Created
April 3, 2021 11:58
-
-
Save ashutoshsahu2015/67caf90a6a118b25503c0bb7b267f318 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
" ### How to Handle Outliers in Machine Learning" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Importing the libraries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"import seaborn as sns" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Importing the dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>PassengerId</th>\n", | |
" <th>Survived</th>\n", | |
" <th>Pclass</th>\n", | |
" <th>Name</th>\n", | |
" <th>Sex</th>\n", | |
" <th>Age</th>\n", | |
" <th>SibSp</th>\n", | |
" <th>Parch</th>\n", | |
" <th>Ticket</th>\n", | |
" <th>Fare</th>\n", | |
" <th>Cabin</th>\n", | |
" <th>Embarked</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Braund, Mr. Owen Harris</td>\n", | |
" <td>male</td>\n", | |
" <td>22.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>A/5 21171</td>\n", | |
" <td>7.2500</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>2</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", | |
" <td>female</td>\n", | |
" <td>38.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>PC 17599</td>\n", | |
" <td>71.2833</td>\n", | |
" <td>C85</td>\n", | |
" <td>C</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>3</td>\n", | |
" <td>Heikkinen, Miss. Laina</td>\n", | |
" <td>female</td>\n", | |
" <td>26.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>STON/O2. 3101282</td>\n", | |
" <td>7.9250</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>4</td>\n", | |
" <td>1</td>\n", | |
" <td>1</td>\n", | |
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", | |
" <td>female</td>\n", | |
" <td>35.0</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>113803</td>\n", | |
" <td>53.1000</td>\n", | |
" <td>C123</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>5</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>Allen, Mr. William Henry</td>\n", | |
" <td>male</td>\n", | |
" <td>35.0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>373450</td>\n", | |
" <td>8.0500</td>\n", | |
" <td>NaN</td>\n", | |
" <td>S</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" PassengerId Survived Pclass \\\n", | |
"0 1 0 3 \n", | |
"1 2 1 1 \n", | |
"2 3 1 3 \n", | |
"3 4 1 1 \n", | |
"4 5 0 3 \n", | |
"\n", | |
" Name Sex Age SibSp \\\n", | |
"0 Braund, Mr. Owen Harris male 22.0 1 \n", | |
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", | |
"2 Heikkinen, Miss. Laina female 26.0 0 \n", | |
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", | |
"4 Allen, Mr. William Henry male 35.0 0 \n", | |
"\n", | |
" Parch Ticket Fare Cabin Embarked \n", | |
"0 0 A/5 21171 7.2500 NaN S \n", | |
"1 0 PC 17599 71.2833 C85 C \n", | |
"2 0 STON/O2. 3101282 7.9250 NaN S \n", | |
"3 0 113803 53.1000 C123 S \n", | |
"4 0 373450 8.0500 NaN S " | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dataset=pd.read_csv('titanic.csv')\n", | |
"dataset.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Handling the Outliers for the Age Column" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Text(0, 0.5, 'No of Passengers')" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZS0lEQVR4nO3dfZAc9X3n8feXBxssCYkHsZYRQfJBYTvIxmgD2PiuVhATDA4QG1MQbAuDo7oqOyGxUhe4s3H5HNdBJZjkEi5lnXlQnJgFAw5ETgI6oiXH3fEg8RAJZAwBBfMkGSwQix3jNd/7o3vNetmdndndnpndfr+qpna6p3v6szOtr3p/3f37RWYiSaqP3TodQJLUXhZ+SaoZC78k1YyFX5JqxsIvSTVj4ZekmrHwS1LNWPilBiJiICJ2RsSbO51Fmi4WfmkcEbEE+PdAAqd2NIw0jSz80vg+CdwFXAOsHJ4ZEftHxN9GxK6IuDci/jAi7hzx+jsiYn1E/DAiHomIM9sfXRrfHp0OIHWxTwJfBe4G7oqInszcDlwBvAK8FVgC3Ar8K0BEzAHWAxcDHwLeDdwWEQ9l5kNt/w2kMXjEL40hIj4AHAJcn5mbgH8BfjMidgc+CnwxM3+UmQ8Da0es+mFgW2ZenZlDmXkfcCNwRpt/BWlcFn5pbCuB2zLz+XL6m+W8hRR/KX9/xLIjnx8CHBMRLw4/gHMo/jqQuoJNPdIoEbE3cCawe0Q8V85+M7AA6AGGgMXA98rXDh6x+veBOzLzg22KK7Us7JZZ+kURcTZFO/6RwKsjXroeuJei6P8M+DTwS8BtwJOZ+YGImAdsAT4P9JfrHQkMZubW9vwGUmM29UhvtBK4OjOfzMznhh/An1M023wWmA88B3wDuBb4CUBmvgycCJwFPFMucynFXwxSV/CIX5qiiLgUeGtmrpxwYakLeMQvtai8Tv/dUTgaOB/4dqdzSc3y5K7UunkUzTtvA3YAlwE3dzSR1AKbeiSpZmzqkaSamRFNPQcccEAuWbKkpXVeeeUV5syZU02gKerWbOZqTbfmgu7NZq7WTDXXpk2bns/MhW94ITO7/rF8+fJs1YYNG1pep126NZu5WtOtuTK7N5u5WjPVXMDGHKOm2tQjSTVj4ZekmrHwS1LNWPglqWYs/JJUMxZ+SaoZC78k1YyFX5JqxsIvSTUzI7ps0PRYcuF3xpy/7ZJT2pxEUidVWvgjYhvwMsUwdUOZ2RsR+wHXAUuAbcCZmbmzyhySpNe1o6lnRWYemZm95fSFwO2ZeRhwezktSWqTTrTxnwasLZ+vBU7vQAZJqq1KB2KJiCeAnUACX8vMNRHxYmYuGLHMzszcd4x1VwGrAHp6epb39/e3tO3BwUHmzp07pfxV6VS2zU+/NOb8ZQfNB7r3MzNX67o1m7laM9VcK1as2DSiteXnqj65e1xmPhMRBwLrI+K7za6YmWuANQC9vb3Z19fX0oYHBgZodZ126VS2c8c7uXtOH9C9n5m5Wtet2czVmqpyVdrUk5nPlD93UAxGfTSwPSIWAZQ/d1SZQZL0iyor/BExJyLmDT8HTgS2ALcAK8vFVuIg1ZLUVlU29fQA346I4e18MzP/ISLuBa6PiPOBJ4GPVZhBkjRKZYU/Mx8H3jPG/BeAE6rariSpMbtskKSasfBLUs1Y+CWpZiz8klQzFn5JqhkLvyTVjP3xq6McI0BqP4/4JalmLPySVDMWfkmqGdv41TLb5aWZzSN+SaoZC78k1YyFX5JqxsIvSTVj4ZekmrHwS1LNWPglqWYs/JJUMxZ+SaoZC78k1YyFX5JqxsIvSTVj4ZekmrHwS1LNWPglqWYs/JJUMxZ+SaoZC78k1YyFX5JqxsIvSTVTeeGPiN0j4v6IWFdOL42IuyPi0Yi4LiLeVHUGSdLr2nHEfwGwdcT0pcDlmXkYsBM4vw0ZJEmlSgt/RCwGTgG+Xk4HcDxwQ7nIWuD0KjNIkn5RZGZ1bx5xA/DfgHnA7wPnAndl5qHl6wcDf5+ZR4yx7ipgFUBPT8/y/v7+lrY9ODjI3Llzp5S/Kp3Ktvnplxq+3rM3bP/x69PLDprf0vuMt/xkMo18r279Lrs1F3RvNnO1Zqq5VqxYsSkze0fP32NKqRqIiA8DOzJzU0T0Dc8eY9Ex/+fJzDXAGoDe3t7s6+sba7FxDQwM0Oo67dKpbOde+J2Gr69eNsRlm1/fJbad09fS+4y3/GQyjXyvbv0uuzUXdG82c7WmqlyVFX7gOODUiDgZ2AvYB/gTYEFE7JGZQ8Bi4JkKM0iSRqmsjT8zL8rMxZm5BDgL+MfMPAfYAJxRLrYSuLmqDJKkN+rEdfx/AHwuIh4D9geu7EAGSaqtKpt6fi4zB4CB8vnjwNHt2K4k6Y28c1eSasbCL0k1Y+GXpJqx8EtSzVj4JalmLPySVDMWfkmqmQkLf0RcEBH7ROHKiLgvIk5sRzhJ0vRr5oj/vMzcBZwILAQ+BVxSaSpJUmWaKfzDPWqeDFydmQ8ydi+bkqQZoJnCvykibqMo/LdGxDzgtWpjSZKq0rCvnnLErIspmngez8wfRcT+FM09UlOWTDAOgKT2alj4MzMj4m8yc/mIeS8AL1SeTJJUiWaaeu6KiF+pPIkkqS2a6ZZ5BfAfI2Ib8ArFid3MzHdXGUySVI1mCv+HKk8hNWm88wXbLjmlzUmkmWvCpp7M/FfgYOD48vmPmllPktSdmrlz94sUwyVeVM7aE/irKkNJkqrTzJH7bwCnUrTvk5nPAPOqDCVJqk4zbfyvlpd1JkBEzKk4kzRtPCcgvVEzR/zXR8TXgAUR8VvA/wL+Z7WxJElVmfCIPzP/OCI+COwCDgcuzsz1lSeTJFWimaYeykJvsZekWWDCwh8RLwM5avZLwEZgdWY+XkUwSVI1mjni/yrwDPBNirt2zwLeCjwCXAX0VRVOkjT9mjm5e1Jmfi0zX87MXZm5Bjg5M68D9q04nyRpmjVT+F+LiDMjYrfyceaI10Y3AUmSulwzhf8c4BPADmB7+fzjEbE38NkKs0mSKtDM5ZyPA78+zst3Tm8cSVLVmrmqZyHwW8CSkctn5nnVxZIkVaWZq3puBv43xR27P6s2jiSpas0U/rdk5h9UnkSS1BbNnNxdFxEnt/rGEbFXRNwTEQ9GxEMR8aVy/tKIuDsiHo2I6yLiTS2nliRNWjOF/wKK4v9vEbErIl6OiF1NrPcTisFb3gMcCZwUEccClwKXZ+ZhwE7g/MmGlyS1rpkRuOZl5m6ZuVdm7lNO79PEepmZg+XknuUjgeOBG8r5a4HTJ5ldkjQJkdn4HqyICIpr+Zdm5pcj4mBgUWbeM+GbR+wObAIOBa4A/gi4KzMPLV8/GPj7zDxijHVXAasAenp6lvf397f0iw0ODjJ37tyW1mmXTmXb/PRLDV/v2Ru2//j16WUHzW/pfVpdvpGR7zXy85qubY+3fCvcx1pnrtZMNdeKFSs2ZWbv6PnNFP6/AF6jaLZ5Z0TsC9yWmb/S7MYjYgHwbeBi4OpRhf/vMnNZo/V7e3tz48aNzW4OgIGBAfr6+lpap106lW28QUmGrV42xGWbXz/fP95gJa0ObjLRdid6r5Gf13RtezoGYnEfa525WjPVXBExZuFvpo3/mMz8DPBvAJm5E2jphGxmvggMAMdSDOgyXF0WU3QAJ0lqk2YK/0/LJpvhoRcXUvwF0FBELCyP9Cm7d/hVYCuwATijXGwlxX0CkqQ2aeY6/v9O0UxzYER8haJof76J9RYBa8v/NHYDrs/MdRHxMNAfEX8I3A9cObno0uQ5Fq/qrJm+ev46IjYBJ1D0x396Zm5tYr1/Bt47xvzHgaMnkVWSNA0mbOqJiH8HPJGZVwBbgA8ON+FIkmaeZtr4bwR+FhGHAl8HllKMxiVJmoGaGoglM4eAjwB/mpm/R9F+L0magZq9quds4JPAunLentVFkiRVqZnC/yngfcBXMvOJiFgK/FW1sSRJVWnmqp6Hgd8BKO/anZeZl1QdTJJUjWZG4BoATi2XfQD4QUTckZmfqzibOmwyXS1Use3Vy4Y4t4NZYOzPYvWyIfraH0WasmaaeuZn5i6Kk7tXZ+ZyirtwJUkzUDOFf4+IWAScyesndyVJM1Qzhf+/ArcCj2XmvRHxduDRamNJkqrSzMndbwHfGjH9OPDRKkNJkqrTzMndvSiGR/xlYK/h+Zl5XoW5JEkVaaap5xvAW4FfA+6g6EP/5SpDSZKq00zhPzQzvwC8kplrgVOAhiNmSZK6V1NdNpQ/X4yII4D5wJLKEkmSKtXMQCxryjt2vwDcAswtn0uSZqBmrur5evn0DuDt1caRJFVt3KaeiDgmIh6MiMGI+H8R8a52BpMkVaPREf8VwO8D/0TRV8/lFFf2zCiOrdo+nezbR1LzGp3c3S0z12fmT8qbuBa2K5QkqTqNjvgXRMRHxpvOzJuqiyVJqkqjwn8H8OvjTCdg4ZekGWjcwp+Zn2pnEElSezRzA5ckaRax8EtSzTS6jv9j5c+l7YsjSapao5O7F1H0w38jcFR74qgV3qMgaTIaFf4XImIDsDQibhn9YmaeWl0sSVJVGhX+UyiO9L8BXNaeOJKkqjW6nPNV4K6IeH9m/iAi5hWzc7B98SRJ062Zq3p6IuJ+YAvwcERsKvvllyTNQM0U/jXA5zLzkMz8JWB1Oa+hiDg4IjZExNaIeCgiLijn7xcR6yPi0fLnvlP7FSRJrWim8M/JzA3DE5k5AMxpYr0hYHVmvhM4FvhM2bXzhcDtmXkYcHs5LUlqk2YK/+MR8YWIWFI+Pg88MdFKmflsZt5XPn8Z2AocBJwGrC0XWwucPrnokqTJaKbwn0fRJfNN5eMAoKV+fCJiCfBe4G6gJzOfheI/B+DAVt5LkjQ1kZnVbiBiLkXPnl/JzJsi4sXMXDDi9Z2Z+YZ2/ohYBawC6OnpWd7f39/SdgcHB5k7dy6bn35pzNeXHTS/pfebTsPZpqrV32285Yf17A3bfzzlWNOumVyT/Z2n8j49e8OB+3VuP2pkuvax6Wau1kw114oVKzZlZu/o+ZUW/ojYE1gH3JqZXy3nPQL0ZeazEbEIGMjMwxu9T29vb27cuLGlbQ8MDNDX19eVd7cOZ5uqVn+3iUbIWr1siMs2TzgMc9s1k2uyv/NU3mf1siF++5zTWnr/dpmufWy6mas1U80VEWMW/so6aYuIAK4Etg4X/dItwMry+Urg5qoySJLeqMrDu+OATwCbI+KBct5/Bi4Bro+I84EngY9VmEGSNMqEhT8iFgN/BnwAeA24E7ggM59qtF5m3gnEOC+f0GJOSdI0aaap52qK5plFFJdj/m05T5I0AzVT+Bdm5tWZOVQ+rqG4vFOSNAM1U/ifj4iPR8Tu5ePjwAtVB5MkVaOZk7vnAX8OXA4k8H/LeZLGMZ2XEXfjJcma2SYs/Jn5JOCgK5I0S4xb+CPi4gbrZWZ+uYI8kqSKNTrif2WMeXOA84H9AQu/JM1AjUbg+vlwi+XoWxdQdM7Wj0Mxqsu02jVDt5nO/Esu/A6rlw1x7qj39JyAhjVs44+I/YDPAedQdKF8VGbubEcwSVI1GrXx/xHwEYrRtpY51q4kzQ6NruNfDbwN+DzwTETsKh8vR8Su9sSTJE23Rm38lfXcKUnqHIu7JNWMhV+SasbCL0k1Y+GXpJqx8EtSzVj4JalmLPySVDNVDrY+I9n3uaTZziN+SaoZC78k1YyFX5Jqxjb+WWim900vqVoe8UtSzVj4JalmLPySVDMWfkmqGQu/JNWMhV+SasbCL0k143X80gjeA6E6qOyIPyKuiogdEbFlxLz9ImJ9RDxa/ty3qu1LksZWZVPPNcBJo+ZdCNyemYcBt5fTkqQ2qqzwZ+Y/AT8cNfs0YG35fC1welXblySNLTKzujePWAKsy8wjyukXM3PBiNd3ZuaYzT0RsQpYBdDT07O8v7+/pW0PDg4yd+5cNj/90pivLzto/pjzW11+MoazTdV4WSerZ2/Y/uNpfctp0c25DtxvevajyXyXjd5rrM9sOvfhyZqufX+6zdZcK1as2JSZvaPnd23hH6m3tzc3btzY0rYHBgbo6+treWCVdgzEMpxtqqb7ROTqZUNctrn7zvd3c67fPue0MV+brv2ukUbvNdZn1g2DCU3Xvj/dZmuuiBiz8Lf7cs7tEbGoDLQI2NHm7UtS7bW78N8CrCyfrwRubvP2Jan2Kvv7OSKuBfqAAyLiKeCLwCXA9RFxPvAk8LGqti91o268T8BxpuunssKfmWeP89IJVW1TkjQxu2yQpJqx8EtSzXTfNXKzRKO23GtOmtPGJKpSN7bZSxPxiF+SasbCL0k1Y+GXpJqxjX+K2tHGazuyOqHq7k68f6BzPOKXpJqx8EtSzVj4JalmatvG38l2881Pv8S5Y2zftk21otV92HNFGuYRvyTVjIVfkmrGwi9JNWPhl6SasfBLUs1Y+CWpZiz8klQzFn5Jqpna3sAlqT1G3ji2etnQmDcvjrf8aN7kOD084pekmrHwS1LNWPglqWZs42+SA65InVf14C11GRzGI35JqhkLvyTVjIVfkmrGNn5JLZkN56JG/w7N3F8wm3jEL0k1Y+GXpJqx8EtSzdjGL2nG69T199O13fHe55qT5rScqRkdOeKPiJMi4pGIeCwiLuxEBkmqq7YX/ojYHbgC+BDwLuDsiHhXu3NIUl114oj/aOCxzHw8M18F+oHTOpBDkmopMrO9G4w4AzgpMz9dTn8COCYzPztquVXAqnLycOCRFjd1APD8FONWpVuzmas13ZoLujebuVoz1VyHZObC0TM7cXI3xpj3hv99MnMNsGbSG4nYmJm9k12/St2azVyt6dZc0L3ZzNWaqnJ1oqnnKeDgEdOLgWc6kEOSaqkThf9e4LCIWBoRbwLOAm7pQA5JqqW2N/Vk5lBEfBa4FdgduCozH6pgU5NuJmqDbs1mrtZ0ay7o3mzmak0ludp+cleS1Fl22SBJNWPhl6SamZWFv1u6hIiIqyJiR0RsGTFvv4hYHxGPlj/37UCugyNiQ0RsjYiHIuKCLsq2V0TcExEPltm+VM5fGhF3l9muKy8MaLuI2D0i7o+Idd2SKyK2RcTmiHggIjaW87rhu1wQETdExHfLfe19XZLr8PKzGn7siojf7ZJsv1fu91si4try38O072OzrvB3WZcQ1wAnjZp3IXB7Zh4G3F5Ot9sQsDoz3wkcC3ym/Iy6IdtPgOMz8z3AkcBJEXEscClweZltJ3B+B7IBXABsHTHdLblWZOaRI6757obv8k+Bf8jMdwDvofjcOp4rMx8pP6sjgeXAj4BvdzpbRBwE/A7Qm5lHUFz8chZV7GOZOasewPuAW0dMXwRc1ME8S4AtI6YfARaVzxcBj3TBZ3Yz8MFuywa8BbgPOIbi7sU9xvqO25hnMUVBOB5YR3EzYjfk2gYcMGpeR79LYB/gCcoLSLol1xg5TwT+TzdkAw4Cvg/sR3HF5Trg16rYx2bdET+vf3jDnirndYuezHwWoPx5YCfDRMQS4L3A3XRJtrI55QFgB7Ae+BfgxcwcKhfp1Hf6J8B/Al4rp/fvklwJ3BYRm8quTqDz3+XbgR8AV5dNY1+PiDldkGu0s4Bry+cdzZaZTwN/DDwJPAu8BGyign1sNhb+prqEEETEXOBG4Hczc1en8wzLzJ9l8Wf4YopO/d451mLtzBQRHwZ2ZOamkbPHWLQT+9pxmXkURfPmZyLiP3Qgw2h7AEcBf5GZ7wVeoTPNTeMq28pPBb7V6SwA5TmF04ClwNuAORTf6WhT3sdmY+Hv9i4htkfEIoDy545OhIiIPSmK/l9n5k3dlG1YZr4IDFCch1gQEcM3HHbiOz0OODUitlH0KHs8xV8Anc5FZj5T/txB0VZ9NJ3/Lp8CnsrMu8vpGyj+I+h0rpE+BNyXmdvL6U5n+1Xgicz8QWb+FLgJeD8V7GOzsfB3e5cQtwAry+crKdrX2yoiArgS2JqZX+2ybAsjYkH5fG+KfwxbgQ3AGZ3KlpkXZebizFxCsU/9Y2ae0+lcETEnIuYNP6dos95Ch7/LzHwO+H5EHF7OOgF4uNO5Rjmb15t5oPPZngSOjYi3lP9Ghz+z6d/HOnlipcKTJCcD36NoG/4vHcxxLUVb3U8pjoDOp2gXvh14tPy5XwdyfYDiz8V/Bh4oHyd3SbZ3A/eX2bYAF5fz3w7cAzxG8af5mzv4vfYB67ohV7n9B8vHQ8P7e5d8l0cCG8vv8m+AfbshV5ntLcALwPwR8zqeDfgS8N1y3/8G8OYq9jG7bJCkmpmNTT2SpAYs/JJUMxZ+SaoZC78k1YyFX5JqxsIvTSAifiMiMiLe0eks0nSw8EsTOxu4k+LGLWnGs/BLDZT9GR1HcfPdWeW83SLif5T9pq+LiL+LiDPK15ZHxB1lh2m3DncBIHUTC7/U2OkUfcp/D/hhRBwFfISiu+1lwKcpusod7v/oz4AzMnM5cBXwlU6ElhrZY+JFpFo7m6IzNig6Zzsb2BP4Vma+BjwXERvK1w8HjgDWF12tsDtFlx1SV7HwS+OIiP0peuE8IiKSopAnRQ+YY64CPJSZ72tTRGlSbOqRxncG8JeZeUhmLsnMgylGlXoe+GjZ1t9D0WkbFCM4LYyInzf9RMQvdyK41IiFXxrf2bzx6P5GikEynqLoQfFrFKOXvZSZr1L8Z3FpRDxI0evp+9sXV2qOvXNKkxARczNzsGwOuodiFKznOp1LaoZt/NLkrCsHjHkT8GWLvmYSj/glqWZs45ekmrHwS1LNWPglqWYs/JJUMxZ+SaqZ/w/+C4Gn1kvE0gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"figure=dataset.Age.hist(bins=50)\n", | |
"figure.set_title('Age')\n", | |
"figure.set_xlabel('Age')\n", | |
"figure.set_ylabel('No of Passengers')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAARkklEQVR4nO3df6zVd33H8ee7QAOWOaQ/TljrpGak3opppzed2ma5cBVFl8G24kq2hSzX3BC2O7MumWwkM2bD0GSpmsZuI8MNE0dbqw0VFGzZPS4kSxVEI/XqqrVWViz+KI1go1x474/7hSFcuN/LPecePj3PR0LO+X7O93u+b5IvL755n+/3+4nMRJJUnis6XYAk6dIY4JJUKANckgplgEtSoQxwSSrUzOnc2TXXXJMLFy6czl1KtRw/fpyrrrqq02VI49q/f/+PMvPac8enNcAXLlzIvn37pnOXUi3NZpO+vr5OlyGNKyK+N964LRRJKpQBLkmFMsAlqVAGuCQVygCXpELVCvCI+MuIeDIiDkbEtoiYHRE3RsQTEfFURDwYEVe2u1ip1bZt28bixYvp7+9n8eLFbNu2rdMlSbVNeBlhRFwP/AVwc2a+FBEPAXcB7wI+nJkPRMQ/AwPAP7W1WqmFtm3bxoYNG9iyZQsnT55kxowZDAwMALB69eoOVydNrG4LZSYwJyJmAq8ADgNLgYerz7cCK1tfntQ+GzduZMuWLSxZsoSZM2eyZMkStmzZwsaNGztdmlTLhGfgmfm/EfGPwLPAS8AXgP3A0cwcrVY7BFw/3vYRMQgMAjQaDZrNZgvKlqZuZGSEkydP0mw2OXbsGM1mk5MnTzIyMuJxqiLUaaG8ClgB3AgcBT4FLB9n1XFnhsjMzcBmgN7e3vRuN10uenp6mDFjBn19fWfuxBweHqanp8e7MlWEOi2UtwHfzcwfZuYJ4DPAW4F5VUsF4AbguTbVKLXFhg0bGBgYYHh4mNHRUYaHhxkYGGDDhg2dLk2qpc6zUJ4F3hwRr2CshdIP7AOGgTuBB4A1wPZ2FSm1w+kfKoeGhhgZGaGnp4eNGzf6A6aKEXXmxIyIDwJ/CIwCB4D3MtbzfgCYX439cWb+/GLf09vbmz7MSpcjH2aly1lE7M/M3nPHaz2NMDM/AHzgnOGngdtaUJsk6RJ4J6YkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAGurubjZFWyaZ2VXrqc+DhZlc4zcHUtHyer0hng6lojIyPccccdvzR2xx13MDIy0qGKpMkxwNW1enp62Lt37y+N7d27l56eng5VJE2OAa6u5eNkVTp/xFTX8nGyKl2tx8m2io+T1eXKx8nqcnahx8naQlFXGxoaYvbs2SxZsoTZs2czNDTU6ZKk2gxwda2hoSHuv/9+5s2bR0Qwb9487r//fkNcxZiwhRIRNwEPnjX0WuDvgE9U4wuBZ4D3ZOYLF/suWyi6nMyaNYsZM2Zw6tQpTpw4waxZs7jiiis4efIkJ06c6HR50hmX3ELJzG9l5q2ZeSvwJuBnwCPAemBPZi4C9lTLUjFGR0cZHR1l06ZNfP7zn2fTpk1nxqQSTLaF0g98JzO/B6wAtlbjW4GVrSxMmg7Lly/n7rvvZvbs2dx9990sX7680yVJtU32MsK7gNNP+2lk5mGAzDwcEdeNt0FEDAKDAI1Gg2azeYmlSq23Y8cO1q1bx9KlS1m3bh07duwA8DhVEWpfRhgRVwLPAa/PzOcj4mhmzjvr8xcy81UX+w574LqcnO55Z+aZHnhEnOmJS5eLVlxGuBz4SmY+Xy0/HxELqi9fAByZepnS9Fm7di2jo6PMnz8fgPnz5zM6OsratWs7XJlUz2QCfDX/3z4BeBRYU71fA2xvVVHSdLjvvvtYt24dR48eBeDo0aOsW7eO++67r8OVSfXUaqFExCuA7wOvzcwXq7GrgYeAXweeBVZl5k8u9j22UHS58k5MXc4u1EKp9SNmZv4MuPqcsR8zdlWKJKkDvBNTkgplgKurOSemSubjZNW1nBNTpfMMXF3LOTFVOs/A1bVGRkb40Ic+RH9/P5lJRNDf3++cmCqGZ+DqWnPmzOHxxx9n7dq1fPazn2Xt2rU8/vjjzJkzp9OlSbUY4Opax48fZ+7cuaxatYrZs2ezatUq5s6dy/HjxztdmlSLAa6udu+99zI0NMQ73vEOhoaGuPfeeztdklSbAa6uFREcOHCAgwcPsmfPHg4ePMiBAweIiE6XJtXipMZ6WZquEJ7Ofz/qXk5qrK6SmbX+LFu27EzYRwTLli2rva3hrU4zwNXVdu/ezalTp3jN+3dw6tQpdu/e3emSpNoMcEkqlAEuSYUywCWpUAa4JBWqVoBHxLyIeDgivhkRIxHxloiYHxGPRcRT1etFJzSWJLVW3TPwjwK7MvN1wC3ACLAe2JOZi4A91bIkaZpMGOAR8Urgt4EtAJn5i8w8CqwAtlarbQVWtqtISdL56jxO9rXAD4F/i4hbgP3A+4BGZh4GyMzDEXHdeBtHxCAwCNBoNGg2m62oW2o5j02Vpk6AzwTeCAxl5hMR8VEm0S7JzM3AZhi7ld6Zv3VZ2rXTWelVnDo98EPAocx8olp+mLFAfz4iFgBUr0faU6IkaTwTBnhm/gD4fkTcVA31A98AHgXWVGNrgO1tqVCSNK66U6oNAZ+MiCuBp4E/ZSz8H4qIAeBZYFV7SpQkjadWgGfmV4HzHmXI2Nm4JKkDvBNTkgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklSoWhM6RMQzwE+Bk8BoZvZGxHzgQWAh8Azwnsx8oT1lSpLONZkz8CWZeWtmnp6ZZz2wJzMXAXuYxEz1kqSpm0oLZQWwtXq/FVg59XIkSXXVndQ4gS9ERAL/kpmbgUZmHgbIzMMRcd14G0bEIDAI0Gg0aDabU69aagOPTZWmboDfnpnPVSH9WER8s+4OqrDfDNDb25t9fX2Tr1Jqt1078dhUaWq1UDLzuer1CPAIcBvwfEQsAKhej7SrSEnS+SYM8Ii4KiJ+5fR7YBlwEHgUWFOttgbY3q4iJUnnq9NCaQCPRMTp9f8jM3dFxJeBhyJiAHgWWNW+MiVJ55owwDPzaeCWccZ/DPS3oyhJ0sS8E1OSCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RC1Q7wiJgREQciYke1fGNEPBERT0XEgxFxZfvKlCSdazJn4O8DRs5avgf4cGYuAl4ABlpZmCTp4moFeETcALwb+NdqOYClwMPVKluBle0oUJI0vrpn4B8B/ho4VS1fDRzNzNFq+RBwfYtrkyRdxIRzYkbE7wBHMnN/RPSdHh5n1bzA9oPAIECj0aDZbF5apVKbeWyqNHVmpb8d+N2IeBcwG3glY2fk8yJiZnUWfgPw3HgbZ+ZmYDNAb29v9vX1taJuqbV27cRjU6WZsIWSmX+TmTdk5kLgLuA/M/OPgGHgzmq1NcD2tlUpSTrPVK4Dfz9wd0R8m7Ge+JbWlCRJqqNOC+WMzGwCzer908BtrS9JklTHpAJc6oRbPvgFXnzpRNv3s3D9zrZ+/6/OmcXXPrCsrftQdzHAddl78aUTPLPp3W3dR7PZbPuPmO3+D0Ldx2ehSFKhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCTRjgETE7Ir4UEV+LiCcj4oPV+I0R8UREPBURD0bEle0vV5J0Wp0z8J8DSzPzFuBW4J0R8WbgHuDDmbkIeAEYaF+ZkqRz1ZnUODPzWLU4q/qTwFLg4Wp8K7CyLRVKksZVa0aeiJgB7Ad+A/gY8B3gaGaOVqscAq6/wLaDwCBAo9Gg2WxOsWR1o3YfN8eOHZuWY9PjX61UK8Az8yRwa0TMAx4BesZb7QLbbgY2A/T29ma7p63Sy9CunW2f7mw6plSbjr+HusukrkLJzKOMzUr/ZmBeRJz+D+AG4LnWliZJupg6V6FcW515ExFzgLcBI8AwcGe12hpge7uKlCSdr04LZQGwteqDXwE8lJk7IuIbwAMR8Q/AAWBLG+uUJJ0jMsdtXbdFb29v7tu3b9r2p5eHN2x9Q6dLaJmvr/l6p0tQgSJif2b2njte60dMqZN+OrKJZza9u637mI4fMReu39nW71f38VZ6SSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBXKAJekQhngklQoA1ySClVnSrVXR8RwRIxExJMR8b5qfH5EPBYRT1Wvr2p/uZKk0+qcgY8Cf5WZPYxNZvxnEXEzsB7Yk5mLgD3VsiRpmkwY4Jl5ODO/Ur3/KWMTGl8PrAC2VqttBVa2q0hJ0vkmNaVaRCwEfhN4Amhk5mEYC/mIuO4C2wwCgwCNRoNmszmFctWtpmU6sl3t3cdVs/D4V0vVntQ4IuYCXwQ2ZuZnIuJoZs476/MXMvOifXAnNdblauH6nW2fd1O6VBea1LjWVSgRMQv4NPDJzPxMNfx8RCyoPl8AHGlVsZKkidW5CiWALcBIZt571kePAmuq92uA7a0vT5J0IXV64LcDfwJ8PSK+Wo39LbAJeCgiBoBngVXtKVGSNJ4JAzwz9wJxgY/7W1uOJKku78SUpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhTLAJalQBrgkFcoAl6RCGeCSVCgDXJIKZYBLUqEMcEkqlAEuSYUywCWpUAa4JBWqzpRqH4+IIxFx8Kyx+RHxWEQ8Vb1edDJjSVLr1TkD/3fgneeMrQf2ZOYiYE+1LEmaRhMGeGb+F/CTc4ZXAFur91uBlS2uS5I0gTqTGo+nkZmHATLzcERcd6EVI2IQGARoNBo0m81L3KXUXh6bKs2lBnhtmbkZ2AzQ29ubfX197d6lNHm7duKxqdJc6lUoz0fEAoDq9UjrSpIk1XGpAf4osKZ6vwbY3ppyJEl11bmMcBvw38BNEXEoIgaATcDbI+Ip4O3VsiRpGk3YA8/M1Rf4qL/FtUiSJsE7MSWpUAa4JBXKAJekQhngklQoA1ySCmWAS1KhDHBJKpQBLkmFMsAlqVAGuCQVygCXpEIZ4JJUKANckgplgEtSoQxwSSqUAS5JhZpSgEfEOyPiWxHx7YhY36qiJEkTu+QAj4gZwMeA5cDNwOqIuLlVhUmSLm7CKdUu4jbg25n5NEBEPACsAL7RisKkqYiIyW9zz+T3k5mT30hqkakE+PXA989aPgT81rkrRcQgMAjQaDRoNptT2KVUz/Dw8KTWP3bsGHPnzp30fjye1UlTCfDxTnHOOx3JzM3AZoDe3t7s6+ubwi6l9mg2m3hsqjRT+RHzEPDqs5ZvAJ6bWjmSpLqmEuBfBhZFxI0RcSVwF/Boa8qSJE3kklsomTkaEX8O7AZmAB/PzCdbVpkk6aKm0gMnMz8HfK5FtUiSJsE7MSWpUAa4JBXKAJekQsV03kkWET8EvjdtO5Tquwb4UaeLkC7gNZl57bmD0xrg0uUqIvZlZm+n65AmwxaKJBXKAJekQhng0pjNnS5Amix74JJUKM/AJalQBrgkFcoAV9eIiN+LiIyI13W6FqkVDHB1k9XAXsYefSwVzwBXV4iIucDtwABVgEfEFRFxf0Q8GRE7IuJzEXFn9dmbIuKLEbE/InZHxIIOli+NywBXt1gJ7MrM/wF+EhFvBH4fWAi8AXgv8BaAiJgF3AfcmZlvAj4ObOxE0dLFTOl54FJBVgMfqd4/UC3PAj6VmaeAH0TE6ZmQbwIWA49Vs9vPAA5Pb7nSxAxwvexFxNXAUmBxRCRjgZzAIxfaBHgyM98yTSVKl8QWirrBncAnMvM1mbkwM18NfJexpw/+QdULbwB91frfAq6NiDMtlYh4fScKly7GAFc3WM35Z9ufBn4NOAQcBP4FeAJ4MTN/wVjo3xMRXwO+Crx1+sqV6vFWenW1iJibmceqNsuXgNsz8wedrkuqwx64ut2OiJgHXAn8veGtkngGLkmFsgcuSYUywCWpUAa4JBXKAJekQhngklSo/wOwTymo6RkM2gAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"figure=dataset.boxplot(column='Age')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x27e9247c5c0>" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxV5Z348c/3Zg9kTwhZSAIkLAGUJbK416VitaIWK2ir9ueUdkZbp8vMy860dup0ZmpnprZT7aLVVm0ZtKhTtFSsVXFlC3tYAwQICSQhIfue7++Pe6AxJuQGbnKSe7/v1yuvnHPuc879Hm6433Oe5znPI6qKMcaY4ONxOwBjjDHusARgjDFByhKAMcYEKUsAxhgTpCwBGGNMkAp1O4CBSE5O1pycHLfDMMaYEaWwsLBKVVN6bh9RCSAnJ4dNmza5HYYxxowoInK4t+1WBWSMMUHKEoAxxgQpSwDGGBOkfEoAIrJQRPaKSLGIPNjL6xEi8rzz+noRyXG2zxWRrc7PNhG5pds+JSKyw3nNKvaNMWaI9dsILCIhwOPAtUApsFFEVqnqrm7F7gVqVDVXRJYAjwC3AzuBAlXtEJE0YJuIvKKqHc5+n1DVKn+ekDHGGN/4cgcwFyhW1YOq2gasABb1KLMIeMZZXglcLSKiqk3dvuwjARt5zhhjhglfEkAGcLTbeqmzrdcyzhd+LZAEICLzRKQI2AF8uVtCUOB1ESkUkWV9vbmILBORTSKyqbKy0pdzMsYY4wNfEoD0sq3nlXyfZVR1vapOAy4CviUikc7rl6jqbOB64D4Ruby3N1fVJ1S1QFULUlI+9hyDMcaYc+RLAigFxnVbzwTK+iojIqFAHFDdvYCq7gYagenOepnzuwJ4GW9VkzHGmCHiy5PAG4E8ERkPHAOWAHf0KLMKuBv4EFgMvKmq6uxz1GkEzgYmAyUiMgrwqGq9s/xJ4GH/nJIZLpavPzKg8nfMyxqkSIwxvek3AThf3vcDa4AQ4GlVLRKRh4FNqroKeAp4TkSK8V75L3F2vxR4UETagS7g71S1SkQmAC+LyOkYlqvqa/4+OWOMMX3zaSwgVV0NrO6x7aFuyy3Abb3s9xzwXC/bDwIXDjRYY4wx/mNPAhtjTJCyBGCMMUHKEoAxxgQpSwDGGBOkLAEYY0yQsgRgjDFByhKAMcYEKUsAxhgTpCwBGGNMkLIEYIwxQcoSgDHGBClLAMYYE6QsARhjTJCyBGCMMUHKEoAxxgQpSwDGGBOkLAEYY0yQsgRgjDFByqcpIY0ZLFUNrewqq+NgVQM/e7uYsbGRjEuM5qopY7h++lhCQ+waxZjBYgnAuKJLlQ+Kq1iz6wSdXUrK6AjmTUiksr6V94qreHnLMTLio1h2+QQ+Pz8bj0fcDtmYgGMJwAy5lvZOfrvuMAerGpmaFstNF6YTFxXGHfOyAOjqUt7cU8GT7x7ku6uK+POuE/zosxcyJjbS5ciNCSw+3V+LyEIR2SsixSLyYC+vR4jI887r60Ukx9k+V0S2Oj/bROQWX49pAlOXKs9vPErJyUZumZXB5+ZlERcV9pEyHo9wTX4qK5bN5we3zmDT4WoW/uRdCg/XuBS1MYGp3wQgIiHA48D1QD6wVETyexS7F6hR1VzgUeARZ/tOoEBVZwILgV+KSKiPxzQB6PWiE+w9Uc+NF6RzUU4iIn1X7YgIS+Zm8epXLiUuKoy7nlrPhkPVQxitMYHNlzuAuUCxqh5U1TZgBbCoR5lFwDPO8krgahERVW1S1Q5neySgAzimCTA7jtXyzv5K5uYkMn9Cks/75Y6JYcWy+YyNi+Tupzfw4YGTgxilMcHDlzaADOBot/VSYF5fZVS1Q0RqgSSgSkTmAU8D2cDnndd9OSYAIrIMWAaQlZXlQ7hmOGrr6OKP28vIiI/ixgvTei2zfP2Rsx7jswXjeOq9Q3zhNxv4uyty+eo1eYMRqjFBw5c7gN7u0dXXMqq6XlWnARcB3xKRSB+PibP/E6paoKoFKSkpPoRrhqMPDlRR19LBp2akEeo5t66dMZFh3H1xDh4Rnl13mLqWdj9HaUxw8eUOoBQY1209Eyjro0ypiIQCccBHKmtVdbeINALTfTymCRANrR2s3VfJ1LRYxiePOq9jJUSHc+e8bJ567yCLf/4Bdy3wJoT+nO5hZIz5K18uxTYCeSIyXkTCgSXAqh5lVgF3O8uLgTdVVZ19QgFEJBuYDJT4eEwTIN7aU0F7ZxfXTUv1y/HGJ4/ixgvS2XeiwdoDjDkP/d4BOHX29wNrgBDgaVUtEpGHgU2qugp4CnhORIrxXvkvcXa/FHhQRNqBLuDvVLUKoLdj+vnczDDQ0NrBhkPVzMlOYEyM//rxzxufyL4T9awpOk5e6mi/HtuYYOHTg2CquhpY3WPbQ92WW4DbetnvOeA5X49pAs/mwzV0qnLJxGS/HldEuGVWBj9+Yz8rC0v50uUTCbGnhY0ZEBtoxQyaLlU2lFSTkxQ9KE/xxkSGsWhmOqU1zbxfXOX34xsT6CwBmEFzsLKR6sY25o5PHLT3uCAznqlpsby5p4LaZusVZMxAWAIwg2bDoZNEh4cwLT1uUN/nhhlpdKny2s7yQX0fYwKNJQAzKCrqW9hVXsfsrATCBnlI58RR4VyWl8K20lpKqhoH9b2MCSSWAMygeGVbOV0KBdkJQ/J+V0xKIS4qjFe2l9GlvT5TaIzpwRKAGRSvFx0nNTZiyIZwDg/1cN20VMprW9h5rHZI3tOYkc4SgPG76sY2NpZUk582uHX/PV2QGc+YmAje2O2dZMYYc3Y2IYzxWX+DtZ1WeLiaLoX89NhBjuijPCJcm5/K79YfYevRGuZkD17vI2MCgd0BGL/bVVZHXFQY6XFD/3RuflosGfFR/GVPBR1dXUP+/saMJJYAjF+1dXSxv6KB/LTYs072MljEuQs41dTO5sOnhvz9jRlJLAEYv9pfUU9Hlw559U93eWNGkxEfxbv7K61HkDFnYQnA+NWusjqiwkLISTq/YZ/Ph4hwxaQUTja2WY8gY87CEoDxG1Vlf0UDeamjXR+YLT89luTREazdV4naXYAxvbIEYPymor6VhtYOclNGux0KHhEuz0umvLaF/RUNbodjzLBkCcD4zcFK7xfthGGQAABmZsUTFxXGO/sq3Q7FmGHJEoDxmwOVjSREh5E4KtztUAAI9XiYPyGJg1WN7C6vczscY4YdSwDGL7pUOVTVOGyu/k+7KCeBsBDhN++XuB2KMcOOJQDjF+W1LTS3dzIxxb3eP72JDg9l5rgE/m/rMaob29wOx5hhxRKA8Ysz9f/Jw+sOAODiiUm0dnTxvxt8G8rCmGBhCcD4xYHKBlJiIoiNCnM7lI9JjY3ksrxknv2whPZOGx7CmNNsMDhz3jq7lJKqJmZnx7sdSp9ykkbx7v4qvvuHIqZn9D9K6R3zsoYgKmPc5dMdgIgsFJG9IlIsIg/28nqEiDzvvL5eRHKc7deKSKGI7HB+X9Vtn7edY251fsb466TM0Co71UxbZxfjh2H1z2mTUmOIiwpjY0m126EYM2z0mwBEJAR4HLgeyAeWikh+j2L3AjWqmgs8CjzibK8CPq2qM4C7ged67Henqs50firO4zyMi45UNwGQnRjtciR9C/EIBdkJFFc0WGOwMQ5f7gDmAsWqelBV24AVwKIeZRYBzzjLK4GrRURUdYuqljnbi4BIEYnwR+Bm+DhS3UR8VNiwrP/vriDHOz+A3QUY4+VLAsgAjnZbL3W29VpGVTuAWiCpR5nPAFtUtbXbtl871T/fkT7GDhaRZSKySUQ2VVbaE53D0ZHqJsYN46v/0+Kiwpg8NobCwzU2Y5gx+JYAevti7vm/56xlRGQa3mqhL3V7/U6naugy5+fzvb25qj6hqgWqWpCSkuJDuGYo1Ta3U9vcTtYISAAAc8cn0tDaYU8GG4NvCaAUGNdtPRMo66uMiIQCcUC1s54JvAzcpaoHTu+gqsec3/XAcrxVTWaEOV3/P1ISwOnG4A1WDWSMTwlgI5AnIuNFJBxYAqzqUWYV3kZegMXAm6qqIhIP/BH4lqq+f7qwiISKSLKzHAbcCOw8v1Mxbjha3USoR0iLH/rpH8+FR4SCHGsMNgZ8SABOnf79wBpgN/CCqhaJyMMicpNT7CkgSUSKga8Dp7uK3g/kAt/p0d0zAlgjItuBrcAx4El/npgZGkeqm0iPjyLUM3KeKSzITsQj1hhsjE8PgqnqamB1j20PdVtuAW7rZb/vA9/v47BzfA/TDEcdnV2UnWpm/oSe7f3Dm7cxOJZNh2u4euqYEZW8jPEn+8s356y8toWOLh0x9f/dzc1JoLG1g93l9W6HYoxrLAGYczbSGoC7y0uNIT4qjI2HrBrIBC9LAOacldY0ETcCHgDrzZnG4EprDDbByxKAOWfltS2kxY2M3j+9mZ2VgACbj9S4HYoxrrAEYM5JW0cXlfWtpMVFuR3KOYuPDid3zGgKD9fQpfZksAk+lgDMOTlR14IC6SOk/39fCnISqW1up7iiwe1QjBlylgDMOSmrbQYgfQTfAQBMHRtDdHgImw5bNZAJPpYAzDkpP9VCZJiH+OiR1wDcXWiIh1nj4tldVkdja4fb4RgzpCwBmHNSXttMWlwUfQziOqLMyUmkU5WtR0+5HYoxQ8oSgBmwLlWO17WQPoJ7AHU3NjaSzIQoCg/XoNYYbIKIJQAzYJX1rbR3KmnxI7v+v7s52Qkcr2vh2Klmt0MxZshYAjADVl7bAoz8BuDuLsyMJyxE2FRijcEmeFgCMANWfqqZUI+QEhM4s3tGhoUwPT2ObaWnaOvocjscY4aEJQAzYGW1zaTGRhLiGfkNwN0V5CTS2tHFzrJat0MxZkhYAjADoqojfgiIvuQkRZM0KpxCeybABAlLAGZAapvbaWrrDKgG4NNEhDnZCRyqaqSkqtHtcIwZdJYAzID8tQE48O4A4K8DxL2w6ajboRgz6CwBmAEpq21GgLEBmgBio8KYPDaGlYWldHRaY7AJbJYAzICUn2ohaXQ4EaEhbocyaAqyE6iob2Xtvkq3QzFmUFkCMANyegiIQDZ5bCzJo8N5fqNVA5nAZgnA+Ky5rZOapnbSA7ABuLsQj3Dr7Eze3FNBZX2r2+EYM2h8SgAislBE9opIsYg82MvrESLyvPP6ehHJcbZfKyKFIrLD+X1Vt33mONuLReR/JBBGFQtwp4eADsQuoD19tmAcHV3Ky1tK3Q7FmEHTbwIQkRDgceB6IB9YKiL5PYrdC9Soai7wKPCIs70K+LSqzgDuBp7rts/PgWVAnvOz8DzOwwyB0z2AgiEB5I4ZzZzsBJ7feNQGiDMBy5c7gLlAsaoeVNU2YAWwqEeZRcAzzvJK4GoREVXdoqplzvYiINK5W0gDYlX1Q/X+73oWuPm8z8YMqvJTzcREhhITObLnAPDV7QXjOFDZaHMGm4DlSwLIALq3hpU623oto6odQC2Q1KPMZ4AtqtrqlO9+b93bMQEQkWUisklENlVWWq8MN5XVNgfUAHD9ueGCNEaFh1hjsAlYviSA3urme94Tn7WMiEzDWy30pQEc07tR9QlVLVDVgpSUFB/CNYOhpb3TOwn8CJ8DeCBGRYRy4wXpvLq9nAabLcwEIF8SQCkwrtt6JlDWVxkRCQXigGpnPRN4GbhLVQ90K5/ZzzHNMLLvRD1dSsB3Ae3psxdl0tTWyert5W6HYozf+ZIANgJ5IjJeRMKBJcCqHmVW4W3kBVgMvKmqKiLxwB+Bb6nq+6cLq2o5UC8i853eP3cBfzjPczGDaFdZHRC4Q0D0ZXZWAhNTRvG8DQ1hAlC/CcCp078fWAPsBl5Q1SIReVhEbnKKPQUkiUgx8HXgdFfR+4Fc4DsistX5GeO89rfAr4Bi4ADwJ3+dlPG/orI6IkI9JIwKdzuUISUi3H7ROAoP11BcUe92OMb4VagvhVR1NbC6x7aHui23ALf1st/3ge/3ccxNwPSBBGvcU1RWS1pcJJ4gfFzj1tmZ/PC1vbywqZR/+tRUt8Mxxm/sSWDTr84uZc/x+oAcAtoXyaMjuHrqGF7aXEq7DRBnAoglANOvkpONNLV1Bl39f3efLRhHVUMbb+6pcDsUY/zGEoDpV5HTABxsPYC6u2JSCmNiIuyZABNQLAGYfu0qqyMsRBgTGziTwA9UaIiHzxaM4+29FRytbnI7HGP8whKA6VdRWS15Y2II9QT3n8sd87IA+N36Iy5HYox/BPf/aNMvVWVXWR3T0mPdDsV16fFRfDJ/LM9vPEJLe6fb4Rhz3iwBmLOqqG/lZGObJQDHXQuyqWlq51V7MtgEAEsA5qyKymoByE+PczmS4WHBxCRyx4zmuQ9L3A7FmPNmCcCc1ekhIKamxbgcyfAgIty1IJttpbVssWGizQhnCcCcVVFZHdlJ0UEzB4Avbp2dSUxkKE+9d8jtUIw5L5YAzFkVWQPwx4yOCOWOuVn8aedxSmusS6gZuSwBmD7VtbRzpLqJaVb//zH3XJKDAL95v8TtUIw5Z5YATJ92O/X/+Wl2B9BTWlwUN1yQxoqNR6lvaXc7HGPOiSUA06fTQ0BYFVDv/ubSCTS0dtjwEGbEsgRg+rSrvI7k0RGMiQ3eQeDOZkZmHPMnJPLkuwdp7bAHw8zIYwnA9KmorI58u/o/q/s+kcuJulZeLDzmdijGDJglANOrto4uiivqrfqnH5fmJnNhZhy/WHuADpsrwIwwlgBMr/adqKe9U60BuB8iwv1X5XGkuolXtpe5HY4xA2IJwPRqlzUA++zqKWOYMjaGx986QGeXuh2OMT7zaU5gE3x2ldcRHR5CTtIot0NxxfIBDvl8/1W53L98C69sK+PmWRmDFJUx/mV3AKZXRWW1TE2LxeMJvkngz8WnpqeRnxbLj/68z+YNNiOGTwlARBaKyF4RKRaRB3t5PUJEnndeXy8iOc72JBF5S0QaROSxHvu87Rxzq/Mzxh8nZM5fV5fNATBQHo/wD9dN5kh1Ey9ssucCzMjQbwIQkRDgceB6IB9YKiL5PYrdC9Soai7wKPCIs70F+A7wzT4Of6eqznR+bLbtYeJwdRONbZ3WADxAV05OoSA7gf/5y36bMMaMCL7cAcwFilX1oKq2ASuART3KLAKecZZXAleLiKhqo6q+hzcRmBFixzHvHAAzMm0MoIEQ8d4FnKhr5en3baRQM/z5kgAygO73tKXOtl7LqGoHUAsk+XDsXzvVP98RkV4rm0VkmYhsEpFNlZWVPhzSnK8dpacID/UwKdXmABioeROSuGZqKo+/WUxFvV33mOHNlwTQ2xdzz75uvpTp6U5VnQFc5vx8vrdCqvqEqhaoakFKSkq/wZrzt+OYtwE4LMT6CJyLb98wlbbOLv7ztb1uh2LMWfnyP7wUGNdtPRPo+cTLmTIiEgrEAdVnO6iqHnN+1wPL8VY1GZd1dSk7j9VxQYZV/5yrnORR/L9Lx/P7wlK2HT3ldjjG9MmXBLARyBOR8SISDiwBVvUoswq421leDLypqn3eAYhIqIgkO8thwI3AzoEGb/zv0MlGGlo7mGEJ4Lzc/4lckkdH8N1VRXTZw2FmmOo3ATh1+vcDa4DdwAuqWiQiD4vITU6xp4AkESkGvg6c6SoqIiXAj4B7RKTU6UEUAawRke3AVuAY8KT/Tsucq53WAOwXMZFh/PMNU9h69BTPrTvsdjjG9MqnJ4FVdTWwuse2h7ottwC39bFvTh+HneNbiIFlIE+Y3jEvaxAj6d320loiQj3kjRk95O8daG6emcHLW8r44Wt7uCY/lYz4KLdDMuYjrJXPfMSO0lry02MJtQbg8yYi/NvN0+lS+PbLOzhLragxrrD/5eaMzi6lqKzWGoD9aFxiNN+8bjJv7a1kZWGp2+EY8xGWAMwZh6oaaGzrZEZmvNuhBJR7Ls5h3vhE/mVVEYdPNrodjjFnWAIwZ2wvdRqA7Q7Ar0I8wqO3zyTEIzywYqsNFmeGDUsA5oztpbVEhYUwMSU4h4AeTOnxUfz7rTPYevQUP3ljv9vhGANYAjDdFB6u4cJxcdYAPEhuvCCd2wvG8dhbxbyx64Tb4RhjCcB4NbV1sKu8joLsRLdDCWjfWzSN6RmxfO2FrZRUWXuAcZclAAPAtqO1dHYpc7IT3A4loEWGhfDzO+cQ4hG+9Fwh9S3tbodkgpglAAPA5iM1AMzKsh5Ag21cYjSPLZ1NcWUD9y3fYo3CxjWWAAzgrf/PHTOa+Ohwt0MJCpfmJfPvt0znnX2VfOf/dtpDYsYVNim8oatL2Xykhuvyx7odyog10EnkT7tycgorNh6lurGNKyf3PSuqG8OCmMBnCcBwsKqRU03tVv/vgmunpnKqqZ3Xd50gPjqcmeOsCs4MHUsAhs2HvfX/sy0BDDkR4dZZGdQ2t/Pi5lJio0KZkGwD8ZmhYW0AhsLDNcRHhzEh2R4Ac0NoiIfPzcsmcVQ4v113mOO1NpWkGRqWAAyFR2qYnZWAx9PrtMxmCESFh/CFi3MID/Hwmw8OUdPU5nZIJghYAghyFfUtFFc0UJBj1T9ui48O555LxtPW2cWv3z9EY2uH2yGZAGcJIMi9X1wFwGW5KS5HYgDGxkZy1/wcTjW188yHJbR2dLodkglglgCC3Lv7q0iIDmNaeqzboRhHTvIols7NouxUM8vXH6Gjyx4UM4PDegEFsd+tO8wbu06QnTSKFRuPuh2O6WZqWiw3z8zgpS3HeHnzMT4/PxsRa6Mx/mV3AEGsor6VupYOcm3+32GpICeRa6aOYcvRUzz+VrHb4ZgAZAkgiBVXNACQm2IJYLj6xOQxzBwXz3+9vo9Xt5e5HY4JMD4lABFZKCJ7RaRYRB7s5fUIEXneeX29iOQ425NE5C0RaRCRx3rsM0dEdjj7/I/Y/e2QK65oIGlUOAmjbPyf4er0g2IX5STwjRe2scUZtM8Yf+g3AYhICPA4cD2QDywVkfwexe4FalQ1F3gUeMTZ3gJ8B/hmL4f+ObAMyHN+Fp7LCZhz097ZxaGqRqv+GQFCQzz88vMFpMZG8sVnN1Fa0+R2SCZA+NIIPBcoVtWDACKyAlgE7OpWZhHwL87ySuAxERFVbQTeE5Hc7gcUkTQgVlU/dNafBW4G/nQe52IGYMuRU7R1djHRqn9GhNd2HufW2Rn8Yu0BPvPzD/jS5ROJDAvps7wNHmd84UsVUAbQvYtIqbOt1zKq2gHUAkn9HLO0n2MCICLLRGSTiGyqrKz0IVzji9d2HifEI3YHMIKMiYnkjrnZVNa3srKw1IaQNufNlwTQW918z788X8qcU3lVfUJVC1S1ICXFHlbyh64uZfWOciaNGX3Wq0gz/OSOGc3C6WnsKq/jPechPmPOlS8JoBQY1209E+jZHeFMGREJBeKA6n6OmdnPMc0g2XykhuN1LczIjHM7FHMOLpmYxPT0WNYUHedgVYPb4ZgRzJcEsBHIE5HxIhIOLAFW9SizCrjbWV4MvKlnuT9V1XKgXkTmO71/7gL+MODozTl5dXs54aEepo61p39HIhHh1tmZJI6KYMWGo9TZvMLmHPWbAJw6/fuBNcBu4AVVLRKRh0XkJqfYU0CSiBQDXwfOdBUVkRLgR8A9IlLarQfR3wK/AoqBA1gD8JDodKp/PjE5hQir/hmxIsNCuHNeFq0dnfzvhiN0dll7gBk4n4aCUNXVwOoe2x7qttwC3NbHvjl9bN8ETPc1UOMfm0qqqahv5YYL0mlosdEmR7LU2EhumZXJC5uOsqboOJ+akeZ2SGaEsSeBg8yr28uJDPNw9ZS+5581I8fMcfHMn5DEe8VV7DxW63Y4ZoSxBBBE6lraeXnLMa6bNpZRETYOYKD41IyxZCZE8eLmUk42tLodjhlBLAEEkRUbjtDQ2sEXL5vgdijGj0I9HpbOzcIjwvINR2jvtOGjjW8sAQSJto4unn6vhIsnJjE9w7p/BpqE6HBuK8ikvLaFV7eXux2OGSEsAQSJV7aVcbyuhS9eblf/gWrK2FiumJTCxpJqXt5S2v8OJuhZAggCqsqT7x5kcmoMV06yp6kD2TVTU8lJiuafXtrJ/hP1bodjhjlLAEFgxcaj7Dlez7LLJ9isUgEuxCMsuSiL6PAQ/u53m2lqs66+pm+WAALc0eomvv/qLi7JTeKWWb2Ot2cCTGxUGD9ZMoviyga+/fJOGzTO9Mn6Ag4jLe2dbCqp5khNM81tHby4uZT8tFjmZCdwWV4ySaMjBnS8ri7lG7/fhojww8UX4vHY1X+wuDQvmQeuzuPHb+xn7vhElsy14aHNx1kCGAY6Orv4y54K1h08SWtHF0mjwhkVEUqIR3hpcynPrTtMWIhw3bSxLJ2bxYIJSf1+mXd1Kf/xp91sOFTNDxdfQEZ81BCdjRkuvnJVHoWHa3hoVRHTM+Ks95f5GEsALmtu6+S36w9zqKqRGRlxXJaXTGZCNOCd1KOzS9ldXsdLm4/x4uZSXt1eTnZSNEsuymLxnExSYj5+V9DY2sHXX9jKmqIT3DEvi9vmZH6sjAl8IR7h0dtn8umfvseyZzfxh/sv7fXvxQQvSwAuqm1u59fvH+JkQxu3zclkVlbCx8qEeOTM1ds/LpzMazuPs3zDER55bQ///fpePjktlaunpDImNoIQEdbur+SP28spO9XMQzfm84VLcqzhN4glj47gybsKWPyLD/jybwtZ/sV5RITaIIDGyxKAS9o7u/jtusPUNrdzzyU5Pk3NGBkWws2zMrh5VgbFFQ08v/EIKwtLWb3j+JkyYSHC/AlJ/ODWC7g0L3kwT8GMENMz4vjv22Zy3/LNfOulHfz3bRfaRYEBLAG45o/byzl2qpnPzcs+p3l5c8eM5p9vyOcfrptCaU0TVQ1tNLV1MDs7gdjIsEGI2IxkN1yQRnHFJB59Yx9pcZH8w3VT3A7JDAOWAFyw+UgNG0qquTwvhfz085uUJTzUw4SU0Uyw57tMP756dS7H65p5/K0DpMZGcteCHLdDMi6zBDDEapvbWbWtjPHJo7g2P9XtcEwQERH+ddF0Kuvb+O6qIkZHhHLrbOsgEMzsQbAhtnpHOV1dymdmZxJi/fLNEAsN8fDYHbNYMCGJb/x+m40ZFOQsAQyhd/ZVsuNYLddJLmYAABAmSURBVFdOTiFxVLjb4ZggFRkWwlN3X+RNAi9sY2WhJYFgZQlgiLR2dPLdVUUkjQrnsjyrsDfuigr3JoGLJybzzd9v4xdrD9iQEUHIEsAQ+d26IxyqauTTF6YTFmL/7MZ9UeEhPHVPAZ++MJ0f/GkP33tlFx02mUxQsUbgIdDc1snP3j7AgglJTEqNcTscEwSWrz/ic9mf3D6T1JgIfvXeIYorGvjp0lkkWBVlUPDpUlREForIXhEpFpEHe3k9QkSed15fLyI53V77lrN9r4hc1217iYjsEJGtIrLJHyczXP123WGqGlr52rWT3A7FmI/xeIRv35jPDxdfwIZD1dz0+HtsLz3ldlhmCPR7ByAiIcDjwLVAKbBRRFap6q5uxe4FalQ1V0SWAI8At4tIPrAEmAakA2+IyCRV7XT2+4SqVvnxfIadprYOfrH2AJfmJjN3fCLFFQ2D9l4DueozpqfPFoxjUmoMf/vbQm792Qd87dpJfPmKidZbLYD5cgcwFyhW1YOq2gasABb1KLMIeMZZXglcLd5nzRcBK1S1VVUPAcXO8YLGsx8e5mRjG1+7Ns/tUIzp18xx8bz2wOVcN30s/7lmL0ue+JCj1U1uh2UGiS9tABnA0W7rpcC8vsqoaoeI1AJJzvZ1PfY9PSuJAq+LiAK/VNUnentzEVkGLAPIyhpZY5o3tHbwy7UHuGJSCnOyEwe8v13RGzfERYfx2NJZXDN1DA/9XxHX/+RdvnfTNG6dnWFjCAUYX+4AevvEe/YX66vM2fa9RFVnA9cD94nI5b29uao+oaoFqlqQkjKyuk8+80EJNU3tVvdvRhwR4ZZZmax+4DLy02L5xu+38aXnCqmob3E7NONHvtwBlALjuq1nAmV9lCkVkVAgDqg+276qevp3hYi8jLdq6J1zOIdhqa6lnSfeOcjVU8Ywc1y82+EY06f+7jRvmplO0uhw/rzrBFf88G1+8JkZ3HRhut0NBABf7gA2AnkiMl5EwvE26q7qUWYVcLezvBh4U71PlawClji9hMYDecAGERklIjEAIjIK+CSw8/xPZ/j4zfsl1Dbb1b8Z+TwiXJaXwv1X5ZI8OpwHVmzlb3+7mcr6VrdDM+ep3zsAp07/fmANEAI8rapFIvIwsElVVwFPAc+JSDHeK/8lzr5FIvICsAvoAO5T1U4RSQVedq4gQoHlqvraIJyfK2qb23ny3YNcm59q0/CZgDEmJpIvXTGRhtYOfvTnfax/dC0PL5rOjRek2d3ACCUj6fHvgoIC3bRp+D8y8KM/7+N//rKfP371UqalfzQBWMOuGenumJfF/hP1fHPldrYdPcX108fyb7fMsPGthjERKVTVgp7bbUwCPzvV1MbT7x3i+uljP/blb0ygyEuN4cUvL+AfF07mL7srWPjjd/igOKAf6QlINhSEnz357kEa2zr4+2us7t8Epu53sfFR4Sy7fALPbzzKnb9az+WTUrhmaupHHh67Y97I6r4dTOwOwI+qG9v4zfsl3DAjjcljbcwfExzS46O47xO5zMlOYO2+Sp545wDVjW1uh2V8YAnAj36x9gBN7Z08cLU99WuCS3ioh1tnZ7J0bhaVDa389M39bLPxhIY9SwB+Unaqmd98UMItszLIsxE/TZCakRHHV67KIzU2kuc3HuWlzaU0tXW4HZbpgyUAP/nxG/tA4evW798EuYTocL542QSunJRC4eEabnrsffYcr3M7LNMLSwB+sP9EPSsLS/n8gmwyE6LdDscY14V4hE9OG8sXLhnPqaZ2Fj32Pr9bf9hmHRtmLAH4wQ/X7GVUeCj3fSLX7VCMGVZyx4zmTw9cxtzxifzzyzu5b/lmapvb3Q7LOCwBnKe391bw510n+PKVE+1BGGN6kRITwTNfmMuD10/h9aITfOon77L+4Em3wzJYAjgvLe3eid4nJI/iby4b73Y4xgxbHo/w5Ssm8sKXFxDiEW5/Yh0P/WEnja3WQOwmSwDn4ZdrD3L4ZBMPL5pORGiI2+EYM+zNzkrgtb+/jHsuzuG5dYe55kdreXV7mbUNuMQSwDk6VNXI428Xc+MFaVyal+x2OMaMGNHhofzLTdNY+eUFJESHc//yLSx9ch1bjtS4HVrQsQRwDto6uvjq/24hKiyE79yY73Y4xoxIc7ITeeUrl/L9m6ez70QDt/zsA/7mmY02If0QsrGAzsF/rtnDjmO1/OJzc0iNjXQ7HGNGrBCP8Ln52dwyK4PffFDCL9ce4KbH3icnKZqLJyYzJS2GUM/Zr1NtrKFzZwlggN7aW8GT7x7ic/OzWDh9rNvhGBMQRkV4u1HftSCbB1/cwfsHqli+4QjR4SFckBnP7Kx4MuKjbN4BP7MEMAA7j9XyleVbmDI2hm/fYFU/xvhioHNgXJKbzPwJSRRXNLD5SA2bSqpZd/AkKTERXJgZR35aHKmxEZYM/MASgI9Kqhq559cbiI0M5el7LiIyzHr9GDNYQjzC5LExTB4bQ3NbJzvLatl8pIY3dlfwxu4KEkeFk58Wy9S0WDq79CPDTxvfWQLwQXFFA/f8egOdXcqzy+aRHh/ldkjGBI2o8BAuyknkopxE6lra2VNez67yWj48eJL3iqt4cXMpV08ZwzX5qVySm8zoCPta85X9S/Xjrb0VfHX5FsJDPTzz/+aSO2a02yEZE7RiI8OYOz6RueMTaW3vZF9FA01tHbxWdJzfF5YSFiIUZCdy5eQUrpicwuTUGKsqOgtLAH1obO3gp28W88Q7B5g8NpZf3V1Ahl35GzNsRISFMCMjjjvmZdHW0UXh4Rre3lfB2r2V/Mef9vAff9pD8ugI5o1P5KKcBC4an8iUsbFWXdSNJYAeWto7eWVbGf/9+j6O17Vw25xMvrdoGtHh9k9lzHAVHuphwcQkFkxM4lvXT6W8tpm1eytZd/AkG0tq+OOOcgBiIkOZlh7L5NQYJo2NYcrYGPJSY4iNDHP5DNzh07eaiCwEfgKEAL9S1R/0eD0CeBaYA5wEblfVEue1bwH3Ap3AV1V1jS/HHEqtHZ0UHq7hjV0VvLSllFNN7czIiOPxO2czJzvBrbCMMecoLS6KJXOzWDLX+4xAaU0TG0uq2VhSw+7yOlYWltLY1nmmfGxkKOnxUaTHR5EWF8nY2EgSRoWTEB1OQnQY8dHhJIwKIyE6PKA6gPSbAEQkBHgcuBYoBTaKyCpV3dWt2L1AjarmisgS4BHgdhHJB5YA04B04A0ROT1jSn/H9JvapnZONrZS09ROTWMbNU1tVDe2caiqkf0VDRSV1dLS3kWoR/jktFTunJfNgglJeOxW0ZhhbyDdTKenxzE9PQ5V5VRzOyfqWqioa+VUcxu1Te3sKa9j3cGTNHVLDj1FhnlIiA4nPjqcuKhQRkeEERMZyuiIUEZHhhITGUqMszw6IoxRESFEhIYQEeohItRD+OmfEO/vnlVSwl/XuzdfRIR6/N6e4csdwFygWFUPegOSFcAioPuX9SLgX5zllcBj4o10EbBCVVuBQyJS7BwPH47pN7f87H0OVjV+bHtCdBh5qTEsuSiLS3OTmTchkZggvRU0JpiIiHN1H86UXp7n7Ojsoqmtk6a2ThZMTOJUU5v3ArKp7czyqaY26lo6OHaqmYbWdhpaOqhv6aCja3AGttvzrwv9fvfhSwLIAI52Wy8F5vVVRlU7RKQWSHK2r+uxb4az3N8xARCRZcAyZ7VBRPb6ELNPDgNb/XWw/iUDVUP3dq4LpvMNpnMFO19XRD1yXrtn97bRlwTQ2z1HzxTXV5m+tvc2uEevaVNVnwCeOFuAI4GIbFLVArfjGCrBdL7BdK5g5xtIfBkNtBQY1209Eyjrq4yIhAJxQPVZ9vXlmMYYYwaRLwlgI5AnIuNFJBxvo+6qHmVWAXc7y4uBN9U7w8MqYImIRIjIeCAP2ODjMY0xxgyifquAnDr9+4E1eLtsPq2qRSLyMLBJVVcBTwHPOY281Xi/0HHKvYC3cbcDuE9VOwF6O6b/T29YGfHVWAMUTOcbTOcKdr4BQ2wqNmOMCU42I5gxxgQpSwDGGBOkLAEMARFZKCJ7RaRYRB50Ox5/EpFxIvKWiOwWkSIRecDZnigifxaR/c7vgBpTQ0RCRGSLiLzqrI8XkfXO+T7vdG4Y8UQkXkRWisge5zNeEMifrYh8zfk73iki/ysikYH62YIlgEHXbSiN64F8YKkzREag6AC+oapTgfnAfc75PQj8RVXzgL8464HkAWB3t/VHgEed863BOzxKIPgJ8JqqTgEuxHvOAfnZikgG8FWgQFWn4+2gcnpom0D8bC0BDIEzQ2moahtwetiLgKCq5aq62Vmux/sFkYH3HJ9xij0D3OxOhP4nIpnADcCvnHUBrsI7DAoEyPmKSCxwOd5efqhqm6qeIoA/W7w9I6Oc55migXIC8LM9zRLA4OttKI2MPsqOaCKSA8wC1gOpqloO3iQBjHEvMr/7MfCPQJezngScUtUOZz1QPuMJQCXwa6e661ciMooA/WxV9RjwX8ARvF/8tUAhgfnZApYAhoIvQ2mMeCIyGngR+HtVrXM7nsEiIjcCFapa2H1zL0UD4TMOBWYDP1fVWUAjAVLd0xunLWMRMB7v6MWj8Fbd9hQIny1gCWAoBPywFyIShvfL/3eq+pKz+YSIpDmvpwEVbsXnZ5cAN4lICd7qvKvw3hHEO9UGEDifcSlQqqrrnfWVeBNCoH621wCHVLVSVduBl4CLCczPFrAEMBQCetgLp/77KWC3qv6o20vdhwe5G/jDUMc2GFT1W6qaqao5eD/LN1X1TuAtvMOgQICcr6oeB46KyGRn09V4n+oPyM8Wb9XPfBGJdv6uT59vwH22p9mTwENARD6F9yrx9LAX/+ZySH4jIpcC7wI7+Gud+D/hbQd4AcjC+x/rNlWtdiXIQSIiVwLfVNUbRWQC3juCRGAL8DlnHowRTURm4m3sDgcOAl/Ae+EYkJ+tiHwPuB1v77YtwN/grfMPuM8WLAEYY0zQsiogY4wJUpYAjDEmSFkCMMaYIGUJwBhjgpQlAGOMCVKWAIzxgYjcIiIqIlPcjsUYf7EEYIxvlgLv4Ux3akwgsARgTD+ccY4uwTsM8BJnm0dEfuaMHf+qiKwWkcXOa3NEZK2IFIrImtPDJhgz3FgCMKZ/N+MdE38fUC0is4FbgRxgBt6nRRfAmXGRfgosVtU5wNNAwDz5bQJLaP9FjAl6S/EO5QHeIQGWAmHA71W1CzguIm85r08GpgN/9g4nQwjeoYWNGXYsARhzFiKShHfEz+kioni/0BV4ua9dgCJVXTBEIRpzzqwKyJizWww8q6rZqpqjquOAQ0AV8BmnLSAVuNIpvxdIEZEzVUIiMs2NwI3pjyUAY85uKR+/2n8R74QhpcBO4Jd4Rz+tdab9XAw8IiLbgK14x5Q3Ztix0UCNOUciMlpVG5xqog3AJc4Y+saMCNYGYMy5e1VE4vGOlf+v9uVvRhq7AzDGmCBlbQDGGBOkLAEYY0yQsgRgjDFByhKAMcYEKUsAxhgTpP4/eTkDG0qUMGMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"sns.distplot(dataset['Age'].dropna())" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Here the Age columns in normally distributed that means we have to use empricial formula to calculate the Boundaries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"-13.88037434994331\n", | |
"73.27860964406095\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"(None, None)" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"upper_boundary=dataset['Age'].mean()+3*dataset['Age'].std()\n", | |
"lower_boundary=dataset['Age'].mean()-3*dataset['Age'].std()\n", | |
"print(lower_boundary),print(upper_boundary)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"count 714.000000\n", | |
"mean 29.699118\n", | |
"std 14.526497\n", | |
"min 0.420000\n", | |
"25% 20.125000\n", | |
"50% 28.000000\n", | |
"75% 38.000000\n", | |
"max 80.000000\n", | |
"Name: Age, dtype: float64" | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"dataset['Age'].describe()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment