Skip to content

Instantly share code, notes, and snippets.

@amcdawes
Created March 17, 2017 04:45
Show Gist options
  • Save amcdawes/5eb6e209c26f79b7ea8ddb568fb31f1e to your computer and use it in GitHub Desktop.
Save amcdawes/5eb6e209c26f79b7ea8ddb568fb31f1e to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from opticalbloch import ob\n",
"import numpy as np\n",
"import qutip as qu"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from scipy.interpolate import interp1d"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from IPython.core.display import HTML"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### A time-dependent example to get used to how the OB works"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"Nt = 400\n",
"tlist = np.linspace(-0.5,1,Nt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tdep = ob.OB()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"def pulse(t, args):\n",
" return 2*np.pi*1e-3*np.exp(-(t/0.1)**2) # TODO: check the math if this is 0.1τ, seems too big"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"omega0 = 2*np.pi*1e-3 # as on p38 (if Γ=1)\n",
"t0 = 0\n",
"tw = 0.1\n",
"def pulse(t, args):\n",
" return omega0*np.exp(-4*np.log(2)*((t-t0)/tw)**2)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118b40d30>]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X10XPV95/H3VyONZMmy9Whj/IBMsJMYmhDQuknTNm1o\ng5PtxvsHbM02XdpDl00DPd1tt13Y7snpsoc/6G5Luw1pl1PY0mxTQ90nna4bWkqypDmJsUggYIhB\nsQELP0nWs2RpNNJ3/5g78iCPpCvpPozg8zrHx3fu/O6d78jWfOZ3f/f+rrk7IiIiVWkXICIilUGB\nICIigAJBREQCCgQREQEUCCIiElAgiIgIoEAQEZGAAkFERAAFgoiIBKrTLmA52travKOjI+0yRETW\njOeee67f3dvDtF1TgdDR0UF3d3faZYiIrBlm9kbYtjpkJCIigAJBREQCCgQREQEUCCIiElAgiIgI\noEAQEZGAAkFERAAFgqTk9f5x/vLbvegWriKVY01dmCbvDOdGJrnlD79J/9gUb1yY4D/85O60SxIR\n1EOQFPzFt3vpH5tib0cLj37jJFP5mbRLEhEUCJKCwy+e4frtTfzij72H0ck83+jpT7skEUGBIAm7\nMDbFS2+N8IlrN/PRa9qoz2b4f8f70i5LRFAgSMK++9YwADfsaCZbXcV1WzfyYrBORNIVKhDMbJ+Z\nHTezHjO7p8zztWb2ePD8ETPrKHnu3mD9cTO7uWR9k5kdMrPvmdkrZvaRKN6QVLYXewsf/tdeuQGA\nH9i6kWOnR8jPzKZZlogQIhDMLAM8BHwS2APcZmZ75jW7Axh092uAB4EHgm33AAeAa4F9wBeD/QH8\nHvAVd38f8EHgldW/Hal0L741zNXtDTTW1QDwgW0bmcrP8tr5sZQrE5EwPYS9QI+7n3D3HHAQ2D+v\nzX7gsWD5EHCTmVmw/qC7T7n7SaAH2GtmG4AfBR4BcPecuw+t/u1IpTt+dpT3b9kw97i4/Oq50bRK\nEpFAmEDYCpwqedwbrCvbxt3zwDDQusi2VwN9wP82s++Y2R+ZWcOK3oGsGbn8LL2DE7yn7dI/9VWt\n9ZjBib7xFCsTEQgXCFZm3fzLSxdqs9D6auAG4A/c/UPAOHDZ2ASAmd1pZt1m1t3Xp7NR1rI3ByaY\ndegoCYTa6gxbm9Zxsl+BIJK2MIHQC2wvebwNOL1QGzOrBjYCA4ts2wv0uvuRYP0hCgFxGXd/2N07\n3b2zvT3UbUGlQhU/9He2vb0zuLOtQYEgUgHCBMJRYJeZ7TSzLIVB4q55bbqA24PlW4CnvTBJTRdw\nIDgLaSewC3jW3c8Cp8zsvcE2NwEvr/K9SIU72V8YOJ4fCFcHgaB5jUTSteRcRu6eN7O7gSeBDPCo\nux8zs/uAbnfvojA4/CUz66HQMzgQbHvMzJ6g8GGfB+5y9+I8Bb8E/GkQMieAn4/4vUmFeePCBE31\nNTTVZ9+2/qrWBsam8lwYz9G2vjal6kQk1OR27n4YODxv3edLlieBWxfY9n7g/jLrnwc6l1OsrG2n\nhy6ytWndZeu3Nq+be16BIJIeXaksiXlr6CJXlguEpkuBICLpUSBIItydtwYX6CEE694amky6LBEp\noUCQRIxczDOemykbCE31NayryfDWoHoIImlSIEgi3goOBxXHC0qZGVub1+mQkUjKFAiSiOKH/ZaN\ndWWfv7JpHaeHFQgiaVIgSCLOjhTGB7ZsvLyHALC5sZbzI1NJliQi8ygQJBHnR6cwg7b12bLPtzfW\n0j82xeysLk4TSYsCQRJxfmSStvW1VGfK/5fb1FhLftYZnMglXJmIFCkQJBHnRibZvGHhi87aGwtj\nC31jOmwkkhYFgiTi3MgUmxvLDyhD4ZARQN+oAkEkLQoEScT50Sk2LdpDKDyngWWR9CgQJHbTM7Nc\nGJ9i0yI9hE3FHoIOGYmkRoEgsbswlsP9Ui+gnIbaauqzGR0yEkmRAkFid2G88CG/1Eym7Y21nFcg\niKRGgSCxuzBWOJV0oWsQitrX19I3qgnuRNKiQJDYFXsIrUv0EDZtqNUhI5EUKRAkdsUeQmuoHoIC\nQSQtCgSJXf9YjmymisbaxW/Q195Yy8hknsnpmUXbiUg8FAgSuwtjU7Suz2Jmi7YrnpaqXoJIOhQI\nErsL4zlaGhY/XAQlVyvrWgSRVCgQJHaFHsLiA8qgq5VF0qZAkNj1j+VoC9FDKA46D4xrxlORNCgQ\nJHYXxqeWPMMIoLm+0EZTYIukI1QgmNk+MztuZj1mdk+Z52vN7PHg+SNm1lHy3L3B+uNmdnPJ+tfN\n7EUze97MuqN4M1J5JnJ5JqdnQx0yqqvJUJ/NqIcgkpLFzwMEzCwDPAT8JNALHDWzLnd/uaTZHcCg\nu19jZgeAB4CfNrM9wAHgWuBK4Ckz2+3uxfMKf9zd+yN8P1Jh5q5BCHHICKClIcugAkEkFWF6CHuB\nHnc/4e454CCwf16b/cBjwfIh4CYrnGO4Hzjo7lPufhLoCfYn7xL9Y+HmMSpqachyQYEgkoowgbAV\nOFXyuDdYV7aNu+eBYaB1iW0d+Hsze87M7lx+6bIWhL1Kuai5PqsxBJGULHnICCh3NdH8O6Ev1Gax\nbT/q7qfNbBPwD2b2PXd/5rIXL4TFnQA7duwIUa5UkrDzGBW1NmT5ft9YnCWJyALC9BB6ge0lj7cB\npxdqY2bVwEZgYLFt3b3493ngr1jgUJK7P+zune7e2d7eHqJcqST9yxxDaG7IalBZJCVhAuEosMvM\ndppZlsIgcde8Nl3A7cHyLcDT7u7B+gPBWUg7gV3As2bWYGaNAGbWAHwCeGn1b0cqzYWxHA3ZDHU1\nmVDtWxqyTORmNJ+RSAqWPGTk7nkzuxt4EsgAj7r7MTO7D+h29y7gEeBLZtZDoWdwINj2mJk9AbwM\n5IG73H3GzDYDfxXMbVMNfNndvxLD+5OUDYxP0RJy/ACYm+JicCLHlo3r4ipLRMoIM4aAux8GDs9b\n9/mS5Ung1gW2vR+4f966E8AHl1usrD2DE9NzF5yFUWw7MK5AEEmarlSWWA1dnGbjuprQ7TV9hUh6\nFAgSq6GJ3Ip7CCKSLAWCxGpwPEdzffgewtwYggJBJHEKBIlNfmaWkck8TcvoIWxcV0OVqYcgkgYF\ngsRm+OI0wLJ6CJkqo6k+y4CuVhZJnAJBYjM4EQRCyIvSiprraxgcn46jJBFZhAJBYjN8sfAtfzln\nGQG0NtTqkJFIChQIEpvit/zlnGUE0NxQo0AQSYECQWJTnLV0uYHQ0qAxBJE0KBAkNkPBGEJTw/IO\nGTXVZxmayFGYDktEkqJAkNgMTuSorjIaa0PNkDKnub6G6RlnPKcJ7kSSpECQ2AxOTNNUX0MwiWFo\nxesWdHGaSLIUCBKb4Yu5ZZ9hBJfGHIqHnEQkGQoEic3g+PJmOi0qXsimW2mKJEuBILEZnMgta9qK\norlDRgoEkUQpECQ2QxPTy5q2omiuh6AxBJFEKRAkNoMTuWVPWwGFK5vNLk19ISLJUCBILCanZ5jK\nz65oULk6U8WGuhqGdMhIJFEKBInFSq9SLmqur1EPQSRhCgSJxaV5jJbfQ4DCwLIGlUWSpUCQWBQP\n96zkLCMoBImuQxBJlgJBYnHpXggr6yE0q4cgkrhQgWBm+8zsuJn1mNk9ZZ6vNbPHg+ePmFlHyXP3\nBuuPm9nN87bLmNl3zOxvV/tGpLKsdgyhqT6r005FErZkIJhZBngI+CSwB7jNzPbMa3YHMOju1wAP\nAg8E2+4BDgDXAvuALwb7K/pl4JXVvgmpPMXbZ67kLCOAloYaxnMz5PKzUZYlIosI00PYC/S4+wl3\nzwEHgf3z2uwHHguWDwE3WWFGs/3AQXefcveTQE+wP8xsG/DPgT9a/duQSjM4nmNdTYa6mszSjcto\nmpvPSL0EkaSECYStwKmSx73BurJt3D0PDAOtS2z7u8CvA/oK+A40uMKrlIua56av0MCySFLCBEK5\nuYvn37lkoTZl15vZTwHn3f25JV/c7E4z6zaz7r6+vqWrlYowtMJ5jIo0wZ1I8sIEQi+wveTxNuD0\nQm3MrBrYCAwssu1HgU+b2esUDkF93Mz+T7kXd/eH3b3T3Tvb29tDlCuVoDBtxcp7CDpkJJK8MIFw\nFNhlZjvNLEthkLhrXpsu4PZg+RbgaS/c/7ALOBCchbQT2AU86+73uvs2d+8I9ve0u38mgvcjFWJo\nYnp1PYSGYg9Bh4xEkrLkvQ3dPW9mdwNPAhngUXc/Zmb3Ad3u3gU8AnzJzHoo9AwOBNseM7MngJeB\nPHCXu+u+iO8CQxenaVrhGUZwaQxhQKeeiiQm1M1u3f0wcHjeus+XLE8Cty6w7f3A/Yvs+2vA18LU\nIWvD7KwzNJFb8TUIAHU1GdbVZHTISCRBulJZIjc6mWfWoWkVZxmBJrgTSZoCQSK32quUi5rqs+oh\niCRIgSCRmwuEVZxlVNxePQSR5CgQJHLFWUpXc5ZRcXtdhyCSHAWCRG7oYjD19SrOMgJNgS2SNAWC\nRO7SzXFW10NoDsYQZmfnXxgvInFQIEjkhiZymMGGVfcQssw6jEyqlyCSBAWCRG5wYpqN62rIVJWb\nyio8Xa0skiwFgkRucJUXpRU1zc14qoFlkSQoECRyhXmMVne4CC6NQehaBJFkKBAkckMXc6s+wwhK\npsAe1yEjkSQoECRyg+PTOmQksgYpECRyq705TtGGumoyVaZrEUQSokCQSOXys4znZlZ1+8wiM6O5\nvoYB9RBEEqFAkEgVB4CbGlbfQwBNcCeSJAWCRGroYvEq5dX3EIr70aCySDIUCBKpwfHiPEbR9RA0\nqCySDAWCRGpwbqbT6HoIGlQWSYYCQSI1NHcvhGh6CM3qIYgkRoEgkSr2EKIaQ2iqzzKVn+VibiaS\n/YnIwhQIEqnBiRx1NVXUZ6sj2V8xWHTqqUj8FAgSqYHxHC0RXJRWVDz0VBysFpH4KBAkUoPj0Vyl\nXHRpgjsNLIvELVQgmNk+MztuZj1mdk+Z52vN7PHg+SNm1lHy3L3B+uNmdnOwrs7MnjWzF8zsmJn9\n16jekKRrYCJHS0QDylAywZ0OGYnEbslAMLMM8BDwSWAPcJuZ7ZnX7A5g0N2vAR4EHgi23QMcAK4F\n9gFfDPY3BXzc3T8IXA/sM7MPR/OWJE1DE9ORnWEElya409XKIvEL00PYC/S4+wl3zwEHgf3z2uwH\nHguWDwE3mZkF6w+6+5S7nwR6gL1eMBa0rwn+6Ma57wCFMYRozjCCS9cz6K5pIvELEwhbgVMlj3uD\ndWXbuHseGAZaF9vWzDJm9jxwHvgHdz+ykjcglSM/M8vwxWh7CDWZKhprq3XISCQBYQKh3I1x53+b\nX6jNgtu6+4y7Xw9sA/aa2XVlX9zsTjPrNrPuvr6+EOVKWorzGEU5hgDQ1FCjs4xEEhAmEHqB7SWP\ntwGnF2pjZtXARmAgzLbuPgR8jcIYw2Xc/WF373T3zvb29hDlSlqKH9pR3BynVEt9VoeMRBIQJhCO\nArvMbKeZZSkMEnfNa9MF3B4s3wI87e4erD8QnIW0E9gFPGtm7WbWBGBm64CfAL63+rcjaRoIAiHy\nHoKmwBZJxJKXk7p73szuBp4EMsCj7n7MzO4Dut29C3gE+JKZ9VDoGRwItj1mZk8ALwN54C53nzGz\nLcBjwRlHVcAT7v63cbxBSU7xOH/UPYTm+hpO9o9Huk8RuVyo+QXc/TBweN66z5csTwK3LrDt/cD9\n89Z9F/jQcouVyjY3j1FDdGcZgabAFkmKrlSWyAzENIbQXJ9ldDJPfmY20v2KyNspECQyg+M56rMZ\n6moyke632OMonsUkIvFQIEhkBiZykfcO4NLVyjr1VCReCgSJzOB4tPMYFRVnT9WppyLxUiBIZAYi\nnseoqEkT3IkkQoEgkRmMeB6jomLI6FoEkXgpECQyg+O5WHoIzZrgTiQRCgSJxPTMLKNT+Ujvlla0\nriZDtrpKh4xEYqZAkEjMXaUcQw/BzGiur2FoXD0EkTgpECQSg8GHdRynnRb3O6AegkisFAgSibmr\nlCOetqKoWRPcicROgSCRKB4yiuM6BCgEjQaVReKlQJBIzE19HdMhI02BLRI/BYJEojitRFNsYwg1\nDE1MU7jNhojEQYEgkRiYyNFYW022Op7/Us31WfKzzuhUPpb9i4gCQSIyFNO0FUXFnodOPRWJjwJB\nInFhPDd3RXEcWoKzly6MT8X2GiLvdgoEiUT/6BRt62tj239rQ2HfF8Y0sCwSFwWCRKJ/LN5AaGus\nnXsdEYmHAkFWbXbWuTCeo60xvjGE1mB8QoEgEh8Fgqza0MVpZmY91h5CXU2Gxrpq+nXISCQ2CgRZ\nteK39vbG+AIBoH19LX3qIYjEJlQgmNk+MztuZj1mdk+Z52vN7PHg+SNm1lHy3L3B+uNmdnOwbruZ\nfdXMXjGzY2b2y1G9IUle32jhQzrOHkJx/8XXEpHoLRkIZpYBHgI+CewBbjOzPfOa3QEMuvs1wIPA\nA8G2e4ADwLXAPuCLwf7ywK+6+/uBDwN3ldmnrBHFHkLsgdCY1RiCSIzC9BD2Aj3ufsLdc8BBYP+8\nNvuBx4LlQ8BNZmbB+oPuPuXuJ4EeYK+7n3H3bwO4+yjwCrB19W9H0lD81t6eQA+hXz0EkdiECYSt\nwKmSx71c/uE918bd88Aw0Bpm2+Dw0oeAI+HLlkrSP5Yjm6liw7rqWF+nbX0tI5N5pvIzsb6OyLtV\nmECwMuvmzzC2UJtFtzWz9cBfAP/e3UfKvrjZnWbWbWbdfX19IcqVpPWPTdG6PkuhUxif4iEpXZwm\nEo8wgdALbC95vA04vVAbM6sGNgIDi21rZjUUwuBP3f0vF3pxd3/Y3TvdvbO9vT1EuZK0uC9KK2pb\nr2sRROIUJhCOArvMbKeZZSkMEnfNa9MF3B4s3wI87YV5iruAA8FZSDuBXcCzwfjCI8Ar7v47UbwR\nSU8hEOK7KK1IVyuLxGvJQAjGBO4GnqQw+PuEux8zs/vM7NNBs0eAVjPrAX4FuCfY9hjwBPAy8BXg\nLnefAT4K/CzwcTN7PvjzqYjfmySkfzSXSA+hOGjdP6pDRiJxCDUK6O6HgcPz1n2+ZHkSuHWBbe8H\n7p+37p8oP74ga4y7c2F8au7be5yKoaOL00TioSuVZVWGL04zPRPvtBVF67IZGrIZHTISiYkCQVbl\n0kVp8Y8hQGEcQfMZicRDgSCrcj6hi9KK2tfX0jc6mchribzbKBBkVc6NFD6cr9hYl8jrbd5Yx7kR\nHTISiYMCQVblzHCygXDFhjrODF+kcFaziERJgSCrcm54ksa6auqz8U5bUXTFhjomp2cZuZhP5PVE\n3k0UCLIqZ0cm2ZJQ7wAu9UTOjmgcQSRqCgRZlbPDk2zekHwgnBm+mNhrirxbKBBkVc6OTHJFkoEQ\nvNY59RBEIqdAkBXLz8zSNzqV6CGjTRsKp7eeHdaZRiJRUyDIivWP5Zj1wqmgSamtztDakNUYgkgM\nFAiyYsXj+EkeMgLYvKGOsxpDEImcAkFWrHgcP8lBZSgMLJ/VxWkikVMgyIqdDS5KS3IMAQqBoEFl\nkegpEGTFzoxMks1U0dKQzMR2RVdsqGNgPMfktO6tLBIlBYKs2LnhSTZtqI39XsrzFccszuuwkUik\nFAiyYmeGk70GoUgXp4nEQ4EgK9Y7eJHtLfWJv+625nVzry8i0VEgyIrk8rOcGU4nELY2r8MM3hyY\nSPy1Rd7JFAiyIqeHLjLrsD34tp6k2uoMWzbUcWpQgSASJQWCrEjxw3hHCj0EgO0t9ZxSD0EkUgoE\nWZHi4ZodrekFgg4ZiURLgSAr8ubABNlMFZsbkz/LCAo9k3MjU7oWQSRCoQLBzPaZ2XEz6zGze8o8\nX2tmjwfPHzGzjpLn7g3WHzezm0vWP2pm583spSjeiCTr1MAE25rXUVWV7DUIRcVDVTrTSCQ6SwaC\nmWWAh4BPAnuA28xsz7xmdwCD7n4N8CDwQLDtHuAAcC2wD/hisD+APw7WyRr05sBEKmcYFRVfW+MI\nItEJ00PYC/S4+wl3zwEHgf3z2uwHHguWDwE3WeHy1f3AQXefcveTQE+wP9z9GWAggvcgKTg1cDG1\nAWW41EPQOIJIdMIEwlbgVMnj3mBd2TbungeGgdaQ2y7KzO40s24z6+7r61vOphKT4Ylphi9OpxoI\nbeuzrKvJqIcgEqEwgVDuILGHbBNm20W5+8Pu3unune3t7cvZVGJSPOV0e0vy1yAUmRnbW9aphyAS\noTCB0AtsL3m8DTi9UBszqwY2UjgcFGZbWWNO9I8DsKOlIdU6rmpt4GRQi4isXphAOArsMrOdZpal\nMEjcNa9NF3B7sHwL8LS7e7D+QHAW0k5gF/BsNKVLWl47N0qmyri6Pd1A2L15PSf7x8nlZ1OtQ+Sd\nYslACMYE7gaeBF4BnnD3Y2Z2n5l9Omj2CNBqZj3ArwD3BNseA54AXga+Atzl7jMAZvZnwDeB95pZ\nr5ndEe1bk7i8em6Uq1rrqavJLN04Rrs3N5KfdfUSRCJSHaaRux8GDs9b9/mS5Ung1gW2vR+4v8z6\n25ZVqVSMV8+N8b4rGtMug92bCzW8em6U91ZAPSJrna5UlmWZnJ7hjQvj7Nqc/gfw1e0NZKqMV8+N\npl2KyDuCAkGWpef8GLMO762AQKitztDRWs/xswoEkSgoEGRZXjtf+PDdvXl9ypUU7N7cyGvnx9Iu\nQ+QdQYEgy3L87Bg1GaOjLd0zjIp2b27k9QvjmuROJAIKBFmW186N8p729dRkKuO/zu7NjbgXDmWJ\nyOpUxm+1rBkvnxmpqDN63r+lUMtLbw2nXInI2qdAkNDOjUxyZniSD2xrSruUOTvbGmiqr+Hbbw6m\nXYrImqdAkNBeODUEwPXbN6ZcySVmxo07mnnuDQWCyGopECS0508Nkakyrr2ycgIB4Iarmvl+3ziD\n47m0SxFZ0xQIEtrR1we47soNqU9ZMV/nVc0AOmwkskoKBAllcnqGF04N84NXt6ZdymU+sK2J6irT\nYSORVVIgSCjffnOQ3MwsP7izJe1SLrMum+HaKzfQrUAQWRUFgoTyzKv9VFcZeyswEAA+fHUr33lz\nkLGpfNqliKxZCgQJ5avfO88/62ihsa4m7VLK+vH3bWJ6xvmn1/rTLkVkzVIgyJJODUxw/NwoH3/f\nprRLWdCNVzXTWFfNU6+cS7sUkTVLgSBL6nqhcNfTfdddkXIlC6vJVPGJPVfw5LGzTOU1r5HISigQ\nZFHuzt88/xY37Ghie0t92uUs6l98cAujk3m++r3zaZcisiYpEGRR3W8M8uq5MW7t3J52KUv64Wva\n2LKxjj898mbapYisSQoEWdSj/3SSxrpq9l9/ZdqlLKk6U8W/3ruDr7/Wr5vmiKyAAkEWdOz0MH/3\n0ll+/oc6qM+Guv126n72I1exvraa333q1bRLEVlzFAhS1uys85tdx2iqr+GOH7467XJCa6rP8gs/\nspO/e+msTkEVWSYFgpT1h898n6OvD/KfP/V+NtZX5rUHC/nsx95DR2s9v3boBS6MTaVdjsiaESoQ\nzGyfmR03sx4zu6fM87Vm9njw/BEz6yh57t5g/XEzuznsPiU9T3Sf4r8/eZyf+sAWbr1xW9rlLFtd\nTYbfv+0GLozn+Pk/Pkq/QkEklCUDwcwywEPAJ4E9wG1mtmdeszuAQXe/BngQeCDYdg9wALgW2Ad8\n0cwyIfcpCesfm+I/Hfouv37ou/zwNW38j1s/iJmlXdaK/MC2jfzBz9zA986O8qnf+zpPvXwOd0+7\nLJGKFmakcC/Q4+4nAMzsILAfeLmkzX7gN4PlQ8AXrPBJsh846O5TwEkz6wn2R4h9SoymZ2YZGM9x\nfmSKV86M8MxrfTz1yjnyM86/+9jV/OpPvpds9do+onjT+zfz15/7KHf/2bf5hT/pZvfm9ey79go+\ndFUzV7XUs7V5HbXVlTWVt0iawgTCVuBUyeNe4AcXauPueTMbBlqD9d+at+3WYHmpfUbmp37/60xO\nz77tG6JftvC2xbm2b19X2tYvX1fmC2i51yy3n9L1C70m5V5zOTX7pe1H500C19KQ5dYbt3P7D3Vw\nzab1l7+RNWrPlRv4yi//KF0vnObLR97gC1/tYbbkZ1KTMRpqq1lXk6HKDDMwo7AMJevWZk9J3hla\n6rM88dmPxP46YQKh3G/C/I++hdostL7cV8+y/XkzuxO4E2DHjh0LV7mIa9rXMz0T7L6kouJi6S97\nacHF1W9fV6bt2/ZZ8nzZ7S9v+7Z1ZXZqZWtezmte/s/QVF9D2/pa2tbXsnvzejpaG6iqemd+6GWr\nq7jlxm3ccuM2hi9O89q5UV6/MMHZ4YuM52YYn8pzMTfDrBcC2r0QnoXHhTOuRNLUWJfMad9hXqUX\nKL1MdRtweoE2vWZWDWwEBpbYdql9AuDuDwMPA3R2dq7oN/N3D3xoJZvJO9DGdTV0drTQ2VGZ03iL\npCnMQeKjwC4z22lmWQqDxF3z2nQBtwfLtwBPe+H4RBdwIDgLaSewC3g25D5FRCRBS/YQgjGBu4En\ngQzwqLsfM7P7gG537wIeAb4UDBoPUPiAJ2j3BIXB4jxwl7vPAJTbZ/RvT0REwrK1dCpeZ2end3d3\np12GiMiaYWbPuXtnmLZr+7xCERGJjAJBREQABYKIiAQUCCIiAigQREQksKbOMjKzPuCNtOsItAGV\nPuF+pddY6fVB5ddY6fWBaozCauq7yt3bwzRcU4FQScysO+ypXGmp9BorvT6o/BorvT5QjVFIqj4d\nMhIREUCBICIiAQXCyj2cdgEhVHqNlV4fVH6NlV4fqMYoJFKfxhBERARQD0FERAIKhJDMrMXM/sHM\nXgv+bl6k7QYze8vMvlBpNZrZ9Wb2TTM7ZmbfNbOfTqCufWZ23Mx6zOyeMs/XmtnjwfNHzKwj7ppW\nUOOvmNnLwc/sH83sqkqqr6TdLWbmZpb4GTNhajSzfxX8HI+Z2ZcrqT4z22FmXzWz7wT/zp9KuL5H\nzey8mb20wPNmZv8zqP+7ZnZD5EW4u/6E+AP8FnBPsHwP8MAibX8P+DLwhUqrEdgN7AqWrwTOAE0x\n1pQBvg/leAtSAAADy0lEQVRcDWSBF4A989p8DvjDYPkA8HjCP7cwNf44UB8s/2KSNYapL2jXCDxD\n4ba1nRX4M9wFfAdoDh5vqrD6HgZ+MVjeA7ye8M/wR4EbgJcWeP5TwN9RuCHih4EjUdegHkJ4+4HH\nguXHgH9ZrpGZ3QhsBv4+obpKLVmju7/q7q8Fy6eB80Coi1ZWaC/Q4+4n3D0HHAzqLFVa9yHgJkv2\nJsZL1ujuX3X3ieDhtyjc5a9i6gv8NwpfCiYTrK0oTI3/FnjI3QcB3P18hdXnwIZgeSML3MUxLu7+\nDIX7ySxkP/AnXvAtoMnMtkRZgwIhvM3ufgYg+HvT/AZmVgX8NvBrCddWtGSNpcxsL4VvS9+Psaat\nwKmSx73BurJt3D0PDAOtMdY0X5gaS91B4ZtaUpasz8w+BGx3979NsK5SYX6Gu4HdZvYNM/uWme1L\nrLpw9f0m8Bkz6wUOA7+UTGmhLff/6bIlc+fmNcLMngKuKPPUb4TcxeeAw+5+Kq4vuBHUWNzPFuBL\nwO3uPhtFbQu9VJl1809tC9MmTqFf38w+A3QCH4u1onkvW2bdXH3BF5EHgZ9LqqAywvwMqykcNvox\nCj2sr5vZde4+FHNtEK6+24A/dvffNrOPULgL5HUx/34sR+y/JwqEEu7+Ews9Z2bnzGyLu58JPkzL\ndXc/AvyImX0OWA9kzWzM3RccBEyhRsxsA/B/gf8SdD3j1AtsL3m8jcu74sU2vWZWTaG7vljXOWph\nasTMfoJC8H7M3acSqg2Wrq8RuA74WvBF5Aqgy8w+7e5J3WIw7L/zt9x9GjhpZscpBMTRCqnvDmAf\ngLt/08zqKMwhlOShrcWE+n+6GjpkFF4XcHuwfDvwN/MbuPvPuPsOd+8A/iOF432RhUEIS9ZoZlng\nr4La/jyBmo4Cu8xsZ/DaB4I6S5XWfQvwtAejaAlZssbgkMz/Aj6d8LHvJetz92F3b3P3juD/3reC\nOpO832yYf+e/pjA4j5m1UTiEdKKC6nsTuCmo7/1AHdCXUH1hdAH/Jjjb6MPAcPEQcWSSHEVfy38o\nHNP+R+C14O+WYH0n8Edl2v8cyZ9ltGSNwGeAaeD5kj/Xx1zXp4BXKYxV/Eaw7j4KH1pQ+MX7c6AH\neBa4OoV/36VqfAo4V/Iz66qk+ua1/RoJn2UU8mdowO8ALwMvAgcqrL49wDconIH0PPCJhOv7Mwpn\n/U1T6A3cAXwW+GzJz++hoP4X4/g31pXKIiIC6JCRiIgEFAgiIgIoEEREJKBAEBERQIEgIiIBBYKI\niAAKBBERCSgQREQEgP8ParaoyUdaf6oAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1157c4978>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(tlist,pulse(tlist,[]))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tdep.num_states = 2\n",
"\n",
"tdep.set_H_0([0,0]) # zeros because we don't care about absolute energies.\n",
"\n",
"# Trying this because I know QuTip can take this kind of Hamiltonian\n",
"tdep.H_Omega_list = [[qu.Qobj([[0,1],[1,0]]),pulse]]\n",
"\n",
"Delta = 0\n",
"tdep.H_Delta = qu.Qobj([[0,0],[0,Delta]])\n",
"\n",
"tdep.c_ops = [np.sqrt(6)*tdep.sigma(0,1)] # Gamma is 1 here, increase if needed."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Result object with mesolve data.\n",
"--------------------------------\n",
"states = True\n",
"num_collapse = 0"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# added e_ops just to verify results, but not a likely use case.\n",
"tdep.mesolve(tlist,td=True,e_ops=[tdep.sigma(0,0),tdep.sigma(1,1)],opts=qu.Options(store_states=True))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118ccd908>]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEDCAYAAAAlRP8qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8HNW5//HPs7vqXVa1LVkukgs2LgjHJnQDMQ7BKWDK\ndcovlFBugJsG6QkpNyQhgVySCw4QSi4lBEggdDt0bINt3GRbcm+S1WxZvaz2/P6YkRGyLK20ffW8\nX6997ezO7MxXq9Wjs2fOnhVjDEoppSKfI9QBlFJK+YcWdKWUihJa0JVSKkpoQVdKqSihBV0ppaKE\nFnSllIoSQS/oIvKgiNSIyGY/7OscEVnf69IuIp/1R06llIo0Euxx6CJyJtAMPGKMme7H/WYCO4Cx\nxphWf+1XKaUiRdBb6MaYt4DDve8TkYki8rKIrBWRt0VkyjB2fQnwkhZzpdRIFS596MuArxtjTgG+\nBfxpGPu4HHjcr6mUUiqCuEIdQESSgdOAp0Sk5+44e93ngdv7edhBY8yneu0jH5gBvBLYtEopFb5C\nXtCx3iU0GGNm9V1hjHkGeMaLfSwBnjXGdPk7nFJKRYqQd7kYYxqB3SJyKYBYZg5xN1eg3S1KqREu\nFMMWHwdWApNF5ICIXAX8B3CViGwAyoDFQ9hfEVAAvOn/tEopFTmCPmxRKaVUYIS8y0UppZR/BPWk\naFZWlikqKgrmIZVSKuKtXbu2zhiTPdh2QS3oRUVFrFmzJpiHVEqpiCcie73ZTrtclFIqSmhBV0qp\nKBEOHyxSI4THY3h45R6e/GA/DhEuOWUsX5o/DpdT2xVK+YP+Jamg+cnzZfz0+S0kx7lIiHVy+7+2\ncN1f19Lp9oQ6mlJRQQu6CopXyw7xyMq9XH36eJ66bj5/v24+ty8+ieVba/juM5tCHU+pqKBdLirg\n3N0efvbCFqbkpXDrhVPomYTtS/OLqGvu5A8rtnP25Gw+M3N0iJMqFdm0ha4C7oVNVew/3MY3L5hM\nTJ/+8pvOncSsgnR+8I/NVDe2hyihUtFBC7oKuL+u2suErCQWTMk5bp3L6eB3S2bS1tXNr17aFoJ0\nSkUPLegqoPbWt/DBniNcWlqAwyH9bjMhO5mrTx/Psx8eZN2+I0FOqFT00IKuAuqlzYcAWDxr4P7x\nG86ZRHZKHD//1xZ0wjilhkcLugqo17fVMDU/ldHpCQNulxzn4r/OK2HdvgZeL68JUjqloosWdBUw\nje1drN17hLMnDzqnEACXlo6lMDOR371Woa10pYZBC7oKmHe31+H2GM6ZfPzJ0P7EOB3ctKCYzQcb\neaWsOsDplIo+WtBVwLxeXkNKvIs5heleP+azs0YzISuJ379WgcejrXSlhkILugqYd7bXcfqkrCHN\n1eJyOrjl/BLKq5uOnVBVSnlHC7oKiKqjbVQebWfu+MwhP/bTM/Ipzknm7hXaSldqKLSgq4BYt7cB\ngDmFGUN+rNMh3LSgmIrqZm2lKzUEWtBVQKzbd4Q4l4Op+anDevwibaUrNWRa0FVArNt3hJPHphHr\nGt5LTFvpSg2dFnTldx3ubsoONg6ru6U3baUrNTRa0JXfbT7YSGe3h9k+FvTerfQXN1f5KZ1S0WvY\nBV1ECkTkdRHZKiJlInKzP4OpyLXpgHVCdPYQxp+fyLFW+vLt2kpXahC+tNDdwDeNMVOBecCNIjLN\nP7FUJCuvbiYjMYaclDif99XTSt9eo610pQYz7IJujKkyxqyzl5uArcAYfwVTkauiuomS3JRj30zk\nK22lK+Udv/Shi0gRMBtY3c+6a0VkjYisqa2t9cfhVBgzxlBxqInJeSl+26e20pXyjs8FXUSSgaeB\nW4wxjX3XG2OWGWNKjTGl2dnezbqnIlfV0XaaOtyU5PqvoIO20pXyhk8FXURisIr5/xljnvFPJBXJ\nyqubAPzaQgdtpSvlDV9GuQjwALDVGPM7/0VSkazikFXQS3L8W9Dh4630bm2lK3UcX1ronwS+CJwr\nIuvtyyI/5VIRqry6ibzUeNISY/y+b6dD+K/zS9he08zTaw/4ff9KRTrXcB9ojHkH8M8wBhU1Kqqb\nKPFzd0tvF07PY3ZhOne+Vs5FM/NJjB32S1ipqKOfFFV+0+0xbK9uZnJucsCOISJ8f9FUqhs7eODt\n3QE7jlKRSAu68pt9h1vpcHv8PsKlr9KiTD51Ui73vrmT2qaOgB5LqUiiBV35TfmhwIxw6c+tC6fQ\n4fZw94qKgB9LqUihBV35TUV1EyIwKSdwXS49JmQnc+UnCnn8/f3H/pEoNdJpQVd+U17dRGFmYtBO\nVP7XeSWkxLv40T83Y4wOY1RKC7rym4pDTQHvP+8tIymWb39qMqt3H+a5DZVBO65S4UoLuvKLDnc3\nu+taKAngCJf+XH5qISePTeMXL2ylqb0rqMdWKtxoQVd+sbuuBbfHBLWFDtaHjW5fPJ3a5g7+sGJ7\nUI+tVLjRgq78IpgjXPqaVZDOZaUF/OXdPWypPG5+OKVGDC3oyi+2VzfjcggTsoLb5dLj1oVTSE+M\n4TtPb8Dd7QlJBqVCTQu68ovy6ibGZyUR6wrNSyojKZafLZ7O5oONLHt7V0gyKBVqWtCVXwR6Dhdv\nXDgjnwun53HX8u3sqGkOaRalQkELuvJZa6ebfYdbmRzkE6L9+enik0iMdfKdv2/QKXbViKMFXfls\nR00zxhD0ES79yUmJ58efmca6fQ3c++bOUMdRKqi0oCufhXKES38+O2sMnz45n9+/VsH6/Q2hjqNU\n0GhBVz6rqG4izuWgMDMx1FEAa4rdX352Bjkpcdz8xIc0d7hDHUmpoNCCrnxWXt1McW4yTkf4fN9J\nWmIMd10+m/2HW/nJc2WhjqNUUGhBVz4L9hwu3po7PpMbz5nE39ce0K+sUyOCFnTlk6OtXRxqbA+L\nES79uXlBMfMmZPK9ZzdRVnk01HGUCigt6MonFTXWCdFQj0E/EZfTwf9cMYeMxFiu++taGlo7Qx1J\nqYDRgq58cmyES5i20AGyU+L409I5HDrazi1Prsej49NVlNKCrnxSUd1ESpyL/LT4UEcZ0JzCDH70\nmZN4o7yWO17eFuo4SgVEcL5aRkWt8kNNFOcmIxI+I1xOZOknCik/1Mh9b+2iKCuJK+YWhjqSUn6l\nLXQ1bMYYKqqbwuYDRYMREX7ymZM4qySbH/xjM29vrw11JKX8Sgu6Grba5g6OtHaF5ZDFE3E5Hdxz\n5WyKc5K54a/r2Fql86er6OFTQReRB0WkRkQ2+yuQihwVh6wZDcP5hGh/UuJjePArp5IU5+KLD7zP\n7rqWUEdSyi98baE/BCz0Qw4Vgcqrw3vI4kBGpyfw16vn4jGGpfevprKhLdSRlPKZTwXdGPMWcNhP\nWVSE2VbVSFZyLFnJcaGOMiyTclJ45KtzaWzrYukDq6lr7gh1JKV8EvA+dBG5VkTWiMia2lo9CRVN\nth1qYmp+aqhj+GT6mDQe+MqpVDa0cfmyVdQ0toc6klLDFvCCboxZZowpNcaUZmdnB/pwKkjc3R7K\nq5uYEoHdLX3NHZ/JQ/9vLpUNbVy2bBVVR7X7RUUmHeWihmV3XQudbk/Et9B7zJswikevmktdUwdL\n7lvJ/sOtoY6k1JBpQVfDstX+yP+UvOgo6ACnjMvkr1d/gsY2N5/703tsPqiTeanI4uuwxceBlcBk\nETkgIlf5J5YKd1urGnE5hEk5yaGO4lczC9J5+vr5xLkcXHbfSt6s0PM+KnL4OsrlCmNMvjEmxhgz\n1hjzgL+CqfC2raqRSTnJxLqi703epJwUnrnhNApHJXHVQx/w+Pv7Qh1JKa9E31+jCoqtVZE/wmUg\nuanx/O1r8/jkpCy++8wmvvfsJjrdnlDHUmpAWtDVkNU1d3CosZ2p+ZE/wmUgPZ8ovf7siTy2eh9X\n/FmHNarwpgVdDdnGAw0AzBybHuIkged0CLcunMI9V85mS2Ujn7nnHVbvqg91LKX6pQVdDdmG/Udx\niPWhnJHiopNH88wNp5EQ4+SKP6/izlfL6erWLhgVXrSgqyHbcKCB4pwUkuJG1nT6U/NTeeGmM/jC\nnLH8z793cOm9K9lXr+PVVfjQgq6GxBjDxgNHOXnsyGmd95YU5+I3l87kf66Yzc7aZi68+y0eWblH\nv9ZOhQUt6GpIDhxp43BLJzMLor//fCCfmTmal24+gznjMvjRP8tYct9KdthfmK1UqGhBV0Oyfv/I\nOSE6mLEZiTzy1bn89tKZbK9pZtHd73DX8grau7pDHU2NUFrQ1ZCs399ArMsRMV87F2giwiWnjGX5\nN87igpNyuWv5dhbc+Sb/2liJMdoNo4JLC7oaklW76plTmB6VnxD1RXZKHPdcOYfHr5lHakIM//nY\nhyy5byUb7Hc0SgWD/lUqrzW0drKlqpH5E7JCHSVszZ84in99/XR++bkZ7KptYfEf3+Xqh9ewpVK/\nu1QFnhZ05bXVuw9jjFW01Ik5HcKVnyjkjW+fzTfOL2H17noW/eFtbvw//VJqFVgjayCx8snKnfXE\nxziYWTAyhywOVUp8DDctKObL84u4/51dPPjObl7YVMWZJdlce8YEPjlpFCIS6pgqimgLXXlt1a56\nSsdlEudyhjpKRElLjOGbF0zm3dvO5dufmszWqkaWPrCaC+9+m6fXHtBRMcpvtKArr9Q0tbPtUJN2\nt/ggPTGWG8+ZxDu3nsOvLzmZbo/hm09tYN5/r+Cnz5dRUa3j2JVvtMtFeeWVsmoAzp+WG+IkkS/O\n5WRJaQGXzBnLyl31PP7+Pv66ai9/eXcPcwrTubS0gAun55GeGBvqqCrCaEFXXnlpUxUTs5MojrJv\nKAolh0P45KQsPjkpi8MtnTyz7gCPv7+P7z6ziR/+YzNnlmRz8czRnDctl+QRNm+OGh59lahB1Td3\nsGpXPTeeM0lP4gVIZlIsV58xgatOH09ZZSPPbajk+Q2V/HtbDXEuB6dPyuLcqTksmJJLXlp8qOOq\nMKUFXQ3q1S3VeAxcOD0/1FGinogwfUwa08ekcdvCKazdd4QXNlaxYls1K7bV8H02c9LoVBZMyeGs\nydmcPDadGKeeClMWCebHk0tLS82aNWuCdjzlH1/43/c40tLJim+epS30EDHGsKOmmeVba/j3tmrW\n7j2Cx0BirJPSokxOmziK+RNGMX1MGk6H/o6ijYisNcaUDradttDVgLZWNbJ27xF+8OmpWsxDSEQo\nzk2hODeF68+eyJGWTlbvrue9nfWs3FnPr17aBkBSrJOTx6YzqzCd2QXWdU6KdtGMFFrQ1YDufXMn\nibFOLjllbKijqF4ykmJZOD2fhXY3WE1TO6t2HeaD3YdZv7+BP7+1C7c9R/uY9ARmFqQxNS+VyXkp\nTM1PZUx6Ag5tyUcdLejqhCqqm3h+QyXXnDFBh9CFuZyUeC6eOZqLZ44GoL2rm7LKo3y4r4H1+xvY\ndPAoL246dGz75DgXJbnJTMlPpSQnmfHZyYwflcSYjATtsolgWtBVvzwew4/+uZmU+BiuO2tiqOOo\nIYqPcXLKuExOGZd57L6WDjcV1U1sO9TEtqpGth1q4oWNVTzW1nVsmxinUJiZyPisJIpGJTFuVCKj\n0xOOXVLjXdr1Fsa0oKt+LXt7F6t2Hea/Pz+DjCRtnUeDpDgXswszmF2Ycew+Ywy1zR3sqWtld10z\nu+ta2VPXwu66Ft7eXkeH++NfhJ0c52J0evyxAp+TEkd2ShxZydZ1drK1nBCr00OEghZ0dZyn1uzn\njpe38ekZ+Vx+akGo46gAEhFyUuLJSYln7vjMj63zeAx1zR0cbGijsqGdyoY2e7mNyqNtbDxwlMMt\nnf3uNznORVZyLNkpcWQkxpKWEEN6YgzpvZbTEmJIT4glPTGG1IQYUuJc2q/vI58KuogsBO4GnMD9\nxphf+SWVComapnb++8VtPPvhQU6flMWdS2bq2+sRzOEQclLjyUmNZ3Zh/9t0dXuob+6krrmD2qYO\nau3rul7X+w630tDaxdG2LtoGmYgsIcZJUpyL5DjrOinWRVJcz30uEmOtdYlxLuJdDuJjnMTFOIh3\nOT9ajnHat+3lGHvZ5Yz6fxjDLugi4gT+CJwPHAA+EJHnjDFb/BWuR3tX97Ez9n3Hzfe+ddyQetP3\npjnhth/fj/fH6L3P44/X5/bHNjUDrOv7uBPn7svbY3iMoaGti7qmDnbWtvD+7nre3l6HCNx07iT+\n89xi/VYiNagYp4O8tHivP73a3tVNY1sXDW1WgW9o7aKhtZOjbV00d7hp6XDT3NFNy7FlN3XNneyt\nbz22vqVz+LNTxjiFGKcDl0OIdTlwORy4et3ncjqIcQouh3VfjNNa73LY9zsdxDgEZ38X6f8+h8Pa\n35LSgoB3X/rSQp8L7DDG7AIQkSeAxYDfC/r1f13L6+W1/t6t6qUwM5GrzhjP5acWMj4rKdRxVJTq\naTHnpA5/bLzHY2h3d9Pe5aG9q5v2rm463D3LHtrd3XTYyx0f285a5+720NVt6Or24O42dHmsa7fH\nQ6fbunbb69u6uulqt7Z3d3twe6z7PR6D22PwGOu6u9el576+ja8FU3PDuqCPAfb3un0A+ETfjUTk\nWuBagMLCE7xvG8RlpxZw2sSPvvZsoF6Avl0EfTftvfr4ddLvdsdtO6RjyADrvH8cXubuu/64n6PX\n7bSEGLKS4yjISNQTnypiOBxCYqyLcB9J6/EYus1HhT4+JvAnin0p6P2V1eM6BIwxy4BlYH30fzgH\nWqhziCilIozDITgQglDHPzqmD489APQeAjEWqPQtjlJKqeHypaB/ABSLyHgRiQUuB57zTyyllFJD\n5dNsiyKyCLgLa9jig8aYXwyyfS2wd9gH9K8soC7UIQYR7hnDPR9oRn8I93wQ/hl9zTfOGJM92EZB\nnT43nIjIGm+mowylcM8Y7vlAM/pDuOeD8M8YrHw60FgppaKEFnSllIoSI7mgLwt1AC+Ee8Zwzwea\n0R/CPR+Ef8ag5BuxfehKKRVtRnILXSmloooWdKWUihIjpqCLSKaIvCYi2+3rjAG2TRWRgyJyT7hl\nFJFZIrJSRMpEZKOIXBaEXAtFpFxEdojIbf2sjxORJ+31q0WkKNCZhpHxGyKyxX7OVojIuHDK12u7\nS0TEiEjQh+B5k1FEltjPY5mIPBZuGUWkUEReF5EP7d/1oiDne1BEakRk8wnWi4j8wc6/UUTm+DWA\nMWZEXIBfA7fZy7cBdwyw7d3AY8A94ZYRKAGK7eXRQBWQHsBMTmAnMAGIBTYA0/pscwNwr718OfBk\nkJ83bzKeAyTay9cHM6M3+eztUoC3gFVAaRg+h8XAh0CGfTsnDDMuA663l6cBe4Kc8UxgDrD5BOsX\nAS9hzYU1D1jtz+MHvYU+2H+wIe7rHBFZ3+vSLiKfPcHmi4GH7eWHgc+LyLP2f8n3RWS6vc9TgFzg\nVfv2uSKyTkQ2i8jDIuKy78/o7/H2upvt7ctE5JZe98+0W9ebROR5EUm1748Vkb8ANwNfFJGz7YzH\n/SzGmApjzHZ7uRKoAY77BJmITLGP1SEi3xrC09rXsWmSjTGdQM80yb31fm7/DiyQvlNABtagGY0x\nrxtjWu2bq7DmHgqbfLafYf1Tbw9ith7eZLwG+KMx5giAMaYmDDMaINVeTiPI80sZY94CDg+wyWLg\nEWNZBaSLiN9mHwxFl8tDwEJ/7Mj+I51ljJkFnAu0Yhfi3kRkD5BrjKmyH1eFNbHYemPMycCXgLtF\nxAHcCXy718MfBi43xkzHmrbgy/b93+v7ePtY07Fe+HOBmcBFIlJsP+Z+rBb4DODZXse5xr5uw2pJ\n3glUAzkD/fwiMherpbKzn9WHgZuA3w60Dy/0N03ymBNtY4xxA0eBUT4edyi8ydjbVVitpGAZNJ+I\nzAYKjDH/CmKu3rx5DkuAEhF5V0RWifWNZcHkTcafAEtF5ADwIvD14ETz2lBfq0MS9ILe338wEZko\nIi+LyFoReVtEpgxj15cAHcD7duv42AVI6Gd7J7DCzrQNKAJuBV40xvQ84fFAhzGmwr79GvAFe3la\n38eLSC4wFVhljGm1i9ubwOfsx0wGfmhn+g7wbXv5dqB3q6cBKLWfmwvslvY6EXlKRJLt+/OBR4H/\nZ4z5+Df52vsxxnwAdPVdN0TeTJPs1VTKAeT18UVkKdZz+5uAJupz2H7uO5bPbkj8Hvhm0BIdz5vn\n0IXV7XI2cAVwv4ikBzhXb95kvAJ4yBgzFqt741H7+Q0XAf1bCZcfdBnwdWPMKcC3gD8NYx+XA9cY\nY6b3vWC1fKt73trY143A5+3bc4FxWP1f/2m36H8LLAGye52guoSPpgze0M/jxwKbgTNFZJSIJGK9\nqHoesxn4HzvTMqDLXv6uvU21va9TgBlAPfAD4DxjzBxgDfANu6vmBeAH9tu2QPJmmuRj29hdUmkM\n/LbT37yayllEzgO+D1xsjOkIUjYYPF8KMB14w37tzQOeC/KJUW9/z/80xnQZY3YD5VgFPli8yXgV\n8DcAY8xKrEZZFuEjoNOOh7yg2y3O04CnRGQ9cB/QU3g/37e1bV9e6bOPfKwC+Eqv+/7Y07eOdfIw\nA1grIt/H6jZ5FMiw138d62TPbcaYQmNMEdY/lkewuod+LyLvA02A2z7Er/p5vNsYsxW4A6s1/zJW\n4e95zFeBG0VkLdYfcc9Xpj+I9YvOwOqSeg/rn8sGrHcC79rH+TIwHqu7ph74cT/Pzc+H/EsYmDfT\nJD/HR11RlwD/NvYZoCAZNKPdpXEfVjEPdt/vgPmMMUeNMVnGmCL7tbfKzrkmXDLa/oHVJYiIZGF1\nwewKs4z7gAV2xqlYBT2cvr/yOeBLYpkHHO3pCvaLYJ4B7nWmtwj7LDDWCYwqH/d3M7BsgPV7sPp0\nVwDb7etMe10pVt/2HiC112O+Qp9RLsAFwN/62b/0fXyvdb8Ebujn/hLg/T739WRsA1ZivX18vCej\nvc1SrG6U9b0uswb42X8CfMvH53cRUIHVV/99+77bsYoOWH80TwE7gPeBCSF4TQ2WcTnWeYme5+y5\ncMrXZ9s3CPIoFy+fQwF+h/W9wZuwzi2FW8ZpwLtYjaH1wAVBzvc41sizLqxG2lXAdcB1vZ7DP9r5\nN/n79xzUX0avH7qIXsN6sFqkl/b6gWcOcX+rgHMGWL+nn/vSgVh7+RqsM8/9PTbHvo6zi+25gz2+\n12MKgW30GeaF9c7oEeCr9u1EIMlePh94y17OxmpxTOq1XckQn5uf4GNB14te9BIZl1AMW3wcq/U5\nWUQOiMhVwH8AV4nIBqCM/od0nWh/RVh9Um8OMcpUoExEtgEXYrXye/b5ooiMtm9+W0S2AhuB540x\n/x7s8cDTIrIFeB640djDvIArRKQCq8hXAn+x788B1tnHuRX4IoAxphbrncLjIrIR6x+XVyeMRSTP\nPtP/DeAH9nOdOtjjlFKRSyfnUkqpKBHyk6JKKaX8wxXMg2VlZZmioqJgHlIppSLe2rVr64wX3yk6\naEEXkQeBi4AaY42ZRkQygSexTm7uAZb06ic+oaKiItasCeZILKWUinwisteb7bzpcnmI4z+qfxuw\nwhhTjDXy44SzxymllAqOQVvoxpi35PjpUBdjffwXrLlO3sAanREQ6/c3cLjlow/2Sd9Pz0q/i9bt\nPnNEycfW9d2NDLDuRDeOzyNe5hnoGMdPbeVltr7HOG5dz/1CaoKLrOQ4kuKC2vOmlAqQ4f4lf2yi\nKxE54SRSInItcC1AYWHhsA529/IKXi8Ppw97RZdRSbHMLEhn4fQ8Fs3IJ1kLvIogxhi6ug3t7m7a\nu7rp6PLQ3tVNe5eHDrd13d7VTbvbWtfV3XMxuD32tb3c2e2xlrs9dHns625DV8/99vYeYz2m2xi6\nPR+/eIzB7TF4PNZ1z/1Pfm0e40YlBfS58GrYot1C/1evPvQGY0x6r/VHjDEn/MKIHqWlpWY4fei7\naptparc+Pd83be/8x6/ruydzwnW9bx63zstjmL5rh3IMr7OZE67re0ffPL0f6jHQ0NpJXXMnO2ub\neX/3YfYdbiUrOZYfXjSNi2eOPu7djVL+4u720NjupqG1k4a2Lo62dtHc4aalw21fd9PSaS23drhp\n7uimpcN97L62zu6PFW2PH0ZfOwRcTgcxDrGunQ5inILLKcQ4HLicgsth3ed09L04cArWtQNcDgcO\nh+ByCA6xrr95QQk5qfHDyiYia40xg87tM9ymWLWI5Nut83ysObkDZkJ2ciB3r7D+UazZe4Sfv7CV\nm59Yz+rdh/n54uk4HFrU1eBaO93UNXVS29xBbVMHdb2uG1q7aGjr5GhbFw2tVvFu6nAPus/4GAdJ\nsS6S4qxLcpyTjMRYCjISSYx1Eh/jJD7GQZzLuo6PcRIX4yTe5bDXfXR/vOujbWNcVmGOddpF2i7Y\n0fBaH25B75mM6Vf29T/9lkiFhIhwalEmz1x/Gr95pZx739xJSryL7144NdTRVIg1tndR2dBGZUMb\nBxvajy1XNrRR22QV7pbO7n4fm5EYQ2ZSLGkJMeSkxFOSk0JaYgzpCbGkJbhIT4wlLTGGtIQYUuI+\nKt5JsU5cTv2YzFB5M2zxcawToFn2R8l/jFXI/2Z/bH8fcGkgQ6rgcTqEWxdOpqm9i/ve3MW88aM4\nZ8qA37OhIpwxhsMtneyua2F3XQt76lvs5VYOHG49rjXtcgj56fGMTktgxth0spPjyEqJta/jyE6O\nIzsljsykWGK0KAdVUD/6P9w+dBV87V3dXHzPO7R0dLPim2cRH+MMdSTlB0fbuig/1MS2Q41sO9TE\ntqpGttd8dI4KrIJdkJlI0ahECjMTGZORwOh06zImPYGs5DicUdA9EUkC3Yeuolx8jJPbF0/n8mWr\neOi9PVx31sRQR1JDdKSlk/UHGli/r4FNB49SfqiJgw1tx9anJcQwJS+Fz84aw/isJMZnJVGUlcTY\njARtWUcoLejqhOZNGMWZJdnc//Yuvjy/iIRYbaWHK4/HsPVQI2v2HOHDfUdYv7+BPfXWd2I7BIpz\nUji1KIOleeOYkp/C1LxUclPjdCRTlNGCrgZ0/VkTueLPq3h+YyVLSgsGf4AKCmMM22uaeW9HHSt3\n1bN692FnDmkKAAARw0lEQVQaWq2vj81JiWN2YTqXnVrIrIJ0Th6bph8eGyH0t6wGNG9CJsU5yfzf\nqr1a0EOstdPNO9vrWLG1hn+X11DbZH16ekx6AudPzWX+xFF8YsIoRqfFa8t7hNKCrgYkIiwpLeAX\nL25lb31LwD/ppj6utqmDl8sOsWJrNe/trKfT7SElzsWZJdmcWZLFaROzKMhMDHVMFSa0oKtBLZye\nxy9e3MpLmw/pydEgONraxctlVTy/oYr3dtbhMTBuVCJLPzGOBVNzOLUok1iXnrRUx9OCrgZVkJnI\nyWPTeGlTlRb0AOn2GN6sqOGJ9/fzenkNXd2GcaMSufGcSVx08mhKcpO1G0UNSgu68sqF0/O54+Vt\nHDjSytgMfYvvLwcb2njyg/08tWY/VUfbyUqO5cvzi7h41mhmjEnTIq6GRAu68sqF0/O44+VtvFpW\nzVdPHx/qOBFv7d4j/PmtXbyy5RAAZxRn86OLprFgaq52p6hh04KuvFKUlURhZiLv7azXgj5M3R7D\na1uq+fPbu1i79whpCTHWsNC5hXpiU/mFFnTltfkTRvHi5iq6PUY/+j0E3R7D8xsq+cOK7eyqa6Eg\nM4GffGYal5YW6Phw5Vf6alJemz9xFE+u2c+WykZmjE0LdZyw5/EYXtp8iN8vr2BHTTNT8lK458rZ\nLDwpT2cSVAGhBV15bf7EUQCs3FWnBX0Qq3fVc/u/tlBW2ciknGT+eOUcLpyeFxVzbqvwpQVdeS03\nNZ4JWUms3FnPtWfq8MX+7D/cyn+/tJUXNx0iPy2e3y2ZyeJZY7SLSgWFFnQ1JPMmjuK59ZXaj95H\nh7ub/31jJ396YycOgVvOK+ZrZ07UCc1UUGlBV0MypzCDx1bvY1dtM8W5KaGOExbW7j3CbU9vZHtN\nMxednM/3Fk1ldHpCqGOpEUgLuhqSmXbf+fr9DSO+oLd0uPnNK+U8vHIP+anx/OUrp+q3O6mQ0oKu\nhmRCdjLJcS42HjjKpSN49sWNBxq4+Yn17Klv4cvzi/jWpyaTrEMQVYjpK1ANidMhzBiTxoYDDaGO\nEhIej2HZ27v47SvlZKfE8djV846N/lEq1LSgqyE7uSCNB9/ZTYe7mzjXyDnpV9vUwS1Pfsi7O+pZ\nNCOPX35uBumJsaGOpdQxWtDVkM0am05Xt2FrVROzCtJDHScoNuxv4GuPrqWhrZM7vjCDJaUFOnGW\nCjv6cTU1ZCfbRXzjCOl2eWrNfi69byVOh/D09adx2amFWsxVWNIWuhqy0WnxZCbFUnawMdRRAsrd\n7eHnL2zloff2cNrEUdxz5Rwyk7SLRYUvLehqyESEKXkpbDsUvQW9rbObrz++juVba7jq9PF898Ip\nOv+KCnv6ClXDMjU/lfLqJro9JtRR/K6+uYMr/ryKFdtq+Nnik/jhRdO0mKuIoC10NSxT8lJo7/Kw\np76FidnJoY7jNwcb2lh6/2oqG9q4d+kpfOqkvFBHUsprPjU7RORmEdksImUicou/QqnwNzU/FYCt\nVdHT7bL/cCuX3beSuuYOHrvmE1rMVcQZdkEXkenANcBcYCZwkYgU+yuYCm/Fuck4HcK2qqZQR/GL\nXbXNLLlvJc0dbh67eh6njMsMdSSlhsyXFvpUYJUxptUY4wbeBD7nn1gq3MW5nEzMToqKFvruuhYu\nW7aKDreHx66ep3O9q4jlS0HfDJwpIqNEJBFYBBw3uYeIXCsia0RkTW1trQ+HU+Fman4q2w5Fdgu9\n0u4z7/YYnrh2HtNGp4Y6klLDNuyCbozZCtwBvAa8DGwA3P1st8wYU2qMKc3Ozh52UBV+puSlcrCh\njaNtXaGOMix1zR0sfWA1jW1dPPLVuZSM8NkjVeTz6aSoMeYBY8wcY8yZwGFgu39iqUgwOc8a3bK9\nOvJa6U3tXXzpgfepbGjjga+cyvQx2s2iIp+vo1xy7OtC4PPA4/4IpSJDT4u2PMIKurvbw42PfUhF\ndRP/u/QU5o7XE6AqOvg6Dv1pERkFdAE3GmOO+CGTihBj0hNIinVSEUH96MYYfvRcGW9V1PKrz8/g\nnMn6hRQqevhU0I0xZ/griIo8IkJJXkpEtdDvf3s3j63ex3VnTeTyuYWhjqOUX+nnmZVPJuemsL26\nOdQxvPLvbdX88qWtLJqRx3c+NTnUcZTyOy3oyicluSnUt3RS19wR6igD2lvfwi1PrGdqXip3XjoL\nh0Onv1XRRwu68snkPOvEaDj3o7d1dvO1R9ciItz3xVNIiB0537KkRhYt6Mon4T7SxRjD957dRHl1\nE3ddPouCzMRQR1IqYLSgK59kJceSmRRLRZgW9Cc+2M+zHx7klgUlOqJFRT0t6MonIkJJbjLlYdjl\nsqOmmZ8+X8YnJ43i6+dOCnUcpQJOC7ry2eTcFCqqmzEmfL7sosPdzc1PfEhCjJPfLdGToGpk0IKu\nfFaSl0Jzh5vKo+2hjnLMb18pp6yykV9fMpPc1PhQx1EqKLSgK59Nzg2vkS7v7ajjz2/vZum8Qs6f\nlhvqOEoFjRZ05bPiMBrp0tLh5tZnNjI+K4nvL5oW6jhKBZV+p6jyWVpCDPlp8WHRQv/NK+UcONLG\n3742X8ebqxFHW+jKL0pyQz+ny5o9h3l45R6+NG8cpxbpDIpq5NGCrvxicl4K22ua6faEZqRLe1c3\n33l6I6PTEvjOwikhyaBUqGlBV35RnJNMp9vD3vqWkBz/T6/vYFdtC7/6wgyS4rQnUY1MWtCVXxyb\n0yUE3S576lq4961dfHbWaM4o1q85VCOXFnTlF5NykhGBiiBPpWuM4afPlxHrdPC9RVODemylwo0W\ndOUXibEuCjMTg35idPnWGl4vr+WW84rJ0Q8QqRFOC7rym5LclKAOXWzv6uanz5dRkpvMl08rCtpx\nlQpXWtCV30zOTWF3XQsd7u6gHG/ZW7s4cKSNn148nRinvpSV0r8C5TcleSm4PYbddYEf6VLT1M69\nb+7kwul5zJ84KuDHUyoSaEFXftMzp0swptK9a/l2Ot0eHXOuVC9a0JXfjM9KwuWQgA9d3FHTxJMf\n7GfpvHGMz0oK6LGUiiRa0JXfxLocTMhOovxQYIcu/uqlbSTGOLlpQXFAj6NUpNGCrvyqJDcloC30\nVbvqWb61huvPmUhmUmzAjqNUJNKCrvxqcm4K+w630trp9vu+jTHc+Wo5eanxfPWT4/2+f6UinU8F\nXUT+S0TKRGSziDwuIvrJjhGuxJ4CYHsAPjH63s56PthzhBvPmUh8jE6Nq1Rfwy7oIjIGuAkoNcZM\nB5zA5f4KpiLT5AB92YUxhruWV5CXGs+SUwv8um+looWvXS4uIEFEXEAiUOl7JBXJCjITiY9x+P0T\no71b53EubZ0r1Z9hF3RjzEHgt8A+oAo4aox5te92InKtiKwRkTW1tbXDT6oigtMhFOf498sutHWu\nlHd86XLJABYD44HRQJKILO27nTFmmTGm1BhTmp2tU5uOBP4e6aKtc6W840uXy3nAbmNMrTGmC3gG\nOM0/sVQkm5yXTHVjBw2tnT7vS1vnSnnPl4K+D5gnIokiIsACYKt/YqlINn10GgDr9zf4vC9tnSvl\nPV/60FcDfwfWAZvsfS3zUy4VwWYWpOMQWLfPt4KurXOlhsanL180xvwY+LGfsqgokRTnYnJeKh/u\nO+LTfnpa5z9bfJK2zpXygn5SVAXEnMJ01u9rwOMxw3q8ts6VGjot6Cog5hRm0NThZnvN8D4xqn3n\nSg2dFnQVEHPGZQCwbhjdLto6V2p4tKCrgCgalUhGYgwf7Dk85Me+u0Nb50oNhxZ0FRAiwmmTsnh7\ne92Q+tGNMdz5Wjmj07R1rtRQaUFXAXPO5BxqmzrYUtXo9WPeKK/lw30N/Oe5xdo6V2qItKCrgDmr\nxJrq4Y3yGq+272mdF2QmcGnp2EBGUyoqaUFXAZOdEsfJY9N4o9y7SdleKatm88FGbjq3mBinvjSV\nGir9q1EBdXZJNuv2HeFIy8DzunR1e/jNK9uYkJXE52aPCVI6paKLFnQVUBeclIfHwAubqgbc7tGV\ne9lZ28L3Fk3Fpa1zpYZF/3JUQJ00OpUpeSk8tfbACbepb+7gruUVnFGcxYKpOUFMp1R00YKuAkpE\nuGJuIRv2N7CmnzHpxhi++8wm2rs8/OiiaVgTdyqlhkMLugq4JaUFZCbFcuerFRjz8THpf1uzn1e3\nVPPtT02m2P4+UqXU8GhBVwGXEOvkG+eXsHJXPY+u2nvs/jcravnhP8o4beIorjp9fAgTKhUdfJo+\nVylvXTm3kBVbq/nxc2VsqWzEGPj7ugMU5yTzp/+Yg8OhXS1K+UoLugoKh0P403+cws9f2MLf1x7A\nIcJlpxbw3QunkBIfE+p4SkUF6dunGUilpaVmzZo1QTueCk/d9twuTm2VK+UVEVlrjCkdbDttoaug\n00KuVGDoSVGllIoSWtCVUipKBLUPXURqgb2DbhgcWUBdqEMMItwzhns+0Iz+EO75IPwz+ppvnDEm\ne7CNglrQw4mIrPHmJEMohXvGcM8HmtEfwj0fhH/GYOXTLhellIoSWtCVUipKjOSCvizUAbwQ7hnD\nPR9oRn8I93wQ/hmDkm/E9qErpVS0GcktdKWUiipa0JVSKkqMmIIuIpki8pqIbLevMwbYNlVEDorI\nPeGWUURmichKESkTkY0iclkQci0UkXIR2SEit/WzPk5EnrTXrxaRokBnGkbGb4jIFvs5WyEi48Ip\nX6/tLhERIyJBH4LnTUYRWWI/j2Ui8li4ZRSRQhF5XUQ+tH/Xi4Kc70ERqRGRzSdYLyLyBzv/RhGZ\n49cAxpgRcQF+DdxmL98G3DHAtncDjwH3hFtGoAQotpdHA1VAegAzOYGdwAQgFtgATOuzzQ3Avfby\n5cCTQX7evMl4DpBoL18fzIze5LO3SwHeAlYBpWH4HBYDHwIZ9u2cMMy4DLjeXp4G7AlyxjOBOcDm\nE6xfBLwECDAPWO3P44+YFjqwGHjYXn4Y+Gx/G4nIKUAu8GqQcvU2aEZjTIUxZru9XAnUAIN+gswH\nc4EdxphdxphO4Ak7Z2+9c/8dWCDB/S65QTMaY143xrTaN1cBY8Mpn+1nWP/U24OYrYc3Ga8B/miM\nOQJgjKkJw4wGSLWX04DKIObDGPMWcPx3LX5kMfCIsawC0kUk31/HH0kFPdcYUwVgXx/3bcQi4gDu\nBL4d5Gw9Bs3Ym4jMxWqp7AxgpjHA/l63D9j39buNMcYNHAVGBTBTX95k7O0qrFZSsAyaT0RmAwXG\nmH8FMVdv3jyHJUCJiLwrIqtEZGHQ0lm8yfgTYKmIHABeBL4enGheG+prdUiiavpcEVkO5PWz6vte\n7uIG4EVjzP5ANTD9kLFnP/nAo8CXjTEef2Q70aH6ua/vWFdvtgkkr48vIkuBUuCsgCbqc9h+7juW\nz25I/B74SrAC9cOb59CF1e1yNtY7nLdFZLoxpiHA2Xp4k/EK4CFjzJ0iMh941M4YyL+RoQjo30pU\nFXRjzHknWici1SKSb4ypsothf28X5wNniMgNQDIQKyLNxpgTnsQKQUZEJBV4AfiB/bYtkA4ABb1u\nj+X4t7E92xwQERfWW92B3nb6mzcZEZHzsP5xnmWM6QhSNhg8XwowHXjDbkjkAc+JyMXGmGB9I4y3\nv+dVxpguYLeIlGMV+A+CE9GrjFcBCwGMMStFJB5rYqxgdw+diFev1WEL5gmDUF6A3/DxE46/HmT7\nrxD8k6KDZsTqYlkB3BKkTC5gFzCej05EndRnmxv5+EnRvwX5efMm42ysrqniELz2Bs3XZ/s3CP5J\nUW+ew4XAw/ZyFlbXwagwy/gS8BV7eSpWsZQgP5dFnPik6Kf5+EnR9/167GD+oKG8YPXprgC229eZ\n9v2lwP39bB+Kgj5oRmAp0AWs73WZFeBci4AKuyB+377vduBiezkeeArYAbwPTAjB73ewjMuB6l7P\n2XPhlK/PtkEv6F4+hwL8DtgCbAIuD8OM04B37WK/HrggyPkexxp51oXVGr8KuA64rtdz+Ec7/yZ/\n/571o/9KKRUlRtIoF6WUimpa0JVSKkpoQVdKqSihBV0ppaKEFnSllIoSWtCVUipKaEFXSqko8f8B\nnBCY1FKbexIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118af1550>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the expectation of the two levels as a function of time.\n",
"# We'd expect very small changes given how weak the driving field is.\n",
"plt.subplot(211)\n",
"plt.plot(tlist,tdep.result.expect[1])\n",
"plt.subplot(212)\n",
"plt.plot(tlist,tdep.result.expect[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Seems to work (but have to bump up to `Nt=400` time points to get smaller than `tw=0.2`)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Next, to explore the `(z,t)` integration of these equations\n",
"First, neglecting doppler broadening (i.e. stationary atoms). The following is from Ogden, Eq. 2.52 (p36).\n",
"$$\\frac{d}{dz}\\Omega(z,t') = \\mathrm{i}N(z)g \\rho_{01}(z,t')$$\n",
"where $$g=\\frac{d_{01}^2 k}{2\\epsilon_0\\hbar}$$\n",
"\n",
"Approach is:\n",
" - evaluate $\\rho_{01}$ for all time at $z=0$ (no loop necessary since only one velocity class in this prototype).\n",
" - Calculate field $\\Omega$ one space step forward via Adams-Bashforth\n",
" - evaluate $\\Omega$ one step forward based on $\\rho$."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Euler step in space is $d\\Omega = \\mathrm{i}N(z)g\\rho_{01}dz$ and the initial condition is the drive pulse at the front of the medium."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"Nz = 200\n",
"rho01 = np.zeros([Nz+1,Nt],dtype=np.complex_) # index: z, t\n",
"omega = np.zeros([Nz+1,Nt],dtype=np.complex_) #TODO: is this complex type ok?"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Set up initial conditions:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"rho01[0,:] = np.array([tdep.result.states[i][0,1] for i in range(Nt)])"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"omega[0,:] = pulse(tlist,[])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"def i_to_f(interp_in):\n",
" \"\"\"A function to convert an interp1d object to a function\n",
" TODO: find a more elegant way to do this\"\"\"\n",
" def interp_func(x,args=[]):\n",
" return np.complex128(interp_in(x))\n",
" return interp_func"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"dz = 1.0/Nz #TODO: automatic from linspace\n",
"Ng = 2*np.pi * 10 # trying to match figures in paper, maybe a typo (1 vs 10) on pg39?\n",
"for z in range(Nz-1):\n",
" #TODO: replace Euler with AB method:\n",
" omega[z+1,:] = omega[z,:] + 1j*Ng*rho01[z,:]*dz\n",
" \n",
" # convert omega into a function (interpolate) run linblad solver.\n",
" # AMCD: I had to use linear so I could let it extrapolate past the end\n",
" # TODO: find out why mesolve runs past t > t_max\n",
" omega_f = interp1d(tlist, omega[z+1,:], kind='linear',fill_value=\"extrapolate\")\n",
" tdep.H_Omega_list = [[qu.Qobj([[0,1],[1,0]]),i_to_f(omega_f)]]\n",
" \n",
" tdep.mesolve(tlist,td=True,e_ops=[tdep.sigma(0,0),tdep.sigma(1,1)],opts=qu.Options(store_states=True))\n",
" rho01[z+1,:] = np.array([tdep.result.states[i][0,1] for i in range(Nt)])"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Replicate Figure 2.1:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x119308d68>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAEKCAYAAAAo150IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvcXGV97/3PlySEhEQ5JMSYpAQluDkUA0Skj1WRY2RX\nIhbasLsltdhUNzyP1vpUkFfF4ubZnml9qmiUFLAqUJGarWCMUWTr5hQggUAIuTkogZgDIAQCgdz5\n7T/WNbCYzNwzc89pzdzf9+s1r3uta11rzTXzgvzmOisiMDMzs+LYrdsFMDMzs1dzcDYzMysYB2cz\nM7OCcXA2MzMrGAdnMzOzgnFwNjMzKxgHZzMzs4JxcDYzMysYB2ezFpL0PyR9tMF7bpN0aLvKZGa9\nx8HZLEfSI5Kel/SspN9JulzShDrvnQycBXyjLP2vJd0naZuk9ZK+KGlcLssXgYta9ynMrNc5OJvt\n6j0RMQGYDRwBnF/nfX8JXB8Rz5cSJH0S+FvgA8BE4ATgaGCJJKVsS4B3SZramuKbWa9zcDarIiJ+\nBywlC9IASHq9pGslbZb0sKT/J3fLu4Ff5vLuA1wA/HlE3BoRgxFxP/CnZAH6T9L7vADcAZzU9g9l\nZj3BwdmsCknTyQLuQDrfDfifwCpgGnA88FFJJ6db/hBYm3vE24DfRcQ9+edGxGbgVuBdueQ1wJvb\n8DHMrAc5OJvt6j8kbQUeBTYBF6b0twCTI+KiiHgxIh4CvgnMT9f3ArbmnjMBeLrKe/weGJ8735ru\nNzNzcDar4L0RMRE4FvhPwKSUvj/wekm/L72ATwJT0vWnyPqVSx4CDpS0R4X3OJRUI08mkgVsMzMH\nZ7NqIuKXwOVko6khq0k/HBF75V4TI+KUdP1u4KDcI24D1gNn558r6ThgJnBVLvlgsuZyMzMHZ7Ma\n/gk4UdJssmD7jKRPSBonaZSkwyS9JeW9Hnhn6caICGAB8GlJpwFIejNwBfA3EbE+pY0FjgKWdexT\nmVmhOTibDSEN3roS+IeIGATeQzZ6+2FgC/At4LUp+5XAKaU5zGka1S+AvYEfpDz/RDaY7OuSbkhp\npwI3RsTj7f9EZtYLlP24N7NWkPT/AZsi4p8auOdW4OyIWN2+kplZL3FwNjMzKxg3a5uZmRVMzeAs\naYakX0haI+leSR9J6ftIWiZpXfq7d0qXpK9IGpB0t6Qj2/0hzMzM+kk9NecdwN9FxMHAMcA5kg4B\nzgOWR8QsYHk6h2xFpVnptRC4tOWlNjMz62Oja2WIiA3AhnS8VdIastGm88gWaYBsasiNwCdS+pVp\nGsktkvaSNDU9p6JJkybF/vv/QTOfw0aQnbGjdh6yPLvV/k98F7up8XvM+smdd961JSImt+PZr5m5\nR+x4fmddeZ/f9NLSiJjbjnIUXUP/CkmaSbZLz63AlFLAjYgNkvZL2aaRLdZQsj6lvSo4S1pIVrNm\nxowZ/PrXvx5G8a2dno8tNfOM06Sq10Y9O9h0GQYnjKpanm07N++Sf8Nzayo+Z+qeB1d9j/G7Vf83\naKjPV64Vn7eS/Hdg1gnjxo3/TbueveP5nbzpzP1qZwRW/vNj9f8P2GfqDs5pT9trgY9GxDOv7Ha3\na9YKabsMCY+IRcAigKOOOtJDxvtMeaAatfWlhu4fnDjm5ee0Ozht27l5yABdTbuCcSPv48Bt1p/q\nGq0taQxZYP5ORJQWU9hY2n82/d2U0tcDM3K3Twe8uIL1nSIExk79QDCzzqpntLaAy4A1EfHl3KUl\nZEsTkv7+MJd+Vhq1fQzw9FD9zWb1qqeJeajmazOzXlFPs/bbgPcD90hamdI+CXwWuEbS2cBvgTPS\nteuBU8h23NkGfKClJTYzM+tz9YzW/hWV+5Eh22y+PH8A5zRZLhshtm98jrFT9ux2MYZtcMKorjct\nd6Jf3sw6yyuEWdds3/hct4tQUz0j1s3MWs3B2Zri4GVm1noOzmZUnjPdS7rdtG7WDZLmSlqblos+\nr8L1sZKuTtdvTWt1lK6dn9LXSjo5pb1J0src6xlJH03XzkhLWO+UNKfsfQ6XdHO6fo+kPZr9bA7O\n1nW90Lw9FPf3mnWepFHAV8mWjD4EODMtLZ13NvBURBwIXAJ8Lt17CDAfOBSYC3xN0qiIWBsRsyNi\nNnAU2aDm69KzVgPvA24qK8do4N+AD0XEoWQrZza2sEMFDs7WdzydymxEOBoYiIiHIuJF4Cqy5aPz\n5pEtLw3wfeD4ND14HnBVRGyPiIfJZhcdXXbv8cCDEfEbgIhYExFrK5TjJODuiFiV8j0REU03ZXkR\nYSukUVtfenmVsG57PrY0tIxnt3jUtvWC0WPE5Kl1h55Jklbkzhel1SWh8lLRby27/+U8EbFD0tPA\nvin9lrJ7p5XdOx/4Xh1lPAgISUuByWRB//N13DckB2erqEgDvaoFnfG7Te75vmIzG9KWiJhT5Vo9\nS0VXyzPkvZJ2B04Fzq+jjKOBPwbeQtYMvlzSHRGxvI57q3KztlkLuMZq1nH1LBX9cp7UN/xa4Mk6\n7n03cGdEbKyzHL+MiC0RsY1sIa4jG/gcFTk4W09pZ/NyP9TCPWrbRpDbgVmSDkg13flky0fn5ZeZ\nPh34eVooawkwP43mPgCYBdyWu+9M6mvSBlgKHC5pfPoB8E7gvmF9ohwHZyuEVo/Y9qAws/4WETuA\nc8mC4xrgmoi4V9JFkk5N2S4D9pU0AHwMOC/dey9wDVkQ/QlwTmkQl6TxwInAD/LvJ+k0SeuBPwJ+\nnPqYiYingC+T/VhYSVbj/nGzn899zmZ1qGdQWBGW8jQbSSLierJm5Hzap3LHL/DKvg/l914MXFwh\nfRvZoLHy9Ot4ZVpV+bV/I5tO1TKuOVtbuA+2e/wDwaz3OThb04o0stvMrB84OFtX9PqqYNW4xcDM\nWsHB2fpWqweF9VILgZu2zXqbg7MVxnBq0+N3m9zSMvTDdCoz630OzlZYo7Y2vXZ8V6ZUuWnbzJrl\nqVTWE5pZN3qkznn2WttWRGNG78aU/fbsdjEKr2bNWdJiSZskrc6lXZ3b7/IRSStT+kxJz+eufb2d\nhTczM+tH9dScLwf+BbiylBARf146lvQl4Olc/gfTXphmbTFOk7o2OKveHaq8IImZNaNmzTkibiJb\nKHwXaV/MP6P+NUjNrIP8A8GsNzU7IOztwMaIWJdLO0DSXZJ+Kent1W6UtFDSCkkrNm/unSkq1v88\nYtvMuq3Z4Fy+c8cG4A8i4giyRca/K+k1lW6MiEURMSci5kyeXPyN7M0a5cFYZjZcww7OaWus9wFX\nl9IiYntEPJGO7wAeBA5qtpA2cvTCymG9tBgJuGnbrBc1U3M+Abg/ItaXEiRNljQqHb+BbI/Mh5or\novWCbgasVi9EYmbWbfVMpfoecDPwJknrJZ2dLs1n14Fg7wDulrQK+D7woYioOJjMiqvXaoZF5qZt\ns/aRNFfSWkkDks6rcH1smvo7IOlWSTNz185P6WslnZxLf0TSPWk68IoKz/y4pJCyaRuS/t/c9OHV\nkgYl7dPsZ6s5lSoizqyS/pcV0q4Frm22UGYlo7a+xODEMd0uRs/zgiTWb1Ir7VeBE4H1wO2SlkTE\nfblsZwNPRcSBkuYDnwP+XNIhZBXMQ4HXAz+TdFBElPqA3hWxay1F0oz0fr8tpUXEF4AvpOvvAf62\nFZVSL99pPaOTfaetHLHtoGjWFkcDAxHxUES8CFwFzCvLMw+4Ih1/Hzg+TQGeB1yVxkk9DAyk59Vy\nCfD3QFS5Xj5Ieti8fKd1xODEMS1ZK7ukmwuRQP2LkZjZq+0+ZjTTptTd6juprGl5UUQsSsfTgEdz\n19YDby27/+U8EbFD0tPAvin9lrJ7p6XjAH4qKYBvlN5P0qnAYxGxKovvryZpPDAXOLfeDzcUB2ez\nEcJN29aDtkTEnCrXdo2Qu9Zoq+UZ6t63RcTjkvYDlkm6H1gBXACcNERZ3wP8ulXjrNysbdYBDopm\nLbcemJE7nw48Xi1Pmv77WrIVL6veGxGlv5uA68iau98IHACskvRIyn+npNflnlFpkPSwOThb4fTC\nXGcz67rbgVmSDpC0O1lwXFKWZwmwIB2fDvw8IiKlz0+juQ8gm/Z7m6Q9JU0EkLQnWU15dUTcExH7\nRcTMiJhJFtyPjIjfpbyvBd4J/LBVH87N2tYXxu82uePLbjba71yEzTDctG39IvUhnwssBUYBiyPi\nXkkXASsiYglwGfBtSQNkNeb56d57JV0D3AfsAM6JiEFJU4DrUp/yaOC7EfGTOopzGvDTiGhZzcLB\n2ayKbTs3e4ETswKLiOuB68vSPpU7fgE4o8q9FwMXl6U9BLy5jvedWXZ+OdkOji3jZm2zDnKt1czq\n4eBsbdOqQNTKKVit1ourqXW7ad3ManNwtpbpxUBlZlZEDs7WU/K1vl5dBMRN22ZWi4Oz2Qjkpm2z\nYnNwtkIqylzneqZnDac537VnMxuKp1JZ3+jGXOde5jnP1g1jRu/O9Ekzamcc4VxzNusSB0Yzq8bB\n2czMrGAcnM1aYLjTyLpde/bAMLNicnA2MzMrmJrBWdJiSZskrc6lfVrSY5JWptcpuWvnSxqQtFbS\nye0quI0s1VYJ68Rc53YPMut27dnMiqeemvPlwNwK6ZdExOz0uh5A0iFku34cmu75miT/y2MtNVRT\nbDc3qujVFdLctG1WPDWDc0TcRLbVVj3mAVdFxPaIeBgYINuo2qxhRZnr3AmuPZs1TtLc1Eo7IOm8\nCtfHSro6Xb9V0szctV1aeSXtIek2Sask3SvpH3P5/1eutfhxSf+R0veWdJ2ku9O9h7XiszXT53xu\nKsxiSXuntGnAo7k861PaLiQtlLRC0orNm3uzxmFmZt2RWmW/CrwbOAQ4M7Xe5p0NPBURBwKXAJ9L\n91Zr5d0OHBcRbwZmA3MlHQMQEW8vtRYDNwM/SO/xSWBlRBwOnAX8cys+33CD86XAG8kKvwH4UkpX\nhbxR6QERsSgi5kTEnMmTe3ONZNtVrzbtFkE3a89u2rYedDQwEBEPRcSLwFVkrbd584Ar0vH3geMl\niSqtvJF5NuUfk16vimGSJgLHAf+Rkg4BlgNExP3ATElTmv1wwwrOEbExIgYjYifwTV5pul4P5Jd+\nmQ483lwRrZMcXCurd1BYs9+fm7fN6lZPS+3LeSJiB/A0sO9Q90oaJWklsAlYFhG3lj3zNGB5RDyT\nzlcB70v3Hg3sTxb7mjKs5TslTY2IDbmClkZyLwG+K+nLwOuBWcBtzRbSzMz6w9jRY9l/0kH1Zp8k\naUXufFFELErH9bTUVstT9d6IGARmS9oLuE7SYRGxOpfvTOBbufPPAv+cAvo9wF3AjmofqF41g7Ok\n7wHHkn1J64ELgWMlzU4f5hHgb9KHulfSNcB9qXDnpA9q1jG9vsb24IRRbmY2y2yJiDlVrtXTUlvK\ns17SaOC1ZAOca94bEb+XdCNZn/RqAEn7krUUn5bL9wzwgXRdwMPp1ZSawTkizqyQfNkQ+S8GLm6m\nUGaVjNr6EoMTx+ySPk6TCtUc/3xs6cm9pr0RhvWY24FZkg4AHiMb4PVfyvIsARaQDeA6Hfh5RISk\niq28kiYDL6XAPA44gTSILDkD+FFEvFBKSDXsbanf+4PATbkm72HzrlTWk/o9kLj2bDa0iNgh6Vxg\nKTAKWJxaby8CVkTEErKK5LclDZDVmOeneyu28kqaClyRRm7vBlwTET/Kve18smbsvIOBKyUNpued\n3YrP5+BsbdVskNm+8TnGTtmzhSXqHQ7QZkNLC2BdX5b2qdzxC2S13Ur37tLKGxF3A0cM8X7HVki7\nmazm3VJeW9usTo30Yxepmb0R/jFgVgwOzmYF1s9N92ZWnYOzdUx+MFe7m6q7ucZ2qzlAm408Ds5m\nbdLKpm0HaLORxcHZ+kIvTl0qKvc7m3Wfg7O1XK8OhqpHNxc3ce3ZbORwcLaeMmrrS68c90ANr9U/\nVBygzUYGz3O2whvuXOdeX8azGs9/tl42ZtQeTJ3Q8mnBfcc1Z7Me1O4atIO/WXc5OJu1WT/3wZtZ\nezg4m/Uo9z+b9S8HZ+sbnZpOVaR+bAdos/7k4GyFsn3j1pY+rygrhbWzadsB2qz/ODhbT/PApYwD\ntFl/cXC2npOf62yvcIC2kUbSXElrJQ1IOq/C9bGSrk7Xb5U0M3ft/JS+VtLJKW2GpF9IWiPpXkkf\nyeU/I6XtlDQnl75vuudZSf/Sqs/m4Gw9YfvG57pdhKZ1YtT24IRRDtI2IkgaBXwVeDdwCHCmpEPK\nsp0NPBURBwKXAJ9L9x4CzAcOBeYCX0vP2wH8XUQcDBwDnJN75mrgfcBNZe/xAvAPwMdb+flqBmdJ\niyVtkrQ6l/YFSfdLulvSdZL2SukzJT0vaWV6fb2VhbWRoV/7nTvJAdpGgKOBgYh4KCJeBK4C5pXl\nmQdckY6/DxwvSSn9qojYHhEPAwPA0RGxISLuBIiIrcAaYFo6XxMRa8sLERHPRcSvyIJ0y9RTc76c\n7JdF3jLgsIg4HHgAOD937cGImJ1eH2pNMa2X1RsoWhGUiz5iu5Nznh2grQ9MkrQi91qYuzYNeDR3\nvj6lUSlPROwAngb2refe1AR+BHBr8x+jcTWX74yIm/Lt9Cntp7nTW4DTW1ss63XPxxbvFFUApQDd\n6MA5B3ZrlzG77cHUPQ+uN/uWiJhT5ZoqpEWdeYa8V9IE4FrgoxHxTD0FbbVW9Dn/FXBD7vwASXdJ\n+qWkt1e7SdLC0q+hzZu9gpJZOznYWh9aD8zInU8HHq+WR9Jo4LXAk0PdK2kMWWD+TkT8oC0lr0NT\nwVnSBWQd6N9JSRuAP4iII4CPAd+V9JpK90bEooiYExFzJk92DcuGr55aYZH6nbu1nGe9g8UcyK1H\n3A7MknSApN3JBngtKcuzBFiQjk8Hfh4RkdLnp9HcBwCzgNtSf/RlwJqI+HJHPkUVww7OkhYAfwL8\nRfqwpM71J9LxHcCDwEGtKKiNLLX6nz2davhKQbo8WHukt/WS1Id8LrCUbODWNRFxr6SLJJ2asl0G\n7CtpgKzCeF66917gGuA+4CfAORExCLwNeD9wXG5g8ykAkk6TtB74I+DHkpaWyiLpEeDLwF9KWl9h\n1HjDhrVlpKS5wCeAd0bEtlz6ZODJiBiU9AayXyMPNVtIK6ZtOzcXqkZaMk6TCr/ZRJH65B2QrVdF\nxPXA9WVpn8odvwCcUeXei4GLy9J+ReX+aCLiOuC6KtdmNlLuetQzlep7wM3Am9IvgrOBfwEmAsvK\npky9A7hb0iqyYesfiognW11oa49GAlpptHIn15ludq5zq39IFGmNbTPrL/WM1j6zQvJlVfJeS9aR\nblbR4MQxbpI2M6vBK4RZw8prjK5BDk/Rm97NrHscnK2wWr1SmJlZr3Bwtr5QPp2q2mCrog1gc+3Z\nzCpxcLaWcNO2mVnrDGsqlVk92j1daNTWlxicOKZtzzez1tuN0YVrwSoi15ytIf1QQy7aPwxu2jaz\ncg7O1jVjp+zZ8D1F29e5H36smFnxODhbR3RjFaqhmtRdezazInNwtpZpRy2ykelUjW6LaGZWVA7O\nZgXh2rOZlTg4W09rZinQojVtm5mVODhbXyvKzk/1cu3ZzMDB2UY4157NepekuZLWShqQdF6F62Ml\nXZ2u3yppZu7a+Sl9raSTG3jm/y/p2dz5xyTdJ+luScsl7d+Kz+bgbHUryrShoaZT9cOgMNeezWqT\nNAr4KvBu4BDgTEmHlGU7G3gqIg4ELgE+l+49BJgPHArMBb4maVStZ0qaA+xV9h53AXMi4nCyrZI/\n34rP5+BsLdXtEdvD4dqzWU86GhiIiIci4kXgKmBeWZ55wBXp+PvA8ZKU0q+KiO0R8TAwkJ5X9Zkp\ncH8B+Pv8G0TELyJiWzq9BZjeig/n4GxmZkU1SdKK3Gth7to04NHc+fqURqU8EbEDeBrYd4h7h3rm\nucCSiNgwRHnPBm6o54PV4rW1ra3avb52PcZpUs2m4vG7TS5Msz0U43sza4fdNLqR/7a3RMScKtdU\nIS3qzFMtvVKFNSS9HjgDOLZKWZD0X4E5wDur5WmEa87Wca3erKKZ6VR5bt426ynrgRm58+nA49Xy\nSBoNvBZ4coh7q6UfARwIDEh6BBgvaaCUSdIJwAXAqRGxvdkPBnUGZ0mLJW2StDqXto+kZZLWpb97\np3RJ+koa6Xa3pCNbUVCzevXDoDDwwDCzGm4HZkk6QNLuZAO8lpTlWQIsSMenAz+PiEjp89No7gOA\nWcBt1Z4ZET+OiNdFxMyImAlsS4PMkHQE8A2ywLypVR+u3prz5WQj2vLOA5ZHxCxgeTqHbJTbrPRa\nCFzafDFtJBg7ZWLbnl1vM1qjtWfXts26I/UhnwssBdYA10TEvZIuknRqynYZsG+q5X6MFKci4l7g\nGuA+4CfAORExWO2ZNYryBWAC8O+SVkoq/4EwLHX1OUfETfn5Yck8Xml/vwK4EfhESr8y/Tq5RdJe\nkqbW6EQ3a8j2jc8Na1erehSp/9l9z2bVRcT1wPVlaZ/KHb9A1ldc6d6LgYvreWaFPBNyxyc0Vur6\nNNPnPKUUcNPf/VJ6PSPorI9VC2zN7EzV7ulU5VwjNrNuaseAsHpG0CFpYWl4/ObN7luz4qkVoDsV\nwN33bDbyNBOcN0qaCpD+ljrC6xlBR0Qsiog5ETFn8mQ321lzykdsVxoUNpzm4WoB2DVrM2unZoJz\nfhTcAuCHufSz0qjtY4Cn3d/c+4rSB9sN43ebvMur01x7NhtZ6hoQJul7ZIO/JklaD1wIfBa4RtLZ\nwG95pdP9euAUsuXQtgEfaHGZrY+MnbLnkGtlm5mNRPWO1j6zyqXjK+QN4JxmCmXWLvWsFlZUHrlt\nNnJ4+U5ru3YFlXZOpyoqB2jreYP9s1BQO3n5TmuLbuxOVc+gMDOzXuDgbCNOr9c8e7VZ3szq5+Bs\nZmZWMA7O1hWt3plqpHHt2ay/OThbX6vW79zrTdtm1t8cnK2njeQ50q49m/UvB2cDOvcPfTObX9Sj\nfMS2mVkvcnC2ntLK3an6oWnbtWezyiTtI2mZpHXp795V8i1IedZJWpBLP0rSPZIGJH1FklL6GZLu\nlbRT0pxc/hMl3ZHuuUPScblru0taJOkBSfdL+tNa5XdwtrYpynrc/T7f2QHarKLzgOURMQtYns5f\nRdI+ZMtRvxU4GrgwF8QvBRYCs9JrbkpfDbwPuKnscVuA90TEH5LtN/Ht3LULgE0RcRBwCPDLWoV3\ncLaOqDeAjJ0ysc0lebV+qD2bWUXzgCvS8RXAeyvkORlYFhFPRsRTwDJgbtpp8TURcXNakvrK0v0R\nsSYi1pY/KCLuiojSDoz3AntIGpvO/wr4Hynfzoja/yA6OFtNRakBW3WuPVufmiRpRe61sIF7p5R2\nREx/96uQZxrwaO58fUqblo7L0+v1p8BdEbFd0l4p7TOS7pT075Km1HqA19a2rmt2Z6ryNbZHbX3J\n86jNCkqD0cjAzS0RMafaRUk/A15X4dIF9RanQloMkV77gdKhwOeAk1LSaGA68OuI+JikjwFfBN4/\n1HMcnG1EGPXsYNWR4r28U1WeN8WwkSYiTqh2TdJGSVMjYkNqpt5UIdt6su2QS6YDN6b06WXpj1OD\npOnAdcBZEfFgSn6CbPvk69L5vwNn13qWm7XNzKwfLSEbmEX6+8MKeZYCJ0naOw0EOwlYmprBt0o6\nJo3SPqvK/S9Lzdc/Bs6PiF+X0lOf9f/klR8BxwP31Sq8g7MZ/TMwrB9aAMxa5LPAiZLWASemcyTN\nkfQtgIh4EvgMcHt6XZTSAD4MfAsYAB4Ebkj3nyZpPfBHwI8lLU35zwUOBP5B0sr0KvVzfwL4tKS7\nyZqz/65W4d2sbU3b8NwaAKbuefAu17bt3Mz43SZXvG9w4phhLRqyfePWYY3qHqpp28z6S0Q8QVZL\nLU9fAXwwd74YWFwl32EV0q/jlSbqfPp/B/57lbL8BnhHA8V3zdmaUwrM5cfdNpyg79qzmRWFg7N1\nXDtqryN5je1KHKDNetuwg7OkN+Xa1VdKekbSRyV9WtJjufRTWllgK45KNeUi1Z4rqbVaWL/Uns2s\ntw07OEfE2oiYHRGzgaN49VDxS0rXIuL6VhTUel+v1Ob6JUD3yvdtZrtqVbP28cCDqdPbrBC8Q5WZ\n9apWBef5wPdy5+dKulvS4iF2AllYWpJt82b/wrdXtHt97Xo2wnDt2cy6qengLGl34FSyVU8g28nj\njcBsYAPwpUr3RcSiiJgTEXMmT+6Pfwgt04l+51ZuHWlmnbNzxyDbNz5X12ska0XN+d3AnRGxESAi\nNkbEYETsBL5Jtg2X9ZlGAnA9G2fk18Yerlb/z+zas5l1SyuC85nkmrTTGqYlp5HtfWnWFdX6nevd\n47lfArSZ9ZamVgiTNJ5sWbS/ySV/XtJssh08Him7ZmZd4E0xzHpLU8E5IrYB+5alDbkNlo0MG55b\nU3E5z3LDXcKzk7xrlZl1mlcIs64owhrX9TZtg5u3zayzHJyto7pRA21VzbwfAnQ/tACYjQQOzjak\nekZaF8lIn35hZv3BwdkaNpx5zI0G+XYvRFLSSNM29Eft2WwkkLSPpGWS1qW/1RbEWpDyrJO0IJd+\nlKR7JA1I+ookpfQvSLo/LbR1naS9Uvrukv413bNK0rG5Z90oaW2FfZ6rcnC2tmn3YiTdWoik1wO0\nm7ZthDgPWB4Rs4Dl6fxVJO0DXAi8lWxNjgtzQfxSYCEwK73mpvRlwGERcTjwAHB+Sv9rgIj4Q7JZ\nTF+SlI+xf5Hbc2JTrcI7OFthtGIhkmqG6ndutPYMvR+gzUaAecAV6fgK4L0V8pwMLIuIJyPiKbLA\nOzet1/GaiLg5IgK4snR/RPw0Inak+28BpqfjQ8h+BJCC7++BOcMtvIOz2TD1coB27dl6xKTSHgzp\ntbCBe6dExAaA9LdSU/I04NHc+fqUNi0dl6eX+yvghnS8CpgnabSkA8h2a5yRy/uvqUn7H0pN5ENp\nap6zWRFt3/hcw7XwUc8ODmt6V7/MgTbrlHhpZyNdUlsiomrtU9LPgNdVuHRBnc+vFCRjiPT8e18A\n7AC+k5I75uD7AAATzUlEQVQWAwcDK4DfAP87XYesSfsxSROBa4H3k9XGq3Jwtq7rhYVIhuIAbdYd\nEXFCtWuSNkqaGhEbUjN1pX7e9cCxufPpwI0pfXpZ+uO5Zy8A/gQ4PjV7k5q6/zaX538D69K1x9Lf\nrZK+S9a/PWRwdrO2tVWlQWGlQNbphUhq/QAYTt9zSS83cZv1qSVAafT1AuCHFfIsBU6StHcaCHYS\nsDQ1g2+VdExqgj6rdL+kucAngFPTKpmk9PGS9kzHJwI7IuK+1Mw9KaWPIQvqNfeccM3ZCmvslIk9\ntTVkKUD3Si3ay3lan/sscI2ks4HfAmcASJoDfCgiPhgRT0r6DHB7uueiiHgyHX8YuBwYR9avXOpb\n/hdgLLAsdR3fEhEfIuvTXippJ/AYWdM1Ke/SFJhHAT8j27FxSA7O1jHbdm5m/G6Tu12MIQ237znP\nzdxm3RcRTwDHV0hfAXwwd76YrL+4Ur7DKqQfWOX9HgHeVCH9ObLBYQ1xs7Y1pN1zl9utU33brpGa\nWTMcnK1QWjXXuZllPJvpe84bp0kO0mY2LA7OZm3mAG1mjXJwtrZrpim81hrb7Row1qrac0kRa9FF\nK4+ZvcIDwqwlNjy77uXjqRNmNXx/J+c6j9r6EoMTx3Tkvcr12ohuM+sO15yt5fKBuppuzXVuRKtr\nz3lFrEmbWXE0XXOW9AiwFRgkm3Q9J+30cTUwE3gE+LO0qLj1oXqCcUkvTKfqpG7VpP3DwLpl5/aX\n2Pbg77pdjMJrVc35XWkbrNIaqDW36jJrt6FGbNfbhN7O2nNeqSbdiaDpwGxWfO1q1q5nqy4riHbU\n2spr040MCiufTlVrUFi7dSpAl+QDdSsDqZvSzXpHKwaEBfBTSQF8IyIWUbZVl6RdtupKW38tBJgx\nY0b5ZesRjTRp2/BUCqj1/KByIDbrXa0Izm+LiMdTAF4m6f56bkpBfBHAUUcdGTWym7VcI6O2W7Gs\nZys58Jr1t6abtSPi8fR3E3Ad2VZYG9MWXQyxVZf1uUZr1UMFympN251s8u5087aZjVxNBWdJe6bN\no0lbZZ1EthVWPVt1WcFt27m5rc/thelUZmbd0GzNeQrwK0mrgNuAH0fET8i26jpR0jrgxHRuPa6T\nm150ao3tRhc+ce3ZzDqhqeAcEQ9FxJvT69CIuDilPxERx0fErPT3yVrPsv6Ub9puNrh3e9R2iQO0\nWfFJ2kfSMknr0t+9q+RbkPKsk7Qgl36UpHskDUj6itLmzbnrH5cU0isDQCQdK2mlpHsl/TKl7SHp\nNkmrUvo/1lN+rxBmw+aR2mZWYDXX20gLZl0IvJVsvNSFuSB+KdmMolnpNTd33wyyVuHf5tL2Ar4G\nnBoRhwJnpEvbgeMi4s3AbGCupGNqFd7B2XpKvvbcqpr0cNb0du3ZrPDqWW/jZGBZRDyZVrFcRhY8\npwKviYibIyKAK8vuvwT4e7KpxCX/BfhBRPwWXh4kTWSeTXnGpFfNGUoOzlYo9UxtcvO22YgxSdKK\n3GthA/e+ar0NYJf1NoBpwKO58/UpbVo6Lk9H0qnAYxGxquxZBwF7S7pR0h2SzipdkDRK0kqymUvL\nIuLWWoX3rlTWdhueXbfLTlXla2wPThi1S7AbO2XPqgO6ihSgPdrcrH47t7/EcwN1r629Jbcs9C4k\n/Qx4XYVLF9T5fFVIi2rpksanZ59U4fpo4CjgeGAccLOkWyLigYgYBGanpu/rJB0WEauHKpiDs3XU\nhufWMHXPg18+fz62FGJBjWa2kXSANuuOiDih2jVJGyVNTatUVltvYz1wbO58OnBjSp9elv448Ebg\nAGBVGh82HbhT0tHpni0R8RzwnKSbgDcDD+TK+3tJN5L1Xw8ZnN2sbdYCbuI2K5x61ttYCpwkae80\nEOwkYGlqBt8q6Zg0Svss4IcRcU9E7BcRMyNiJllAPjIifpee/3ZJo1MN+63AGkmTU40ZSeOAE4Ca\nK2m65mxmZv3os8A1ks4mG1V9BoCkOcCHIuKDEfGkpM8At6d7LspN/f0wcDlZE/UN6VVVRKyR9BPg\nbmAn8K2IWC3pcOAKSaPIKsTXRMSPahXewdmGpdFpVJX6nasZnDjm5RHUQ/U7t1ozTdvg5m2zIomI\nJ8j6f8vTVwAfzJ0vBhZXyXdYjfeYWXb+BeALZWl3A0c0UHTAzdpmLeXmbTNrBQdna6nfbHmA32x5\noHZG+neNbQdoM2uWg7O1TD4oDxWgO7lGd6OGsyBJxec4QJtZExycrW3qrUHX0qpNMDrNAdrMhsvB\n2VqinkDcyCCyZgZmFYkDtJkNh4OzWZlWNW2//DwHaDNrkKdSWV2G20/8my0PsP+kg+rOX2kZT+js\nlKp28DQrs8zgcy/xzB2PdbsYheeaszVtOH3LpWBfPmK7n7kGbWb1cnC2tssH72b6nYczMKxog8kc\noM2sHg7O1rBGVwfrRa3ud37Vs58ddJA2syENOzhLmiHpF5LWSLpX0kdS+qclPSZpZXqd0rri2kgw\nVN9s0WrCzXCANrNqmqk57wD+LiIOBo4BzpF0SLp2SUTMTq/rmy6l9bx6+qUr9Ts3M6WqFwK5A7SZ\nVTLs4BwRGyLiznS8FVgDTGtVwax/lZrFyweF1aueoNsLgbnEAdrMyrWkz1nSTLJdN25NSedKulvS\n4rRHZqV7FkpaIWnF5s39P1K3X7VqFbBG9VLwrYcDtJnlNR2cJU0ArgU+GhHPAJcCbwRmAxuAL1W6\nLyIWRcSciJgzefKkZothfSbf71ytabtSgB47Zc+eDdwO0GatI2kfScskrUt/q1UUF6Q86yQtyKUf\nJekeSQOSviJJuWv/t6S1abzV51Pa0bmxVqsknZbSK47PqqWp4CxpDFlg/k5E/AAgIjZGxGBE7AS+\nCRzdzHtY/2hHLbsUjHs5KOd5JLdZy5wHLI+IWcDydP4qkvYBLgTeSharLswF8UuBhcCs9Jqb7nkX\nMA84PCIOBb6Y8q8G5kTE7JT3G5JGM/T4rKqaGa0t4DJgTUR8OZc+NZfttFRg6zGN9gMPV1EXI+n2\n2t4O0GZNmwdckY6vAN5bIc/JwLKIeDIingKWAXNTHHtNRNwcEQFcmbv/w8BnI2I7QERsSn+3RcSO\nlGcPIFL6sMZnNbN859uA9wP3SFqZ0j4JnClpdirYI8DfNPEe1oPWb3n05ePpk2ZUzLPh2XVMnTCr\n7mcOThzT1rnHReQlP60f7XjxJZ54eGO92SdJWpE7XxQRi+q8d0pEbIAsQErar0KeacCjufP1KW1a\nOi5PBzgIeLuki4EXgI9HxO0Akt4KLAb2B96fC9ak6zN59fisqoYdnCPiV4AqXPLUqREsH5hL5/kA\n3cha29XW2R5JHKBthNsSEXOqXZT0M+B1FS5dUOfzK8WwGCIdsri5N1kT9VuAayS9ITK3AodKOhi4\nQtINEfFCKmv5+KwheeMLK5znYwvjtOsgwU7VnrvdpF3OAdqssog4odo1SRslTU215qnApgrZ1gPH\n5s6nAzem9Oll6Y/n7vlBau6+TdJOYBLwcl9gRKyR9BxwGLCi0visWrx8pw1b+QCv8lpzrfSS4c53\nboeiBeaSkd6CYDYMS4DS6OsFwA8r5FkKnCRp7zQQ7CRgaWoO3yrpmDS+6qzc/f8BHAcg6SBgd2CL\npAPSADAk7Q+8CXik2visWhycrWvqWaO7vMbYzuBZ1MBc4gBt1pDPAidKWgecmM6RNEfStwAi4kng\nM8Dt6XVRSoNs4Ne3gAHgQeCGlL4YeIOk1cBVwIJUi/5jYFUag3Ud8N8iYguvjM86rpFlrd2sbQ0Z\n7qYX+b7nRvd4LteO5u2iB+YSN3Gb1ScingCOr5C+Avhg7nwxWcCtlO+wCukvAv+1Qvq3gW9XSK82\nPmtIrjlbS9Rqum5UfkpVu4NRrwRmMxs5HJytq4a7zvbgxDFNB9VWPKMb3Lxt1v8cnK1j8rXrRlcL\nq1Z7Hk5w7dWgbGYjh/ucraZSrbbTqk2pKlcKtNX6oR2IzazXuOZsHVVP33S1pu1afc+lGnH5q994\nQJhZ/3NwtqY1OxisvN85ryhrbReFA7PZyOBmbWuLxzZmUwWnTdmnap7hTKkaqUt6Oihbv3hx8CV+\n+8zvul2MwnPN2YZlqAFdpcBcOs6fQ3NN2zCyAtXghFEj6vOaWcbB2Qqh0abtfg1YpWDsoGw2sjk4\nj3Ct7tMtryXXSm90SlVerwev8kDc65/HzFrHwdm6otGm7Wo/Iooe0CoFYAdiM6vFwdk6plrtuVy1\nedVDBehOB7uhgq4DsJk1y6O1rSn5GnC9wbdcadT2hmfXMXXCrFdd27ZzM+N3m1zXcyoFw6FGdjt4\nmllRueZsHZUP4EM1bTdae67GtVoz60UOzlYolbakLJ9W5YVJzKwWSftIWiZpXfq7d5V8C1KedZIW\n5NKPknSPpAFJX5GklD5b0i1pX+YVko5O6Ur5BiTdLenIWu8xFAdnq9tw93IuV6n5u9FR2w7QZlbD\necDyiJgFLE/nryJpH+BC4K3A0cCFuSB+KbAQmJVec1P654F/jIjZwKfSOcC7c3kXpvtrvUdVDs7W\nVfU2bVdalMQB2syGMA+4Ih1fAby3Qp6TgWUR8WREPAUsA+ZKmgq8JiJujogArszdH8Br0vFrgcdz\n73dlZG4B9krPqfgetQpfiAFhd95517Pjxo1f2+1yNGgS0EvRodfKCy5zp/RamXutvNB7Zd5f0sKI\nWNTqB/8mnlz619v/rfZ2c5k9JK3InS9qoExTImIDQERskLRfhTzTgHwNYX1Km5aOy9MBPgoslfRF\nsgru/1XHsyqlD6kQwRlYGxFzul2IRkha0Utl7rXygsvcKb1W5l4rL/RumYGWB+eIqFlrrJeknwGv\nq3DpgnofUSEthkgH+DDwtxFxraQ/Ay4DThjms6oqSnA2MzNrSEScUO2apI2SpqZa81RgU4Vs64Fj\nc+fTgRtT+vSy9FLz9QLgI+n434Fv5Z41o8I91d5jSO5zNjOzfrSELJCS/v6wQp6lwEmS9k6DtE4C\nlqbm8K2SjkmjtM/K3f848M50fBxQGim7BDgrjdo+Bng6Pafie9QqfFFqzi1vOumAXitzr5UXXOZO\n6bUy91p5wWXuhs8C10g6G/gtcAaApDnAhyLigxHxpKTPALeney6KiNJ0kg8DlwPjgBvSC+CvgX+W\nNBp4gWxkNsD1wCnAALAN+ABAjfeoStlANDMzMysKN2ubmZkVjIOzmZlZwXQ1OEuaK2ltWu5sl9Vb\nikLSI2kZt5WlOXf1Lg3XwTIulrRJ0upcWsUyDrXMXAHK/GlJj6XveqWkU3LXzk9lXivp5C6Ud4ak\nX0haI+leSR9J6YX9nococ5G/5z0k3SZpVSrzP6b0AyTdmr7nqyXtntLHpvOBdH1mQcp7uaSHc9/x\n7JTe9f8ucmUfJekuST9K54X8jkekiOjKCxgFPAi8AdgdWAUc0q3y1CjrI8CksrTPA+el4/OAz3W5\njO8AjgRW1yoj2aCFG8jm3x0D3FqgMn8a+HiFvIek/0bGAgek/3ZGdbi8U4Ej0/FE4IFUrsJ+z0OU\nucjfs4AJ6XgMcGv6/q4B5qf0rwMfTsf/Dfh6Op4PXF2Q8l4OnF4hf9f/u8iV5WPAd4EfpfNCfscj\n8dXNmvPRwEBEPBQRLwJXkS1/1ivqWRquYyLiJqB8BGC1MlZbZq6jqpS5mnnAVRGxPSIeJhsReXTb\nCldBRGyIiDvT8VZgDdlKP4X9nococzVF+J4jIp5Np2PSK8imrXw/pZd/z6Xv//vA8ZIqLfzQFkOU\nt5qu/3cBIGk68J9J83TTd1bI73gk6mZwHtaSZl0SwE8l3SGpNGz+VUvDAZWWhuu2amUs+nd/bmru\nW5zrLihUmVOz3hFktaSe+J7LygwF/p5Tc+tKsoUjlpHV4H8fETsqlOvlMqfrTwP7drO8EVH6ji9O\n3/ElksaWlzfp1n8X/wT8PbAzne9Lgb/jkaabwXlYS5p1ydsi4kiyXUfOkfSObheoSUX+7i8F3gjM\nBjYAX0rphSmzpAnAtcBHI+KZobJWSCtKmQv9PUfEYGS7/kwnq7kfXClb+tv1MpeXV9JhwPnAfwLe\nAuwDfCJl73p5Jf0JsCki7sgnV8hamO94pOlmcK621FnhRMTj6e8m4Dqyfyw2lpqiVH1puG6rVsbC\nfvcRsTH9Q7cT+CavNKkWosySxpAFue9ExA9ScqG/50plLvr3XBIRvydb6vAYsubf0sJJ+XK9XOZ0\n/bXU313SUrnyzk1dChER24F/pVjf8duAUyU9QtaleBxZTbrw3/FI0c3gfDswK40O3J1skMGSLpan\nIkl7SppYOiZbem019S0N123VylhtmbmuK+t7O43su4aszPPTqNEDyPZMva3DZRPZIvdrIuLLuUuF\n/Z6rlbng3/NkSXul43FkmwqsAX4BnJ6ylX/Ppe//dODnEdGxWl2V8t6f+8Emsr7b/Hfc1f8uIuL8\niJgeETPJ/u39eUT8BQX9jkekbo5GIxu1+ABZf9IF3SzLEGV8A9no1VXAvaVykvW3LCdbV3U5sE+X\ny/k9subJl8h+5Z5drYxkTVRfTd/7PcCcApX526lMd5P9gzA1l/+CVOa1wLu7UN4/JmvKuxtYmV6n\nFPl7HqLMRf6eDwfuSmVbDXwqpb+B7IfCANmGA2NT+h7pfCBdf0NByvvz9B2vBv6NV0Z0d/2/i7Ly\nH8sro7UL+R2PxJeX7zQzMysYrxBmZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4GxmZlYwDs5mZmYF\n4+BsZmZWMP8HOuhXWkXZTV4AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118d3cd30>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(8,4))\n",
"plt.title(\"Re($\\Omega$)\")\n",
"plt.contourf(np.real(omega),np.linspace(-8e-3,8e-3,20), cmap=\"PiYG\", origin=\"lower\", aspect=2)\n",
"plt.colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Replicate Figure 2.2 (lower):"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x1198cd470>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAACeCAYAAABASB8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXu0HVWV7n8fefAIgUASSAQ0REFFHjEE4Q6URkB5KCBX\n1HC7Bblw4wNo0dYLqK20Sl9AFGlaxEggYKd5dHjIoEFAEUSEQJAQEiIQIWJ4JMQQgiAhj3n/WKuS\nyj679ntX1dln/sbY4+y9qmrVrErO/s5cNde3ZGY4juM4Tq+xSdEBOI7jOE43cIFzHMdxehIXOMdx\nHKcncYFzHMdxehIXOMdxHKcncYFzHMdxehIXOMdxHKcncYFzHMdxehIXOKfnkfT/JJ3ehX4flPSe\nTvfrOE5ncIFzSo+kRZIOafHY0cDxwE86GxUAFwDf7kK/juN0ABc4p9f5DHCrmf2tC33fDHxQ0tgu\n9O04Tpu4wDn9ipjNfVXSXEmvSZomaXtJt0l6VdIvJW2TOuRw4J6KPoZLmirpZUlLJX2plVjM7A3g\nYeDDrV+R4zjdwgXO6Y98HPgQsCtwJHAb8DVgFOH/9D+m9t0DeKLi+JuAPwJjgMnABZLGtBjLAmCv\nFo91HKeLuMA5/ZGLzWyJmT0H3AvMMrNHzGwVcCPw3tS+I4BXkw+SPgpgZueZ2Sozuwt4jiCWSDpP\n0r2SfiZpiKStYzHJXyXtXiWWV+M5HMcpGS5wTn9kSer936p83jL1+WVgeOrzUcDPkw+SNgG2BpZI\n2gvYwcw+APyBkCm+DnwEmJkRy3BgRWuX4ThON3GBc3qducTsLLIv8JfU54OAZWb2BLA/cEds/wXw\nfjNbbWYv1ej/3cCjHYzXcZwO4QLn9Dq3An8HIGkIsAtwrKTN4hy2S4Az4r4jgJXx/SvAtrU6lrQp\nsDdwZxfidhynTQYXHYDjdJmrgDmSNieI2yJgHmFYcynwXTNLhh9XAFvF91sDy+v0fRRwt5k93+mg\nHcdpH5lZ0TE4TleR9K8EMVsGHGNmH8/YbwLwZTM7XtLXgGfM7Oq4bTpwgZnNS+0/Czgp3eY4Tnlw\ngXMGDJK+B6wys2/U2Wc/4FngRDN7U9KtwATgT8BPzGx6HvE6jtMedQVO0k6EYZ4xwDpgqpldJGlb\n4FpgHGHY55Nm9rIkARcBRxAq0D5jZr/v2hU4ToNIuh34mZn9R9GxOI7TfRoRuLHAWDP7vaThBOeG\njxEskJab2bmSzgS2MbMzJB0BnEYQuH2Bi8xs325ehOM4juNUUreK0sxeSDIwM3uV4NywA3A0cGXc\n7UqC6BHbr7LAA8AI9+pzHMdx8qapaQKSxhFcImYB25vZCxBEENgu7rYD8OfUYYtjm+M4juPkRsPT\nBCRtCVwPnG5mK8Ojtuq7VmnrMw4qaQowBWDYsGF777rrOxsNxRlArF27ruvnGDTIp4M63eWRR36/\nzMxGd6KvEYPG2mp7s0/767b8djM7rBPn6BUaErg4QfZ6YIaZ3RCbl0gaa2YvxCHIpbF9MbBT6vAd\ngT7zhMxsKjAVYOLEve2+++5r8RKcohny2tMtH7t62Pi6+7yysu8vc6fZequhXe2/0XvUyP1w+h9b\nbLH5nzrV12p7k903O7RP+4N/u3pUp87RK9T90zVWRU4DFpjZD1KbbgZOiO9PYIO/383A8QrsB7yS\nDGU6zkDFhcspGkmHSXpC0sJYGFi5fVNJ18bts+IjqWTbWbH9CUmH1uszGpbPia/nJd0U298l6X5J\nqyR9peL8IyTNlPQHSQsk/Y92r7mRDG5/4NPAY5LmxLavAecC10k6iTBn6BNx262ECsqFhGkCJ7Yb\npNO7DHnt6VJ8+b+y8s2uZ3Grh41vK9t1nFaRNAj4EWGZqcXAQ5JuNrPHU7udBLxsZu+QNBk4D/iU\npN0Iy0q9B3gL8EtJib9r1T6jYXly7uvZkAAtJyxnlRQlprkI+IWZHStpKLBFu9ddV+DM7LdUf64G\ncHCV/Q04pc24HKcnqSdyZRF8p+d4H7DQzJ4GkHQNoeI9LXBHA2fH9zOBf48jeEcD18TlqJ6RtDD2\nR70+49Syg4iJjpktBZZK+kg6OElbAQcQpp9hZm8CbT+b8KfrTunpdmaVkMezPvDhSqcQGqluX7+P\nma0hGI6PrHFsI30eA/zKzFZSm/HAS8AVkh6RdJmkYfUuqh5utuw4BZCInA9ZOs0yZMhQttuuyh9J\nf2KUpNmplqmxmA8aq27P2iervVqCVNnnccBlVfarZDAwETjNzGZJugg4E/jnBo6t2anjFEqZhuXy\neBaXxp/LOR1kmZlNytjWSHV7ss9iSYPZsKJGrWMz+5Q0kjCUeUwDsS8GFpvZrPh5JkHg2sKHKJ1+\nQZ6ikzerh43f6OU4XeAhYBdJO8cCjsmEivc06cr4Y4G7Yk3FzcDkWGW5M2HZqQcb6PMTwC1m9ka9\n4MzsReDPkpIJ0Qez8fPBlvAMznEqyDuLc5xuY2ZrJJ0K3A4MAi43s/mSvg3MNrObCdPBfhaLSJYT\nBIu433UEwVkDnGJmawGq9Zk67WRCtf16JI0BZhPWXVwn6XRgt/iM7jRgRhTLp+lABb4LnOM4zgDA\nzG4lTONKt30z9f4NNkz3qjz2HOCcRvpMbTuwStuLhKHMavvPAbKGWFvChyidtunEsFrZnkPlVVHp\nOE738AzO6TdsvdVQFx5nwDN46BBGv3VM3w0dMwPrHTyDc5wMXEydXiJnq67pkp5J2XVNqDjXPpLW\nSjo2fv5gat85kt6QVM3tpClc4JzSULZhSnCRc3qDlFXX4cBuwHHRgivNeqsu4EKCVRcVVl2HAZdI\nGtRAn181swnxldg8JrGcRyhOAcDMfp3sS3A+eR24o93rdoFz+hVe3eg4LbHeqivaYCW2WmnSi1jP\nBA6utOoys2cIPsPva7DPapxGWJ1macb2Y4HbzOz1xi+vOi5wjlMHz+KcHqAIq65zJM2VdKGkTQEk\n7UCY+H1pjVgnA1c3dlm1cYFz+h2exTlOVUZJmp16TUlt64ZVV60+zwLeBewDbAucEdt/CJyRzKOr\nRGFt0T1IDV+2g1dROqWiTLZdaXzyt1MWhmw2mDG7jey74d7yWHWl1gBdJekKIFn7bRJwTRj5ZBRw\nhKQ1ZnZT3P5J4EYzW51xHU3hGZzjNIgPVTr9mFytumImliyY/TFgHoCZ7Wxm48xsHOE53xdS4gbB\nnLkjw5PgGZxTheSLvMwZi8+Jc5zGKcCqa4ak0YRhzDnA5+rFGKcl7ATc05mrdoFzKkiLRlHDcmUd\npgQfqnT6L3ladZnZQQ3E85mKz4voW/jSFj5E6dSk0SypCEEqSmg8c3Sc/oFncM56/IvbccrPkE0H\nM3ZclSITpw91MzhJl0taKmlequ1sSc+lbFWOSG2rauniOM1QRleTNP7HgOOUn0aGKKcT7FkquTBl\nw3IrZFu6dCpYpxjK/GVe5POwMt8Xx6kkZy/KaZIejRO9Z0raMrZfmEqMnpS0InXMeZLmxdenOnHN\ndQXOzH5DqKhphCxLF8dxHKcgCvCi/JKZ7WVmewLPAqcCmNmXUp6TFwM3xHN8BJgITAD2Bb4qaat2\nr7udIpNTozpfLmmb2NaIHYxTQuplI0VkK40OU3oW5zh1ydWLMq7QncyD25y+rimw8Zy33YB7zGyN\nmb0GPEr1kcOmaFXgfgy8naC2LwDfj+2N2MGEHaUpiaXMsmUvtRiG4xSPi5zTD8jdizI6mLxIsOy6\nOH0iSW8Ddgbuik2PAodL2kLSKOCDbOyS0hItVVGa2ZJUoD8FbokfG7GDSfqYCkwFmDhx76oi6DiN\nzokreuK3z49z8mLo0MHs8LbR1TaNkjQ79Xlq/J6F7nhRVkuQ1vdpZifGYcyLgU8BV6T2mwzMTCaM\nm9kdkvYBfge8BNxPmFTeFi1lcIkNS+QYog0L2ZYuTg9QT0DKOjk7LzyTcwpmmZlNSr2mprY140VJ\ng16UdfuMAnYt8PGKc/VZMcDMzonP5z5EENWnal9ufRqZJnA1QU3fKWmxpJOA8yU9JmkuIZX8Ugxw\nPpBYuvyClKWL43Qbz6AcJ5PcvCgVeAesfwZ3JPCH5CSS3glsQ9CVpG2QpJHx/Z7AnnRgwdO6Q5Rm\ndlyV5mk19q9q6eKUl7JnHmW27qrEhyqdMpKnF6WkTYArYxWkCM/XPp8K5zhC0Up6iHQIcG9cZWAl\n8A/xOWBbuJOJ01MU/SwOXOSccpKXF6WZrQP2rxHH2VXa3iBUUnYU96J0mqIo8Si7s0klRYus4zie\nwTk9SBmyOPBMzukOg4cMYvSYtudADwg8g3MKYdCrzWdkzWRxZRGWMgit40DuVl0zYvu8aAYyJLa/\nS9L9klZJ+krF+fv4HreLC5xTGK2InOM4zVOAVdcMwgTvPQhOJifH9uXAPwIXVAlzOh1wL0njAuc0\nTa2spJFqx7SwdVPkPItznPXkbdV1q0UIUwp2jO1LzewhYHVlgE36HjeEC9wAp799+TZbbOIi5zhA\nAVZdAHFo8tOEedG54wLnFM5AGap0kXO6zKjE3ze+pqS2dcOqq5E+LwF+Y2b3ZgXdTbyK0mmJIisE\nm534XZaqSvDKSqd9Bg8ZxOi3VK2iXGZmkzIOa8aqa3GDVl3U6lPSt4DRwGdrXU838QzOKQXdzuLK\nJCplEVtnQJGbVReApJOBQ4Hj4sTvQnCBc0pDMyLX3yZ+V+Ii5+RJfKaW2GotAK5LrLokHRV3mwaM\njFZdXwbOjMdW9RjO6jP2dSmwPXB/XL37mwCSxkhaHPv/RvQ33ipuq+Z73BY+ROl0nNXDxuciQP15\nqBJ8uNLJl7ysumJ7VW0xsxeJFZVVtlXzPW4Lz+CclmlVLNYOzxalgTRUCZ7JOU438QzO6de0stKA\nZ3JOf2bQIDFixKZFh9Ev8AzOKR15TBsom6CUSXAdp1dwgRvA9MqXaqvP+8oocr3yb+KUj5y9KHeO\nfTwV+xxaca5jJZmkSfHzhyQ9HBfSfljSQZ24Zhc4py2yvpDbXaA0r8nfZRM56J0/PJzyUIAX5XnA\nhWa2C/By7DuJZTjBj3JW6tzLgCPNbA/CVIWfdeK6XeCcnqCdqk0XOWcAkJsXZTzmoNgHsc+Ppc7z\nHeB84I2kwcweMbNkkvh8YDNJbT9orCtw1ZYwkLStpDtj+nmnpG1iuyT9W0xX50qa2G6AzsCl2SzO\nRc5xMsnTi3IksCL2sdG5JL0X2MnMbqkR68eBR8xsVaMXl0UjGdx0+i5hcCbwq5h+/ip+hpCq7hJf\nU4AftxugU35a+SKuNVWgKFzknP7AoEGbsPVWQ/u8KI8XZdV2SZsQhj7/qcr2EID0HsLwZkfsveoK\nXMYSBulUNp1+Hg1cFVdJeAAYIWlsJwJ1BiZ5ZnHgIuf0a5aZ2aTUa2pqWzNelDToRZnVvozw3T+4\non04sDtwt6RFwH7AzalCkx2BG4HjzeyPzV9+X1p9Bre9mb0AEH9uF9sbSYOdAUK7hSat4iLnOH3I\nzYsyHvPr2Aexz5+b2StmNsrMxpnZOOAB4Cgzmy1pBPDfwFlmdl+nLrrTRSaNpMFhR2lKkkovW/ZS\nh8NweolWKip7VeRc6JxWKMCL8gzgy7GvkbHvWpwKvAP45+hdOUfSdnWOqUurTiZLJI01sxfiEOTS\n2N5IGgxATJ+nAkycuHdVEXT6D73oxpFcT9lEpRfvtdN9cvaifJpQZVkrngNT778LfLfmBbRAqxlc\nOpU9Afh5qv34WE25H/BKMpTpOJU0U2hSRBaXUEYxKZvoOk4ZqZvBxSUMDiRU6CwGvgWcC1wXlzN4\nlg2qfytwBGGexOvAiV2I2elHdHJlgUGvPt109WUrXpXVKGM255ncwETrVvX75aLyopEqyuPMbKyZ\nDTGzHc1smpn9xcwONrNd4s/lcV8zs1PM7O1mtoeZze7+JThloUxf/mk6+WVQNkEp6z13+hdZc5ur\n7HdC3OcpSSek2veONlsL41xo1epX0rsk3S9plaSvpPrZSdKvJS2QNF/SFyvOf1q0Bpsv6fx61+VO\nJgOUsnwxNpuRtWrh1WmRK5PQefGJ0wGy5javR9K2hBG8fQnP176VEsIfE+Y+J/Ogk7nTWf0uJ9h1\nXVBxmjXAP5nZuwnTCE5J7L8kfZAwFW1PM3tPlWP74ALndJ1OTxcog8iBZ3NOT5E1tznNocCdZrbc\nzF4G7gQOi4WGW5nZ/XGKwFVsPDe6T79mttTMHgJWp09gZi+Y2e/j+1cJ1ZnJVLPPA+cmDidmtpQ6\nuMA5HaXsX7LdELkyCV3Z779TWrLmNqepZdm1uEp7o/1WRWE1g/eywZR5V+ADcZWCeyTtU68PX/DU\nKZy1w8c3nZW1UnCS0KnCkzRlKkLx4pMByyhJ6bqHqWk3E0m/BMZUOe7rDfbfrGVXy0jaErgeON3M\nVsbmwcA2hKHLfQiFjuNj1lgVFzinIVasCL6nvbKScDdEDsojdC5yvYvWrsr6g3CZmU3KOs7MDsns\nU8qa25xmMaGiPmFH4O7YvmNFezL/uZF+K2MZQhC3GWZ2Q8X5b4iC9qCkdcAoINMpxIconbok4pa8\nT3+uRrUv926ISbtrxnWz1LrCBLcQihZZp1+RNbc5ze3AhyVtE4tLPgzcHoceX5W0X6yePJ6N50bX\n63c98fhpwAIz+0HF5psIy/AgaVdgKMH3MhMXOKcmWWJWT+SapdXhxjKLXEKRQuci5zTIucCHJD0F\nfCh+RtIkSZcBxOlg3yF4UD4EfDuZIkYoALmMMAf6j8BtdfodE+dVfxn4hqTFkrYC9gc+DRyUsuw6\nIvZ1OTBeYem2a4ATag1Pgg9ROjnSyUnfadp5HgfdG66sJC1yeQqPD1c69TCzvwAHV2mfDZyc+nw5\nQWiq7bd7E/2+yMbDmgm/pfozPeKiqv+QeRFV8AzOyaRellZre39bIy5vZ4gyDGE6Tq/jGZzTFitW\nrCpF4Um7WRxsELm8l/kpKrNz+ilrXseWzi06in6BZ3BOrtQTj3ZEqt3ncQlF+vxlrNTcdp+OMxBx\ngXPaJmuosohspBdErpJqoteoaLm4OY1QgBfl30uaG1+/k7RXqq8vSpoX/SZPT7WfLem5KsUnmbjA\nOVVptkqymf27mcV1kiGvPV0qoaskS/j8+Z7TAnl7UT4D/J2Z7UmozJwaz7E78H9i/3sBH5W0SyqM\nC81sQnz1WYeuEhc4p6u0msWVYagyocwi5zgdIm8vyt/FPgAeYENF5buBB8zs9bhi+D3AMa1elAvc\nAKRbQ4edzOKgfCLnQueUnFGSZqdeU5o4tkgvypPYMG9uHnCApJGStiCsL7pTat9T47Dm5VnDqGm8\nitLpOu3Mw2rFpzKhE5WVleQ1Z85xsrA1b7D2pcerbapp1VVGL8q4BM5JwPsBzGyBpPMI2eFfgUcJ\nS+hAGAb9Tuz7O8D3gf9dq3/P4Jw+tONS0uksrl06ncmBZ3NO/8TMDjGz3au8fk70jASo40WZzqYS\nz8m6XpTV+pW0J8H95Og4ITyJc5qZTTSzAwjrxj0V25eY2VozWwf8lPCcriYucE4utDMsWpaik0pc\n6JweIlcvSklvBW4APm1mT6ZPImm71D7/E7g6fh6b2u0YwnBmTdoaopS0CHgVWAusMbNJsdLmWmAc\nsAj4ZOphojMAaGbyd6P2XYnItZKRdWOoMk1RE8Qdp4OcS1h+5iTgWeATELwogc+Z2clmtlxS4kUJ\nfb0opwObE56n3VarX+CbwEjgkjijYE1qePV6SSMJi6GektKP8yVNIAxRLgI+W++iVMersvbBQeAm\nmdmyVNv5wHIzO1fSmcA2ZnZGrX4mTtzb7rvvvpbjcJqjXjbVCSPlLIHLehbXTCbU6rBjXpmgC51T\nyRZbbP5wredjzbD3LiPtgQsP79M+9MgZHTtHr9CNIcpGyk2dHqfTqw2kKeuQZYIPXTpOOWi3itKA\nOyQZ8JO4euxGZaHJeKoz8Kg2VJlVUdnsSgOtDFl2e6iyEh+6dLrB2jf/xopn5xcdRr+g3QxufzOb\nCBwOnCLpgEYPlDQlma+xbFnmgqxOzjSSeb30/Mr1r1bIGiJtRQjWDh/fbzI6z+qcspK3VVfquH0k\nrZV0bKrtrZLukLRA0uOSxsX2aZIejfPgZkrast51tSVwZvZ8/LkUuJFQttlIuSlmNtXMJpnZpFGj\nRrcThpMjlaJWT+iaHapsNdtJhK6/iJ3jlIy8rbqQNAg4j1CdmeYq4Htm9u54nkRDvmRme0V7r2eB\nU+tdVMsCJ2mYpOHJe0LJ6DyaXKLc6T/UErJmRa5WoUu7Q3ppsat8lQUXOqdk5GrVFTkNuJ6N58bt\nBgw2szsBzOyvZvZ6fL8y7iNCtWbdCsl2Mrjtgd9KehR4EPhvM/sFGUuUO/2bRoYjmx2y7KbI9Rd8\n+NIpCbladUnagTCX7dKKc+wKrJB0g6RHJH0vZnrE464AXgTeBVxc76JaLjIxs6cJbs+V7VWXKHcG\nBi89v5LRb9mqT3vW3LhaNl7NFp70d9LXOlAE3mmeNW++ycvPP1tt0yhJs1Ofp8bCP6B0Vl0/BM4w\ns7XxcV3CYOADwHsJw5DXAp8BpgGY2YlR8C4GPgVcUesk7kXpdBwXufZxsXNaoKYXpZkdkrVN0hJJ\nY2Pley2rrgNTn3cE7qYBq64q/U4CroniNgo4QtKa2NcjMYFC0k3AfkSBi9exVtK1wFepI3Bu1eXU\npZVqyaxjWlkcdfWw8QP6S96HMZ0cyNWqy8x2NrNxZjYOmAl8wcxuIrikbCMpqTw8CHhcgXfA+mdw\nRwJ/qHdRLnDOejo9ObuTIgcudOBi53SNqrUTkiZJugwg2nIlVl0P0deq6zJgIfBHNrbqargmw8zW\nAl8BfiXpMcLw50/jzytj22PAWODb9S6qLauuTuFWXflRS0SyhKfV+W4J1YYroXk7rzT+Bd+XgS7+\nZaaTVl27jx1sN5y0dZ/2d56z3K26KvAMzqlJu+JWq49WMznwbK4ant05zsZ4kYmTC60UnkD9bC4t\ncv7FvoHKe+F/DPQOq9cYLyx5o+gw+gWewTkt89KLK/u8au7fZCYHza0jl2R1/mXel3R2538IOJUU\nYdUl6UBJcyTNl3RPbNtM0oPRkmu+pH9J7T9D0hOS5km6XNKQetflAue0RJaY1RO6VkWu2QVTXexq\n44LnVJCrVZekEcAlwFFm9h42rBO3CjjIzPYCJhCcUvaL22YQJnjvQXAyObneRbnAOZlkiVG9TK3e\nPrVErhGha0fsXPCq42I34Mnbqut/ATeY2bOw3s8YC/w17jMkvixuuzVuN4J7VnruXVX8GZzTFI2I\nW+W+o8f0ffaWiFzWcznIrrKExp/RVaNS5PxLfWP8+d2ApJFlztq26kr1uyswRNLdwHDgIjO7Ctab\nMD8MvAP4kZnNSgcRhyY/DXyx3kW5wDld56UXV1YVOcguPoHmhA5aEzvI/gJ34Qu44PUb+pNV12Bg\nb4Kt4+bA/ZIeMLMn41y4CXEY80ZJu5vZvNSxlwC/MbN76wXsAucADa4D10T2lnVss9lcOrZaQged\nEbs09b7IB6oA+kKuxbJmjfHi8jXVNvUnq67FMd7XgNck/YbgbfxkKt4VMcM7jLBSDZK+BYwGPpt1\nLWn8GZyTK7WKUBpZW67ec7qE9PO6Vp7bNULls71ar15koAp8j5KrVVf8+QFJgyVtQShcWSBpdMzc\nkLQ5cAjRkkvSyYTngMeZ2bpGLsozOKcqrUzwfu5PYWX2Hd5WfwHbesOWkJ3RwcYZZ73MLqGayHUi\n02uETolc3qLSq+Ls9OFc4DpJJxFc/D8BwaoL+JyZnWxmyyUlVl3Q16prOmG48TY2turq06+ZLZD0\nC2AusA64zMzmSdqTYMk1iJCAXWdmt8S+LgX+RBjOhFCkUtOuy626BhhZmUxlVtRn5e6MrCsRtVrU\nE7wsodtonxpiV0mjgleLvITPGRh00qrr7dtsYv96UN8pYJNveNOtuirwDM5pmUbELb1fltClxbNe\nVgf1xa5SrFsRvHpDmi6AjlN+XOCclmhU3LKO6ZTYQfOCl9BOptfoMz0XQscpDhc4py7tVE9m0cjz\nukbEDqo/L2xkSLNesUonhjpbKW5xUXRq8eZa+PMKrw9shK4JnKTDgIuAQYQHiDXXAXL6D61kb430\n1ajYQf3ndllFMs08y2ukWrMTIlhJJyo+XSSdZog2XNcC44BFwCejW0nlficA34gfv2tmV8b2vdlQ\nZHIr8EUzs6x+JW0N/AfwVoIOXWBmV7RyjlrX1RWBixUwPyIscLcYeEjSzWb2eDfO55SDFxb9pe4+\nY8eNzNxWKZzNCF5Cq8K3/vgmBBBaWyS2G6JYSTemRaRxAe05Es/IcyWdGT+fkd4h5UU5iTCR++H4\nvf4yG7woHyCIz2GESsqsfk8BHjezI+Pq3U9ImgFs2cI5MulWBvc+YKGZPQ0g6RqCJ5kLXD+glghU\ny94aEbasfZsRPKhfkVlrOLWRas1mpkc0K4YJ7a6cnodA1qPbAloLF9eucDQbJnFfSZjAfUbFPuu9\nKAEkJV6UdxO9KGN74kV5W41+DRge581tCSwH1rR4jky6JXDVPMv27dK5nAJpRtwaOb6W4EH28Gij\nc+9q0YgAbtRfDmJYjXYFEsohkq1ShLgOAFHN24vy3wmTwJ8neFF+yszWSWrlHJl0S+DqepNJmkJI\nNwFWbbHF5vP6HlIKRgHLig4iA4+tNcocG5Q7Po+tNd7ZqY4Wv2q3f/WuN0ZV2bRZP/KiPBSYAxwE\nvB24U9K9HT5H1wRuMbBT6nPamwyAeOOnAkiaXdYJih5ba3hsrVPm+Dy21qgQnrYws8Pq71X1uDJ5\nUZ4InBuLRBZKeoaw1lsr58ikW7WmDwG7SNpZ0lBgMiEddRzHccpH3l6UzxJWEkDS9oQM9+kWz5FJ\nVzI4M1sj6dQY7CDgcjOb341zOY7jOG2Tqxcl8B1guqTHCMOPZ5jZsnjOZs+RSSm8KCVNSY8VlwmP\nrTU8ttYpc3weW2uUObZephQC5ziO4zidxv1eHMdxnJ6kUIGTdJikJyQtjLPcC0XSIkmPSZqTVD1J\n2lbSnZILX4XWAAAEYklEQVSeij+3yTGeyyUtlTQv1VY1HgX+Ld7LuZImFhDb2ZKei/dvjqQjUtvO\nirE9IenQLse2k6RfS1ogab6kL8b2wu9djdgKv3eSNpP0oKRHY2z/Ett3ljQr3rdrY+EYkjaNnxfG\n7eMKiG26pGdS921CbM/19yGec5CkRyTdEj8Xft8GPGZWyItQfPJHYDwwFHgU2K2oeGJMi4BRFW3n\nA2fG92cC5+UYzwHARGBevXiAIwgPXQXsB8wqILazga9U2Xe3+O+7KbBz/Hcf1MXYxgIT4/vhwJMx\nhsLvXY3YCr938fq3jO+HALPi/bgOmBzbLwU+H99/Abg0vp8MXNvF+5YV23Tg2Cr75/r7EM/5ZeA/\ngVvi58Lv20B/FZnBrbfzMrM3gcTOq2wcTbCYIf78WF4nNrPfECxsGonnaOAqCzwAjFCYd5JnbFkc\nDVxjZqvM7BlgIeHfv1uxvWBmv4/vXwUWEFwPCr93NWLLIrd7F6//r/HjkPgywmTcmbG98r4l93Mm\ncLCkahNyuxlbFrn+PkjaEfgIcFn8LEpw3wY6RQpcliVLkRhwh6SHFZxWoMJqBqhmYZMnWfGU5X6e\nGoeELk8N5xYWWxz+eS/hL/5S3buK2KAE9y4Os80hTMi9k5AxrjCzNVXOvz62uP0VoLbXWgdjM7Pk\nvp0T79uFkhIPsrz/TX8I/F9gXfw8kpLct4FMkQLXkvVKl9nfzCYChwOnSDqg4HiaoQz388cE250J\nwAvA92N7IbFJ2hK4HjjdzGoZR+YeX5XYSnHvzGytmU0gOEW8D3h3jfMXGpuk3YGzCA4Y+wDbssEg\nOLfYJH0UWGpmD6eba5y/DL+rA4IiBa6unVfemNnz8edS4EbCL/iSZGhD2RY2eZIVT+H308yWxC+h\ndcBP2TCUlntskoYQBGSGmd0Qm0tx76rFVqZ7F+NZQbBI2o8wvJeYQqTPvz62uH1rGh+27kRsh8Uh\nXzOzVcAVFHPf9geOkrSI8KjlIEJGV6r7NhApUuBKZeclaZik4cl7gkXMPBqzsMmTrHhuBo6P1WP7\nAa8kw3F5UfGM4xjC/Utimxyrx3YGdgEe7GIcAqYBC8zsB6lNhd+7rNjKcO8kjZY0Ir7fHDiE8Izw\n18CxcbfK+5bcz2OBu8ysW1lStdj+kPqDRYRnXOn7lsu/qZmdZWY7mtk4wvfYXWb295Tgvg14iqxw\nIVQ6PUkY5/96wbGMJ1SrPQrMT+IhjI3/Cngq/tw2x5iuJgxXrSb81XdSVjyEYY8fxXv5GDCpgNh+\nFs89l/BLPDa1/9djbE8Ah3c5tvcThnzmEhzL58T/a4XfuxqxFX7vgD2BR2IM84Bvpn43HiQUuPwX\nsGls3yx+Xhi3jy8gtrvifZtHWCE6qbTM9fchFeeBbKiiLPy+DfSXO5k4juM4PYk7mTiO4zg9iQuc\n4ziO05O4wDmO4zg9iQuc4ziO05O4wDmO4zg9iQuc4ziO05O4wDmO4zg9iQuc4ziO05P8f4UzITua\nX6mTAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118f97198>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(7,2))\n",
"plt.title(\"Im($\\\\rho_{01}$)\")\n",
"plt.contourf(np.imag(rho01),np.linspace(-8e-4,8e-4,20), cmap=\"PuOr\", origin=\"lower\")\n",
"plt.colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Plot of $\\Omega(L,t)$ (exiting pulse)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11948b668>]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD8CAYAAABkbJM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX++PHXB1ARAUUEEdwwwd0WcN9zNLOmpn2Zyhrb\nm6kp+7VMTk2ltn3Hmvk60zdtKtummrLRmjaXyhbX0rFc0TRlFwFRlP39++Pci4gsB+7CAd7Px+M+\nuPfczznnLQLv+9mNiKCUUkrVJ6CpA1BKKdU8aMJQSilliyYMpZRStmjCUEopZYsmDKWUUrZowlBK\nKWWLJgyllFK2aMJQSilliyYMpZRStgQ1dQDe1KVLF+ndu3dTh6GUUs3Kd999lyMiUfWVa1EJo3fv\n3mzcuLGpw1BKqWbFGPOznXLaJKWUUsoWTRhKKaVs0YShlFLKFk0YSimlbNGEoZRSyhZNGEoppWzR\nhKGUUsoWTRiqVcvNLeCSS/7K6tV7mzoUpRxPE4ZqtUpKShg3bhRLltzFhAlD+OKLn5o6JKUcTROG\narVeeeV1tm3bxgMPPENgIDz55H1NHZJSjtailgZRqiFmzXqBmJjTmTdvFnCIp59+mszMTGJiYpo6\nNKUcSWsYqlkREf73f/+XxYsXIyKNvs7WrdkcPbqBgQMvwRjDddfNoKKigj/84Z9ejFaplsUrCcMY\nM80Ys9MYs9sY80AN77czxrzten+dMaZ3lfcedB3faYw5x3WshzHmc2PMdmPMVmPMXd6IUzV/K1as\n4M477+T666/nn/9s/B/3des+BYQ775wOwIAB/QkOHsr773/gpUiVank8ThjGmEDgb8C5wEDgKmPM\nwGrFZgJ5ItIXeBZ4ynXuQOBKYBAwDfi763plwCwRGQCMBO6o4ZqqFXr66aeJi4sjNjaWF154odHX\nWb/+Gzp27Mgvf3lm5bHk5CkUFHxDYeExb4SqVIvjjRrGcGC3iPwkIiXAW8CF1cpcCCx2PX8XmGyM\nMa7jb4lIsYjsBXYDw0UkQ0S+BxCRI8B2IM4LsapmrKioiNWrV3PVVVdx6623snr1ag4dOtSoay1d\nupEePZIICDjxKzB79hQqKkr46qvV3gpZqRbFGwkjDjhQ5XUqp/5xrywjImXAYSDSzrmu5qszgXVe\niFU1Y+vWraOkpITx48czduxYgEbtf1JQUExm5hZCQpJPOj527FgCAwNZuvRbr8SrVEvjjYRhajhW\nvTeytjJ1nmuMCQXeA34vIgU13tyYm40xG40xGw8ePGgzZNUcffXVVxhjGDt2LElJSRhjWL9+fYOv\n8913W4FSpk5NOul4hw4daNt2CO+8s9ZLESvVsngjYaQCPaq87g6k11bGGBMEdARy6zrXGNMGK1m8\nISJLaru5iCwUkWQRSY6KqneHQdWM/fe//6Vv375EREQQHh5O//79G5UwUlO3AvDrXw895b34+JHk\n5a2jvLzC43iVamm8kTA2AAnGmHhjTFusTuxl1cosA2a4nl8KrBJrTOQy4ErXKKp4IAFY7+rf+Aew\nXUTmeyFG1QJs3bqVQYMGVb4eMmQI27Zta/B1vvpqJ4GBgfTp0+eU9+68cwQiBaSk7PIoVqVaIo8T\nhqtP4rfAp1id0++IyFZjzGPGmAtcxf4BRBpjdgP3AA+4zt0KvANsAz4B7hCRcmAMcC1wtjFms+sx\n3dNYVfNVUlJCSkoKAweeGCyXkJDAvn37KCkpadC1PvpoBwEBp9G2bdtT3hs+/HQAfvjhB88CVqoF\n8spMbxH5CPio2rGHqzwvAi6r5dy5wNxqx76m5v4N1UqlpKRQVlZ2SsKoqKhg3759JCYm2r5Wfv4O\nIiP71/hev34DgEAWLNjCZZfV+COrVKulM71Vs7Bjxw4ABgwYUHksISEBsJKJXeXl5ZSWpvDrX/er\n8f2QkGDatk1k1y6tYShVnSYM1Sz89JO1kuxpp51WecydMHbv3m37Ounp6ZSUlJCQcFqtZUaNGkJg\n4JZGRqpUy6UJQzULe/fuJSIigo4dO1Ye69KlC6GhoZXJxI4PPtgHQFFR71rLTJkylLS0vRw5cqSx\n4SrVImnCUM3C3r17iY+PP+mYMYYePXqQmppq+zpbtuwDoF+/3rWWiY0dAsCyZT82OE6lWjJNGKpZ\nqClhAA1OGGFh+wAYNapXrWUSEqz5GR99pM1SSlWlCUM5nnskVE0Jo3v37hw4cKCGs2qWm7uPbt26\n0bFjcK1lRo/uRVBQGPn52vGtVFWaMJTjZWdnU1xcTO/evU95r3v37mRmZlJaWmrrWl99tY8OHWqv\nXQAEBBiSkgZSVLS9MeEq1WJpwlCO525y6tGjxynv9ejRAxEhPb36ajQ127cvlaKiU69TXXx8P378\nUWd7K1WVJgzleO6E0b1791Pecx+z3yyVQd++3eotlZOTSHZ2KllZhbbjVKql04ShHK+uhBEXZ62G\nn5GRUe91CgsLKS09wjnn1J8whg61Zo5//bX9SYFKtXSaMJTjpaam0rZtW7p06XLKe127dgUgKyur\n3uvs3m0llaio+hPG1VdbM8HLynY2JFSlWjRNGMrxUlNTiY2NPWl3PLfIyEgCAwPJzMys9zorVlgJ\nIz+//oQxYEBfAHbt0n4Mpdw0YSjHS0tLq7E5CiAwMJCoqChbNYw9e6yEMXBg/QkjJCSE9u178tpr\nWsNQyk0ThnK8tLS0yr6KmsTExNiqYSQkWCOpzjqr/oQB0L59IunpWsNQyk0ThnK8rKysyr6KmnTt\n2tVWwsjMzKBNmzZER0fauu+4cYmI7MTa60sppQlDOVpRUREFBQV1JoyYmBhbTVIffphB27bdsDZ0\nrN/ZZ/fj2LECsrOzbcerVEumCUM5mvuPdXR0dK1lunbtSlZWVr01gfT0DAIC7DVHAURGWsunr1yp\nQ2uVAk0YyuHsJoySkhLy8/PrvFZYWAYDBjQkYVh7fn/xhf3l05VqyTRhKEdzJ4y6mqTc8zMOHTpU\n57UKCzNISrKfMEaP7g0YjhzRhKEUaMJQDufum6irhhEZaXVi15UwCguLyc3NJSjIfsIID29Hjx7d\nCQraY/scpVoyTRjK0ew0SdlJGFu3WnMwcnNjG3T/3r1PY9s2rWEoBZowlMNlZWXRoUMHOnToUGsZ\nOwlj/34rYSQk2K9hAGRm9mHzZq1hKAWaMJTDZWdn11m7gBN9GDk5ObWWCQqymrZ++cuYBt2/d+/T\nqKjIIjtbV61VShOGcrTs7Ow6O7wBOnbsSEBAQJ01jKwsK5lERUU16P5XXtnHFcfeBp2nVEukCUM5\nWlZWVr01jICAADp37lxnwvjgAythBAXZm+XtNniwlTD27NFmKaU0YShHs9MkBVY/Rl0JIzs7B2hP\nTExIg+4fG3saAP/8p3Z8K6UJQzlWRUUFBw8erLdJCqx+jLr6MOLjc+jatQs2VwWpFBvbGQhn2zat\nYSilCUM5Vm5uLuXl5V6pYRQW5hAbe+oGTPUJCDD07HkaISFaw1BKE4ZyLDtzMNzqSxibNx+iqKjh\nCQNg2LA+5OdrwlBKE4ZyLPcsbztNUu6EUdsChFlZORw/3riEER7eh92791JSUt6o85VqKTRhKMdq\nSA2jS5cuFBUVcezYsRrfDwzMITGxcQmjuPg0ystL2LQpvVHnK9VSaMJQjtXQJimoebZ3aWkpxcX5\njBnTuIRx1lnW0NodO7TjW7VumjCUY2VlZREQEFCZDOpSV8I4cCAXgJCQxiWMiy6yhtaWl2s/hmrd\nNGEox8rOziYqKoqAgPp/TOtKGN9/bw23zcxs2KQ9t549exIYGKhDa1WrpwlDOZadZUHc6lpPKj3d\nOhYX17gaRlBQEMb05N13dXkQ1bppwlCOZWdZELe6ahhxcVbCmDSpcQkDICwsnkOHNGGo1k0ThnIs\nu8uCAHTu3BmoOWG4j0VFNT5hTJ3ah+Bg7cNQrZsmDOVYWVlZtpuk2rRpQ3h4eI0Jw73wYHh44/ow\nAIYOjScnJ5vCQl3mXLVeXkkYxphpxpidxpjdxpgHani/nTHmbdf764wxvau896Dr+E5jzDlVjr9k\njMk2xvzojRhV81JYWEhhYaHtGgZYtYz8/PxTjlt9GKGEhQU3Op6AAGto7RdfaLOUar08ThjGmEDg\nb8C5wEDgKmPMwGrFZgJ5ItIXeBZ4ynXuQOBKYBAwDfi763oAr7iOqVbo4MGDgL05GG6dOnUiLy/v\nlOPduuV41BwFEBUVD8DatZowVOvljRrGcGC3iPwkIiXAW8CF1cpcCCx2PX8XmGyMMa7jb4lIsYjs\nBXa7roeIrAZyvRCfaoYasiyIW6dOnWqsYVRU5NCrl2cJY/x4q4ZRWqr9GKr18kbCiAMOVHmd6jpW\nYxkRKQMOA5E2z62TMeZmY8xGY8xG96dS1fw1ZJa3W20JY8eOHMrLG99/AdC3bxdCQ0M5flwThmq9\nvJEwatphoPoKcLWVsXNunURkoYgki0hyQ7ffVM7lrmF4I2GkpuaSk9PZo3iMMcTExLN+vfeapNau\nXcv111/PiBEjOP/883nxxRcpLi722vWV8jZvJIxUoEeV192B6qu0VZYxxgQBHbGam+ycq1qhxtQw\nIiIiakwYxuQRGxvhcUxHj/Zh0ybPaxgiwuzZsxk1ahRLly4lPDyclJQUbrrpJoYPH05KSorH91DK\nF7yRMDYACcaYeGNMW6xO7GXVyiwDZrieXwqsEmsd6mXAla5RVPFAArDeCzGpZi47O5uwsDDat29v\n+5xOnTpx5MgRysrKKo+JCGVl+fziF54njB494ikt3VvrEup2Pfzww8ydO5eZM2dy4MABli9fzo4d\nO1i6dClpaWkkJSWxdu1aj+NVyts8ThiuPonfAp8C24F3RGSrMeYxY8wFrmL/ACKNMbuBe4AHXOdu\nBd4BtgGfAHeISDmAMeafwBqgnzEm1Rgz09NYVfPRkDkYbp06dQLg8OHDlcfy849QUVFBx46eJ4xr\nr+1DRcWxytpPY3z88cfMmTOHmTNnsmjRIkJDQwGryeuCCy7g+++/Jzo6munTp/PjjzqiXDlLkDcu\nIiIfAR9VO/ZwledFwGW1nDsXmFvD8au8EZtqnhoyy9vNnTDy8/MrlwrZti3P9bWTxzHFx1tDa3fv\n3tvgZAZQXFzMbbfdxqBBg1iwYAGmhg3Ge/bsyfLlyxkzZgwXXngh33//PR07dvQ4dqW8QWd6K0fy\nNGG4paZaz6OjPa9hBAVZQ2vffLNx/RjPP/88P//8M88++yzBwbVPIoyPj+fdd9/l559/5uabb/a4\nCUwpb9GEoRypMU1SERFWUqiaMDp3tmoY48d7njCSk3sDsHNnw0dKFRQUMGfOHCZPnsyUKVPqLT96\n9Gjmzp3LO++8w+uvv97g+ynlC5owlOOUl5eTk5PT6BpG1dneR49az2NjPW+S6tIlhM6dY4iKangN\n45VXXuHQoUPMmzfP9jn33nsvo0aN4u6770bnGCkn0IShHCcnJwcR8UqT1JdfWs+DgjyvYQD079+H\nzMyGJQwR4YUXXmDYsGEMHz7c9nmBgYEsWrSIgoICZs2a1dBQlfI6TRjKcdyjkBo7Sqpqwti1y6ph\neKMPAyAwMJ7vvmtYk9Q333zDtm3buOWWWxp8v0GDBjFr1ixee+011q/XEeeqaWnCUI7TmEl7AKGh\noQQGBtbQh2GIigrzUnR9OHLkAMeOldo+Y+HChYSHh3PllVc26o4PPvgg0dHR3HPPPdoBrpqUJgzl\nOI1ZFgSsuQzVlweJiMgnIqKTrX3B7Rgxog9Qwa5d+22VLyoq4v333+fyyy+nQ4cOjbpneHg4c+bM\n4ZtvvuG9995r1DWU8gZNGMpxGtskBacucZ6SkkdIiHeaowDOP9+ai3HwoL1+jJUrV3L06FEuvvhi\nj+77m9/8hiFDhnDfffdRUlLi0bWUaixNGMpxsrOzCQoKquyTaIjqNYyNG/PIz/d8hJRb797WXAy7\nixAuWbKE8PBwzj77bI/uGxgYyFNPPcXevXt5+eWXPbqWUo2lCUM5TlZWFtHR0Y1qRqqeMMrL8+nQ\nwXs1jG7dYoE2fPBB/TWMsrIyli1bxnnnnUe7du08vve0adMYNWoUc+bM0VVtVZPQhKEcpzGzvN2q\nJ4xu3fK8MmnPrW3bQNq06c3Bg/XXML799ltycnI8bo5yM8bw2GOPkZqayosvvuiVayrVEJowlOO4\naxiNUX2J87y8vEY1bdVl4sR4Oneuv4bx2WefERgYaGtmt12TJ09m3LhxzJs3j6KiIq9dVyk7NGEo\nx8nOzm5Uhzec3OktApmZ+ezZ470aBsBpp/Xhp5/qTxgrV65k2LBhXl080F3LSE9PZ+HChV67rlJ2\naMJQjiIiHjdJHT9+nOLiYg4dKgKKaNfOuwkjP78Pubm57N9/uNYyBQUFbNiwgcmTJ3v13gATJ05k\n0qRJzJs3j2PHjnn9+krVRhOGcpSjR49y/PhxjxIGWHtiFBZaNY2RI73bJBUbaw2tXbOm9n6M1atX\nU15e7vHoqNo8+uijZGVlaS1D+ZUmDOUonszBgJNXrHUnjH79vFvDmDrVGlpbUlJ7wli5ciXBwcGM\nHj3aq/d2GzduHBMnTuSpp57i+PHjPrmHUtVpwlB+M3fup8TG9iUuLq7WGcuNneXtVnU9qa1brc7v\n0lLvJozhw60aRnZ27f0Yq1atYvTo0XXue+GpRx55hMzMTB0xpfxGE4byi1df3cjs2b/i6NE2REVF\nccUVV7F06dZTynlaw6i6xPmPP1o1jLIy7zZJRURE0L59Jz77rOYaRkFBAT/88APjxo3z6n2rmzhx\nIuPHj+fJJ5/UEVPKLzRhKJ8rLS1l7tzfEBwcyYYNX7FkyQrKy9tx112n7MxbWcOIiopq1L2q1jBE\nrIQRH+/dGoYlnk2baq5hbNiwARFh1KhRPrjvyR5++GHS09N56aWXfH4vpTRhKJ9bvHgxu3b9wBtv\n/JV+/brQp08Xxo27mf373yEn59BJZd0Jw9MaRn5+PtHRVpPUoEHeTxi9evWhoqLmGsaaNWsAGrT3\nRWOdffbZjBkzhieeeEJnfyuf04ShfKqoqIzf/e5xBgwYwUUXXVR5fP78qxAp58MPPzipfEZGBpGR\nkbRt27ZR96va6Z2ebtUwvD1xD+CXv+zD0aN7qaioOOW9tWvXMmDAgMpYfMkYw8MPP0xqaiqvvPKK\nz++nWjdNGMqn7r//PYqK9nPRRX/AGFN5PCkpiW7devD880tPKp+ZmUm3bt0afb/g4GDatm1Lfn4+\nn32WB3SgTZs2jb5ebXr16kNxcTEpKWknHRcR1q5d65fmKLcpU6YwcuRI5s2bpyvZKp/ShKF8RkT4\n4ov5dOrUl0cfPf+k94wxhIZOYcOG1ZSVnfiUnpGRQUxMTKPv6d4TIy8vjyNH8gkI8M2n/GPHEgD4\n8MOUk46npKRw6NAhvyYMYwyPPPII+/fvZ/HixX67r2p9NGEon1mzZg1btqxnzpzfExR06o/a2LFj\nEMllzZqdlcc8rWHAiQUIExPzSEz0fnMUwLhxiQD8978nJ4x169YBMHLkSJ/ctzbnnHMOw4YNY968\neZSW2t8NUKmG0IShfOaGG54lJKQTM2bMqPH9++4bA8DOnd8AVo3E0xoGnEgYR47kERXlmxpGcnIc\nwcHBREefnDC+//572rdvz4ABA3xy39q4axn79u3jtdde8+u9VeuhCUP5xNdf72PXriUMHnwzoaGh\nNZbp1y+RiIgI1qzZCFgd1SUlJR7XMNwr1v74Yz4HD/omYQQFBdC3b1927dp10vFNmzYxdOhQAgMD\nfXLfukyfPp2kpCTmzp1LWVmZT+5RXl7OihVfMnny43Tt+kvi4/vRpUsXAgPbYkw4oaGxjBo1iiuu\nmMGFF87n1Vc3UlLim1iU/2nCUD7x6qvPERAQwIIFv6u1jDEGY4byzjtbAKv/AvBKDSMvL4/Dh/Mo\nKvLdSKXy8gRWrTpRwxARNm/ezJlnnumze9bFPWLqp59+4o033vDqtTdvzmDq1Afo1asXU6ZMZNWq\nR8jP30Ni4ulcfvnlXHzxPZxxxm9ITj6XkJAQVq1awbJls5gxYxjR0V247rrreOaZZeTn6wTDZk1E\nWswjKSlJVNPLzc2VDh06yLXXXltv2aFDfyfQQUpLy2XlypUCyOeff+7R/W+++Wbp2rWrBAeHyfnn\n3+XRteoyfPh9Am2luLhMRET27NkjgLzwwgs+u2d9Kioq5IwzzpC+fftKaWmpx9fLy8uTm266T6C9\nQKBMmXK+vPXWW5KZmV/vud99lyZ//ONbcv3110unThECCITLFVfcIVu2bPE4NuU9wEax8TdWaxjK\n62644QUKCwu5++5Z9Za9+uqhQCH79u31ag3j0KFDFBUdITnZdzWMqVMTgRL27t0PWM1RQJPVMOBE\nLWP37t289dZbHl1r4cIVDB48mBdffIbTT7+ElSt38tlnH3DFFVfQtWv9e3ycdVYsjz12BS+//DLp\n6VnMm/cpCQm/5N//fpGhQ4fSo8dY/vCHpSeNklPOpglDedWRIyV88MFf6dx5CmeeeXq95SdOHALA\n1q0/kpmZCeBxH0bHjh0r2/DLy32XMKZMsYbW/vyz1Sy1adMmAgMDGTJkiM/uaceFF17I0KFDmTNn\nDuXl5Q0+v7S0nOHD/x+33DIFCGXdunVs3vwaZ599WqNjat++DQ8+OJVdu14nLS2NJ5/8M5mZ6Tzx\nxK/o23cwixcv1tFdzYAmDOVVr7/+OhUVGTz44L22ysfHW8NT33knhYyMDIKDgwkPD/cohqo73KWm\ndvboWnWJj7cSxiefnEgYAwYM8OkKtXYEBATwxz/+kZ07d/L222836Nxjx45x+eWXsmHD/zBw4K1s\n3vw9w4YN82p8kZGR3H//PRw5sotZs96kY8c2XH/99XTqdBqXXvq/5Obqcu1OpQlDec3x48eZN+8R\nhg0bxqxZ9vaxjo6OwJgovv9+V+UcjKozwhuj6lIgPXo0bhFDO+LiYoBQVq2yRkpt3ryZM844w2f3\na4iLL76YwYMHN6iWsX//YZKTJ7N06VLmz3+OrVufp0uXEJ/FGBwcxP/8z1Vs3ryZd9/9iKCg3rz3\n3p0kJvZh/vz5FBYW+uzeqnE0YSivueKKBaSmpvLEE0836I9+r16JBATs8socDDi5hnHBBV08vl5t\nAgIMnTr15fjxFPLy8khPT2fo0KE+u19DuGsZ27dvtzViKju7kMGDz2P79o288sq/uPvuu/wQpcUY\nwyWXnMvhw6t58cUvOOOMQcyaNYuIiHimT3+azMyjfotF1U0ThvKKLVvS+fDDeURFncvkyRMbdO6k\nSYnk5Vk1DG8kjKo1jMYuk27XlCkJVFSksHWrtbfH4MGDfXq/hrj00ktJTk7mD3/4Q517fxcXF3Pl\nlRdz5Mga7r77Ta677hI/RnmymTMnsGLFCv7zn68JDz+Ljz++nwEDejNv3jwOHy5osriURROG8piI\n8OCDNxEUVMzrr/+lwed37ZpARkYGKSkpHnd4w8k1jCNHfJswEhIS2bt3L999Z42QGjRokE/v1xAB\nAQHMnz+ftLQ0/vznP9dYpqJCuPHG2/n8889YtGgR8+df5ucoazZ9+hhycj7hvffWMmbMSB566CE6\nd+7FpEmPsn9/flOH13rZGXvbXB46D6NpzJ69QAD5y1/+0qjzf/vbf7rG6CNPPfWUx/Hs37+/8nqZ\nmR5frk433viKADJ27FQJCwuTiooK396wES655BLp0KGDpKenn/Le5Zdb/3d33vnHJojMvk8/3Sgx\nMRcKIGFh4TJ79mzJyMhp0pgqKirk+PHjkp+fL3l5eZKbmyuHDh2SQ4cOybFjxxz5s1AbbM7DMFbZ\nliE5OVk2btzY1GG0Kg8//AGPP/4rhg6dxqZNHxAQ0PBK68KFa7nlFmt113/9619ceumlHsVUUFBQ\nWcsoKRF8sLp5pRde+JZbb7XWxBo1ahTffvut727WSHv27GHAgAFcd911J+3//emnq5k2bTLR0dNI\nS1ta4wKRTrNy5Waef34O7733HsaEMmLEb3njjXvo08d7NUkRITMzkx07drBz505SU1NJS0sjLS2N\nrKwsCgoKKCgo4MiRI/UOBW7fvj0hISGEhITQsWNHIiMj6dKlC5GRkZWPrl27EhsbS1xcHLGxsYSF\nhXnt32KXMeY7EUmut5w3EoYxZhrwFyAQeFFEnqz2fjvgVSAJOARcISL7XO89CMwEyoE7ReRTO9es\niSYM/3r99de5/vobadduCHv2fE5MTM1rRtUnKyursu/iu+++46yzzvIoroqKisq1nHz9gSg7u4CY\nmE6ICDfeeCOLFi3y6f0a695772X+/Pl89913nHnmmeTm5jJkyBCCg0P5/PP19OxZ/0Q8J1m16kdu\nuGEu+/e/TUhIe2677TZuv/1e+vRpWB+YiLB7927Wr19f+di2bRsFBSf6SwIDA4mJiSEuLo6YmBg6\nduxIeHg4YWFhhIWFERwc7FrmxlQO9igqKuLYsWOVj8LCQvLz8zl06NBJj5pGsIWGhlYmD3ci6dGj\nx0mPLl26eDyasCq/JQxjTCCwC5gCpAIbgKtEZFuVMrcDQ0XkVmPMlcBFInKFMWYg8E9gOBALrAAS\nXafVec2aaMLwjw0bUpk16w989dVrTJgwkYUL/0ViYuNHI4lIZc0kLy/PKzvkuX+Z/FGDjoyMJDc3\nl+eee4677vLf6KKGyM/Pp1+/fvTp04evv/6GpKSr2Lp1CevWrfM4QTelDRu289e/zuPNN9+koiKI\n3r0v4+9/v41p00bX+gc1NTWV5cuXs3z5clasWMHBgwcBCAkJISkpidNPP53+/fvTv39/EhMTiY2N\n9clikiLC4cOHycrKIj09nfT0dNLS0iqfV31dfWOs4OBgunfvTs+ePSuTyLXXXktiYmItd6ub3YTh\ncb8BMAr4tMrrB4EHq5X5FBjleh4E5ACmell3OTvXrOmhfRi+UVhYIitWbJKFCxfK+PG/Emgj0E7u\nvfcPUlJS4pV74Opz8BZA2rU7w2vXq0t4eJwAsnz5cr/cr7FeffVVASQubqAAcu6585o6JK9ZvXqX\nDBnyWwnBePTtAAAZrUlEQVQICBdAhgwZIrfc8nfZty9PRES2b98ujz/+uJx++umVP2tdu3aVa665\nRhYtWiRbtmzxytpbvlBeXi6ZmZmyYcMGWbJkiTz33HMya9Ysufzyy2XUqFESFxcnAQEBsnLlykbf\nA5t9GN5IGJdiNRm5X18LLKhW5kege5XXe4AuwALgmirH/+G6Xr3XrOnR2ITx/PPPy6R2nWV8m84y\n+vQJct5558n47gNkfJvOkty5v0yfPl2mjZsgY9t0lrFtOsvEiefKtGnTZEzH7jImKEKSepwp55xz\njowfcKaMDoqQs4LjZOrUqTJ16lQZ3TZCRgZFyLBBo+UXv/iFjOyWICOCOsnpnRJk8uTJMmnEKBkR\n1EmGB3WS0aPPlrPPPluGhXWTYUGdZGjsEJk0aZKM7DtEkgM7ypC23WTChAkyYcIEGdamo5wV2FFO\nT0yW8ePHy1nR8XJmYEcZGB4v48aNkzFnJskZgeFyRmC4JCWNkTFjxsjpoV3l9MBw6R/dX0aPHi1J\n8f1laGC49G8TLaNGjZKRI0fK6UFhMiQgTAbEny79+/eX8DYhlb9ggMR0iZKZod1lxxkjTnwDb7pJ\nZMIEkWXLrNfLllmvb7rpRJkJE6zHjh3W62eesV4/84yIiLQJtH7RZcIEr1z3w3Mek9///rh13F3G\ni/FWvW5S0h8FkPSrf+3V63o73orx42VKhLUIYGTkWCn5zUxHx9uY6xaMHSsLExNlcF8rKQYQKPHt\ngit/fsecdZY806ePbElKOtEp3YTxeuu6pePHe5Tw7CaMoPorK/Wqqd5XvR2gtjK1Ha+p963GtgVj\nzM3AzQA9e/asPco65Ofnk1VWQoVAee5BioOOcuzYESgvobjoKGRnI8eLOF5udXAF5ebQrh0cKy2G\nijJKjhcSlJ9P8bFCyirKKCkvpa2rDfR4RRlSYSg/foygQuF4WQlIBUVlJRw/fhxKiikWa/G1ipIS\nAgKgVCowIpRVlFNWVka5lFMBCK6RCq6qtgECTAABAQEEGOtbFkAAQUFBSFAQbV3Hgtq1IzjYUBoQ\niDEBmDbtCAkJIaBtIUEmgMCANpV7VgQGBFEBlIeE0nNAAsltIojcn07s0DFc/NKjnFZWhrn11kZ9\nn+vyxT9W0v057zXnnPeL9px3bzDsrL+sp5555k+sWXMrXX/6k+9v5gFjDB8MHszGJ55g4MCBtLn/\n/qYOyevCAgO5qVs3Zj7/f7y2/ij/eeRejh35gXvOncbrGQtIjjjKrQG3ENoB8GIfQFMLMgaCvPHn\nvG7e6MMYBfxJRM5xvX4QQESeqFLmU1eZNcaYICATiAIeqFrWXc51Wp3XrIn2YSi3Xbugc2fo4ruJ\n3s3ORx/BX/8Kr70GPp7P6DjFxfDb38J//gOffAJDh8L//R/s3QsXXwwjRjR1hHUTgfR0OHAABg2C\nsDB49VVYtgzGj4c77/Ts+nb7MLwxjm4DkGCMiTfGtAWuBJZVK7MMcO/TeSmwylUNWgZcaYxpZ4yJ\nBxKA9TavqVqQTZvgttvA1f/osfHj4aGHvHOt+pSXw+uvw9q1/rlfYxQXwx13wM8/g4drOzZL7drB\nokWQmgruxYTXrYNnn4XPP7def/klXH45PPfcifOq9TX7zE8/WXHs3n0itquughtusF6LQJ8+MGqU\n9bsCVtmtW+HwYf/ECF5IGCJSBvwWq8N6O/COiGw1xjxmjLnAVewfQKQxZjdwDydqFluBd4BtwCfA\nHSJSXts1PY1VOVdGhvWJb88e71wvPx+8MNjKloAA64/x66/7536N0a4dvPQSvPyy9by1Cgg40RL1\n8svWH9vbb7deZ2fDd9/B++9br4uLoX17iIuDHTtOnHP//fDZZ9brjAzr/33JkhP3+Pe/4ZVXrOQM\nViJ64AHr59t9n+RkKwEcOmQdu+MOOPtscC/7lZ8PGzZYX91x/+Mf8MEH4F595rHHYPt2+OMfvfot\nqpudjo7m8tBRUs3Xnj0i110n8sMP3rne8eMihYXeuZYdl1wi8sAD/rtfQxw9KtKMJh03OXff8ZEj\nIo8+KnLDDSK5udax664TadtWZPZs6/Unn1hDhzp3PnF+r17WsX/9y3r95JMibdqIXHTRieuee67I\nr38tlSsRrFkjsmqVSFqaz/95NUJneiulAGbOhJQUq8nDB9MJWh0RqKiwvpfHjkFamnXMPQXip5+s\nWkzXrhASYjVZVq3ZOJE/+zCU8oqdO63Oak/t3Qtjx1pNAf6UmwtFRf69Z33S0qzO0WHDNFl4izEn\nvpchIZCQcCJZgNXUFB9vvQdWWScni4bQhKEc41e/8k5HdXY2fPON9enPX776CiIjra9OEhdntYXP\nnt3UkaiWQBOGcoyYmBOdfJ7o3h3mz7eGH/rLgAHW1//+13/3rE9aGpSVwRlnQITvtjZXrYj2YSjH\nKCmBtm2bOorG274d+vbFp6vj2iUCo0dbzSIrVzZ1NMrptA9DNTveShZbt1rDE4uLvXM9uwYMcEay\nAKs/6PvvrXkFSnmLJgzlGG+9Zf3RPerhFs4ffgjXXGM1x/jTkiUwbhzUs0WCX/Tvb03suv76po5E\ntSSaMJRjlJZaE6QyMjy7TliYlXjco1T8pagIvv7a+nTflPbuhcJC6NGjdU/SU96nCUM5xtix1gxZ\nT9d/uv122LbN/0MZx4yBp56y1rBqStdfb30vW1D3pHII3y9vqJRN8fHWw1MiTTPuvVcvuO8+/9+3\nqv37YfNmmDOn5Yz9V86hNQzlGKWlsGABeLot9vTpMGGCd2JqqG+/tdb8aSo9e8K+fXDTTU0Xg2q5\nNGEoxwgMhHvusRZY80R+ftO13b/9trXUtL873MFa/iM725pzERzs//urlk+bpJRjBATAOedYE/g8\n8Y9/WGv9NIVx46zJe7m5EB3t33vfdpvV4Z2SYn0vlfI2TRjKUTytXQAMHOj5NRrr0kuth78dPGhN\nHLznHk0Wynf0R0s5Snk55OR4do3bbrN2VmsqRUVW57M/RUVZe4nccYd/76taF00YylFuv92zNaCK\niqyNappyTafzz4dLLvHf/XbssJJFcLD2XSjf0oShHCUmxmpeaWyncVmZNUIoud5VcXwnOdlansRf\nS5Pcc48178IJM8xVy6aLDypHOXjQqiV079585xHk5FijtMLCfH+vI0dg5Ei49lprG1ClGsPu4oPa\n6a0cJSrKs/MPH7aaZ/r1gw4dvBNTQ3k6U70hwsLghx+0dqH8Q5uklKP89BNcfDGsX9+489esgaQk\n649oU7rrLrjsMt/eY/t22LjRGhWla0Ypf9CEoRylvBzef7/xW7UeOWJ97dTJezE1RkUFfPyxbz/5\nP/AATJ3q350FVeumTVLKUbp1g/vvP7GDXUNddpn1R7qp5yL85jcwaZLvFgAsKrImB/7+9/5flVe1\nXtrprVQzJWLVyIL0Y5/ykO64p5qtb7+FtWsbd+6f/9x0Cw9Wt2QJzJ7t/ev+8AN88on1XJOF8idN\nGMpx7roLHnuscefu2tX0Gxi5rV9v7Y9RUODd6z74IFx9tec7EyrVUPr5RDlOfHzjJ71dc421AKAT\nXHSR1c9w9CiEh3vnmiUl1t7n993nn3keSlWlfRhKNUNNtUmUapm0D0O1Sm++CcuXN3UUJ2RkwMsv\ne2e59Q0b4PXXrY5uTRaqKWjCUI7z0kvWvtj5+Q0/909/ss53is8/t4bYfv21Z9cRsYbQ3nuvNaRW\nqaagfRjKcdq2hbw8a/e4hk7A69evaffDqO6CC+C00yAz07PrFBXB4MFw441Nt+SJUtqHoRwnPd0a\nOjpmDISGNnU0ntP+BuV0uvigarZiY61HQ1VUWLO8nbaukjFw4AAcPw6JiQ0//+9/t0aN/f73mnhU\n09I+DOU4x49bE96+/LJh52VkWBsILVrkm7gaq7wcRo+2NodqqJ9/tobQrlqlyUI1PU0YynHatIG5\nc+GLLxp2nruTvGNHr4fkkcBAuPNO2Lev4R35UVHwu9/BggU+CU2pBtE+DOVIV18N06dbE/HsKiqC\nlBRr86WICN/F1hjFxdYyHoGB9s/Jz2/6VXdV66DzMFSz9uabDUsWYDVHDRnivGQBVr9KYCBs3mzt\nY1GfrVuhd2947z2fh6aUbZowlCPl5MDu3Q0758sv4YYbrHOdqLgYpk2DmTPr37P82WetJDNmjH9i\nU8oOTRjKke64A847r2Hn/PADvPKK7/ag8FS7djB/vjWSKze35jLuGeELFlgz1mNi/BefUvXxKGEY\nYzobY5YbY1JcX2tsDDDGzHCVSTHGzKhyPMkY84MxZrcx5q/GWONAjDGXGWO2GmMqjDH1tquplqdr\nV8jKatg5gwZZI5Gc3O5/9dXWNrLR0ZCaenJNY8MGGDrUSnzBwdZzpZzE0xrGA8BKEUkAVrpen8QY\n0xl4BBgBDAceqZJYngduBhJcj2mu4z8CFwOrPYxPNVNz5zY8YUyaBH/7mzXKysmCguDQIRgxAvr3\nhx9/tI7/7nfWUuiNXalXKV/zNGFcCCx2PV8M/KqGMucAy0UkV0TygOXANGNMNyBcRNaINVTrVff5\nIrJdRByyq4FqCmFhDZ+At3UrbNrkm3i8rXNnq9kpPv7Ev/Pll+G//4VkrVMrh/I0YXQVkQwA19fo\nGsrEAQeqvE51HYtzPa9+XCnWr7c6fN2fvu14+GG49lrfxeRNxlj7ZSxfDgkJ1rEBA5w5wkspt3qX\nBjHGrABq6np7yOY9apqfKnUcbxBjzM1YzVr07Nmzoacrhyovt7ZqPXDAWnTPjrIyiIz0bVxKtWb1\nJgwR+UVt7xljsowx3UQkw9XElF1DsVRgYpXX3YEvXMe7VzuebiPm6vEtBBaCNXGvoecrZ0pIsEYU\n9etn/5ylS507QkqplsDTJqllgHvU0wxgaQ1lPgWmGmMiXJ3dU4FPXU1YR4wxI12jo66r5XzVCnXp\nAnffDX36NOw8XW9JKd/xNGE8CUwxxqQAU1yvMcYkG2NeBBCRXOBxYIPr8ZjrGMBtwIvAbmAP8LHr\n/IuMManAKOA/xphPPYxTNUPvvgurGzBO7swz4amnfBePUq2driWlHKt3bxg3Dl57rf6yZWXWcNpH\nHrF23VNK2af7YahmLznZapqy6+23rZFGSinf0IShHOvdd+2XDQqCyy/3XSxKKV1LSjlcaam9cvv2\nwdNPQ1qaT8NRqlXThKEc69FHISTkxIJ8ddmyBe6/39p1TynlG5owlGN17Gh1Zufl1V82NBQmTNDV\nXZXyJe3DUI51xRUwcSKEh9df9uyzrYdSync0YSjH6tbNetiRn291fIeG+jYmpVozbZJSjpWdDTfd\nBF9/XX/Ze++FxETfx6RUa6YJQznaiy9a+2DX59AhXXhQKV/TJinlWJGRcOON1iZD9XnxRTh61Pcx\nKdWaacJQjhUYCIsW2SsbGak1DKV8TZuklKPt2GFvF72rr4aXXvJ9PEq1ZlrDUI52xx1QVATffFN7\nGRF45x1rsUKllO9oDUM5WteucPx43WXKymD2bPhFrVt9KaW8QZc3V45WUQEB+rFGKZ+yu7y5/ioq\nR7OTLA4ehA8/tLeEiFKq8TRhKEf74APo2xcOHKi9zMaN8MtfWh3kSinf0YShHM0Y2LMHMjNrL1Na\nCtHRDdtsSSnVcJowlKMlJcEbb9Q9AuqCCyArCxIS/BaWUq2SDqtVjtatmzXHQinV9LSGoRxNBJ59\nFr74ovYyt90GI0b4LSSlWi1NGMrRjIGHH4Zly2ovs3+/NRdDKeVb2iSlHO+cc6BXr9rfnzNHFx5U\nyh80YSjHe/fdut8/80z/xKFUa6dNUsrxSkogLa3m9yoqYNYs+PJL/8akVGukCUM53kMPwWmnWR3g\n1eXlwfz59jZZUkp5RhOGcrzu3aG42NpVr7qyMrj8chgyxP9xKdXa6OKDyvHy860lzqOjdSFCpXzB\n7uKD2umtHK9Tp9rfy8qCwkJrJrgmE6V8S3/FlOMVFFjLfyxZcup7Cxda/Rulpf6PS6nWRhOGcrwO\nHeCTT2DDhlPfS0+3mqratfN/XEq1NpowlOMFBlqT82raUe/vf9dlzZXyF+3DUM3CfffVfNwYiIjw\nbyxKtVZaw1DNwo4d8Nprpx4fNw6ef97/8SjVGmnCUM3Cv/8N11138ppRubnw9ddw7FjTxaVUa6JN\nUqpZSEyEgQOtJBEaah1r08YaJTV6dNPGplRroRP3lFKqlbM7cU+bpFSzIXJy89PKlbB4cdPFo1Rr\n41HCMMZ0NsYsN8akuL7WOF7FGDPDVSbFGDOjyvEkY8wPxpjdxpi/GmOM6/gzxpgdxpgtxpj3jTF1\nzPVVrcWwYTBjxonXL70EjzzSdPEo1dp4WsN4AFgpIgnAStfrkxhjOgOPACOA4cAjVRLL88DNQILr\nMc11fDkwWESGAruABz2MU7UA3bvDtm0nv540qeniUaq18bTT+0Jgouv5YuAL4P5qZc4BlotILoAx\nZjkwzRjzBRAuImtcx18FfgV8LCKfVTl/LXCph3GqFuCpp06e0f3UU00Xi1KtkacJo6uIZACISIYx\nJrqGMnHAgSqvU13H4lzPqx+v7jfA27UFYIy5GauWQs+ePRsUvGpe+vU78Tw311raPLqmnzillE/U\nmzCMMSuAmBreesjmPUwNx6SO41Xv/RBQBrxR28VFZCGwEKxRUjZjUs2QCMycCUOHWosN3neftVqt\nJg2l/KPehCEiNazgYzHGZBljurlqF92A7BqKpXKi2QqgO1bTVarredXj6VWuPQM4H5gsLWnsr2o0\nY2DnTmuyXp8+cNZZmiyU8idPm6SWATOAJ11fl9ZQ5lNgXpWO7qnAgyKSa4w5YowZCawDrgP+F8AY\nMw2rL2SCiOg8XlXpT3+CnBy49FLIrunjiVLKZzxNGE8C7xhjZgL7gcsAjDHJwK0icqMrMTwOuBen\nfszdAQ7cBrwCtAc+dj0AFgDtgOWukbZrReRWD2NVLcCUKSeex9XU46WU8hmd6a2UUq2czvRWSinl\nVZowlFJK2aIJQymllC2aMJRSStmiCUMppZQtmjCUUkrZoglDKaWULZowlFJK2dKiJu4ZYw4CPzd1\nHC5dgJymDqIeGqPnnB4fOD9Gp8cHLT/GXiISVV+hFpUwnMQYs9HOzMmmpDF6zunxgfNjdHp8oDG6\naZOUUkopWzRhKKWUskUThu8sbOoAbNAYPef0+MD5MTo9PtAYAe3DUEopZZPWMJRSStmiCcOLjDGd\njTHLjTEprq8RdZQNN8akGWMWOCk+Y8wZxpg1xpitxpgtxpgr/BDXNGPMTmPMbmPMAzW8384Y87br\n/XXGmN6+jqkRMd5jjNnm+p6tNMb0clqMVcpdaowR10ZnjorPGHO56/u41Rjzpj/jsxOjMaanMeZz\nY8wm1//1dD/H95IxJtsY82Mt7xtjzF9d8W8xxpzl1QBERB9eegBPAw+4nj8APFVH2b8AbwILnBQf\nkAgkuJ7HAhlAJx/GFAjsAfoAbYH/AgOrlbkd+D/X8yuBt/38/2onxklAiOv5bU6M0VUuDFgNrAWS\nnRQfkABsAiJcr6Od9j3E6ie4zfV8ILDPzzGOB84Cfqzl/elYO5caYCSwzpv31xqGd10ILHY9Xwz8\nqqZCxpgkoCvwmZ/icqs3PhHZJSIprufpQDZQ74QeDwwHdovITyJSArzlirOqqnG/C0w2rr17/aTe\nGEXkczmx//xaoLsf47MVo8vjWB8civwZHPbiuwn4m4jkAYiIv3dttxOjAOGu5x2BdD/Gh4isBnLr\nKHIh8KpY1gKdjDHdvHV/TRje1VVEMgBcX6OrFzDGBAB/Bv6fn2MDG/FVZYwZjvVJa48PY4oDDlR5\nneo6VmMZESkDDgORPoypOjsxVjWTE/vT+0u9MRpjzgR6iMiH/gzMxc73MBFINMZ8Y4xZa4yZ5rfo\nLHZi/BNwjTEmFfgI+J1/QrOtoT+rDRLkrQu1FsaYFUBMDW89ZPMStwMficgBX3xI9kJ87ut0A14D\nZohIhTdiq+1WNRyrPnTPThlfsn1/Y8w1QDIwwacR1XDrGo5Vxuj6oPIscL2/AqrGzvcwCKtZaiJW\nDe0rY8xgEcn3cWxudmK8CnhFRP5sjBkFvOaK0Ze/Iw3h098VTRgNJCK/qO09Y0yWMaabiGS4/uDW\nVKUeBYwzxtwOhAJtjTFHRaTWTko/x4cxJhz4DzDbVa31pVSgR5XX3Tm1mu8uk2qMCcJqCqirWu5t\ndmLEGPMLrMQ8QUSK/RSbW30xhgGDgS9cH1RigGXGmAtEZKMD4nOXWSsipcBeY8xOrASywQ/xue9f\nX4wzgWkAIrLGGBOMtYaTv5vPamPrZ7WxtEnKu5YBM1zPZwBLqxcQkV+LSE8R6Q3ci9Xe6JVk4Y34\njDFtgfddcf3LDzFtABKMMfGue1/pirOqqnFfCqwSVw+fn9Qbo6u55wXggiZoe683RhE5LCJdRKS3\n62dvrStWfySLeuNz+TfW4AGMMV2wmqh+8lN8dmPcD0x2xTgACAYO+jHG+iwDrnONlhoJHHY3Q3uF\nP3v4W/oDq119JZDi+trZdTwZeLGG8tfj31FS9cYHXAOUApurPM7wcVzTgV1YfSUPuY49hvUHDaxf\nyn8Bu4H1QJ8m+L+tL8YVQFaV79kyp8VYrewX+HGUlM3voQHmA9uAH4ArnfY9xBoZ9Q3WCKrNwFQ/\nx/dPrJGLpVi1iZnArcCtVb6Hf3PF/4O3/491prdSSilbtElKKaWULZowlFJK2aIJQymllC2aMJRS\nStmiCUMppZQtmjCUUkrZoglDKaWULZowlFJK2fL/ARj4hxDSbuaIAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11991f940>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(tlist,np.real(omega[-2,:]),'b:')\n",
"plt.plot(tlist,np.imag(omega[-2,:]),'r:')\n",
"plt.plot(tlist,np.abs(omega[-2,:]),'k')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Animate the field $\\Omega$"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWZ7/HvrwaKeR5lENRCRaMoFTCDxsSJGDuYjomY\niXRIzGQnedLJjSa3W6/p3Juk29hJa0wTtYO2iRozSBITgqiZRKVQRECRQkQKSkChGGSo6b1/nI0e\nilPUoc6uCX6f5zmevddea+13H6t4a6+99zqKCMzMzNJU1NkBmJnZkcfJxczMUufkYmZmqXNyMTOz\n1Dm5mJlZ6pxczMwsdakkF0nTJa2SVCXp6hzbyyTdk2x/XNL4pHyIpIcl7ZJ0U7M2UyQ9k7T5gSQl\n5YMlLZC0OnkflMYxmJlZegpOLpKKgZuBdwOTgCskTWpWbTawLSJOAG4EvpOU7wX+GfhKjq5vAa4E\nypPX9KT8amBhRJQDC5N1MzPrQtI4c5kKVEXECxFRB9wNzGhWZwYwN1m+DzhPkiLitYj4K5kk8zpJ\no4D+EbEoMk953gFcmqOvuVnlZmbWRZSk0MdoYH3WejUwraU6EdEgaTswBHjlEH1WN+tzdLI8IiJq\nkr5qJA3P1YGkK8mc+dCnT58pJ510Ut4HZGZmsGTJklciYlhb2qaRXJSjrPmcMvnUKaT+wZUj5gBz\nACoqKqKysvJwmpuZHfUkrWtr2zSGxaqBsVnrY4CNLdWRVAIMALa20ueYFvrclAyb7R8+29zmyM3M\nrF2kkVwWA+WSJkjqAcwE5jWrMw+YlSxfBjwUh5gxMxn22inprOQusY8B9+foa1ZWuZmZdREFD4sl\n11CuAuYDxcDtEbFC0vVAZUTMA24D7pRUReaMZeb+9pJeBPoDPSRdClwYESuBzwI/AXoBv09eAN8G\n7pU0G3gJ+EChx2BmZunS0TDlvq+5mJkdPklLIqKiLW39hL6ZmaXOycXMzFLn5GJmZqlzcjEzs9Q5\nuZiZWeqcXMzMLHVOLmZmljonFzMzS52Ti5mZpc7JxczMUufkYmZmqXNyMTOz1Dm5mJlZ6pxczMws\ndU4uZmaWOicXMzNLnZOLmZmlzsnFzMxSl0pykTRd0ipJVZKuzrG9TNI9yfbHJY3P2nZNUr5K0kVJ\n2YmSlma9dkj6UrLtOkkbsrZdnMYxmJlZekoK7UBSMXAzcAFQDSyWNC8iVmZVmw1si4gTJM0EvgNc\nLmkSMBM4BTgGeFDSxIhYBUzO6n8D8Kus/m6MiH8vNHYzM2sfaZy5TAWqIuKFiKgD7gZmNKszA5ib\nLN8HnCdJSfndEbEvItYCVUl/2c4D1kTEuhRiNTOzDpBGchkNrM9ar07KctaJiAZgOzAkz7YzgZ81\nK7tK0jJJt0saVFj4ZmaWtjSSi3KURZ51DtlWUg/gvcDPs7bfAhxPZtisBrghZ1DSlZIqJVVu2bKl\n5ejNzCx1aSSXamBs1voYYGNLdSSVAAOArXm0fTfwZERs2l8QEZsiojEimoAfc/Aw2v56cyKiIiIq\nhg0b1qYDMzOztkkjuSwGyiVNSM40ZgLzmtWZB8xKli8DHoqISMpnJneTTQDKgSey2l1BsyExSaOy\nVt8HLE/hGMzMLEUF3y0WEQ2SrgLmA8XA7RGxQtL1QGVEzANuA+6UVEXmjGVm0naFpHuBlUAD8PmI\naASQ1JvMHWifbrbL70qaTGb47MUc283MrJMpcwJxZKuoqIjKysrODsPMrFuRtCQiKtrS1k/om5lZ\n6pxczMwsdU4uZmaWOicXMzNLnZOLmZmlzsnFzMxS5+RiZmapc3IxM7PUObmYmVnqnFzMzCx1Ti5m\nZpY6JxczM0udk4uZmaXOycXMzFLn5GJmZqlzcjEzs9Q5uZiZWeqcXMzMLHVOLmZmlrpUkouk6ZJW\nSaqSdHWO7WWS7km2Py5pfNa2a5LyVZIuyip/UdIzkpZKqswqHyxpgaTVyfugNI7BzMzSU3BykVQM\n3Ay8G5gEXCFpUrNqs4FtEXECcCPwnaTtJGAmcAowHfhh0t9+74yIyRFRkVV2NbAwIsqBhcm6mZl1\nIWmcuUwFqiLihYioA+4GZjSrMwOYmyzfB5wnSUn53RGxLyLWAlVJf4eS3ddc4NIUjsHMzFKURnIZ\nDazPWq9OynLWiYgGYDswpJW2AfxR0hJJV2bVGRERNUlfNcDwXEFJulJSpaTKLVu2tOnAzMysbdJI\nLspRFnnWOVTbt0XEmWSG2z4v6ZzDCSoi5kRERURUDBs27HCamplZgdJILtXA2Kz1McDGlupIKgEG\nAFsP1TYi9r9vBn7FG8NlmySNSvoaBWxO4RjMzCxFaSSXxUC5pAmSepC5QD+vWZ15wKxk+TLgoYiI\npHxmcjfZBKAceEJSH0n9ACT1AS4ElufoaxZwfwrHYGZmKSoptIOIaJB0FTAfKAZuj4gVkq4HKiNi\nHnAbcKekKjJnLDOTtisk3QusBBqAz0dEo6QRwK8y1/wpAX4aEX9Idvlt4F5Js4GXgA8UegxmZpYu\nZU4gjmwVFRVRWVnZekUzM3udpCXNHgXJm5/QNzOz1Dm5mJlZ6pxczMwsdU4uZmaWOicXMzNLnZOL\nmZmlzsnFzMxS5+RiZmapc3IxM7PUObmYmVnqnFzMzCx1Ti5mZpY6JxczM0udk4uZmaXOycXMzFLn\n5GJmZqlzcjEzs9Q5uZiZWepSSS6SpktaJalK0tU5tpdJuifZ/rik8VnbrknKV0m6KCkbK+lhSc9K\nWiHpi1n1r5O0QdLS5HVxGsdgZmbpKSm0A0nFwM3ABUA1sFjSvIhYmVVtNrAtIk6QNBP4DnC5pEnA\nTOAU4BjgQUkTgQbgnyLiSUn9gCWSFmT1eWNE/HuhsZuZWftI48xlKlAVES9ERB1wNzCjWZ0ZwNxk\n+T7gPElKyu+OiH0RsRaoAqZGRE1EPAkQETuBZ4HRKcRqZmYdII3kMhpYn7VezcGJ4PU6EdEAbAeG\n5NM2GUI7A3g8q/gqScsk3S5pUK6gJF0pqVJS5ZYtWw73mMzMrABpJBflKIs86xyyraS+wC+AL0XE\njqT4FuB4YDJQA9yQK6iImBMRFRFRMWzYsEMfgZmZpSqN5FINjM1aHwNsbKmOpBJgALD1UG0llZJJ\nLHdFxC/3V4iITRHRGBFNwI/JDMuZpWL7nnqerdlB7e66zg7FrFsr+II+sBgolzQB2EDmAv2HmtWZ\nB8wCFgGXAQ9FREiaB/xU0vfIXNAvB55IrsfcBjwbEd/L7kjSqIioSVbfByxP4RjsKFe7u47rf7OS\n+5/eSGNTUCQ47+QRfP3ik5kwtE9nh2fW7RScXCKiQdJVwHygGLg9IlZIuh6ojIh5ZBLFnZKqyJyx\nzEzarpB0L7CSzB1in4+IRklvBz4KPCNpabKrr0fEA8B3JU0mM3z2IvDpQo/Bjm6bd+zl8jmPUb1t\nNx9/63jOGDeQlRt3cMeidVzyg79w04fP5J0nDu/sMM26FUU0vzxy5KmoqIjKysrODsO6oPrGJi77\n0SJWb9rJ3E9M5c3jB7++bWPtHj51RyWrN+/i9llv5u3lQzsxUrOOJ2lJRFS0pa2f0Lej2s0PV/H0\n+lr+/QOnH5BYAI4Z2Iu7PjmN44b24VN3VLJ8w/ZOitKs+3FysaPW+q27ueWRNVxy2iguftOonHUG\n9u7BnbOnMbB3KZ+760m276nv4CjNuicnFztq/edDqwH4xntOPmS9Yf3KuOlDZ7Cxdg//676nORqG\nks0K5eRiR6UNtXv45ZMbuGLqOEYN6NVq/SnHDuarF53I/BWbmPd08zvtzaw5Jxc7Kv3s8ZdoiuBT\n5xyXd5tPnn0cZ4wbyLXzVrBl5752jM6s+3NysaNOXUMTdy9ez7tOGs7oga2ftexXXCS++/7T2L2v\nkevmrWjHCM26PycXO+osWLmJV3bt48PTjj3stuUj+vGF807gd8/U8IflL7dDdGZHBicXO+r89Il1\njB7Yi3Mmtm3OuU+/43hOGtmP6+atYNe+hpSjMzsyOLnYUWXzjr08uuZVLpsyhuKiXPOmtq60uIj/\n+/dvYtPOvdzwx1UpR2h2ZHBysaPK75e/TARcclru51rydea4QXx42jjmPvoiz1T74Uqz5pxc7Kjy\nu2U1nDiiH+Uj+hXc11cvOokhfcu45lfLaGhsSiE6syOHk4sdNV7evpfF67byngLPWvYb0KuUf7lk\nEss3ZCa5NLM3OLnYUeP3y2uIoMWpXtriktNG8Y6Jw7jhj6uo2b4ntX7NujsnFztqPPjsJk4Y3pcT\nhvdNrU9JfHPGqTQ0hZ99Mcvi5GIdpnZ3HY+s2szvltWwdH1th16n2LWvgSfWbuVdJ6X/vSzjhvTm\ni+eXM3/FJhas3JR6/2bdURrfRGnWosamYP6Kl/nvv61lybptNGXN+Th6YC++9u6TeO/px7R7HH9d\n/Qr1jdFuX/r1qbOP4/6nNnLt/ct56/FD6FPmXy07uvk3wNrF3vpGfvnkBn78lxdY+8prjB/Sm6ve\nVc5bjx/CwN6lrHp5J7f9dS1f+NlTLFtfyzfeczKZb7duH4+s2ky/shIqxg9ql/4zz76cyvtvWcR/\nPPg833jPpHbZT3fT2BTs2FPPjr317K5rpLEpaGgKGpuaiMh8bj1KkldxEb16FNO/Zyk9Sjyo0t05\nuViqtr1Wx12Pr2PuonVs2bmPN40ewA8/fCYXnTLygIcWTxrZn0tOO4brf7OCW/+6lgG9SvnH88rb\nJaaI4OFVmzl74lBKi9vvH60pxw7miqnjuP1vL3Lxm0Zxxrj2SWRdSV1DE1Wbd7Fq0w5eenUPG2p3\nU71tDxtq97B1Vx072ziDQe8exQzoVcqAXqX071XK4N49GNavjOH9yhjevyxZ7snwfmUM6VvW5gdi\nrf2kklwkTQe+DxQDt0bEt5ttLwPuAKYArwKXR8SLybZrgNlAI/CFiJh/qD4lTQDuBgYDTwIfjYi6\nNI7D2qa+sYlH17zKb5/eyG+WbWRvfRNnlw/lPy6fzFuPH9LiGUlxkbjuvaewY28D33vweSrGD+Yt\nxw9JPb6VNTvYtGMf57bTkFi2q999En9+fgtfumcpD3zh7CNqeCwieGnrbh574VWeWLuNlTU7qNq8\nk/rGN8Y6h/crY8ygXpw2ZiBD+/Z4I0H0LKV3j2JKiosoKRLFRULKJKe6hibqGpvYV9/EnvpGtu+p\nP+i1ZssuFr3was4vaysSDOlbxoj+ZYzo15Ph/XtmlpP34f16MqJ/T4b06UGRk1CHKfgnX1IxcDNw\nAVANLJY0LyJWZlWbDWyLiBMkzQS+A1wuaRIwEzgFOAZ4UNLEpE1LfX4HuDEi7pb0o6TvWwo9DstP\nXUMTG2r38NLW3azYuJ0n19VSuW4rtbvr6VtWwqWTR/OJt09gYp4PKUriW+87laXra/naL5ax4Mvn\nUFZSnGrMDz+3GYBzT2zbXGKHY0CvUm68fDIz5yzi//xmBd+97PR232d72rG3noef28yfVm1h0Quv\nUrN9LwBD+vTglNEDeMfEYZw8qh+TRvVn7ODe9CxN9/9dc3vrG3ll1z4279zH5h372LJrH1t27GXz\nzn1s2rGXmu17ebq6lld2Hfz3ZkmRMmc8/Xsyol9W8unf8/XlEf16MrB3absO0R4tVOi36kl6C3Bd\nRFyUrF8DEBH/L6vO/KTOIkklwMvAMODq7Lr76yXNDuoT+DawBRgZEQ3N992SU8f0i19edcYBZYd/\n1G+0OJyP7LD2EzkX82qQs34eneSzn6YIGhqDxggamw5s0bOkmH49SxjUpwcDe5VS1MZfyto9dTz3\n8k6OHdw7ry/vOhzLN24nAt40ekCq/R7K+m272VC7h/LhfRnSp6zD9puGusYmtr1Wx9bddezYU0+Q\n+Ye5f3IGMqBXCT1LixFd9x/gJoL65IyoviGoa9y/nHmva2iivrGJhqaDfwMkKC3KnGGVFIuSoqJm\n76KkuIjiIlGszFlYUREUSxQViaIu/LkABEFE5nc/ImiKzHtE5nOLyPwb1xTBgM8tWBIRFW3ZTxrn\n7KOB9Vnr1cC0luokSWE7MCQpf6xZ29HJcq4+hwC1EdGQo/4BJF0JXAlw8qje7KlvPLhOS0eUx8+G\ncizlUfmwfuzyqttCJR34n0M2V/OCZkolevdIftmKRFlpMWUlmYuvpUXpXMMY2CszhFJdu4dh/coo\nSanf+qYmdu1rOKzvbUnD6EG9kuGc1+hVWkzvHl17eKwpgm2769iycx+1ydBTWUkRIwf0ZHCfHvQt\nK+nSyaS5IkRZSXHmLPgQub0p4qCkU9fYRENj5saDhsbMUF3D3qChqSmvP8ZEZsi3SJmhvyJlPjkl\n6weVHcZx7U8Imfdmy1lJgyRpJItZSSPa8Id126TxE5/rs2kef0t1WirP9S/LoeofXBgxB5gDUFFR\nEaf/899yVbMuRC/v4IPf/wufGX08X5t+Uip9PrB0A19cvZRfXfZWxnbgBfYiYOj2vbz3pr/So7aI\n+z//Nob07XpnMGu27OLORev49dIN1O6uZ3i/Mt73ltFcOnk0J43sd8QPDxUBPZNXayKC3XWNbNtd\nR+3uzB1we+oaea2ukd37Gg5431OXea9PElVdY9MByw2NTdQ3BvWNTXmPhARB8QFnVJmzptLkLGr/\nevZ1rcx7ET2KM/VKk7vyepQUUbq/rDhTVlrSbL24CL7Z9qHkNJJLNTA2a30M0PxLxvfXqU6GxQYA\nW1tpm6v8FWCgpJLk7CXXvqybOmlkf6afMpK7HlvHVe88IZWL4Q89t5khfXpw+piBKUR4eEYO6Mmc\nj1Xwwf9axGfvepI7Z09N/XpSWzQ1BY88v5mfPLqOPz+/hdJicdEpI7lsyhjefsJQStrxjrruTBJ9\nykroU1bCmCP/RsCCpfFTtBgolzRBUg8yF+jnNaszD5iVLF8GPBSZiz3zgJmSypK7wMqBJ1rqM2nz\ncNIHSZ/3p3AM1kV88uzj2LG3gZ9Xrm+9cisam4I/Pb+Fd0wc1ml3CU0eO5B/u+w0nli7lat++hT1\nnTh78o699dz217W864ZH+MRPKnmuZgdfvmAij159Hjd96EzOPXG4E4ulpuA/DZNrKFcB88ncNnx7\nRKyQdD1QGRHzgNuAOyVVkTljmZm0XSHpXmAl0AB8PiIaAXL1mezya8Ddkv4VeCrp244QU44dxJnj\nBnLb39bykbOOLegfu6Xrt1G7u553tsOUL4djxuTR1O6u59p5K/ji3U9x4+WTO/QMpmrzTuY+uo5f\nPFnN7rpGphw7iC9feCLTTxnphxWt3aRylTEiHgAeaFb2L1nLe4EPtND2W8C38ukzKX8BmFpgyNaF\nfers4/jsXU/y0HObufCUkW3u5+HntlBcJM4pb/9bkFsz663jqW9s4l9/9yxbX3uC//poBQN6lbbb\n/hqbgoee28zcR1/kr1Wv0KO4iL87/Rg+/tbxvGlMx901Z0evrn0Lix2VLpg0gpH9e/I/j79UUHJZ\n+NxmpowbxIDe7feP+OH45NnHMbRvGV+972n+7j//yk0fOoPTUr4WVLu7jnsWr+fOx9ZRvW0PI/v3\n5J8umMgV08YxtAveUGBHLicX63JKiou4Yuo4bnzweV585TXGD+1z2H1sqN3DszU7+PrF6dx1lpZL\nzxjN2MG9+MLPlvL+Wx5l9tuP4x/fVdjNC41Nwd+qXuEXT1bzh+Uvs6+hiWkTBvP1i0/mgkkj2nXK\nG7OWOLlYlzRz6lh+8NBqfvrES3z94pMPu/3CZzNT359/8oi0QyvYlGMH87svvJ1v/vZZfvSnNdy3\npJp/eNt4Zr55bN63K9c1NPHE2q0sfG4TDzxTw6Yd+xjQq5QPVIzhw9OO5eRR/dv5KMwOreAn9LuD\nioqKqKys7Oww7DB97q4lPLrmVR675rzDnlbko7c9zoZte3joK+e2T3ApWbJuG99fuJo/P5+5PjRt\nwmCmThjMyaP6M2pAT3r3KKaxCbYk05us3ryLp9fXsqy6ltfqGulRUsQ55cN4/5mjedfJw7vErc52\n5JDUqU/om7WLj0w7lgeeeZnfLavh/VPG5N1u5956HnvhVf7hbRPaMbp0TDl2EHd8YiqrXt7JvKc3\nsPDZzXx/4eoWH6wrLRaTRvXn/VPGcE75MN56wpAu//S/HZ38U2ld1luOH8Jxw/pw52PrDiu5/On5\nLdQ3RpccEmvJiSP78dWRJ/HVi05i174G1mzexead+9hb34gEQ/tmJlo8ZmBPn51Yt+DkYl2WJD4y\n7Viu/+1Klm/Yzql5Tjz5m6c3MrRvGWeO6/in8tPQt6yE08d2z9jN9vNtJNalvX/KGHqWFnHX4+vy\nqr99dz0PP7eFvzt9lJ82N+tE/u2zLm1Ar1JmnD6aXz+1kR17D/6iqOZ+v7yGusYmLp2cc7JsM+sg\nTi7W5X3krGPZU9/IL5dUt1r310s3MGFoH07zU+hmncrJxbq8N40ZwOljB/I/j7/EoW6dX791N4+v\n3cqMyccc8VPFm3V1Ti7WLXz0rGOp2ryLR57f0mKdOxa9SJHEByvGtljHzDqGk4t1C+89/RjGDOrF\njQuez3n2Uru7jrufWM/0U0dyTAd/66SZHczJxbqFHiVFfOn8iSyr3s4vntxw0PZb/rSGXXUNXPXO\nEzohOjNrzsnFuo2/P2M0U44dxDd/u5L1W3e/Xr58w3Zu+8ta3nfGaM+pZdZFOLlYt1FUJG74wOk0\nRfCx25/g6fW1VL64ldlzFzO4Tw/+5ZJJnR2imSWcXKxbGT+0D//98TdTu7uOGTf/jct+tIgIuHP2\nNAb27tHZ4ZlZwtO/WLdTMX4wj3zlnfxhRQ1FEu9+0yj6FvB9KGaWvoLOXCQNlrRA0urkfVAL9WYl\ndVZLmpVVPkXSM5KqJP1AycMJkv5N0nOSlkn6laSBSfl4SXskLU1ePyokfuu+BvQu5fI3j+MDFWOd\nWMy6oEKHxa4GFkZEObAwWT+ApMHAtcA0YCpwbVYSugW4EihPXtOT8gXAqRFxGvA8cE1Wl2siYnLy\n+kyB8ZuZWTsoNLnMAOYmy3OBS3PUuQhYEBFbI2IbmcQxXdIooH9ELIrMgwt37G8fEX+MiIak/WNA\n/vOtm5lZpys0uYyIiBqA5H14jjqjgfVZ69VJ2ehkuXl5c58Afp+1PkHSU5L+JOnslgKTdKWkSkmV\nW7a0/FS3mZmlr9XBakkPAiNzbPpGnvvINclTHKI8e9/fABqAu5KiGmBcRLwqaQrwa0mnRMSOgzqK\nmAPMgczXHOcZq5mZpaDV5BIR57e0TdImSaMioiYZ5tqco1o1cG7W+hjgkaR8TLPyjVl9zwIuAc5L\nhs2IiH3AvmR5iaQ1wESgsrXjMDOzjlPosNg8YP/dX7OA+3PUmQ9cKGlQciH/QmB+Moy2U9JZyV1i\nH9vfXtJ04GvAeyPi9UexJQ2TVJwsH0fmJoAXCjwGMzNLWaHJ5dvABZJWAxck60iqkHQrQERsBb4J\nLE5e1ydlAJ8FbgWqgDW8cW3lJqAfsKDZLcfnAMskPQ3cB3wmqy8zM+sidKjvxzhSVFRURGWlR87M\nzA6HpCURUdGWtp7+xczMUufkYmZmqXNyMTOz1Dm5mJlZ6pxczMwsdU4uZmaWOicXMzNLnZOLmZml\nzsnFzMxS5+RiZmapc3IxM7PUObmYmVnqnFzMzCx1Ti5mZpY6JxczM0udk4uZmaXOycXMzFLn5GJm\nZqkrKLlIGixpgaTVyfugFurNSuqsljQrq3yKpGckVUn6gSQl5ddJ2iBpafK6OKvNNUn9VZIuKiR+\nMzNrH4WeuVwNLIyIcmBhsn4ASYOBa4FpwFTg2qwkdAtwJVCevKZnNb0xIiYnrweSviYBM4FTkro/\nlFRc4DGYmVnKCk0uM4C5yfJc4NIcdS4CFkTE1ojYBiwApksaBfSPiEUREcAdLbRvvr+7I2JfRKwF\nqsgkLDMz60IKTS4jIqIGIHkfnqPOaGB91np1UjY6WW5evt9VkpZJuj3rTKelvg4i6UpJlZIqt2zZ\ncjjHZGZmBWo1uUh6UNLyHK8Zee5DOcriEOWQGS47HpgM1AA3tNLXwYURcyKiIiIqhg0blmeoZmaW\nhpLWKkTE+S1tk7RJ0qiIqEmGuTbnqFYNnJu1PgZ4JCkf06x8Y7LPTVn7+DHw26y+xuZqY2ZmXUeh\nw2LzgP13f80C7s9RZz5woaRByfDWhcD8ZBhtp6SzkrvEPra/fZKo9nsfsDxrfzMllUmaQOYmgCcK\nPAYzM0tZq2curfg2cK+k2cBLwAcAJFUAn4mIT0bEVknfBBYnba6PiK3J8meBnwC9gN8nL4DvSppM\nZsjrReDTABGxQtK9wEqgAfh8RDQWeAxmZpYyZW7UOrJVVFREZWVlZ4dhZtatSFoSERVtaesn9M3M\nLHVOLmZmljonFzMzS52Ti5mZpc7JxczMUufkYmZmqXNyMTOz1Dm5mJlZ6pxczMwsdU4uZmaWOicX\nMzNLnZOLmZmlzsnFzMxS5+RiZmapc3IxM7PUObmYmVnqnFzMzCx1Ti5mZpa6gpKLpMGSFkhanbwP\naqHerKTOakmzssqnSHpGUpWkH0hSUn6PpKXJ60VJS5Py8ZL2ZG37USHxm5lZ+yj0zOVqYGFElAML\nk/UDSBoMXAtMA6YC12YloVuAK4Hy5DUdICIuj4jJETEZ+AXwy6wu1+zfFhGfKTB+MzNrB4UmlxnA\n3GR5LnBpjjoXAQsiYmtEbAMWANMljQL6R8SiiAjgjubtkzOZDwI/KzBOMzPrQIUmlxERUQOQvA/P\nUWc0sD5rvTopG50sNy/PdjawKSJWZ5VNkPSUpD9JOrvA+M3MrB2UtFZB0oPAyBybvpHnPpSjLA5R\nnu0KDjxrqQHGRcSrkqYAv5Z0SkTsOGin0pVkhtwYN25cnqGamVkaWk0uEXF+S9skbZI0KiJqkmGu\nzTmqVQPnZq2PAR5Jysc0K9+Y1XcJ8PfAlKxY9gH7kuUlktYAE4HKHHHPAeYAVFRUNE9aZmbWjgod\nFpsH7L/7axZwf44684ELJQ1KLuRfCMxPhtF2SjorubbysWbtzweei4jXh84kDZNUnCwfR+YmgBcK\nPAYzM0sRYqPyAAAHJUlEQVRZocnl28AFklYDFyTrSKqQdCtARGwFvgksTl7XJ2UAnwVuBaqANcDv\ns/qeycEX8s8Blkl6GrgP+ExWX2Zm1kUoc6PWka2ioiIqKw8aOTMzs0OQtCQiKtrS1k/om5lZ6pxc\nzMwsdU4uZmaWOicXMzNLnZOLmZmlzsnFzMxS5+RiZmapc3IxM7PUObmYmVnqnFzMzCx1Ti5mZpY6\nJxczM0udk4uZmaXOycXMzFLn5GJmZqlzcjEzs9Q5uZiZWeqcXMzMLHVOLmZmlrqCkoukwZIWSFqd\nvA9qod6spM5qSbOyyr8lab2kXc3ql0m6R1KVpMcljc/adk1SvkrSRYXEb2Zm7aPQM5ergYURUQ4s\nTNYPIGkwcC0wDZgKXJuVhH6TlDU3G9gWEScANwLfSfqaBMwETgGmAz+UVFzgMZiZWcoKTS4zgLnJ\n8lzg0hx1LgIWRMTWiNgGLCCTGIiIxyKippV+7wPOk6Sk/O6I2BcRa4EqcicnMzPrRCUFth+xPzlE\nRI2k4TnqjAbWZ61XJ2WH8nqbiGiQtB0YkpQ/lk9fkq4ErkxWd0la1co+22oo8Eo79d0eulu84Jg7\nQneLF7pfzN0tXoAT29qw1eQi6UFgZI5N38hzH8pRFm1sk3dfETEHmNPKfgomqTIiKtp7P2npbvGC\nY+4I3S1e6H4xd7d4IRNzW9u2mlwi4vxD7HiTpFHJWcsoYHOOatXAuVnrY4BHWtltNTAWqJZUAgwA\ntmaVZ/e1sbVjMDOzjlXoNZd5wP67v2YB9+eoMx+4UNKg5EL+hUlZvv1eBjwUEZGUz0zuJpsAlANP\nFHgMZmaWskKTy7eBCyStBi5I1pFUIelWgIjYCnwTWJy8rk/KkPRdSdVAb0nVkq5L+r0NGCKpCvgy\nyV1oEbECuBdYCfwB+HxENBZ4DIVq96G3lHW3eMExd4TuFi90v5i7W7xQQMzKnBCYmZmlx0/om5lZ\n6pxczMwsdU4uhynfKW+Suv0lbZB0U0fG2CyGVuOVNFnSIkkrJC2TdHknxTo9mdanSlKu2R5anBao\nM+QR75clrUw+04WSju2MOJvFdMiYs+pdJikkdfqts/nELOmDyWe9QtJPOzrGZrG09nMxTtLDkp5K\nfjYu7ow4s+K5XdJmSctb2C5JP0iOZ5mkM/PqOCL8OowX8F3g6mT5auA7h6j7feCnwE1dOV5gIlCe\nLB8D1AADOzjOYmANcBzQA3gamNSszueAHyXLM4F7OvFzzSfedwK9k+XPdma8+cac1OsH/JnMA8sV\nXT1mMneNPgUMStaHd/F45wCfTZYnAS928md8DnAmsLyF7RcDvyfznOFZwOP59Oszl8OXz5Q3SJoC\njAD+2EFxtaTVeCPi+YhYnSxvJPO80rAOizBjKlAVES9ERB1wN5nYs7U0LVBnaDXeiHg4InYnq4+R\neS6rM+XzGUPm7s7vAns7MrgW5BPzp4CbIzO9FBGR63m7jpJPvAH0T5YH0MnP6kXEn8k8R9iSGcAd\nkfEYMDB5rvGQnFwO3wFT3gAHTXkjqQi4AfhqB8eWS6vxZpM0lcxfXGs6ILZs+UwTdMC0QMD+aYE6\nw+FOazSbzF9/nanVmCWdAYyNiN92ZGCHkM/nPBGYKOlvkh6TNL3DojtYPvFeB3wkeQzjAeAfOya0\nNmvLFF4Fzy12REphypvPAQ9ExPqO+MM6hXj39zMKuBOYFRFNacR2OLvPUdb8Pvm2TCXUXvKORdJH\ngArgHe0aUesOGXPyR9GNwMc7KqA85PM5l5AZGjuXzNnhXySdGhG17RxbLvnEewXwk4i4QdJbgDuT\neDv6dy5fbfq9c3LJIQqf8uYtwNmSPgf0BXpI2hURLV5A7eR4kdQf+B3wv5NT346Wz9Q+LU0L1Bny\nmopI0vlkkvw7ImJfB8XWktZi7gecCjyS/FE0Epgn6b0R0eY5pgqU78/FYxFRD6xVZpLacjIPbXe0\nfOKdzRszwy+S1JPMpJadOZx3KG2adsvDYoev1SlvIuLDETEuIsYDXyEzXtkuiSUPrcYrqQfwKzJx\n/rwDY8u2GCiXNCGJZyaZ2LO1NC1QZ2g13mSI6b+A93bydYD9DhlzRGyPiKERMT752X2MTOydlVgg\nv5+LX5O5eQJJQ8kMk73QoVG+IZ94XwLOA5B0MtAT2NKhUR6eecDHkrvGzgK2R+6vSjlQZ96l0B1f\nZMb4FwKrk/fBSXkFcGuO+h+nc+8WazVe4CNAPbA06zW5E2K9GHiezPWebyRl15P5Bw4yv4Q/J/M9\nPk8Ax3Xyz0Jr8T4IbMr6TOd1Zrz5xNys7iN08t1ieX7OAr5HZlqoZ4CZXTzeScDfyNxJthS4sJPj\n/RmZO0TryZylzAY+A3wm6/O9OTmeZ/L9mfD0L2ZmljoPi5mZWeqcXMzMLHVOLmZmljonFzMzS52T\ni5mZpc7JxczMUufkYmZmqfv/Dl4wscEEbDYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x119a04748>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.animation import FuncAnimation\n",
"\n",
"fig, ax = plt.subplots()\n",
"xdata, ydata = [], []\n",
"ln, = plt.plot([], [], animated=True)\n",
"ln2, = plt.plot([], [], animated=True)\n",
"\n",
"def init():\n",
" ax.set_xlim(-0.5, 1)\n",
" ax.set_ylim(-0.01,0.01)\n",
" return ln,\n",
"\n",
"def update(frame):\n",
" ln.set_data(tlist, np.real(omega[frame,:]))\n",
" ln2.set_data(tlist, np.imag(omega[frame,:]))\n",
" return ln,\n",
"\n",
"ani = FuncAnimation(fig, update, frames=range(200),\n",
" init_func=init, blit=True, interval=30)\n",
"\n",
"ani.save('omega.mp4', writer=\"ffmpeg\")"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video controls src=\"omega.mp4\" loop=1 width=50%/> \n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video controls src=\"{0}\" loop=1 width=50%/> \n",
" \"\"\".format('omega.mp4')\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment