr6+wku7OVVbZOpoTE8m9cGk2FCsTRls44g6hvviu2F4r86IsuHs00RERET24NCJxeXLl6FUKhEUFKSzPCgoCMXFxSYdY+/evdi0aRO2bduG2NhYxMbG4vjx4wCAkpISjBgxAjExMRg2bBhmzZpldEbttLQ0VFRU4K233kK/fv3Qu3dvyy6ujfBxc8E7D8Rh3C1BzW/cAh3twf2b98Xg83nDIBZ3sAsnIiKids/uTaFsbcSIEVCpVAbX9ezZE7/++qtJx5FIJJBIJFi0aBEWLVrU5mfeZt8Jao8iQ7ztHQIREVGH5dCJRUBAAJycnFBSUqKzvKSkBMHBwXaJSSaTQSaTQalU2uX87Y2jTNRHbdt3/xiJ4xfKMX6Aff4uEBERkYM3hXJ1dUV8fDwyMzOFZSqVCpmZmUhMTLRLTFKpFHl5ecjOzrbL+a2GFRbUjkSG+mD6kHCIOlrbOiIiIgdi9xqLqqoqnD59Wnifn5+P3Nxc+Pv7Izw8HKmpqUhJScHgwYMxdOhQZGRkQC6XC6NEtTbWWFgXy4FERERE7YPdE4vDhw9jzJgxwvvU1FQAQEpKCjZs2IDp06fj0qVLWLp0KYqLixEbG4sdO3Y06tDdWqRSKaRSaZvvY0FEREREZE12TyxGjx4NdTMN7RcsWIAFCxa0UkRNY40FEREREVFjDt3HwhG1mz4WRERERERWxMTCTDKZDJGRkUbnuyAiIttJT0/HkCFD4O3tjcDAQEyePBmnTp3S2Wb06NEQiUQ6r8cee8xOERMRdRxMLMzUXmosHKXPNDtvE5E59uzZA6lUigMHDmDXrl2oq6vDHXfcAblcrrPdvHnzUFRUJLzeeOMNO0VMRNRx2L2PBRERkal27Nih837Dhg0IDAxETk4ORo0aJSz38PCw23xHREQdFWsszNTWm0Ld1rcLAOChhO52jqQBJ8gjIktUVFQAAPz9/XWWf/bZZwgICMDAgQORlpaG6upqe4RHRNShsMbCTG19uNlVfxuE7HNXkdizs71DISKyiEqlwlNPPYVbb70VAwcOFJY/+OCD6N69O0JDQ3Hs2DE8++yzOHXqFLZu3WrwOAqFAgqFQnhfWVlp89iJiNojJhYdjIers1Br4QjYx4KIWkoqleLEiRP45ZdfdJY/8sgjws9RUVEICQnBuHHjcObMGfTq1avRcdLT07F8+XKbx0tErS9iyfYm1597/a5WiqRjYFMoIiJqcxYsWIBvv/0WP/30E7p169bktgkJCQCA06dPG1yflpaGiooK4VVYWGj1eImIOgLWWJiJE+QREdmPWq3GE088ga+//hq7d+9Gjx49mt0nNzcXABASEmJwvUQigUQisWaYREQdEhMLM7X1PhZERG2ZVCrF559/jm+++Qbe3t4oLi4GAPj6+sLd3R1nzpzB559/jgkTJqBz5844duwYFi5ciFGjRiE6OtrO0RMRtW9MLMjO2MmCiEy3atUqAA2T4Glbv349Zs+eDVdXV/z444/IyMiAXC5HWFgYpk2bhueff94O0RIRdSxMLIiIyObOnj2Lnj17WnwcdTNjVIeFhWHPnj0Wn4eIiMzHzttERGRzvXv3xpgxY/Dvf/8bNTU19g6HiIhsgImFmdr6BHmOJqYb+6kQdQRHjhxBdHQ0UlNTERwcjEcffRSHDh2yd1hERGRFTCzMJJVKkZeXh+zsbHuH0qb9mDoK6VOjcN/gMHuHQkStIDY2Fu+88w4uXryIdevWoaioCCNGjMDAgQOxcuVKXLp0yd4hEhGRhZhYkF30DvTGjKHhcBKz8zZRR+Ls7IypU6diy5Yt+Ne//oXTp09j8eLFCAsLw6xZs1BUVGTvEImIqIXafWJRWFiI0aNHIzIyEtHR0diyZYvO+vz8fIwZMwaRkZGIioqCXC63U6RERO3f4cOH8fjjjyMkJAQrV67E4sWLcebMGezatQsXL17EpEmT7B0iERG1ULsfFcrZ2RkZGRmIjY1FcXEx4uPjMWHCBHh6egIAZs+ejVdeeQUjR45EWVkZJ0kiIrKBlStXYv369Th16hQmTJiAjRs3YsKECRCLG55v9ejRAxs2bEBERIR9AyUiohZr94lFSEiIMNtqcHAwAgICUFZWBk9PT/z2229wcXHByJEjAQD+/v72DJWIqN1atWoV5s6di9mzZxudATswMBBr165t5ciIiMha7N4UKisrCxMnTkRoaChEIhG2bdvWaBuZTIaIiAi4ubkhISGhxSOJ5OTkQKlUIiysocPwn3/+CS8vL0ycOBGDBg3Ca6+9ZsmlEBGREbt27cKzzz7bKKlQq9UoKCgAALi6uiIlJcUe4RERkRXYPbGQy+WIiYmBTCYzuH7Tpk1ITU3FsmXLcOTIEcTExGD8+PEoLS0VtomNjcXAgQMbvS5evChsU1ZWhlmzZuGjjz4SltXX1+Pnn3/GBx98gP3792PXrl3YtWuX7S6WiKiD6tWrFy5fvtxoeVlZGXr06GGHiIiIyNrs3hQqOTkZycnJRtevXLkS8+bNw5w5cwAAq1evxvbt27Fu3TosWbIEAJCbm9vkORQKBSZPnowlS5Zg+PDhwvKuXbti8ODBQg3GhAkTkJubi9tvv93CqyIiIm3GZsyuqqqCm5tbK0dDRES2YPfEoim1tbXIyclBWlqasEwsFiMpKQn79+836RhqtRqzZ8/G2LFjMXPmTJ11Q4YMQWlpKa5evQpfX19kZWXh0UcfNXgchUIBhUIhvK+oqAAAVFZWmnVNddflUCmqIa+6hspKD7P2JSIyl/zaNagU1aivEZv990qzvbGkwBSpqakAAJFIhKVLl8LD4+bfPaVSiYMHDyI2NrbFxyciIsfh0InF5cuXoVQqERQUpLM8KCgIJ0+eNOkYe/fuxaZNmxAdHS303/j0008RFRUFZ2dnvPbaaxg1ahTUajXuuOMO3H333QaPk56ejuXLlzdarqntMNfUjBbtRkTUIoUAfJ9r2b7Xrl2Dr69vi/Y9evQogIbk5Pjx43B1dRXWubq6IiYmBosXL25ZYERE5FAcOrGwhhEjRkClUhld31xTLI20tDThyRsAqFQqlJWVoXPnzhCJTJ/krbKyEmFhYSgsLISPj4/J+7V3vC+G8b40xntimC3ui1qtxrVr1xAaGtriY/z0008AgDlz5uCdd97hZ0ZE1I45dGIREBAAJycnlJSU6CwvKSlBcHBwq8YikUgazXHh5+fX4uP5+PjwP1gDeF8M431pjPfEMGvfl5bWVOhbv369VY5DRESOy6ETC1dXV8THxyMzMxOTJ08G0FBTkJmZiQULFtg3OCIiatLUqVOxYcMG+Pj4YOrUqU1uu3Xr1laKioiIbMXuiUVVVRVOnz4tvM/Pz0dubi78/f0RHh6O1NRUpKSkYPDgwRg6dCgyMjIgl8uFUaKIiMgx+fr6Ck1FrVXzQUREjsvuicXhw4cxZswY4b2mH0NKSgo2bNiA6dOn49KlS1i6dCmKi4sRGxuLHTt2NOrQ3VZIJBIsW7asUbOqjo73xTDel8Z4TwxzxPui3fyJTaGIiNo/kdqScQSJiIhMcP36dajVamG42fPnz+Prr79GZGQk7rjjDjtHp6uyshK+vr6oqKhgPx6iNi5iyfYm1597/S6L9re15uJrKVv9nbP7zNtERNT+TZo0CRs3bgQAlJeXY+jQoVixYgUmTZqEVatW2Tk6IiKyBiYWRERkc0eOHMHIkSMBAF999RWCg4Nx/vx5bNy4Ee+++66doyMiImtgYkFERDZXXV0Nb29vAMDOnTsxdepUiMViDBs2DOfPn7dzdEREZA1MLIiIyOZ69+6Nbdu2obCwED/88IPQr6K0tJT9GIiI2gkmFkREZHNLly7F4sWLERERgYSEBCQmJgJoqL2Ii4uzc3RERGQNdh9uloiI2r97770XI0aMQFFREWJiYoTl48aNw5QpU+wYGRERWQsTCyIiahXBwcEIDg7WWTZ06FA7RUNERNbGxIKIiGxOLpfj9ddfR2ZmJkpLS6FSqXTWnz171k6RERGRtTCxICIim/v73/+OPXv2YObMmQgJCYFIJLJ3SEREZGVMLIiIyOa+//57bN++Hbfeequ9QyEiIhvhqFBERGRznTp1gr+/v73DICIiG2JiQURENvfyyy9j6dKlqK6utncoRERkI2wKRURENrdixQqcOXMGQUFBiIiIgIuLi876I0eO2CkyIiKyFiYWRERkc5MnT7Z3CEREZGNMLIiIyOaWLVtm7xCIiMjGOnRi8e2332LRokVQqVR49tln8fe//93kfVUqFS5evAhvb28Om0hE7ZJarca1a9cQGhoKsdjyLnnl5eX46quvcObMGTz99NPw9/fHkSNHEBQUhK5du1ohYiIi80Qs2W7vENqVDptY1NfXIzU1FT/99BN8fX0RHx+PKVOmoHPnzibtf/HiRYSFhdk4SiIi+yssLES3bt0sOsaxY8eQlJQEX19fnDt3DvPmzYO/vz+2bt2KgoICbNy40UrREhGRvXTYxOLQoUMYMGCA8JQsOTkZO3fuxIwZM0za39vbG0DDf7g+Pj42i5OIyF4qKysRFhYm/L2zRGpqKmbPno033nhD53gTJkzAgw8+aPHxiYjI/tpsYpGVlYU333wTOTk5KCoqwtdff92oc6BMJsObb76J4uJixMTE4L333sPQoUMBNNQ4aFe9d+3aFRcuXDD5/JrmTz4+PkwsiKhds0Zzz+zsbHz44YeNlnft2hXFxcUWH5+IiOyvzc5jIZfLERMTA5lMZnD9pk2bkJqaimXLluHIkSOIiYnB+PHjUVpa2sqREhGRRCJBZWVlo+V//PEHunTpYoeIiIjI2tpsYpGcnIxXXnkFU6ZMMbh+5cqVmDdvHubMmYPIyEisXr0aHh4eWLduHQAgNDRUp4biwoULCA0NNXo+hUKByspKnRcREZnmnnvuwUsvvYS6ujoADbUgBQUFePbZZzFt2jSTj5Oeno4hQ4bA29sbgYGBmDx5Mk6dOqWzTU1NDaRSKTp37gwvLy9MmzYNJSUlVr0eIiJqrM0mFk2pra1FTk4OkpKShGVisRhJSUnYv38/AGDo0KE4ceIELly4gKqqKnz//fcYP3680WOmp6fD19dXeLHjNhGR6VasWIGqqip06dIF169fx2233YbevXvD29sbr776qsnH2bNnD6RSKQ4cOIBdu3ahrq4Od9xxB+RyubDNwoUL8X//93/YsmUL9uzZg4sXL2Lq1Km2uCwiItLSZvtYNOXy5ctQKpUICgrSWR4UFISTJ08CAJydnbFixQqMGTMGKpUKzzzzTJMjQqWlpSE1NVV4r+nUSEREzfP19cWuXbuwd+9e/Prrr6iqqsKgQYN0HgCZYseOHTrvN2zYgMDAQOTk5GDUqFGoqKjA2rVr8fnnn2Ps2LEAgPXr1+OWW27BgQMHMGzYMKtdExER6WqXNRamuueee/DHH3/g9OnTeOSRR5rcViKRCB21rdlhu16pwp8l1/BnyTXUK1XCsrOXqoT3xvbT30b7WDW19S06hinxmruPNdjyvE0d25zPQnPPa2rrG32mze2j/zlqlpl63ZbcH1POZ+59MPY9NOf41vg9aOq8zR3f0H0x5ffK0L7a8Vhyj41dX0uO05pUKhXWrVuHu+++G48++ihWrVqFX375BRcvXoRarbbo2BUVFQAAf39/AEBOTg7q6up0Epb+/fsjPDxcqLHWx6auRETW0S5rLAICAuDk5NSoTW1JSQmCg4PtFNVN9UoVCsqqEerrhvtW78fxiw3/iUV19cWWR4fh/g8P4NiFCkR39cXWx4fD2Uks7BPu7wEAmPrBPhy7UIGoUB+snB6LsE7uOsdyd3HC9TqlsL5HgKfOcUJ93QyeRz9GzflM2cca9yTc36PRMeuVKuF6zT1vU8cFgJraekyS7cWpkqpGx9Y+b79AL3yz4Fa4uTo3Or5mG809d3MWo6a+oVAX1dUXXxu4t/r7aM4N6H62EIlw3Mh3IdTXDRcraiz6XLRjaep8zd1/7W20r1/7+jY38d3W7Nu3iyfemRGHHgGeOttufnQYLlbU6HyOhuICgCmyvc3+TmnfZ2Pff+2YXF2ccOJiZaPrKbx6HQAQ1sldiE//M1QDOHEjngEh3qhTqfGH3vdN/3N4874YOIlF6BHgCQDCd7heqcI97/+CP0obmv0MDPXB23q/34buSVO/A7amVqtxzz334LvvvkNMTAyioqKgVqvx+++/Y/bs2di6dSu2bdvWomOrVCo89dRTuPXWWzFw4EAAQHFxMVxdXeHn56ezbVBQkNHRp9LT07F8+fIWxUBERDe1y8TC1dUV8fHxyMzMFIagValUyMzMxIIFCyw6tkwmg0wmg1KpbNH+2v/x9/D3QH5ZtbDu+IUKHMwvw7ELDU/gjl2oEAoE2oWFFffHCNscv1iJ29/OQr9AL5wqrRKOdb1OqbNev2Cnvf2xCxXIvyxHnyDvRjFqFzb199l7+jISevg3KvBpX6uhAo3+8qYK90BDoUj/nvTs4mXw3horcGsnYJp1565U47F/5+DclepG97ugrBpKlVo476nSKkyS7cX2f4zUKdjuPX1Z2EZzzzWFas1nqh+v9vVo9tGcW/Oz5rPT0HxGPQI8GyUl2t+jpu6PofuvHYv++U6XVsHVWaxzH/SPrzmW9jba1699ffrfbc3xFXVKYfkfl+RIfvcX9A30wh9a3zXt74cmydDeT/N9DPVz17kOY79T2vfZ0D3LvyzXicnQ9dyZkYVzZQ2JhXbCof/7qe23omuNPtM+Qd6NPoc73/kZQEPiILrx+xcV6gNFvUpIKoCGhEX793v/2Ss615V/WY5Fm3+1ycMAU23YsAFZWVnIzMzEmDFjdNb973//w+TJk7Fx40bMmjXL7GNLpVKcOHECv/zyi0UxsqkrEZF1tNnEoqqqCqdPnxbe5+fnIzc3F/7+/ggPD0dqaipSUlIwePBgDB06FBkZGZDL5ZgzZ45F55VKpZBKpaisrISvr6/Z+2sXIPLLquHqJEKtsqEpwMBQHwT5uCGqq29DQaKrD5QqNf4suaZTWDh/RS5so3GqtAp9Az2FQoemoKNx7EKFTqFDf/vUzb9iy40Cm3YhUbtgdKq0Cv2CvHCqpAruLk5IWZ9ttGZEO1nQXgfoPine/OgwTHp/r07Col/IC/f3QHRX34Z9uvkKT4WN1eJoYtJOhDQJlqFaBY1+Qd4I9XXTeVLdJ9ATf964R6dKqrD39GXc2jvA4PkMHTOq6814DV2PUCDVuq6oUB/hvmsfM3Xzr1ipVWjVfL75ZdWQOIuhqFehX5AXQn3dhHPpJ3H6T7Q///tQne+B9vmmfLBP+Gz1v5OaZjbaCahmG4M1Ft18kdDDX+faNMd3c25c0P1D67um+Vfz/dB8r7T3kziLkbI+G327eGJAiLdQgO8b6IX4cD/hfmviD+vkbvA7pblnqZtyG8WkfT0SZ7GQVGh/FprPRnNsQ98JbQs35eLt6bEI8ZHoXKfGCe0kSS9J0XbsQoVOTQbQ8N3TjsmUpNMWvvjiCzz33HONkgoAGDt2LJYsWYLPPvvM7MRiwYIF+Pbbb5GVlaUzK3hwcDBqa2tRXl6uU2vRVI21RCKBRCIx6/xERNSYSG1pA1c72b17t8H/qFJSUrBhwwYAwPvvvy9MkBcbG4t3330XCQkJVjm/JrGoqKgwq79FvVKFu975Wad2YV3KYIT6uePpr44JTybfvC9GeG+ocDIgxBu1SpVQ6NU0+dBumlF49ToWbso13Ayjmy/+NTUKye/efNKnKdho11IMDPVGrfLmPpsfaXgqOmfDYYPXZyhZEI4f6IWMB2J1zvnJnCFIWZ8tvO/R2RPfPznCYJOjpmo5Vtwfg9vfzmoUT98gL/yhV1gzRHPeixU1GLtij7C8TxcPiMRi/HEjmdJ+Kq19vvWzByPYx03n2tbPHoyRfboYfEJcr1Qh/7IcSpVaaPKi2e7PkmsGrwUAdi0cJTyB1iQTN6/BA/lXqnWa6aRu/lWnaVNBWbXO9RkqzBo7LwDheIY+y10LR8FJLEKor5vBJkLOTuImr02b5vusX/NkSrx9Az3x9vQ4LNycKzQ5MnQ/DDWvAoCzl6p07pG2HU+ORElljc53FtBNoLbOb2h+tPf0ZZ3tPp4Vj3cyT+s8ENDfv28XT7g4i4XESKfGoqsPgIafI/zddRKbHp09kX9FrnPMXQtH6dRwaWIzp8aipX/ntAUHB2PHjh2IjY01uP7o0aNITk42eZI8tVqNJ554Al9//TV2796NPn366KyvqKhAly5d8MUXXwjD2J46dQr9+/fH/v37Teq8bY3rJiLHELFku71DsMi51++yyXFt9XeuzdZYjB49utlOfwsWLLC46ZO1OTuJ8c2CW28Wirv5YlTfLsi/LBcKHMcvVqKo4rrw3tATT+0mFQCQensfODuJ0SfIWyiE9wjwxNvTY4WCnGaffoFe2PzIMDg7iYUnq30DPYUC2/GLlToFyT9KKnT2WbnzD+G8+kmPpmZEP6kAGmo8nvzyqPBkO7qbL+LD/YTCosRZjPwrctz/4QGDfUu0m9/o13IAhp8SuzqJsePJkU0maX0DvbB1fqJQiNWu6fjzUjV2PDkSRRXXhWRKcz7tp+8rd/2JLY8O03kKbiyp0NBvoqLRI8BT53NxdW5o3x/dzRc9Ajyx9fHhyL8sR229Sig8a5IKTXya75f256K5j5pjGyqkR3X1gVqt+6Q8qmvDeQvKqoXvpKHPUjs50jSrAyA0uQr399C5Nv3PYmCoD97S6lvg7CQW9tUkAYFerpi2er9Qa6ZdK6fxR6kcl6sUQkJ57EIFLlbUwEksEuLXLDP09F77Hukn1r0DvdA70Evn83nngYY+IZpkCmj4Pb+1d4DO92F0v0CM7heI/MtyIcHR0FzHH5fkwu+e5rsA3OzjpJ2waSdb/3ksETPWHNTpW6LZd8X9McKx7NHHoqysrNEIfdqCgoJw9epVk48nlUrx+eef45tvvoG3t7eQkPj6+sLd3R2+vr54+OGHkZqaCn9/f/j4+OCJJ55AYmIiR4QiIrKxNptYtGVurs7Y/o+ROs14tJteDAz1wQqtwruhpjbaTzLdXZwwZ8Nhgx1kN2sVdjVOlVYJhSpNIXWh1vmNFSQLr17HxfLrOk0y3n8wDn/fmKNzfSt2/iEUOPsGekINCDUrf5TKdZ5s3//hAZwqqWrUT+B0aRWcxCKDT5iVKrVO4tIvyFsocBeUVUNRpxSepJ+4WAlXZzG+NrAOaKhVSOzZWeee/Wd+Iqau2ic0K1m85Ved69Pcn5VaSdvxGwVVTQz6nYz1lxnqN6JdAN/86DCdpmQ7nhwJJ7FIiEGTlAwM8RZqZYSn3lpJooamuY+zk1iIUacPSlcfrLy/obla/mW5Tq3CyvtjhEK+dtKl/Vka62OjXYjWdIA39DkBwNvTY3X6+fxZcq3R56/5vvQL9MJ/5ieiqFIhbKOpwdE0u9Jv6lSvVAnJlPYy/c9G+x5pD16gvY3+51yvVAmfiXZHf0Pfhz5B3vj6xu+dJnbtGg9DCYB+P6utjw9vdOyvpbci/3LDd7ZHgGdDAq7Xd8kelEolnJ2N/1fj5OSE+vp6k4+3atUqAA0Pl7StX78es2fPBgC8/fbbEIvFmDZtGhQKBcaPH48PPvjA7NiJiMg8TCzMZGnnbQ3tp7FKlVqnsL7ojr46TY3emxGL7p09heZNwM0nmdrNLfT7URzTKuyeLq3CP748Kjx51RSYnJ3EcBKLdJ5Qp97e0LRA+8ltVFcfg4WgEVpPZTVO3Kjx0BQ4dQo4WgWns5eqdPqbaLf117S/19B+Cq/dnr9voCcypscI19KzixfqlSqdQmWor5tOIVG/VkG/kF9aVQvZQ/FC4fqEXtt2TUFb++m7dsFd+ym4sdF+9Nv4a/ft0DS10q5BevLLozrNvjTxntCqubpep8S6lMFYuesPnXj7atU2ad8noHEBWfPd0o5N813Tr23rF+SFsE7ujZqt6V+3hnYHeEOfk+Y8hvY11EeotKpWKKRrd9rXT6A0n7t2UrL5kYYn1/r9fbT31/4c9Ws29Ndrf4f0O/rrd3TXHN9Q7PrfVUOd7LX7SmjHoDmm5lzN9V1qLWq1GrNnzzbah0GhUJh9vOa4ubkJf6uJiKj1MLEwk6WdtzX0C5zaTUoSe3bW6dz79405whNH7SYmAHBr7wCdJjnatQXaCcQzXx3DH1qFKu0novqdibVrPzTNKAAIBe3rdUp8MmcIbu0dIBTgtJ++6j91dXYS69TQaJbrd8rW7vOh38RFu9mOflOt5Hd/0RnxxthTeWNPeo11DtdOqjRt2/UL2oYK5tqMjfajaX5VWlVrsOCofX79zstNxRbm79EoEfpDq4ZKn34BubnrcnN1xjfSm8nFpPf3GhyGV/t6tJ0qqRIKuMbOY2jfqK66tXjaneK1r0G/oK15r53EamrstO+n/shT5o6epF+bc6qkCvmX5UJyDRge3lY7Ru1aCf2hfzfrNbPTHxBAX0FZdaNaveb2sZWUlJRmt2nJiFBEROR4mFjYiX6BU79JydbHhzeqjTD0xNHZSazTJEe/tkC/ZuCUgUKmsfPpD/GpXbDRJBWa/bWfvhoqZGvXJpy9VGX0qbL+aEmaJjrabco1hXvtplqGmhP17OKlc+1NPek1VMBtrjmM9nUZo520aPujtArTVu8Xnmrr930I6+RuODnS6mdhKDZD99CUgqi+pq7rYkWNkOgYGoZX/7r1+ylox2LoPPo1ZSvvjwUAg82zTNVc8tijs4dO8qY9/LIp9GtztGv49GuZjP0uNzX0r7FmdqZcb78gL3wjbf1hZjXWr19vl/MSEVHrY2JhJ/oFHf121YY6fxorHBpqumKskGfsOPrn039KbkrBprlCtrH5KrT32WqkWYv2OmM1DfrNibY+PtykazcWe3PNYUy14v4YKFVqLN7yq05tgv7Te+1+FZoO7PpNlrSbyhiLral7aA3NPZ3XrzVqKjEzxFCiZ6zZlKmMJY/a91x/aF/9iQ2bo913SqlSC4mQfi2Tse+hfkKlXRNlqHmWhin9ROyVVBARUcfSZoebtTdrDNPV3KzQpm5jynbmHkf/Kbm5w1QaOp7+ELRNdfw19/iamgrtYUL/t+g2oZbEHgUs/TkjNj86DOeuVOv0ddG+r/rDnGriN3Y8e0x2pqEzT4l2IdiGcdnic2xqaNldC0eZVWuhTeez0hqC1pzfd1O3t+V3oqMOu9pRr5uoPeJws4ZxuFkHYa3O20DzT/hN3caU7VpyHEufeGoXevRnBu8b6NVojgVTz6FfwNRuo27oqbCp125t+v0mLlbUoH+ID74z0N+kqfiNHc9enXGBpp/O2youW3yO+rUE2kPttqTWQjtWQ78/5v6+N7e9I30niIiImFiYyVqdt9sCSwty+iPlaM+knDH95uRq5hSImnpC62jNP8xNdJqL39RmXa3F2ChcpsRlr1okffr3XHuo3eMWFtRbI6F1tO8EERF1bEwsyGb0Cz2bH7k5nCfQfJtzQ5p7Qmuv2glDWpLoNBW/vRKn5pIAc+Oyd5Mu/evRvueGhhBu7XjM4WjJNBERdWxMLDogWz8t1j6+fqHHUCdjc+Joa09orZ3otHbiZGoSYE5c9my+09z1tHZB3RpJliMl00RE1LExsehgbP202NDxm3oCb26ByFjBz1Cy5CjNbdoyWyQB9kwO9a/H0LCyrVlQZx8JIiJqT1ja6mAMFWRaSjMnRb1SZZPjG6Mp+GknEFM/2IexK/Zg6gf7UK9UGVxGup+Zoc9PnyYJAGC1JECTHP5v0W0mjTZmSpymCvf3aJh87obUzb/a9bthi/tLRERkL6yx6GCs9bTYWM2HPZ5GG0tmWvNJsCPXjhgaQlh/ZuemmjjZommQqbUC1q5hc3bSnVDS0g7almIfCSIiak+YWJjJmsPN2oO1CjLGmnDYo6DU3KzKtk5w7N0ZuSnGhvzVn9lZf9ZyQ7OL68+a3hps0VTIHh20m8I+EkRE1F4wsTBTexhu1hoFmaZqJlq7oGQsmbFVgqNfO+HI7eT1h/ztG+SFP/QntTMya7n2PbNX8mSLGjDWEhAREdkGEwtqkdYsnJnSzMhQMmOLBMdQAduRR6rS9CnQ1FC4Oomxa+Eo9AjwBACdmoqmkiN7JU/2bopFREREpuOjOmox/U7UttCanbBN6SRsqIBtbmfk1qTpU6Bx4mIlnMQinfkbtPvGAIY7EZvaydiaHa21r8HW3zMiIiKyHGssyKG11pNyU5v6mDubtiMwpU9BczUDptQcOHJfk47GkQcTICKi9ouJBTXiSIUS/YJ8qK+bTToQm5PArLg/BkBDgd3e98cUmqQg/7K82e2aSo6aW+/IfU06EiZ4RERkL0wsSIejFUq0n5RrD5dq7dhM6Sdh6N60JYs2/2rTz9WR+5pYkyMl3oYwwSMiInthYmGmtj7cbHMcsVCieVJ+9lKVzWIzpamPI94bU7VG7B1htCVHS7wN6SgJHhEROR7H+h+xDZBKpcjLy0N2dra9Q7EJR54J2NaxNddJ2JHvTXNaK/b23tG6NWaWt5QjDyZARETtG2ssSIcjP3W2d2z2Pr8l2nLsjqSt1AY48mACRETUfjGxoEYcuVBi79jsfX5LtOXYLWHNPhFM0IiIiIxjYkFE7ZYt+kR01ASNiMhRRSzZbu8Q6AY+biOidqst9IkgIiJqL5hYkMOxxezN1DG15Q73REREbQ2bQpFDaQvDeVLbwT4RRERErYf/y5JDYdMVsjZbD4HLGjYiIqIGTCzMJJPJEBkZiSFDhtg7lHaJTVeoLdHUsI1dsQdTP9jH5IKIiDo0NoUyk1QqhVQqRWVlJXx9fe0dTrvDpivUlrTl2diJiIisjaU2cjjtffZmaj9Yw0ZERHQTayyIiFqINWxEREQ38X9BolbADr7tF2vYiIiIGrDGooOqV6r4lLWVcAhdIiIi6ghYuumAOJJN6zJlCF3WaBAREVFbx8SiA+JcEa2ruQ6+TPSIiIioPWBTqA5IU9A9dqGCI9m0guY6+HLIUiIiImoPmFh0QBzJpvVpOvgawkSPiIiI2gOWKDsojmTjODSJ3v8W3Yat89mxm6gpWVlZmDhxIkJDQyESibBt2zad9bNnz4ZIJNJ53XnnnfYJloiog2EJhsgBMNEjMo1cLkdMTAxkMpnRbe68804UFRUJry+++KIVIyQi6rjYFMpMMpkMMpkMSqXS3qEQEXU4ycnJSE5ObnIbiUSC4ODgVoqIiIg0+HjUTFKpFHl5ecjOzrZ3KESkh8P2EgDs3r0bgYGB6NevH+bPn48rV67YOyQiog6BNRZE1C5wIkICGppBTZ06FT169MCZM2fw3HPPITk5Gfv374eTk5PBfRQKBRQKhfC+srKytcIlImpXmFgQUbvAYXsJAB544AHh56ioKERHR6NXr17YvXs3xo0bZ3Cf9PR0LF++vLVCJCJqt/g4j4jaheYmIqSOqWfPnggICMDp06eNbpOWloaKigrhVVhY2IoREhG1H6yxIKJ2gfOzkCF//fUXrly5gpCQEKPbSCQSSCSSVoyKiKh9YmJBRO1GUxMRUvtQVVWlU/uQn5+P3Nxc+Pv7w9/fH8uXL8e0adMQHByMM2fO4JlnnkHv3r0xfvx4O0ZNRNQxMLEgIqI24/DhwxgzZozwPjU1FQCQkpKCVatW4dixY/jkk09QXl6O0NBQ3HHHHXj55ZdZI0FE1AqYWBARUZsxevRoqNVqo+t/+OGHVoyGiIi0sREyERERERFZjIkFERERERFZjIkFEZGD44ziRETUFrCPBRGRA+OM4kRE1FbwfyciIgdmaEZxIiIiR8TEgojIgXFGcSIiaivYFIqIyIFxRnEiImormFgQETk4zihORERtAR99mUkmkyEyMhJDhgyxdyhERERERA6DiYWZpFIp8vLykJ2dbe9QiIiIiIgcBhMLIiIiIiKyGBMLIiIiIiKyGBMLIiIiIiKyGBMLIiIiIiKyGBMLIiIiIiKyGBMLIiIiIiKymE0SizNnzuD555/HjBkzUFpaCgD4/vvv8dtvv9nidEREREREZGdWTyz27NmDqKgoHDx4EFu3bkVVVRUA4Ndff8WyZcusfToiIiIiInIAVk8slixZgldeeQW7du2Cq6ursHzs2LE4cOCAtU9HREREREQOwOqJxfHjxzFlypRGywMDA3H58mVrn46IiIiIiByA1RMLPz8/FBUVNVp+9OhRdO3a1dqnIyIiIiIiB2D1xOKBBx7As88+i+LiYohEIqhUKuzduxeLFy/GrFmzrH06IiIiIiJyAFZPLF577TX0798fYWFhqKqqQmRkJEaNGoXhw4fj+eeft/bpiIiIiIjIAThb+4Curq5Ys2YNXnjhBZw4cQJVVVWIi4tDnz59rH0qIiIiIiJyEFZPLDTCw8MRHh5uq8MTEREREZEDsXpiMXfu3CbXr1u3ztqnJCIiIiIiO7N6YnH16lWd93V1dThx4gTKy8sxduxYa5+OiIiIiIgcgNUTi6+//rrRMpVKhfnz56NXr17WPh0RERERETkAq48KZfAkYjFSU1Px9ttvt8bpiIiIiIiolbVKYgEAZ86cQX19fWudjoiIiIiIWpHVm0KlpqbqvFer1SgqKsL27duRkpJi7dNZZMqUKdi9ezfGjRuHr776yt7hEBERERG1WVZPLI4eParzXiwWo0uXLlixYkWzI0a1tieffBJz587FJ598Yu9QiIiIiIjaNKsnFj/99JO1D2kzo0ePxu7du+0dBhERERFRm9dqfSzMlZWVhYkTJyI0NBQikQjbtm1rtI1MJkNERATc3NyQkJCAQ4cOtX6gRERERERknRqLuLg4iEQik7Y9cuSISdvJ5XLExMRg7ty5mDp1aqP1mzZtQmpqKlavXo2EhARkZGRg/PjxOHXqFAIDAwEAsbGxBjuM79y5E6GhoSbFQUREREREzbNKYjF58mRrHEZHcnIykpOTja5fuXIl5s2bhzlz5gAAVq9eje3bt2PdunVYsmQJACA3N9dq8SgUCigUCuF9ZWWl1Y5NRERERNTWWSWxWLZsmTUOY7La2lrk5OQgLS1NWCYWi5GUlIT9+/fb5Jzp6elYvny5TY5NRERERNTWOWwfi6ZcvnwZSqUSQUFBOsuDgoJQXFxs8nGSkpJw33334bvvvkO3bt2aTErS0tJQUVEhvAoLC1scPxERtUxz/e/UajWWLl2KkJAQuLu7IykpCX/++ad9giUi6mCsnlgolUq89dZbGDp0KIKDg+Hv76/zciQ//vgjLl26hOrqavz1119ITEw0uq1EIoGPj4/Oi4iIWpem/51MJjO4/o033sC7776L1atX4+DBg/D09MT48eNRU1PTypESEXU8Vk8sli9fjpUrV2L69OmoqKhAamoqpk6dCrFYjBdffNEq5wgICICTkxNKSkp0lpeUlCA4ONgq5yAiIseTnJyMV155BVOmTGm0Tq1WIyMjA88//zwmTZqE6OhobNy4ERcvXjQ4siAREVmX1ROLzz77DGvWrMGiRYvg7OyMGTNm4OOPP8bSpUtx4MABq5zD1dUV8fHxyMzMFJapVCpkZmY2WetgDTKZDJGRkRgyZIhNz0NERObJz89HcXExkpKShGW+vr5ISEiwWf87IiK6yeoT5BUXFyMqKgoA4OXlhYqKCgDA3XffjRdeeMHk41RVVeH06dPC+/z8fOTm5sLf3x/h4eFITU1FSkoKBg8ejKFDhyIjIwNyuVwYJcpWpFIppFIpKisr4evra9NzERGR6TR97Mztf8dR/4iIrMPqiUW3bt1QVFSE8PBw9OrVCzt37sSgQYOQnZ0NiURi8nEOHz6MMWPGCO9TU1MBACkpKdiwYQOmT5+OS5cuYenSpSguLkZsbCx27NjR6D8UIiKipnDUPyIi67B6U6gpU6YITZSeeOIJvPDCC+jTpw9mzZqFuXPnmnyc0aNHQ61WN3pt2LBB2GbBggU4f/48FAoFDh48iISEBGtfDhERtRGaPnbm9r/jqH9ERNZh9RqL119/Xfh5+vTp6N69O/bt24c+ffpg4sSJ1j4dERERAKBHjx4IDg5GZmYmYmNjATQ0azp48CDmz59vdD+JRGJWjToRERlm9cSipqYGbm5uwvthw4Zh2LBh1j6N3chkMshkMiiVSnuHQkTU4TTX/+6pp57CK6+8gj59+qBHjx544YUXEBoaismTJ9svaCKiDsLqTaECAwORkpKCXbt2QaVSWfvwdieVSpGXl4fs7Gx7h0JE1OEcPnwYcXFxiIuLA9DQ/y4uLg5Lly4FADzzzDN44okn8Mgjj2DIkCGoqqrCjh07dB54ERGRbVg9sfjkk09QXV2NSZMmoWvXrnjqqadw+PBha5+GiIg6oOb634lEIrz00ksoLi5GTU0NfvzxR/Tt29e+QRMRdRA26by9ZcsWlJSU4LXXXkNeXh6GDRuGvn374qWXXrL26YiIiIiIyAFYPbHQ8Pb2xpw5c7Bz504cO3YMnp6eHM6PiIiIiKidslliUVNTg82bN2Py5MkYNGgQysrK8PTTT9vqdK2GM28TERERETVm9VGhfvjhB3z++efYtm0bnJ2dce+992Lnzp0YNWqUtU9lF5x5m4iIiIioMasnFlOmTMHdd9+NjRs3YsKECXBxcbH2KYiIiIiIyMFYPbEoKSmBt7c3AOCvv/5CaGgoxGKbtbgiIiIiIiIHYPUSvyapAIDIyEicO3fO2qcgIiIiIiIHY9OqBLVabcvDExERERGRg2AbJSIiIiIisphNE4vnnnsOnTp1suUpWh2HmyUiIiIiaswmicXatWsxcOBALFu2DMHBwRg4cCA+/vhjW5yq1UmlUuTl5SE7O9veoRAREREROQyrjwq1dOlSrFy5Ek888QQSExMBAPv378fChQtRUFCAl156ydqnJCIiIiIiO7N6YrFq1SqsWbMGM2bMEJbdc889iI6OxhNPPMHEgoiIiIioHbJ6U6i6ujoMHjy40fL4+HjU19db+3REREREROQArJ5YzJw5E6tWrWq0/KOPPsJDDz1k7dMREREREZEDsHpTKKCh8/bOnTsxbNgwAMDBgwdRUFCAWbNmITU1Vdhu5cqVtjg9ERERERG1MqsnFidOnMCgQYMAAGfOnAEABAQEICAgACdOnBC2E4lE1j51q5DJZJDJZFAqlfYOhYiIiIjIYVg9sfjpp5+sfUiHIpVKIZVKUVlZCV9fX3uHQ0RERETkEDjzNhERERERWYyJBRERERERWYyJBRERERERWYyJBRERERERWYyJBRERERERWcwm81gQEREREZkiYsn2Jtefe/2uVoqELMUaCyIiIiIishgTCzPJZDJERkZiyJAh9g6FiIiIiMhhMLEwk1QqRV5eHrKzs+0dChERERGRw2BiQUREREREFmNiQUREREREFmNiQUREREREFmNiQUREREREFmNiQUREREREFmNiQUREREREFuPM20RERETtXFOzWzv6zNbNzcxNjoM1FkREREREZDEmFkREREREZDEmFkREREREZDEmFmaSyWSIjIzEkCFD7B0KEREREZHDYGJhJqlUiry8PGRnZ9s7FCIiMuDFF1+ESCTSefXv39/eYRERtXscFYqIiNqdAQMG4McffxTeOzvzvzsiIlvjX1oiImp3nJ2dERwcbO8wiIg6FDaFIiKidufPP/9EaGgoevbsiYceeggFBQVGt1UoFKisrNR5ERGR+VhjQURE7UpCQgI2bNiAfv36oaioCMuXL8fIkSNx4sQJeHt7N9o+PT0dy5cvt0OkRDc1NwmcPSexc+TYyLGwxoKIiNqV5ORk3HfffYiOjsb48ePx3Xffoby8HJs3bza4fVpaGioqKoRXYWFhK0dMRNQ+sMaCiIjaNT8/P/Tt2xenT582uF4ikUAikbRyVERE7Q9rLIiIqF2rqqrCmTNnEBISYu9QiIjaNSYWRETUrixevBh79uzBuXPnsG/fPkyZMgVOTk6YMWOGvUMjImrX2BSKiIjalb/++gszZszAlStX0KVLF4wYMQIHDhxAly5d7B0aEVG7xsSCiIjalS+//NLeIRARdUhsCkVERERERBZjYkFERERERBZjYkFERERERBZjHwsiIiKiNq652bHtyZFjI+tijYWZZDIZIiMjMWTIEHuHQkRERETkMJhYmEkqlSIvLw/Z2dn2DoWIiIiIyGEwsSAiIiIiIosxsSAiIiIiIosxsSAiIiIiIosxsSAiIiIiIosxsSAiIiIiIosxsSAiIiIiIosxsSAiIiIiIotx5m0iIiJqE5qbwfnc63e1UiTtC2fGJmthjQUREREREVmMiQUREREREVmMiQUREREREVmMiQUREREREVmMiQUREREREVmMiQUREREREVmMiQUREREREVmMiQUREREREVmME+QRERER2Zilk9BxEjtqC1hjQUREREREFmNiQUREREREFmNiQUREREREFuuwiUVhYSFGjx6NyMhIREdHY8uWLfYOiYiIiIiozeqwnbednZ2RkZGB2NhYFBcXIz4+HhMmTICnp6e9QyMiIiIianM6bGIREhKCkJAQAEBwcDACAgJQVlbGxIKIiIiIqAUctilUVlYWJk6ciNDQUIhEImzbtq3RNjKZDBEREXBzc0NCQgIOHTrUonPl5ORAqVQiLCzMwqiJiIiIiDomh00s5HI5YmJiIJPJDK7ftGkTUlNTsWzZMhw5cgQxMTEYP348SktLhW1iY2MxcODARq+LFy8K25SVlWHWrFn46KOPbH5NRERERETtlcM2hUpOTkZycrLR9StXrsS8efMwZ84cAMDq1auxfft2rFu3DkuWLAEA5ObmNnkOhUKByZMnY8mSJRg+fHjLApXLASenlu1LROTI5HJ7R0BERG2IwyYWTamtrUVOTg7S0tKEZWKxGElJSdi/f79Jx1Cr1Zg9ezbGjh2LmTNnNru9QqGAQqEQ3ldWVjb8EBpqXvBEREQOrLkZns+9fpdDHtsa57eErWN3ZJwVnDQctilUUy5fvgylUomgoCCd5UFBQSguLjbpGHv37sWmTZuwbds2xMbGIjY2FsePHze6fXp6Onx9fYUX+2MQEREREd3UJmssrGHEiBFQqVQmb5+WlobU1FThfWVlZUNycfEi4ONjixCJiOyrspK1skREZLI2mVgEBATAyckJJSUlOstLSkoQHBxsk3NKJBJIJJLGKzw9G15ERO2NUmnvCIiIqA1pk02hXF1dER8fj8zMTGGZSqVCZmYmEhMT7RgZEREREVHH5LCJRVVVFXJzc4WRnfLz85Gbm4uCggIAQGpqKtasWYNPPvkEv//+O+bPnw+5XC6MEmUrMpkMkZGRGDJkiE3PQ0RELWeteY6IiMh0DtsU6vDhwxgzZozwXtO/ISUlBRs2bMD06dNx6dIlLF26FMXFxYiNjcWOHTsadei2NqlUCqlUisrKSvj6+tr0XEREZD7NPEerV69GQkICMjIyMH78eJw6dQqBgYH2Do+IqN1y2BqL0aNHQ61WN3pt2LBB2GbBggU4f/48FAoFDh48iISEBPsFTEREDkF7nqPIyEisXr0aHh4eWLdunb1DIyJq1xw2sSAiIjKXZp6jpKQkYZm58xwREVHLOGxTKEenVqsBaE2UR0TUzmj+vmn+3rUFTc1zdPLkSYP76E+AWlFRAaDj/n1XKaqbXG/JfbH02Lbe3xL2PDe1X7b6O2Srv+9MLMwkk8kgk8lQW1sLAJwoj4javWvXrrXrPmXp6elYvnx5o+X8+26Yb4bjHtuWsTnyuen/27vzoCjuLA7g32FguC9FYDCAgoIsoiiuBBXxIIIahTUqKsWhqIvCxnuJSVxMNNF4RKOrbtYk4G4pxMSgWcUrwogi4hFQEEMEUdQFXA8UBDnf/mHR5QgeMAfX+1RNFdP9m+73HtP9m990T3fHper31f3795W6fxdRe/oqqg2pr6/Hf//7XxgaGkIkEr3x6xpurHfr1i0Y8Y31BFyXpnFdGuOaNE0VdSEilJWVwcrKChoa7ePM2erqaujp6eHHH3+Ev7+/MD0kJASlpaU4cOBAo9e8eMSitLQUtra2KCws7NADqqZ05u2rs+beWfMGOnfujx49go2NDR4+fAgTExOlLZePWLSQhoYG3nrrrRa/3sjIqNO9id8E16VpXJfGuCZNU3Zd2tsH6+fvc9QwsGi4z1FkZGSTr3nZDVCNjY077XusM29fnTX3zpo30LlzV/aXRjywYIwx1qEsXrwYISEhGDRoEAYPHozNmzer5T5HjDHW2fHAgjHGWIfSWvc5Yoyxzo4HFmqmra2N6OjoJg+7d2Zcl6ZxXRrjmjSN6yIvMjLypac+vU5nriXn3vly76x5A5y7KnLnH28zxhhjjDHGFNY+LvPBGGOMMcYYa9N4YMEYY4wxxhhTGA8sGGOMMcYYYwrjgYWabdu2DT169ICOjg7c3d1x7ty51g5JZVauXAmRSCT36NOnjzD/6dOniIiIQNeuXWFgYID33nsPJSUlcssoLCzE+PHjoaenB3Nzcyxbtgy1tbXqTkUhKSkpmDBhAqysrCASibB//365+USEv/3tb5BKpdDV1YW3tzeuXbsm1+bBgwcIDAyEkZERTExMEBYWhvLycrk2ly9fhqenJ3R0dGBtbY1169apOrUWe11NQkNDG713fH195dp0tJoAz+4A/cc//hGGhoYwNzeHv78/cnNz5dooa7uRyWQYOHAgtLW10atXL8TGxqo6vTalufviH374AX369IGOjg5cXFyQmJiopkiVrzm579y5E56enjA1NYWpqSm8vb3bdb/V0j44Pj4eIpFI7qaL7Ulz8y4tLUVERASkUim0tbXh4ODQbt/zzc198+bNcHR0hK6uLqytrbFo0SI8ffpUTdEqz+v62aYopV8gpjbx8fEkkUjou+++oytXrtCcOXPIxMSESkpKWjs0lYiOjiZnZ2cqKioSHv/73/+E+eHh4WRtbU0nTpygCxcu0Ntvv01DhgwR5tfW1lLfvn3J29ubMjIyKDExkczMzGj58uWtkU6LJSYm0kcffUQ//fQTAaCEhAS5+WvXriVjY2Pav38/Xbp0iSZOnEg9e/akyspKoY2vry/179+fzp49S6dOnaJevXrR9OnThfmPHj0iCwsLCgwMpOzsbIqLiyNdXV36+uuv1ZVms7yuJiEhIeTr6yv33nnw4IFcm45WEyIiHx8fiomJoezsbMrMzKRx48aRjY0NlZeXC22Usd1cv36d9PT0aPHixZSTk0Nbt24lsVhMR44cUWu+raW5++LU1FQSi8W0bt06ysnJoY8//pi0tLQoKytLzZErrrm5z5gxg7Zt20YZGRl09epVCg0NJWNjY7p9+7aaI1dcS/vggoIC6t69O3l6epKfn596glWi5uZdVVVFgwYNonHjxtHp06epoKCAZDIZZWZmqjlyxTU39927d5O2tjbt3r2bCgoK6OjRoySVSmnRokVqjlxxr+tnX6SsfoEHFmo0ePBgioiIEJ7X1dWRlZUVrVmzphWjUp3o6Gjq379/k/NKS0tJS0uLfvjhB2Ha1atXCQClpaUR0bONQkNDg4qLi4U2O3bsICMjI6qqqlJp7Kry4sZdX19PlpaWtH79emFaaWkpaWtrU1xcHBER5eTkEAA6f/680Obw4cMkEonozp07RES0fft2MjU1latLVFQUOTo6qjgjxb1sYPGqDryj16TB3bt3CQCdPHmSiJS33fz1r38lZ2dnuXUFBASQj4+PqlNqE5q7L546dSqNHz9ebpq7uzv9+c9/VmmcqqBoP1RbW0uGhoa0a9cuVYWoMi3Jvba2loYMGULffPPNa/dLbVVz896xYwfZ2dlRdXW1ukJUmebmHhERQaNGjZKbtnjxYho6dKhK41S1NxlYKKtf4FOh1KS6uhoXL16Et7e3ME1DQwPe3t5IS0trxchU69q1a7CysoKdnR0CAwNRWFgIALh48SJqamrk6tGnTx/Y2NgI9UhLS4OLi4vcTa18fHzw+PFjXLlyRb2JqEhBQQGKi4vl6mBsbAx3d3e5OpiYmGDQoEFCG29vb2hoaCA9PV1oM3z4cEgkEqGNj48PcnNz8fDhQzVlo1wymQzm5uZwdHTEvHnzcP/+fWFeZ6nJo0ePAABdunQBoLztJi0tTW4ZDW068r6oQUv2xR2lXsrohyoqKlBTUyO8J9uLlub+6aefwtzcHGFhYeoIU+lakvfPP/8MDw8PREREwMLCAn379sXnn3+Ouro6dYWtFC3JfciQIbh48aJwutT169eRmJiIcePGqSXm1qSs/RzfIE9N7t27h7q6ukZ3frWwsMBvv/3WSlGplru7O2JjY+Ho6IiioiJ88skn8PT0RHZ2NoqLiyGRSGBiYiL3GgsLCxQXFwMAiouLm6xXw7yOoCGPpvJ8vg7m5uZy8zU1NdGlSxe5Nj179my0jIZ5pqamKolfVXx9fTFp0iT07NkT+fn5+PDDDzF27FikpaVBLBZ3iprU19dj4cKFGDp0KPr27QsASttuXtbm8ePHqKyshK6uripSahNasi9+Wb3a235IGf1QVFQUrKysGn0Aaetakvvp06fx7bffIjMzUw0RqkZL8r5+/TqSkpIQGBiIxMRE5OXlYf78+aipqUF0dLQ6wlaKluQ+Y8YM3Lt3D8OGDQMRoba2FuHh4fjwww/VEXKrUla/wAMLpjJjx44V/u7Xrx/c3d1ha2uLvXv3dugPLkxx06ZNE/52cXFBv379YG9vD5lMhtGjR7diZOoTERGB7OxsnD59urVDYQwAsHbtWsTHx0Mmk0FHR6e1w1GpsrIyBAUFYefOnTAzM2vtcNSqvr4e5ubm+Oc//wmxWAw3NzfcuXMH69evb1cDi5aQyWT4/PPPsX37dri7uyMvLw8LFizAqlWrsGLFitYOr13ggYWamJmZQSwWN7p6S0lJCSwtLVspKvUyMTGBg4MD8vLy8M4776C6uhqlpaVy374+Xw9LS8tGV29oqF9HqVlDHiUlJZBKpcL0kpISuLq6Cm3u3r0r97ra2lo8ePBArlZNvbeeX0d7ZmdnBzMzM+Tl5WH06NEdviaRkZE4ePAgUlJS8NZbbwnTLS0tlbLdvKw2RkZGHX7Q35J98cvq1dbfRy9SpB/asGED1q5di19++QX9+vVTZZgq0dzc8/PzcePGDUyYMEGYVl9fD+DZ0dHc3FzY29urNmglaMn/XCqVQktLC2KxWJjm5OSE4uJiVFdXy51e2pa1JPcVK1YgKCgIs2fPBvDsi60nT55g7ty5+Oijj6Ch0XF/QaCsfqHjVqiNkUgkcHNzw4kTJ4Rp9fX1OHHiBDw8PFoxMvUpLy9Hfn4+pFIp3NzcoKWlJVeP3NxcFBYWCvXw8PBAVlaW3AfI48ePw8jICH/4wx/UHr8q9OzZE5aWlnJ1ePz4MdLT0+XqUFpaiosXLwptkpKSUF9fD3d3d6FNSkoKampqhDbHjx+Ho6Njmz/l503cvn0b9+/fFwZfHbUmRITIyEgkJCQgKSmp0alcytpuPDw85JbR0KYz7Itasi/uKPVqaT+0bt06rFq1CkeOHJH7XVN70tzc+/Tpg6ysLGRmZgqPiRMnYuTIkcjMzIS1tbU6w2+xlvzPhw4diry8PGEgBQC///47pFJpuxlUAC3LvaKiotHgoWGA9ew30B2X0vZzzfqpN1NIfHw8aWtrU2xsLOXk5NDcuXPJxMRE7uotHcmSJUtIJpNRQUEBpaamkre3N5mZmdHdu3eJ6NllM21sbCgpKYkuXLhAHh4e5OHhIby+4bKZY8aMoczMTDpy5Ah169at3V1utqysjDIyMigjI4MA0JdffkkZGRl08+ZNInp2uVkTExM6cOAAXb58mfz8/Jq83OyAAQMoPT2dTp8+Tb1795a7tGppaSlZWFhQUFAQZWdnU3x8POnp6bXZS6u+qiZlZWW0dOlSSktLo4KCAvrll19o4MCB1Lt3b3r69KmwjI5WEyKiefPmkbGxMclkMrlL7VZUVAhtlLHdNFxWcNmyZXT16lXatm1bp7vc7Kv2xUFBQfTBBx8I7VNTU0lTU5M2bNhAV69epejo6HZ9udnm5L527VqSSCT0448/yr0ny8rKWiuFFmtu7i9qr1eFam7ehYWFZGhoSJGRkZSbm0sHDx4kc3NzWr16dWul0GLNzT06OpoMDQ0pLi6Orl+/TseOHSN7e3uaOnVqa6XQYq/77PHBBx9QUFCQ0F5Z/QIPLNRs69atZGNjQxKJhAYPHkxnz55t7ZBUJiAggKRSKUkkEurevTsFBARQXl6eML+yspLmz59PpqampKenR3/605+oqKhIbhk3btygsWPHkq6uLpmZmdGSJUuopqZG3akoJDk5mQA0eoSEhBDRs0vOrlixgiwsLEhbW5tGjx5Nubm5csu4f/8+TZ8+nQwMDMjIyIhmzpzZqGO/dOkSDRs2jLS1tal79+60du1adaXYbK+qSUVFBY0ZM4a6detGWlpaZGtrS3PmzGk0AO9oNSGiJmsCgGJiYoQ2ytpukpOTydXVlSQSCdnZ2cmtozN41b7Yy8tL2D4b7N27lxwcHEgikZCzszMdOnRIzRErT3Nyt7W1bfI9GR0drf7AlaC5//fntdeBBVHz8z5z5gy5u7uTtrY22dnZ0WeffUa1tbVqjlo5mpN7TU0NrVy5kuzt7UlHR4esra1p/vz59PDhQ/UHrqDXffYICQkhLy+vRq9RtF8QEXXwYzuMMcYYY4wxlePfWDDGGGOMMcYUxgMLxhhjjDHGmMJ4YMEYY4wxxhhTGA8sGGOMMcYYYwrjgQVjjDHGGGNMYTywYIwxxhhjjCmMBxaMMcYYY4wxhfHAgjHGGGOMMaYwHlgwxuSEhoZCJBJBJBJh//79Sl22TCYTlu3v76/UZTPGWHu3cuVKuLq6tnYYjLUYDyxYh/f8B+XnH3l5ea0dWpvl6+uLoqIijB07Vpj2soFGaGjoGw8ShgwZgqKiIkydOlVJkTLGGGOsrdBs7QAYUwdfX1/ExMTITevWrVujdtXV1ZBIJOoKq83S1taGpaWl0pcrkUhgaWkJXV1dVFVVKX35jDHGGGs9fMSCdQoNH5Sff4jFYowYMQKRkZFYuHAhzMzM4OPjAwDIzs7G2LFjYWBgAAsLCwQFBeHevXvC8p48eYLg4GAYGBhAKpVi48aNGDFiBBYuXCi0aeobfhMTE8TGxgrPb926halTp8LExARdunSBn58fbty4IcxvOBqwYcMGSKVSdO3aFREREaipqRHaVFVVISoqCtbW1tDW1kavXr3w7bffgojQq1cvbNiwQS6GzMxMlR2xuXHjRpNHh0aMGKH0dTHGmCo19A+RkZEwNjaGmZkZVqxYASJq1Pbx48fQ1dXF4cOH5aYnJCTA0NAQFRUVAICoqCg4ODhAT08PdnZ2WLFihdz+vKkYnu9XAMDf3x+hoaHC86qqKixduhTdu3eHvr4+3N3dIZPJhPk3b97EhAkTYGpqCn19fTg7OyMxMbH5BWHsDfDAgnV6u3btgkQiQWpqKv7xj3+gtLQUo0aNwoABA3DhwgUcOXIEJSUlcqfvLFu2DCdPnsSBAwdw7NgxyGQy/Prrr81ab01NDXx8fGBoaIhTp04hNTUVBgYG8PX1RXV1tdAuOTkZ+fn5SE5Oxq5duxAbGys3OAkODkZcXBy2bNmCq1ev4uuvv4aBgQFEIhFmzZrV6EhNTEwMhg8fjl69erWsYK9gbW2NoqIi4ZGRkYGuXbti+PDhSl8XY4yp2q5du6CpqYlz587hq6++wpdffolvvvmmUTsjIyO8++672LNnj9z03bt3w9/fH3p6egAAQ0NDxMbGIicnB1999RV27tyJTZs2KRRjZGQk0tLSEB8fj8uXL2PKlCnw9fXFtWvXAAARERGoqqpCSkoKsrKy8MUXX8DAwEChdTL2UsRYBxcSEkJisZj09fWFx+TJk4mIyMvLiwYMGCDXftWqVTRmzBi5abdu3SIAlJubS2VlZSSRSGjv3r3C/Pv375Ouri4tWLBAmAaAEhIS5JZjbGxMMTExRET073//mxwdHam+vl6YX1VVRbq6unT06FEhdltbW6qtrRXaTJkyhQICAoiIKDc3lwDQ8ePHm8z9zp07JBaLKT09nYiIqquryczMjGJjY19ZLz8/v0bTAZCOjo5cHfX19UlTU7PJ9pWVleTu7k7vvvsu1dXVvdE6GGOsrfDy8iInJye5fXRUVBQ5OTk12T4hIYEMDAzoyZMnRET06NEj0tHRocOHD790HevXryc3NzfheXR0NPXv318uhuf7FSIiPz8/CgkJISKimzdvklgspjt37si1GT16NC1fvpyIiFxcXGjlypWvzZcxZeDfWLBOYeTIkdixY4fwXF9fX/jbzc1Nru2lS5eQnJzc5Dc6+fn5qKysRHV1Ndzd3YXpXbp0gaOjY7NiunTpEvLy8mBoaCg3/enTp8jPzxeeOzs7QywWC8+lUimysrIAPDutSSwWw8vLq8l1WFlZYfz48fjuu+8wePBg/Oc//0FVVRWmTJnSrFgbbNq0Cd7e3nLToqKiUFdX16jtrFmzUFZWhuPHj0NDgw+OMsban7fffhsikUh47uHhgY0bN+Kzzz7DmjVrhOk5OTkYN24ctLS08PPPP2PatGnYt28fjIyM5PaZ33//PbZs2YL8/HyUl5ejtrYWRkZGLY4vKysLdXV1cHBwkJteVVWFrl27AgDef/99zJs3D8eOHYO3tzfee+899OvXr8XrZOxVeGDBOgV9ff2Xnvrz/CADAMrLyzFhwgR88cUXjdpKpdI3/m2CSCRqdC7u8+fSlpeXw83NDbt372702ud/WK6lpdVoufX19QAAXV3d18Yxe/ZsBAUFYdOmTYiJiUFAQIBwWL65LC0tG9XR0NAQpaWlctNWr16No0eP4ty5c40GTowx1t6Fh4cjICBAeG5lZQVNTU1MnjwZe/bswbRp07Bnzx4EBARAU/PZR620tDQEBgbik08+gY+PD4yNjREfH4+NGze+dD0aGhqv7UfEYjEuXrwo9wUUAOHLsdmzZ8PHxweHDh3CsWPHsGbNGmzcuBF/+ctfFK4DYy/igQVjLxg4cCD27duHHj16CB3C8+zt7aGlpYX09HTY2NgAAB4+fIjff/9d7shBt27dUFRUJDy/du2a8AO+hvV8//33MDc3b/E3Vi4uLqivr8fJkycbHUloMG7cOOjr62PHjh04cuQIUlJSWrSuN7Vv3z58+umnOHz4MOzt7VW6LsYYU6X09HS552fPnkXv3r3RtWtX4YjA8wIDA/HOO+/gypUrSEpKwurVq4V5Z86cga2tLT766CNh2s2bN1+5/hf7kbq6OmRnZ2PkyJEAgAEDBqCurg53796Fp6fnS5djbW2N8PBwhIeHY/ny5di5cycPLJhK8PkJjL0gIiICDx48wPTp03H+/Hnk5+fj6NGjmDlzJurq6mBgYICwsDAsW7YMSUlJyM7ORmhoaKPTfUaNGoW///3vyMjIwIULFxAeHi539CEwMBBmZmbw8/PDqVOnUFBQAJlMhvfffx+3b99+o1h79OiBkJAQzJo1C/v37xeWsXfvXqGNWCxGaGgoli9fjt69e8PDw0M5hWpCdnY2goODERUVBWdnZxQXF6O4uBgPHjxQ2ToZY0xVCgsLsXjxYuTm5iIuLg5bt27FggULXtp++PDhsLS0RGBgIHr27Cl3ymzv3r1RWFiI+Ph45OfnY8uWLUhISHjl+keNGoVDhw7h0KFD+O233zBv3jy5I8QODg4IDAxEcHAwfvrpJxQUFODcuXNYs2YNDh06BABYuHAhjh49ioKCAvz6669ITk6Gk5OTYoVh7CV4YMHYC6ysrJCamoq6ujqMGTMGLi4uWLhwIUxMTITBw/r16+Hp6YkJEybA29sbw4YNa/RbjY0bN8La2hqenp6YMWMGli5dKncKkp6eHlJSUmBjY4NJkybByckJYWFhePr0abOOYOzYsQOTJ0/G/Pnz0adPH8yZMwdPnjyRaxMWFobq6mrMnDlTgcq83oULF1BRUYHVq1dDKpUKj0mTJql0vYwxpgrBwcGorKzE4MGDERERgQULFmDu3LkvbS8SiTB9+nRcunQJgYGBcvMmTpyIRYsWITIyEq6urjhz5gxWrFjxyvXPmjULISEhCA4OhpeXF+zs7ISjFQ1iYmIQHByMJUuWwNHREf7+/jh//rxwRL2urg4RERFwcnKCr68vHBwcsH379hZWhLFXE9GLJ+8xxlpkxIgRcHV1xebNm1s7lEZOnTqF0aNH49atW7CwsHhl29DQUJSWljZ5l21lUcc6GGNMEW15n85YW8VHLBjrwKqqqnD79m2sXLkSU6ZMee2gosHBgwdhYGCAgwcPKjWeU6dOwcDAoMkfrDPGGGOsfeMfbzPWgcXFxSEsLAyurq7417/+9UavWbduHT7++GMAz66CpUyDBg1CZmYmAPANmhhjjLEOhk+FYowxxhhjjCmMT4VijDHGGGOMKYwHFowxxhhjjDGF8cCCMcYYY4wxpjAeWDDGGGOMMcYUxgMLxhhjjDHGmMJ4YMEYY4wxxhhTGA8sGGOMMcYYYwrjgQVjjDHGGGNMYTywYIwxxhhjjCns/0a/dW6CIGnJAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Estimate PSD using off-source welch Median\n"
],
"metadata": {
"id": "CxpVM8dzNpnL"
}
},
{
"cell_type": "code",
"source": [
"t0 = 1256790000 # A time when the Hanford is online during O3b\n",
"ifo = \"H1\" # The detector name as used by `gwpy`\n",
"duration = 4 # The duration of data used for analysis\n",
"post_trigger_duration = 2 # The end time of the analysis data relative to the trigger time\n",
"\n",
"# We download a total of 132 seconds of data around the signal (128s before and then 4s of analysis data)\n",
"start = t0 + post_trigger_duration\n",
"end = t0 + post_trigger_duration - duration - 128\n",
"data = TimeSeries.fetch_open_data(ifo, start, end, cache=True)\n",
"\n",
"# We then create two sets of data\n",
"data_psd = data.crop(end=t0 + post_trigger_duration - duration)\n",
"data_analysis = data.crop(start=t0 + post_trigger_duration - duration, end=t0 + post_trigger_duration)\n",
"\n",
"\n",
"def estimate_psd_offsource_averaging(\n",
" psd_data,\n",
" duration,\n",
" psd_fractional_overlap,\n",
" psd_method,\n",
" roll_off,\n",
"):\n",
" \"\"\" Estimate a Power Spectral Density (PSD) from averaging off-source strain data\n",
"\n",
" Note: this function utilises [gwpy.timeseries.TimeSeries.psd](https://gwpy.github.io/docs/stable/api/gwpy.timeseries.TimeSeries/#gwpy.timeseries.TimeSeries.psd). It is recommended you read the documentation for that function for a detailed understanding of the implementation and options.\n",
"\n",
" Parameters\n",
" ----------\n",
" psd_data: gwpy.timeseries.TimeSeries\n",
" A timeseries of the strain data to use for off-source averaging. Note: this method assumes\n",
" the data has been truncated and does not include the signal.\n",
" duration: float\n",
" The duration (in seconds) to use for the PSD estimation (assumed to be identical to the\n",
" duration of the analysis data).\n",
" psd_fractional_overlap: float [0, 1]\n",
" The fractional amount of overlap between neigbourning FFT estimates.\n",
" psd_method: str\n",
" See gwpy documentation\n",
" roll_off: float [0, 1]\n",
" MATCH WITH BILBY_PIPE\n",
"\n",
" Returns\n",
" -------\n",
" frequencies, psd: array_like\n",
" The frequencies and estimated PSD\n",
"\n",
" \"\"\"\n",
"\n",
" psd_alpha = 2 * roll_off / duration\n",
" overlap = psd_fractional_overlap * duration\n",
" window = (\"tukey\", psd_alpha)\n",
"\n",
" psd = psd_data.psd(\n",
" fftlength=duration,\n",
" overlap=overlap,\n",
" window=window,\n",
" method=psd_method,\n",
" )\n",
" return psd.frequencies.value, psd.value\n",
"\n",
"\n",
"kwargs = dict(\n",
" duration=4,\n",
" psd_fractional_overlap=0.5,\n",
" roll_off=0.1,\n",
" psd_method=\"median\"\n",
")\n",
"\n",
"_, median_psd = estimate_psd_offsource_averaging(\n",
" data_psd, **kwargs\n",
")\n",
"median_asd = np.sqrt(median_psd)\n",
"\n",
"\n",
"fig, ax = plt.subplots()\n",
"\n",
"kwargs = dict(lw=1, alpha=0.8)\n",
"ax.loglog(frequencies, median_asd, label=\"Median: 128s\", **kwargs)\n",
"ax.legend()\n",
"ax.set(ylim=(1e-24, 1e-19), xlabel='Frequency [Hz]', ylabel=\"PSD\")\n",
"plt.show()\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 457
},
"id": "OEP4XQVPNt0L",
"outputId": "a5a94381-3343-4bae-9a88-5d11318cd949"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZfdJREFUeJzt3Xl4U3WiPvA3S5Mm6d7SlZYiewVatlYQpSCKMFNFBvXOKBRQ1GvRcTp6hbkzMJvDb+64MKMdGDdwmxnEBccNdRgQRJS1CJZ9a4HupU2btlnP7480adN0SdokJ03ez/P0oTnn9JxvekLz5rtKBEEQQERERER2UrELQERERORvGJCIiIiIOmFAIiIiIuqEAYmIiIioEwYkIiIiok4YkIiIiIg6YUAiIiIi6oQBiYiIiKgTBiQiIiKiThiQiIiIiDphQCIiIiLqJCgC0h133IHo6GgsXLjQad/TTz+Na6+9FmPHjsWbb74pQumIiIjI3wRFQPrpT3+K119/3Wn70aNH8fe//x0HDx7E/v378cILL6C+vt73BSQiIiK/EhQBKTc3F+Hh4U7bjx8/jqlTpyI0NBQqlQqZmZnYtm2bCCUkIiIifyJ6QNq1axfy8vKQnJwMiUSCrVu3Oh1TVFSE9PR0hIaGIicnB/v27fPItceOHYudO3eivr4eV69exc6dO3H58mWPnJuIiIgGLrnYBdDpdMjMzMSyZcuwYMECp/2bN29GYWEhNmzYgJycHKxbtw5z5szByZMnER8fDwDIysqCyWRy+tnPP/8cycnJ3V47IyMDjz76KGbNmoXIyEhcd911kMlkXR6r1+uh1+vtjy0WC+rq6hAbGwuJROLu0yYiIiIRCIKAxsZGJCcnQyrtoZ5I8CMAhPfff99hW3Z2tlBQUGB/bDabheTkZGHt2rVunXvHjh3Cj370ox6Pue+++4SPPvqoy31r1qwRAPCLX/ziF7/4xa8A+CorK+sxE4heg9QTg8GAgwcPYtWqVfZtUqkUs2fPxt69ez1yjaqqKsTHx+PkyZPYt28fNmzY0OVxq1atQmFhof1xQ0MD0tLSUFZWhoiICI+UhYiIiLxLq9UiNTW1y77JHfl1QKqpqYHZbEZCQoLD9oSEBJw4ccLl88yePRtHjhyBTqfD4MGDsWXLFkydOhUAcPvtt6OhoQEajQYbN26EXN71r0SpVEKpVDptj4iIYEAiIiIaYHrrHuPXAclT/v3vf3e7z1M1UURERBQ4RB/F1pO4uDjIZDJUVlY6bK+srERiYqIoZSoqKkJGRgamTJkiyvWJiIjI+/w6ICkUCkyaNAnbt2+3b7NYLNi+fbu9iczXCgoKUFJSgv3794tyfSIiIvI+0ZvYmpqacObMGfvj8+fPo7i4GDExMUhLS0NhYSHy8/MxefJkZGdnY926ddDpdFi6dKmIpSYiIl8ym80wGo1iF4MGgJCQkG6n7HGH6AHpwIEDmDlzpv2xbaRYfn4+Nm3ahLvvvhvV1dVYvXo1KioqkJWVhW3btjl13PaVoqIiFBUVwWw2i3J9IqJgIggCKioquAwUuSUqKgqJiYn9mqdQIgiC4MEyBQ2tVovIyEg0NDRwFBsRkZeUl5ejvr4e8fHxUKvVnJiXeiQIApqbm1FVVYWoqCgkJSU5HePq+7foNUhERERdMZvN9nAUGxsrdnFogFCpVADa5znsa3ObX3fSJiKi4GXrc6RWq0UuCQ00ttdMf/qtMSAREZFfY7MaucsTrxkGJDdxHiQiIqLAx4DkJs6DROQ+i0XAx9+Vw2i2iF0UooCwc+dOSCQS++i+TZs2ISoqStQyBRoGJCLyurPVTdjw5VkcunhV7KLQAGM0Cyira0FpbbPffBlMPQf9JUuWQCKR4KGHHnLaV1BQAIlEgiVLlnj093T33Xfj1KlTHj2nq5566ilMmzYNarW6y5B25MgR/PjHP0ZqaipUKhXGjBmDP//5z07HvfXWW8jMzIRarUZSUhKWLVuG2tpaHzyDrnEUGxF5XUOLtaPkmeom5FzD0UjkuppmE57ZfhRSqf98ni/6yUSkxfbccTw1NRX//Oc/8dxzz9lHVbW2tuLvf/870tLSPF4mlUplv46vGQwG3HnnnZg6dSpeeeUVp/0HDx5EfHw83nzzTaSmpuLrr7/GAw88AJlMhhUrVgAA9uzZg8WLF+O5555DXl4eLl++jIceegjLly/He++95+unBIA1SETkA7aAdLqySeSSEPnGxIkTkZqa6vDm/t577yEtLQ0TJkxwONZisWDt2rUYOnQoVCoVMjMz8c477zgc88knn2DkyJFQqVSYOXMmLly44LC/cxPb2bNncfvttyMhIQFhYWGYMmWK08Lt6enp+MMf/oBly5YhPDwcaWlpePHFF91+rr/5zW/ws5/9DOPGjety/7Jly/DnP/8ZM2bMwDXXXIN7770XS5cudfjd7N27F+np6Xj00UcxdOhQTJ8+HQ8++CD27dtnP2bnzp3Izs6GRqNBVFQUrr/+ely8eNHt8rqKAclN7KRN5L765rYapKomcG5aChbLli3Dxo0b7Y9fffXVLpfJWrt2LV5//XVs2LAB33//PX72s5/h3nvvxZdffgkAKCsrw4IFC5CXl4fi4mLcf//9WLlyZY/Xbmpqwrx587B9+3YcPnwYt956K/Ly8lBaWupw3DPPPIPJkyfj8OHDePjhh/Hf//3fOHnypH1/bm6ux5sDAaChoQExMTH2x1OnTkVZWRk++eQTCIKAyspKvPPOO5g3bx4AwGQyYf78+ZgxYwa+++477N27Fw888IBXRzgyILmJnbSJ3KdttQakhhYjqpv0IpeGyDfuvfdefPXVV7h48SIuXryIPXv24N5773U4Rq/X4w9/+ANeffVVzJkzB9dccw2WLFmCe++9F3/7298AAOvXr8ewYcPwzDPPYNSoUbjnnnt6DS2ZmZl48MEHMXbsWIwYMQK/+93vMGzYMPzrX/9yOG7evHl4+OGHMXz4cDz55JOIi4vDjh077PvT0tK6nI26P77++mts3rwZDzzwgH3b9ddfj7feegt33303FAoFEhMTERkZiaKiIgDW2a8bGhrwwx/+EMOGDcOYMWOQn5/vleZKG/ZBIiKvq282IiFCiUqtHmcqmxAfHip2kYi8btCgQfjBD36ATZs2QRAE/OAHP0BcXJzDMWfOnEFzczNuvvlmh+0Gg8HeFHf8+HHk5OQ47J86dWqP125qasKvf/1rfPzxxygvL4fJZEJLS4tTDdL48ePt30skEiQmJqKqqsq+7fXXX3f9Cbvg2LFjuP3227FmzRrccsst9u0lJSX46U9/itWrV2POnDkoLy/HE088gYceegivvPIKYmJisGTJEsyZMwc333wzZs+ejbvuusvj4a0jBiQi8rqGFiPSYzXQmyw4V6PDtOFxvf8QUQBYtmyZvSOyrTako6Yma7+8jz/+GCkpKQ77lEpln6/7+OOP44svvsDTTz+N4cOHQ6VSYeHChTAYDA7HhYSEODyWSCSwWLwzHUdJSQluuukmPPDAA/jlL3/psG/t2rW4/vrr8cQTTwCwBjeNRoMbbrgBv//975GUlISNGzfi0UcfxbZt27B582b88pe/xBdffIHrrrvOK+VlQCIir9O2GDE0ToNotQJNepPYxSHymVtvvRUGgwESiQRz5sxx2p+RkQGlUonS0lLMmDGjy3OMGTPGqWnsm2++6fG6e/bswZIlS3DHHXcAsAaxzh27fen777/HrFmzkJ+fj6eeesppf3NzM+Ryx0hiW0OtY7/FCRMmYMKECVi1ahWmTp2Kv//97wxI/qKoqAhFRUUwm81iF4VowGhoMSJKHQKNUoamVgYkCh4ymQzHjx+3f99ZeHg4Hn/8cfzsZz+DxWLB9OnT0dDQgD179iAiIgL5+fl46KGH8Mwzz+CJJ57A/fffj4MHD2LTpk09XnfEiBF47733kJeXB4lEgl/96ld9qhlavHgxUlJSsHbt2m6PKS0tRV1dHUpLS2E2m1FcXAwAGD58OMLCwnDs2DHMmjULc+bMQWFhISoqKuy/j0GDBgEA8vLysHz5cqxfv97exPbYY48hOzsbycnJOH/+PF588UXcdtttSE5OxsmTJ3H69GksXrzY7efkKgYkNxUUFKCgoABarRaRkZFiF4dIdCVXtHhp9zlMSY/BT3K67jBZ32JEhCoEGoWcNUjklji1HOvuHNev5iZPS4x0rw9dREREj/t/97vfYdCgQVi7di3OnTuHqKgoTJw4Eb/4xS8AWDtKv/vuu/jZz36G559/HtnZ2fbh+d159tlnsWzZMkybNg1xcXF48sknodVq3So3YA0/vc1BtXr1arz22mv2x7a+Uzt27EBubi7eeecdVFdX480338Sbb75pP27IkCH2Wq0lS5agsbERL7zwAn7+858jKioKs2bNwh//+EcA1sVnT5w4gddeew21tbVISkpCQUEBHnzwQbefk6skAsfc9oktIDU0NPT64icKVAcv1uHX/yqBQi5FtFqBl/MnOx3TajTjzg178fNbRqK4rB6Xr7bgT3dmilBaGmhaW1tx/vx5DB06FKGh7NhPruvptePq+zeH+RNRn207VoFhgzR4/JZRqNS2oryhxekY2ySRkaoQhCnlaDaweZqI/B8DEhH1SWOrEQcuXsXM0fHISo2CVCrBoYv1Tsd1DEhqhRyNbGIjogGAAYmI+uTrs7UwWwTcMGIQVAoZMpLCcbj0Ki7Xt6BO1z6U2DaLdqTK2klbx4BERAMAAxIRuc1gsuA/x6swfnAkYjQKAMCE1GgcuHgVD795EM9+0b5Uga0GKUIVgvBQOQwmS6+roRMRiY0BiYjc8tF3V3Dvy9+ipFyLuWPbZ7GdOiwWUeoQTEiLxneXGuy1SA0tRmiUMoTIpNAorANnmw2sRSLXcSwRucsTrxkGJDdxsVoKZg0tRmzacwFThkbjr/dMxPUdZsROjVFj09Js/PyWkZBKJNh9uhoAcLa6CSlRagCARmkNSBzqT66wzfLc3NwscklooLG9ZjrPFO4OzoPkJs6DRMHs4+/KIQB44MZhiFR1/YcnPDQEk4ZEY9epGuSNT0ZxaT1+MN5a02QLSDo9R7JR72QyGaKiouxrg6nVaq+u3k4DnyAIaG5uRlVVFaKiorqcnNNVDEhE5JJWoxkfHrmCWzISug1HNjNGDsKfPjuJz0sq0KQ3YUJaFAAgjDVI5KbExEQAcFhAlag3UVFR9tdOXzEgEZFLvjxVjWaDCXdMSOn12OuHx+Ef+0qx4ctzUIXIMCohHEB7QOJINnKVRCJBUlIS4uPjYTQaxS4ODQAhISH9qjmyYUAiIpecqWpCWqwG8RG9z2gsk0qwbPpQ/PbDEowbEgm5zNrdMTRECqmEAYncJ5PJPPKmR+QqBiQicsmlq81IjVa5fPzkIdGYPyEFE9ua1wBrbYCa67ER0QDAgERELimta0bm4CiXj5dIJLhv+lCn7WGhctYgEZHf4zB/IupVQ7MR2hYTUmPU/T5XmFIOHddjIyI/x4BERL0qu2qdUyQ1uv8BSaOUsYmNiPweA5KbOFEkBaOyumZIpRIkRfXeQbs3GgWb2IjI/zEguamgoAAlJSXYv3+/2EUh8pnSumakRIUiRNb/PxlhSjmaWhmQiMi/MSARUa/KrjZ7pHkNAKLUIbjabPDIuYiIvIUBiYh6VVbXgsEe6KANANEaBa42G7kAKRH5NQYkIupRk96EOp0BaZ4KSGoFzBaBHbWJyK8xIBFRj8rqbCPYXJ8ksidRaus6bvXNXDaCiPwXAxIR9ai8oQUAkBzlmYAUrVYAAPshEZFfY0Aioh6VN7QiWqNAaIhn1sFqD0isQSIi/8WAREQ9Kq9vRXJk/+c/slEpZFDKpahnDRIR+TEGJCLqUXlDKxI9GJAAIEqtQJ2OAYmI/BcDEhH1qLyhBUkeDkjR6hA2sRGRX2NAIqJu6fQmNLaakBTpmQ7aNjEaBRrYxEZEfowBiYi6Vd7QCgAer0GKUitwub4Ff9l+Go2trEkiIv/DgOQmLlZLwcQ2xN/TfZCi1SGo1OrxRUklTlY0evTcRESewIDkJi5WS8GkvKEVYUo5wkNDPHreaI3C/n1Nk96j5yYi8gS52AUgIv9VXt/q8eY1AJg+PA7hoXK8tOscqhsZkIjI/7AGiYi6VaFt8XjzGgBolHJMGxaHuDAlqpvYWZuI/A8DEhF1q7zBOzVINnHhSjaxEZFfYkAioi7pTWbUNhmQ6OEh/h3FhSlRwyY2IvJDDEhE1KXKBmtw8WoNUpgCNU16CILgtWsQEfUFAxIRdelSfTMAYHC092qQBoUpYTQL0LaavHYNIqK+YEAioi5dvtoCtUKGSJVnh/h3NChcCYBD/YnI/zAgEVGXLte3ICVKBYlE4rVrxIW1BST2QyISVU2THnnPf4Xj5Vqxi+I3GJCIqEuXr7Z4tXkNACJVIQiRSVDlZkAymi0wW9hvichTyuqsTeqHSq+KXBL/wYBERF26dLUFKV4OSFKpBEmRKlypb3Hr5xb89Ws8seWIl0pFFHz4ccMZAxIROWloMaJJb0JKlNrr10qJVuGymwEJAE5XNXmhNETBTQLvNakPNAxIROTk8lVrYPF2DRIAJEeGul2DRETkbQxIROTEVqPjzTmQbFKi1ahq1MNgsnj9WkTUNU5F5owBiYicXL7ajEHhSoSGyLx+reSoUAgCUNHQ6tLxnFSSiHyBAYmInNiG+PuC7Tq2iSl7o2dNE5EX8INHZwEfkMrKypCbm4uMjAyMHz8eW7Zscdj/0UcfYdSoURgxYgRefvllkUpJ5F8u13t/BJtNpCoEaoUMV+pdq0FqNZq9XCKi4OXFac8GHLnYBfA2uVyOdevWISsrCxUVFZg0aRLmzZsHjUYDk8mEwsJC7NixA5GRkZg0aRLuuOMOxMbGil1sItGYLQKu1Ldi7ljfBCSJRIKUKJW9Y3hvdAYGJCLyvoCvQUpKSkJWVhYAIDExEXFxcairqwMA7Nu3D9deey1SUlIQFhaGuXPn4vPPPxextETiq9C2wmwRvD5JZEcp0a7PhdRisK7bJpXyoy4ReY/oAWnXrl3Iy8tDcnIyJBIJtm7d6nRMUVER0tPTERoaipycHOzbt69P1zp48CDMZjNSU1MBAFeuXEFKSop9f0pKCi5fvtyncxMFilOVjQCAYfFhPrtmcpQKVxpcC0jNbTVISpnof76IAgbHPjgTvYlNp9MhMzMTy5Ytw4IFC5z2b968GYWFhdiwYQNycnKwbt06zJkzBydPnkR8fDwAICsrCyaT82rgn3/+OZKTkwEAdXV1WLx4MV566aU+lVOv10Ovb18OQavlejUUmM5WNSEhIhQRod5bpLazlCgV6putk1OGKXv+s2QLSAo5AxKRp7Fetp3oAWnu3LmYO3dut/ufffZZLF++HEuXLgUAbNiwAR9//DFeffVVrFy5EgBQXFzc4zX0ej3mz5+PlStXYtq0afbtycnJDjVGly9fRnZ2dpfnWLt2LX7zm9+4+rSIBqxTlY0YmeC72iPAWoMEAFfqWzAyIbzHY1sYkIjIB/z6L4zBYMDBgwcxe/Zs+zapVIrZs2dj7969Lp1DEAQsWbIEs2bNwqJFixz2ZWdn49ixY7h8+TKamprw6aefYs6cOV2eZ9WqVWhoaLB/lZWV9f2JEfkps0XA2WodRvg4INmG+rvSUdtWg8RPukSex1Fs7USvQepJTU0NzGYzEhISHLYnJCTgxIkTLp1jz5492Lx5M8aPH2/v3/TGG29g3LhxkMvleOaZZzBz5kxYLBb8z//8T7cj2JRKJZRKZb+eD5G/K61rhsFkwYj4nmtxPE2lkCFao3BpTbbmtk7aJgs7TRB5Cv83OfPrgOQJ06dPh8XS/cRyt912G2677TaXz1dUVISioiKYzRxqTIHndGUjpBJg2CDf1iABQEqUa2uytbTNg2RmQCLyOC5W286vm9ji4uIgk8lQWVnpsL2yshKJiYmilKmgoAAlJSXYv3+/KNcn8qbTVU0YHK2GSuH9JUY6GxQeiupGfa/H2ZrYjGbOqE1E3uPXAUmhUGDSpEnYvn27fZvFYsH27dsxdepUEUtGFJhOVzb6vP+RTVyYAnU6Q6/HNeutTWysQSLyHA7zdyZ6E1tTUxPOnDljf3z+/HkUFxcjJiYGaWlpKCwsRH5+PiZPnozs7GysW7cOOp3OPqqNiDzDYLLgfG0zbs4Qp3Y2VqNEjc4Ai0XocRLI1ra12IwMSETkRaIHpAMHDmDmzJn2x4WFhQCA/Px8bNq0CXfffTeqq6uxevVqVFRUICsrC9u2bXPquO0r7INEgepsdRMsFsHnQ/xtYsMUsFgEaFuNiFIruj1O39YHyWIRIAgCJBx2Q9RvAquQnIgekHJzc3u9MStWrMCKFSt8VKKeFRQUoKCgAFqtFpGRkWIXh8hjjpdroZRLMTROI8r148KsoaimSd9jQDJ06HtksggIkTEgEZHn+XUfJCLynZIrWoxMDIdcpCU8YjXWaTRqm3ruh6Q3WqAKsXYiZz8kIvIWBiQigiAIOF6hRUZShGhliFSFQCqVoKa3gGSyQK20BiTOhUTkYayQtWNAclNRUREyMjIwZcoUsYtC5DGX61ugbTFhjIgBSSqVIE6jQK2u56H+epMFGoW1d4CJQ/2JyEsYkNzEeZAoEJVc0UIqAcYk+XYG7c5iNIpea5AMZgvUCtYgEXkDK5DaMSAREY6XN2JIrAZqhbjjNuLClaht6qUGyWiGRmktJ/sgEXkG/yc5Y0AiIpSUNyAjWbzmNZu4MGWvs2mzBonIezhtRjsGJKIgV99swJX6VlE7aNvEhytR3aSHpZvgY7EIMJmF9oDEPkhEHsFpkJwxILmJnbQp0JRc0QKAqB20beLDlTCZBdS3GLvcr2+bRdvWFMgaJCLPYv1ROwYkN7GTNgWaY1cakBChxKBwpdhFQXxEKACgqrG1y/2GtoCkUXIeJCJv4P+odgxIREHu6GUtxqVEiV0MANYaJACo0nbdD0nftsSPqq0GycgmNiKPEBiNnDAgEQWxxlYjLtbqMDZF/OY1ANAo5VArZN121LbXIClYg0TkDWxia8eARBTEjl3WQhCAsSn+s65gfEQoKrtpYuvcB8loZkAi8gj+V3LCgEQUxL6/0oD4cCUS2vr++IP4cGW3TWzsg0REvsKA5CaOYqNAcvRyg1/VHgHWgFRa19xl/6L2GiTbPEjsg0RE3sGA5CaOYqNA0dhqxPkand8FpJszElCnM+DNby467dMbrZ207cP82cRG5FGcJ7IdAxJRkCq5Yu1/NH6wfwWkawaFYdF1Q/D+4cv47lK9wz6D2dZJm0uNEJF3MSARBalvz9chPlxpH1rvT+6YkIKxKZF4/j9nHLbb+iCpuNQIkVewBqkdAxJREKpvNmDnySrMGZvol2svSaUSzLk2ERUNrWg2mOzb9SYLpFIJFHIppBLAzD5IRB7BjxrOGJCIgtBH35VDJpVg7thEsYvSrcS2kXUVDe1D/g0mC5Qy658tmVTCYf5E5DUMSERBptVoxidHyzF7TALCQ0PELk63EiO7CUgh1j9bcqmUfZCIPISL1TpjQHITh/nTQPefE1XQ6U24PStF7KL0KCJUDpVChvIOAUlvMkMpb69BYh8kIs+ScC5tOwYkN3GYPw1kJrMF7x26jOuGxdpraPyVRCJBYkQoKrQdA5IFiraAJJdJYOJabETkJQxIREHks+8rUdXYih9PSRO7KC5JigxFeUOL/XFjqwmhIdYRbEq51D7sn4j6h4vVOmNAIgoSrUYz/rm/FLkjByE9TiN2cVySGBnq0AfpbHUTrmkre0RoCLQtRrGKRhSQ/HBQq2gYkIiCxL+Kr6BJb8I91w0Ruyguy0iKQKVWj92nq9FqNKOsrhnD48MBABGqENQ3MyAReQI7aTtjQCIKAg0tRrxz6BLmjU3yq4Vpe5M9NAbXD4/D+p1ncbKiERYBGJkQBgCIUoeggTVIROQlDEhEQeDl3ecglQB3Th4sdlHcIpFI8JPsNDS2mvCPfaUIkUmQFqMGAESqQlDPgEREXsKARBTgvj5bg50nq/HgjcMQpVaIXRy3pcWqMTROg++vaDF9eBzkbRNFRqsVaGATGxF5CQMSUQBraDFi/c6zyBkag9xRg8QuTp/dnpWM9DgNHpgxzL4tUhWCFqMZrUaziCUjokAlF7sAROQdRrMFf9l+GiazgIKZw/1yzTVX3TQmAbNGxzs8h0i1dRZwbYvRPvSfiPzD12dqEBOmwOjECLGL0mesQXITZ9KmgaCx1Yg1//oeh0qv4rHZIxCtGXhNa511DnhRKmtAYkdtov7z9CC2tZ+ewBNbvvPwWX2LAclNnEmb/F2lthX/8853OF+tw+9uH4uca2LFLpJXRLYFJHbUJvKcgVzT7GkMSEQBxGIR8MdPT8BotuDpuzIxNiVS7CJ5jT0gsaM2DXBbD1/Gw28dFLUMAidCcsI+SEQB5MPvruBMdRP++KPxSIlSiV0cr5LLpAhTylHfbBC7KET98spX58Uugh3rj9qxBokoQFRqW/HG3ov44fgkjEkauB0j3cHJIonIWxiQiAKAIAgo2nEGEaoQLLouXezi+AwDEpFnsIHNGQMSUQD415ErOFxaj4KZw6BSBM+Qd67HRuRZ7KPdjgGJaID76LsreHn3eSyYmIJJQ2LELo5PRakUrEEiIq9gQCIawD767gr+9uU5zJ+QgiXT0sUujs9FqkJwlZ20icgLGJCIBqhPj5bbw9Gy69ODcv6SaHUItC1GWCzsQUHUL/wv5IQBiWgA2nWqGuu/PIu8zKSgDUeAtQbJIgBNBpPYRSGiAMOARDTAHCq9ime/OIXckYNw//RrgjYcAe3rsTWwozYReRgDEtEAcrxciz98fBwT06Lx6E0jIJUGbzgCgJi2Neaqm/Qil4QoMEg4VaQdA5KbuFgtiWX78Ur87/tHMTw+DE/OHQW5jP99E8JDESKToKyuWeyiEA1oAjshOeFSI24qKChAQUEBtFotIiMDd50r8h8GkwUv7T6HbccqcHNGAh6aMQwKOcMRAEilEqTFqHGxlgGJyBOCuMXeCQMSkR+rbzbgdx8dx7maJqyYNRxzrk0Uu0h+Jy1Ww4BE1E9cq9YZAxKRnypvaMHqD76H3mTB//1oPEYkhItdJL80JEaNb87WwmIRgr5PFlF/8X9QO9bTE/mhs9VN+J93voNUAvxpIcNRTwZHq9BiNKOeM2oT+YXG1sD4v8iARORnisvqserdoxgUpsT//SgTCRGhYhfJr9mH+jMgEfWbJ1rajObAaK9jExuRn2g1mvHmNxfxryNXkJUahVVzxwTVwrN9FaliQCLyFE80sVVqWz1wFvGxBonIDxy91IBH/nEYnxwtx5Jp6ViTdy3DkYtsAUnrgYDU2GrE/a8dCJg/8ESu8mQn7ZMVjZ47mYhYg0QkEr3JjCNlDfjqdDV2nKzGtckR+PVt1yIlSiV20QYUVYgMMqkEWg/0ezh2WYtKbSt2narGnZNTPVA6ouATKFMFMCAR+VCr0Yw9Z2rwzblaHC6th95kQXJUKB6ccQ3mjU3iKKw+kEgkiFSFeKSJTWj7GC3jfSAKegxIRD7Q0GLEx9+V4+OjV9DYasKohHD8V3YacobGYHC0KqjXU/METwUkMwMSBTlP/CmSBsjfMwYkIi+qaGjF1uLL+KKkEgBwc0YC5melIDGSI9M8KUIl90xAslgDEgMrUd8Fyn8fBiQiLzhd2Yj3Dl/G12dqEBYqx8JJgzFvXJK9QzF5VqQqBHU6TzSxWf9lBRJR33Vc8NZsEQZsjSwDEpGHCIKAQ6VX8e6hyzh6qQEJEaF4cMYwzBodj9AQjkjzpojQEFyo6f9yI0azBQAgC5SPwEQu8tbMRU9/fhJP3jraS2f3LgYkon4ymS3YfboG7x66hIu1zRgRH4aVc0dj6jWx7HTtI9FqBep0hn6fR2+yBiSTJTAmuiMS21ena/DkrWKXom8YkIj6qNlgwmffV+CD4iuobTJg0pBoPDRjGK5NjmAfFh9LjAxFk96EJr0JYcq+/1mzBSRbTRIRBa+AnyiyrKwMubm5yMjIwPjx47FlyxaH/XfccQeio6OxcOFCkUpIA02dzoDXvr6ApRv347WvLyJzcBRe+MkE/Pq2azE2JZLhSARJbZ3ey+tb+nWeVqMZAGAKkKUSiKjvAr4GSS6XY926dcjKykJFRQUmTZqEefPmQaPRAAB++tOfYtmyZXjttddELin5s8ZWI749V4evztTgcFk9lDIpbh2biNuykhEXphS7eEEvuW1yzSsNrW4v7HtVZ0C0RgGgvQbJwBokoqAX8AEpKSkJSUlJAIDExETExcWhrq7OHpByc3Oxc+dOEUtI/qpJb8K352qtoai0HhZBQEZSBJbfMBQzR8VD04+mHPIsjVKOSFUI3t5fhlEJ4S5Po/DhkSt4cdc5vLU8BxGhIfYaJDaxEZHoTWy7du1CXl4ekpOTIZFIsHXrVqdjioqKkJ6ejtDQUOTk5GDfvn19utbBgwdhNpuRmsolBKhrDS1GfFFSid98+D3ufflb/Hn7aTTrzbhv+lBsXDIF/+9H4/HD8ckMR36oUW9CaV0z1u884/LPfPZ9BQBAb7QGIvZBIvKsgdzjQPS/8jqdDpmZmVi2bBkWLFjgtH/z5s0oLCzEhg0bkJOTg3Xr1mHOnDk4efIk4uPjAQBZWVkwmUxOP/v5558jOTkZAFBXV4fFixfjpZde8u4TogGnulGPvedqsfdsLUquNEAAkJEUgaXXp+P64XFsQhsg7p8+FC/uOofLbvRDulhrnRpg2ab9ePrOTOjtNUjsg0QU7EQPSHPnzsXcuXO73f/ss89i+fLlWLp0KQBgw4YN+Pjjj/Hqq69i5cqVAIDi4uIer6HX6zF//nysXLkS06ZN61M59Xo99Hq9/bFWq+3Tecg/lNU1Y++5Wnxzthanq5ogk0qQlRqF/84djuuuiUGUWiF2EclNeZnJiNUosPbTE6hu1GNQuHvBdtuxCtYgEXmA0GFWpQFcgSR+QOqJwWDAwYMHsWrVKvs2qVSK2bNnY+/evS6dQxAELFmyBLNmzcKiRYv6XJa1a9fiN7/5TZ9/nsQlCALOVjdh79la7D1Xi7K6FijlUkxKj8ZtWcmYkh7DZrMAcG1KJKQSYP+FOswbl+TWz0ok7cGIAYmI/PodoaamBmazGQkJCQ7bExIScOLECZfOsWfPHmzevBnjx4+392964403MG7cOADA7NmzceTIEeh0OgwePBhbtmzB1KlTnc6zatUqFBYW2h9rtVr2ZfJzFouAknKtPRRVN+oRppQje2gM8qemIystCko5Z7gOJJGqEExJj8G2YxWYOzbRrSkXJGhfi41NbBS8+l/nIxnQ9Ubt/DogecL06dNhsXT/afDf//63S+dRKpVQKtkXxZ+ZzBZcqW/FhVodjpTV49vzdWhoMSJGo8B118Ri6rBYjE2OgFwm+tgE8qKbMxLw+4+P49LVFqTGqAEAec9/hduzknH/DdfYjxMExxAkkbTPoG0wsQaJyCMGcC9tvw5IcXFxkMlkqKysdNheWVmJxMREUcpUVFSEoqIimM1mUa5P1je26kY9LtY140KNDhdrm3GxrhmXrjbbJ/hLigzFTWPiMXVYLEbGh3PJjyAyfnAUpFIJjl5usAckAPjou3KHgNR5NRGJRGKvQTL18KGKiIKDXwckhUKBSZMmYfv27Zg/fz4AwGKxYPv27VixYoUoZSooKEBBQQG0Wi0iIyNFKUOwaWw14ptzdThV2WgNRHXNaDFYA6pKIcOQGDVGJ4ZjzrUJSI/VIC1WjYjQEJFLTWJRKWQYlRCGI5fqMW9ckr02SNGp5rCrEGSrQTKa2MRGwaVzjSr5QUBqamrCmTPt85acP38excXFiImJQVpaGgoLC5Gfn4/JkycjOzsb69atg06ns49qo8DUbDDh23N12HW62j5JY1qMGumxGmQPjUF6nAZDYtUYFKbk0h7kJDM1Ch8euQKT2QKd3joFiFzm+DrpvJyIVCKB2cJO2kSeNJD/OosekA4cOICZM2faH9s6Qufn52PTpk24++67UV1djdWrV6OiogJZWVnYtm2bU8dtGvhajWbsv1CHr07XYP+FOhjNAsYkheO+6UNx/fA4xGg49J5ckzM0Fv/cV4ZjV7SIbXvdhHSuQTJ30QepbZueAYl8pNngPIffQBcon1lFD0i5ubm9Vu2tWLFCtCa1ztgHybMMJgsOl17FrtPV2He+Dq1GC0bEh+He64Zg+og4xIe7tmQEUUfDBmkQF6bAgQt1mDYsDgAQ0rkGqVMTW8dRbLYJI4m8bcPOs2IXwYGnw81ADkuiB6SBhn2Q+s9ktuDIpXrsPl2DvWdr0WwwY0isGndOSsX0EXH2hUeJ+koikWBkQjgu1OowLsX6/9SpBsni3MRmsgiQSiX2CSOJvK1R7181SJ7uijSA8xEDEvlGi8GM7y7V48DFq9hzpgaNrSYkR4UiLzMZN44YhLRYde8nIXLD4GgVtp+oQpO9D1LPAUkisdYgaRQy+9psRN7GvtH+iwGJvEIQBJyv0eFwaT0Oll5FyRUtzBYBCRGhuDkjATeOHIRr4jTsYE1eMzhajdomA6obrUsEmTs1qZm7mAzSZLEgPDQEVdpWCILA1ycFHb7k2zEguYl9kLqnbTWiuLQeh0qv4lBpPa7qDFDKpRg3OBL3TR+KiUOikRwZyjcd8omUaGtT7YmKRgBwqhUydgpM0rZ5kDQKGSyCdTZthZyvVaJgxYDkJvZBame2CDhV2YhDpVdx8OJVnKlqgiAAabFq5I4chIlDopGRFAGFnDNXk+8NbgtIxy43AABaTY4farocxWYR7Gvy6U1mvnaJghgDErmlpkmPQxetNUTFZVeh05sRppQjKy0Kc8cmYUJaFOLCuCQLiU+tkCMtVo3S2mYAQGvnGqROQ/kFoa0PUltAajVawEGUFCy81RVqILcYMCBRjwwmC0rKtTh48SoOlV5FaW0zJBJgRHw4bstMwcQhUVzKg/xWarQ1IGUkRaCkXAtL2yg1oH1Iv43RbIEgABpFew0SkbcF4gzWgfKUGJCCmMFkQX2zAXXNBtTpDLiqM6JOp0edzoirbdsu17fAYLIgWqPAxLQo3D05FVlpUVzKgwaEzMGR2HOmBtlDY1BSroXeZIFKIQPgPA+SbUkSjdK6v3ONExG5byB/dGZActNA6KTdajTjarMBtU0Ge9C5qjOgrtlo/bftq6nT/BsyqQTR6hBEaxSIUSswKjEcM0cPQlZqNNJj1QO6qpSC061jEzFlaAzOVDUBsNYK2QNSpz5IhrYmNzVrkMiH/K2yxdN/5Qfy2wYDkpvE6qQtCAKaDWZr2LGFHocQ1BZ+mg32hVxtQmQSxGgUiNEoEK1RYHB0pD0ERbdtj9EoEK6Us6mMAopEIkFcmBKXrrYAcKwV6tzExhokIs8YyKGoIwakftp6+DLUYVqPntNiEVDf4hh66nQG+x9wG1WIDNGaEGvwUSswbJDGHoJi1O2BSKOQsfaHgpqybTRax1ohY6eAZJs9294HicuNkA8ESn+d7kgGcCMbA1I/fXjkCkJUGo+eUyqRIFIVgmhNCBIilBidFG4PQTEdanxCQ2QevS5RoBoUbh1Zeb5GhyGx1v+vpk6j2GwBSd1Wg8TlRsgXBD9pZAv0oNYXDEj99MqSKYiIiBC7GETUg7gwJYbHh+Hb83XIHRUPwHmpEVsNre2DR+f9RBRcOAsaEQWFiUOi7ZNGAtZO2rIOfe5snbQVMimkEuelSYgCGXthOGNAclNRUREyMjIwZcoUsYtCRG5IjAhFfbPRXlNkslgQIusQkNr6J8mkEsikEhi7WKuNyNP8pWnLk+WQdPtgYGFAclNBQQFKSkqwf/9+sYtCRG6I0SgAAFebDQCsNUhyafufQFufI7lUArlM6jRPEhG5bwDnIwYkIgoOcWHWgFTbZA1IZosAuUMNkjUQyaQSyKUSp3mSiCi4MCARUVCIbVsjsFanBwAYLRbHPkj2GiRpWw0SAxJ5n7+9yjwxJYy/Pae+YkAioqCgUciglEtRp3NsYkuOsq5Ia+ukLZO11SAxIJEP+EsfJG9pNgzc+cQYkIgoKEgkEsSGKVDe0ArAOmmkQi7BhnsnYeboePsbldzexMY+SOQLgZeQBnK/o47cDkg6nQ6rV6/G2LFjERYWhvDwcIwfPx6//e1v0dzc7I0yEhF5xMS0aOw5UwOT2YLSumakRKkgkVgDkY1MKkGITOq0FAlRYOPrvTO3Joo0GAyYMWMGjh07hrlz5yIvLw+CIOD48eN46qmn8Omnn2LXrl0ICQncld4HwmK1RNS1m8Yk4KPvylFSrsXZKh3mT0gGAIe+SCFSKWRsYiPqs0D5n+NWQFq/fj0uXbqEI0eOYNSoUQ77Tpw4gdzcXGzYsAGPPPKIRwvpT8RarJaI+i89Vg2pBHhp93k06U0YNigMQHtAkkqA8FA55FIJa5CIgpxbTWzvvfcefvWrXzmFIwAYPXo0/vd//xfvvPOOxwpHRORJcpkU8RGhuFCjw7XJEchMjQIAyNpG7kSpFZDaJ4pkHyTyvkDvpD2QuRWQSkpKkJub2+3+mTNnoqSkpL9lIiLyGlvN0D05QxAis/4JlLbVINkmk5SzDxL5SCAGpKDspF1fX4/Y2Nhu98fGxqKhoaHb/UREYlMprIvRjkwMs2+zzRcZpbb2n5RzqRHyESFgeuwEHrf6IFksFshksm73S6VSdl4mIr/2i3ljcLqyEUp5+98yWx+kGLWtBonD/ImCnVsBSRAE3HTTTZDLu/4xk8nkkUIREXlLSpQKKVEqh2225rS4cOts26xBIiK3AtKaNWt6PeZHP/pRnwtDRCSGqkbr8iMzRg4CYO2D1GI0ilkkChKB2AcpUHg8IBERDTT509IxdVgskttqljjMn4jcCkjd+fLLL6HT6TB16lRER0d74pRERD6TEBGKhIhQ+2O5VAoTm9goCHliBJoH1rv1C26NYvvjH/+IX/3qV/bHgiDg1ltvxcyZM/HDH/4QY8aMwffff+/xQvqToqIiZGRkYMqUKWIXhYi8RC5jDRJRsHMrIG3evBljx461P37nnXewa9cu7N69GzU1NZg8eTJ+85vfeLyQ/qSgoAAlJSXYv3+/2EUhIi+RSSUwMiCRDwTiqyxQ+lW5FZDOnz+P8ePH2x9/8sknWLhwIa6//nrExMTgl7/8Jfbu3evxQhIR+ZK1DxKH+ZP3+UuY8Jdy+BO3ApLJZIJSqbQ/3rt3L6ZNm2Z/nJycjJqaGs+VjohIBBzmT77CiSL9l1sBadiwYdi1axcAoLS0FKdOncKNN95o33/p0qUeZ9omIhoIuNQIUd8FSidtt0axFRQUYMWKFdi9ezf27t2L6667DhkZGfb9//nPfzBhwgSPF5KIyJfkXKyWglSghBtPcKsGafny5Xj++edRV1eH3NxcvP/++w77r1y5gmXLlnm0gEREvhYaIkOrkcsmkQ8EYEVloPRncisgWSwWVFVVobKyEvv378dzzz2HlpYW+/6//vWvuOOOOzxeSCIiX4rWKNBqtKDFwJBEFKzcCkhPPfUUfvGLXyA8PBwpKSn485//jIKCAm+VjYhIFLZFa+uaDSKXhIjE4lZAev311/HXv/4Vn332GbZu3YoPP/wQb731FiwcDktEASQmzBqQruoYkIjcFSj9mNwKSKWlpZg3b5798ezZsyGRSHDlyhWPF4yISCy2GqRaBiSioOX2PEihoaEO20JCQmDkqtdEFEBUChlCQ6SsQaKgESD9qj3KrWH+giBgyZIlDpNFtra24qGHHoJGo7Fve++99zxXQiIiEYSHhqBRbxK7GEQkErcCUn5+vtO2e++912OFGQiKiopQVFQEs5mjW4gCmVohQzMDElHQcisgbdy40VvlGDAKCgpQUFAArVaLyMhIsYtDRF4SppRDx4BEQSZQOlh7glt9kIiIgoVaIYeO8yBRkAmUSR49gQGJiKgLYUoZmg2sQSIKVgxIRERdUCvl0OlZg0TBgTVHzhiQiIi6oFHI2AeJgg6DUjsGJCKiLlj7IDEgUXBg52xnDEhERF3QKOVoNphhsfAjNQU+1hw5Y0AiIurCoHAFBAGo0enFLgqRzzAntWNAIiLqQny4dVmlKi0DElEwYkAiIupCfIR1SaWKhlaRS0JEYmBAIiLqglIuQ7RGgSsNLWIXhchnPj1aLnYR/AYDEhFRN7IGR2LXqRp21KagcbqqSewi+A0GJCKibkwbHodKbSu+v6IVuyhEXiWwe7YTBiQiom7EahQAgF+8fxTlbGojCioMSERE3YhUhdi/d3fZEUEQ8Pz20yitbfZ0sYjIBwI+IJWVlSE3NxcZGRkYP348tmzZ4tI+IqKIDgGp1eheQDJbBHxeUon1X57xdLGIyAfkYhfA2+RyOdatW4esrCxUVFRg0qRJmDdvHjQaTY/7iIhCQ2T2791dl409OogGtoAPSElJSUhKSgIAJCYmIi4uDnV1ddBoND3uIyLqyN112bh0A9HAJnoT265du5CXl4fk5GRIJBJs3brV6ZiioiKkp6cjNDQUOTk52LdvX5+udfDgQZjNZqSmprq1j4iCV2ZqJADgta8vwmi2uPxzFiYkogFN9ICk0+mQmZmJoqKiLvdv3rwZhYWFWLNmDQ4dOoTMzEzMmTMHVVVV9mOysrIwduxYp68rV67Yj6mrq8PixYvx4osvOl2jp31EFNx+P38cAKBOZ8DOk9Uu/xzzEdHAJnoT29y5czF37txu9z/77LNYvnw5li5dCgDYsGEDPv74Y7z66qtYuXIlAKC4uLjHa+j1esyfPx8rV67EtGnTXN7X+Ti9vn1NJq2W86IQBZujl+pxc0aCS8eyBoncZbEIkEololy7xeDeIIRgIHoNUk8MBgMOHjyI2bNn27dJpVLMnj0be/fudekcgiBgyZIlmDVrFhYtWuTyvs7Wrl2LyMhI+xeb4oiCT6uJTWzkPWK+Yl7fe9GDZxMn5HmaXwekmpoamM1mJCQ4fmJLSEhARUWFS+fYs2cPNm/ejK1btyIrKwtZWVk4evRor/s6W7VqFRoaGuxfZWVl/XtyRDRg/OXHE3DNIA30bgz1Zzwid5kDZkmbwHgeojexedv06dNhsXT9qa+nfZ0plUoolUpPFo2IBoihcRoMiVGjqlHf+8FthLY/LaxIIlex1tG/+HUNUlxcHGQyGSorKx22V1ZWIjExUZQyFRUVISMjA1OmTBHl+kQkDmWIDHo2sZEX8SXjX/w6ICkUCkyaNAnbt2+3b7NYLNi+fTumTp0qSpkKCgpQUlKC/fv3i3J9IhKHUi6F3uR6E5stIEkCozsGeUnHTGRmQvIrojexNTU14cyZ9qn4z58/j+LiYsTExCAtLQ2FhYXIz8/H5MmTkZ2djXXr1kGn09lHtRER+YJSLoXe6HoNEt/qyF2sdfQvogekAwcOYObMmfbHhYWFAID8/Hxs2rQJd999N6qrq7F69WpUVFQgKysL27Ztc+q4TUTkTUo5m9jIuywB00k7MIgekHJzcyH08odkxYoVWLFihY9K1LOioiIUFRXBbOacEUTBRBniXhOb7c8acxL1pGMLLF8r/sWv+yD5I/ZBIgpO1j5Ill4/0NmwBolcwT5I/osBiYjIBUq5DIIAGM2uBiTrv+ykTa5iqPYvDEhERC5Qyq1/Ll1tZnO1ponIJlBeMoHyPBiQ3MR5kIiCkzLE+ufynYOXuu1MqzeZ7cEoUN4kyLs6VjAGzkzagYEByU3sg0QUnIbEagAA7x26jBMVjU77WwxmLFy/F599b53Y1sKgRC7o+PJobDWJVg5yxoBEROSCuDAl/nrPRADAkUv1Tvsb9UYAwL7zdQDa+yARuerrszViF4E6YEAiInJRaowaN4yIw5cnqyEIAtZ+chw7T1YBAJraPv231xxxJm1yT/bQGLGL4BHJUSqxi+ARDEhERG6YPiIOl+tbUNNkwNdna/HM56cAADq9tfO2rR8Ja5DIXSGywHhLlssC41NBYNwNH2InbaLgFqNRAABqmvQO221NbOZONUhErgqUYf4B8jQYkNzFTtpEwS0iNAQA8I99pfZtT2w5gvL6VgCA2exYgxQobxbkfXyt+BfRlxohIhpIwkOtfzYPl9bbt52oaERY23ajxbpeW6DUBpDv+MNrZnJ6tNhF8BusQSIicoNG0fXnystXWwC0z7QtcCbtAc1iEdBq9O2am36Qj6gDBiQiIjdIpV0nnvIGaxOb0cQapEDw4u5zuHPDXrGL4TOThlhrjjzxsg2Ulz4DEhGRB5namthsAuXNItjsOeObOYmuNhvs34sZqtUKGQDn128wY0ByE0exEdHbD07tdp++rQaJy0aQKzq+TvzhJXOkrKHf5xDgB0/EAxiQ3MRRbESkUsi67VtksvVB8mF5iPrLk6/XQKk1ZUAiIuoDRTeT+hnMjn2Q2El7YLIF3S9KKr16nY5hQswmtkAJNZ7EgERE1AcdZz1OiFDavze1BSROFDmw6U3WEWze7ovUsTlKzNeMJ5vFAuWVz4BERNQHE9Ki7N8nRobav7cIQJW21f6JnDmJetKxT7SorxUPXjtQ+t8xIBER9cFjs0diTV4GACBGrXDYd99rB+zzIdHAptObfHatAMkVPhsB6G0MSEREfaCQS5EQYa05kkgk+OlNI7Bo6hD7/sZWo1hFIw+wZZUTFY1evU7HfkfiNrF5zrRhsR48m3gYkNzEYf5EZKNqmzsmPU6N2RkJGDZIY9/X0GINSOykTT0Ruvne1zwZzgLlNc+A5CYO8ycim7gwJYp+MhG3Z6YAAOTS9j+ptoDUWVldM2uXqJ2fjGLzpI5NhUkd+ucNNAxIRET9kBarti8/Ipe1f3TWtgWkzu95D791CI9vOeKz8pF/69jZX8wqJE9mswDJeQxIRESeck1cGH4wPgkAUN9NDRIAXKlv9VWRyM/JOqztFyCD2AJmigsGJCIiD1EpZHhoxjAAwOHSenELQ/0iRjeaQGli62ggPyMGJCIiLwqUDqvBxldv7A6dtAOlic1zpxIVAxIRkRcFYKUAeZDfLDXiyZm0ha6/H2gYkIiIiETiuNSIiOXwaCftAZyKOmBAIiIiEktgZIkeDNwnyIBERORhhTePtH/fcV0qS6CsJUFeESidtAPjWTAguY0zaRNRb2aOjrd/33HCSBMD0oAhzig2ES7axpPNYgGS8xiQ3MWZtInIFWFKOQCgpklvrzkKlFXOg4E4o9gCYy02T3b4FhMDEhGRF2xaNgX/c+soGM0Cdp+pwYkKLUwWi9jFIj/TMRSJuxabd841kGuT5GIXgIgoECnlMsSHW9ehevqzkwCA15dli1kkcoMYb+yBMvrLXxbg7S/WIBEReUl4qONn0EtXW0QqCfkrf6lt8ew8SAM5FrVjQCIi8pLOAen/bTsuUknIXb6aAb1jlAiULmoB8jQYkIiIvEWjkKPDWqRobDWJVxjye2J2bvZopY9DrdjAjUsMSEREXiKVShDWoRZpAL9XBB1f3Sv/aWIbWOf1BQYkIiIvSo1Wi10EGiBEXYvNo4vVtp/MYBq4IzcZkIiIvOimMQlO25Ry/uklK/+ZM8hz5eg4m8VAnhyV/0uJiLzINmFkR3qTBTtOVIlQGvI3HWtuAnGpkRaDWbRy9BcDEhGRF3UeyWaz+3QNjl1uQFlds9O+vOe/wlvfXvR20cjPiNoHycvXLqtrRt7zXyHv+a9wurLRuxfzEAYkIiIvykiKwI+z07D8xmsAAEmR1skjTRYLVr13FA+/dajLn9u8v8xnZSRnvhrm31GgBKTOI9e+u1SP8zU6++NvztV67mJexJm03VRUVISioiKYzQO32pCIfEcqleAnOWkQBAFZg6OQEq3Cn7efxqGLV+3HHC69irgwJQaFK6GQWT+3Bkhry4Alxu9f1E7aHuyDZDA7dsz+3/ePOTw+U9UEQRAgESOFuoE1SG7iYrVE1BcSiQRpsWrIpBIMjlKhocVo37f6g+/x8FuHsOaD76EfwKN+yH2CIGByejSkksAIxYIg4G9fnuvxmEOl9fj0WIWPStR3DEhERD6WHKXqcntJuRblDVyOJJgIABRyKSJUIQN2osh95+tgMltgsQj4Rafaou6cq27q+wV9hE1sREQ+NiIhrNt9P/1nse8KQqITBEACCSQSid/WIAmCgDe/uYi545IQF6Z02FdW14zffVTi9jk/+74SK2aN8FQRvYI1SEREPpYQEYr/uXWU2MUgPyKViLsWW0+XbtKb8PaBS3jhP2cctn9zrhZr/vW9dwsmIgYkIiIR2DpjU3ATINhHzPlrE5utM7VFEFClbcVXp2sAAE99fBzVjXpfFE8UbGIjIhKBXNbzCB6pfw/wIQ+SAJBKJCLXIHV/cVmHgPSL94+iUqvH9BHTfVU00fAjDBGRCEJ6qUHy9yHQ5Bm2mhupBN1W43xytBxfn63p13Vqm/Sw9JTAOuxq0pscdtleimYLoG217st7/qt+lWcgYEAiIhLB2ORILLpuSLf7zRYBm/eX+rBEJAYBtgAi6bYOZ/3Os1j7yYk+X6PVaMaSjfux5aBrk4+W1jrO7m5bLuTY5QaPLh1S32zw2Lm8gQGJiEgEUqkEd01JtT9+cfEkp2Pe/KYUbx+wvqkJgoAvSirRauQktYFIKkHPNTz9YGybuPF4efdLfHS8csfKy7znv8LiV/d5pVx/+uykV87rKQxIREQiumFEHAAgUhVi3xajUdi/f2PvRXx9pgZbiy/jL9tP4+XdPU/CR57hq+5A7cP8e79mnc57NS4dlweRtiWkL0oqvXY9ANB1asrzNwxIREQi+vkto/D2g1OhCpHZt42Id5wnae2nJ/DqVxcAWJdp6M3es7XIe/4rmMXs9Ususo5ik6D3TtpfnqryYinaSSXAl6eq8Zftp712PQA4W63r/SARMSAREYlIJpVApZBBIpGg6CcTAQBqhazb45td6APy8dErAAC9ic1xA4EEgFTqvMhrZ/2dSNJotsDQaSmbioZWAMCFDv2O/t+nJ/C0nzd/+QKH+RMR+Qlp20fWiA7NbZ01tvbeLCGBbVi2R4pFPmC7Z9703aUG3P3iXrz70DQYLRZUNLRixd8POx1XFcBzG7mDNUhERH4iJUqF/84dhntyuh/d1qQ3udxRm01s/s9WK1Ra14zDpfXeuUaH701mAUU7zmDh+r04OwDWQxMTa5CIiPyERCLBvHFJAACNUgadvusg1Gww49LVZvz7eBVGJYRj5uj4Lo9jQOo7X81CJbSP80dpXXPPB/f1Go6tavi8rfP1c194t4+RuwRBgCBYR3j6g4CvQSorK0Nubi4yMjIwfvx4bNmyxb6vvr4ekydPRlZWFsaOHYuXXnpJxJISEbX7+/3XdTtPkt5kxs82H8HH35Xj2S9OOe23DdNe+8lxbxYxoPlsFBsEexiLUnfftAr0vQ+SWEuYPDJruFvHv/nNRdxetMdLpXFfwNcgyeVyrFu3DllZWaioqMCkSZMwb948aDQahIeHY9euXVCr1dDpdBg7diwWLFiA2NhYsYtNREFOKpVAZ2jvb1R480gkR6nw+JYjaDVaevjJ9tqPExXdz3tDvXAjjVRqW2EwWZAao+7TZSQSYHRiOAZH9/zz2laj2+cHgOKy+j79XH/dcm0inm9b4Hbp9ekYmxKJn799pNvjvzxV7auiuSTga5CSkpKQlZUFAEhMTERcXBzq6uoAADKZDGq19QWp1+vbqvdYJU1E/qFjh+yUaBVCQ6x/sh/9h2PHWrNFwNFLDQCskw0e8lJfls4aWozYccJ7Q88HivtfO4CH3zrU559vnwfJs+8/NU16fHmqGs987lzL6G3XDNLYv88dNQgLJg7GyIRw3H/DUJ+Xpa9ED0i7du1CXl4ekpOTIZFIsHXrVqdjioqKkJ6ejtDQUOTk5GDfvr7N6nnw4EGYzWakprbPXltfX4/MzEwMHjwYTzzxBOLi4vr6VIiIPOonOWm4dWwilk1Px/BBYVDKux7+v+HLs/jF+0ex9pPjXX4K15vMXlnWYd2/T+HZL06xr5MHuDIPUnef37cdK8eZKmttobbViN9+WILvrzRg6cb9Ph+u//SdmVh03RCsmjsGAPD6smw8etMI+/7B0SqH4/25UkL0JjadTofMzEwsW7YMCxYscNq/efNmFBYWYsOGDcjJycG6deswZ84cnDx5EvHx1o6JWVlZMJmch75+/vnnSE5OBgDU1dVh8eLFTv2MoqKicOTIEVRWVmLBggVYuHAhEhISvPBMiYjcExemRMHM9n4cthqkzrYdqwAAfH22FpPTY5z2/+bDEhy91IAPH+l6Bfb/23YCp6ua8NLiyW6VzzYTskUQIPNZt2YfkUj6P/GQC2xXkErR5+sV7TgLAEiIUCIjKQL7L9Rh/4U6zxTQTaMSwzEqMdz+OLrDrPAAMGmI4+vT1sToj0QPSHPnzsXcuXO73f/ss89i+fLlWLp0KQBgw4YN+Pjjj/Hqq69i5cqVAIDi4uIer6HX6zF//nysXLkS06ZN6/KYhIQEZGZmYvfu3Vi4cGGX59Dr2+eG0Gq1vT01IiKPilIrMH1EHL463f3K7l3NfmxrfuvO7h7O1xPbkhQWP64F8HftAaH7xWrtx/ayv1KrR6XWv/rx9MafXzmiN7H1xGAw4ODBg5g9e7Z9m1QqxezZs7F3716XziEIApYsWYJZs2Zh0aJFDvsqKyvR2GitlmxoaMCuXbswatSoLs+zdu1aREZG2r86NtMREfnKnZMGi10EO9snf0vPfcYHJh+FPtsoNonEGjRf3n0O57qZn0gQBDQ0G/1qDTOFvH8xwp/Dteg1SD2pqamB2Wx2avJKSEjAiRMnXDrHnj17sHnzZowfP97ev+mNN97AuHHjcPHiRTzwwAP2ztmPPPIIxo0b1+V5Vq1ahcLCQvtjrVbLkEREPhcic/0NydYk573WImtCMvvxm9xAIW27Rx8UX8Gh0qv4zW1jMShc6XDM2eom3PvKtwhTynHNIA1CZFIsu973nZ6fvjMTUgmQGqPGH7edwIELV/HW8hyXG1nzMpPw4ZFyANaJK0O6X1lHVH4dkDxh+vTpsHTz8SY7O7vX5jkbpVIJpVLZ+4FERF6UEqXC7VnJUClk+Oe+sh6PDQ2RQRAESCUSmNs+CEo82OHDNp+fP9cC+KPS2mZEaUIQERoCdOiDY/stltW1YNmm/Xg5fzISIkLtP3fssrVrR5PehO/amk0PXrzqy6Jj09IpiA1rfy9cOXc0tC0m63Nx0YKJg+0BacfJKvvkqP7Gr5vY4uLiIJPJUFlZ6bC9srISiYmJopSpqKgIGRkZmDJliijXJ6LgJpVKcP8N12BonKbH4xZdNwT1zUa8tPsc5G1Jxmi2vgVXNbY6LVraF+1NbAxI7ij4+yE83mE+IIlEAqlE4lTLd/9rB9DQ0re5jzxp3rgkfPjIdHz4yHSHcAQASrnMqaarN3EdzmHy49eOXwckhUKBSZMmYfv27fZtFosF27dvx9SpU0UpU0FBAUpKSrB//35Rrk9EBADXDY3FpCHRXe57cMY1kLWFov+cqLJ3pjZZLHjjm4u4b9MBrN95FmeqGqE3ubauW0/8+D2u77w0tKq5bfLP8oZWnKlqxOmqJmw7VtEWkJx/kfe+/K1XyuGO/84d5rVz++kANgB+0MTW1NSEM2fO2B+fP38excXFiImJQVpaGgoLC5Gfn4/JkycjOzsb69atg06ns49qIyIKRlKpBKvmjUZpbTO2n6jCx9+V2/fJpRIY2z7+SiUSSNq+N5gseHu/tVmupLwB/z5e2fm07pUhkEexeek5/fnf7aMMf7bZcVbpr8/WeuWarooNU6C2yfPzZfWkpFyLvMxkh20Gk6Xfnb89QfQSHDhwABMmTMCECRMAAIWFhZgwYQJWr14NALj77rvx9NNPY/Xq1cjKykJxcTG2bdvGuYqIKOgp5TKMSAjHQzOGYWRC+9wzZou18ysAyKQSNLWNejKY25vVrtS39vv6tk//gdjE1pdndPRSA072srxLVaO+y+3+MBfQq/m+7zriOGWF9Zfwwn/8YxFd0WuQcnNze51Jc8WKFVixYoWPStSzoqIiFBUVwWzuf7U0EZGndPw72mo02/sbaTssV2Lb5ikSew2SR08rmhaDGaEhUki66A/kil+8fxQAupyQc8eJKkxKj+72/a63YOULUqljSkuLUSMjOcLn5ThbrfP5Nbsieg3SQMM+SETkjxZ2mB+pxWiGqW30bsfanZIrPU9wW9Okx6FS90dF9TbMv6ap61oTf9JqNOOuv+3Fv45c8fh5H/vnYTz7xSk838UknjYd193ztefuzsRf75kIAHj3v62TKT8+ZxSK7pnoMJN7sGFAIiIKANOGx+FfK65HwcxhWDAxpctRal3Nst3Ryne/w5oPvnfYpjeZUVrb3GUNhyuj2L46XYOlG/ejrK7ZhWchHn3b7+uwhxb6/ez7CpyubMSnx8rtNSLfnKvzm9oRm9uzkjE8PhypMdaF2xVyKT58ZDpmjBwkcsnEJ3oTGxEReYZEIsGtY61zyvRl+HSl1lrTYzRb8NrXF7Bg4mDkv9q+OHjHpqNWoxkNzdYh6D110j5fY50VulZnsL8J94cgCPjXkSuYNToe4W7MvdMbaR/6AF2ub0FoF52JBUHAC/8508VP+I/7bxiKl3eft08BQc4YkNzEPkhENBCYzH2f5+jNby7ig+Kem5p+/a/vcbrKGn7MPuyEVKFtxcu7z6NS24oHbvTM8PPqRr191JQ7I/IeeuNgl9sf6GZ7d3yxLu7aBePwj32l+O5SA9Ji1Bg2KAyAf62FVqm1DhzwxNQTnsAmNjexDxIRDQT96ZD93qHLANqbnWzynv8KpyqtTW3fd+jP5Go++ndJJW574as+lwtoH52n0/f/TVQQBPxzXymWbdqP176+AMDaxNZV86TeZHZYA+1MVdfrpQFARYN7IwS9XYfzQcH1GJsSiSnpMQCAGaMGQa2wru8RqfJcLZyn2GoyxcYaJCKiAHTLtQn4z4mqLvdFqOTQtvTeKXhHFz//929Lcf3wOIdtnUdmvbTrHI6Xa/GLH4xBna59JugtB8t6rSmpbdJDrZBDpXBcoKux1YiNey7gh+OtTYhldc0OS6dUalsRIpMiRqPo9XnZXKxtxlvflgIAvihpnxPqR+u/djgu7/n2UPfhI9NhMFlQtMNzTWgT0qI9vmTIoqlD8MbeiwDaR6fNn5CC7KExSI5SAQDW5GVgQlrXk40SAxIRUUC6NjkSk4Y4v/HOGh2PrLQoPPv5qV7P0bkGCbCu/dX5nLZ13s5WN2F4fLh9JNjSje017R1DlNki2Gf67mzJxv0YGqfBX348wWH7lgOX8EVJJeQy68+drmrCzlPVmJIegzClHPe/dsD689PSMSoxHGNTIu0/e7m+BRdrdJjWIdhdrNXB2IdmyBMVWjyx5Tu3f64nq+aNxsL1e/t9nrsmD8bgaDXqdAYsmJgCbYvRqanUFo4AYHJbjZIYOgY4f8WAREQUoH4xb4y9NuShGcOw4cuzuNpswMxR8S4FJFd1DAxP3TG2y2MsQvvklH/bdRY3j0lAWqwaSrkMX5RUIlIVgrEp1jl3ztc4jvTSthrx/mFrs9+nRyvs29d9cQoWwdqEZLOpransw0emY+/ZWrQYTXjuC+vovZcWT8aeMzX2Y/r7XD1FKffMcva3jk1yWBftvulDsez6oR45t6ddK8L8Su5iQHITO2kT0UDRcbmGlGhrzUFfak3c8b/vH+ty+4cd5hf69GiFPeg8NntEl9MPvLz7HGaMHIQ/bjvRbZ8UW98nbavzgq5ldc34wyfHHbYtf/2AS89hoPn5LSORkRzhtGisRCLxixm6uyLtULBvztXiumtiRSxN1xiQ3FRQUICCggJotVpERkb2/gNERH5gcFtAMnl4Nm1XddfHZt2/u56b6YPiK72OpLNZ9Mo+p222GqdA90HB9U4zYA8Eyg7h3TZ6zd9wFBsRUQB79KYR+Os9ExGjtnZeDg3pujnngRuv8WWxvK5jp2t/NDEtyq3jX1ky2WnbhLSoARmOAEAu9f/4wRokIqIAdnNG+8LehTePRFZqFAAgd9QgnKvWobRthuu8zGS8uOtct+dJi1WjtNa/Z8MeSB69aQRaTRaougmsADBtWCy+PluLN+7LRpRagRWzhmPPmRr7bN9KP1jxvq9kMv8PdgP3t0tERG6ZOToe0W3D4H9+yyg8PNNxosU//1cW4sOVuGlMvMP2380fi6KfTHTYNn4wuxj0R2yYEilRKqdpCd64L9v+/ap5Y/DhI9MR1Vb7N+faRPz29rF4Jd+5NmmgSY4M7XH/v/2gBpABiYgoSHWek+iaQWF4ZckUPDprBB69aYR9e2anMFQwczieumOcL4oYdGxhqCexYUqMTYnAj7PTfFAi75B06KT91ekap/1vHyjzZXG6xIDkpqKiImRkZGDKlCliF4WIqF9so9xuGOE48aNUKkFqTPt8OZJOQ6GGx2u8X7gg1ttklzKpBGsXjMc1bcuFDHTxEcreDxIB+yC5iaPYiChQjEwIx6q5o5HTxRDrKJX1TbqgQzPch49MR5PehDAl3zp68uhNXU9d0JMwpRxNbUuZvLh4ktfXZvMn6bH+Gbj5KiciCmLTOi0bYpMYGYqX8ycjvtPcOh3DkSpEhhajdU64WaPjoZBLse2YdX6jH01MwbuHBvZQ+5QoFS7Xt7h0bIxGgTqdAfHhStyckeAQkB6bPQLRGgUkANQKeZfrn724eJL9d+mpiSMHitf3XsSdk1PFLoYTBiQiIupSQkTPHWlfXToFZ6qa8Kutx5AzNAZThsbYA9IdEwdj34U6lNW5FjD8UVio62+Rv77tWsSoFYhUW8OPbQQaANw0JqGnHwUAhIeGIDzU/xaOFYs/THDJPkhERNQnYUo5slKj8HL+ZEwbHocQmRTP3pWJNXkZiFSF4K/3TLIf+7dFk3B7VrKIpXW2cu5obO2wTEln2W6sVTY0TmMPR4B1YVgAuHVsYt8LSKJiQCIion7pWNM0IiHcYRHUzFRrX83kKBXuv+EaPP/jCZg2rL3P0+jEcNw1eTD+8cB1vitwGwnQ7aK56++diIWTBuOuyYMxbVgsYsMUKLxlJID2Tu0LJqZ0e+7UGDUA69B8cp/ZIn4nLDaxERGR1/z2trEwd+hxnB6nwap5Y/D0Zyfx5alq/OnOzC5/bv6EFGztYbmQ4fFhOFPVhC0PTUXBW4dQ1dj1em19NTjaGnAWTU133CEA1w+Pw5T0GEwbHov3Dl1GlNq5aSxMKceHj0z3aJmCSXfr7/kSA5KbuFgtEZHrpFIJpHCupfnp7BG4b3rXK80PjlZhybR0fHq0HHqT4+K6oxPDEaUOgc5g69AsRaQqBFWNekgkjnM7jU2JxNmqJtxzXRpe3n3epfIW3jyy21olwDrZZsd//748Z0Asm0HuY0ByE4f5ExH1X4hMap/V22b9vRMRqWrvrLxx6RQYzQI++u4Kthy4hLQYtb3GqU5nwP4LddY5mtryzNsPTsUv3j+K05VNAKwTXK5dYJ3QctboeOw8WQ1ViAx/7mYI/v/70Thcm+ze33V2rO47qVQCix80pXWHsZeIiPzC4Gi1Q+AIDw1BjEaBxW3NXLaOz4B1WL2tf89tmdbO36EhMgxtm1Nn09IpuKvD0PHw0BDkZSZjdoe16eLb+k799Z6J+MMd7ocj6p8JbesC+ivWIBERkd/rqT9P7qh45I6yNnk9MOMa3HxtAmLDup+d+Zc/GIMmvQnD460zUafGqJHq+oA1ChIMSEREFDCUchlGJ0b0eExXM4cTdcYmNiIiIvK567uZxd1fMCARERGRzw2NU4tdhB4xIBEREZHPDY8PF7sIPWJAIiIiIlE1G0xiF8EJA5KbioqKkJGRgSlTpohdFCIiooDQpGdAGvAKCgpQUlKC/fv3i10UIiKigCD44XyRDEhEREQkKgYkIiIiok4E+F9CYkAiIiIiUfnjkmwMSERERCSqAxfqxC6CEwYkIiIiEtXLu8+LXQQnDEhEREREnTAgEREREXXCgERERETUCQMSERERUScMSERERESdMCARERGRKIbHh4ldhG4xILmJi9USERF5htkfZ4hsw4DkJi5WS0RE5BkZyRFiF6FbDEhEREQkimnDYsUuQrcYkIiIiEgUQ+M0YhehWwxIRERERJ0wIBERERF1woBEREREolDKZWIXoVsMSERERCQKhdx/Y4j/loyIiIhIJAxIRERERJ0wIBERERF1woBERERE1AkDEhEREVEnDEhEREREnTAgEREREXXCgERERETUCQMSERERUScBH5DKysqQm5uLjIwMjB8/Hlu2bHE6prm5GUOGDMHjjz8uQgmJiIiCV5Q6ROwidEkudgG8TS6XY926dcjKykJFRQUmTZqEefPmQaPR2I956qmncN1114lYSiIiouBU32wUuwhdCvgapKSkJGRlZQEAEhMTERcXh7q6Ovv+06dP48SJE5g7d65IJSQiIgpeMRqF2EXokugBadeuXcjLy0NycjIkEgm2bt3qdExRURHS09MRGhqKnJwc7Nu3r0/XOnjwIMxmM1JTU+3bHn/8caxdu7avxSciIqIAJHpA0ul0yMzMRFFRUZf7N2/ejMLCQqxZswaHDh1CZmYm5syZg6qqKvsxWVlZGDt2rNPXlStX7MfU1dVh8eLFePHFF+3bPvjgA4wcORIjR4703hMkIiKibsmkErGL0CWJIAiC2IWwkUgkeP/99zF//nz7tpycHEyZMgUvvPACAMBisSA1NRWPPPIIVq5c6dJ59Xo9br75ZixfvhyLFi2yb1+1ahXefPNNyGQyNDU1wWg04uc//zlWr17d5Tn0er39cUNDA9LS0lBWVoaIiIg+PmMiIqLg9u3ZWjzzxSmn7W8/NNUr19NqtUhNTUV9fT0iIyO7P1DwIwCE999/3/5Yr9cLMpnMYZsgCMLixYuF2267zaVzWiwW4b/+67+ENWvW9Hjcxo0bhZ///Ofd7l+zZo0AgF/84he/+MUvfgXAV1lZWY+5wK9HsdXU1MBsNiMhIcFhe0JCAk6cOOHSOfbs2YPNmzdj/Pjx9v5Nb7zxBsaNG+dWWVatWoXCwkL7Y4vFgrq6OsTGxkIi6b16cMqUKdi/f79b1/TWOd35OVeO7e2YnvZ3t6/zdlvi95caO0/fT3+5l70dx3vpvfO5+3P9/b/Je+nd8/nL31l3tvvT/fTme6YgCGhsbERycnKPx/t1QPKE6dOnw2Kx9HrckiVLetyvVCqhVCodtkVFRblcDplM5vEXXF/P6c7PuXJsb8f0tL+7fd1tj4iIEP0/LuD5++kv97K343gvvXc+d3+uv/83eS+9ez5/+Tvr7nbAP+6nt98ze2xaayN6J+2exMXFQSaTobKy0mF7ZWUlEhMTRSpV3xQUFPjNOd35OVeO7e2YnvZ3t88bvy9P8nT5/OVe9nYc76X3zufuz/X3/ybvpXfP5y9/Z3kv+37OAdFJOzs7G88//zwAa9NWWloaVqxY4XInbRr4tFotIiMj0dDQIPonG+of3svAwXsZWHg/HYnexNbU1IQzZ87YH58/fx7FxcWIiYlBWloaCgsLkZ+fj8mTJyM7Oxvr1q2DTqfD0qVLRSw1+ZpSqcSaNWucmjlp4OG9DBy8l4GF99OR6DVIO3fuxMyZM5225+fnY9OmTQCAF154AX/6059QUVGBrKws/OUvf0FOTo6PS0pERETBQvSARERERORv/LqTNhEREZEYGJCIiIiIOmFAIiIiIuqEAYn82q5du5CXl4fk5GRIJBL7bOjk/1y5d0VFRUhPT0doaChycnKwb98+3xeUnHjq3vH++pYv71sw3FsGJPJrOp0OmZmZKCoqErso5Kbe7t3mzZtRWFiINWvW4NChQ8jMzMScOXNQVVXl45JSZ564d7y/vuer+xY099alFV+J/AAAp4WLaWDo6t5lZ2cLBQUF9sdms1lITk4W1q5d6+PSUU/6eu94f8XlzfsWLPeWNUhE5HMGgwEHDx7E7Nmz7dukUilmz56NvXv3ilgy6o0r94731/946r4F071lQCIin6upqYHZbEZCQoLD9oSEBFRUVIhUKnKFK/eO99f/eOq+BdO9ZUAiIiIi6oQBiYh8Li4uDjKZDJWVlQ7bKysrkZiYKFKpyBWu3DveX//jqfsWTPeWAYmIfE6hUGDSpEnYvn27fZvFYsH27dsxdepUEUtGvXHl3vH++h9P3bdgurdysQtA1JOmpiacOXPG/vj8+fMoLi5GTEwM0tLSRCwZ9aa3e1dYWIj8/HxMnjwZ2dnZWLduHXQ6HZYuXSpiqQnwzL3j/fU9X923oLm3Yg+jI+rJjh07BABOX/n5+WIXjXrhyr17/vnnhbS0NEGhUAjZ2dnCN998I16Byc5T947317d8ed+C4d5KBEEQfBvJiIiIiPwb+yARERERdcKARERERNQJAxIRERFRJwxIRERERJ0wIBERERF1woBERERE1AkDEhEREVEnDEhEREREnTAgERGJZMmSJZBIJJBIJNi6datHz71z5077uefPn+/RcxMFAwYkIvKYjm/4Hb86rg9Fjm699VaUl5dj7ty59m3dBaYlS5a4HHamTZuG8vJy3HXXXR4qKVFw4WK1RORRt956KzZu3OiwbdCgQU7HGQwGKBQKXxXLbymVSiQmJnr8vAqFAomJiVCpVNDr9R4/P1GgYw0SEXmU7Q2/45dMJkNubi5WrFiBxx57DHFxcZgzZw4A4NixY5g7dy7CwsKQkJCARYsWoaamxn4+nU6HxYsXIywsDElJSXjmmWeQm5uLxx57zH5MVzUuUVFR2LRpk/1xWVkZ7rrrLkRFRSEmJga33347Lly4YN9vq515+umnkZSUhNjYWBQUFMBoNNqP0ev1ePLJJ5GamgqlUonhw4fjlVdegSAIGD58OJ5++mmHMhQXF3utBu3ChQtd1tbl5uZ6/FpEwYgBiYh85rXXXoNCocCePXuwYcMG1NfXY9asWZgwYQIOHDiAbdu2obKy0qFZ6IknnsCXX36JDz74AJ9//jl27tyJQ4cOuXVdo9GIOXPmIDw8HLt378aePXsQFhaGW2+9FQaDwX7cjh07cPbsWezYsQOvvfYaNm3a5BCyFi9ejH/84x/4y1/+guPHj+Nvf/sbwsLCIJFIsGzZMqeas40bN+LGG2/E8OHD+/YL60FqairKy8vtX4cPH0ZsbCxuvPFGj1+LKCgJREQekp+fL8hkMkGj0di/Fi5cKAiCIMyYMUOYMGGCw/G/+93vhFtuucVhW1lZmQBAOHnypNDY2CgoFArh7bfftu+vra0VVCqV8NOf/tS+DYDw/vvvO5wnMjJS2LhxoyAIgvDGG28Io0aNEiwWi32/Xq8XVCqV8Nlnn9nLPmTIEMFkMtmPufPOO4W7775bEARBOHnypABA+OKLL7p87pcvXxZkMpnw7bffCoIgCAaDQYiLixM2bdrU4+/r9ttvd9oOQAgNDXX4PWo0GkEul3d5fEtLi5CTkyP88Ic/FMxms0vXIKKesQ8SEXnUzJkzsX79evtjjUZj/37SpEkOxx45cgQ7duxAWFiY03nOnj2LlpYWGAwG5OTk2LfHxMRg1KhRbpXpyJEjOHPmDMLDwx22t7a24uzZs/bH1157LWQymf1xUlISjh49CsDaXCaTyTBjxowur5GcnIwf/OAHePXVV5GdnY0PP/wQer0ed955p1tltXnuuecwe/Zsh21PPvkkzGaz07HLli1DY2MjvvjiC0ilbBgg8gQGJCLyKI1G022TUsewBABNTU3Iy8vDH//4R6djk5KSXO67I5FIIAiCw7aOfYeampowadIkvPXWW04/27EDeUhIiNN5LRYLAEClUvVajvvvvx+LFi3Cc889h40bN+Luu++GWq126Tl0lpiY6PR7DA8PR319vcO23//+9/jss8+wb98+pwBIRH3HgEREopk4cSLeffddpKenQy53/nM0bNgwhISE4Ntvv0VaWhoA4OrVqzh16pRDTc6gQYNQXl5uf3z69Gk0Nzc7XGfz5s2Ij49HREREn8o6btw4WCwWfPnll041Ozbz5s2DRqPB+vXrsW3bNuzatatP13LVu+++i9/+9rf49NNPMWzYMK9eiyjYsC6WiERTUFCAuro6/PjHP8b+/ftx9uxZfPbZZ1i6dCnMZjPCwsJw33334YknnsB//vMfHDt2DEuWLHFqRpo1axZeeOEFHD58GAcOHMBDDz3kUBt0zz33IC4uDrfffjt2796N8+fPY+fOnXj00Udx6dIll8qanp6O/Px8LFu2DFu3brWf4+2337YfI5PJsGTJEqxatQojRozA1KlTPfOL6sKxY8ewePFiPPnkk7j22mtRUVGBiooK1NXVee2aRMGEAYmIRJOcnIw9e/bAbDbjlltuwbhx4/DYY48hKirKHoL+9Kc/4YYbbkBeXh5mz56N6dOnO/VleuaZZ5CamoobbrgBP/nJT/D44487NG2p1Wrs2rULaWlpWLBgAcaMGYP77rsPra2tbtUorV+/HgsXLsTDDz+M0aNHY/ny5dDpdA7H3HfffTAYDFi6dGk/fjO9O3DgAJqbm/H73/8eSUlJ9q8FCxZ49bpEwUIidG64JyLyc7m5ucjKysK6devELoqT3bt346abbkJZWRkSEhJ6PHbJkiWor6/3+DIjvr4GUSBiDRIRkQfo9XpcunQJv/71r3HnnXf2Go5sPvroI4SFheGjjz7yaHl2796NsLCwLjumE1Hv2EmbiMgD/vGPf+C+++5DVlYWXn/9dZd+5v/+7//wy1/+EoB11J4nTZ48GcXFxQDQ5TQKRNQzNrERERERdcImNiIiIqJOGJCIiIiIOmFAIiIiIuqEAYmIiIioEwYkIiIiok4YkIiIiIg6YUAiIiIi6oQBiYiIiKiT/w8Wbiih0MyLhwAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"Now we test our Welch ASD to see how good it is"
],
"metadata": {
"id": "RZa7Z7tHN4B1"
}
},
{
"cell_type": "code",
"source": [
"kwargs = dict(bins=\"auto\", alpha=0.5, density=True)\n",
"fig, ax = plt.subplots()\n",
"\n",
"h_f_median, wh_f_median = whiten(data_analysis, median_asd, frequencies)\n",
"\n",
"\n",
"ax.hist(wh_f_median.real, label=r\"real\", **kwargs)\n",
"ax.hist(wh_f_median.imag, label=r\"imag\", **kwargs)\n",
"ax.set_title(f\"p-value={anderson_p_value(wh_f_median):0.5f}\")\n",
"xs = np.linspace(-5, 5, 1000)\n",
"ax.plot(xs, np.exp(-xs**2 / 2) / np.sqrt(2 * np.pi))\n",
"ax.set(xlim=(-5, 5))\n",
"ax.legend()\n",
"plt.show()\n",
"\n",
"\n",
"plot_whitening(frequencies, median_asd, h_f_median, wh_f_median, bin_width_Hz=8)\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 941
},
"id": "VdUGrWkbN83N",
"outputId": "6dce3695-26c6-425b-95eb-85cb19183fe0"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASvRJREFUeJzt3XlcVOXiBvDnzLCvssgqiguKG6KouORNbyhtppm5JmYuqWAqt5tSLnnripa5ZqKWZYtplmb36s9Cr5YppolLrqiAKMqegGwDc87vD3JyAhQQeJmZ5/tpPs2cOWfmGVB5eM8575EURVFAREREJIhKdAAiIiIybSwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjRCbozTffhCRJomMQEQFgGSGiRkiWZbzzzjto2bIlrKysEBAQgC+//LJa2/bv3x+SJFV6Mzc311t39uzZ6NatG5ydnWFjY4P27dvjzTffxJ07dyp97fj4eDzzzDO69Tt16oTVq1frni8sLMTatWsxaNAgeHp6wt7eHl27dsW6deug1Worfc2rV69izJgxcHNzg7W1Nfz8/PDGG29U8ytFZBzMRAcgIvqrN954A0uWLMHkyZPRo0cP7Nq1C2PGjIEkSRg1atQDt500aZLesoKCAkydOhWDBg3SW378+HH069cPEyZMgJWVFU6ePIklS5Zg3759+Omnn6BS/fn72g8//IDBgweja9eumD9/Puzs7HD16lXcuHFDt05iYiJmzJiBxx57DJGRkXBwcMD333+P6dOn4+jRo9i8ebPe+586dQr9+/eHt7c3/vGPf8DFxQUpKSm4fv16bb90RIZJISKTs3DhQqWx/vW/ceOGYm5uroSHh+uWybKs9OvXT2nWrJlSVlZW49f87LPPFADKF1988cB1ly1bpgBQ4uLidMtyc3MVd3d35dlnn1W0Wm2V22ZmZipnz56tsHzChAkKAOXy5cu6ZVqtVunUqZMSHBysFBYW1vATERkX7qYhaiB3j9O4ePEiRowYAQcHB7i4uGDmzJkoLi6ucrtly5ZBkiRcu3atwnNRUVGwsLDA77//DgA4dOgQnn/+eTRv3hyWlpbw8fHB7NmzUVRUdN9sycnJkCQJn3zySYXnJEnCm2++qbcsNTUVL730Etzd3WFpaYmOHTti06ZND/4iVMOuXbtQWlqK6dOn62WYNm0abty4gbi4uBq/5pYtW2Bra4shQ4Y8cF1fX18AwO3bt/W2T09Px7///W+oVCoUFBRAluUK27q6uqJjx44Vlj/77LMAgAsXLuiW/fDDDzh79iwWLlwIa2trFBYWVrkrh8jYsYwQNbARI0aguLgY0dHRePLJJ7F69WpMmTLlvutLkoSvvvqqwnNfffUVBg0aBCcnJwDA9u3bUVhYiGnTpmHNmjUIDQ3FmjVrEBYWVmf509PT0atXL+zbtw8RERFYtWoV2rRpg4kTJ2LlypV662ZlZVXrVlJSotvm5MmTsLW1Rfv27fVeq2fPnrrnayIzMxOxsbEYOnQobG1tKzxfVlaGrKws3Lx5Ez/88APmzZsHe3t73fsBwL59++Dg4IDU1FS0a9cOdnZ2cHBwwLRp0+5bJO9KS0sDUF5W7n1NALC0tET37t1ha2sLGxsbjBo1Cjk5OTX6jEQGT/TQDJGpuLtr5JlnntFbPn36dAWAcvr06Sq37d27txIUFKS37NixYwoA5dNPP9Utq2y4Pzo6WpEkSbl27VqFLHclJSUpAJSPP/64wvYAlIULF+oeT5w4UfH09FSysrL01hs1apTi6OiolwFAtW73vu9TTz2ltGrVqkKOgoICBYAyd+7cil+g+1izZo0CQNmzZ0+lz8fFxelladeunXLgwAG9dQICAhQbGxvFxsZGmTFjhvLNN98oM2bMUAAoo0aNuu/7l5SUKB06dFBatmyplJaW6pY/88wzCgDFxcVFGTt2rPL1118r8+fPV8zMzJQ+ffoosizX6HMSGTIewErUwMLDw/Uez5gxAx988AH27NmDgICASrcZOXIkZs2ahatXr6J169YAgG3btsHS0lJv14O1tbXufkFBAYqKitCnTx8oioKTJ0+iefPmD5VdURR88803GDFiBBRFQVZWlu650NBQbN26FfHx8ejbty8AIDY2tlqve++ujaKiIlhaWlZYx8rKSvd8TWzZsgVNmzbFwIEDK32+Q4cOiI2NRUFBAY4cOYJ9+/ZVOJvmzp07KCwsxNSpU3VnzwwbNgwajQbr16/Hv/71L/j5+VX6+hERETh//jx2794NMzMzvdcEgB49euDzzz8HADz33HOwsbFBVFQU9u/fj5CQkBp9ViJDxTJC1MD++kOrdevWUKlUSE5ORk5ODjQaje45a2trODo64vnnn0dkZCS2bduG119/HYqiYPv27XjiiSfg4OCgWz8lJQULFizAd999pzuO5K7c3NyHzp6ZmYnbt29jw4YN2LBhQ6XrZGRk6O7X5oeptbW13m6bu+7uDrm3cD1IYmIi4uLiEBERoVcE7uXg4KDLOWTIEGzZsgVDhgxBfHw8unTpoveeo0eP1tt2zJgxWL9+PeLi4iotI++++y42btyIt956C08++WSFz1nVa0ZFReHIkSMsI2QyWEaIBLt38rFhw4bhxx9/1D0eP348PvnkE3h5eaFfv3746quv8Prrr+Po0aNISUnB0qVLdetqtVoMHDgQOTk5mDNnDvz9/WFra4vU1FS8+OKLlR5wWVmGe/31gMq7r/HCCy9g/PjxlW5z7+jO3WMlHsTR0VH3w9nT0xMHDhyAoih6uW7dugUA8PLyqtZrAuWjIgAwduzYam8zbNgwjBs3Dlu3btWVES8vL5w7dw7u7u5667q5uQFAheIHAJ988gnmzJmDqVOnYt68eRWev/s5avKaRMaKZYSogV2+fBktW7bUPb5y5QpkWYavry8mT56s90Po3h+8I0eOxPTp03Hp0iVs27YNNjY2GDx4sO753377DQkJCdi8ebPeAavV2VVy9wDYe88gAVDhDJ6mTZvC3t4eWq22Wr+1e3p6PnAdAPj444/x4osvAgACAwPx4Ycf4sKFC+jQoYNunV9++UX3fHVt2bIFrVu3Rq9evaq9TUlJCWRZ1htJCgoKQmxsrO4A1rtu3rwJoPzrcq9du3Zh0qRJGDZsGNauXVvp+wQFBWHjxo1ITU3VW17VaxIZM55NQ9TA/vrDac2aNQCAJ554AkFBQQgJCdHd7v1h/Nxzz0GtVuPLL7/E9u3b8fTTT+udHaJWqwGUH9dxl6IoWLVq1QMzOTg4wNXVFT/99JPe8g8++EDvsVqtxnPPPYdvvvkGZ8+erfA6mZmZeo9jY2OrdQsNDdVtM2TIEJibm+u9t6IoiImJgbe3N/r06aNbfuvWLVy8eBGlpaUVspw8eRIXLlzAmDFjKv3Mt2/frnS7Dz/8EADQvXt33bIRI0YAAD766KMK65qZmaF///66ZT/99BNGjRqFv/3tb/jiiy/0Jk6715AhQ2BpaYmPP/5Yb9Tq7vtXdYwLkTHiyAhRA0tKSsIzzzyDxx9/HHFxcfj8888xZswY3S6Bqri5uWHAgAFYvnw58vPzMXLkSL3n/f390bp1a7z66qtITU2Fg4MDvvnmm2oP90+aNAlLlizBpEmT0L17d/z0009ISEiosN6SJUtw4MABBAcHY/LkyejQoQNycnIQHx+Pffv26Z2WWptjHpo1a4ZZs2bh3XffRWlpKXr06IFvv/0Whw4dwhdffKErXUD5PCubN29GUlKSbn6Qu7744gsAVe+iOXjwIF555RUMHz4cfn5+0Gg0OHToEHbs2IHu3bvjhRde0K3btWtXvPTSS9i0aRPKysrw6KOP4uDBg9i+fTuioqJ0I1jXrl3DM888A0mSMHz4cGzfvl3vPQMCAnS7sTw8PPDGG29gwYIFePzxxzF06FCcPn0aGzduxOjRo9GjR48af+2IDJa4E3mITMvd02nPnz+vDB8+XLG3t1ecnJyUiIgIpaioqFqvsXHjRgWAYm9vX+k258+fV0JCQhQ7OzvF1dVVmTx5snL69OkKp89WNgNrYWGhMnHiRMXR0VGxt7dXRowYoWRkZFQ4tVdRFCU9PV0JDw9XfHx8FHNzc8XDw0N57LHHlA0bNtT461IZrVarLF68WGnRooViYWGhdOzYUfn8888rrDd+/HgFgJKUlFRhe29vb6Vbt25VvseVK1eUsLAwpVWrVoq1tbViZWWldOzYUVm4cKFy586dCutrNBrlzTffVFq0aKGYm5srbdq0UVasWKG3zoEDB+57CvNfv46yLCtr1qxR2rZtq5ibmys+Pj7KvHnzFI1GU+2vFZExkBTlnjFdIqo3b775JhYtWoTMzEy9ya+IiEwdjxkhIiIioVhGiIiISCiWESIiIhKKx4wQERGRUBwZISIiIqFYRoiIiEgog5j0TJZl3Lx5E/b29lVeQ4OIiIgaF0VRkJ+fDy8vrypnIwYMpIzcvHkTPj4+omMQERFRLVy/fh3NmjWr8nmDKCP29vYAyj/MvZdLJyIiosYrLy8PPj4+up/jVTGIMnJ314yDgwPLCBERkYF50CEWPICViIiIhGIZISIiIqFYRoiIiEgogzhmhIiIqC4pioKysjJotVrRUQyaWq2GmZnZQ0+7wTJCREQmRaPR4NatWygsLBQdxSjY2NjA09MTFhYWtX4NlhEiIjIZsiwjKSkJarUaXl5esLCw4GSataQoCjQaDTIzM5GUlAQ/P7/7Tmx2PywjRERkMjQaDWRZho+PD2xsbETHMXjW1tYwNzfHtWvXoNFoYGVlVavX4QGsRERkcmr7GzxVVBdfS343iIiISCiWESIiIhKKx4wQEZHJWxGb0KDvN3tg2wZ9v6okJyejZcuWOHnyJAIDA4Xl4MgIERERCcUyQkREZIA0Go3oCHWGZYSIiMgA9O/fHxEREZg1axZcXV0RGhqKs2fP4oknnoCdnR3c3d0xbtw4ZGVl6bbZu3cvHnnkETRp0gQuLi54+umncfXqVYGfonIsI0RU/w5E69+IqFY2b94MCwsLHD58GEuWLMHf//53dO3aFb/++iv27t2L9PR0jBgxQrd+QUEBIiMj8euvv2L//v1QqVR49tlnIcuywE9REQ9gJSIiMhB+fn545513AABvv/02unbtisWLF+ue37RpE3x8fJCQkIC2bdviueee09t+06ZNaNq0Kc6fP49OnTo1aPb74cgIERGRgQgKCtLdP336NA4cOAA7Ozvdzd/fHwB0u2IuX76M0aNHo1WrVnBwcICvry8AICUlpcGz3w9HRoiIiAyEra2t7v6dO3cwePBgLF26tMJ6np6eAIDBgwejRYsW2LhxI7y8vCDLMjp16tToDn5lGSEiIjJA3bp1wzfffANfX1+YmVX8cZ6dnY1Lly5h48aN6NevHwDg559/buiY1cLdNERERAYoPDwcOTk5GD16NI4fP46rV6/i+++/x4QJE6DVauHk5AQXFxds2LABV65cwf/+9z9ERkaKjl0pjowQEZHJaywzotaEl5cXDh8+jDlz5mDQoEEoKSlBixYt8Pjjj0OlUkGSJGzduhWvvPIKOnXqhHbt2mH16tXo37+/6OgVsIwQEREZgIMHD1ZY5ufnhx07dlS5TUhICM6fP6+3TFEU3X1fX1+9x6JwNw0REREJxTJCREREQrGMEBERkVAsI0RERCQUywgREREJxbNpiKjxuPciegOixOUgogbFMkJEYvEqvkQmj7tpiIiISCiWESIiIhKKu2mIiIgaendhLY6J6t+/PwIDA7Fy5cq6zyMYywgREZEB2LFjB8zNzUXHqBcsI0RERAbA2dlZdIR6w2NGiIiIDED//v0xa9YsAOUXuHv77bcRFhYGOzs7tGjRAt999x0yMzMxZMgQ2NnZISAgAL/++qtu++zsbIwePRre3t6wsbFB586d8eWXX+q9R35+PsaOHQtbW1t4enpixYoVeu9bX1hGiIiIDNCKFSvQt29fnDx5Ek899RTGjRuHsLAwvPDCC4iPj0fr1q0RFhamuypvcXExgoKCsHv3bpw9exZTpkzBuHHjcOzYMd1rRkZG4vDhw/juu+8QGxuLQ4cOIT4+vt4/C3fTEBERGaAnn3wSL7/8MgBgwYIFWLduHXr06IHnn38eADBnzhz07t0b6enp8PDwgLe3N1599VXd9jNmzMD333+Pr776Cj179kR+fj42b96MLVu24LHHHgMAfPzxx/Dy8qr3z8IyQkREZIACAgJ0993d3QEAnTt3rrAsIyMDHh4e0Gq1WLx4Mb766iukpqZCo9GgpKQENjY2AIDExESUlpaiZ8+eutdwdHREu3bt6v2zsIwQEREZoHvPrJEkqcplsiwDAN59912sWrUKK1euROfOnWFra4tZs2ZBo9E0YOrK8ZgRIiIiE3D48GEMGTIEL7zwArp06YJWrVohISFB93yrVq1gbm6O48eP65bl5ubqrVNfWEaIiIhMgJ+fH2JjY3HkyBFcuHABL7/8MtLT03XP29vbY/z48fjnP/+JAwcO4Ny5c5g4cSJUKpVulKW+cDcNETW4FbF//qY1m/8KUWNgAleJnjdvHhITExEaGgobGxtMmTIFQ4cORW5urm6d5cuXY+rUqXj66afh4OCA1157DdevX4eVlVW9ZuM/A0RERAbg4MGDuvvJyckVnr97Cu9dvr6+esucnZ3x7bff3vc97O3t8cUXX+geFxQUYNGiRZgyZUqtMldXrXbTrF27Fr6+vrCyskJwcLDeOcqVWblyJdq1awdra2v4+Phg9uzZKC4urlVgIjIucYnZejciEufkyZP48ssvcfXqVcTHx2Ps2LEAgCFDhtTr+9Z4ZGTbtm2IjIxETEwMgoODsXLlSoSGhuLSpUtwc3OrsP6WLVswd+5cbNq0CX369EFCQgJefPFFSJKE5cuX18mHICIiorqxbNkyXLp0CRYWFggKCsKhQ4fg6upar+9Z4zKyfPlyTJ48GRMmTAAAxMTEYPfu3di0aRPmzp1bYf0jR46gb9++GDNmDIDyYaPRo0fjl19+ecjoREREVJe6du2KEydONPj71mg3jUajwYkTJxASEvLnC6hUCAkJQVxcXKXb9OnTBydOnNDtyklMTMSePXvw5JNPVvk+JSUlyMvL07sRERGRcarRyEhWVha0Wq1uVre73N3dcfHixUq3GTNmDLKysvDII49AURSUlZVh6tSpeP3116t8n+joaCxatKgm0YiIiKrtrwd7Uu3Vxdey3ucZOXjwIBYvXowPPvgA8fHx2LFjB3bv3o233nqrym2ioqKQm5uru12/fr2+YxJRI7QiNkHvRvSw7s5QWlhYKDiJ8bj7tbx39teaqtHIiKurK9Rqtd4kKQB0F+GpzPz58zFu3DhMmjQJQPm8+QUFBZgyZQreeOMNqFQV+5ClpSUsLS1rEo2IiOiB1Go1mjRpgoyMDACAjY1NvU/oZawURUFhYSEyMjLQpEkTqNXqWr9WjcrI3SNr9+/fj6FDhwIon/N+//79iIiIqHSbwsLCCoXjbmAOkxERUUO7+8vz3UJCD6dJkyZVDkhUV43PpomMjMT48ePRvXt39OzZEytXrkRBQYHu7JqwsDB4e3sjOjoaADB48GAsX74cXbt2RXBwMK5cuYL58+dj8ODBD9WiiIiIakOSJHh6esLNzQ2lpaWi4xg0c3PzOvlZXuMyMnLkSGRmZmLBggVIS0tDYGAg9u7dqzuoNSUlRW8kZN68eZAkCfPmzUNqaiqaNm2KwYMH49///vdDhyciIqottVrNX4obiVpNBx8REVHlbpl7p6sFADMzMyxcuBALFy6szVsRERGRkeO1aYiocToQjV4p5dPDH21ev9fFICKx6v3UXiIiIqL7YRkhIiIioVhGiIiISCgeM0JE9eNAtOgERGQgWEaIqMH1StkgOgIRNSLcTUNERERCcWSEiBpEXGJ2na5HRMaDIyNEREQkFMsIERERCcUyQkREREKxjBAREZFQLCNEREQkFMsIERERCcUyQkREREKxjBAREZFQLCNEREQkFMsIERERCcUyQkREREKxjBAREZFQLCNEREQkFMsIERERCcUyQkREREKxjBAREZFQLCNEREQklJnoAERk4A5E/3l/QJTublxitoAwRGSIODJCREREQrGMEBERkVDcTUNEjV6vlA3ldw64lP//nt1BRGT4ODJCREREQrGMEBERkVAsI0RERCQUywgREREJxTJCREREQrGMEBERkVAsI0RERCQUywgREREJxTJCREREQrGMEBERkVCcDp6I6syK2ATd/V718Pp3rwR8tCwBswe2rYd3ICIRWEaIyOD0StnA69QQGRHupiEiIiKhWEaIiIhIKJYRIiIiEoplhIiIiIRiGSEiIiKhWEaIiIhIKJYRIiIiEoplhIiIiIRiGSEiIiKhWEaIiIhIKJYRIiIiEoplhIiIiIRiGSEiIiKheNVeInoocYnZfz5oLi4HERkujowQERGRUCwjREREJBTLCBEREQnFY0aIqM70StkgOgIRGSCOjBAREZFQLCNEREQkFHfTEJFBuntK8dGyBMwe2FZwGiJ6GBwZISIiIqFYRoiIiEgolhEiIiISimWEiIiIhGIZISIiIqFYRoiIiEgontpLRDWyIjZB73EvQTmIyHjUamRk7dq18PX1hZWVFYKDg3Hs2LH7rn/79m2Eh4fD09MTlpaWaNu2Lfbs2VOrwEREVToQ/eeNiAxGjUdGtm3bhsjISMTExCA4OBgrV65EaGgoLl26BDc3twrrazQaDBw4EG5ubvj666/h7e2Na9euoUmTJnWRn4iIiAxcjcvI8uXLMXnyZEyYMAEAEBMTg927d2PTpk2YO3duhfU3bdqEnJwcHDlyBObm5gAAX1/fh0tNRERERqNGu2k0Gg1OnDiBkJCQP19ApUJISAji4uIq3ea7775D7969ER4eDnd3d3Tq1AmLFy+GVqut8n1KSkqQl5endyMiIiLjVKMykpWVBa1WC3d3d73l7u7uSEtLq3SbxMREfP3119BqtdizZw/mz5+P9957D2+//XaV7xMdHQ1HR0fdzcfHpyYxiYiIyIDU+6m9sizDzc0NGzZsQFBQEEaOHIk33ngDMTExVW4TFRWF3Nxc3e369ev1HZOIiIgEqdExI66urlCr1UhPT9dbnp6eDg8Pj0q38fT0hLm5OdRqtW5Z+/btkZaWBo1GAwsLiwrbWFpawtLSsibRiMhE9UrZABxwER2DiB5CjUZGLCwsEBQUhP379+uWybKM/fv3o3fv3pVu07dvX1y5cgWyLOuWJSQkwNPTs9IiQkRERKalxrtpIiMjsXHjRmzevBkXLlzAtGnTUFBQoDu7JiwsDFFRUbr1p02bhpycHMycORMJCQnYvXs3Fi9ejPDw8Lr7FERERGSwanxq78iRI5GZmYkFCxYgLS0NgYGB2Lt3r+6g1pSUFKhUf3YcHx8ffP/995g9ezYCAgLg7e2NmTNnYs6cOXX3KYiIiMhgSYqiKKJDPEheXh4cHR2Rm5sLBwcH0XGITFqF6eBTNghK8qferSo5ZmRAVMVlRNSgqvvzmxfKIyIiIqFYRoiIiEgolhEiIiISimWEiIiIhKrx2TRERI1NXGK23uNKD2glokaLIyNEREQkFMsIERERCcUyQkREREKxjBAREZFQLCNEREQkFMsIERERCcVTe4moRhrDtWiIyLhwZISIiIiEYhkhIiIioVhGiIiISCiWESIiIhKKZYSIiIiEYhkhIiIioXhqLxE90IrYBN39XgJzEJFx4sgIERERCcWRESJ6IE50RkT1iSMjREREJBTLCBEREQnF3TREZHTiErNxtKz8oNvZA9sKTkNED8KRESIiIhKKZYSIiIiE4m4aIqrg3nlFAM4tQkT1iyMjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUJz0jIgq1Stlg+gIRGQiODJCREREQrGMEBERkVDcTUNERu3e6+zMHthWYBIiqgpHRoiIiEgolhEiIiISimWEiIiIhGIZISIiIqFYRoiIiEgonk1DREbpr5O2HW0+RVASInoQjowQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBTLCBEREQnFMkJERERCsYwQERGRUCwjREREJBSngyciAMCK2ATREYjIRHFkhIiIiIRiGSEiIiKhWEaIiIhIKJYRIiIiEoplhIiIiIRiGSEiIiKhWEaIiIhIKJYRIiIiEoplhIiIiIRiGSEiIiKhWEaIiIhIKJYRIiIiEooXyiMik9ArZQPiPiq/f7T5FADA7IFtBSYiortqNTKydu1a+Pr6wsrKCsHBwTh27Fi1ttu6dSskScLQoUNr87ZERERkhGpcRrZt24bIyEgsXLgQ8fHx6NKlC0JDQ5GRkXHf7ZKTk/Hqq6+iX79+tQ5LRERExqfGZWT58uWYPHkyJkyYgA4dOiAmJgY2NjbYtGlTldtotVqMHTsWixYtQqtWrR74HiUlJcjLy9O7EZFxUaCgEKXIQhHyUAINtKIjEZEgNTpmRKPR4MSJE4iKitItU6lUCAkJQVxcXJXb/etf/4KbmxsmTpyIQ4cOPfB9oqOjsWjRoppEI6I60CtlQ729dhlkXJCy8ZuUiSQpF6nIR5mk6K3jolihmWKPDoorApSmcIF1veUhosajRmUkKysLWq0W7u7uesvd3d1x8eLFSrf5+eef8dFHH+HUqVPVfp+oqChERkbqHufl5cHHx6cmUYmokbiNYvxPlYJD0g0USKUVnjdXVCiVZABAtlSMbKkYp5GJL3EBHWUX/F1pgU6KKyRIDR2diBpIvZ5Nk5+fj3HjxmHjxo1wdXWt9naWlpawtLSsx2REVN+KUIbdqqv4n3RNNwLioFigq+KOdoozmiv2cIIVzKGG/Mcum5u4g0QpF2dUGbiK2zinysY5ZKOV4ojh2nZoAyfBn4qI6kONyoirqyvUajXS09P1lqenp8PDw6PC+levXkVycjIGDx6sWybL5b8BmZmZ4dKlS2jdunVtchNRI3ZSSscXqvPIkzQAgNZKE4TKLRGgNIWqkhEOFSTYwQJt4Yy2ijMe17ZEJgpxQJWCn6QbSJRy8Y7ZMTwie+N52R/WD/l7lG531AEXYEDU/VcmonpXo7/RFhYWCAoKwv79+3Wn58qyjP379yMiIqLC+v7+/vjtt9/0ls2bNw/5+flYtWoVd70QGZkSlGGr6iIOq1IBAG6KDUbK/uisNK3xazWFDUbI/hiElvhOdRmHpVT8rErFeSkbk7Vd0BpN6jg9EYlS418vIiMjMX78eHTv3h09e/bEypUrUVBQgAkTJgAAwsLC4O3tjejoaFhZWaFTp0562zdp0gQAKiwnIsOWgyKsVZ/EdSkfkgKEKi0xWG4D84ec6LkJLBEmd0IveOET9VlkSUVYpj6GUXJ7/E1pxmNJiIxAjcvIyJEjkZmZiQULFiAtLQ2BgYHYu3ev7qDWlJQUqFScZZ7IlCTiNj5Qn0SepIG9YoEpche0U5zr9D3awhkLtH3wieos4lXp+EJ9HhlyAZ6T21W664eIDIekKIry4NXEysvLg6OjI3Jzc+Hg4CA6DpFRWhGbUKtTey9K2XhfdRIaSQtvxQ4R2m71ekquAgV7pSTsVF8GAPSWvRAmd4S6FiMwvVvxmBGi+lTdn9+8Ng0R1do5KQsfqE6iVJLRUXbBy3IgrOr5nxUJEp5QWqGJ1hKbVecQp7qJYpRhstwFZrz2J5FB4t9cIqqV81I21v5RRALkppgud6v3InKv3oo3psmBMFNUOKnKwGbVWcho9AO9RFQJlhEiqrFryMU61UmUSTICZTdMlQMf+kDV2uiiuGGq3AUqRcIvqlv4UnUBCgsJkcFhGSGiGslAIVar41EiaeEvOwvfPRKguGGi3BmSAvyouo7/SleFZSGi2mEZIaJqK0QpVqtPIF/SwEexxzS5q5ARkb/qoXhijNwBAPAf9VUcl24JTkRENcEDWImoWmQo+FB1BhlSIZwVK7yiDXromVDr0qOKDzLkQsSqkvGJ6ixctNZo9YCJ0eISs3G0LAEAMHtg2wZISUSVEf8rDREZhF2qKziryoK5osI0bVc4ovFdP+o5uS0C5KYolWSsU59CHkpERyKiamAZIaIHOiGl4f9UiQCAMLkjWqBxzvejgoRJcgA8FVvkSiX4SPUbz7AhMgAsI0R0XxkoxCeqswCAgXILBCteghPdnxXM8LI2EBaKGhdU2djNA1qJGj2WESKqUhlkfKg+gxJJizZKEwyTDeO4Ci/Y4YU/Dmj9r+oqzkvZghMR0f2wjBBRlf6juoJkKRc2ihkmagNqNeW6KL0UL/STm0GRgE2qM8iHRnQkIqqC4fzLQkQN6qKUjb1SEgBgnNyxXq83U19Gyv7wVGyRJ2nwheo8J0QjaqRYRoiogkKU4mPVWSgS8IjsjSDFQ3SkWrGAGhO1AVApEuJV6fiF848QNUqNZ5IAImpwK2ITKl3+jSoBv0vFaKpYY6Ts38Cp6lZzOGCw3Bq71FfwpeoC2mqd4GyAozxExowjI0Sk57yUjUOqGwCAMG0nWBrB7yyPKy3RSnFEkVSGzapz3F1D1MgY/r8yRFRtVY2E3FWMMnymOgcA6C/7oB2cGyJWvVNDhQnazviX+gguqLJxVLmJ3oq36FhE9AeOjBCRzk7VZWRLRXBRrAzmNN7qcoctBsutAQBfqS7x7BqiRoRlhIgAAOklF3FAlQKg/OwZKyMcOA1RfNFMsUeBVIqvVBdFxyGiP7CMEBFkRYsjuesBAH1lb3RQXAUnqh9mUCFM2xGSAvyiuoVzUpboSEQElhEiAnC+YA9+L0uBrWKO54xs98xf+cIRf1eaAwA+V51HqVwsOBERsYwQmbBeKRvgn7IaZ3I/AwAMk9vCDhaCU9W/IbIfnBUrZEtFOHNnh+g4RCaPZYTIxG1XXUKxpEUrxRF9TeQMEyuYYcQf86f8dmcX8srSBCciMm0sI0Qm7IKUjeOqNEgKMEbbASpIoiM1mK6KG9rLLpBRhmN5n4iOQ2TSWEaITJRWKcUW1QUAQH+lOZrDQXCihiVBwijZHxLUSCk+jp9TfxYdichksYwQmajzBXuQLhXAQbHAELmN6DhCeMIOHWyfBAAsPbYUpdpSwYmITBPLCJEJKtLm4lT+1wCAobIfbGAuOJE4Xe1HwFrVBMl5yfj8wuei4xCZJJYRIhN0Kv8rlCqF8FHs0cdEDlqtioXKBt0dXgAAxJyOQWZhpuBERKaHZYTIxPxeeh0XC38AADwvtzOpg1ar0sb6UQQ0DUBhWSHWnlorOg6RyWEZITIxl9PfhgIZXWQ3+CsuouM0CpKkwj+7/xMAsPPKTlz+/bLgRESmhWWEyISkFp/CWVUWVIqE4UY+02pNBboFYmCLgZAVGctPLBcdh8iksIwQmYgyuQy//DGfxgClOdxhKzZQIzSr2yyYqczwc+rPiLsZJzoOkclgGSEyETuv7MTtsuuwVczxtNxadJxGqblDc4xqNwoA8N6v70ErawUnIjINLCNEJqCwtBBrT5YfmPm03Bq2Jnwq74O8HPAy7M3tcen3S/hv4n9FxyEyCSwjRCbgy4tfIrs4G3ZqNzyq+IiO06g1sWqCyQGTAQCrT65GUVmR4ERExo9lhMjI5WvysensJgBAV/uRMONf+wca034MvGy9kFGYgc/OfyY6DpHR479KREZu87nNyNPkoZVjK7S27ic6jkGwVFvilW6vAAA+PvsxbhffFhuIyMixjBAZsZziHN1v9hFdI6CS1IITGY4nWj6Bdk7tcKf0jm5kiYjqB8sIkRH76LePUFhWiA4uHRDSPER0HIOiklS60ZEtF7cgvSBdcCIi42UmOgAR1Y+0gjRsvbgVADCj6wxIEqd9v58VsQl6j2cPbIt+3v3Q1a0rTmacxPoz67Gg9wJB6YiMG0dGiIzUhjMboJE16ObWDX29+oqOY5AkScLMbjMBADsv70RKXorgRETGiWWEyAhdz7+OnZd3AgBe6fYKR0UeQpB7EB7xfgRlShneP/W+6DhERollhMgIrTu1DmVKGfp690WQe5DoOAbvla7lx478X9L/4VLOJcFpiIwPywiRkbny+xXdzKEzus4QnMY4tHdpj1DfUADAmpNrBKchMj4sI0RGZu2ptVCgIKR5CDq6dBQdx2hEBEZALanx440fcTLjpOg4REaFZYTIiJzLOod9KfsgQUJE1wjRcYyKr6MvhrYZCgBYFb8KiqKIDURkRFhGiIzI3V0IT7d6Gq2b8Mq8NdUrZYPuhgPRFZ6f2mUqLFQWOJF+AodvHhaQkMg4cZ4RIiPxa9qvOHzzMMwkM0wLnKZb/tf5M6j2PGw9MMp/FD49/ylWx69GX6++PFOJqA5wZITICCiKohsVGeY3DD72vDJvfZnUeRJszGxwIecC9qXsEx2HyCiwjBAZgZ9Tf0Z8Rjws1ZaYEjBFdByj5mTlhHEdxgEA3j/5PrSyVnAiIsPHMkJk4O4dFRnVbhTcbd0FJzJ+4zuOh4OFAxJzE7E7abfoOEQGj8eMEBm4fSn7cCHnAmzMbDCx80TRcQxOr5QNVT9570GsA6J0d+0t7PFSp5ewMn4lPjj1AZ7wfQLmavN6TElk3DgyQmTAtLIW758sn6I8rGMYnKycBCcyHaP9R8PFygWpd1Kx4/IO0XGIDBrLCJEB2520G4m5iXCwcEBYhzDRcUyKjbkNJgdMBlB+UcLismLBiYgMF8sIkYEq1Zbig1MfAAAmdp4Iewt7wYlMz/Ntn4enrScyijKw7dI20XGIDBbLCJGB2nF5B1LvpMLV2hWj/UeLjmOSLNQWmNalfE6XD3/7EHc0dwQnIjJMLCNEBqiorAjrz6wHAEwJmAJrM2vBiUzX4NaD4evgi9slt/HZhc9ExyEySCwjRAZo28VtyCzKhJetF4b7DRcdx6SZqcwQHhgOAPj03KfILckVnIjI8LCMEBmYO5o7+PDshwCAaYHTeEppIzDIdxDaObXDndI72HR2k+g4RAaHZYTIwHx2/jPkluTC18EXT7d6WnQcAqCSVLqrJG+5sAVZRVmCExEZFpYRIgNyu/g2Np/fDACI6BoBMxXnLWwsHm32KAJcA1CsLcaGM/eZSI2IKmAZITIgm85uQkFpAfyd/TGwxcBqb9crZYPuRtUTl5itu1WHJEl4pdsrAIDtCdtx887N+oxHZFRYRogMREZhBr68+CUAYEbXGVBJ/Ovb2AR7BiPYIxhlchliTseIjkNkMPivGZGB2HBmA4q1xQhsGoh+3v1Ex6EqzOg2AwCw6+ouJOUmCU5DZBhYRogMwI38G/jm8jcAgFe6vQJJkgQnoqp0adoFjzZ7FLIi62bIJaL7YxkhMgDrTq9DmVyG3p690cOjh+g49AAzupaPjuxN3otLOZcEpyFq/FhGiBq5xNuJ+G/ifwH8+UOOGrd2zu3wuO/jAKC7qjIRVY1lhKiRW3NyDWRFxt99/o7OTTuLjkPVND1wOlSSCgdvHMTpzNOi4xA1aiwjRI3Y2ayz2JeyDxIkjooYmJaOLTGk9RAAwJr4NYLTEDVuLCNEjdiq+FUAyi/G1sapjeA0VFNTu0yFmcoMv6T9gqO3joqOQ9Ro1aqMrF27Fr6+vrCyskJwcDCOHTtW5bobN25Ev3794OTkBCcnJ4SEhNx3fSIq98ut8h9gZiozTA+cLjoO1YKXnReeb/s8gPLREUVRBCciapxqXEa2bduGyMhILFy4EPHx8ejSpQtCQ0ORkZFR6foHDx7E6NGjceDAAcTFxcHHxweDBg1CamrqQ4cnMlaKouhGRZ5v+zy87bwFJ6LamhIwBVZqK5zJOoMfb/woOg5RoyQpNazqwcHB6NGjB95/v/wIcVmW4ePjgxkzZmDu3LkP3F6r1cLJyQnvv/8+wsLCKl2npKQEJSUlusd5eXnw8fFBbm4uHBwcahKXyCDtT9mPWQdmwdrMGnuG7YGrtWvNX+RANABUezpzqlrvVi7AgKhab7/ixApsOrsJbZ3aYvvg7Zw9l0xGXl4eHB0dH/jzu0Z/IzQaDU6cOIGQkJA/X0ClQkhICOLi4qr1GoWFhSgtLYWzs3OV60RHR8PR0VF38/HxqUlMIoOmlbW6Ax7Hth9buyJCjcpLnV6CnbkdEn5PwA/JP4iOQ9To1KiMZGVlQavVwt3dXW+5u7s70tLSqvUac+bMgZeXl16h+auoqCjk5ubqbtevX69JTCKDtjtpN67mXoW9hT1e7Pii6DhUBxwtHRHWsXwkeO2ptSiTywQnImpcGnSscMmSJdi6dSt27twJKyurKteztLSEg4OD3o3IFJRqS3VTiL/U6SU4WjoKTkR1ZVz7cWhi2QTJecn4z9X/iI5D1KjUqIy4urpCrVYjPT1db3l6ejo8PDzuu+2yZcuwZMkS/PDDDwgICKh5UiITsD1hO1LvpMLV2hVj248VHYfqkJ2FHSZ1ngSgfHp/jVYjOBFR41GjMmJhYYGgoCDs379ft0yWZezfvx+9e/eucrt33nkHb731Fvbu3Yvu3bvXPi2RESssLcSGMxsAAC8HvAxrM2vBiaiujWw3Em7WbrhVcAtfJ3wtOg5Ro1Hj3TSRkZHYuHEjNm/ejAsXLmDatGkoKCjAhAkTAABhYWGIivrzqPOlS5di/vz52LRpE3x9fZGWloa0tDTcuXOn7j4FkRHYfG4zsouz0cyuGZ7ze050HKoHVmZWmBIwBQCw4cwGFJYWCk5E1DjUuIyMHDkSy5Ytw4IFCxAYGIhTp05h7969uoNaU1JScOvWLd3669atg0ajwfDhw+Hp6am7LVu2rO4+BZGByyrKwsfnPgYAzOw2E+Zqc8GJqL4M8xsGbztvZBdnY8vFLaLjEDUKZrXZKCIiAhEREZU+d/DgQb3HycnJtXkLIpOy9tRaFJUVIcA1AKG+oaLjUD0yV5sjPDAcr//8Oj767SMM8xsGZ6uqpzogMgWceYdIsKu3r2LH5R0AgH90/wckSRKciOrbU62eQnvn9rhTegfrTq0THYdIOJYRIsFWnlgJWZHxd5+/o5t7tzp5zRWxCYhLzObsq42USlLh1e6vAig/gyoxN1FwIiKxWEaIBDqedhwHbxyEWlJjVtAs0XGoAfX07In+zfpDq2ix4sQK0XGIhGIZIRJEVmS89+t7AIDhbYejpWNLwYmooc3uPhtqSY2D1w/ieNpx0XGIhGEZIRJkb9JenMs+B1tzW0zrMq1uXvRANHAgGr1SNtTN61G9auXYCsPbDgcAvHv8XciKLDgRkRgsI0QClGhLsPrkagDl0767WLsITkSiTA+cDltzW1zIuYDdibtFxyESgmWESIBPz32K1DupcLNxw7gO40THIYGcrZx108Svil+ForIiwYmIGh7LCFEDSy9Ix8bfNgIAIoMiOe07YVyHcfC09UR6YTo+Pfep6DhEDY5lhKiBrYhfgaKyIgQ2DcSTLZ8UHYeqIS4xGytiE7AiNqFeXt9SbYlZ3WYBAD46+xHSCtLq5X2IGiuWEaIGdCrjFHYn7oYECXOD53KCM9J5ouUT6ObWDUVlRVj2Ky+XQaaFZYSogciKjOhj0QCAZ/2eRUeXjoITUWMiSRKigqOgklT4Pvl7HLt1THQkogbDMkLUQHZd2YXz2edhZ26HGV1niI5DjZC/sz+eb/s8ACD6WDTK5DLBiYgaBssIUQPI1+RjZfxKAMDULlPhau0qNhA1WhGBEXC0dMSV21ew7dI20XGIGgTLCFEDWHd6HXKKc+Dr4Isx/mNEx6FGrIlVE7zS9RUA5VdzzinOEZyIqP6xjBDVswvZF/DFhS8AAHN6zoG52lxwInoYK2ITEPfRq7pbfXjO7zn4O/sjX5OP1fGr6+U9iBoTlhGieqSVtXjr6FuQFRmhvqF4xPsR0ZHIAKhVakT1jAIA7Li8A6cyTokNRFTPWEaI6tE3l7/Bb1m/wdbcFq/1eE10HDIg3dy7YUjrIVCgYFHcIpTKpaIjEdUblhGiepJVlIWVJ1YCAGZ0nQE3Gzexgcjg/KP7P9DEsgmu3L6Czec2i45DVG9YRojqybJflyG/NB8dXDpgVLtR9fped2cHjUvMRlxidr2+FzUcJysn/LPHPwEAMadjcD3/uuBERPWDZYSoHsTdjNPNtLqg1wKoVWrRkchADW41GMEewSjRluDto29DURTRkYjqHMsIUR0rLC3EorhFAIBR/qPQ0ZUzrVLtSZKEeb3mwUJlgSM3j2BP0h7RkYjqnJnoAETGZlX8KqTeSYWnrSdmdptZv292oHx6+V4p3DVjzHwdfTE5YDLWnlqLd46/g95eveFs5Sw6FlGd4cgIUR06kX4CWy5uAQC82ftN2JrbCk5ExmJip4lo06QNcopzsPiXxaLjENUplhGiOlJUVoQFhxcAAIb5DUMf7z6CE5ExMVeb4+2+b0MtqfF98vfYm7xXdCSiOsMyQlRH1p5ci5T8FLjZuOHV7vUzMyeJ0ytlg+4mSkfXjpjYeSIA4N9H/42soixhWYjqEssIUR04lXEKn134DACwsPdC2FvYC05ExmpqwFS0dWqL2yW38e+j/+bZNWQUWEaIHlJBaQFe//l1yIqMZ1o/g781+1v9vuGB6D9vZHLu7q4xk8ywL2Ufd9eQUWAZIXpIS48txfX86/C09cScnnNExyET0N6lPaYETAEAvH30baQVpAlORPRwWEaIHkLstVjsvLITEiQsfmQxHCwcREciEzEpYBI6unREniYPUYeioJW1oiMR1RrLCFEtpRek480jbwIAJnaeiO4e3cUGIpNirjLH0r8thbWZNX5N/xUfnf1IdCSiWmMZIaoFrazFG4ffQJ4mDx1cOmB6l+kNnuHudWh4LRrT1cKhBd4IfgMA8MGpD3Aq45TYQES1xDJCVAsbzmzAL7d+gbWZNZb0WwJztbnoSCTI3YsUrohNEPL+z7R+Bk+0fAJaRYu5h+YiX5MvJAfRw+B08EQ1FHczDutOrwMAzO81Hy0dWwpORI3GX89wGhBV728pSRLm95qPM5lnkHonFQsOL8Dy/sshSVK9vzdRXeHICFENpBekY+6huVCg4Dm/5zC49WDRkUiwxjAZmr2FPd7927swU5Wf7vvJuU+EZSGqDZYRomoqlUvx2k+vIac4B/7O/pjbc67oSEQ6nZt2xtwe5X8mV8avxPG044ITEVUfywhRNS3/dTniM+JhZ26H9x59D1ZmVqIjEekZ0W4Enmn9DGRFxqs/vor0gnTRkYiqhWWEqBp2XN6Bzy98DgB4u+/baO7QXHAiaoxEn+EkSRLm9ZqHtk5tkVOcg8gfI1GiLRGShagmWEaIHiA+PR5vHX0LADA9cDoea/GY4EREVbM2s8bK/ithb2GPM5lnsODwAl6/hho9lhGi+7h55yZmH5yNMrkMg1oMwtSAqaIjET2Qj4MPlvdfDjPJDHuS9mD9mfWiIxHdF8sIURXyNfmI+F8Ecopz0N65Pd5+5G2eLkkGo5dnL7zRq3xCtLWn1mJvEi+oR40XywhRJTRaDWYemInLv1+Gq7UrVv99NazNrEXHIqqR4W2HI6xDGABg3uF5nKGVGi1Oekb0F7IiI+pQFI6nHYetuS3WhayDh62H6FhkYOISs3G07M9ZWWcPbCskR2RQJFLyUnDwxkFM3z8dnzz+Cdo6iclCVBWOjBDdQ1EULD22FD9c+wFmKjOsHLAS/s7+omMR1ZpapcY7j76DwKaByNfkY2rsVNzIvyE6FpEelhGie8ScjsGWi1sAAIsfWYxenr0EJyJ6eNZm1nj/sffRpkkbZBZlYkrsFGQVZYmORaTDMkL0h/Wn1+OD0x8AAF7r8RqeaPmE4EQVrYhN4JV6qVYcLR2xfuB6eNt543r+dUyJnYKc4hzRsYgAAJJiACeg5+XlwdHREbm5uXBwcBAdh4zQh799iFXxqwAAs4Nm46VOLwlO9Bd/XICNJcRw9Z64THQEAEBKXgpe3PsiMosy0aZJG3w46EO4WLuIjkVGqro/vzkyQibv47Mf64rIK11faXxFhKgONXdojk2hm+Bm7YYrt69g4vcTucuGhGMZIZOlKApWxa/C8hPLAQDhgeGYHDBZcCp9K2ITuGuG6pyvoy82Pb4JbjZuuJp7FS99/xKvY0NCsYyQSdLKWiyKW4QPf/sQADCz20xM7SJ4dtUD0fo3onrUwqEFPgn9BB62HkjKTcIL//cCrt6+KjoWmSiWETI5JdoSvPrjq/jm8jdQSSos7L0QkzpPEh2LjF0jLJo+Dj7Y/PhmtHRsibSCNIz7v3GIT48XHYtMEMsImZSsoiy8tPcl7EvZB3OVOZY9ugzD2w4XHYtIGC87L3z6+Kfo0rQL8jX5mPzDZPyQ/IPoWGRiWEbIZJzPPo9R/x2FM1ln4GDhgJiQGAxsMVB0LDIRd4/7aYzH/jSxaoKNgzaiv09/aGQN/vHjP7Dm5BrIiiw6GpkIlhEyCXuT92L8/41HemE6fB18seWpLejp2VN0LKJGw9rMGiv6r8AL7V8AAGw4swGv/O8V5GvyBScjU8Br05BRK9GW4N3j72LbpW0AgL5effHOo+/AwcIA5qs5EI1eKY3vt2gyXmYqM8zpOQcdXDpgUdwi/HjjR4zZPQbvPvouL4tA9YojI2S0knKTMHb3WF0RmdhpIt5/7H3DKCJEAg1uPRibn9gMD1sPJOclY8zuMfjs/GfcbUP1hmWEjI6syNh2cRtG/nckLv1+Cc5WzogJicGsoFkwU3EwkKg6Orp0xFdPf4X+Pv1RKpfinePvYPq+6ZwgjeoFywgZlev51zHph0l4+5e3UVRWhB4ePbB98Hb09e4rOhqRwXGycsLqAasxL3geLNWWOHzzMIZ8OwQ7L++EAVxJhAwIf00ko1CqLcWWi1uw9tRaFJUVwdrMGjO7zcRo/9FQSY27c6+ITQAA3fEhvVvxOiHUeEiShJH+IxHkHoTXf34dF3IuYMGRBdiduBsLei9Ac4fmoiOSEWAZIYN3OPUwlh5fiqTcJABAT4+eeLPPm/Cx9xGcjKgK9058NiBKXI4aaOPUBlue2oLPzn+GD059gF/SfsGzu55FWMcwTOw0EXYWdqIjkgFjGSGDdfn3y1gdvxoHbxwEADhbOWNmt5kY2mZoox8NIdN271wjR8sSMHtgW4Fpqs9MZYYJnSYgpEUI3op7C3G34vDhbx9ix+UdCA8MxzC/YTwui2qFf2rI4CTlJmHdqXXYm7wXChSYSWYY034MpnaZCnsLe9HxHlpjnBSL6F4+9j5YP3A9frzxI9779T0k5yXjraNv4dPzn2Jy58l4qtVTLCVUI/zTQgbjXNY5bD63Gd9f+153iuGgFoMQ3jUcrRxbCU5HZFokSUJ/n/7o690XX136CjGnY3At7xrmHZ6HmNMxmBxQXkos1Zaio5IBkBQDOCQ6Ly8Pjo6OyM3NhYMD54gwJWVyGX668RM+Pf8pTqSf0C0f4DMA4YHhaOfcTmC6uvHnAawbBCchEY42n6L32FB22fxVQWkBtl7cis3nNuP3kt8BAE6WTniu7XMY2W4kPGw9BCckEar785tlhBqla3nXsPPyTnx39TtkFmUCAMwkMzze8nGEdQhDe5f2ghM+wF+vzHqfgxRZRuhevScuEx3hoRSWFmJ7wnZ8fuFzpBWkAQDUkhoDfAZgcOvB6OfdD+Zqc8EpqaFU9+c3d9NQo5FWkIb9KfvxQ/IPiM/48zLmTpZOGOo3FGP8xxjUb1f3O0jx3gLSq8GTEdUfG3MbjO84HmPbj8XB6wex5eIWHE87jn0p+7AvZR+aWDZBqG8onmr1FAJcA6BWqUVHpkaAZYSEkRUZl3+/jMM3D2N/yn6cyTyje04lqdDHqw+G+Q1D/2b9jes3KV5zhkyAmcoMIS1CENIiBAm/J2DXlV3Yk7QHWUVZ2HZpG7Zd2gZnK2c82uxRDPAZgF5evWBtZi06NgnC3TTUYBRFwY07NxCfHo+4W3GIuxmHnOIcvXW6unVFSPMQDPIdZFCjIBUciNYfGbnnuADujqH70Zv0zkDmIKmuMrkMx24dw38S/4OD1w/iTukd3XPmKnN0du2Mnp490dOjJwKaBvDgVyPA3TQkXFZRFi7/fhnnss/hdOZpnMk8U6F8WJtZo7t7d/Rr1g+PNX8MbjZugtLWjb/OpkpUU/eW2N4DBAapB2YqM/Tx7oM+3n1Qqi3FiYwTOHj9IA6kHMDNgpuIz4hHfEY8Yk7HwEJlAX8Xf3R06YiOLh3RwaUDWjm24m4dI1WrkZG1a9fi3XffRVpaGrp06YI1a9agZ8+eVa6/fft2zJ8/H8nJyfDz88PSpUvx5JNPVvv9ODLSeJXJZbhVcAs38m/gxp0bSLydiMu/X8bl25crFA+g/B+jDs4dEOwZjN5evdGlaRdYqC0EJK8fPBiV6pKxnGnzIIqiICU/BcfSjuF42nEcTzte6QX5rM2s4evgi5aOLfVuze2bw8rMSkByepB6O5tm27ZtCAsLQ0xMDIKDg7Fy5Ups374dly5dgptbxd9qjxw5gr/97W+Ijo7G008/jS1btmDp0qWIj49Hp06d6vTDUN0qLC1EVlEWsoqykFmUiayiLGQXZSOrKEtXQG4V3IJW0Va6vQQJPvY+8Hf2R5emXRDQNADtXdob/NDr3cJxl+4HxF92zRDVpb/u6tPtzjGyXTnAn+XkXNY5nMsuv13IvoDCssIqt3GydIKHrQc8bT3haecJT1tPuFq7wsnKCS5WLnCycoKTpZNxHX9mAOqtjAQHB6NHjx54//33AQCyLMPHxwczZszA3LlzK6w/cuRIFBQU4L///a9uWa9evRAYGIiYmJg6/TCmQFEUaBVt+U3Wokwpg1Yuf1wml0GraFFSVoJibTFKtCUoLvvz/8XaYt1zxWXFKCorQr4mH3maPORr8ivc18iaamWyUFmgmX0zNLNvhhYOLeDXxA9+Tn5o5dgKNuY29fwVaXh/LSN3cTSERDjafIrRjpjcSytrcT3/OpJyk5CYm4ik3CQk5SUh6XYS8kvzq/069ub2cLJygoOFA2wtbGFnbgdbc1vYmuvftzazhqXaEhZqC73/W6otYa42//O+yhxmKjOoJBXMpPL/qyQVJEmqx6+G4aiXY0Y0Gg1OnDiBqKg/m7hKpUJISAji4uIq3SYuLg6RkZF6y0JDQ/Htt99W+T4lJSUoKSnRPc7NzQUAvPjtizC3KW+1Cv7oULr/ld+52610j/+y/C7d9jXZpprr3S/PX/NW9tqyIuuVDVmWy0vHHyWkIVmrreFs7QwXaxe4WLno/t/Uuim87b3hbesNVxvXSq8FU1ZUhryivAbN+1B+eu/P+3/7R5WrFRf8edBdjxsf6+4X1EsoovsrLriD6G/j9ZaF/71NxRWr+ee7MXOWnOHcxBlBTYJ0yxRFQX5pPtLvpCO9MB1phWlIL0hHWkEasouzcbvkNn4v/h25mlzIiozbRbdxO+92vWdVS2rdTSWpoFbpP747Xb4ECeX/lZcXSZIq3Jcg6cqN3vN/LK9q/buvXV1STVauptLCUgCV/5y8V43KSFZWFrRaLdzd3fWWu7u74+LFi5Vuk5aWVun6aWlpVb5PdHQ0Fi1aVGH5zvE7axKX6CH8S3QAomp6v8KS1x+4Df98U8PKz8+Ho6Njlc83yrNpoqKi9EZTZFlGTk4OXFxcDHboKy8vDz4+Prh+/brJ72pqDPj9aDz4vWg8+L1oPIzle6EoCvLz8+Hl5XXf9WpURlxdXaFWq5Genq63PD09HR4elc8J4eHhUaP1AcDS0hKWlvoHOTZp0qQmURstBwcHg/6DZWz4/Wg8+L1oPPi9aDyM4XtxvxGRuyru6L8PCwsLBAUFYf/+/bplsixj//796N27d6Xb9O7dW299AIiNja1yfSIiIjItNd5NExkZifHjx6N79+7o2bMnVq5ciYKCAkyYMAEAEBYWBm9vb0RHl18obObMmXj00Ufx3nvv4amnnsLWrVvx66+/YsMGnnlAREREtSgjI0eORGZmJhYsWIC0tDQEBgZi7969uoNUU1JSoFL9OeDSp08fbNmyBfPmzcPrr78OPz8/fPvtt9WeY8RYWFpaYuHChRV2P5EY/H40HvxeNB78XjQepva9MIhr0xAREZHxqtExI0RERER1jWWEiIiIhGIZISIiIqFYRoiIiEgolhEiIiISimVEsJKSEgQGBkKSJJw6dUp0HJOTnJyMiRMnomXLlrC2tkbr1q2xcOFCaDTVu2IxPZy1a9fC19cXVlZWCA4OxrFjx0RHMknR0dHo0aMH7O3t4ebmhqFDh+LSpUuiY5m8JUuWQJIkzJo1S3SUescyIthrr732wDn7qf5cvHgRsixj/fr1OHfuHFasWIGYmBi8/vqDLzVGD2fbtm2IjIzEwoULER8fjy5duiA0NBQZGRmio5mcH3/8EeHh4Th69ChiY2NRWlqKQYMGoaCA16IW5fjx41i/fj0CAgJER2kYCgmzZ88exd/fXzl37pwCQDl58qToSKQoyjvvvKO0bNlSdAyj17NnTyU8PFz3WKvVKl5eXkp0dLTAVKQoipKRkaEAUH788UfRUUxSfn6+4ufnp8TGxiqPPvqoMnPmTNGR6h1HRgRJT0/H5MmT8dlnn8HGxkZ0HLpHbm4unJ2dRccwahqNBidOnEBISIhumUqlQkhICOLi4gQmI6D87wAA/j0QJDw8HE899ZTe3w9jV+Pp4OnhKYqCF198EVOnTkX37t2RnJwsOhL94cqVK1izZg2WLVsmOopRy8rKglar1V1G4i53d3dcvHhRUCoCyi9+OmvWLPTt29fkLtvRGGzduhXx8fE4fvy46CgNiiMjdWju3LmQJOm+t4sXL2LNmjXIz89HVFSU6MhGq7rfi3ulpqbi8ccfx/PPP4/JkycLSk4kVnh4OM6ePYutW7eKjmJyrl+/jpkzZ+KLL76AlZWV6DgNitemqUOZmZnIzs6+7zqtWrXCiBEj8J///AeSJOmWa7VaqNVqjB07Fps3b67vqEavut8LCwsLAMDNmzfRv39/9OrVC5988onexR6p7mk0GtjY2ODrr7/G0KFDdcvHjx+P27dvY9euXeLCmbCIiAjs2rULP/30E1q2bCk6jsn59ttv8eyzz0KtVuuWabVaSJIElUqFkpISveeMCcuIACkpKcjLy9M9vnnzJkJDQ/H1118jODgYzZo1E5jO9KSmpmLAgAEICgrC559/brR/2Rub4OBg9OzZE2vWrAFQvnugefPmiIiIwNy5cwWnMy2KomDGjBnYuXMnDh48CD8/P9GRTFJ+fj6uXbumt2zChAnw9/fHnDlzjHq3GY8ZEaB58+Z6j+3s7AAArVu3ZhFpYKmpqejfvz9atGiBZcuWITMzU/ech4eHwGTGLzIyEuPHj0f37t3Rs2dPrFy5EgUFBZgwYYLoaCYnPDwcW7Zswa5du2Bvb4+0tDQAgKOjI6ytrQWnMx329vYVCoetrS1cXFyMuogALCNk4mJjY3HlyhVcuXKlQhHkoGH9GjlyJDIzM7FgwQKkpaUhMDAQe/furXBQK9W/devWAQD69++vt/zjjz/Giy++2PCByORwNw0REREJxaP0iIiISCiWESIiIhKKZYSIiIiEYhkhIiIioVhGiIiISCiWESIiIhKKZYSIiIiEYhkhIiIioVhGiIiISCiWESIiIhKKZYSIiIiE+n8/fvkSElHJJAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 800x500 with 3 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHpCAYAAAAf5apCAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApPxJREFUeJzs3XdcVfX/B/DXHXCRqYgsAXErylBUxJWDNCx3ZUtRyxZaSVZSqdnC+pbZIP1mmjYss5/ZtyxH5ChHTkTTnCg4ABVlyoV77/n9gfd6F3Dv5V7uhft6Ph73IffM9zn3Cp/3+SyRIAgCiIiIiIiI6kFs7wCIiIiIiKjxY2JBRERERET1xsSCiIiIiIjqjYkFERERERHVGxMLIiIiIiKqNyYWRERERERUb0wsiIiIiIio3phYEBERERFRvTGxICIiIiKiemNiQURERERE9cbEgoiIiIiI6k1q7wAawrhx47Bt2zYMGzYMP/zwg8669957D1988QVEIhHmzJmDRx55xKRjqlQqXLp0CV5eXhCJRLYIm4jIrgRBQElJCYKDgyEWO89zKP5+J6Kmzla/30WCIAhWO5qD2rZtG0pKSrBq1SqdxOLIkSNISkrCrl27IAgChgwZgo0bN6J58+Z1HvPChQsIDQ21YdRERI4hNzcXISEh9g6jwfD3OxE5C2v/fneKGovBgwdj27ZtBsuPHz+O+Ph4uLm5AQCio6OxceNGPPDAA3Ue08vLC0D1B+Lt7W3VeImIHEFxcTFCQ0M1v++cBX+/E1FTZ6vf73ZPLHbs2IH//Oc/OHDgAC5fvowff/wRY8eO1dkmPT0d//nPf5CXl4fo6Gh8/PHH6NOnT73P3b17dyxYsAA3btyAIAjYtm0bOnXqZNK+6upxb29v/uEhoibN2ZoD8fc7ETkLa/9+t3tiUVZWhujoaEybNg3jx483WL9mzRqkpKRg6dKliIuLw+LFizFixAicOHEC/v7+AICYmBgoFAqDfTdv3ozg4OAazx0REYFnnnkGQ4cOhY+PD/r27QuJRGJ0W7lcDrlcrnlfXFxs7qUSERERETVZdk8sEhMTkZiYWOP6RYsWYfr06Zg6dSoAYOnSpdiwYQNWrFiBOXPmAAAyMzMtPv8TTzyBJ554AgDw2GOPoWPHjka3S0tLw4IFCyw+DxERERFRU+bQw3xUVlbiwIEDSEhI0CwTi8VISEjA7t27rXKOgoICAMCJEyewd+9ejBgxwuh2qampKCoq0rxyc3Otcn4iIiIioqbA7jUWtbl69SqUSiUCAgJ0lgcEBODff/81+TgJCQk4fPgwysrKEBISgrVr1yI+Ph4AMGbMGBQVFcHDwwNffPEFpFLjt0Qmk0Emk1l+MURNlEqlQmVlpb3DIAu4uLjU2PyTiIjIXA6dWFjL77//XuM6a9V8EDmjyspKZGdnQ6VS2TsUslDz5s0RGBjodB20iYjI+hw6sfDz84NEIkF+fr7O8vz8fAQGBtopKivI3QdsfgW4Kw1oHWvvaIgsIggCLl++DIlEgtDQUKeaQK0pEAQB5eXlmuagQUFBdo6IiIgaO4dOLFxdXREbG4uMjAzNELQqlQoZGRmYMWOGfYOrB2H5nRBBgGpFIsRzC+wdDpFFFAoFysvLERwcDHd3d3uHQxZo1qwZgOq+Zv7+/mwWRURE9WL3xKK0tBSnT5/WvM/OzkZmZiZ8fX0RFhaGlJQUJCUloVevXujTpw8WL16MsrIyzShRjZEI1ZOdi5XyOrYkclxKpRJA9QMAarzUSWFVVRUTCyIiqhe7Jxb79+/HkCFDNO9TUlIAAElJSVi5ciUmTpyIK1euYN68ecjLy0NMTAw2btxo0KGbiOyDbfMbN35+RERkLXZPLAYPHgxBEGrdZsaMGY266RMRERERUVPH3pZERERERFRvTCyIyGKVShVOFZTiZH6Jw7wqqpR1xr1t2zaEh4cDAM6dOweRSITMzEyzrz88PByLFy/WvBeJRFi/fn2N21t6rmvXrsHf3x/nzp3TLNu5cyciIyPh4uKCsWPH4tixYwgJCUFZWZnOvitXrsTgwYPNOh8REZEl7N4Uiogar8vFCjz59d/2DkPH5lmD0CnAy6rHXLlyJZ577jncuHFDZ/m+ffvg4eFh1XMZ89Zbb2HMmDGaZAio7o8WExOD3377DZ6enmjevDn69u2LRYsWYe7cuTaPiYiISB9rLIiILNSqVSubD7VbXl6O5cuX49FHH9VZfubMGQwdOhQhISFo3rw5AGDq1KlYsmQJFAqFTWNyFAsXLoRIJMJzzz2nWVZRUYHk5GS0bNkSnp6emDBhgsFcSEREZBtMLOzoquBt7xCI6JazZ89iyJAhcHd3R3R0NHbv3g2gutnU1KlTUVRUBJFIBJFIhNdeew2AYVMofXv37kWPHj3g5uaGXr164dChQwbbHD16FImJifD09ERAQAAmTZqEq1evatb/+uuvkMlk6Nu3L4DbzamuXbuGadOmQSQSYeXKlQCAO++8E4WFhdi+fbt1booD27dvH/773/8iKipKZ/msWbPw888/Y+3atdi+fTsuXbqE8ePH2ylKIiLnwsTCjuRwsXcIRHTLK6+8gtmzZyMzMxOdOnXCgw8+CIVCgX79+mHx4sXw9vbG5cuXcfnyZcyePbvO45WWluKee+5BREQEDhw4gNdee81gvxs3bmDo0KHo0aMH9u/fj40bNyI/Px/333+/Zps///wTsbGxmvehoaG4fPkyvL29sXjxYly+fBkTJ04EUD2nSExMDP78808r3RXHVFpaiocffhjLli1DixYtNMuLioqwfPlyLFq0CEOHDkVsbCy++OIL7Nq1C3v27LFjxEREzoF9LIiIAMyePRt33303AGDBggXo1q0bTp8+jS5dusDHxwcikQiBgYEmH2/16tVQqVRYvnw53Nzc0K1bN1y4cAFPPfWUZptPPvkEPXr0wNtvv61ZtmLFCoSGhuLkyZPo1KkTzp8/j+DgYM16iUSCwMBAiEQi+Pj4GMQUHByM8+fPW3obGoXk5GTcfffdSEhIwJtvvqlZfuDAAVRVVSEhIUGzrEuXLggLC8Pu3bs1tT765HI55PLbE5YWFxfbLngioiaMiYUdCeDEVESOQrtJTVBQEACgoKAAXbp0seh4x48fR1RUFNzc3DTL4uPjdbY5fPgwtm7dCk9PT4P9z5w5g06dOuHmzZs6x6hLs2bNUF5eblHMjcF3332HgwcPYt++fQbr8vLy4OrqqulzohYQEIC8vLwaj5mWloYFCxZYO1QicgLhczbUuv7cwrsbKBLHwMSCiAiAi8vtponq2ahVKpVNz1laWopRo0bhnXfeMVinTm78/Pxw/fp1k49ZWFiI9u3bWy1GR5Kbm4tnn30WW7ZsMSvZqktqaipSUlI074uLixEaGmq14xMROQv2sbAjQWCNBVFj4OrqCqWy7vkxtHXt2hVZWVmoqKjQLNNv59+zZ0/8888/CA8PR4cOHXRe6mFse/TogWPHjpl83qNHj6JHjx5mxdpYHDhwAAUFBejZsyekUimkUim2b9+Ojz76CFKpFAEBAaisrDQYFjg/P7/WZmwymQze3t46LyIiMh9rLIjIYkHeUvz8dBxkMpm9Q9EI87X+8K/h4eEoLS1FRkYGoqOj4e7uXucwsw899BBeeeUVTJ8+HampqTh37hzee+89nW2Sk5OxbNkyPPjgg3jxxRfh6+uL06dP47vvvsPnn38OiUSCESNGIDU1FdevX9fpqGzMuXPncPHiRZ0+Bk3JsGHDcOTIEZ1lU6dORZcuXfDSSy8hNDQULi4uyMjIwIQJEwAAJ06cQE5OjkEzNCIisj4mFnYk2DsAcmyKSuDI90DbO4Dmjtksw1UiRlt/T6s2S3FE/fr1w5NPPomJEyfi2rVrmD9/vmbI2Zp4enri559/xpNPPokePXogIiIC77zzjqbAC1R3tN65cydeeuklDB8+HHK5HG3atMFdd90Fsbi6QjkyMhI9e/bE999/jyeeeKLWc3777bcYPnw42rRpU+9rdkReXl7o3r27zjIPDw+0bNlSs/zRRx9FSkoKfH194e3tjZkzZyI+Pr7GjttERGQ9TCzsKEx8BVCpADFbpJEROz8Etr4JSJsBr9bc8ZTqJzw8HIKgm+Y3b97cYNmSJUuwZMkSnWXnzp3Tea+/T9++fZGZmVnrNh07dsS6detqjXHevHl44YUXMH36dE3Cod/cp7KyEkuXLsXq1atrPVZT98EHH0AsFmPChAmQy+UYMWIEPv30U3uHRUTkFJhY2NuZP4COTbPZAtXTmT+q/1XctG8cZHd33303Tp06hYsXL9bYqTgnJwcvv/wy+vfv38DR2de2bdt03ru5uSE9PR3p6en2CYiIyIkxsbA3FhqpJoJtRySixuW5556rdb260zcREZG9sA1OA9NvBgHOZUHU4MLDw+ssqDcVMTExmDJlir3DICIiJ8AaiwamEgCJ9gIREwuqCbv324qzJRYxMTH2DoOIiJwAaywamEpl3lj45MQMarcck2EtHDUm/PyIiMhamFg0MMFgki3WWJBxZZVV9g6hVhJJdd1bZWWlnSOh+igvLwegO/M4ERGRJdgUqoGpVAqd97nXy+GYMxSQvV26Xo6O9g6iFlKpFO7u7rhy5QpcXFw0w6BS4yAIAsrLy1FQUIDmzZtrEkUiIiJLMbFoYIJSN7EouqlgYkGNkkgkQlBQELKzs3H+/Hl7h0MWat68OQIDA+0dBhERNQFMLBqYSq8plEjEp7xknKgRdN52dXVFx44d2RyqkXJxcWFNBRERWQ0TiwamUum2mxeziwXVpJF0qhWLxXBzc7N3GERERGRnfFzewIQqvQ65TCyoBvxqEBERUWPCxKKBKfU6b4s5jwXVoDE0hSIiIiJSY2LRwASFblt0jqRDNWNiQURERI0HS7UNTFDqN4VijQUZxxoLIiIiakyYWDQwld5ws0wrqCZtFWftHQIRERGRyUwaFcrX19esg4pEIhw8eBBt2rSxKKimTKVXYyESc6hHIiIiImr8TEosbty4gcWLF8PHx6fObQVBwNNPPw2l3nwNVE2/KRQTC6I6FPwLbH0LGDwHCOhm72iIiIioBibPY/HAAw/A39/fpG1nzpxpcUBNnkKu+17iap84HJG8BFg7BYgYC/ScZO9oyFGsGgWUFQBntwOpOfaOhoiIiGpgUmKhUqnMOmhJSYlFwTgDoapC571Ib/hZp7Y7HTj9e/WLiQWplRVU/ysvsm8cREREVCt23m5gQtVNnfcisMmYRgULjkRERESNldUSi+vXr+PLL7+01uGaLJFCt8YC+sPPOjWOkUVERETUWFktscjJycHUqVOtdbgmy6DGQsUaCyIiIiJq/EzuvF1cXFzrevarMJF+HwuBfSyIapTzt70jICIiIhOZnFg0b94colpmiRYEodb1VE2k0K2xaHVgMdDvfoDDzqJCoYSbvYMgx6GsAlYMt3cUREREZCKTEwsvLy+88soriIuLM7r+1KlTeOKJJ6wWmLXk5uZi0qRJKCgogFQqxdy5c3Hfffdp1o8bNw7btm3DsGHD8MMPP9g+IL0+Fs2u/wsc/BLoxWZkRy4Uobe9gyDHcX6XvSMgIiIiM5icWPTs2RMAcMcddxhd37x5cwiCYJ2orEgqlWLx4sWIiYlBXl4eYmNjMXLkSHh4eAAAnn32WUybNg2rVq1qmID0O28DwNVTDXNuB9dMftXeIVBjkP0ncOYPYMjLgMTF3tEQERHRLSYnFg899BBu3rxZ4/rAwEDMnz/fKkFZU1BQEIKCggBUx+jn54fCwkJNYjF48GBs27atweIRVdV8D51d9+tb7B0CORJRDWNLrLqn+l+vICDu8YaLh4iIiGpl8qhQ06dPxzPPPFPj+oCAAIsSix07dmDUqFEIDg6GSCTC+vXrDbZJT09HeHg43NzcEBcXh71795p9HgA4cOAAlEolQkNDLdrfGvyPN1DNCFFjZyyxKL58++fCsw0XCxEREdWpXsPNXrhwwexZufWVlZUhOjoa6enpRtevWbMGKSkpmD9/Pg4ePIjo6GiMGDECBQUFmm1iYmLQvXt3g9elS5c02xQWFmLy5Mn47LPPLIpTLpejuLhY52UJsarScGFpvkXHImrSjCUWi7o0fBxERERkEpObQhkTERGBzMxMtGvXzuJjJCYmIjExscb1ixYtwvTp0zVzZCxduhQbNmzAihUrMGfOHABAZmZmreeQy+UYO3Ys5syZg379+lkUZ1paGhYsWGDRvnVSym1zXKJGrLSsDJ61buF4fbqIiIicWb1qLGzdWbuyshIHDhxAQkKCZplYLEZCQgJ2795t0jEEQcCUKVMwdOhQTJo0yeJYUlNTUVRUpHnl5uZafCwywgE7/pN95RQU1r4BvzNEREQOxWozb9vC1atXoVQqERAQoLM8ICAAeXl5Jh1j586dWLNmDdavX4+YmBjExMTgyJEjmvUJCQm477778OuvvyIkJKTGhEUmk8Hb21vnZS1VnHwb+HupvSMgB1PlXXtfqMJyI80KiYiIyG7q1RTq5Zdfhq+vr7VisYkBAwbU2g/k999/b8BojDtzpRRO33J820J7R0AORlLHpJGn80vQp4FiISIiorqZXWOxY8cOTcfp1NRUNG/eHABQVVWFHTt2WDU4Pz8/SCQS5Ofrdm7Oz89HYGCgVc9lT1UKhb1DIHI4YrHI3iEQERGRGcyusRg8eDACAgLw448/om/fvprlhYWFGDJkCJRK67XrcXV1RWxsLDIyMjB27FgAgEqlQkZGBmbMmGG189hbWUWVvUNwAGwvr08uuEAmct7vRl01FvzGEBGRrYXP2WDvEBoVi/pYPPDAAxg2bBhWrlyps9ySztylpaXIzMzUjOyUnZ2NzMxM5OTkAABSUlKwbNkyrFq1CsePH8dTTz2FsrIyzShRTYFYVL8he5sElhJJj6SOGgsRvzREREQOxewaC5FIhNTUVAwcOBCTJ09GVlYW3n//fc06c+3fvx9DhgzRvE9JSQEAJCUlYeXKlZg4cSKuXLmCefPmIS8vDzExMdi4caNBh+7G4kyXJyAc+xkbVb0xQ/oTABaQqvEe6HP2O1JnUyiOCkVERORQzE4s1LUS48ePR9u2bTFmzBgcO3YMH374oUUBDB48uM6ajhkzZjSZpk//RsxCcuYdmCb5TbNMAtZYKFUCam/44nycPeGs6zGFs98fIiIiR1Ov4WZ79OiBvXv34saNGxg2bJi1YmrSVLeSqCqtYjQLSEBFFTuw63P2hLOu/xeBN081UCRERERkCrMTi6SkJDRr1kzzPjAwENu3b8ewYcMQFhZm1eCaInViIdYqNIkF5y5AVmNypU/q5H1v6mpaGVp2tIEiISIiIlOYnVh88cUX8PLy0lkmk8mwatUqZGdnWy2wpkqdWGg/jVWJ2AiISJ8FXbbICSxZsgRRUVGaiUrj4+Px22+3m5YOHjwYIpFI5/Xkk0/aMWIiIudhch+LrKwsk7aLioqyOBhnoLz1EHqdciBec/myehl7FxAZELFzNhkREhKChQsXomPHjhAEAatWrcKYMWNw6NAhdOvWDQAwffp0vP7665p93N3d7RUuEZFTMTmxiImJgUgk0nS0VjdTEARBs1wkEll1HoumSF1jUQwPzbJcrxj0sldADoL9TMhcpdIW8LR3ENTgRo0apfP+rbfewpIlS7Bnzx5NYuHu7t6kJlElImosTG4KlZ2djbNnz2r+bdasGbZu3WqwnGqnUt0uQK9X9qv+QeJip2iIGq+98jb2DoHsTKlU4rvvvkNZWRni4+M1y7/55hv4+fmhe/fuSE1NRXl5uR2jJCJyHibXWLRpo/tHXCQSISQkxGA51U4rr4DyVl4ndvLRfwBU991mm3rSUXstFmu5nNeRI0cQHx+PiooKeHp64scff0RERAQA4KGHHkKbNm0QHByMrKwsvPTSSzhx4gTWrVtX4/HkcjnkcrnmfXFxsc2vgYioKTJ7HguqH6VWu3GVcCux4KhQRAbqShuYhzqvzp07IzMzE0VFRfjhhx+QlJSE7du3IyIiAo8//rhmu8jISAQFBWHYsGE4c+YM2rdvb/R4aWlpWLBgQUOFT0TUZNVrHgsyn/ZkgOoaCxcxEwsic7HGwnm5urqiQ4cOiI2NRVpaGqKjo2ucpDUuLg4AcPr06RqPl5qaiqKiIs0rNzfXJnETETV19aqxqGuceTKk1GoLpbqVWIQ0d7NXOOSoVCrD92Inew5Qx6hQTCxITaVS6TRl0paZmQkACAoKqnF/mUwGmUxmi9CIiJyKyYlFjx49dBKJmzdvYtSoUXB1ddXZ7uDBg9aLrgn6498Czc+qW405RAJH0iI9qird94ISrGAkqq5dSExMRFhYGEpKSrB69Wps27YNmzZtwpkzZ7B69WqMHDkSLVu2RFZWFmbNmoVBgwZxKHQiogZgcmIxduxYnfdjxoyxdixO4c9TVzU/q5tCGTyddkICW8zrUlbqvlcpOXqYHg564JwKCgowefJkXL58GT4+PoiKisKmTZtw5513Ijc3F7///jsWL16MsrIyhIaGYsKECXj11VftHTYRkVMwObGYP3++LeNwSuqmUGCNBelT6tVYFF0A/DrYJxZ7qbMpFDmj5cuX17guNDQU27dvb8BoiIhIG9tW2FF70SUAQKdz3wCVHGedbhP0ayy+n2yfQOypjoSbfSyIiIgci0mJRc+ePXH9+nWTDzpgwABcvHjR4qCcxSDJEQCAi7IcWHWPnaOxLzaF0qWo0uuIWvCPfQKxI5F+cqXHz5NNw4iIiByJSU2hMjMzcfjwYfj6+pp00MzMzBpH6KAaXDxg7wjIgVTJ5XD2YrNIpah1vZg1FkRERA7F5D4Ww4YN05mDoTYchpbMZfDNEgTAib9H4oMr7R2C/emPjKWHnbeJiIgci0mJRXZ2ttkHDgkJMXsfZxDo7Ya84gp0DfLGT1f7YYxkl71DckzKKkDqWvd2TZTbvnR7h2B3oroSCw56QERE5FBMSizatGlj6zichou0+im8l5sUW5SxTCxqopQ7dWJBMBwZSw8TCyIiIsfCUaEamFJZ3ejHRSJCZf0mPm/aKorsHQHZWV01FpxYkoiIyLGwZNvAvn8yHlVKAV/uPofss87ePfc2g94UHH7X6dXVeVsksI8FERGRI2Fi0cBCWrgDANxcJOC4P7eJ9DriKuWlkNgpFnIMojqaQrHGgoiIyLGwKZSdiODgczdUVdTZxt2aPES6wxMXXi9ssHOTg6qjKZSCFRZEREQOhYmFnYhEQKXgoBVGCjmwMBRY1LV62Fc7OH+5wC7ndWgq5ypJq/tY/KsKNbq+0CWgIcMhIiKiOpidWCiVSrz33nvo06cPAgMD4evrq/Mi04ggctymUIVnAWUlUHbFbp2oW7k2XG1Jo3F+p70jaFi3+lgUwcPoas6XQ0RE5FjMTiwWLFiARYsWYeLEiSgqKkJKSgrGjx8PsViM1157zQYhNk0iEVCpl1jIFQ7SZly7lmLTK3YJQVRZapfzOoqjqnAAQKaq/e2FF/fbJxg7cbuSBQAIExmvvWrmoBV+REREzsrsxOKbb77BsmXL8Pzzz0MqleLBBx/E559/jnnz5mHPnj22iLFJkohFOCME6yz75fBlO0VTi8yv7XJaUVWZXc7rKC4IrQAAPygH3V6oqLRTNPbhVpAJAAgS1dDfhp23iYiIHIrZiUVeXh4iIyMBAJ6enigqqm4qc88992DDhg3Wja4Jk4pFUOndfo/Co3aKRp99+lVoO3Hhqr1DsKtmqO7MXi7Ibi9UOldiISs8Uev6a8U3GygSIiIiMoXZiUVISAguX65+st6+fXts3rwZALBv3z7IZLLadiUtErHhrW9e9K8dInFMJy9ds3cIdtXs1ihZ5XDTLBOcLLGoi0Rkfmf2y0U38eIPh3HsUrENIiIiInJuZicW48aNQ0ZGBgBg5syZmDt3Ljp27IjJkydj2rRpVg+wqeoa5GVkqf1rCgDYbSQobRLBuTtvq2ssKuCqWSYo5DVt3iSph2P+QxmDC4KfwXopjDeFWvFXNraeMN4v49nvMvH9/gsY+dGf1guUiIiIAFgwQd7ChQs1P0+cOBFt2rTBrl270LFjR4waNcqqwTVld3RqBVcpR/utibiOOQyaOncjTaFuBN+BpjbuWtaFGwhp4Q5fD1eDdXl+8Qi6ugs/K+OxT9EFf8me1VnvCt3vSEWVEgPe2YqrpdX37tzCuwEAgiBoRpA6kVdicJ6KKiXm//QPRkYF4Y5OraxyXURERM7I7JLtjh07oFAoNO/79u2LlJQUJCYmYseOHVYNrikTiUS4LzYEPyv7apY59IR5NiYXdEfI0i80Ohs3UXWzp5uQ4YQqBAAgN/85gEPbd64Qoz/Zifi0DKPrLxVcAVDdHMxYJZpM7zvy1e7zmqQCADb9k4dlO86i15u/43RB9Shj+iPUfr8/F13mbsSa/blIWrEX/1yyz/DKRERETYHZicWQIUNQWGg4SktRURGGDBlilaCcySWhpeZnlYNMgJZ7vbzBz6lfbnSFwuh2zkJTYwEZlJAAAAqLzf9c5Aolnv3uEO7/726oVA3TxO2XrEt48qsDKJXX/Bmu3JmNp74+cCtG49/7WPEpANX3QH+gAwBwQyXm/3QUF29Ud+J+f4tuZ+8nvjqAt349jmtllUhYtB1HLxbppO7nr5XhxR+ydPa5+6O/sPHoZazadU6zLL+4Apv+yUPWhRs4coGJBxERUU3MfgSq3axA27Vr1+DhYXwiKzJOIhahTGimed//2AIIqucgMtKxuyEV32z4TsIivdTCVeTcNRbqxOKmIIPiVqH6n4uF6GbGMT7/8yze3HBc8/7Y5WJ0b+2js41CqYJUYt3v24zVhwAAHbZ5YmhXf2z+Jx/PJXSEm0t1gnTg/HW89vMxnX2OXSpGl0AviMUiKJQqFJTIoR6MOVR0BafQ2uA8bqIqrNp9Hn9kncUTncuhqGqG2n6l3fPxXwAExIuPYZJkC+7/TyHai24iSnQWnqKbaC26hoWKB/Dk1wcBAPHtW6JDK0/Eva1bo3Ls9RFwd21atUdERETWYPJfx/HjxwOobsIzZcoUnRGglEolsrKy0K9fP+tH2ISNjg7Gwj0RSNFa9nfG/6HvnffZLSbAsLlIg5xTL7GQOXONhUoJ2a3E6iZcNTUWbuLqe/T0NwdQUqHAl9P61Dr7tHZSARj2yb9wvRwD3tmKUdHB+PjBHjoPDSoVKmQcz0dcu5bILSxHu1Ye8JRJkX21DFKxGIE+bnCVipFbWA5BAEJ9m0EQgKU7zsAbZSiDG/acvYZPtp4GUD0a09Au/vj58GX8cfwy9CtLp320Hl3Eubj/gSl4enUmXKDAqVsDYm1W9oKbyLDjuhsq0QrX8acyGTgGPOIG/KXshkuCH4ZIMlEmuCFdOQbPStfhfvk8PCf9P9wv3a7Zf6Rkr8Exn5T+DACYVDkHf3+8AusFXwBjdbYprVAwsSAiIjLC5L+OPj7VTzoFQYCXlxeaNbv9pN3V1RV9+/bF9OnTrR9hExbbpgX2C110lu09fhZ9hgkQi+3Y38IOg0LpX22ot6Thg7CAIAh46uuDcJdJsOj+mHod61R+CTb9k4dpvf3gfmtZOdw0NRblFRVQKFX49UgeAODtX4/jlbsjNPvLFUrkF8kR1tIdWRduGBx/zf4cdPTvgl1vJOCC0ArzFFMBAD8fvoTUxC4Y+dGfuFFehQHtW+L4mbO4Bh+DY2j7617gsx+rh5sWtx+CVSddEIBCZLnNAADcmfMupAjEm9IVeODfbcC/QL7ibnzutgFHVOEIEV3Fm1WP4ILQCmtkb1QfdN27OOeme55SuKFQMBxFzVtUjn1uyTrLBkj+0fzcSlSE/4g/AwDscnum1mvR95Xr7UEqWomKsECRZNb+REREzsjkxOKLL74AAISHh2P27Nls9mQFxp42/5tXisW/n0TK8M52iMh+xKhuZ7+w6gHMcfnOtM7bKiWw73MgLB4IirJqPOsPXUSblu7oEdai1u0uXL+J3GO7UQ43yMdHQia9nRBdK5Vj4z95GBUdDG+36s7pZXIFPv8zG4mRgegUoFtYvvOD6sEPKovykQJAJYggh4umxqLtma/wd/YDmu2X/ZmN7/bmYlCnVigsq0SJvApHLxZj9fQ4PLTsb4NYv96Tg1bXDuBZSSYAaBILEVR4/J3PUSqEAZBiXM6b+NrtT6QrRmOdciByhAC0QAnmuXyFeyR7sFQxCl8rhyHkl+fwhrrPfc5KVEkexdsuyzXn2yJ70SCGx6XVk2hGis8BAN53XVrr/QWASrgY7WPRUKZKN8ENlVikuA/X4I2SkmL4e7vVvSMREZGTMbs+f/78+baIw2Zyc3MxadIkFBQUQCqVYu7cubjvvuqmRjdu3EBCQgIUCgUUCgWeffZZu9e6fOr6EYZtDcW0/uFo7mGfCQcbvCmUSgmJqLqapBTVNWEmDTd76Gvgt1uF1yf+tFpyceB8IZ5bkwng9pClNSq7gg2yVwAAckzVWTXli304crEIr/x4FPtfTcDHGadw+kopdp6+hg9+P4lX7+6Ktn4eGNY1QGe/H/eeRIqsuhkUIEKVUJ1YxIn/xajl3wJop9m2RK7AhiOXIYYKAbiO+dJfsGr5PtwnKcPz0rUoFLyxWRWLy0JLeOImns39WrPvObeHar20ZOn/kCz9n8HyJ6U/a5oMadNOKqxJnVSsUQzGROk2m5yjLg9Kt+JB6VbcFFzRbFkl8GI24N7UBv8lIiKqH4saCv/www/4/vvvkZOTg8pK3Y6+Bw8etEpg1iKVSrF48WLExMQgLy8PsbGxGDlyJDw8PODl5YUdO3bA3d0dZWVl6N69O8aPH4+WLVvWfWAr2qGMxCDJEc37DNkLWP/5MYye+QEe/2o/wlt64NV7Imo5gnXp93eozW9HLuNqWSUm9W1j+Qm1ZpQuE6qfBEtVdU8GV3J2LzTP/P87EHit9hF7yuQKbDmWjyFd/OHtJkVFlQrNXA2bXG3990qNxzicewMB3m4I9LkVZ3GOZl1VlQIX/16PPbt3YFfQZBy5WB2PCCpMems5TgihOk/el23YiSekvwAz5wMnNiBC5I5WoiJ87vIegOqhZgGghahUs88z0h/RU3wSLUWG8zGoTcUmzc+BouuIEJ+v9b40FgsUk+2WWKg1Uw8DfGobDnkMQtcgb7QwMgcHERGRMzI7sfjoo4/wyiuvYMqUKfjpp58wdepUnDlzBvv27UNycnLdB2hgQUFBCAoKAgAEBgbCz88PhYWF8PDwgEQigbt7dWt2uVwOQRAg2GHW6WeqZiBT8oTOsrHXv8CB3Hn4/Xj1DMINm1iYXmXx1DfViWT/9i3RrpWn2edSqQSUlJRqWvN7i6qHVG0v1x016GqpHI98/jfu7xWKaQPaAgD+OHYRY7S2+XL3OUyOD6/xXC/+XxY2ZF2Gi0SE9q088W9eCfakDtMkCWrqDscAsHT7GTx5R3soVQImLNmFzNwbAICzb4+EWCxC7tViBN3advbq3ViaOw3tAPzyTzB8EYZp0t8QKLqOeyW353jZoYzEHlVXvOjyffWCJRsBAL/qVVC5oRLPJXRE97/OaZbdKTlQ4/U1deVwQ3jFagB117bYWrMfp+KFig9R6RWCfa8k2O5EBceBkxuBuCcBl2Z1b09ERGRHZjdc/vTTT/HZZ5/h448/hqurK1588UVs2bIFzzzzDIqKzB/jfceOHRg1ahSCg4MhEomwfv16g23S09MRHh4ONzc3xMXFYe9ew9FcTHHgwAEolUqEhoZqlt24cQPR0dEICQnBCy+8AD8/P4uOXR83YNgxFQCuFORB05P68HfAH28ZDu1jEyaeQxCwzOV9rHF9HddKK8w6w/K/srFoy0k88fUBDH13i2a5uq+Fvg9/P4V/80rw+i/VCYdcoYRKoVtbNu+nf7DjZHVtQ3FFFf46dRWf/3kWe85ew7sb/8WGrMsAgCqlAGX+cUSKzmL13hycvnwVR3OvYdynO7Hn7DV4owx3iffCG2VY/ttuCJcPI/rlH/BU3jz86fosnpasR7eX12Hmy6+gz9bbBdylubfTnNWub+Og25OYIf1JJ6kAgEGSI7eTilp4iioQ5ute53ZNWWzFEqPLKwXTOvd/rBir+Xm8/DUAwAtVj2OA/MMa90mpfNKkY+90exZjytfh44xTuFJSdw2bRT7tC/z+GrDjPdscn4iIyIrMrrHIycnRDCvbrFkzlJRUN8mYNGkS+vbti08++cSs45WVlSE6OhrTpk3TDGmrbc2aNUhJScHSpUsRFxeHxYsXY8SIEThx4gT8/f0BADExMTqzgatt3rwZwcHVo+EXFhZi8uTJWLZsmc42zZs3x+HDh5Gfn4/x48fj3nvvRUBAgMGx5HI55PLbhYfi4mKzrtMSd22IR5p0CFIV04Efb9VodBgGhPWtfUczff7nWWw/eQXLJveCm4vE9PoKZaXmCfqQz9Zja9pjJp/zjV9u10gE3hpatlKQoDywD3DtK5QJMojLStHs0h4gfAAqqpQ6+6/adQ7B0F0GVNc2nM85j7d/P4+bqK6JaIYKzc/VBE3HYvlfCyDbWd2fY7qyD/p+uRdZ+v1y/wsc1Vr2ovh7kxIDqtl3isG4X7IdYlHNSewQ+fs1jkzVV56OANF1HBfaaGovHqx8BSnStTiqaov3FfehFO4ABNwQPHBCCMNBoZOmxgMAelek4yZkmCH9CZWQ4AflHcgRqv/vvyasgrfoZp3X8arLN+i9pR++3ZuDXanDzLgDZrrkWE1MiYiIjDE7sQgMDERhYSHatGmDsLAw7NmzB9HR0cjOzraoGVFiYiISExNrXL9o0SJMnz4dU6dWd4xdunQpNmzYgBUrVmDOnDkAgMzMzFrPIZfLMXbsWMyZM6fGuTYCAgIQHR2NP//8E/fee6/B+rS0NCxYsMDEqzJf54qVOOE2xWD5g9Kt1YmFWvm1ep2npKIKnjKpzohU6vkO1h64gEl92xh03n7uu0OYP6qbYVtyxe1aCu1PXqkSsHLXOcS19TWYkA0ABJUKSZJNOKJqi4NCJ7iKbiUWcMGpa7dnnC775nGEX9oARD+EkXkChrucRIaqBz7fHIR3/8jFShfdfgZnZA+j9FIz+FwuxyQ3YKlilE4n472qzugjPoFlipGaZTKtifiMzWtgb2J7TCpixBlVENqLLxss/0MZg+vwwgTJn5plxYI7ouSfa977oQj73Z4CAFwQ/DBA/hEAYI7icU2n88tQ92sS0EN0GieEUJRrJYO/PjMQIz+6fY5CeKNQ8AYAtK34Gj4oww144b5K/SkERViuNN4B/wqqR/xaqHjQYN3IyoUYJj6I9cr+cEMl/r41hK4x+9ySEV70DS5cL0dIC+euYSIiIudmdmIxdOhQ/O9//0OPHj0wdepUzJo1Cz/88AP2799vtMahPiorK3HgwAGkpqZqlonFYiQkJGD37t0mHUMQBEyZMgVDhw7FpEmTdNbl5+fD3d0dXl5eKCoqwo4dO/DUU08ZPU5qaipSUm5PZVdcXKzTpKq+5DCxA+it5E2pEjD/f0dx4PwNyBVKrH0iHscvl+CR5X/jvfuicW9siMGuJ/NLMPyDHbgzIgDLJvcCUN3HQa2i0rAGAADWZ16CRCzG+/dH666oup1YNEcZ/j11El06dsKafbmaGon0h3oiIcJfZxjWkv9EYYFLLgDgK0UCJkl/B1Dd9KdKkAIioJWoGK0uVQ9NisOrMQQAJLf6GOz6HI8ZGe1TIhLgg3LNe/2Ri/qITwAApkt/NXqdjkgkMuzcX18KQYwO8q8N+ikcU7XBDlUklihGowKuECDCI5LfcV3wxI+qgfDATQSJruFeyQ6sUozQSgaA56uexEDxEaRKv8ULVY/rHPcqfJBS+SRixGfwtkL3nCqIdY4DiHBI6GgQc0Swd43XI0BcY3NCS10QWmGVcgQAoAjAc5VPY7HrpzVuP02yEXe8o8KZhaOtGoeOzNVAYBQQ2N125yAiIqoHsxOLzz77DCpVdTv45ORktGzZErt27cLo0aPxxBNP1LG3ea5evQqlUmnQNCkgIAD//vuvScfYuXMn1qxZg6ioKE3/ja+++gqRkZE4f/48Hn/8cU2n7ZkzZyIyMtLocWQymc5s47ZwVBWO7rfG99cWiNu1FBn/5qNd8c84U9YMX++53TQr9s3fNT/PXnsY98aGILewHK28ZHBzqS7Ur9pVfewtx/I1227W+rnD6eVAuQBVoOET3h2nriCvqAKnCkrwccZpXLxxEz882FrTcXm9bB7wzTx0r/gcnUP8ESbKR44QgOXffofWoYcRoziMf1qOQMGNYgy5mas5rjqpUFOJpXaZoM8RTZDPx2QAaYqHMEiSWuN2Z1RBOC60wRXBB1Olm3TW3SefB5moCjtV3SCFCoGia8gXqodJ7VyxEq5QoAQ1P2Vfobxdm1iGZjgthGChwljHaRH+VEXhz0rjQ/6uUw3COtWgmi/Wwa1XDcD6iv6IFZ3E/8kMay7nuXyFeS5f4UbeYTQPDLd+AGf+qH4BdY5+RkREZC9mJxZisRhi8e0+3w888AAeeOCBWvawrwEDBmgSIX19+vSpsxlVQ5pQ+ZrR5lB73GZqft67fx+GuXyLtgBa4VNcQXOD7R+VbMC5RYuQWPA0lBJ3nHyrunCYV3S7hqGkogo/H76M3OvlCBFdQYzoNIbkfALkAAeCvKE7PZ+AayU30TctAwDgBjm+c30D5z53Q5BeH9qjbo8BVwFo52DVA1uhW+ES6DdU0ddCXA4jXSeatFHyN3FEaIdU6TeYIPkTSZUvoRxuyBaCkCQS4bjQBj0rlmKa9DfMkP6k2e+AqiOmVb6Acrih6tZ/5VNCCB6X/IItqlgsVYyq7qNwK1Grghi5wu0kXQ5X02vKCIAIB4TOeKjyZax2fdvoFs2XRmP3pLMIadEMoU7e8Z6IiJyPSYlFVlaWyQeMirLeDMh+fn6QSCTIz8/XWZ6fn4/AwECrncdRmFLIS3X5VvPzPren0b3ic4yS7EakKBtzFVPxtUsa4iXHgGIgSzYdy5WJwGsP4Ez35/DXvzEYLD6GnuKTSP3aFVVnd6Kn+CT+km3QOcdDl9N03p9zexgA8KliNJ42MmGaNV2StG50icUfyhhsVcWgClIkSTahq/h2jUx8xcf42vVttBdfRt+KjzFQcgT/cfkMQPUoRaeEEE2NQZriYSxUPAhBa7C2oV2qBygohDfeU0zEe4qJAIAQUQEuCy01s3KrrVYOw2qlDTsRE3apam+K9NCyXQCAzbMGo2OAdZtoEREROTKTEouYmBiIRCIIgqDT6dcYpdJ6pUJXV1fExsYiIyMDY8eOBQCoVCpkZGRgxoyaO1M2ZuuUAzBe8pfJ2x91uz0S00PSP3TWuYiUeFL6CwCg/dHFOKHdL+HCepj7sNrWSQUADO4WChyy+Wlq9HrVJMxz+QoAMED+IQoFL3zm8j42q3phuHg/Bkj+wRLFKKxTDsQpIQTuqNDpZPydcigelWzAXJdvMEC+GJfREsMq39esX6scjGBcgwARDgqdDM4v6I0A7Skz/l/0guBvjcslC0VWfI4jbsZHQct2ewRHVeEY/sGbOLIgscbPkIiIqKkx6S9edna25udDhw5h9uzZeOGFFxAfHw8A2L17N95//328++67ZgdQWlqK06dvT0iWnZ2NzMxM+Pr6IiwsDCkpKUhKSkKvXr3Qp08fLF68GGVlZZpRopqaRYr7zEosmpK2FV/jnaAWNk8slilGorXoKgaLD6MMboiTp0MFEXxRgkJ4Y6VyBDxxE8XwAAA8UvUKAOB75WB0V2TjoNBJM4N2OQx7kS9X3l3jSEQA8KFygg2uihpSCdwRXrG6xon6uovPoRWK8OnW03jxri62C+TqaeDkb0DvxziBHhER2Z1JiUWbNm00P99333346KOPMHLk7SE7o6KiEBoairlz52pqFky1f/9+DBkyRPNePfJSUlISVq5ciYkTJ+LKlSuYN28e8vLyEBMTg40bNxqda6IpuCC0wg/KQQaTqjVFL1VNxz+qNvhF9ioWVj0AAWJIpbXP2XhB8EOI6CoA4LgqDOMrX0OE6Dw6iy/gbZflAIC/VV1wSNUBj0p+g4uougZtflUSVimHA7XM0lGI6pGHVBBrkgptFZBhv2DDQiI1OvOrkrDAZZXRdWKocPjCDdsG8Els9b9lV4A7X7ftuYiIiOpgdh39kSNH0LZtW4Plbdu2xbFjx4zsUbvBgwfXOf/FjBkzmmzTJ2NmVz2JG4IHHpP+Zu9QbGqNsjqh1J60TCq5nVjcIV+EPMEXoyS78Z7Lf5Fa9Si+VQ5DdW/k2wnCAaEzDig7G/Qt+I9iIsZL/oQLlOx3QDaxSjkcf6m642fXV+Eu0p19e4/bTPQ//SG+3RuMB/uEWf/kKq1mp7mONwcLERE5H7MTi65duyItLQ2ff/45XF2rG+lXVlYiLS0NXbt2tXqATd3790Xj+bWHDZa/rXgYK5V3IUp0BnmCL9bJXmv44Ex0Q/BAc1EZioVmuL9yPsZK/tL07QCArxXDECU+i2uCN/5WdUUxPJCpam/0WFKxCBPk8+EnKsJ5obqD/g/KO/CLsi8qNENNmTZpnBISrFUOrs+lEdVBhDNCa0TIvzDaLGqn27OIWLfC+olF3hHg8wTrHpOIiKiezE4sli5dilGjRiEkJEQzAlRWVhZEIhF+/vnnOvYmfRNiQ4wmFiqIcUFohQtCKwDVT/X9UIQwUT6ela7DHRLTR+qyxDlVAF5TTMZ/XP6LK0ILuKMC4eJ8ZKuqm6AdEjpivOQvFAvuiJEv09l3oeIhXBBaoYsoB68pkqAw42smFVcP6ak/l0UFbDuHCJGt/M/1VQBW7lfz64vQnvmeiIjIEZidWPTp0wdnz57FN998o5mkbuLEiXjooYfg4WHYLp2s5yp8cFXwQVLVHKAK8EYpVBAjWfoTvFGOfuKjaCuuHpp3tWIIWomKcKfkoM4xXqmahijRWUyUbtMsGy9/DR+6pCNUfAWfKkZjk7IXDgvtAYjQW760xnjeqHrEaOdlAPhaeadF19jCg/MqUO3atfLA2Stl9g7DwHj5a0ZrFjuIL2Hz+q8wfOykhg+qCVqyZAmWLFmCc+fOAQC6deuGefPmITGxer6eiooKPP/88/juu+8gl8sxYsQIfPrpp022Xx4RkSOxaBxEDw8PPP7449aOxWm1cHfB9fIqs/crhicA4B3Fg5plnihHGdw0w5Z6V5XhJmToILqI40IYABG+AfCS4nH0ER2HWCTgoNAJAys/NPv81291dram8JZMTql2rZs3c8jE4qDQCX0rPtaZ0FJteOYM4O77ABfjibj5dKv0VABqH/ag6QgJCcHChQvRsWNHCIKAVatWYcyYMTh06BC6deuGWbNmYcOGDVi7di18fHwwY8YMjB8/Hjt37rR36ERETZ6z/C1yaPdEBVvtWKVw15kLoRgeqIIUx4U20O+bsFfoij2qCKud2xrqmCaFyKHloSWernzG6LrLKycDAJQqAUU3zX+QUOt5i5ynWdSoUaMwcuRIdOzYEZ06dcJbb70FT09P7NmzB0VFRVi+fDkWLVqEoUOHIjY2Fl988QV27dqFPXv22Dt0IqImj4mFA2Bh+jYxbwY1cr+q+mKtYpDB8qCLm/Duyu8xfskuRC/YjPPXLK91kVcpdN7fsKDGsylQKpX47rvvUFZWhvj4eBw4cABVVVVISLjdsb1Lly4ICwvD7t27azyOXC5HcXGxzouIiMzHxMIBsDB9m5i3gpqAlxTGm4q+eG46DufeAAD8L/OSxcfPv3rN4n2bgiNHjsDT0xMymQxPPvkkfvzxR0RERCAvLw+urq5o3ry5zvYBAQHIy8ur8XhpaWnw8fHRvEJDQ218BURETRMTCwfgKbOoq0uTJDJxKFlqHFp52WY0r3cmRNrkuNaighgHVB2NrusiygEAlFYqjK43RVjVWYv3bQo6d+6MzMxM/P3333jqqaeQlJRk0TxKaqmpqSgqKtK8cnNzrRgtEZHzsDixqKysxIULF5CTk6PzIvPd1yvE3iE4DBFTXY3ura3fOb6pmNg7DG1auts7jFo9UDkXB1UdDJZvlM2BB27iv9vP4uKNm+YfeGuaFaJr3FxdXdGhQwfExsYiLS0N0dHR+PDDDxEYGIjKykrcuHFDZ/v8/HwEBgbWeDyZTAZvb2+dFxERmc/sYtypU6cwcOBANGvWDG3atEHbtm3Rtm1bhIeHG52Rm+rWhiMhabBZWOMyOtp6Aw+Y6yETJp3r6O9p9nEHdWplSTgGqiDF+MrX8YVihMG6f9wehQRKrD90EQdzrkOlEowcoQbbFxoscoFz9rFQU6lUkMvliI2NhYuLCzIyMjTrTpw4gZycHMTHx9sxQiIi52B2G5wpU6ZAKpXil19+QVBQEEQsCFrFvlcS0Put3+0dht2xj4X5okN8cPhCUYOfd3J8GwR4uwGG8ztqiADMvScCb/xieTOVmri7SurcxkVifhXYfbEhEAQBf566aklYBhYoJmOqdJPB8sclG7Bhcy7+I4Rj/qgITO1v+YMZF6GyPiE2KqmpqUhMTERYWBhKSkqwevVqbNu2DZs2bYKPjw8effRRpKSkwNfXF97e3pg5cybi4+PRt29fe4dORNTkmZ1YZGZm4sCBA+jSpYst4nFatmqL3tiwj8VtghkPse3BRSKGYEKQ0/qHI7RFM2w4chk/1aPDsr77eoVi7k//1LrNU4PbY+a3h8w6rkgErJjSGx1f+a0+4WkfEaPlb+B/srk6S19y+Q4v4TuEV6zG8r+y65VYOJOCggJMnjwZly9fho+PD6KiorBp0ybceWf1pJwffPABxGIxJkyYoDNBHhER2Z7ZiUVERASuXrXOkzwifY2pAmxoF3+E+bpj5a5zdo3DnvmHfl7xzLCO+CjjlOb9hNgQiEQiDO8WiMxboyFZi5tL3TUWo6KD0SOsOb7ff0EnrrpYUtNRmyyhfY3rmqMEF64DF66XI6SFpf1GGtF/nHpavnx5revd3NyQnp6O9PT0BoqIiIjUzP7r+c477+DFF1/Etm3bcO3aNY79TVbVmPpYvHJ3V7Rwd61xvYcJTXVqY0mNRecALzwz1LDDMACM69Ea22YPtjiepY/EYvX0OJ1l+iEmdPXX/DxzaAfMSuhk8fkA4IOJ0Tj5ZqJF+yZ0DQAAhLRwh8SM75Wtaorerbrf6PJMtyfgiiq88uNR25yYiIiogZidWCQkJGDPnj0YNmwY/P390aJFC7Ro0QLNmzdHixYtbBEjOZHG1sfCz6vmxMK7mUu9jm1qWVh7s02zBqF7ax+j27XykiHcz/KBAu7qHoh+7f007wXBsBCu3ZTt+eGd4Sq9/SvG1PL6mJjqDuHPDO2AcT1CdI5hii6BXvj1mYFY8khPzbKuQV6an9+9N8qk4yx9pCfCtUaeWp/c36w49H2qHIuflcbb+Z90S8L2k1cgCIJJzcuIiIgckdlNobZu3WqLOIgANK4aCwC4LzYUa/dfMGjm83vKICSt2Gd0n9+eHYjED/+s89jqAvADvUPx3T7DcfUTuwfCVSpGfnGF+YHfsjypFx5dtb/O7Zq7G0+SfJrp/grpGFA9ClNLj5oTLm0fTIzGrDW6vb/fvy8ajw9qh4ggy4f8jAjW3ffOiACzj3FX9yDc1T0IVUoVyuVK+NRwD8wxs+oZpFQ9jVNukw3WDRAfQeKHXigsq8TzwzthYu+6R70iIiJyJGYnFnfccYct4iAC4Bh9LMQiwNTRP12lYqxP7o/wORt0lgc3b2Z0+7n3RKCriQXmbsHVNQ+v3N0VPu4u6OjvhdlrbxfClzwSCwD449987DlbaFHheVhX0/bZ+vxgzc8SsQhKlYCBnfwQ364lPv7jNK6VVY9K5OYiwfHX74LESNWT9oP4dq080KtNCwzqaDi0q1Qi1ly7JYw98Ddn9Dr9TV0kYvi4W6/PRRWkkAtSyES6E+R97ZqG9nlfQQkJXvq/I2YlFqzjICJyTPrlA33nFt7dQJE0DJMSi6ysLHTv3h1isRhZWVm1bhsVZVozAyJjHGH44lBfd3z6cE88+NkeFFdYPjuyMZZcnZebC1ITuwKATmKhNrRLAPakDoO/hSOLpY2PxMLf/oVYBFwvNz4fQgutGog9qcNwqqAE8e1aQiQS4dOHe2LiZ3s065uZ0LckI+UOiEQiXCuVa5YldPXH5Phwi65Bm1BHMTsmtLnBsntjQ/DDgQv1PrepYuSf4bjbNIPlZ9wm4dHK55GhijXreGbNg0FERGQjJiUWMTExyMvLg7+/P2JiYiASiYy2AxaJRFAqlVYPkhyTreYnsDcRqmsLgnyaobiixMJjGP8/Mryb+bUK2nw9XFFYZjhnQaCPm+bnuoqYSx+JxdPfHMCi+2MAAA/2CcMDvUMxdeU+bDtxBQAQ364ldp+9dmt9qM7+rbxk9R4eWZ1AaieSCydEwc/TdsMu704dioJiOToFeNW6XUN0cbgJN3SqWIWTbkkG65a7vo/witXIOJ6PYSYeT+CU9URE5ABMSiyys7PRqlUrzc/UcJ4a3B7HLxdrCnyOpK2fpUNj1i68pTvOXSs3a597Y0Nw9kopDubcqPf51f087ujcCifyLUssalLbcKJxbX3Rwt0VG//Js+o59d3VPRAn30yEVGtIVf2aom8fr+5kfOnGTQRpJS3GmFoOr6smwVQ+dXSKrykxCPJphiAf403UEroGmFVjoW4OVh+VcMEyxUhMl/5qsK4FivHkqj04Vfut1xCcaLhZIiJyXCY95mrTpo2m4NGmTZtaX2S51Y/FITpEt235vbEhVh9T31ratLR8hKHabJ092OyhWsNbuuP/nupX4/o7Ohm25a/RrTJayp2dkDY+Eknxtvtee7ndzu3XPBGP9+6PRr/2LfHm2O42OycAnaSiNsHNmzlE8zQA+OShHujT1hdz74kwWOfn6YphXaqHun1soOkTzd3RqRXWPhmPESbWJE2/dexfnxmI1Y/F1bF13d5SPIKViuEGyw+5PWm0g3dNmFgQEZEjMLvzttqxY8eQk5ODykrdZhmjR4+ud1DOql8HP6ye3hfd5m/SLGvfyrNeRYbR0cG4MyIAy//KtuoEZSun9kb7Vp4W7//Dk/F4Y8NxHNaKaUjn6sK/SCTCxN5hWLHTerVjyyb3QqdXTZtJ+fXR1YV6NxcJHuxT3YH24o2b+P14gcnnE4ks61DrKZNi9XTjQ5KaytKmPLYumt7bMwT/3X4WsW0sG5b6nqhg3BMVXOP6pZNicf5amVnfyzBfd/QO99VZVlse9crdEXjxri63kn3dJlV3RgTg4Pnrmo7spnpX8QCmSDebtY8+JhZEROQIzE4szp49i3HjxuHIkSM6fS3UTzXZx8J6ugRWF1zq88B44YRIuLtK0cLdFY8s/7vG7fq1b4ldZ67pLPvPvVF44QfjnfUHd/bXee/uKkF5pWmfvXoEhC4BXjqJxdNDbk/sZm6zmboK06bOhfDvG3eZNKOztXQN8sbe7EKTt3fEOQ5MDaljgBcOzb2z3vN71MRFIkYH/9r7T5iirutx0WlCdnv7B/uE4rNJsWibati0qTblcENq1aNIc6l9RunaMLEgIiJHYHYbm2effRZt27ZFQUEB3N3d8c8//2DHjh3o1asXtm3bZoMQSVSPQkNd+y6b3At/vjgE3xhp1qH/JNeYV+/uCrEIWDWtD3qZ+ST65bu7Ylr/281WtAt05pafBVQnt5tnDcL/Zpg/kVkzFwnGxgTXklSY/xnUdg2/zByAufdEYHlSL/h7yXBXt0DTjmnCNtGhhkO1tvRwrbOJUOrIrnBzEePZYR1NisUSLTxcjQ5FC9S307RjFKxFIhE+frCH2ft9qxyGpYp7LD6v4CDN1YiIyLmZnVjs3r0br7/+Ovz8/CAWiyEWizFgwACkpaXhmWeesUWMTuv2yDn1OYbuv9ri27XEnREBCPV1r7EdvbF25L+n3J7L5LGB7XDyzUSTkhB9Ps1cMG/U7fbyYb63OzYndq+5oK09G7KaulDaKcALUSHNTY5hVkInLBwfieNv3IXFD9RcIHxqcDsAqDEB+PThnmjXyvQ+J91b++DRAW3h5eaC3anDdGaJrq8gn2bY8cIQvDGmm2bZvlcS4O9Ve0/gTgFe+GfBXZh1ZyerxeKMRkUH4+SbifhsknlDxi5UPGTxOVljQUREjsDsxEKpVMLLq7q5gZ+fHy5dugSgulP3iRMnrBudE9Iu31uzqKA/kk522kjNyD+1xdKvg5/B8g7+um3Y1R2BI0MMn5Sb4veUQfi/p/rpDJka164lNj03yOj2dQ0Xao5nEzrigT51T0QW28YXh+cNx0c1PI0eGRmEL6b01lmm3Zxr7j0R2DZ7sNF9JWKRyR2kX7qrCwBgUt/aO5SHtXSHj/vtuSfENdQSGIvFXprSQ3dXqRjDTayF0vZwZaoNoiEiImoYZvex6N69Ow4fPoy2bdsiLi4O7777LlxdXfHZZ5+hXbt2tojRqcikt5vi3BsbAsA6NRbdW/voLTc8aHRoc50+D+Y2wXrpri748dBFjIwMwuq/c0zer6Z28Z0DTU8gTOmT4dPMBUU3jU8AZwofdxdUKVUmbat/ex8dYPpIRbV5sE8YBnduhUDvuschbWzl9Po0hbJXUuLvJUN+sbzuDU20UxVp0X6OOW4cERE5G7P/Hr366qtQqaoLV6+//jqys7MxcOBA/Prrr/joo4+sHqCzkYhF2PTcILw9LhJJ/cIBWK+PxcbnBqJf+5Y1Dsv65dQ+WDwx5va+Zp7WzUWCzHnD8fY4ywpHxjwzrCMe6RuGzbN0ay82PDMA//dUvOa9KSMBrXu6Hx6KC8P/ZvTHyMhAfPVoH6vFacybY6vvg7X7LAT5OM4QsED95qeo71X0CGsOABjfs3U9j2SZlVOt/x0aIn8fh1VmPqRxnK8DERE5MbNrLEaMGKH5uUOHDvj3339RWFiIFi1aOFRhpzHrHOil+7TeCjUWANAl0LvWoUx93F0wwkjzjYXjI/GfTSfMHkbTGlJqaO/fLbi6Bmbd0/1wKOcG7okKqvNY7Vt5apKeTx82r/27mvZH4VrHXBB3RgTgnwUj4CGzeFTnJk+s9QW1pBXWqml98PfZQvPmKbGirkHeta7385Thaql5NRrZQhDGVL6Jc26m97lQoeFGMiMiIqqJWTUWVVVVkEqlOHr0qM5yX19fJhU21JB31tjT5wf6hCHj+eoO250CzJ+7YkxMzXMPWEL7q9YzrAUeHdC21u/fJw+ZP0pPTaQSMZ4e3B6T49sg1LfumcftmVSY05TMXnzcXTChZwjG9WiNlp4ys/f3dnPBnREBJg8nrKau4ZhmpSZqgPEJI10klv/vTZC/q/n5mcoZtW6rErExFBER2Z9ZpR4XFxeEhYVxrgo7emNsd/QIbY57Pv7LpO3NLdZod97VLhQ3d3fFsddH6PQBMdWC0d3wU+Yls/ezhtfHdKt1UjVLvHirA7Wj6xTghW8ei0OACf0x7On9+6Mb/pz3RePtcZFWmbNkwzMDUFAir9eEkcacFkLQvuIrKCFBiOhKrdsqRLaZG4SIiMgcZj9OfeWVV/Dyyy/jq6++gq+v+UOMUv2oRwMK9HZDXnGFzroPH4jBkC7++HLXOby3+SQA4520ayOTSvDRgz1QpVDB18NVZ527q2VP35u7u9a9kY3EtW3ZYOdywLnr0N/IqF5U/f/CWhMhdgv2Qbe6N7OI8lYTpyKh9qGMmVgQEZEjMLuk+Mknn+D06dMIDg5GmzZt4OGh+wfv4MGDVguOqhlLDlZN64M3NxzDzUol9p+/DgAYE1PdvOOu7oG3EwsLzjc62npP+N1c7NNE4+DcO1FQUmG35kD16XDf6DhgQtXUlKD2Znf5Ssdv9kZERE2f2YnFmDFj2J+igRm7250DvfDVo3F485djmsRCrZXWRGj2+qj+76l4vLXhOF4bbatnubXz9XA1qHEhasyeqJyF/7p+YHRdD/GZBo6GiIjIkNmJxWuvvWaDMKg2tSUHxh4W+zRzwS8zB8DNRWy3JDC2jS/WPd3fLucmaoo2qXrXuC5YfhbHLhVDKhFZdQJJIiIic5jdTqVdu3a4du2awfIbN25wgjwH0r21T40TzzV2TtXMiBpMQld/+Hq4YmgXf6sds65valxb8/qpDZG/X+O6iM9CMfKDP1CpMG0SRyIiImszu8bi3LlzRkeFksvluHDhglWCsqbc3FxMmjQJBQUFkEqlmDt3Lu677z7N+vDwcHh7e0MsFqNFixbYunWrHaM1jsXoxsFZuxo0leteNrkXlCoB0jrmJ7GmhROiMOS9bSZvny0EYZj8P8iQvWB0/Wm3yXh6zR94cUQXhPtV938TBAHZV8sQ3tIDYksmCyEiasLC52ywdwhNismJxf/+9z/Nz5s2bYKPj4/mvVKpREZGBtq2td6Y8NYilUqxePFixMTEIC8vD7GxsRg5cqROp/Ndu3bB09O6Q0VaU23NmRpLMeHuqCBsyLqMAU4yShG7ITU+IpEI0nrMO2GKsTHBWK819HJ4y7rnQtF3RmiNDGUPDJMcMro+5+guJF0qxrbZg1EqV+CHAxew4OdjuL9XCN69t+GH9iUiIudhcmIxduxYANV/fJOSknTWubi4IDw8HO+/X3M1vb0EBQUhKKh6VubAwED4+fmhsLDQYDQrR9YUyqjvTojC8IgADLFiMxOixsZda24YV4nlfaAerZqN0cpd+Mg13WDdL7JX0fnaSrRN/VVn+ff7LzCxICIimzK5zl+lUkGlUiEsLAwFBQWa9yqVCnK5HCdOnMA999xjdgA7duzAqFGjEBwcDJFIhPXr1xtsk56ejvDwcLi5uSEuLg579+41+zwAcODAASiVSoSGhmqWiUQi3HHHHejduze++eYbi45ra91b+9S9kYPzkEkxJqY1vN2a7nj7nlqFxqaQDJoqpEUze4fQKHQN8kZq4u3JFe+OCqrH0UT4n6o/OlZ8aXTtCbcpyJI9itHinfU4BxERkXnM7mORnZ1t1QDKysoQHR2NadOmYfz48Qbr16xZg5SUFCxduhRxcXFYvHgxRowYgRMnTsDfv/rpd0xMDBQKhcG+mzdvRnBw9ZwMhYWFmDx5MpYtW6azzV9//YXWrVvj8uXLSEhIQGRkJKKioqx6jfU1Kb4NVIKAfu0NmxE1lfbtTUErLxnemVA9m3NDttO3tzYtPbA8qReH963Dr88MsPoobVWQ4v+UAzBB8pfBOm/RTXzkmo6PkI7Lgi/i5Z9Y9dxERET6TE4sdu/ejWvXrunUSnz55ZeYP38+ysrKMHbsWHz88ceQyWRmBZCYmIjExMQa1y9atAjTp0/H1KlTAQBLly7Fhg0bsGLFCsyZMwcAkJmZWes55HI5xo4dizlz5qBfv34661q3rp5ULigoCCNHjsTBgweNJhZyuRxyuVzzvri42KTrswYXiRiPDeSIW2qO3H9hYu8we4dgF8O6Btg7BIeknUjYaujnTxVjjCYW2oJEhZgq+Q3A3TaJgYiICDCjKdTrr7+Of/75R/P+yJEjePTRR5GQkIA5c+bg559/RlpamlWDq6ysxIEDB5CQkHA7YLEYCQkJ2L17t0nHEAQBU6ZMwdChQzFp0iSddWVlZSgpKQEAlJaW4o8//kC3bsYndEtLS4OPj4/mpd2cyp4cuIxN5PT6d2gJAGjhbtgE0Fr/d88IrfFo5fNYrDCs8dU23+UrK52RiIjIOJMTi8zMTAwbNkzz/rvvvkNcXByWLVuGlJQUfPTRR/j++++tGtzVq1ehVCoREKD7NDQgIAB5eXkmHWPnzp1Ys2YN1q9fj5iYGMTExODIkSMAgPz8fAwYMADR0dHo27cvJk+ejN69jU9ClZqaiqKiIs0rNze3fhdHRE3evFHd8OrdXfHzzAE2PU+GKhaLFffa9BxERER1Mbkp1PXr13UK+Nu3b9dpwtS7d2+HLGwPGDAAKpXxCaPatWuHw4cPm3QcmUxmdjMvInJunjJpgzZjjKz4HEfcHmuw8xEREWkzucYiICBA03G7srISBw8eRN++fTXrS0pK4OJi3RF//Pz8IJFIkJ+fr7M8Pz8fgYGBVj0XEVFjVwJ3hFesxi/KvnVvTEREZGUm11iMHDkSc+bMwTvvvIP169fD3d0dAwcO1KzPyspC+/btrRqcq6srYmNjkZGRoZlHQ6VSISMjAzNmzLDquRorjgpF1Lg90DsU3+2zbm3vnKrH8I8qHCqIkOryLQDgguCHEKuehYiI6qu2mb/PLWx8A26YnFi88cYbGD9+PO644w54enpi1apVcHW9PbzkihUrMHz4cLMDKC0txenTpzXvs7OzkZmZCV9fX4SFhSElJQVJSUno1asX+vTpg8WLF6OsrEwzShQ5H0ceFYrIXK+N7oZtJ64gr7jCascshTuWKEcDAIJFV5Ek3YLzqgAmFkREZFMmJxZ+fn7YsWMHioqK4OnpCYlEorN+7dq18PT0NDuA/fv3Y8iQIZr3KSkpAICkpCSsXLkSEydOxJUrVzBv3jzk5eUhJiYGGzduNOjQ7axYxiZq3NxcJBjcuZWm1sLP0xVXSyutdvx9qi5IwhaIWL9JREQ2ZvYEeT4+xmeB9vX1tSiAwYMHQxBq/4M3Y8YMNn0ija6B3vYOgchm/jdjADb/k4cT+aX4dm9OvY8n3Hr8IBYxsSAiIttynumBqdH7ZeYAzB7eCdMHcbJAagK0qhu1m/cFN2+GKf3bwt1VYriPBdTpBGssiIjI1syusSCyl+6tfdC9tfEaM6Kmpo6KXNOPwwaTRETUQFhj0cgF+rjZOwQicmDHhDZYUDUJKxUj7B2KVaSlpaF3797w8vKCv78/xo4dixMnTuhsM3jwYIhEIp3Xk08+aaeIiYicB2ssGrlJ8W1w9moZhnT2t3coROSAzguB+EKZWPeGjcT27duRnJyM3r17Q6FQ4OWXX8bw4cNx7NgxeHh4aLabPn06Xn/9dc17d3d3e4RLRORUmFg0cjKpBG+Pi7R3GERkoucSOuLrPTl4fnhnraW1N1eKCW2ONi3d8VPmJdsG1whs3LhR5/3KlSvh7++PAwcOYNCgQZrl7u7unEiViKiBsSkUEVEDei6hE/a9MgytmzfTLGvl6Wqw3ZR+4QCAMTHBWJ/cHx4yPgcypqioCIDhyITffPMN/Pz80L17d6SmpqK8vLzGY8jlchQXF+u8iIjIfPxLRUTUwER6szw+cUd7nL1ahpGRQZplYS3d8e8bd0EmrX7+Y63O3E2JSqXCc889h/79+6N79+6a5Q899BDatGmD4OBgZGVl4aWXXsKJEyewbt06o8dJS0vDggULGipsIqImi4kFEZGdecik+OShngbL3VxqHnI2tk0LHDh/3ZZhObzk5GQcPXoUf/31l87yxx9/XPNzZGQkgoKCMGzYMJw5cwbt27c3OE5qaqpmclYAKC4uRmhoqO0CJyJqotgUioioUdCtsliR1NvoVp0DvBoiGLubMWMGfvnlF2zduhUhISG1bhsXFwcAOH36tNH1MpkM3t7eOi8iIjIfayyIiBoBlcreETgGQRAwc+ZM/Pjjj9i2bRvatm1b5z6ZmZkAgKCgoNo3JCKiemFiQUTUCAhGZs52kYhQpXSuzhfJyclYvXo1fvrpJ3h5eSEvLw8A4OPjg2bNmuHMmTNYvXo1Ro4ciZYtWyIrKwuzZs3CoEGDEBUVZefoiYiaNjaFIiJqBBK6Btg7BIewZMkSFBUVYfDgwQgKCtK81qxZAwBwdXXF77//juHDh6NLly54/vnnMWHCBPz88892jpyIqOljjQURUSNwZ0QAPnmoB2asPqRZ5owjRQl1XHRoaCi2b9/eQNEQEZE21lgQETUCIpEIfcJ9a1zft131uofiwhoqJCIiIh2ssSAiaiR8PVzhIhFBLBLB00331/fKqX1wIq8EUSE+mP+/fwz29feSNVSYRETkpJhYEBE1ElKJGEdeGwEAkIh1J9lzc5EgOrR5jfs+HNfGlqERERExsSAiaky0J80ztYvFrIROeOKOdrYJiIjIgYXP2WDvEJwKEwsioibu2YSO9g6BiIicADtvExERERFRvTGxICJqpOoaepWIiKghMbEgIiIiIqJ6Y2JBRNRI9e/gBwBo3byZnSMhIiJi520iokZr8cQYfPN3DibEhtg7FCIiItZYEBE1Vi09ZXhmWMdaayza+Xk0YEQ1O3v2rL1DICIiG2NiQUTUhK15It7eIQAAOnTogCFDhuDrr79GRUWFvcMhIiIbYGJBRNTEjI4O1vzcyktmx0huO3jwIKKiopCSkoLAwEA88cQT2Lt3r73DIiIiK2JiQUTUxMwY2gEAMLSLv50juS0mJgYffvghLl26hBUrVuDy5csYMGAAunfvjkWLFuHKlSv2DpGIiOqJiQURURPTKcALWa8Nx/KkXvYOxYBUKsX48eOxdu1avPPOOzh9+jRmz56N0NBQTJ48GZcvX7Z3iEREZCEmFkRETZC3mwtEIpG9wzCwf/9+PP300wgKCsKiRYswe/ZsnDlzBlu2bMGlS5cwZswYe4dIREQW4nCzRERkc4sWLcIXX3yBEydOYOTIkfjyyy8xcuRIiMXVz7fatm2LlStXIjw83L6BEhGRxZhYEBGRzS1ZsgTTpk3DlClTEBQUZHQbf39/LF++vIEjIyIia2FiQURENrdlyxaEhYVpaijUBEFAbm4uwsLC4OrqiqSkJDtFSERE9cU+FkREZHPt27fH1atXDZYXFhaibdu2doiIiIisjYkFERHZnCAIRpeXlpbCzc2tgaMhIiJbYFMoC6n/SBYXF9s5EiIi21D/fqspKTBFSkoKAEAkEmHevHlwd3fXrFMqlfj7778RExNTrziJiMgxMLGwUElJCQAgNDTUzpEQEdlWSUkJfHx8LNr30KFDAKqTkyNHjsDV1VWzztXVFdHR0Zg9e7ZV4iQiIvtiYmGh4OBg5ObmwsvLy6yx4ouLixEaGorc3Fx4e3vbMMLGhffFON4XQ7wnxtnivgiCgJKSEgQHB1t8jK1btwIApk6dig8//JCfGRFRE8bEwkJisRghISEW7+/t7c0/sEbwvhjH+2KI98Q4a98XS2sq9H3xxRdWOQ4RETkuJhZERGQT48ePx8qVK+Ht7Y3x48fXuu26desaKCoiIrIVJhZERGQTPj4+mqai1qr5ICIix8XEooHJZDLMnz8fMpnM3qE4FN4X43hfDPGeGOeI90W7+RObQhERNX0ioT7jCBIREZng5s2bEARBM9zs+fPn8eOPPyIiIgLDhw+3c3S6iouL4ePjg6KiIvbjIWrkwudssHcIFju38G6bHdtWv+c4QR4REdncmDFj8OWXXwIAbty4gT59+uD999/HmDFjsGTJEjtHR0RE1sDEgoiIbO7gwYMYOHAgAOCHH35AYGAgzp8/jy+//BIfffSRnaMjIiJrYGJBREQ2V15eDi8vLwDA5s2bMX78eIjFYvTt2xfnz5+3c3RERGQNTCyIiMjmOnTogPXr1yM3NxebNm3S9KsoKChgPwYioiaCiQUREdncvHnzMHv2bISHhyMuLg7x8fEAqmsvevToYefoiIjIGjjcLBER2dy9996LAQMG4PLly4iOjtYsHzZsGMaNG2fHyIiIyFqYWBARUYMIDAxEYGCgzrI+ffrYKRoiIrI2JhZERGRzZWVlWLhwITIyMlBQUACVSqWz/uzZs3aKjIiIrIWJBRER2dxjjz2G7du3Y9KkSQgKCoJIJLJ3SEREZGVMLIiIyOZ+++03bNiwAf3797d3KEREZCMcFYqIiGyuRYsW8PX1rfdx0tLS0Lt3b3h5ecHf3x9jx47FiRMndLapqKhAcnIyWrZsCU9PT0yYMAH5+fn1PjcREdWOiQUREdncG2+8gXnz5qG8vLxex9m+fTuSk5OxZ88ebNmyBVVVVRg+fDjKyso028yaNQs///wz1q5di+3bt+PSpUsYP358fS+BiIjqIBIEQbB3EERE1LT16NEDZ86cgSAICA8Ph4uLi876gwcPWnTcK1euwN/fH9u3b8egQYNQVFSEVq1aYfXq1bj33nsBAP/++y+6du2K3bt3o2/fvnUes7i4GD4+PigqKuLkfUSNXPicDfYOwWLnFt5ts2Pb6vcc+1gQEZHNjR071ibHLSoqAgBNM6sDBw6gqqoKCQkJmm26dOmCsLCwGhMLuVwOuVyueV9cXGyTWImImjomFkREZHPz58+3+jFVKhWee+459O/fH927dwcA5OXlwdXVFc2bN9fZNiAgAHl5eUaPk5aWhgULFlg9PiIiZ8PEwkIqlQqXLl2Cl5cXh00koiZJEASUlJQgODgYYnH9u+TduHEDP/zwA86cOYMXXngBvr6+OHjwIAICAtC6dWuzj5ecnIyjR4/ir7/+qldcqampSElJ0bwvLi5GaGhovY5JROSMnDqx+OWXX/D8889DpVLhpZdewmOPPWbyvpcuXeIfHiJyCrm5uQgJCanXMbKyspCQkAAfHx+cO3cO06dPh6+vL9atW4ecnBx8+eWXZh1vxowZ+OWXX7Bjxw6d2AIDA1FZWYkbN27o1Frk5+cbzPqtJpPJIJPJLLouIiK6zWkTC4VCgZSUFGzduhU+Pj6IjY3FuHHj0LJlS5P29/LyAlD9B5ed+4ioKVI/uVf/vquPlJQUTJkyBe+++67O8UaOHImHHnrI5OMIgoCZM2fixx9/xLZt29C2bVud9bGxsXBxcUFGRgYmTJgAADhx4gRycnIQHx9f7+sgIqKaOW1isXfvXnTr1k1T/Z6YmIjNmzfjwQcfNGl/dfMnb29vJhZE1KRZo7nnvn378N///tdgeevWrWvs+2BMcnIyVq9ejZ9++gleXl6afX18fNCsWTP4+Pjg0UcfRUpKCnx9feHt7Y2ZM2ciPj7epBGhiIjIco12HosdO3Zg1KhRCA4Ohkgkwvr16w22SU9PR3h4ONzc3BAXF4e9e/dq1l26dEmnTW/r1q1x8eLFhgidiMjpyGQyo6MtnTx5Eq1atTL5OEuWLEFRUREGDx6MoKAgzWvNmjWabT744APcc889mDBhAgYNGoTAwECsW7fOKtdBREQ1a7SJRVlZGaKjo5Genm50/Zo1a5CSkoL58+fj4MGDiI6OxogRI1BQUNDAkRIR0ejRo/H666+jqqoKQHUtSE5ODl566SVNkyVTCIJg9DVlyhTNNm5ubkhPT0dhYSHKysqwbt26GvtXEBGR9TTaxCIxMRFvvvkmxo0bZ3T9okWLMH36dEydOhURERFYunQp3N3dsWLFCgBAcHCwTg3FxYsXERwcXOP55HI5iouLdV5ERGSa999/H6WlpWjVqhVu3ryJO+64Ax06dICXlxfeeuste4dHRERW0CT7WFRWVuLAgQNITU3VLBOLxUhISMDu3bsBAH369MHRo0dx8eJF+Pj44LfffsPcuXNrPCbHOScispyPjw+2bNmCnTt34vDhwygtLUXPnj11JrIjIqLGrdHWWNTm6tWrUCqVCAgI0FmuPUGSVCrF+++/jyFDhiAmJgbPP/98rSNCpaamoqioSPPKzc216TUYo1CqcPZKKRRKlUnLa1qvUKpwKr8Ep/JLjB6rpnWmxKNeVlGp0KzT3q6uWE25Jkvvg6kx1rSt9n0xdgxz4qjt3tUVf03XoR+Luecw5/4ZuxeWntcSxj4X/Z9rujc1fcfN+V5Y87pq+y7pb2fq/01Ho1KpsGLFCtxzzz144oknsGTJEvz111+4dOkSBEGwd3hERGQlTbLGwlSjR4/G6NGjTdrWFuOcK5Qq5BSWI9jHDZeKKhDm6w6pxHiup1CqMP7TXci6WISo1j5Y93Q/SCViVFQqMCZ9J07kl+osr2m/1Y/1wfglu3CyoAwA0D3YGx9MjEFbPw8AwLj0nThyqdhgnX5c+sf9/om+yL1+EynfH8aRi0Vo5iLBzSolOrXygKuLBEcvFSMy2BsQiXDkYhE6+3vipxn9IZWIDe4BAKPHBoDQFs1w/3/3IOtiETq18sCHD/ZAxwAvo/to31Pte63eXx1j9yAvVKoEnNS6hwCQfbVMcz1uUjEqFCrNfRHdug7t6/zwwR5o6+ehOb7256FQqpB9tQxKVXUh6oUfsnBEaxvt+CODvbHIyH1XX4P+PZJJxZArVJp/1devH4dCqTL4rgAwuC/a91X73qnPq/8dUd8Lc86rf9y63qvj1L927c9F+2f156L/b/cgL8iVKpy69f2PbO2DH/Xuf23fi9r+b2l/bwBoPj/969L/v6++X+rPz9jnr1CqTP6/qf9dqel3SkMRBAGjR4/Gr7/+iujoaERGRkIQBBw/fhxTpkzBunXrjA6+QUREjU+TTCz8/PwgkUiQn5+vs7y2CZJMlZ6ejvT0dCiVynodRzshUBdkait05RSWI+tiEQAg62KRplCS+OGfyL5WrrO8XStPANWFi52nr+rsd88nO3Hu1vYAcPRSMe78YAeiWvvg/fujNQUX7XXqJMDNVaopIF+4rhuP+lrUblZV35+TV8o0y7SPfaKgFKM/+QsyF6lOAV0dh/axR3/ylyYR6ujvoSkUnrxShsSP/kJkax8s0ttHHU9nf0/831PxeOjzvci6ldCcKCjVifHo5RJNXFkXi5B9tQzPf39YczwAmgKr+r4Yu87Ej/5CJ39PnLx1fPWxQls007kGbVkXi3C6oBT5xRWa8x3R+ky0vw/ahVjteyS/FZv636yLRdh99prO/dj6bwHe+vW45rPPuliEHSev4IPfT2kSPfV90b6WdXr37v37owy+I9rX8nd2oc55s6+WYcY3BzXHVn9Hw3zdNddj7DPSfq+dkOpfu/bnov2z+nPR/1f7swaAI7fiUcdW07b6/7cAGPyfPF1Qime+Paj5nCNb+2CtVqKlThi0k2Pt+67+/I4Y+X+XU1he4//N/3sqHgWllZrfFXU9bGhoK1euxI4dO5CRkYEhQ4borPvjjz8wduxYfPnll5g8ebKdIiQiImtpkk2hXF1dERsbi4yMDM0ylUqFjIyMek+QlJycjGPHjmHfvn0WH0OhVGHMJ7cL4uqCjLrwoi5EDn1/O8Z/ugsKpQphvu6Iau0DAIgK8UGwjxvGfLJTk1QAQOcAL80TXfUxkr7YBzfp7Y9ZO6nQpi4gRQYbzslxoqAUY9J3oqJSgXHpO3HnBzswdeV+NHOR3Dqvp05SAQAyqeFXy01v2cmCMhzRK8yp41Bfa+cAT50C+SkjhfMjF4uQW1iOSK191PGcKCjFXR/+qTnuiYJSdPL3MHoPAKCTv6dO0mQsdlfJ7TH99a/zpN7xZ63JxOhPdhpNKtTGpO9E0hf7NPdTLUur0KtfiAWAzv6eqMn7m09q7oebVIzpXx3Q+exlUjGmrdqvuf8nCkoR3tLd4FpGfbJT596N+3SXwbnUcUeF+CCura/O91S9n1rblh4I9nHTuZ4TBaW45+O/dN5rn/fIpWJNnFl6n7X+d0o/Jv1/9XXy90SwjxvCfN2Nfve1t1OqBJ3mXpUKFToFVH8G3YO98OTXB3Q+5yN6CZ46YUhcrPt9DGnuZvScJwpKkfjhn6ioVNQY34mCUsS+laH5XVFRqdD53aL9HbKXb7/9Fi+//LJBUgEAQ4cOxZw5c/DNN9/YITIiIrK2RptYlJaWIjMzE5mZmQCA7OxsZGZmIicnB0D1LK/Lli3DqlWrcPz4cTz11FMoKyvD1KlT7Rh1tZzCcp3Cluutp4md/D0gr1Ii+2qZwVPf7KtlePfeKGyZNQjfP94Xf2cXGhTYfkq+/WRSu+Cm/SRXrWMrd3RodbsAHNnaB239PPBjcn9smTUIG2YO0ClonsgvxY+HLuo8Nb1ZpcSqqb3xU3J/nUJPJ39P/J06BG31Cqr6cXQP9kJHvUK+Oo51T/fDH8/fYXBsY9SFZAgCtswahJ+S++sUui/cqNAkAFEhPvjwgR46+6sLh538PeAqFWPqyv0GCcP65P7Y+OxAhLd0R6XydpvwdU/100kkOvl7YtH90Zr3Ry8Va2owtGlft/pJ9c0qJcJ9m+ncC3WiqJ1YRrb2hlIlYNHEGE3s+vEevVSMRfdHY9XU3gb3PaR5M805tXm4Sgw+j+xr5TrfgyojTftvVinxxZRe+P7x6iZr6u/puqf6IbRFM3TWijH7Whnu/+8e+Hu66nw/zhXeNDiver/I1t6aRKKZi0Tns86cdye+mNJLZ98vpvTCobkJ+OP5O3T+3TJrkOY4HVu5o+Ot2qUxn+yEQqnCookxOsfR/17c+cEOTeF9XPpO3PXhnziZX4qOrTwgV6gMkvbuwd54f/NJg/uVXViu+byauUh0vp/aSav6PoxJvx3f55NjDY6nX1Ol/XtB+2GDvWRlZeGuu+6qcX1iYiIOHz7cgBEREZGtiIRG2nNu27ZtRp+AJSUlYeXKlQCATz75BP/5z3+Ql5eHmJgYfPTRR4iLi6vXebWbQp08eRJFRUVmz7yt3axF3a7aVSLSFFi1261HtvaGINxucmKsfX/nAE/835O6zSG0z6F/jE7+nvjwgRgkfvSXJqYtswahrZ+HQbtv7bgA3Xbs2u3T/zx1BVNX7tds98fzd1TXqtxqkqHfR+G9+6I1/Qy0bZk1SNNnQvt+6R+/k78nPpgYg+TVB3UKdH88fwfatfJERaVCp5kYAKya2hv9O/gB0OqPEeKD7x+v7o8hr1Lq3JO2Ld2Rfa0cka29sej+GADAnR/s0KzvHOCFDc8MAIDqZjDfHcLJ/FLdfiWtvQFUf16d/D2w6P4YTfL3zLeHdJKOti09kH3t9hNv7Xuh3Udj9trDOt+HD241r9Hu4xIV4oN1T1V/Ntpt8/WbN3Xy99B5yr5l1iAoVQJmfntQUzvULcgLZZVKnfvcyd8TrlKxThyA7vdU+zNu6+uO7ELt2rXqWiX191+f9ucS7OOG3Os3ceF6ucF3rF0rT91mYlr76fcvUN9DNd3P0hM/Jfe/3T9E6zhKlaCz7RdTeunEoS/c1x1LHukJqUSss5++d8ZH4qV1R2p8r019v7SbhRn73dEtyAtVt/qFqK/JzdXyFq/FxcXw8fGx6PecmqurK86fP4+goCCj6y9duoS2bdtCLpdbHKe1WeO6icgxhM/ZYO8QLHZu4d02O7atfs812sTC3ur7gaj7PyR9YbxJ1ZZZgyARiwwKNfpWTe2NuLa+Bu241Z2x1e3Zs6+W6Rxny6xBmn4E6kKUsXbfxqxI6oVQX3fNOfQ7vaoLteoER/861dc29P3tOsdVF+BDWzQzKBhqFx7VBaZLRRU6x1AX9NX7aLc11y9kGesorF0AV7eP1y6s63Q+1zve2SulOrF08vdA+sOxBp+D9v3S7hysTg7VBX79e6jdH0H/s1EXsGu6LnVCIhGLDDoUayeR2uc8lV+i833Z+OxAPPvdIZ17mXv9Zq3fTX3qwrF+07kVSb00fT30vwPa8en0tdCKVfu6da6nlj4q3z/Rt7rJkNa9/OP5OxDm6260o3VNSTqgm+xrfy+091P/39B0sNf7P6f/vnuwFyqVt78b2vdL/f/H39MVE5buNmiGCMBgcARLO3Fb4w+PRCJBXl5ejbNr5+fnIzg4uN791qyJiQVR08HEwjhb/Z5rkp23GwOpRIz+HfwQ1drHYHQbdXMgdYEoMtjb+Cg8IT7o38FPp9mTfsdfdYGzrZ+H5lxRIbebG6kLHfpt3jVPSPUKUpGtfTCoUytNIeXslVKdTq/qWgH1ev3rVJ8bgGZZZGtv/Ofe6qfbd36ww2hndqlErBOvVCLWNA+6nWzodlJ1c5Xip+T+muTi/v/u0Tme+mn32SulUKoEnWZei+6PhpurFBKxSFOrcuRSsaZQp19QC/N11+0AXVAGiVik2Ub9OWjfr6OXSwyOp3+NAAw+G+1aBu3mUur7rZ1kGBtJTH87Y+fU/7508PfEhmcG6mynvY2xArc2/RoI7QJ1v/YtEXrrGvSTVe17Wtv9V1+P9v3V7nCt30flUlEFfppx+7sRFeKjOaZ2B231sdX3yFjtRXy7lppRy/RHaXr/VrM47URJO2nWv/fa79Wfvf79Up/j7JVSo0mF+nuSe/3m7YcHduzErZ4Vu6ZR9RyppoKIiOqHiYUdaRck1M09AN3CiVQixo/J/XWGsARQYwFbTX8Um5oKrer12sfQb04CGA6hqaa/n3ZSYew6tc+tn9gY68itfw3ahb6ajqvtUlGFQUdWYwXvyODqdvxH9JIf/euraXhPqURstKCqr67jGSvYGvtsairIajM2kpj+sWs6Z13fF2PbANDUjqibQKlrINRxqpM57QK3fg1DTUlubfe/pnul30dFe7lUIjZIlmqiHbv2ceLbtTSIHzCe1Knvnf49rO19bcmf9jVpJ+fq7zAAkz5/W0tKSqpzG44IRUTUNLAplJms0cfCFtRNXvTb2JvzhNLSse+tMWa+sWYjllxDbcfVP55+86Wanoabc32mbGvJ/bJ0n5qu3dZqitfYsLnaNQDq5kim9Jmo69z6tQPWmttB+zg5heU63yF1szT975Z2czVrqmvuj/p+/s7aJMhZr5uoKWJTKOPYx8LBOOofHkeaGMtc5kwYaMlxay3kNnDBu6E42vfBWDKn3ddHu19JfeKurRmYNdX0HXKU71Z976Oj/p6zNWe9bqKmiImFcexjQSYx1qylsdCO3ZrXUNM9MaUpVX04QqHe0b4PxpqCGfsM6hu3qc3A6qum71Bt362G/F442udPRERNGxMLclgNUQCzVcGroZ6YOzJjn58pfTdqOgYAk78PNfW1sPb1qK/J1L4r9vheOEKCS0RkK425RqIpYmJhJu0+FvbgLIUESwtgjnJ/GuqJuSUa4h6ZOiKVqcfQGWrWhO9DfWujjPVdsEZC0NDfCya4RETUkPgXxkzJyck4duwY9u0zPv+ELakLCUPf347xn+6CQmlkGuQmwlgBrC6OdH+0Z8q21hNza2ioe2TJ51fbMY5cKtaMGmbq8dQJjCVJhf49ssb1AA37vVDPIWONuImIiEzBGgsHpz8CjaM+Bbc2S5qymHJ/GqpGw9b9NyzVUN8hazRF0h9OVT2Dua0L5Pr3SD3UsvZwxJaev6G+FzWNsuYoCS4RETVNTCwcmLHZgq3dbtxRWVIAq6sw29DNQqzVf8OayZAt+h4YY40CdE0Txtk6UdNPaLRnXt8ya1Cdc2nUxZzvhaWfvXZyZGziSiIiIltgYuHAsq+WGcwW7IhPwW3F3IJ5XYXZxljjY+1kqCFrUqyRWNU0YZwtad8j7Zm2j1wq1plN3dbq89mbMnElERGRtTGxcEDqye5mrcnULItsfXu2YEcvDNtTbfenoZ7WW5OlyVBtT7r5HapbTTNtN+R3pj6JsKM2xSMioqaNiYWZbD0qlPZTSm2L7o9m4aCeGmNhy5JkiCMBWY89vzP1TYSZQBIRUUNjYmGm5ORkJCcna2YstDbtp5Rq6onEzOEow646msZW2LKkYNsYm3w5Mnt9ZxpjIkxERM6NiYWD0e84uuj+GLM7i/KJddNibsG2MTb5IuMaWyJMRETOjYmFg7HGU0o+sXZufNJNRERE9sAShwOqz8ReZ6+UItjHzSEnZ6OGY+l3yBmp/9805QkniYiIGgJrLJoIY3NeXCqqsNkTa0fuw+HIsZFjYbNBIiIi62FiYSZbjwplKf3mT5eKKmzW/MmRC2OOHBs5HjYbJCIish6WuMyUnJyMY8eOYd++ffYORYe6wy4ARLb2hlIl2Kxph35hbOfpqw7TjMRYQZGoJtr/b9hskIiIqH6YWDQR6g67W2YNAiDCnR/swPhPd9mkwK9dGGvmIkHSF/tsdi5zsaBI5lD/v/nj+Tuw7inWbhEREdUHm0I1IVKJGBKxCEds3LRDXRjbefoqkr7YZ9NzWRob+1iQqTikKxERkXWw1NXENNQTe6lEjP4d/ByydoAjIhERERE1PNZYNDEN+cSetQNEREREpMbEoglqyKYdbEZCRERERACbQhERERERkRUwsTBTeno6IiIi0Lt3b3uHQk1YQ88GzdmniYiIqL7YFMpMycnJSE5ORnFxMXx8fOwdDjVBDT3JHycVJCIiImtg6YHIwTT0JH+cVJCIiIisgYkFAWBTGEfS0JP8cVJBIiIisgY2hSI2hXEwDT2ML4cNJiIiImtgCYLYFMYBNfQkf5xUkBqLHTt2YNSoUQgODoZIJML69et11k+ZMgUikUjnddddd9knWCIiJ8NSBLEpDBE1GmVlZYiOjkZ6enqN29x11124fPmy5vXtt982YIRERM6LTaGITWGIqNFITExEYmJirdvIZDIEBgY2UERERKTGEiQBYFMYImo6tm3bBn9/f3Tu3BlPPfUUrl27Vuv2crkcxcXFOi8iIjIfS5FERNRk3HXXXfjyyy+RkZGBd955B9u3b0diYiKUSmWN+6SlpcHHx0fzCg0NbcCIiYiaDjaFIiKiJuOBBx7Q/BwZGYmoqCi0b98e27Ztw7Bhw4zuk5qaipSUFM374uJiJhdERBZgjQURETVZ7dq1g5+fH06fPl3jNjKZDN7e3jovIiIyHxMLM6WnpyMiIgK9e/e2dyhERFSHCxcu4Nq1awgKCrJ3KERETR4TCzMlJyfj2LFj2Ldvn71DISJyOqWlpcjMzERmZiYAIDs7G5mZmcjJyUFpaSleeOEF7NmzB+fOnUNGRgbGjBmDDh06YMSIEfYNnIjICbCPBRERNRr79+/HkCFDNO/VfSOSkpKwZMkSZGVlYdWqVbhx4waCg4MxfPhwvPHGG5DJZPYKmYjIaTCxICKiRmPw4MEQBKHG9Zs2bWrAaIiISBubQhERERERUb0xsSAiIiIionpjYkFERERERPXGxIKIiIiIiOqNiQUREREREdUbEwsiIiIiIqo3JhZERERERFRvTCyIiIiIiKjemFgQEREREVG9MbEgIiIiIqJ6Y2JBRERERET15tSJxbhx49CiRQvce++99g6FiIiIiKhRc+rE4tlnn8WXX35p7zCIiIiIiBo9p04sBg8eDC8vL3uHQURERETU6DlsYrFjxw6MGjUKwcHBEIlEWL9+vcE26enpCA8Ph5ubG+Li4rB3796GD5SIiIiIiCC1dwA1KSsrQ3R0NKZNm4bx48cbrF+zZg1SUlKwdOlSxMXFYfHixRgxYgROnDgBf39/AEBMTAwUCoXBvps3b0ZwcLBZ8cjlcsjlcs374uJiM6+IiIiIiKjpctjEIjExEYmJiTWuX7RoEaZPn46pU6cCAJYuXYoNGzZgxYoVmDNnDgAgMzPTavGkpaVhwYIFVjseEREREVFT4rBNoWpTWVmJAwcOICEhQbNMLBYjISEBu3fvtsk5U1NTUVRUpHnl5uba5DxERERERI2Rw9ZY1Obq1atQKpUICAjQWR4QEIB///3X5OMkJCTg8OHDKCsrQ0hICNauXYv4+Hij28pkMshksnrFraZQqpBTWI4wX3dIJY0ytyMiIiIi0tEoEwtr+f33383eJz09Henp6VAqlRadU6FUYfynu5B1sQhRrX2w7ul+TC6IiIiIqNFrlCVaPz8/SCQS5Ofn6yzPz89HYGCgTc+dnJyMY8eOYd++fRbtn1NYjqyLRQCArItFyCkst2Z4RERERER20SgTC1dXV8TGxiIjI0OzTKVSISMjo8amTI4izNcdUa19AABRIT4I83W3c0REjYtCqcLZK6VQKFX2DoWIiIi02KQp1JkzZ/DFF1/gzJkz+PDDD+Hv74/ffvsNYWFh6Natm0nHKC0txenTpzXvs7OzkZmZCV9fX4SFhSElJQVJSUno1asX+vTpg8WLF6OsrEwzSpSjkkrEWPd0P/axILIAmxISERE5Lqv/Rd6+fTsiIyPx999/Y926dSgtLQUAHD58GPPnzzf5OPv370ePHj3Qo0cPAEBKSgp69OiBefPmAQAmTpyI9957D/PmzUNMTAwyMzOxceNGgw7d1paeno6IiAj07t3b4mNIJWK0a+XJAhGRmdiUkIiIyHGJBEEQrHnA+Ph43HfffUhJSYGXlxcOHz6Mdu3aYe/evRg/fjwuXLhgzdPZTXFxMXx8fFBUVARvb297h0PkFHRqLEJ8sO4p1ljYkrP+nnPW6yZqjMLnbLB3CDZzbuHdNju2rX7PWb0p1JEjR7B69WqD5f7+/rh69aq1T0dEToRNCYmIiByX1f8qN2/eHJcvXzZYfujQIbRu3drapyMiJ8OmhERERI7J6n+ZH3jgAbz00kvIy8uDSCSCSqXCzp07MXv2bEyePNnap2tw1uhjQURERETU1Fg9sXj77bfRpUsXhIaGorS0FBERERg0aBD69euHV1991dqna3D1nceCiIiIiKgpsnofC1dXVyxbtgxz587F0aNHUVpaih49eqBjx47WPhURERERETkIm8xjAQBhYWEICwuz1eGJiIiIiMiBWD2xmDZtWq3rV6xYYe1TNqj09HSkp6dDqVTaOxQiIiIiIodh9cTi+vXrOu+rqqpw9OhR3LhxA0OHDrX26RpccnIykpOTNeP/EhERERGRDRKLH3/80WCZSqXCU089hfbt21v7dERERERE5AAaZCB4sViMlJQUfPDBBw1xOqImQaFU4VR+CU7ll0ChVNk7HCIiIqJa2azztr4zZ85AoVA01OmIGjWFUoVx6Ttx5FIxACCytQ9+fLofJ4UjIiIih2X1xCIlJUXnvSAIuHz5MjZs2ICkpCRrn67BsfM2NYScwnJNUgEARy4WIaewHO1aedoxKiIiIqKaWT2xOHTokM57sViMVq1a4f33369zxKjGgJ23qSGE+bojMthbp8YizNfdzlERERER1czqicXWrVutfUgipyOViPFjcn9kXy0DALT182AzKCIiInJoLKkQOSipRIyOAV7oGODFpILolh07dmDUqFEIDg6GSCTC+vXrddYLgoB58+YhKCgIzZo1Q0JCAk6dOmWfYImInIxVaix69OgBkUhk0rYHDx60ximJiMgJlZWVITo6GtOmTcP48eMN1r/77rv46KOPsGrVKrRt2xZz587FiBEjcOzYMbi5udkhYiIi52GVxGLs2LHWOAwREVGtEhMTkZiYaHSdIAhYvHgxXn31VYwZMwYA8OWXXyIgIADr16/HAw880JChEhE5HaskFvPnz7fGYYiIiCyWnZ2NvLw8JCQkaJb5+PggLi4Ou3fvrjGxkMvlkMvlmvfFxcVGtyMioto12DwWTQWHmyUickx5eXkAgICAAJ3lAQEBmnXGpKWlYcGCBTaNjYgsFz5ng71DIBNZvUeoUqnEe++9hz59+iAwMBC+vr46r8YuOTkZx44dw759++wdChERWUFqaiqKioo0r9zcXHuHRETUKFk9sViwYAEWLVqEiRMnoqioCCkpKRg/fjzEYjFee+01a5+OiIgIABAYGAgAyM/P11men5+vWWeMTCaDt7e3zouIiMxn9cTim2++wbJly/D8889DKpXiwQcfxOeff4558+Zhz5491j4dERERAKBt27YIDAxERkaGZllxcTH+/vtvxMfH2zEyIiLnYPU+Fnl5eYiMjAQAeHp6oqioCABwzz33YO7cudY+HREROZHS0lKcPn1a8z47OxuZmZnw9fVFWFgYnnvuObz55pvo2LGjZrjZ4OBgjl5IRNQArJ5YhISE4PLlywgLC0P79u2xefNm9OzZE/v27YNMJrP26YiIyIns378fQ4YM0bxPSUkBACQlJWHlypV48cUXUVZWhscffxw3btzAgAEDsHHjRs5hQUTUAKyeWIwbNw4ZGRmIi4vDzJkz8cgjj2D58uXIycnBrFmzrH06IiJyIoMHD4YgCDWuF4lEeP311/H66683YFRERATYILFYuHCh5ueJEyeiTZs22LVrFzp27IhRo0ZZ+3REREREROQArJ5YVFRU6FQ59+3bF3379rX2aeyG81gQERERERmy+qhQ/v7+SEpKwpYtW6BSqax9eLvjPBZERERERIasnlisWrUK5eXlGDNmDFq3bo3nnnsO+/fvt/ZpiIiIiIjIgVg9sRg3bhzWrl2L/Px8vP322zh27Bj69u2LTp06sTMdEREREVETZfXEQs3LywtTp07F5s2bkZWVBQ8PDyxYsMBWpyMiIiIiIjuyWWJRUVGB77//HmPHjkXPnj1RWFiIF154wVanIyIiIiIiO7L6qFCbNm3C6tWrsX79ekilUtx7773YvHkzBg0aZO1TERERERGRg7DJBHn33HMPvvzyS4wcORIuLi7WPgURERERETkYqycW+fn58PLyAgBcuHABwcHBEItt1uKKiIiIiIgcgNVL/OqkAgAiIiJw7tw5a5+CiIiIiIgcjE2rEgRBsOXhiYiIiIjIQbCNEhERERER1ZtNE4uXX34ZLVq0sOUpGlx6ejoiIiLQu3dve4dCREREROQwbJJYLF++HN27d8f8+fMRGBiI7t274/PPP7fFqRpccnIyjh07hn379tk7FCIiIiIih2H1UaHmzZuHRYsWYebMmYiPjwcA7N69G7NmzUJOTg5ef/11a5+SiIiIiIjszOqJxZIlS7Bs2TI8+OCDmmWjR49GVFQUZs6cycSCiIiIiKgJsnpTqKqqKvTq1ctgeWxsLBQKhbVPR0REREREDsDqicWkSZOwZMkSg+WfffYZHn74YWufjoiIiIiIHIDVm0IB1Z23N2/ejL59+wIA/v77b+Tk5GDy5MlISUnRbLdo0SJbnJ6IiIiIiBqY1ROLo0ePomfPngCAM2fOAAD8/Pzg5+eHo0eParYTiUTWPjUREREREdmJ1ROLrVu3WvuQRERERETk4DjzNhERERER1ZtN+lgQERERkeMIn7OhxnXnFt7dgJFQU8YaCyIiIiIiqjcmFkREREREVG9MLIiIiIiIqN6cNrHIzc3F4MGDERERgaioKKxdu9beIRERERERNVpO23lbKpVi8eLFiImJQV5eHmJjYzFy5Eh4eHjYOzQiIiIiokbHaROLoKAgBAUFAQACAwPh5+eHwsJCJhZERERERBZw2KZQO3bswKhRoxAcHAyRSIT169cbbJOeno7w8HC4ubkhLi4Oe/futehcBw4cgFKpRGhoaD2jJiIiIiJyTg5bY1FWVobo6GhMmzYN48ePN1i/Zs0apKSkYOnSpYiLi8PixYsxYsQInDhxAv7+/gCAmJgYKBQKg303b96M4OBgAEBhYSEmT56MZcuWWRooIJFYti8RkSMrK7N3BERE1Ig4bGKRmJiIxMTEGtcvWrQI06dPx9SpUwEAS5cuxYYNG7BixQrMmTMHAJCZmVnrOeRyOcaOHYs5c+agX79+dW4rl8s174uLi6t/uJWgEBERERE5M4dNLGpTWVmJAwcOIDU1VbNMLBYjISEBu3fvNukYgiBgypQpGDp0KCZNmlTn9mlpaViwYIHFMRMRERGRodpmBafGpVEmFlevXoVSqURAQIDO8oCAAPz7778mHWPnzp1Ys2YNoqKiNP03vvrqK0RGRhrdPjU1FSkpKZr3xcXF1X0yLl0CvL0tuxAiIkdWXMxaWSIiMlmjTCysYcCAAVCpVCZvL5PJIJPJDFd4eFS/iIiaGqXS3hEQEVEj4rCjQtXGz88PEokE+fn5Osvz8/MRGBho03Onp6cjIiICvXv3tul5iIiIiIgak0aZWLi6uiI2NhYZGRmaZSqVChkZGYiPj7fpuZOTk3Hs2DHs27fPpuchIiIiImpMHLYpVGlpKU6fPq15n52djczMTPj6+iIsLAwpKSlISkpCr1690KdPHyxevBhlZWWaUaKIiIiIiKjhOGyNxf79+9GjRw/06NEDAJCSkoIePXpg3rx5AICJEyfivffew7x58xATE4PMzExs3LjRoEO3tbEpFBGR43rttdcgEol0Xl26dLF3WERETsFhaywGDx4MQRBq3WbGjBmYMWNGA0VULTk5GcnJySguLoaPj0+DnpuIiOrWrVs3/P7775r3UqnD/qkjImpS+NuWiIiaFKlUavOBPIiIyJDDNoUiIiKyxKlTpxAcHIx27drh4YcfRk5OTq3by+VyFBcX67yIiMh8TCzMxD4WRESOKy4uDitXrsTGjRuxZMkSZGdnY+DAgSgpKalxn7S0NPj4+GheoaGhDRgxEVHTIRLq6shARqn7WBQVFcGbM28TURPUFH7P3bhxA23atMGiRYvw6KOPGt1GLpdDLpdr3hcXFyM0NLRRXzeRvvA5G2pcd27h3Q0YiaHaYnNmtvxcbPX7nX0siIioyWrevDk6deqkM3y5PplMBplM1oBRERE1TWwKRURETVZpaSnOnDmDoKAge4dCRNTkMbEgIqImY/bs2di+fTvOnTuHXbt2Ydy4cZBIJHjwwQftHRoRUZPHplBmSk9PR3p6OpRKpb1DISIiPRcuXMCDDz6Ia9euoVWrVhgwYAD27NmDVq1a2Ts0IqImj4mFmThBHhGR4/ruu+/sHQIRkdNiUygiIiIiIqo3JhZERERERFRvTCyIiIiIiKje2MfCTOy8TURERI6Gk8yRI2CNhZmSk5Nx7Ngx7Nu3z96hEBERERE5DCYWRERERERUb0wsiIiIiIio3phYEBERERFRvTGxICIiIiKiemNiQURERERE9cbEwkzp6emIiIhA79697R0KEREREZHDYGJhJg43S0RERERkiIkFERERERHVGxMLIiIiIiKqN6m9AyAiIiJqCOFzNtS6/tzCuxsoEvPVFTuRI2CNBRERERER1RsTCyIiIiIiqjcmFkREREREVG9MLMzEeSyIiIiIiAwxsTAT57EgIiIiIjLExIKIiIiIiOqNiQUREREREdUbEwsiIiIiIqo3JhZERERERFRvnHmbiIjIyuozS7Ijz/5cX7ae+dqRZ6duzLHV9bk48rVRw2KNBRERERER1RsTCyIiIiIiqjcmFkREREREVG9MLIiIiIiIqN6YWBARERERUb0xsTBTeno6IiIi0Lt3b3uHQkRERETkMJhYmCk5ORnHjh3Dvn377B0KEREREZHDYGJBRERERET1xsSCHIpCqcLZK6VQKFX2DoWIiIiIzMCZt8lhKJQqjP90F7IuFiGqtQ/WPd0PUglzXyKyj+7zN0Escze6rinPjl0fjX0G5sYeP5G9sdRGDiOnsBxZF4sAAFkXi5BTWG7niIiIiIjIVEwsyGGE+bojqrUPACAqxAdhvsafFBIRERGR42FTKHIYUokY657uh5zCcoT5urMZFBEREVEjwsSCHIpUIka7Vp72DoOIiIiIzMRHwkREREREVG9MLIiIqMlJT09HeHg43NzcEBcXh71799o7JCKiJo+JBRERNSlr1qxBSkoK5s+fj4MHDyI6OhojRoxAQUGBvUMjImrSmFgQEVGTsmjRIkyfPh1Tp05FREQEli5dCnd3d6xYscLeoRERNWnsvG0hQRAAAMXFxXaOhIjINtS/39S/7xqDyspKHDhwAKmpqZplYrEYCQkJ2L17t9F95HI55HK55n1RUfV8Oip5zXPp1PW7v7Z969KY/67U57qB+l97fc9Pxtny+041s+XvAlv9fmdiYaGSkhIAQGhoqJ0jISKyrZKSEvj4+Ng7DJNcvXoVSqUSAQEBOssDAgLw77//Gt0nLS0NCxYsMFh+ccmUGs/js7g+UdbOlsd2dM587Y6Mn4t9NMR9v3btmlV/vzOxsFBwcDByc3Ph5eUFkUhk8n7FxcUIDQ1Fbm4uvL29bRhh48L7YhzviyHeE+NscV8EQUBJSQmCg4OtcjxHlZqaipSUFM37GzduoE2bNsjJyWk0CZW1OPP/L2e9dme9bsC5r72oqAhhYWHw9fW16nGZWFhILBYjJCTE4v29vb2d7ktsCt4X43hfDPGeGGft+9LYCtZ+fn6QSCTIz8/XWZ6fn4/AwECj+8hkMshkMoPlPj4+Tvsdc+b/X8567c563YBzX7tYbN3u1uy8TURETYarqytiY2ORkZGhWaZSqZCRkYH4+Hg7RkZE1PSxxoKIiJqUlJQUJCUloVevXujTpw8WL16MsrIyTJ061d6hERE1aUwsGphMJsP8+fONVrs7M94X43hfDPGeGMf7ctvEiRNx5coVzJs3D3l5eYiJicHGjRsNOnTXxJnvJa/d+a7dWa8b4LXb4tpFQmMaR5CIiIiIiBwS+1gQEREREVG9MbEgIiIiIqJ6Y2JBRERERET1xsSCiIiIiIjqjYlFA0tPT0d4eDjc3NwQFxeHvXv32jskm3nttdcgEol0Xl26dNGsr6ioQHJyMlq2bAlPT09MmDDBYFKrnJwc3H333XB3d4e/vz9eeOEFKBSKhr6UetmxYwdGjRqF4OBgiEQirF+/Xme9IAiYN28egoKC0KxZMyQkJODUqVM62xQWFuLhhx+Gt7c3mjdvjkcffRSlpaU622RlZWHgwIFwc3NDaGgo3n33XVtfmsXquidTpkwx+O7cddddOts0tXsCAGlpaejduze8vLzg7++PsWPH4sSJEzrbWOv/zbZt29CzZ0/IZDJ06NABK1eutPXlORRzfxevXbsWXbp0gZubGyIjI/Hrr782UKTWZ861L1u2DAMHDkSLFi3QokULJCQkNNq/W5b+/f3uu+8gEokwduxY2wZoQ+Ze+40bN5CcnIygoCDIZDJ06tSp0X7nzb32xYsXo3PnzmjWrBlCQ0Mxa9YsVFRUNFC01lPX31ljrPJ3QaAG89133wmurq7CihUrhH/++UeYPn260Lx5cyE/P9/eodnE/PnzhW7dugmXL1/WvK5cuaJZ/+STTwqhoaFCRkaGsH//fqFv375Cv379NOsVCoXQvXt3ISEhQTh06JDw66+/Cn5+fkJqaqo9Lsdiv/76q/DKK68I69b9f3t3HhTFncUB/AsDg9yoCAwuEEFAlqAYLFlURIXIkSiuq6JSHIpxUdhIPJaYhMJEE4lH3OhGNmuy4G4pxF0XkxXPBEYQEY+AgUCIIIpaoOWBgiDH8PYPiy5b8IA5OHyfqqlifv2b7vd7THfPmz7mvwSAMjIyRNOTkpLI1NSUDhw4QBcuXKCZM2fSiBEjqKmpSegTEBBAY8aModOnT1Nubi6NHDmSFixYIEy/d+8eWVpaUmhoKJWUlFBaWhrp6+vTl19+qalhdsvzchIREUEBAQGi986dO3dEfQZaToiI/P39KSUlhUpKSqioqIiCgoLI1taWGhoahD6qWG8uXbpEBgYGtHLlSiotLaUdO3aQRCKhI0eOaHS8vaW72+K8vDySSCS0adMmKi0tpQ8++IB0dXWpuLhYw5Err7tjX7hwIX3xxRdUWFhIZWVlFBkZSaampnTt2jUNR66cnu5/q6qqaPjw4eTt7U3BwcGaCVbFujv25uZmGjduHAUFBdHJkyepqqqK5HI5FRUVaThy5XV37Hv27CE9PT3as2cPVVVV0dGjR0kmk9E777yj4ciV97z97JNUtV/gwkKDxo8fTzExMcJzhUJB1tbWtHHjxl6MSn0SExNpzJgxXU6rq6sjXV1d+ve//y20lZWVEQDKz88nokcrhba2NtXW1gp9kpOTycTEhJqbm9Uau7o8uXK3t7eTlZUVbd68WWirq6sjPT09SktLIyKi0tJSAkBnz54V+hw+fJi0tLTo+vXrRES0c+dOGjx4sCgv8fHx5OzsrOYRKe9phcWzduIDPScdbt68SQDoxIkTRKS69ebPf/4zubq6ipYVEhJC/v7+6h5Sn9DdbfG8efPojTfeELV5enrSH//4R7XGqQ7K7ofa2trI2NiYdu/era4Q1aIn425ra6MJEybQV1999dxtUl/W3bEnJyeTvb09tbS0aCpEtenu2GNiYmjatGmitpUrV9LEiRPVGqe6vUhhoar9Ap8KpSEtLS04f/48/Pz8hDZtbW34+fkhPz+/FyNTr4sXL8La2hr29vYIDQ1FdXU1AOD8+fNobW0V5WPUqFGwtbUV8pGfnw83NzfRj1r5+/vj/v37+PnnnzU7EDWpqqpCbW2tKA+mpqbw9PQU5cHMzAzjxo0T+vj5+UFbWxsFBQVCn8mTJ0MqlQp9/P39UV5ejrt372poNKoll8thYWEBZ2dnLFu2DLdv3xamvSw5uXfvHgBgyJAhAFS33uTn54vm0dFnIG+LOvRkWzxQ8qWK/VBjYyNaW1uF92R/0NNxf/TRR7CwsEBUVJQmwlSLnoz9u+++g5eXF2JiYmBpaYlXX30Vn3zyCRQKhabCVomejH3ChAk4f/68cLrUpUuXcOjQIQQFBWkk5t6kqu0c//K2hty6dQsKhaLTL79aWlril19+6aWo1MvT0xOpqalwdnZGTU0NPvzwQ3h7e6OkpAS1tbWQSqUwMzMTvcbS0hK1tbUAgNra2i7z1TFtIOgYR1fjfDwPFhYWouk6OjoYMmSIqM+IESM6zaNj2uDBg9USv7oEBARg9uzZGDFiBCorK/Hee+8hMDAQ+fn5kEgkL0VO2tvbERcXh4kTJ+LVV18FAJWtN0/rc//+fTQ1NUFfX18dQ+oTerItflq++tt2SBX7ofj4eFhbW3f6ANKX9WTcJ0+exNdff42ioiINRKg+PRn7pUuXkJWVhdDQUBw6dAgVFRVYvnw5WltbkZiYqImwVaInY1+4cCFu3bqFSZMmgYjQ1taG6OhovPfee5oIuVepar/AhQVTm8DAQOHv0aNHw9PTE3Z2dti3b9+A/uDClDd//nzhbzc3N4wePRoODg6Qy+Xw9fXtxcg0JyYmBiUlJTh58mRvh8IYACApKQnp6emQy+UYNGhQb4ejNvX19QgLC8OuXbtgbm7e2+FoXHt7OywsLPD3v/8dEokEHh4euH79OjZv3tyvCouekMvl+OSTT7Bz5054enqioqICK1aswPr165GQkNDb4fULXFhoiLm5OSQSSae7t9y4cQNWVla9FJVmmZmZwcnJCRUVFXj99dfR0tKCuro60bevj+fDysqq090bOvI3UHLWMY4bN25AJpMJ7Tdu3IC7u7vQ5+bNm6LXtbW14c6dO6JcdfXeenwZ/Zm9vT3Mzc1RUVEBX1/fAZ+T2NhYHDx4EDk5OfjNb34jtFtZWalkvXlabkxMTAZ80d+TbfHT8tXX30dPUmY/tGXLFiQlJeH777/H6NGj1RmmynV33JWVlbh8+TJmzJghtLW3twN4dGS0vLwcDg4O6g1aRXryP5fJZNDV1YVEIhHaXFxcUFtbi5aWFtHppX1ZT8aekJCAsLAwLFmyBMCjL7YePHiApUuX4v3334e29sC9gkBV+4WBm6E+RiqVwsPDAz/88IPQ1t7ejh9++AFeXl69GJnmNDQ0oLKyEjKZDB4eHtDV1RXlo7y8HNXV1UI+vLy8UFxcLPoAefz4cZiYmOC3v/2txuNXhxEjRsDKykqUh/v376OgoECUh7q6Opw/f17ok5WVhfb2dnh6egp9cnJy0NraKvQ5fvw4nJ2d+/wpPy/i2rVruH37tlB8DdScEBFiY2ORkZGBrKysTqdyqWq98fLyEs2jo8/LsC3qybZ4oOSrp/uhTZs2Yf369Thy5Ijouqb+orvjHjVqFIqLi1FUVCQ8Zs6cialTp6KoqAg2NjaaDF8pPfmfT5w4ERUVFUIxBQC//vorZDJZvykqgJ6NvbGxsVPx0FFgPboGeuBS2XauW5d6M6Wkp6eTnp4epaamUmlpKS1dupTMzMxEd28ZSFatWkVyuZyqqqooLy+P/Pz8yNzcnG7evElEj26baWtrS1lZWXTu3Dny8vIiLy8v4fUdt82cPn06FRUV0ZEjR2jYsGH97naz9fX1VFhYSIWFhQSAPvvsMyosLKQrV64Q0aPbzZqZmdG3335LP/30EwUHB3d5u9mxY8dSQUEBnTx5khwdHUW3Vq2rqyNLS0sKCwujkpISSk9PJwMDgz57a9Vn5aS+vp5Wr15N+fn5VFVVRd9//z299tpr5OjoSA8fPhTmMdByQkS0bNkyMjU1JblcLrrVbmNjo9BHFetNx20F16xZQ2VlZfTFF1+8dLebfda2OCwsjN59912hf15eHuno6NCWLVuorKyMEhMT+/XtZrsz9qSkJJJKpfSf//xH9J6sr6/vrSH0SHfH/aT+fFeo7o69urqajI2NKTY2lsrLy+ngwYNkYWFBGzZs6K0h9Fh3x56YmEjGxsaUlpZGly5domPHjpGDgwPNmzevt4bQY8/77PHuu+9SWFiY0F9V+wUuLDRsx44dZGtrS1KplMaPH0+nT5/u7ZDUJiQkhGQyGUmlUho+fDiFhIRQRUWFML2pqYmWL19OgwcPJgMDA/r9739PNTU1onlcvnyZAgMDSV9fn8zNzWnVqlXU2tqq6aEoJTs7mwB0ekRERBDRo1vOJiQkkKWlJenp6ZGvry+Vl5eL5nH79m1asGABGRkZkYmJCS1atKjTjv3ChQs0adIk0tPTo+HDh1NSUpKmhthtz8pJY2MjTZ8+nYYNG0a6urpkZ2dHb731VqcCfKDlhIi6zAkASklJEfqoar3Jzs4md3d3kkqlZG9vL1rGy+BZ22IfHx9h/eywb98+cnJyIqlUSq6urpSZmanhiFWnO2O3s7Pr8j2ZmJio+cCV1N3/+eP6c2FB1P2xnzp1ijw9PUlPT4/s7e3p448/pra2Ng1HrRrdGXtrayutW7eOHBwcaNCgQWRjY0PLly+nu3fvaj5wJT3vs0dERAT5+Ph0eo2y+wUtogF+bIcxxhhjjDGmdnyNBWOMMcYYY0xpXFgwxhhjjDHGlMaFBWOMMcYYY0xpXFgwxhhjjDHGlMaFBWOMMcYYY0xpXFgwxhhjjDHGlMaFBWOMMcYYY0xpXFgwxkQiIyOhpaUFLS0tHDhwQKXzlsvlwrxnzZql0nkzxlh/t27dOri7u/d2GIz1GBcWbMB7/IPy44+KioreDq3PCggIQE1NDQIDA4W2pxUakZGRL1wkTJgwATU1NZg3b56KImWMMcZYX6HT2wEwpgkBAQFISUkRtQ0bNqxTv5aWFkilUk2F1Wfp6enByspK5fOVSqWwsrKCvr4+mpubVT5/xhhjjPUePmLBXgodH5Qff0gkEkyZMgWxsbGIi4uDubk5/P39AQAlJSUIDAyEkZERLC0tERYWhlu3bgnze/DgAcLDw2FkZASZTIatW7diypQpiIuLE/p09Q2/mZkZUlNThedXr17FvHnzYGZmhiFDhiA4OBiXL18WpnccDdiyZQtkMhmGDh2KmJgYtLa2Cn2am5sRHx8PGxsb6OnpYeTIkfj6669BRBg5ciS2bNkiiqGoqEhtR2wuX77c5dGhKVOmqHxZjDGmTh37h9jYWJiamsLc3BwJCQkgok5979+/D319fRw+fFjUnpGRAWNjYzQ2NgIA4uPj4eTkBAMDA9jb2yMhIUG0Pe8qhsf3KwAwa9YsREZGCs+bm5uxevVqDB8+HIaGhvD09IRcLhemX7lyBTNmzMDgwYNhaGgIV1dXHDp0qPsJYewFcGHBXnq7d++GVCpFXl4e/va3v6Gurg7Tpk3D2LFjce7cORw5cgQ3btwQnb6zZs0anDhxAt9++y2OHTsGuVyOH3/8sVvLbW1thb+/P4yNjZGbm4u8vDwYGRkhICAALS0tQr/s7GxUVlYiOzsbu3fvRmpqqqg4CQ8PR1paGrZv346ysjJ8+eWXMDIygpaWFhYvXtzpSE1KSgomT56MkSNH9ixhz2BjY4OamhrhUVhYiKFDh2Ly5MkqXxZjjKnb7t27oaOjgzNnzuDzzz/HZ599hq+++qpTPxMTE7z55pvYu3evqH3Pnj2YNWsWDAwMAADGxsZITU1FaWkpPv/8c+zatQvbtm1TKsbY2Fjk5+cjPT0dP/30E+bOnYuAgABcvHgRABATE4Pm5mbk5OSguLgYn376KYyMjJRaJmNPRYwNcBERESSRSMjQ0FB4zJkzh4iIfHx8aOzYsaL+69evp+nTp4varl69SgCovLyc6uvrSSqV0r59+4Tpt2/fJn19fVqxYoXQBoAyMjJE8zE1NaWUlBQiIvrXv/5Fzs7O1N7eLkxvbm4mfX19Onr0qBC7nZ0dtbW1CX3mzp1LISEhRERUXl5OAOj48eNdjv369eskkUiooKCAiIhaWlrI3NycUlNTn5mv4ODgTu0AaNCgQaI8Ghoako6OTpf9m5qayNPTk958801SKBQvtAzGGOsrfHx8yMXFRbSNjo+PJxcXly77Z2RkkJGRET148ICIiO7du0eDBg2iw4cPP3UZmzdvJg8PD+F5YmIijRkzRhTD4/sVIqLg4GCKiIggIqIrV66QRCKh69evi/r4+vrS2rVriYjIzc2N1q1b99zxMqYKfI0FeylMnToVycnJwnNDQ0Phbw8PD1HfCxcuIDs7u8tvdCorK9HU1ISWlhZ4enoK7UOGDIGzs3O3Yrpw4QIqKipgbGwsan/48CEqKyuF566urpBIJMJzmUyG4uJiAI9Oa5JIJPDx8elyGdbW1njjjTfwj3/8A+PHj8f//vc/NDc3Y+7cud2KtcO2bdvg5+cnaouPj4dCoejUd/Hixaivr8fx48ehrc0HRxlj/c/vfvc7aGlpCc+9vLywdetWfPzxx9i4caPQXlpaiqCgIOjq6uK7777D/PnzsX//fpiYmIi2md988w22b9+OyspKNDQ0oK2tDSYmJj2Or7i4GAqFAk5OTqL25uZmDB06FADw9ttvY9myZTh27Bj8/Pzwhz/8AaNHj+7xMhl7Fi4s2EvB0NDwqaf+PF5kAEBDQwNmzJiBTz/9tFNfmUz2wtcmaGlpdToX9/FzaRsaGuDh4YE9e/Z0eu3jF5br6up2mm97ezsAQF9f/7lxLFmyBGFhYdi2bRtSUlIQEhIiHJbvLisrq055NDY2Rl1dnahtw4YNOHr0KM6cOdOpcGKMsf4uOjoaISEhwnNra2vo6Ohgzpw52Lt3L+bPn4+9e/ciJCQEOjqPPmrl5+cjNDQUH374Ifz9/WFqaor09HRs3br1qcvR1tZ+7n5EIpHg/Pnzoi+gAAhfji1ZsgT+/v7IzMzEsWPHsHHjRmzduhV/+tOflM4DY0/iwoKxJ7z22mvYv38/XnnlFWGH8DgHBwfo6uqioKAAtra2AIC7d+/i119/FR05GDZsGGpqaoTnFy9eFC7g61jON998AwsLix5/Y+Xm5ob29nacOHGi05GEDkFBQTA0NERycjKOHDmCnJycHi3rRe3fvx8fffQRDh8+DAcHB7UuizHG1KmgoED0/PTp03B0dMTQoUOFIwKPCw0Nxeuvv46ff/4ZWVlZ2LBhgzDt1KlTsLOzw/vvvy+0Xbly5ZnLf3I/olAoUFJSgqlTpwIAxo4dC4VCgZs3b8Lb2/up87GxsUF0dDSio6Oxdu1a7Nq1iwsLphZ8fgJjT4iJicGdO3ewYMECnD17FpWVlTh69CgWLVoEhUIBIyMjREVFYc2aNcjKykJJSQkiIyM7ne4zbdo0/PWvf0VhYSHOnTuH6Oho0dGH0NBQmJubIzg4GLm5uaiqqoJcLsfbb7+Na9euvVCsr7zyCiIiIrB48WIcOHBAmMe+ffuEPhKJBJGRkVi7di0cHR3h5eWlmkR1oaSkBOHh4YiPj4erqytqa2tRW1uLO3fuqG2ZjDGmLtXV1Vi5ciXKy8uRlpaGHTt2YMWKFU/tP3nyZFhZWSE0NBQjRowQnTLr6OiI6upqpKeno7KyEtu3b0dGRsYzlz9t2jRkZmYiMzMTv/zyC5YtWyY6Quzk5ITQ0FCEh4fjv//9L6qqqnDmzBls3LgRmZmZAIC4uDgcPXoUVVVV+PHHH5GdnQ0XFxflEsPYU3BhwdgTrK2tkZeXB4VCgenTp8PNzQ1xcXEwMzMTiofNmzfD29sbM2bMgJ+fHyZNmtTpWo2tW7fCxsYG3t7eWLhwIVavXi06BcnAwAA5OTmwtbXF7Nmz4eLigqioKDx8+LBbRzCSk5MxZ84cLF++HKNGjcJbb72FBw8eiPpERUWhpaUFixYtUiIzz3fu3Dk0NjZiw4YNkMlkwmP27NlqXS5jjKlDeHg4mpqaMH78eMTExGDFihVYunTpU/traWlhwYIFuHDhAkJDQ0XTZs6ciXfeeQexsbFwd3fHqVOnkJCQ8MzlL168GBEREQgPD4ePjw/s7e2FoxUdUlJSEB4ejlWrVsHZ2RmzZs3C2bNnhSPqCoUCMTExcHFxQUBAAJycnLBz584eZoSxZ9OiJ0/eY4z1yJQpU+Du7o6//OUvvR1KJ7m5ufD19cXVq1dhaWn5zL6RkZGoq6vr8le2VUUTy2CMMWX05W06Y30VH7FgbABrbm7GtWvXsG7dOsydO/e5RUWHgwcPwsjICAcPHlRpPLm5uTAyMurygnXGGGOM9W988TZjA1haWhqioqLg7u6Of/7zny/0mk2bNuGDDz4A8OguWKo0btw4FBUVAQD/QBNjjDE2wPCpUIwxxhhjjDGl8alQjDHGGGOMMaVxYcEYY4wxxhhTGhcWjDHGGGOMMaVxYcEYY4wxxhhTGhcWjDHGGGOMMaVxYcEYY4wxxhhTGhcWjDHGGGOMMaVxYcEYY4wxxhhTGhcWjDHGGGOMMaX9H94iFWWBAC84AAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"**Now** estimate the SGVB PSD for this data"
],
"metadata": {
"id": "0F80lGczN7te"
}
},
{
"cell_type": "code",
"source": [
"# SGVB PSD estimate and test here..."
],
"metadata": {
"id": "84O-9eo8Oq6D"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Parameter estimation"
],
"metadata": {
"id": "oxiwPOdCMRpM"
}
},
{
"cell_type": "code",
"source": [
"# DATA GENERATION\n",
"\n",
"import bilby\n",
"import numpy as np\n",
"from sgvb_psd.psd_estimator import PSDEstimator\n",
"\n",
"duration = 4.0\n",
"sampling_frequency = 2048.0\n",
"minimum_frequency = 20\n",
"\n",
"\n",
"def setup_logger_and_seed(outdir, label, seed=0, level=\"DEBUG\"):\n",
" bilby.core.utils.setup_logger(outdir=outdir, label=label, log_level=level)\n",
" bilby.core.utils.random.seed(seed)\n",
"\n",
"\n",
"def make_waveform_generator(duration, sampling_frequency, minimum_frequency):\n",
" waveform_args = dict(\n",
" waveform_approximant=\"IMRPhenomPv2\",\n",
" reference_frequency=50.0,\n",
" minimum_frequency=minimum_frequency,\n",
" )\n",
" return bilby.gw.WaveformGenerator(\n",
" duration=duration,\n",
" sampling_frequency=sampling_frequency,\n",
" frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,\n",
" parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters,\n",
" waveform_arguments=waveform_args,\n",
" )\n",
"\n",
"\n",
"def simulate_ifo_data(ifos, waveform_generator, injection_parameters, sampling_frequency, duration):\n",
" ifos.set_strain_data_from_power_spectral_densities(\n",
" sampling_frequency=sampling_frequency,\n",
" duration=duration,\n",
" start_time=injection_parameters[\"geocent_time\"] - 2,\n",
" )\n",
" ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters)\n",
" return ifos\n",
"\n",
"\n",
"def run_analysis(ifos, waveform_generator, injection_parameters, priors, outdir, label, sampler=\"dynesty\", npoints=1000):\n",
" likelihood = bilby.gw.GravitationalWaveTransient(interferometers=ifos, waveform_generator=waveform_generator)\n",
" return bilby.run_sampler(\n",
" likelihood=likelihood,\n",
" priors=priors,\n",
" sampler=sampler,\n",
" npoints=npoints,\n",
" injection_parameters=injection_parameters,\n",
" outdir=outdir,\n",
" label=label,\n",
" result_class=bilby.gw.result.CBCResult,\n",
" )\n",
"\n",
"\n",
"# Save the data"
],
"metadata": {
"id": "Dn6WdhYpD5QE"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# DEFAAULT ANALYSIS\n",
"\n",
"outdir = \"outdir\"\n",
"label = 'default'\n",
"setup_logger_and_seed(outdir, label)\n",
"\n",
"injection_parameters = dict(\n",
" mass_1=36.0, mass_2=29.0, a_1=0.4, a_2=0.3,\n",
" tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3,\n",
" luminosity_distance=2000.0, theta_jn=0.4, psi=2.659,\n",
" phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108,\n",
")\n",
"\n",
"waveform_generator = make_waveform_generator(duration, sampling_frequency, minimum_frequency)\n",
"ifos = bilby.gw.detector.InterferometerList([\"H1\", \"L1\"])\n",
"ifos = simulate_ifo_data(ifos, waveform_generator, injection_parameters, sampling_frequency, duration)\n",
"\n",
"priors = bilby.gw.prior.BBHPriorDict()\n",
"for key in [\n",
" \"a_1\", \"a_2\", \"tilt_1\", \"tilt_2\",\n",
" \"phi_12\", \"phi_jl\", \"psi\", \"ra\", \"dec\",\n",
" \"geocent_time\", \"phase\",\n",
"]:\n",
" priors[key] = injection_parameters[key]\n",
"priors.validate_prior(duration, minimum_frequency)\n",
"\n",
"# Default PSD analysis\n",
"result_default = run_analysis(\n",
" ifos, waveform_generator, injection_parameters,\n",
" priors, outdir, label\n",
")\n",
"\n",
"\n"
],
"metadata": {
"id": "fh5nOzMVGska",
"outputId": "5bc8475c-0e29-4618-a334-b13680448bfd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000,
"referenced_widgets": [
"58118a6e7dc14a4c9550002f490ab969",
"2e7b2b7b509246e885aa979f72a05f2a",
"ce4128ac68664d03bb8e8f55b60815f6",
"7d0c55d208624907ba7373c6dc5d20f1",
"b68ec47a184d4a6296fe743a0d75e151",
"0b110fc639584102bfb56b54add5330a",
"b23fadf1f2f94d3689982d29b78346bb",
"41c7c714ecd244b6885e1e0b628e6671",
"ea152e31745a468f98533b39ac655edd",
"03ff9b3d6e3c4b1faec239aa3033f385",
"107a6e6baa22411f898e644e77ceacf4"
]
}
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"03:49 bilby DEBUG : Overwriting meta data key rng with value Generator(PCG64). Old value was Generator(PCG64)\n",
"03:49 bilby DEBUG : Overwriting meta data key seed with value 0. Old value was 0\n",
"03:49 bilby INFO : Waveform generator initiated with\n",
" frequency_domain_source_model: bilby.gw.source.lal_binary_black_hole\n",
" time_domain_source_model: None\n",
" parameter_conversion: bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters\n",
"03:49 bilby DEBUG : PSD file set to None\n",
"03:49 bilby DEBUG : PSD file aLIGO_O4_high_asd.txt exists in default dir.\n",
"03:49 bilby DEBUG : Assuming L shape for name\n",
"03:49 bilby DEBUG : PSD file set to None\n",
"03:49 bilby DEBUG : PSD file aLIGO_O4_high_asd.txt exists in default dir.\n",
"03:49 bilby DEBUG : Assuming L shape for name\n",
"03:49 bilby DEBUG : Setting data using noise realization from providedpower_spectal_density\n",
"03:49 bilby DEBUG : Setting data using noise realization from providedpower_spectal_density\n",
"/usr/local/lib/python3.11/dist-packages/lalsimulation/lalsimulation.py:8: UserWarning: Wswiglal-redir-stdio:\n",
"\n",
"SWIGLAL standard output/error redirection is enabled in IPython.\n",
"This may lead to performance penalties. To disable locally, use:\n",
"\n",
"with lal.no_swig_redirect_standard_output_error():\n",
" ...\n",
"\n",
"To disable globally, use:\n",
"\n",
"lal.swig_redirect_standard_output_error(False)\n",
"\n",
"Note however that this will likely lead to error messages from\n",
"LAL functions being either misdirected or lost when called from\n",
"Jupyter notebooks.\n",
"\n",
"To suppress this warning, use:\n",
"\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\", \"Wswiglal-redir-stdio\")\n",
"import lal\n",
"\n",
" import lal\n",
"03:49 bilby DEBUG : Assuming reference_frequency = 50.0\n",
"03:49 bilby DEBUG : Assuming waveform_approximant = IMRPhenomPv2\n",
"03:49 bilby DEBUG : Assuming minimum_frequency = 20.0\n",
"03:49 bilby DEBUG : Setting meta data key cosmology with value FlatLambdaCDM(name=\"Planck15\", H0=67.74 km / (Mpc s), Om0=0.3075, Tcmb0=2.7255 K, Neff=3.046, m_nu=[0. 0. 0.06] eV, Ob0=0.0486)\n",
"03:49 bilby INFO : Injected signal in H1:\n",
"03:49 bilby INFO : optimal SNR = 11.78\n",
"03:49 bilby INFO : matched filter SNR = 12.87+1.30j\n",
"03:49 bilby INFO : mass_1 = 36.0\n",
"03:49 bilby INFO : mass_2 = 29.0\n",
"03:49 bilby INFO : a_1 = 0.4\n",
"03:49 bilby INFO : a_2 = 0.3\n",
"03:49 bilby INFO : tilt_1 = 0.5\n",
"03:49 bilby INFO : tilt_2 = 1.0\n",
"03:49 bilby INFO : phi_12 = 1.7\n",
"03:49 bilby INFO : phi_jl = 0.3\n",
"03:49 bilby INFO : luminosity_distance = 2000.0\n",
"03:49 bilby INFO : theta_jn = 0.4\n",
"03:49 bilby INFO : psi = 2.659\n",
"03:49 bilby INFO : phase = 1.3\n",
"03:49 bilby INFO : geocent_time = 1126259642.413\n",
"03:49 bilby INFO : ra = 1.375\n",
"03:49 bilby INFO : dec = -1.2108\n",
"03:49 bilby DEBUG : Assuming reference_frequency = 50.0\n",
"03:49 bilby DEBUG : Assuming waveform_approximant = IMRPhenomPv2\n",
"03:49 bilby DEBUG : Assuming minimum_frequency = 20.0\n",
"03:49 bilby INFO : Injected signal in L1:\n",
"03:49 bilby INFO : optimal SNR = 9.53\n",
"03:49 bilby INFO : matched filter SNR = 8.54-0.31j\n",
"03:49 bilby INFO : mass_1 = 36.0\n",
"03:49 bilby INFO : mass_2 = 29.0\n",
"03:49 bilby INFO : a_1 = 0.4\n",
"03:49 bilby INFO : a_2 = 0.3\n",
"03:49 bilby INFO : tilt_1 = 0.5\n",
"03:49 bilby INFO : tilt_2 = 1.0\n",
"03:49 bilby INFO : phi_12 = 1.7\n",
"03:49 bilby INFO : phi_jl = 0.3\n",
"03:49 bilby INFO : luminosity_distance = 2000.0\n",
"03:49 bilby INFO : theta_jn = 0.4\n",
"03:49 bilby INFO : psi = 2.659\n",
"03:49 bilby INFO : phase = 1.3\n",
"03:49 bilby INFO : geocent_time = 1126259642.413\n",
"03:49 bilby INFO : ra = 1.375\n",
"03:49 bilby INFO : dec = -1.2108\n",
"03:49 bilby INFO : No prior given, using default BBH priors in /usr/local/lib/python3.11/dist-packages/bilby/gw/prior_files/precessing_spins_bbh.prior.\n",
"03:49 bilby DEBUG : Supplied PDF for luminosity_distance is not normalised, normalising.\n",
"03:49 bilby DEBUG : Supplied PDF for luminosity_distance is not normalised, normalising.\n",
"03:49 bilby DEBUG : Supplied PDF for luminosity_distance is not normalised, normalising.\n",
"03:49 bilby DEBUG : dec converted to delta function prior.\n",
"03:49 bilby DEBUG : ra converted to delta function prior.\n",
"03:49 bilby DEBUG : psi converted to delta function prior.\n",
"03:49 bilby DEBUG : phase converted to delta function prior.\n",
"03:49 bilby DEBUG : a_1 converted to delta function prior.\n",
"03:49 bilby DEBUG : a_2 converted to delta function prior.\n",
"03:49 bilby DEBUG : tilt_1 converted to delta function prior.\n",
"03:49 bilby DEBUG : tilt_2 converted to delta function prior.\n",
"03:49 bilby DEBUG : phi_12 converted to delta function prior.\n",
"03:49 bilby DEBUG : phi_jl converted to delta function prior.\n",
"03:49 bilby DEBUG : geocent_time converted to delta function prior.\n",
"03:49 bilby DEBUG : Assuming reference_frequency = 50.0\n",
"03:49 bilby DEBUG : Assuming waveform_approximant = IMRPhenomPv2\n",
"03:49 bilby DEBUG : Assuming minimum_frequency = 20.0\n",
"03:50 bilby DEBUG : The waveform_generator start_time is not equal to that of the provided interferometers. Overwriting the waveform_generator.\n",
"03:50 bilby DEBUG : Time jittering requested with non-time-marginalised likelihood, ignoring.\n",
"03:50 bilby INFO : Running for label 'default', output will be saved to 'outdir'\n",
"03:50 bilby DEBUG : mass_1 already in prior\n",
"03:50 bilby DEBUG : mass_2 already in prior\n",
"03:50 bilby DEBUG : mass_ratio already in prior\n",
"03:50 bilby DEBUG : chirp_mass already in prior\n",
"03:50 bilby DEBUG : luminosity_distance already in prior\n",
"03:50 bilby DEBUG : dec already in prior\n",
"03:50 bilby DEBUG : ra already in prior\n",
"03:50 bilby DEBUG : theta_jn already in prior\n",
"03:50 bilby DEBUG : psi already in prior\n",
"03:50 bilby DEBUG : phase already in prior\n",
"03:50 bilby DEBUG : a_1 already in prior\n",
"03:50 bilby DEBUG : a_2 already in prior\n",
"03:50 bilby DEBUG : tilt_1 already in prior\n",
"03:50 bilby DEBUG : tilt_2 already in prior\n",
"03:50 bilby DEBUG : phi_12 already in prior\n",
"03:50 bilby DEBUG : phi_jl already in prior\n",
"03:50 bilby DEBUG : geocent_time already in prior\n",
"03:50 bilby INFO : Using lal version 7.7.0\n",
"03:50 bilby INFO : Using lal git version Branch: None;Tag: lalsuite-v7.26;Id: 736838ae5f43f532121c0a5627305e276d482254;;Builder: Unknown User <>;Repository status: UNCLEAN: Modified working tree\n",
"03:50 bilby INFO : Using lalsimulation version 6.2.0\n",
"03:50 bilby INFO : Using lalsimulation git version Branch: None;Tag: lalsuite-v7.26;Id: 736838ae5f43f532121c0a5627305e276d482254;;Builder: Unknown User <>;Repository status: UNCLEAN: Modified working tree\n",
"/usr/local/lib/python3.11/dist-packages/_distutils_hack/__init__.py:31: UserWarning: Setuptools is replacing distutils. Support for replacing an already imported distutils is deprecated. In the future, this condition will fail. Register concerns at https://github.com/pypa/setuptools/issues/new?template=distutils-deprecation.yml\n",
" warnings.warn(\n",
"03:50 bilby INFO : Analysis priors:\n",
"03:50 bilby INFO : mass_ratio=bilby.gw.prior.UniformInComponentsMassRatio(minimum=0.125, maximum=1, name='mass_ratio', latex_label='$q$', unit=None, boundary=None, equal_mass=False)\n",
"03:50 bilby INFO : chirp_mass=bilby.gw.prior.UniformInComponentsChirpMass(minimum=25, maximum=100, name='chirp_mass', latex_label='$\\\\mathcal{M}$', unit=None, boundary=None)\n",
"03:50 bilby INFO : luminosity_distance=bilby.gw.prior.UniformSourceFrame(minimum=100.0, maximum=5000.0, cosmology='Planck15', name='luminosity_distance', latex_label='$d_L$', unit='Mpc', boundary=None)\n",
"03:50 bilby INFO : theta_jn=Sine(minimum=0, maximum=3.141592653589793, name='theta_jn', latex_label='$\\\\theta_{JN}$', unit=None, boundary=None)\n",
"03:50 bilby INFO : mass_1=Constraint(minimum=5, maximum=100, name='mass_1', latex_label='$m_1$', unit=None)\n",
"03:50 bilby INFO : mass_2=Constraint(minimum=5, maximum=100, name='mass_2', latex_label='$m_2$', unit=None)\n",
"03:50 bilby INFO : dec=-1.2108\n",
"03:50 bilby INFO : ra=1.375\n",
"03:50 bilby INFO : psi=2.659\n",
"03:50 bilby INFO : phase=1.3\n",
"03:50 bilby INFO : a_1=0.4\n",
"03:50 bilby INFO : a_2=0.3\n",
"03:50 bilby INFO : tilt_1=0.5\n",
"03:50 bilby INFO : tilt_2=1.0\n",
"03:50 bilby INFO : phi_12=1.7\n",
"03:50 bilby INFO : phi_jl=0.3\n",
"03:50 bilby INFO : geocent_time=1126259642.413\n",
"03:50 bilby INFO : Analysis likelihood class: <class 'bilby.gw.likelihood.base.GravitationalWaveTransient'>\n",
"03:50 bilby INFO : Analysis likelihood noise evidence: -8098.88635429227\n",
"03:50 bilby INFO : Single likelihood evaluation took 9.545e-02 s\n",
"03:50 bilby DEBUG : use_ratio not spec. but gives valid answer, setting True\n",
"03:50 bilby DEBUG : Checking cached data\n",
"03:50 bilby INFO : Using sampler Dynesty with kwargs {'nlive': 1000, 'bound': 'live', 'sample': 'act-walk', 'periodic': None, 'reflective': None, 'update_interval': 600, 'first_update': None, 'npdim': None, 'rstate': None, 'queue_size': 1, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'gradient': None, 'grad_args': None, 'grad_kwargs': None, 'compute_jac': False, 'enlarge': None, 'bootstrap': None, 'walks': 100, 'facc': 0.2, 'slices': None, 'fmove': 0.9, 'max_move': 100, 'update_func': None, 'ncdim': None, 'blob': False, 'save_history': False, 'history_filename': None, 'maxiter': None, 'maxcall': None, 'dlogz': 0.1, 'logl_max': inf, 'n_effective': None, 'add_live': True, 'print_progress': True, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x7a0b1df5c0d0>>, 'save_bounds': False, 'checkpoint_file': None, 'checkpoint_every': 60, 'resume': False, 'seed': None}\n",
"03:50 bilby INFO : Global meta data was removed from the result object for compatibility. Use the `BILBY_INCLUDE_GLOBAL_METADATA` environment variable to include it. This behaviour will be removed in a future release. For more details see: https://bilby-dev.github.io/bilby/faq.html#global-meta-data\n",
"03:50 bilby INFO : Checkpoint every check_point_delta_t = 600s\n",
"03:50 bilby INFO : Using dynesty version 2.1.5\n",
"03:50 bilby INFO : Using the bilby-implemented act-walk sampling tracking the autocorrelation function and thinning by 2 with maximum length 10000\n",
"03:50 bilby INFO : Resume file outdir/default_resume.pickle does not exist.\n",
"03:50 bilby INFO : Generating initial points from the prior\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"1it [00:00, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "58118a6e7dc14a4c9550002f490ab969"
}
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"03:51 bilby DEBUG : Running sampler with checkpointing\n",
"03:57 bilby DEBUG : it: 415, accept: 51, reject: 0, fail: 364, act: 52.00, nact: 7.98 \n",
"03:57 bilby DEBUG : it: 1507, accept: 203, reject: 0, fail: 1304, act: 52.00, nact: 28.98 \n",
"03:58 bilby DEBUG : it: 2053, accept: 265, reject: 0, fail: 1788, act: 52.00, nact: 39.48 \n",
"03:58 bilby DEBUG : it: 2326, accept: 295, reject: 0, fail: 2031, act: 52.00, nact: 44.73 \n",
"03:58 bilby DEBUG : it: 2463, accept: 315, reject: 0, fail: 2148, act: 52.00, nact: 47.37 \n",
"03:58 bilby DEBUG : it: 2531, accept: 324, reject: 0, fail: 2207, act: 52.00, nact: 48.67 \n",
"03:58 bilby DEBUG : it: 2565, accept: 326, reject: 0, fail: 2239, act: 52.00, nact: 49.33 \n",
"03:58 bilby DEBUG : it: 2590, accept: 329, reject: 0, fail: 2261, act: 52.00, nact: 49.81 \n",
"03:58 bilby DEBUG : act: 52.00, max failures: 52, thin: 104, iteration: 2600, n_found: 24\n",
"03:58 bilby DEBUG : Finished building cache with length 24 after 2600 iterations with 945 likelihood calls and ACT=52.00\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"03:58 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"03:58 bilby DEBUG : Force rebuilding cache\n",
"03:58 bilby DEBUG : it: 417, accept: 58, reject: 0, fail: 359, act: 33.00, nact: 12.64 \n",
"03:58 bilby DEBUG : it: 1033, accept: 145, reject: 0, fail: 888, act: 44.00, nact: 23.48 \n",
"03:59 bilby DEBUG : it: 1616, accept: 213, reject: 0, fail: 1403, act: 44.00, nact: 36.73 \n",
"03:59 bilby DEBUG : it: 1908, accept: 247, reject: 0, fail: 1661, act: 44.00, nact: 43.36 \n",
"03:59 bilby DEBUG : it: 2054, accept: 254, reject: 0, fail: 1800, act: 76.00, nact: 27.03 \n",
"03:59 bilby DEBUG : it: 2927, accept: 358, reject: 0, fail: 2569, act: 76.00, nact: 38.51 \n",
"03:59 bilby DEBUG : it: 3363, accept: 413, reject: 0, fail: 2950, act: 76.00, nact: 44.25 \n",
"03:59 bilby DEBUG : it: 3581, accept: 434, reject: 0, fail: 3147, act: 76.00, nact: 47.12 \n",
"03:59 bilby DEBUG : it: 3690, accept: 440, reject: 0, fail: 3250, act: 76.00, nact: 48.55 \n",
"03:59 bilby DEBUG : it: 3745, accept: 444, reject: 0, fail: 3301, act: 76.00, nact: 49.28 \n",
"04:00 bilby DEBUG : it: 3782, accept: 448, reject: 0, fail: 3334, act: 76.00, nact: 49.76 \n",
"04:00 bilby DEBUG : act: 76.00, max failures: 76, thin: 152, iteration: 3800, n_found: 24\n",
"04:00 bilby DEBUG : Finished building cache with length 25 after 3800 iterations with 1333 likelihood calls and ACT=76.00\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:00 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:00 bilby DEBUG : Force rebuilding cache\n",
"04:00 bilby DEBUG : it: 457, accept: 58, reject: 0, fail: 399, act: 25.00, nact: 18.28 \n",
"04:00 bilby DEBUG : it: 853, accept: 96, reject: 0, fail: 757, act: 77.00, nact: 11.08 \n",
"04:01 bilby DEBUG : it: 2351, accept: 273, reject: 0, fail: 2078, act: 77.00, nact: 30.53 \n",
"04:01 bilby DEBUG : it: 3100, accept: 355, reject: 0, fail: 2745, act: 77.00, nact: 40.26 \n",
"04:01 bilby DEBUG : it: 3475, accept: 404, reject: 0, fail: 3071, act: 77.00, nact: 45.13 \n",
"04:01 bilby DEBUG : it: 3662, accept: 421, reject: 0, fail: 3241, act: 77.00, nact: 47.56 \n",
"04:01 bilby DEBUG : it: 3756, accept: 430, reject: 0, fail: 3326, act: 77.00, nact: 48.78 \n",
"04:01 bilby DEBUG : it: 3803, accept: 432, reject: 0, fail: 3371, act: 77.00, nact: 49.39 \n",
"04:01 bilby DEBUG : it: 3841, accept: 439, reject: 0, fail: 3402, act: 77.00, nact: 49.88 \n",
"04:01 bilby DEBUG : act: 77.00, max failures: 77, thin: 154, iteration: 3850, n_found: 24\n",
"04:01 bilby DEBUG : Finished building cache with length 25 after 3850 iterations with 1368 likelihood calls and ACT=77.00\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:01 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:01 bilby DEBUG : Force rebuilding cache\n",
"04:01 bilby DEBUG : it: 540, accept: 52, reject: 0, fail: 488, act: 35.00, nact: 15.43 \n",
"04:02 bilby DEBUG : it: 1145, accept: 112, reject: 0, fail: 1033, act: 45.90, nact: 24.95 \n",
"04:02 bilby DEBUG : it: 1719, accept: 169, reject: 0, fail: 1550, act: 48.00, nact: 35.81 \n",
"04:02 bilby DEBUG : it: 2059, accept: 213, reject: 0, fail: 1846, act: 48.00, nact: 42.90 \n",
"04:02 bilby DEBUG : it: 2229, accept: 232, reject: 0, fail: 1997, act: 48.00, nact: 46.44 \n",
"04:02 bilby DEBUG : it: 2314, accept: 243, reject: 0, fail: 2071, act: 48.00, nact: 48.21 \n",
"04:02 bilby DEBUG : it: 2357, accept: 248, reject: 0, fail: 2109, act: 48.00, nact: 49.10 \n",
"04:02 bilby DEBUG : it: 2380, accept: 251, reject: 0, fail: 2129, act: 48.00, nact: 49.58 \n",
"04:02 bilby DEBUG : act: 48.00, max failures: 48, thin: 96, iteration: 2400, n_found: 24\n",
"04:02 bilby DEBUG : Finished building cache with length 25 after 2400 iterations with 819 likelihood calls and ACT=48.00\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:02 bilby INFO : Written checkpoint file outdir/default_resume.pickle\n",
"04:02 bilby DEBUG : Using BILBY_STYLE=default\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:02 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:02 bilby DEBUG : Force rebuilding cache\n",
"04:02 bilby DEBUG : it: 433, accept: 55, reject: 0, fail: 378, act: 31.00, nact: 13.97 \n",
"04:03 bilby DEBUG : it: 991, accept: 108, reject: 0, fail: 883, act: 32.00, nact: 30.97 \n",
"04:03 bilby DEBUG : it: 1295, accept: 140, reject: 0, fail: 1155, act: 47.00, nact: 27.55 \n",
"04:03 bilby DEBUG : it: 1822, accept: 203, reject: 0, fail: 1619, act: 90.00, nact: 20.24 \n",
"04:04 bilby DEBUG : it: 3161, accept: 363, reject: 0, fail: 2798, act: 90.00, nact: 35.12 \n",
"04:04 bilby DEBUG : it: 3830, accept: 431, reject: 0, fail: 3399, act: 90.00, nact: 42.56 \n",
"04:04 bilby DEBUG : it: 4165, accept: 490, reject: 0, fail: 3675, act: 90.00, nact: 46.28 \n",
"04:04 bilby DEBUG : it: 4332, accept: 505, reject: 0, fail: 3827, act: 90.00, nact: 48.13 \n",
"04:04 bilby DEBUG : it: 4416, accept: 512, reject: 0, fail: 3904, act: 90.00, nact: 49.07 \n",
"04:04 bilby DEBUG : it: 4460, accept: 514, reject: 0, fail: 3946, act: 90.00, nact: 49.56 \n",
"04:04 bilby DEBUG : act: 90.00, max failures: 90, thin: 180, iteration: 4500, n_found: 24\n",
"04:04 bilby DEBUG : Finished building cache with length 25 after 4500 iterations with 1557 likelihood calls and ACT=90.00\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:04 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:04 bilby DEBUG : Force rebuilding cache\n",
"04:04 bilby DEBUG : it: 541, accept: 64, reject: 0, fail: 477, act: 41.00, nact: 13.20 \n",
"04:05 bilby DEBUG : it: 1295, accept: 147, reject: 0, fail: 1148, act: 62.00, nact: 20.89 \n",
"04:05 bilby DEBUG : it: 2197, accept: 250, reject: 0, fail: 1947, act: 62.00, nact: 35.44 \n",
"04:05 bilby DEBUG : it: 2648, accept: 304, reject: 0, fail: 2344, act: 62.00, nact: 42.71 \n",
"04:05 bilby DEBUG : it: 2874, accept: 327, reject: 0, fail: 2547, act: 62.00, nact: 46.35 \n",
"04:05 bilby DEBUG : it: 2987, accept: 334, reject: 0, fail: 2653, act: 64.00, nact: 46.67 \n",
"04:05 bilby DEBUG : it: 3093, accept: 339, reject: 0, fail: 2754, act: 71.00, nact: 43.56 \n",
"04:06 bilby DEBUG : it: 3321, accept: 362, reject: 0, fail: 2959, act: 71.00, nact: 46.77 \n",
"04:06 bilby DEBUG : it: 3435, accept: 375, reject: 0, fail: 3060, act: 71.00, nact: 48.38 \n",
"04:06 bilby DEBUG : it: 3492, accept: 380, reject: 0, fail: 3112, act: 71.00, nact: 49.18 \n",
"04:06 bilby DEBUG : it: 3526, accept: 385, reject: 0, fail: 3141, act: 71.00, nact: 49.66 \n",
"04:06 bilby DEBUG : act: 71.00, max failures: 71, thin: 142, iteration: 3550, n_found: 24\n",
"04:06 bilby DEBUG : Finished building cache with length 25 after 3550 iterations with 1276 likelihood calls and ACT=71.00\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:06 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:06 bilby DEBUG : Force rebuilding cache\n",
"04:06 bilby DEBUG : it: 427, accept: 51, reject: 0, fail: 376, act: 32.00, nact: 13.34 \n",
"04:06 bilby DEBUG : it: 1013, accept: 121, reject: 0, fail: 892, act: 50.72, nact: 19.97 \n",
"04:06 bilby DEBUG : it: 1774, accept: 190, reject: 0, fail: 1584, act: 57.84, nact: 30.67 \n",
"04:07 bilby DEBUG : it: 2333, accept: 247, reject: 0, fail: 2086, act: 76.48, nact: 30.50 \n",
"04:07 bilby DEBUG : it: 3078, accept: 341, reject: 0, fail: 2737, act: 68.65, nact: 44.84 \n",
"04:07 bilby DEBUG : it: 3255, accept: 360, reject: 0, fail: 2895, act: 64.79, nact: 50.24 \n",
"04:07 bilby DEBUG : act: 64.79, max failures: 60, thin: 130, iteration: 3255, n_found: 25\n",
"04:07 bilby DEBUG : Finished building cache with length 26 after 3255 iterations with 1118 likelihood calls and ACT=64.79\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 26\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 26\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:07 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:07 bilby DEBUG : Force rebuilding cache\n",
"04:07 bilby DEBUG : it: 586, accept: 51, reject: 0, fail: 535, act: 49.00, nact: 11.96 \n",
"04:08 bilby DEBUG : it: 1518, accept: 149, reject: 0, fail: 1369, act: 58.00, nact: 26.17 \n",
"04:08 bilby DEBUG : it: 2209, accept: 235, reject: 0, fail: 1974, act: 66.00, nact: 33.47 \n",
"04:08 bilby DEBUG : it: 2754, accept: 294, reject: 0, fail: 2460, act: 66.00, nact: 41.73 \n",
"04:08 bilby DEBUG : it: 3027, accept: 330, reject: 0, fail: 2697, act: 66.00, nact: 45.86 \n",
"04:08 bilby DEBUG : it: 3163, accept: 341, reject: 0, fail: 2822, act: 66.00, nact: 47.92 \n",
"04:08 bilby DEBUG : it: 3231, accept: 351, reject: 0, fail: 2880, act: 66.00, nact: 48.95 \n",
"04:08 bilby DEBUG : it: 3265, accept: 351, reject: 0, fail: 2914, act: 66.00, nact: 49.47 \n",
"04:08 bilby DEBUG : it: 3297, accept: 353, reject: 0, fail: 2944, act: 66.00, nact: 49.95 \n",
"04:08 bilby DEBUG : act: 66.00, max failures: 66, thin: 132, iteration: 3300, n_found: 24\n",
"04:08 bilby DEBUG : Finished building cache with length 25 after 3300 iterations with 1114 likelihood calls and ACT=66.00\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 25\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 24\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 23\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 22\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 21\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 20\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 19\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 18\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 17\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 16\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 15\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 14\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 13\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 12\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 11\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 10\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 9\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 8\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 7\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 6\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 5\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 4\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 3\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 2\n",
"04:08 bilby DEBUG : Not rebuilding cache, remaining size 1\n",
"04:08 bilby DEBUG : Force rebuilding cache\n",
"04:09 bilby DEBUG : it: 463, accept: 56, reject: 0, fail: 407, act: 31.00, nact: 14.94 \n",
"04:09 bilby DEBUG : it: 1006, accept: 110, reject: 0, fail: 896, act: 45.95, nact: 21.90 \n",
"04:09 bilby DEBUG : it: 1651, accept: 191, reject: 0, fail: 1460, act: 49.62, nact: 33.27 \n",
"04:09 bilby DEBUG : it: 2065, accept: 236, reject: 0, fail: 1829, act: 58.62, nact: 35.22 \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# SGVB analysis\n",
"\n",
"\n",
"def estimate_sgvb_psd(strain, sampling_frequency):\n",
" model = PSDEstimator(\n",
" x=strain,\n",
" N_theta=50,\n",
" nchunks=4,\n",
" ntrain_map=1000,\n",
" max_hyperparm_eval=1,\n",
" fs=sampling_frequency,\n",
" )\n",
" _ = optim.run(lr=0.003);\n",
" return np.median(psd_estimates, axis=0)\n",
"\n",
"\n",
"def set_custom_psd(ifos, psd_array, sampling_frequency, duration):\n",
" freqs = np.fft.rfftfreq(int(duration * sampling_frequency), 1 / sampling_frequency)\n",
" for ifo in ifos:\n",
" ifo.frequency_array = freqs\n",
" ifo.power_spectral_density_array = psd_array\n",
"\n",
"\n",
"\n",
"\n",
"# SGVB PSD analysis\n",
"residual_strain = {ifo.name: ifo.strain_data.frequency_domain_strain \\\n",
" - waveform_generator.frequency_domain_strain(injection_parameters)[ifo.name]\n",
" for ifo in ifos}\n",
"# Estimate median PSD from residuals\n",
"median_psd = estimate_sgvb_psd(residual_strain, sampling_frequency)\n",
"set_custom_psd(ifos, median_psd, sampling_frequency, duration)\n",
"\n",
"result_sgvb = run_analysis(\n",
" ifos, waveform_generator, injection_parameters,\n",
" priors, outdir, \"sgvb\"\n",
")\n"
],
"metadata": {
"id": "7uHimEQkGvwq"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "2wSnksH1LyMA"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def compare_posteriors(result_default, result_sgvb):\n",
" result_default.plot_corner(label=\"default_psd\")\n",
" result_sgvb.plot_corner(label=\"sgvb_psd\")\n",
"\n",
"\n",
"compare_posteriors(result_default, result_sgvb)\n",
"\n",
"# print bayes factor betweenn results\n",
"\n",
"print(result_default.log_evidence - result_sgvb.log_evidence)"
],
"metadata": {
"id": "SxkqVPQHHOXe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "fIKxoEK_KC8n"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "z1K_4GaJKCn7"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"colab": {
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"58118a6e7dc14a4c9550002f490ab969": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_2e7b2b7b509246e885aa979f72a05f2a",
"IPY_MODEL_ce4128ac68664d03bb8e8f55b60815f6",
"IPY_MODEL_7d0c55d208624907ba7373c6dc5d20f1"
],
"layout": "IPY_MODEL_b68ec47a184d4a6296fe743a0d75e151"
}
},
"2e7b2b7b509246e885aa979f72a05f2a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0b110fc639584102bfb56b54add5330a",
"placeholder": "​",
"style": "IPY_MODEL_b23fadf1f2f94d3689982d29b78346bb",
"value": ""
}
},
"ce4128ac68664d03bb8e8f55b60815f6": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "info",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_41c7c714ecd244b6885e1e0b628e6671",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_ea152e31745a468f98533b39ac655edd",
"value": 1
}
},
"7d0c55d208624907ba7373c6dc5d20f1": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_03ff9b3d6e3c4b1faec239aa3033f385",
"placeholder": "​",
"style": "IPY_MODEL_107a6e6baa22411f898e644e77ceacf4",
"value": " 1753/? [17:20&lt;00:00,  2.52s/it, bound:16 nc: 46 ncall:2.5e+04 eff:7.0% logz-ratio=-16.83+/-0.06 dlogz:127&gt;0.1]"
}
},
"b68ec47a184d4a6296fe743a0d75e151": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0b110fc639584102bfb56b54add5330a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b23fadf1f2f94d3689982d29b78346bb": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"41c7c714ecd244b6885e1e0b628e6671": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": "20px"
}
},
"ea152e31745a468f98533b39ac655edd": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"03ff9b3d6e3c4b1faec239aa3033f385": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"107a6e6baa22411f898e644e77ceacf4": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment