Created
April 3, 2021 12:02
-
-
Save ashutoshsahu2015/ce65ac78f858a192f370ba9789bafc0b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Handling the Outliers for Fare Column" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Text(0, 0.5, 'No of Passengers')" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAbW0lEQVR4nO3dfZAddZ3v8feHBwGZmACJY0xyTbxECxY0mrkQl926M+BDDFdBL7CwIBFyN2sV1uLKrSXsKq7XS91srYCIaJHlKUh0QIFNNuIqxowstfIUDCQQuUQYMSabCISECQ+a8N0/+jfNITmZOXNy+vTMnM+r6tTp/vXD+X4nk/Od/vWvuxURmJmZAexXdgBmZjZ8uCiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCznomBWA0m9kl6W1FfxenvZcZk1mouCWe0+FhFtFa+NQ9lY0v5FBWbWKC4KZnWStJ+k70v6D0kvSOqRdFTF8lskXSPpXyXtAP5U0sGSrpD0G0mbJX1T0sElpmH2Bi4KZvtmOTAdeBuwFvj2bsv/HPgyMAb4OfBVYBrwnrTdVODvmhSr2aDkex+ZDU5SLzAe2JmaeiLi1N3WGQ/8DmiLiB2SbgF+HxHnp+X7AS8B746IX6e2PwVuiIjpzcnEbGAHlB2A2QhyakT8pH8mnSP4f8BpZAXjtbRoPLAjTf+mYvu3AQcBj0jKd1NkwGZD5aJgVr9zgTnAicCvgSPIjhQqv+grD8U3A78nO1LY3KwgzYbC5xTM6jcGeBV4DngzcNlAK0fELuA64GuSJigzWdKHiw/VrDYuCmb1uxHYmF6PAf9ewzYXkR1VPABsA35MdsLZbFjwiWYzM8v5SMHMzHIuCmZmlnNRMDOznIuCmZnlCrtOId3P5R6yi3UOAL4fEV+SdBPw38lGXgB8OiJWK7ua5yqycd8vpfaHB/qM8ePHx9SpU+uKb8eOHRx66KF1bTsStVK+rZQrtFa+zrUxVq1a9WxETKi6MCIKeZFdwNOWpg8E7gdmATcBp1VZfw7ww7TdLOD+wT5j5syZUa+VK1fWve1I1Er5tlKuEa2Vr3NtDOCh2Mv3amHdR+mz+9Lsgek10PjXU4Cb03b3AeMkTSwqPjMz21Oh1ymke8OsAo4EromIi1P30QfIrgRdASyIiFclLQcWRsS9adsVwMUR8dBu+5wPzAdob2+f2d3dXVdsfX19tLW11ZfYCNRK+bZSrtBa+TrXxujq6loVER1VF+7tEKKRL2AcsBI4BphI1kV0ELAYuDSt8wPgTyq2WQHMHGi/7j6qXSvl20q5RrRWvs61MSij+2i3wvMC0APMjohNKa5XyW4TcFxabQMwpWKzyWS3DzAzsyYprCikG36NS9OHAB8Eftl/niCNNjqV7MEkAMuAc9NNwmYB2yJiU1HxmZnZnoq8dfZEYHE6r7AfcFtELJf0U0kTyLqQVgOfSevfRTYCaT3ZkNTzCozNzMyqKKwoRMSjwPuqtJ+4l/UDuKCoeMzMbHC+otnMzHIuCmZmlmvZx3Gu+e02Pr3gB1WX9S48ucnRmJkNDz5SMDOznIuCmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWc1EwM7Oci4KZmeUKKwqSDpb0gKRHJD0m6cupfZqk+yU9KelWSW9K7Qel+fVp+dSiYjMzs+qKPFJ4FTgxIt4LzABmS5oF/ANwZURMB7YC89L684CtEXEkcGVaz8zMmqiwohCZvjR7YHoFcCLw/dS+GDg1TZ+S5knLT5KkouIzM7M9KSKK27m0P7AKOBK4BvhH4L50NICkKcAPI+IYSWuB2RGxIS37FXB8RDy72z7nA/MB2tvbZ3Z3d9cV25bnt7H55erLjp00tq59Dmd9fX20tbWVHUZTtFKu0Fr5OtfG6OrqWhURHdWWHVDIJyYRsQuYIWkccCdwVLXV0nu1o4I9KlZELAIWAXR0dERnZ2ddsV29ZCmXr6mefu/Z9e1zOOvp6aHen9VI00q5Qmvl61yL15TRRxHxAtADzALGSer/Np4MbEzTG4ApAGn5WOD5ZsRnZmaZIkcfTUhHCEg6BPggsA5YCZyWVpsLLE3Ty9I8aflPo8i+LTMz20OR3UcTgcXpvMJ+wG0RsVzS40C3pP8L/AK4Pq1/PfBtSevJjhDOLDA2MzOrorCiEBGPAu+r0v4UcFyV9leA04uKx8zMBucrms3MLOeiYGZmORcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWK6woSJoiaaWkdZIek3Rhav97Sb+VtDq95lRsc4mk9ZKekPSRomIzM7PqDihw3zuBiyLiYUljgFWS7k7LroyIr1auLOlo4Ezgj4C3Az+R9K6I2FVgjGZmVqGwI4WI2BQRD6fpF4F1wKQBNjkF6I6IVyPiaWA9cFxR8ZmZ2Z4UEcV/iDQVuAc4Bvg88GlgO/AQ2dHEVknfAO6LiFvSNtcDP4yI7++2r/nAfID29vaZ3d3ddcW05fltbH65+rJjJ42ta5/DWV9fH21tbWWH0RStlCu0Vr7OtTG6urpWRURHtWVFdh8BIKkNuB34XERsl/Qt4CtApPfLgfMBVdl8j4oVEYuARQAdHR3R2dlZV1xXL1nK5Wuqp997dn37HM56enqo92c10rRSrtBa+TrX4hU6+kjSgWQFYUlE3AEQEZsjYldEvAb8E693EW0AplRsPhnYWGR8Zmb2RkWOPhJwPbAuIq6oaJ9YsdongLVpehlwpqSDJE0DpgMPFBWfmZntadDuozSU9EbgReA64H3Agoj48SCbngB8ClgjaXVq+1vgLEkzyLqGeoG/BIiIxyTdBjxONnLpAo88MjNrrlrOKZwfEVel6wYmAOeRFYkBi0JE3Ev18wR3DbDNZcBlNcRkZmYFqKX7qP+LfQ5wY0Q8QvUvezMzG+FqKQqrJP2YrCj8KF2I9lqxYZmZWRkG7D5KJ4svJes2eioiXpJ0BFkXkpmZjTIDFoWICEn/HBEzK9qeA54rPDIzM2u6WrqP7pP03wqPxMzMSlfL6KMu4DOSeoEdZCeZIyLeU2RgZmbWfLUUhY8WHoWZmQ0Lg3YfRcSvyW4/cWKafqmW7czMbOQZ9Mtd0peAi4FLUtOBwC1FBmVmZuWo5S/+TwAfJzufQERsBMYUGZSZmZWjlqLw+8geuhAAkg4tNiQzMytLLUXhNknXAuMk/QXwE7JbXpuZ2Sgz6OijiPiqpA+RPSnt3cClEXH3IJuZmdkIVNOT11IRcCEwMxvlanmewovs+VjMbbz+fOWnigjMzMyar5YjhSvIHov5HbKrmc8E3gY8AdwAdBYVnJmZNVctJ5pnR8S1EfFiRGyPiEXAnIi4FTis4PjMzKyJaikKr0k6Q9J+6XVGxbLdu5XMzGwEq6UonE32rOUtwOY0fY6kQ4DPFhibmZk1WS1DUp8CPraXxfc2NhwzMytTLaOPJgB/AUytXD8izi8uLDMzK0Mto4+WAv9GdiXzrmLDMTOzMtVSFN4cERcPdceSpgA3kw1ffQ1YFBFXSTocuJXsyKMXOCMitqbnQV8FzCG7PfenI+LhoX6umZnVr5YTzcslzalj3zvJLm47CpgFXCDpaGABsCIipgMr0jxkD/OZnl7zgW/V8ZlmZrYPaikKF5IVhlckbZf0oqTtg20UEZv6/9KPiBeBdcAk4BRgcVptMXBqmj4FuDky95HdgG/iEPMxM7N9oOyu2AV/iDQVuAc4BngmIsZVLNsaEYdJWg4sjIh7U/sK4OKIeGi3fc0nO5Kgvb19Znd3d10xbXl+G5tfrr7s2Elj69rncNbX10dbW1vZYTRFK+UKrZWvc22Mrq6uVRHRUW1ZLaOPRHatwrSI+Eo6VzAxIh6o5cMltQG3A5+LiO3Z7qqvWqVtj4qVrqheBNDR0RGdnZ21hLGHq5cs5fI11dPvPbu+fQ5nPT091PuzGmlaKVdorXyda/Fq6T76JvAB4M/TfB9wTS07l3QgWUFYEhF3pObN/d1C6X1Lat9A9izofpPJ7rlkZmZNUktROD4iLgBeAYiIrcCbBtsoHWFcD6yLiCsqFi0D5qbpuWRDXvvbz1VmFrAtIjbVloaZmTVCLUNS/yBpf15/HOcEsiGmgzmB7JYYayStTm1/Cywke5rbPOAZ4PS07C6y4ajryYaknldrEmZm1hi1FIWvA3cCb5V0GXAa8IXBNkonjPd2AuGkKusHcEEN8ZiZWUFquffREkmryL7IBZwaEesKj8zMzJpu0HMKkv4r8HREXAOsBT4kadwgm5mZ2QhUy4nm24Fdko4ErgOmkT2FzczMRpmaHrITETuBTwJXRcRfA77S2MxsFKqlKPxB0lnAucDy1HZgcSGZmVlZahl9dB7wGeCyiHha0jTglmLDKtfUBT+o2t678OQmR2Jm1ly1jD56HPgrAEmHAWMiYmHRgZmZWfPVMvqoR9Jb0nMQHgFulHTFYNuZmdnIU8s5hbERsZ3sRPONETET+GCxYZmZWRlqKQoHpBvXncHrJ5rNzGwUqqUo/B/gR8D6iHhQ0juBJ4sNy8zMylDLiebvAd+rmH8K+J9FBmVmZuWo5SE7BwPzgD8CDu5vj4jzC4zLzMxKUEv30beBtwEfAX5G9vCbF4sMyszMylFLUTgyIr4I7IiIxcDJwLHFhmVmZmWo6TYX6f0FSccAY4GphUVkZmalqeU2F4vSlcxfJHtkZluaNjOzUaaW0UfXpcmfAe8sNhwzMyvTXruPJB0v6RFJfZJ+LunoZgZmZmbNN9A5hWuA/w0cAVwBXNmUiMzMrDQDFYX9IuLuiHg1XcA2oVlBmZlZOQYqCuMkfbL/VWV+QJJukLRF0tqKtr+X9FtJq9NrTsWySyStl/SEpI/sW1pmZlaPgU40/wz42F7mA7hjkH3fBHwDuHm39isj4quVDel8xZlkV02/HfiJpHdFxK5BPsPMzBpor0UhIs7blx1HxD2Spta4+ilAd0S8CjwtaT1wHPDzfYnBzMyGppaL1xrts5IeTd1Lh6W2ScBvKtbZkNrMzKyJFBHF7Tw7UlgeEcek+XbgWbLup68AEyPifEnXAD+PiFvSetcDd0XE7VX2OR+YD9De3j6zu7u7rti2PL+NzS8PbZtjJ42t67OGg76+Ptra2soOoylaKVdorXyda2N0dXWtioiOasv22n0k6fSI+J6kaRHxdCMCiYjNFfv/J15/aM8GYErFqpOBjXvZxyJgEUBHR0d0dnbWFcvVS5Zy+ZpaLuiusGZH1ebehSfXFUMz9fT0UO/PaqRppVyhtfJ1rsUbqPvokvS+x1/r9UpPcOv3CaB/ZNIy4ExJB0maBkwHHmjU55qZWW0G+lP5OUkrgWmSlu2+MCI+PtCOJX0X6ATGS9oAfAnolDSDrPuoF/jLtK/HJN0GPA7sBC7wyCMzs+YbqCicDLyf7HkKlw91xxFxVpXm6wdY/zLgsqF+jpmZNc5AQ1J/D9wn6Y8j4neSxmTN0de88MzMrJlqGZLaLukXZP3/j0talZ6rYGZmo0wtRWER8PmIeEdE/BfgotRmZmajTC1F4dCIWNk/ExE9wKGFRWRmZqWpZaD+U5K+SHbCGeAcoCHXLZiZ2fBSy5HC+WS3zb4jvcYD+3RfJDMzG55qeRznVuCvmhCLmZmVrIwb4pmZ2TDlomBmZjkXBTMzyw1aFCRNlnSnpN9J2izpdkmTmxGcmZk1Vy1HCjeS3cV0ItmDb/4ltZmZ2ShTS1GYEBE3RsTO9LqJbIiqmZmNMrUUhWclnSNp//Q6B3iu6MDMzKz5ar147QzgP4BNwGmpzczMRplaLl57BhjwgTpmZjY6DPSM5ksH2C4i4isFxGNmZiUa6Eih2lPqDwXmAUcALgpmZqPMQE9eyx/BmZ66diHZjfC6qePxnGZmNvwNeE5B0uHA54GzgcXA+9MN8szMbBQa6JzCPwKfJHvK2rF+NrOZ2eg30JDUi4C3A18ANkranl4vStrenPDMzKyZ9loUImK/iDgkIsZExFsqXmMi4i2D7VjSDZK2SFpb0Xa4pLslPZneD0vtkvR1SeslPSrp/Y1Jz8zMhqLIu6TeBMzerW0BsCIipgMr0jzAR4Hp6TUf+FaBcZmZ2V4UVhQi4h7g+d2aTyE7YU16P7Wi/ebI3AeMkzSxqNjMzKw6RURxO5emAssj4pg0/0JEjKtYvjUiDpO0HFgYEfem9hXAxRHxUJV9zic7mqC9vX1md3d3XbFteX4bm1+ua9M9HDtpbGN2VKC+vj7a2trKDqMpWilXaK18nWtjdHV1rYqIjmrLBr3NRZOoSlvVahURi8hGRNHR0RGdnZ11feDVS5Zy+ZrGpN97dn0xNFNPTw/1/qxGmlbKFVorX+davGY/eW1zf7dQet+S2jcAUyrWmwxsbHJsZmYtr9lFYRkwN03PBZZWtJ+bRiHNArZFxKYmx2Zm1vIK6z6S9F2gExgvaQPwJWAhcJukecAzwOlp9buAOcB64CWy22mYmVmTFVYUIuKsvSw6qcq6AVxQVCxmZlabZncfmZnZMOaiYGZmORcFMzPLuSiYmVnORcHMzHIuCmZmlnNRMDOznIuCmZnlXBTMzCznomBmZjkXBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5yLgpmZ5VwUzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWO6CMD5XUC7wI7AJ2RkSHpMOBW4GpQC9wRkRsLSM+M7NWVeaRQldEzIiIjjS/AFgREdOBFWnezMyaaDh1H50CLE7Ti4FTS4zFzKwlKSKa/6HS08BWIIBrI2KRpBciYlzFOlsj4rAq284H5gO0t7fP7O7uriuGLc9vY/PLdW1as2MnjS32A4agr6+Ptra2ssNoilbKFVorX+faGF1dXasqemneoJRzCsAJEbFR0luBuyX9stYNI2IRsAigo6MjOjs76wrg6iVLuXxNsen3nt1Z6P6Hoqenh3p/ViNNK+UKrZWvcy1eKd1HEbExvW8B7gSOAzZLmgiQ3reUEZuZWStrelGQdKikMf3TwIeBtcAyYG5abS6wtNmxmZm1ujK6j9qBOyX1f/53IuJfJT0I3CZpHvAMcHoJsZmZtbSmF4WIeAp4b5X254CTmh2PmZm9bjgNSTUzs5KVNfqopU1d8IOq7b0LT25yJGZmb+QjBTMzy7komJlZzkXBzMxyLgpmZpZzUTAzs5xHH40AHq1kZs3iIwUzM8u5KJiZWc5FwczMci4KZmaWc1EwM7Oci4KZmeU8JHUY2dvQ06Gu76GqZlYvF4UCDfVL3sysbO4+MjOznIuCmZnlXBTMzCzncwrWUD75bTayuSi0kKGe+B7oi9wn0c1GJxcFs4L4qMlGomFXFCTNBq4C9geui4iFJYdkI9hQv5j9RW6tblgVBUn7A9cAHwI2AA9KWhYRj5cbmZlZOZr9h8qwKgrAccD6iHgKQFI3cArgojAE1X6JLjp2J8Pvn7u8v8wbeU7E51dsNFFElB1DTtJpwOyI+F9p/lPA8RHx2Yp15gPz0+y7gSfq/LjxwLP7EO5I00r5tlKu0Fr5OtfGeEdETKi2YLj96agqbW+oWhGxCFi0zx8kPRQRHfu6n5GilfJtpVyhtfJ1rsUbbhevbQCmVMxPBjaWFIuZWcsZbkXhQWC6pGmS3gScCSwrOSYzs5YxrLqPImKnpM8CPyIbknpDRDxW0MftcxfUCNNK+bZSrtBa+TrXgg2rE81mZlau4dZ9ZGZmJXJRMDOzXEsWBUmzJT0hab2kBWXH0wiSbpC0RdLairbDJd0t6cn0flhql6Svp/wflfT+8iIfOklTJK2UtE7SY5IuTO2jLl9JB0t6QNIjKdcvp/Zpku5Pud6aBmYg6aA0vz4tn1pm/PWQtL+kX0hanuZHc669ktZIWi3podRW6u9xyxWFiltpfBQ4GjhL0tHlRtUQNwGzd2tbAKyIiOnAijQPWe7T02s+8K0mxdgoO4GLIuIoYBZwQfo3HI35vgqcGBHvBWYAsyXNAv4BuDLluhWYl9afB2yNiCOBK9N6I82FwLqK+dGcK0BXRMyouCah3N/jiGipF/AB4EcV85cAl5QdV4NymwqsrZh/ApiYpicCT6Tpa4Gzqq03El/AUrL7ZY3qfIE3Aw8Dx5Nd6XpAas9/p8lG7n0gTR+Q1lPZsQ8hx8lkX4QnAsvJLmgdlbmmuHuB8bu1lfp73HJHCsAk4DcV8xtS22jUHhGbANL7W1P7qPkZpC6D9wH3M0rzTd0pq4EtwN3Ar4AXImJnWqUynzzXtHwbcERzI94nXwP+BngtzR/B6M0Vsjs2/FjSqnQLHyj593hYXafQJIPeSqMFjIqfgaQ24HbgcxGxXaqWVrZqlbYRk29E7AJmSBoH3AkcVW219D5ic5X0P4AtEbFKUmd/c5VVR3yuFU6IiI2S3grcLemXA6zblHxb8UihlW6lsVnSRID0viW1j/ifgaQDyQrCkoi4IzWP2nwBIuIFoIfsPMo4Sf1/1FXmk+ealo8Fnm9upHU7Afi4pF6gm6wL6WuMzlwBiIiN6X0LWcE/jpJ/j1uxKLTSrTSWAXPT9Fyyvvf+9nPTaIZZwLb+w9WRQNkhwfXAuoi4omLRqMtX0oR0hICkQ4APkp2EXQmcllbbPdf+n8FpwE8jdUAPdxFxSURMjoipZP8vfxoRZzMKcwWQdKikMf3TwIeBtZT9e1z2iZaSTu7MAf4/Wd/s35UdT4Ny+i6wCfgD2V8U88j6V1cAT6b3w9O6IhuB9StgDdBRdvxDzPVPyA6bHwVWp9ec0Zgv8B7gFynXtcClqf2dwAPAeuB7wEGp/eA0vz4tf2fZOdSZdyewfDTnmvJ6JL0e6/8uKvv32Le5MDOzXCt2H5mZ2V64KJiZWc5FwczMci4KZmaWc1EwM7NcK17RbLZPJO0iGxLY79SI6C0pHLOG8pBUsyGS1BcRbXVst39kt6wwG7bcfWTWAJKmSvo3SQ+n1x+n9s707IfvkI4uJJ2TnpGwWtK16XbuZsOCu4/Mhu6QdNdSgKcj4hNk96f5UES8Imk62RXm/ffHPw44JiKelnQU8GdkN0L7g6RvAmcDNzc5B7OqXBTMhu7liJixW9uBwDckzQB2Ae+qWPZARDydpk8CZgIPpru6HsLrNzwzK52Lgllj/DWwGXgvWbfsKxXLdlRMC1gcEZc0MTazmvmcglljjAU2RcRrwKeAvZ0nWAGclu6f3/883nc0KUazQbkomDXGN4G5ku4j6zraUW2liHgc+ALZ07YeJXuS2sSmRWk2CA9JNTOznI8UzMws56JgZmY5FwUzM8u5KJiZWc5FwczMci4KZmaWc1EwM7PcfwIiHK8Cyzg1TQAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"figure=dataset['Fare'].hist(bins=50)\n", | |
"figure.set_title('Fare')\n", | |
"figure.set_xlabel('Fare')\n", | |
"figure.set_ylabel('No of Passengers')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x27e92614c88>" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAEGCAYAAABbzE8LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAO0klEQVR4nO3dX4ycVRnH8d+zO7YsHQVpgZBFHMhgxIhWu1EEL6alpaUtoKGJNcVdCH9CYpYKJgbajSmXclHE9U8kaNCkWmPUSLcN2tKSeKO4q5VWKTrKGluQ4iLo0lrZcryYM+PM7Gz338z77M58P8lk5j1z5n3P077zm7NnZ2YthCAAQPLavAcAAK2KAAYAJwQwADghgAHACQEMAE5S0+m8ZMmSkMlkGjQUAGhOQ0ND/wghnF/dPq0AzmQyGhwcrN+oAKAFmNlfa7WzBAEATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgJNp/U24eurv71c+ny9tHzt2TJLU2dl5xsdls1n19vY2dGwAkAS3AM7n8zp4+DmdPvs8SVL7idclSX8/NfGQ2k+8msjYACAJbgEsSafPPk8n37tWktRxZI8klbZrKfYBgGbAGjAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADhJJID7+/vV39+fxKGmbS6PDUBzSyVxkHw+n8RhZmQujw1Ac2MJAgCcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOWj6AT5w4oUOHDmnLli3K5XLK5XLq7+8v3S5euru7lcvltGLFCi1fvlwPPfSQcrmcrr32Wl1//fXK5/M195/P57Vu3TodOHBAq1evLu1vaGhIkrR//37lcjkdOHBgwsdfd911yuVy2rVr14T7z+fzpX2V73+ivo02ODioFStW6LbbbtPIyEjFfSMjI7rnnns0MjIyaf3VplLDjh07lMvltHPnzlnVAEj/P5drPadmy0IIU+7c1dUVBgcHp32QzZs3S5IeeeSRirahv7ysk+9dK0nqOLJHkkrbtXQc2aNll11YsZ/ZWr16tU6dOjXr/WQyGT3++OPj2m+99VYNDw8rlUppbGys1J5OpzUwMKCVK1dqbGxMqVRK+/btm/DxkmRm44KqeH8mk9HRo0dLxyjuf6K+tcZaT+vXr9fo6Kgk6aabbtK9995bum/79u3atWuXbrzxRu3evfuM9VebSg25XK50++mnn55NGUDpXK71nJoqMxsKIXRVt7f0DDifz9clfCVpeHh43Kwsn8+XwrM8fCVpdHRUjz32WKl9bGxsXLiWP16SQggVs+Dy+4eHhyuOMTo6WvGKXd23kbPgwcHBUvhK0u7du0uz4JGRET355JMKIWhgYOCM9VebSg07duyo2GYWjNkoP5ern1P1kMgMeMOGDTp58qSy2WypLZ/P69//DXpj6UZJU5sBLzq4U29fYBX7mY0jR47ULYCl8bPg8tnrVFTPAms9vnwWPNn+y1+xq/s2chZcPvstKs6Ct2/frj179ox7QZLG119tKjWUz36LmAVjpqrP5ZnOgmc8Azazu8xs0MwGX3nllWkfeC6rZ/hKGheG0wlfafwsudbjy18wJ9t/+Ykz27FNR3X4StLevXslSfv27asZvtL4+qslWQMgjT+Xa53bs5GarEMI4VFJj0qFGfBMDtLZ2Smp9hrwdLx11juUreMa8HRnqJPJZDLjtqc7A57s8WY25f2n0+kJ+1aPtZ7S6fS4E3XVqlWSpJUrV55xBnwmSdYASOPP5fLnVD209BpwX19fQ/c32f5vueWWiu2tW7dO+vj77rtvyvt/8MEHZzy22di2bVvFdiqVUnd3tySpp6dHbW2F0669vb2iX3X91aZSw5133lmxfffdd09pzEAt1edy+XOqHlo6gLPZrBYuXFiXfWUymXFr09lstjRLq57dpdNp3XHHHaX2VCql5cuXT/h4qTD7veGGG2ren8lkKo6RTqe1bNmyCfvWax29lq6uroqZwrp167R48WJJ0uLFi7VmzRqZmdavX3/G+qtNpYZNmzZVbG/cuHE2paDFlZ/L1c+pemjpAJakSy65RG1tbbr66qtLbTfffHPNfpLU1tYmM9PatYVfFra3t6ujo2PCGWVfX58WLVqkrVu3VoR98ZV0y5Ytkiae/fX19WnBggWSKme/1fvv6+sr7at8/xP1bbRt27apra1Nl156aWn2W9TT06Mrr7xS3d3dk9ZfbSo1FGfBzH5RD8Vzud6zX4n3AdccGwDUE+8DBoA5hgAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwkkriINlsNonDzMhcHhuA5pZIAPf29iZxmBmZy2MD0NxYggAAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcEMAA4IQABgAnBDAAOCGAAcAJAQwATghgAHBCAAOAEwIYAJwQwADgJOV58PYTr6rjyJ54e0SSStsT9ZcuTGJoANBwbgGczWYrto8dG5MkdXaeKWAvHPc4AJiv3AK4t7fX69AAMCewBgwATghgAHBCAAOAEwIYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcEIAA4ATAhgAnBDAAOCEAAYAJwQwADghgAHACQEMAE4IYABwQgADgBMCGACcWAhh6p3NXpH01xkea4mkf8zwsfNNK9UqtVa9rVSr1Fr1NrLWd4cQzq9unFYAz4aZDYYQuhI5mLNWqlVqrXpbqVapter1qJUlCABwQgADgJMkA/jRBI/lrZVqlVqr3laqVWqtehOvNbE1YABAJZYgAMAJAQwAThoewGa2xsyeN7O8md3f6OMlwcy+bWbHzexwWdt5ZrbXzP4Ur98Z283MvhLrf9bMPuw38ukzs3eZ2QEze87Mfm9mm2N7s9Z7lpk9Y2a/i/U+GNsvNbNfxXp/YGYLYvvCuJ2P92c8xz8TZtZuZr81s4G43ZS1mtmwmR0ys4NmNhjbXM/jhgawmbVL+pqk6yW9T9Knzex9jTxmQh6XtKaq7X5JT4UQLpf0VNyWCrVfHi93SfpGQmOslzFJnw8hXCHpKkmfjf+HzVrvKUkrQggflLRU0hozu0rSlyQ9HOv9p6TbY//bJf0zhJCV9HDsN99slvRc2XYz17o8hLC07P2+vudxCKFhF0kfk/Szsu0HJD3QyGMmdZGUkXS4bPt5SRfF2xdJej7e/qakT9fqNx8vkn4qaVUr1CvpbEm/kfRRFT4hlYrtpfNa0s8kfSzeTsV+5j32adR4sQrBs0LSgCRr4lqHJS2panM9jxu9BNEp6W9l20djWzO6MITwkiTF6wtie9P8G8QfOT8k6Vdq4nrjj+QHJR2XtFfSnyW9FkIYi13KayrVG+9/XdLiZEc8K1+W9AVJb8XtxWreWoOkn5vZkJndFdtcz+NUvXdYxWq0tdr73pri38DM0pJ+JOlzIYR/mdUqq9C1Rtu8qjeEcFrSUjM7V9JPJF1Rq1u8nrf1mtl6ScdDCENmlis21+g672uNrgkhvGhmF0jaa2ZHztA3kVobPQM+KuldZdsXS3qxwcf08rKZXSRJ8fp4bJ/3/wZm9jYVwndHCOHHsblp6y0KIbwm6WkV1r7PNbPihKW8plK98f5zJL2a7Ehn7BpJN5rZsKSdKixDfFnNWatCCC/G6+MqvLB+RM7ncaMD+NeSLo+/VV0gaaOkJxp8TC9PSOqJt3tUWCsttnfH36peJen14o8884EVprrfkvRcCGF72V3NWu/5ceYrM+uQtFKFX1AdkLQhdquut/jvsEHS/hAXDee6EMIDIYSLQwgZFZ6b+0MIm9SEtZrZIjN7e/G2pOskHZb3eZzAwvdaSX9UYR1tq/dCfJ1q+r6klyS9qcIr5e0qrIU9JelP8fq82NdUeCfInyUdktTlPf5p1vpxFX70elbSwXhZ28T1fkDSb2O9hyV9MbZfJukZSXlJP5S0MLafFbfz8f7LvGuYYd05SQPNWmus6Xfx8vtiFnmfx3wUGQCc8Ek4AHBCAAOAEwIYAJwQwADghAAGACeN/iQcMCtmdlqFtwEVfSKEMOw0HKCueBsa5jQzGw0hpGfwuPZQ+EgxMGexBIF5x8wyZvYLM/tNvFwd23Pxu4u/pzhrNrNb4vf7HjSzb8avSAXmBJYgMNd1xG8mk6QXQgifVOHz+qtCCP8xs8tV+GRi8ftdPyLp/SGEF8zsCkmfUuFLWN40s69L2iTpuwnXANREAGOuOxlCWFrV9jZJXzWzpZJOS3pP2X3PhBBeiLevlbRM0q/jt7d16P9ftgK4I4AxH90r6WVJH1RhGe0/Zfe9UXbbJH0nhPBAgmMDpow1YMxH50h6KYTwlqTPSJpoXfcpSRvi978W//7XuxMaIzApAhjz0dcl9ZjZL1VYfnijVqcQwh8k9anwVxCeVeGvW1yU2CiBSfA2NABwwgwYAJwQwADghAAGACcEMAA4IYABwAkBDABOCGAAcPI/0qRl8aL4GwcAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"sns.boxplot(dataset['Fare'])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Here the Data is not Normally distributed and is following the Right Skewed distribution that means we can use the Interquartile Range to measure the boundaries for outliers" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"23.0896" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"IQR= dataset['Fare'].quantile(0.75) - dataset['Fare'].quantile(0.25)\n", | |
"IQR" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"-26.724\n", | |
"65.6344\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"(None, None)" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"## Calculating the boundaries\n", | |
"lower_bridge= dataset['Fare'].quantile(0.25)-(IQR*1.5)\n", | |
"upper_bridge= dataset['Fare'].quantile(0.75)+(IQR*1.5)\n", | |
"print(lower_bridge), print(upper_bridge)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"count 891.000000\n", | |
"mean 32.204208\n", | |
"std 49.693429\n", | |
"min 0.000000\n", | |
"25% 7.910400\n", | |
"50% 14.454200\n", | |
"75% 31.000000\n", | |
"max 512.329200\n", | |
"Name: Fare, dtype: float64" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dataset['Fare'].describe()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Here the maximum value of outliers is very high compare to upper boundary that indicates we need to calculate the extreme outliers boundaries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"-61.358399999999996\n", | |
"100.2688\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"(None, None)" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"## Calculating the extreme boundaries\n", | |
"lower_bridge= dataset['Fare'].quantile(0.25)-(IQR*3)\n", | |
"upper_bridge= dataset['Fare'].quantile(0.75)+(IQR*3)\n", | |
"print(lower_bridge), print(upper_bridge)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment