Skip to content

Instantly share code, notes, and snippets.

@amcdawes
Created April 18, 2017 20:01
Show Gist options
  • Save amcdawes/9302c540079f814924fc4d7278a87d12 to your computer and use it in GitHub Desktop.
Save amcdawes/9302c540079f814924fc4d7278a87d12 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Boltzmann Statistics\n",
"A review of the Boltzmann distribution, exploration of the $kT$ factor, and observations of it's behavior in various systems.\n",
"\n",
"As usual, run the cell below to import necessary packages. Note that we import $k$ from the `scipy.constants` package. There are many other constants available too."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"from scipy.constants import k"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def b(E,T):\n",
" return np.exp(-E/(k*T))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1) What range of energies corresponds to kT at human-scale temperatures?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2) Plot the Boltzmann factor at room temperature and over an energy range that shows the full behavior of the function (hint: guess the shape of the function first, and work to find that in your plot)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3) Plot the Boltzmann factor at one Energy and over a temperature range that shows the full behavior of the function (hint: it's not just an exponential)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4) Use this template to write a function that returns the partition function for a system with a list of allowed energies:"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def Z(Elist,T):\n",
" \"\"\"Note the Elist must be a list for this to work. For example, use:\n",
" Z([1e-21,2e-21],300)\n",
" to calculate Z at 300K for a system with states at 1e-21 J and 2e-21 J of energy.\"\"\"\n",
" Z_value = 0\n",
" for E in Elist:\n",
" Z_value += ...\n",
" \n",
" return Z_value"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1.4025150702306313"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Z([1e-21,2e-21],300)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plot Z vs E value and compare to Eq. 6.20"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118dd7320>]"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXdxvHvb7IBYQskEMjCFpYAgQTCVlyKIgIqiqJ1\nQ7RatLUub7XWWtv6trWb1dYdURQXFDdUpCii4FbWELJBWMKSEJJA2AIhkG2e948MvmlMyASSeSYz\nv8915WIy55k5dw5wz+TMOc8RYwxKKaX8h8N2AKWUUp6lxa+UUn5Gi18ppfyMFr9SSvkZLX6llPIz\nWvxKKeVnGi1+EYkRkZUiki0im0TknnrG3CAiGa6vVSIyvNay3SKSKSJpIpLS3D+AUkqppgl0Y0wV\ncJ8xJlVEOgAbRGS5MWZzrTG7gPONMYdFZAowFxhTa/kEY8yB5outlFLqTDVa/MaYQqDQdfuYiGQD\nUcDmWmNW1XrIGiC6mXMqpZRqJk3axy8ivYEkYO1pht0KfFLrewN8JiIbRGR2UwMqpZRqXu7s6gFA\nRNoD7wP3GmOONjBmAjXFf06tu8cbYwpEpBuwXES2GGO+ruexs4HZAKGhoSMHDRrUhB9DKaX824YN\nGw4YYyLcGSvuzNUjIkHAEmCZMeaJBsYMAz4AphhjtjUw5hGg1Bjzj9OtLzk52aSk6OfASinlLhHZ\nYIxJdmesO0f1CDAPyD5N6ccCi4CZtUtfREJdHwgjIqHAJCDLnWBKKaVahju7esYDM4FMEUlz3fcQ\nEAtgjJkD/A7oCjxX8zpBleuVpzvwgeu+QOBNY8ynzfoTKKWUahJ3jur5FpBGxtwG3FbP/TuB4d9/\nhFJKKVv0zF2llPIzWvxKKeVntPiVUsrPaPErpZSf8ZniP1lWypo3fk/Wfz62HUUppZosfcU7rHnz\nT1SUn2zxdflM8QcGBdMv51Wq/vOs7ShKKdVkgWueInr7GwQFBbf4unyq+HN6XsbQ42s5UJBrO45S\nSrktPyeLIRWZ7Ol9JeJo+Vr2meIHiL5gNoHiZPvyubajKKWU2/asmEu1EeIu8sw8lj5V/DFxCWwO\nGkr07kUYp9N2HKWUalRVZQVxBYvJajeaiJ69PbJOnyp+gONDriPGFJC97jPbUZRSqlGbvllEBIep\nTpzpsXX6XPEPmTiTUtOW46tfsR1FKaUa5dzwOgfpRMKEazy2Tp8r/nbtO7Gp60UMObKSYyWHbMdR\nSqkGHSjaw9DS1WzvPpWg4BCPrdfnih8g7JxbaSflbP5M3/UrpbxXzucvESTV9Jjg2YsT+mTx9088\nj92OWMK2LrQdRSml6mWcTnrsfI8tgfH0GjTCo+v2yeIXh4OiflczoGobuzavtx1HKaW+Z+uGFfRy\n5nM0/lqPr9snix9g4KSfUGEC2PfVS7ajKKXU9xxd9TJlJoTBF83y+Lp9tvjDInqQ1WE8A/ct9cjc\nF0op5a7jx44w5NAXZIVdSPuOYR5fv88WP0DgyFmEcZSsFW/ZjqKUUt/ZvPxVQuUkHcfdYmX9Pl38\nQ869gn10JTB9ge0oSin1nQ7ZC8lzRDFw1EQr6/fp4g8IDGRn9OUMPZFC0Z4c23GUUorcLakMqtxM\nQe+rPDIhW318uvgBYi+YjUMMuz5/0XYUpZSi8MuXqDIO4ib9xFoGny/+qL7xZIUk0itvEc7qattx\nlFJ+rKL8JP2LlpAZOpbwyFhrOXy++AHKh99ET7OfrK8/sB1FKeXHMr9YQFdKcIz6sdUcflH8CRfe\nwEE6Ub1+nu0oSik/1ibtVQqJYOi5063m8IviDw5pw7ael5NwfA378nfYjqOU8kN529IYUpFObu9r\nCAgMtJrFL4ofIHbizwgUJzs/m2M7ilLKDxV8MYdKE0Dc5DtsR/Gf4o/qG09Gm5H0zXufqsoK23GU\nUn7k5InjDNr3MZkdxlv9UPcUvyl+gKqkW+jOQbK+et92FKWUH8la/jqdKSVo9G22owB+VvwJE66h\nmDBkw8u2oyil/Eho5mvkSw+GjL/UdhTAz4o/KDiEnOjpJJStpzB3q+04Sik/sDs7hfjKTeT3vQZH\nQIDtOICfFT9An0k/wwC7P3vedhSllB/Yt+J5KkwgAy6+3XaU7/hd8UfG9ier3Wj67/2Ayopy23GU\nUj7sxPFjxBcvJaPj+XTpFmU7znf8rvgBTPKPCecIWSv10oxKqZaT+dl8OlJG23He8aHuKY0Wv4jE\niMhKEckWkU0ick89Y24QkQzX1yoRGV5r2WQR2SoiOSLyYHP/AGci4fwZFBFOYOp821GUUj6s06bX\nyXVEM3jsZNtR/os77/irgPuMMfHAWOBOERlcZ8wu4HxjzDDgj8BcABEJAJ4FpgCDgevqeazHBQQG\nsiv2KhLKU9m7c5PtOEopH7QjYxUDq7ZSGHettemXG9JoGmNMoTEm1XX7GJANRNUZs8oYc9j17Rog\n2nV7NJBjjNlpjKkAFgKXN1f4s9Hv4p9SZRzkLX/OdhSllA868NULnDRBxF8823aU72nSy5CI9AaS\ngLWnGXYr8InrdhSwp9ayfOq8aNjSLaoPmaHjGFi4mPKTZbbjKKV8SOnRwww5sIzMzhfQqWt323G+\nx+3iF5H2wPvAvcaYow2MmUBN8f/q1F31DDMNPHa2iKSISEpxcbG7sc5K4Nif0IWjZCyb75H1KaX8\nw6ZPXqC9nKDDud5zCGdtbhW/iARRU/oLjDGLGhgzDHgJuNwYc9B1dz4QU2tYNFBQ3+ONMXONMcnG\nmOSIiAh385+VIeOnkeeIolPmKx5Zn1LK9xmnk8itr7M9sD8DR0ywHade7hzVI8A8INsY80QDY2KB\nRcBMY8y2WovWA/1FpI+IBAPXAovPPnbzcAQEUDhgJgOqtrEt9UvbcZRSPmDTfz6mlzOfI0Nv8boP\ndU9xJ9V4YCZwgYikub6misgdInJqftHfAV2B51zLUwCMMVXAz4Fl1Hwo/I4xxqsOoxk85XaOmzaU\nfPWs7ShKKR9QuXoOh+lIwsU3247SoEavBmCM+Zb699XXHnMbUO8ZCsaYpcDSM0rnAR06dWFtxCUk\nFX/EwX35dO0e3fiDlFKqHgW7tzLs+GrWRc9iXNtQ23Ea5J2/h3hY5EV3EyxVbPvkGdtRlFKtWO6y\nmg7pM/kuy0lOT4sf6DUwkcyQJPrtflsv0qKUOiMny0qJL1xEevtziIyJsx3ntLT4XaqTZ9ONQ2R8\nvsB2FKVUK5Sx7GU6U0rID35qO0qjtPhdEiZcQ4F0I2TjPNtRlFKtjHE66ZI1n12OXgweN8V2nEZp\n8bsEBAaS1/c6hlRksjPrdCcmK6XUf9ua8gVx1TvYH3+T1x7CWZv3J/SgQVN+xkkTRPEK/ZBXKeW+\n0m+e5yjtGDrZu6ZfbogWfy2dwyPJCLuIhIPLKDnkmWkjlFKt24GCXIYf/ZLN3S4jtENn23HcosVf\nR5cJP6edlJP9ic7aqZRq3PZPnyFIqomedLftKG7T4q8jbvh4soMGE5OzAGd1te04SikvVlF+kv55\n75DeZhTRcUNtx3GbFn89yhJvJcrsI2PF27ajKKW8WMZnrxLOERjtfXPun44Wfz2GXTSTfXQlaP3z\ntqMopbyUcTrpnPYCeY4oEs6/ynacJtHir0dQcAi7+t3IkIoMctL/YzuOUsoLZa9dRlz1Dgrjf4wj\nIMB2nCbR4m9A/KV3U2ZCOLziX7ajKKW8UPk3T3OYDgyb6p0XWzkdLf4GdAoLJ6PbNBKPfMH+vbts\nx1FKeZH8nCyGH1/FluiraRvawXacJtPiP42YKfcRgJMd//6n7ShKKS+y99MnqCKA/pf+j+0oZ0SL\n/zSi+saT1v4cBhe8R1lpie04SikvUHKomITiJaSHXUR4ZKztOGdEi78R7c67m04cJ/Pfc2xHUUp5\ngc1LnqKdlNN1Yut8tw9a/I0aOGoi2wIH0HPLfD2hSyk/V1F+kn473yAzJIm+Q8fYjnPGtPgbIQ4H\nx5JuJ8YUkLHyHdtxlFIWZSybTzcO4Rx7p+0oZ0WL3w3DJ91EEREErdP5e5TyV8bppHP6XHIdMSSc\nd6XtOGdFi98NgUHB7I47dULXt7bjKKUs2LzmU+Kqd7BvcOs7YasuLX43Db70Lo6bNhz5Qk/oUsof\nVXz7NIfpyLCprWtenvpo8bupY+euZHa/nOElK/SELqX8zJ6cTIYfX82WmGto06697ThnTYu/CWKn\n/AIHTnZ+/JjtKEopDyr45B81J2xdcq/tKM1Ci78JevYZxMaOFzC0cBElhw/YjqOU8oADRXkkHvg3\nG8MvITwyxnacZqHF30Rhkx6gvZxg8+InbEdRSnnA9sWPEUgVUVMesB2l2WjxN1G/hLFktBnFgF1v\ncLKs1HYcpVQLOnrkIEP3vktah/Nb1RW2GqPFfwYCzvsFXSkhfYke16+UL9u0+F90kBN0uuiXtqM0\nKy3+MzB47GS2Bg4iJvslqiorbMdRSrWAkyeO03/na2S0GUnc8HNsx2lWWvxnQBwOykbfRU+zj7Rl\n823HUUq1gPQlzxPOERzntt7J2BqixX+Ghl94HbmOGLqkPotxOm3HUUo1o6rKCqI3z2Vb4ACGjLvE\ndpxmp8V/hhwBAewfdgd9nbvJ+Op923GUUs0o/bPXiDL7KB11N+LwvZps9CcSkRgRWSki2SKySUTu\nqWfMIBFZLSLlInJ/nWW7RSRTRNJEJKU5w9s2fMptFBFO0OonbUdRSjUT43TSOfVZ8hxRJE683nac\nFuHOS1kVcJ8xJh4YC9wpIoPrjDkE3A38o4HnmGCMSTTGJJ95VO8THNKG3QNuYXBFJlvWf247jlKq\nGWR+/QH9qndSlHBHq5+MrSGNFr8xptAYk+q6fQzIBqLqjNlvjFkPVLZISi82bNpdHKE9J1Y+bjuK\nUqoZBKx6kv10IdEHJmNrSJN2XolIbyAJWNuEhxngMxHZICI+tyXbte9Eduz1JJWtIjd7g+04Sqmz\nsDVlBUMq0tnZ/xaCQ9rYjtNi3C5+EWkPvA/ca4w52oR1jDfGjACmULOb6LwGnn+2iKSISEpxcXET\nnt6++Gn3UWZCKP7kL7ajKKXOQtmKxyghlIRpd9uO0qLcKn4RCaKm9BcYYxY1ZQXGmALXn/uBD4DR\nDYyba4xJNsYkR0RENGUV1nUOjyQj8kqSSj4nPyfLdhyl1BnYkbGKpLJVbI69kdAOnW3HaVHuHNUj\nwDwg2xjTpJnJRCRURDqcug1MAnyyGeOmP0QlgRQu+ZPtKEqpM1Cy7M8cpR2Dp/vOZGwNCXRjzHhg\nJpApImmu+x4CYgGMMXNEJBJIAToCThG5FxgMhAMf1Lx2EAi8aYz5tHl/BO8QHhnLmu5XkrzvXfbu\n3ERU3yG2Iyml3LQzay0jjn/D6pjbGBcWbjtOi2u0+I0x3wLSyJgiILqeRUeB4WcWrfXpd8VDVL+w\niL0fP0rUPW/ajqOUctORTx+l1LRl8BW+/24f9MzdZhXRszdp3S4n6dCnFOzeajuOUsoNu7NTSDz2\nNZnR19Kpa3fbcTxCi7+Z9bniYQzCnsW6r1+p1uDg0kc5QQjx0x+0HcVjtPibWbeoPmyMmEbSwX9T\nlLfddhyl1Gnkbkkl6ehKMqKuoXN4pO04HqPF3wJ6Xf4bAHI/0nf9Snmz4qWPcpJgBk1/yHYUj9Li\nbwGRMXFsDL+UpANL2Je/w3YcpVQ99mxPJ6nkCzJ6zCAsooftOB6lxd9CYqf9BsGw+8NHbUdRStWj\naMmjVBBEfz97tw9a/C2mR6+BbOwyhcTixRQX7LYdRylVS35OFklHlpMeeRVdu9d3JLpv0+JvQdHT\nfksA1ez4QPf1K+VNCpY8ShUBxPnhu33Q4m9RPfsMIjVsMkn7P9R9/Up5iT3b0xlx+FPSuk8nPDLW\ndhwrtPhbWMz0RxCc7F70iO0oSilg/+JHqCCIuCt/ZzuKNVr8LaxHr4Fs7DadkQeX6MydSlm2I3MN\nI4+tID36esIjY2zHsUaL3wP6XfV7KgiiaPHvbUdRyq8dW/p7jhLK4BkP245ilRa/B4RHxpIedS0j\nSr5gZ1ZTLl6mlGouW9YtJ/HEGjb1uYVOfjAD5+lo8XvI4Bm/pVTaUrL0EdtRlPI7xumk+vP/5QCd\nGX6Vf8zAeTpa/B7SqUsEm3rPIqlsFVtSvrAdRym/kvXtRwypyCRn4O20a9/JdhzrtPg9aNhVD3KI\njlQt/4PtKEr5DeN0EvL1nykigqTp99qO4xW0+D0otENntg24naHlaWR985HtOEr5hbTP32RA1Tby\nht9NSJt2tuN4BS1+D0uc/j8UEU7QV49inE7bcZTyadVVVYSt+Rt5jihGXHqH7TheQ4vfw9q0DSUv\n4S4GVm0l/YuFtuMo5dM2Ln2R3s48ipN/SWBQsO04XkOL34IR037GHulJp9V/pbqqynYcpXxSRflJ\nemz8JzkB/Ui6+CbbcbyKFr8FgUHB7B91P32cuWz4+HnbcZTySamLHifK7OP4Ob/GERBgO45X0eK3\nZMTkW9gaOJDe6U9w4vgx23GU8iklhw8waOtzZIYkMez8q2zH8Tpa/JaIw4Hzoj/SjUOkvaPTNivV\nnLLf/h0dzXHaXfJnxKE1V5duEYvix1xMaui5DN/9CgeK8mzHUconFOzawojCt9kQNpl+w35gO45X\n0uK3rNv0vxJEFTve+Y3tKEr5hMJFv6YaB7Ez9LKnDdHityw6bigbul9F8sGP2Z2dYjuOUq3a1pQV\njDy2grSYG+ke3c92HK+lxe8FBl3zR45LW0oW/9p2FKVaLeN04lz2MAfpRMI1/nuRFXdo8XuBzuGR\nbI6bzfAT68j8WqdyUOpMbFy+gPjKTeQMuZv2HcNsx/FqWvxeIvGqByiQbrT76vd6UpdSTVRRfpJu\nax4l1xHDyCvuth3H62nxe4k2bUMpSH6AftW7SF0yx3YcpVqV1EVPEG0KOXLOwzo1gxu0+L3IyCm3\nsi1wAL3SHteTupRyU8nhAwzc+hxZIYkM++E1tuO0Clr8XkQcDqov+lPNSV0LH7EdR6lWIfuth+hk\nSmkzVU/WcpduJS8TP+ZiUjpcyIi8V9m7M9t2HKW82q7N60ne9y7ru15G3PDxtuO0Go0Wv4jEiMhK\nEckWkU0ick89YwaJyGoRKReR++ssmywiW0UkR0QebM7wvir22sepxsH+935hO4pSXss4nZR9eB/H\npS0Drvu77Titijvv+KuA+4wx8cBY4E4RGVxnzCHgbuAfte8UkQDgWWAKMBi4rp7Hqjq6RfUhvd/t\nJJWtIuPL923HUcorpX76KkMq0tkSfw9hET1sx2lVGi1+Y0yhMSbVdfsYkA1E1Rmz3xizHqis8/DR\nQI4xZqcxpgJYCFzeLMl93Ihrfs0e6UnYVw9TUX7SdhylvEpZaQlR6/7EjoA+JF91n+04rU6T9vGL\nSG8gCVjr5kOigD21vs+nzouGql9Im3YcOu8PxJgCUt/5s+04SnmV9IWPEMkByi/6KwGBgbbjtDpu\nF7+ItAfeB+41xhx192H13GcaeP7ZIpIiIinFxcXuxvJpwydcTVq7cSTkvEBxwW7bcZTyCnt3bmLk\nntdI6TiRwWMn247TKrlV/CISRE3pLzDGLGrC8+cDMbW+jwYK6htojJlrjEk2xiRHREQ0YRW+LWLG\n4wRSTe5C/XVWKYDi9+6jkkB6Xfu47SitljtH9QgwD8g2xjzRxOdfD/QXkT4iEgxcCyxuekz/FdV3\nCKkxM0k++jnZa5fZjqOUVekr3yWxbDWZ/WYT0bO37TitlhhT756X/x8gcg7wDZAJOF13PwTEAhhj\n5ohIJJACdHSNKQUGG2OOishU4F9AAPCyMabRSbKTk5NNSopOUXzKiePHKHkskeMBHen96/W6T1P5\npfKTZez/20gAuj+4keCQNpYTeRcR2WCMSXZnbKMNYoz5lvr31dceU0TNbpz6li0FlroTRtWvbWgH\nNo9+mJHr7mXte48x5lqdvln5n9S3/8Q4U0DG+fOI0dI/K3rmbisxYvIsMtqMZEj2k+zfu8t2HKU8\nKj8ni6Sdc0kNPZdhE2bYjtPqafG3EuJw0PWaZwmgmr1v/tx2HKU8xjidHHn3TioJJOaGZ2zH8Qla\n/K1IVN940vvdQdLxb9n42Ru24yjlESmLn2doeRqbh/xCP9BtJlr8rczIax9mp6M3Uat+y7GSQ7bj\nKNWiDhcXEpf2F7YEDWaUnqHbbLT4W5mg4BCqLn2ScHOYza/f3/gDlGrFct64h1BTRpsrn8YREGA7\njs/Q4m+FBoz4Ieu6zWBU8SK2pHxhO45SLSLz648YVbKMDdE30TveraMUlZu0+FupoTMfo1i6ELL0\nF1RWlNuOo1SzOllWStjKB9gjPUm6sdFTf1QTafG3Uu07hlE4/k/0ce4m5a0/2I6jVLPa+MZDRJsi\nSib+nTZtQ23H8Tla/K1Y4kXXkxp6Hkk7X2Dvzk224yjVLHZtWkvy3jdY33kKQ8dfZjuOT9Lib+Vi\nbniaSgI5svAOnNXVtuModVaqKiuo/ODnlEoo/W/8l+04PkuLv5WL6Nmb7GEPMqQig3Xv/M12HKXO\nSsqCRxhQtY2dox+hc3ik7Tg+S4vfB4yafjfpbUczfMs/2ZOTaTuOUmdkR+YaRuyaw4YOExg59Vbb\ncXyaFr8PEIeDnjNfpEKCOL7wJ1RXVdmOpFSTVJSfhA/v4Kh0oN+sObbj+Dwtfh8R0bM320f8jkFV\n2azXo3xUK7Ph9V/Tr3oX+ef8VXfxeIAWvw8ZeelsUkPPZUTOs+zO1usZqNZhW+pXjNozn/WdJpM4\n8TrbcfyCFr8PEYeDXjfNoVTaUfXebD2xS3m9k2WlhCy5k4MSxoCbn7Udx29o8fuYrt2jyR33J+Kq\nd5Dyxm9tx1HqtNJevZ9ezj3sn/APOoWF247jN7T4fVDSxbNI6TiR5NyXyEn/1nYcpeqVvXYZo4sW\nsrbrFSScf6XtOH5Fi99H9b95DkekI4Ef/ZSTZaW24yj1X46VHKLjp3dR5OjG0JuftB3H72jx+6hO\nXSIomvAEvZ15pM+703Ycpb5jnE62zvsJkc79lEx+mtAOnW1H8jta/D4s4fwrWRN5A2MOfkjqp/Nt\nx1EKgPUfPUvy0c9Z1/t24sdcbDuOX9Li93EjbnmCbYEDiFvzEIW5W23HUX4ub1saQ9P+yKbgYYye\nqdMt26LF7+OCQ9oQev1rOIyTkjdupqqywnYk5afKT5ZR+fYtlEswEbNeIyAw0HYkv6XF7wei+saz\nZfQfGVS5mfXzH7AdR/mpjfPupl/1TnLP/QfdovrYjuPXtPj9RPIlP2Fd56mMyZ9P1reLbcdRfiZt\n+ZuMLX6XNd2uIfHCa23H8Xta/H5k6G1z2BMQRffP7+bQ/r224yg/sS9/B73/80tyAvqR9GM9dNMb\naPH7kXbtO1E1fR4dTSl7Xp6lF25RLa6qsoIDr80i2FQScu0rhLRpZzuSQovf7/RLGEva4PsZfnI9\na197yHYc5eNS5t3LkIpMNo14hJj+w23HUS5a/H5o9NUPkNJxImN2v0D6indsx1E+asPSeYwtWsDa\nrlcw6vKf2Y6jatHi90PicDDk9vnsCuxDn6/vIT8ny3Yk5WN2bV5P/NpfsyVoMEmzX7AdR9Whxe+n\n2oZ2oO2Nb+HEQeWb13P82BHbkZSPKDlUTNC7N1Imbel6y1sEh7SxHUnVocXvx3r2GcSeC54htjqP\nLS/MwjidtiOpVs5ZXc3uF6+nm7OYA1NeJKJnb9uRVD20+P1cwnnTWdfvLkaWfsnaN//XdhzVyq17\n5ZcMP7GOjUMeZNCYSbbjqAY0WvwiEiMiK0UkW0Q2icg99YwREXlKRHJEJENERtRaVi0iaa4vPXPI\nC4298X9JbX8eo7Y/SdY3H9mOo1qpjZ+9wdj8eazrPJXRM+63HUedhjvv+KuA+4wx8cBY4E4RGVxn\nzBSgv+trNvB8rWUnjDGJrq9pzRFaNS9xOBgw+zX2BEQT9cWdFOzaYjuSamVyt6TS/z/3sz2wP8Nu\nfwlx6M4Eb9bo344xptAYk+q6fQzIBqLqDLsceM3UWAN0FpEezZ5WtZj2HcMIuG4BATipfH0GJYeK\nbUdSrcSBoj0Evf0jyiWYDje9RZu2obYjqUY06WVZRHoDScDaOouigD21vs/n/18c2ohIioisEZEr\nTvPcs13jUoqLtXRsiOk/nD0XvUiP6gLy51xJRflJ25GUlztx/BiHXrqSMOcRDk57jcjY/rYjKTe4\nXfwi0h54H7jXGHO07uJ6HmJcf8YaY5KB64F/iUi/+p7fGDPXGJNsjEmOiIhwN5ZqZkPGX0LGyEcZ\nUpFB+nMz9Ugf1aDqqiq2PHctcZXb2TL+nwwY8UPbkZSb3Cp+EQmipvQXGGMW1TMkH4ip9X00UABg\njDn1507gS2p+Y1BeLHnaT1nd6w5GlXzGmvm/sh1Hean1L/6cpOPfsm7g/SRNutF2HNUE7hzVI8A8\nINsY80QDwxYDN7mO7hkLlBhjCkUkTERCXM8TDowHNjdTdtWCxs76C+s7T2Fc3lzWf/iM7TjKy6xd\n+BfG7nuLNRFXM/b6h23HUU3kzjv+8cBM4IJah2VOFZE7ROQO15ilwE4gB3gRODUxRzyQIiLpwErg\nr8YYLf5WQBwOhv90PlkhiSRu/J3O4a++k/b5WyRn/42N7X7AqNvn2I6jzoAYYxof5WHJyckmJSXF\ndgwFlBw+wOGnJ9DFeYBDP/qY3vHJtiMpi7Zv/JqoD2ewNyiWqHu/oF37TrYjKRcR2eD6PLVRerCt\nOq1OYeGEzHqPckIIfXsGe3dush1JWbI7O4Xwj67niKMTYbct0tJvxbT4VaN69BrI8R+9RyBVOF67\nnKK87bYjKQ/Lz8mi/dtXUUUgZuaHhEfG2o6kzoIWv3JL7/hkDk5fSCjHqXxlGgeK8mxHUh5SmLuV\nwDeuIAAnZT96n6i+Q2xHUmdJi1+5LW74ORRMfY2uzoMcm3spRw4U2Y6kWtiBglyq519OO8o4dOXb\n9IofaTuSagZa/KpJBo2+iJ0XvUTP6gKKn7+Eo0cO2o6kWsjh4kJKX7qEMOdhCi59nX7DfmA7kmom\nWvyqyYZd/iJTAAAPgklEQVSeM40t5z9Hr6pd7H32UspKS2xHUs2s5PABDs65hMjqInZPeplByRfa\njqSakRa/OiPDL7iGrLGPM6Aim11PXULp0cO2I6lmUnJwH0XPTiW2ajfbfjiHIeMvsR1JNTMtfnXG\nRky5hY2j/s7A8k0UPDVJ9/n7gANFeRx6dhJ9Knew+ZxnGDZhhu1IqgVo8auzknzpbLLOfY5elbs4\n/NwkDhTk2o6kzlBh7lZOvjCJ7tWFbJv4MokXXW87kmohWvzqrCVOvI7tF71M9+oiTr44iYLdW21H\nUk2Uty0NeWUqHc1R8i59k6HnXm47kmpBWvyqWQw9Zxp7LltIB3OMwPmTyd2aZjuSctOOjFW0f/My\ngqik+KpFDBo10XYk1cK0+FWzGZh8AQdnfIADJx3fuoyc9G9tR1KN2LJuORGLrqKCYMpu+Jh+CWNt\nR1IeoMWvmlXfoWM4ceMSygkhctEM0le8YzuSakDqJ6/Q69/XUyKd4cefEtN/uO1IykO0+FWzi4lL\nQG5bRlFgT4Z+NZs1C/6gV/LyIsbpZPUrv2LE2nvJDY6j3R3L9ZKJfkaLX7WI7tH96Pk/K0lvfw5j\ntz/O+qdn6jV8vcDJslJS/3kV43LnsL7TJHr/4nO6do+2HUt5mBa/ajHt2nci8RcfsTrqFkYfXsL2\nxyfqsf4WHSjIJe+JCYw8toLVfX5O8j1v06ZtqO1YygItftWiHAEBjPvJv0gZ8TfiyrdQ+uz55G5J\ntR3L7+Sk/4fquROIrswlddwzjJv1KOLQ//7+Sv/mlUckT7uDXZcupK05QZe3prJh6Su2I/kF43Sy\n/sNn6LloOgAFV37AiItnWk6lbNPiVx4zaNREKn/8BQVBsYxcdy/rnrqRE8eP2Y7ls46VHGLDv65m\nVNpv2BUygIDZK4kbPt52LOUFtPiVR0XG9qfvA9+wusdNjD70MfseH8euTWttx/I52zd+Tcm/xpFU\n8gWrY29n0ANfEt6zl+1Yykto8SuPCwoOYdztT5N5wXzaO4/R451LWPvO3/WQz2bgrK5mzRuP0OvD\nKwg0VWydspBxP/47AYGBtqMpL6LFr6xJOG863PEt29oOZ8zmR9n4+DQOFxfajtVqHSjKI+uxixmb\n8082hY6l7V2rGDx2su1Yygtp8SurwiNjGPrLz1gTdy8Jpavg2VGs//AZffffBM7qata+8xjBc8Yw\n8EQaa+MfIvH+JXTq2t12NOWlxBhjO8P3JCcnm5SUFNsxlIft2rye8g/uZlDlZjYFD6PDjKeJHZBo\nO5ZX27VpLeUf3MOgqmyyQhLpNOMpnXrBT4nIBmNMsjtj9R2/8hp9Bo9iwIPfsnbI74ipyCFywYWs\nfvkByk+W2Y7mdU4cP8bquXcR/c4Uulflsz7xzwz51UotfeUWfcevvNKBojxyF9zDyGMryHNEceS8\nP5Jw3nS/P+nIOJ2kf7GQbqseoafZx7rOU+l/wxOERfSwHU1Z1pR3/Fr8yqtlrHyPrl8/RJTZx+bg\nBOTC3xI/5mLbsazI+uYjgr56lIFVW8l1RFN64d/1erjqO1r8yqeUnywj7aOn6Jf9POEcIb3NKEKn\nPELc8HNsR/OILes/p3r5HxhSkU4R4eQl3MWIaT8jMCjYdjTlRbT4lU86cfwY6YseY9COeXSmlNTQ\n8wib+jB9hoyxHa1F5KR/S+mnfyTxxBoO0ontA28n8Yp7dWI1VS8tfuXTjh45yKb3/0JC3hu0lxNs\nCk7gZOKtDJt4PUHBIbbjnZXyk2VkfvYa7TPmM6gqm6OEsqnPzQy78gFCO3S2HU95MS1+5ReOHChi\ny9Jnid21kJ5mP8WEkRMzg7gpPyeiZ2/b8ZqkKG87uz59moEFH9CFo+yRnuztfz3xU35Kp7Bw2/FU\nK6DFr/xKdVUVWV+/B+teIuFECk6EzPY/oHrgZfQ/5yo6dYmwHbFeRw4Usf3b9wja+jEJZTXzFWWE\njiNw7GyGjJ+GIyDAckLVmjRr8YtIDPAaEAk4gbnGmCfrjBHgSWAqUAbcbIxJdS2bBTzsGvonY8yr\njYXS4ldnau/OTexZ9jRx+z4hnCNUmgC2tBlGWd/J9B5/Nd2j+1nNV7B7K3mr3qXD7mUMKs8kQAz7\n6cKOnpfR++I76dFroNV8qvVq7uLvAfQwxqSKSAdgA3CFMWZzrTFTgbuoKf4xwJPGmDEi0gVIAZIB\n43rsSGPM4dOtU4tfnS1ndTXbNn7J4Q0f0nPfCno58wHICejHwbBEHNEj6RY/npi4hBZ7Z11dVcWe\n7Wns37IaszeViEOp9HXuBmCXoxdFPS8kPPlK4oaN9/vzE9TZa0rxNzplnzGmECh03T4mItlAFLC5\n1rDLgddMzavIGhHp7HrB+CGw3BhzyBVsOTAZeKsJP49STeYICGBQ8oWQfCEAuVvTKFj7Ph3zV5JQ\nvIR2B96HNDhm2pIXMoCjXRNwdOlLSJco2ofHEBbZi7DwHo2+KDirqzlUvJcj+/IoLd5D+aF8zKFd\ndDiUQe/y7fSWk/QGSk1bdrcZyJqY/yF67Az6xA2lT8tvBqXq1aS5WkWkN5AE1J1APQrYU+v7fNd9\nDd2vlEf1GphIr4E18/5UV1Wxa9tGireuxuRvoEvJJkYWvEVwYfV/PabCBHBIunDS0abe52zjPEFX\nc5hwqSb8vx4XyK6gfmRFXFLzm8WgccT0H85Q3WevvITbxS8i7YH3gXuNMUfrLq7nIeY099f3/LOB\n2QCxsbHuxlKqyQICA+kzeBR9Bo/67r7KinL27c/nSFEuZQf3UH5oL+ZYIYHHiwioPlnv81QHtGVX\naCSOTj0J6hxF+4gYOnfvRZduUQzUk6uUF3Or+EUkiJrSX2CMWVTPkHwgptb30UCB6/4f1rn/y/rW\nYYyZC8yFmn387uRSqrkEBYfQPbqf9Q9/lfKERj9Rch2xMw/INsY80cCwxcBNUmMsUOL6bGAZMElE\nwkQkDJjkuk8ppZQl7rzjHw/MBDJFJM1130NALIAxZg6wlJojenKoOZzzFteyQyLyR2C963F/OPVB\nr1JKKTvcOarnW+rfV197jAHubGDZy8DLZ5ROKaVUs9ODh5VSys9o8SullJ/R4ldKKT+jxa+UUn5G\ni18ppfyMV07LLCLFQO4ZPjwcONCMcZqL5moazdU0mqtpfDFXL2OMW3OQe2Xxnw0RSXF3hjpP0lxN\no7maRnM1jb/n0l09SinlZ7T4lVLKz/hi8c+1HaABmqtpNFfTaK6m8etcPrePXyml1On54jt+pZRS\np9Hqi19EHhORLSKSISIfiEjnBsZNFpGtIpIjIg96INfVIrJJRJwi0uCn9CKyW0QyRSRNRFr8QsNN\nyOXp7dVFRJaLyHbXn2ENjKt2bas0EVncgnlO+/OLSIiIvO1avtZ1dboW50aum0WkuNY2us0DmV4W\nkf0iktXAchGRp1yZM0RkREtncjPXD0WkpNa2+p2HcsWIyEoRyXb9X7ynnjEtu82MMa36i5o5/gNd\nt/8G/K2eMQHADqAvEAykA4NbOFc8MJCaC88kn2bcbiDcg9ur0VyWttffgQddtx+s7+/RtazUA9uo\n0Z8f+Bkwx3X7WuBtL8l1M/CMp/49udZ5HjACyGpg+VTgE2pm+R0LrPWSXD8ElnhyW7nW2wMY4brd\nAdhWz99ji26zVv+O3xjzmTGmyvXtGmqu8lXXaCDHGLPTGFMBLKTmAvEtmSvbGLO1JddxJtzM5fHt\n5Xr+V123XwWuaOH1nY47P3/tvO8BF7ouWmQ7l8cZY74GTnedjcuB10yNNUBnEenhBbmsMMYUGmNS\nXbePAdl8/1rkLbrNWn3x1/Fjal4l6/Lmi74b4DMR2eC67rA3sLG9upuaq7bh+rNbA+PaiEiKiKwR\nkZZ6cXDn5/9ujOuNRwnQtYXyNCUXwFWu3QPviUhMPcs9zZv//40TkXQR+UREhnh65a5dhEnA2jqL\nWnSbuX2xdZtE5HMgsp5FvzHGfOQa8xugClhQ31PUc99ZH87kTi43jDfGFIhIN2C5iGxxvVOxmcvj\n26sJTxPr2l59gRUikmmM2XG22epw5+dvkW3UCHfW+THwljGmXETuoOa3kgtaOFdjbGwrd6RSM81B\nqYhMBT4E+ntq5SLSnpprmd9rjDlad3E9D2m2bdYqit8YM/F0y0VkFnApcKFx7SCro6GLwbdoLjef\no8D1534R+YCaX+fPqvibIZfHt5eI7BORHsaYQtevtPsbeI5T22uniHxJzbul5i5+d37+U2PyRSQQ\n6ETL71ZoNJcx5mCtb1+k5nMv21rk39PZql22xpilIvKciIQbY1p8Dh8RCaKm9BcYYxbVM6RFt1mr\n39UjIpOBXwHTjDFlDQxbD/QXkT4iEkzNh3EtdkSIu0QkVEQ6nLpNzQfV9R6B4GE2ttdiYJbr9izg\ne7+ZiEiYiIS4bodTcz3ozS2QxZ2fv3beGcCKBt50eDRXnf3A06jZf2zbYuAm15EqY4GSU7v1bBKR\nyFOfy4jIaGr68ODpH9Us6xVgHpBtjHmigWEtu808/Yl2c39Rc4H3PUCa6+vUkRY9gaW1xk2l5tPz\nHdTs8mjpXNOpedUuB/YBy+rmoubojHTX1yZvyWVpe3UFvgC2u/7s4ro/GXjJdfsHQKZre2UCt7Zg\nnu/9/MAfqHmDAdAGeNf1728d0Lelt5Gbuf7i+reUDqwEBnkg01tAIVDp+rd1K3AHcIdruQDPujJn\ncpqj3Dyc6+e1ttUa4AceynUONbttMmr11lRPbjM9c1cppfxMq9/Vo5RSqmm0+JVSys9o8SullJ/R\n4ldKKT+jxa+UUs2gsUnhmvhciSKy2jWJW4aI/KjWsp+7Jm8zrsOam/78elSPUkqdPRE5DyilZo6d\noWf5XAMAY4zZLiI9gQ1AvDHmiIgkAYf5/4kWm3zCmb7jV0qpZmDqmRRORPqJyKeuubi+EZFBbj7X\nNmPMdtftAmrOZI9wfb/RGLP7bLK2iikblFKqlZpLzUlZ20VkDPAcTZw7yXVWcTDNODWJFr9SSrUA\n1yRsPwDerTVj96kpR66k5ozruvYaYy6u9Rw9gNeBWcYYZ3Nl0+JXSqmW4QCOGGMS6y4wNROz1Tc5\n23dEpCPwb+BhUzMnf7MGU0op1cxMzeyfu0TkavjucorD3XmsaxK+D6j5oPjd5s6mxa+UUs1ARN4C\nVgMDRSRfRG4FbgBuFZFTEzG6e8W0a6i5dOTN8v/XBE50reduEcmnZqrmDBF5qclZ9XBOpZTyL/qO\nXyml/IwWv1JK+RktfqWU8jNa/Eop5We0+JVSys9o8SullJ/R4ldKKT+jxa+UUn7m/wD+g9oW/ulP\nGAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118dd7518>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot Z vs allowed E\n",
"Elist = np.linspace(-2e-21,2e-21)\n",
"T = 300\n",
"\n",
"plt.plot(Elist,Z([...,...],T))\n",
"plt.plot(..., 'o')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5) For a two-state system (i.e. the paramagnet) graph the average energy vs. temperature."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6) Problem 6.27"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment