Skip to content

Instantly share code, notes, and snippets.

@ashutoshsahu2015
Created March 20, 2021 08:02
Show Gist options
  • Save ashutoshsahu2015/59868e00a48980a6440fa253c3997f6d to your computer and use it in GitHub Desktop.
Save ashutoshsahu2015/59868e00a48980a6440fa253c3997f6d to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'A': 0.4666666666666667,\n",
" 'B': 0.7446808510638298,\n",
" 'C': 0.5932203389830508,\n",
" 'D': 0.7575757575757576,\n",
" 'E': 0.75,\n",
" 'F': 0.6153846153846154,\n",
" 'G': 0.5,\n",
" 'M': 0.29985443959243085,\n",
" 'T': 0.0}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_ordinal=dataset.groupby(['Cabin'])['Survived'].mean().to_dict()\n",
"mean_ordinal"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Survived</th>\n",
" <th>Cabin</th>\n",
" <th>Cabin_mean_ordinal</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>M</td>\n",
" <td>0.299854</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>C</td>\n",
" <td>0.593220</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>M</td>\n",
" <td>0.299854</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>C</td>\n",
" <td>0.593220</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>M</td>\n",
" <td>0.299854</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Survived Cabin Cabin_mean_ordinal\n",
"0 0 M 0.299854\n",
"1 1 C 0.593220\n",
"2 1 M 0.299854\n",
"3 1 C 0.593220\n",
"4 0 M 0.299854"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset['Cabin_mean_ordinal']=dataset['Cabin'].map(mean_ordinal)\n",
"dataset.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment