Skip to content

Instantly share code, notes, and snippets.

@amcdawes
Created March 17, 2017 14:45
Show Gist options
  • Save amcdawes/1290830289551f2293d3c9fe9f166981 to your computer and use it in GitHub Desktop.
Save amcdawes/1290830289551f2293d3c9fe9f166981 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from opticalbloch import ob\n",
"import numpy as np\n",
"import qutip as qu"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from scipy.interpolate import interp1d"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"from IPython.core.display import HTML"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### A time-dependent example to get used to how the OB works"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.005016722408026756\n"
]
}
],
"source": [
"Gamma = 1.0 # Gamma is here, shouldn't matter as we scale it out.\n",
"tau = 1/Gamma\n",
"\n",
"Nt = 300\n",
"tlist,dt = np.linspace(-0.5*tau,1*tau,Nt,retstep=True)\n",
"print(dt)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tdep = ob.OB()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"omega0 = 2*np.pi*1e-3*Gamma # as on p38\n",
"t0 = 0\n",
"tw = 0.1*tau # Struggling to get this down to 0.1... seems to break the mesolver\n",
"def pulse(t, args):\n",
" return omega0*np.exp(-4*np.log(2)*((t-t0)/tw)**2)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118ae6240>]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwlJREFUeJzt3X+QXeV93/H3Z1dILg6GjdgQo9+MhKcSndrojsBN64Rg\nQHE93owjl/WPRuko0TgWnnTcHyOahLpq/QediRN3UKdVgARTQMICxzuUBodgxp0M+rErO4YVUbwR\nCN3IBRktqjOMJVb77R/3WfV6ubv3aHXv+bF8XjManfuc59z7PbvS/d7n+5znXEUEZmZmPUUHYGZm\n5eCEYGZmgBOCmZklTghmZgY4IZiZWeKEYGZmgBOCmZklTghmZgY4IZiZWbKg6AAuxJVXXhkrV64s\nOgwzs8oYGRn5YUT0Z+lbqYSwcuVKhoeHiw7DzKwyJB3L2tclIzMzA5wQzMwscUIwMzPACcHMzBIn\nBDMzA5wQzMwscUKwwowcG2fnt8YYOTZedChmRsXWIdj88fD+V7jrGy8wGcHCBT089Os3sn5FX9Fh\nmb2jeYRguRs5Ns5d33iBiclgMuDsxCT7jr5edFhm73hOCJa7fUdf59xk/ERb36ULC4rGzKY4IVju\n+i5dSG+Pzj+OgB1PjHouwaxgTgiWq5Fj4+x4YpRzk0GPQEAAb7lsZFY4JwTL1b6jr3N2YpIACOjt\nEb2CSxb0cOM1i4sOz+wdLVNCkLRR0hFJY5K2t9i/SNKetH+/pJVN++5M7Uck3dbUfoWkvZL+StKL\nkj7YiROycrvxmsUsXNBDr2DhJT3sGLiO2zcs51euX1p0aGbveG0vO5XUC+wEbgHqwEFJQxFxuKnb\nFmA8IlZLGgTuBm6XtBYYBNYBVwNPS7o2Is4BXwH+NCI2SVoIXNrRM7NSWr+ij4d+/Ub2HX39/Ihg\nxxOjnJ2Y5LFDdV9+alagLCOEDcBYRByNiLPAbmBgWp8B4IG0vRe4WZJS++6IOBMRLwFjwAZJ7wE+\nBNwHEBFnI+KNiz8dq4L1K/rYdtNq1q/oO19CmgzPI5gVLUtCWAIcb3pcT20t+0TEBHAaWDzLsdcA\nJ4E/kvQdSfdKeveczsAqZfrq5OYSkucRzIqVZaWyWrRFxj4ztS8Argc+HxH7JX0F2A787tteXNoK\nbAVYvnx5hnCtrEaOjfPpe/dxdmLyJ1YnN5eQXC4yK06WEUIdWNb0eClwYqY+khYAlwOnZjm2DtQj\nYn9q30sjQbxNROyKiFpE1Pr7M30tqJXUTOWh5hKSmRUnS0I4CKyRtCpN/g4CQ9P6DAGb0/Ym4JmI\niNQ+mK5CWgWsAQ5ExP8Bjkt6XzrmZuAwNq+5PGRWbm1LRhExIekO4CmgF7g/IkYl7QCGI2KIxuTw\ng5LGaIwMBtOxo5IepfFmPwFsS1cYAXweeCglmaPAv+jwuVnJuDxkVm5qfJCvhlqtFsPDw0WHYV0w\ncmzcicKsCySNREQtS1/f/toKN9Nks5nly7eusMJ5LYJZOTghWG5m+oY0TzablYNLRpaL2cpCnmw2\nKwcnBMtFq7JQ8xv/+hV9TgRmBXPJyHLhspBZ+XmEYLlwWcis/JwQLDcuC5mVm0tGVhozXYVkZvnw\nCMFKwYvTzIrnEYKVghenmRXPCcFKwVchmRXPJSPruiw3rvNVSGbFc0KwrrqQuQFfhWRWLJeMrKs8\nN2BWHU4I1lWeGzCrDpeMrKs8N2BWHU4I1nWeGzCrBpeMzMwMcEIwM7PECcFKxfczMiuO5xCsNHw/\nI7NieYRgpeE1C2bFypQQJG2UdETSmKTtLfYvkrQn7d8vaWXTvjtT+xFJtzW1vyzpeUnflTTciZOx\navOaBbNitS0ZSeoFdgK3AHXgoKShiDjc1G0LMB4RqyUNAncDt0taCwwC64CrgaclXRsR59JxN0XE\nDzt4PlYyWe5jNMVrFsyKlWUOYQMwFhFHASTtBgaA5oQwAHwxbe8F7pGk1L47Is4AL0kaS8/3XGfC\ntzKby5yA1yyYFSdLyWgJcLzpcT21tewTERPAaWBxm2MD+KakEUlbZ3pxSVslDUsaPnnyZIZwrSw8\nJ2BWLVkSglq0RcY+sx37cxFxPfBLwDZJH2r14hGxKyJqEVHr7+/PEK6VhecEzKolS8moDixrerwU\nODFDn7qkBcDlwKnZjo2Iqb9fk/R1GqWkb8/hHKykPCdgVi1ZRggHgTWSVklaSGOSeGhanyFgc9re\nBDwTEZHaB9NVSKuANcABSe+WdBmApHcDtwIvXPzpWNmsX9HHtptWOxmYVUDbEUJETEi6A3gK6AXu\nj4hRSTuA4YgYAu4DHkyTxqdoJA1Sv0dpTEBPANsi4pykq4CvN+adWQA8HBF/2oXzMzOzjNT4IF8N\ntVothoe9ZMHMLCtJIxFRy9LXK5WtdHw/I7Ni+F5GViq+n5FZcTxCsFLx2gWz4jghWKl47YJZcVwy\nslLx2gWz4jghWNdcyI3tmvl+RmbFcEKwrvDksFn1eA7BusKTw2bV44RgXeHJYbPqccnIusKTw2bV\n44RgXePJYbNqccnIzMwAJwQzM0ucEMzMDHBCsJLyHU/N8udJZSsdL2ozK4ZHCFY6XtRmVgwnBCsd\nL2ozK4ZLRlY6XtRmVgwnBOuKud7pdIoXtZnlzwnBOs6TwmbV5DkE6zhPCptVU6aEIGmjpCOSxiRt\nb7F/kaQ9af9+SSub9t2Z2o9Ium3acb2SviPpiYs9ESsPTwqbVVPbkpGkXmAncAtQBw5KGoqIw03d\ntgDjEbFa0iBwN3C7pLXAILAOuBp4WtK1EXEuHfdbwIvAezp2RlY4TwqbVVOWEcIGYCwijkbEWWA3\nMDCtzwDwQNreC9wsSal9d0SciYiXgLH0fEhaCvxT4N6LPw0rm/Ur+th202onA7MKyZIQlgDHmx7X\nU1vLPhExAZwGFrc59g+AfwtMXnDUZmbWcVkSglq0RcY+LdslfRR4LSJG2r64tFXSsKThkydPto/W\nzMzmJEtCqAPLmh4vBU7M1EfSAuBy4NQsx/4c8DFJL9MoQf2ipP/R6sUjYldE1CKi1t/fnyFcMzOb\niywJ4SCwRtIqSQtpTBIPTeszBGxO25uAZyIiUvtgugppFbAGOBARd0bE0ohYmZ7vmYj4TAfOx+YR\n3/HULF9trzKKiAlJdwBPAb3A/RExKmkHMBwRQ8B9wIOSxmiMDAbTsaOSHgUOAxPAtqYrjMxm5MVt\nZvnLtFI5Ip4EnpzWdlfT9o+BT8xw7JeAL83y3M8Cz2aJw945Wi1uc0Iw6y6vVLZS8uI2s/z5XkZW\nSl7cZpY/JwTruIu90+kU3/HULF9OCNZRngw2qy7PIVhH+U6nZtXlhGAd5clgs+pyycg6ypPBZtXl\nhGAd58lgs2pyycjMzAAnBDMzS5wQzMwMcEKwkvMdT83y40llKy0vcjPLl0cIVlpe5GaWLycEKy0v\ncjPLl0tGVlpe5GaWLycE66hO3el0ihe5meXHCcE6xpPAZtXmOQTrGE8Cm1WbE4J1jCeBzarNJSPr\nGE8Cm1WbE4J1lCeBzarLJSMzMwMyJgRJGyUdkTQmaXuL/Ysk7Un790ta2bTvztR+RNJtqe1dkg5I\n+ktJo5L+Q6dOyMzM5qZtQpDUC+wEfglYC3xS0tpp3bYA4xGxGvh94O507FpgEFgHbAT+a3q+M8Av\nRsQ/BN4PbJR0Y2dOyczM5iLLCGEDMBYRRyPiLLAbGJjWZwB4IG3vBW6WpNS+OyLORMRLwBiwIRr+\nLvW/JP2JizwXm6d8x1OzfGSZVF4CHG96XAdumKlPRExIOg0sTu37ph27BM6PPEaA1cDOiNjf6sUl\nbQW2AixfvjxDuDafeLGbWX6yjBDUom36p/mZ+sx4bESci4j3A0uBDZKua/XiEbErImoRUevv788Q\nrs0nXuxmlp8sCaEOLGt6vBQ4MVMfSQuAy4FTWY6NiDeAZ2nMMZj9BC92M8tPloRwEFgjaZWkhTQm\niYem9RkCNqftTcAzERGpfTBdhbQKWAMckNQv6QoASX8P+DDwVxd/OlakbtT6pxa7feHW97lcZNZl\nbecQ0pzAHcBTQC9wf0SMStoBDEfEEHAf8KCkMRojg8F07KikR4HDwASwLSLOSXov8ECaR+gBHo2I\nJ7pxgpaPbtb6vdjNLB+ZVipHxJPAk9Pa7mra/jHwiRmO/RLwpWlt3wM+cKHBWnm1qvX7TdysWrxS\n2TrCtX6z6vO9jKwjfGM7s+pzQrCOca3frNpcMjIzM8AJwczMEicEMzMDnBCsInyDO7Pu86SylZ5v\ncGeWD48QrPR8gzuzfDghWOl50ZtZPlwyso4YOTbetUVpXvRmlg8nBLtoedT4vejNrPtcMrKL5hq/\n2fzghGAXzTV+s/nBJSO7aK7xm80PTgjWEa7xm1WfS0ZmZgY4IZiZWeKEYJXh+xmZdZfnEKwSfD8j\ns+7zCMEqwWsdzLrPCcEqwWsdzLovU0KQtFHSEUljkra32L9I0p60f7+klU377kztRyTdltqWSfqW\npBcljUr6rU6dkOUvj9r+1FqHL9z6PpeLzLqk7RyCpF5gJ3ALUAcOShqKiMNN3bYA4xGxWtIgcDdw\nu6S1wCCwDrgaeFrStcAE8K8i4pCky4ARSX827TmtAvKs7Xutg1l3ZRkhbADGIuJoRJwFdgMD0/oM\nAA+k7b3AzZKU2ndHxJmIeAkYAzZExA8i4hBARPwIeBFYcvGnY3lzbd9s/siSEJYAx5se13n7m/f5\nPhExAZwGFmc5NpWXPgDszx62lYVr+2bzR5bLTtWiLTL2mfVYST8FPAb8y4j4vy1fXNoKbAVYvnx5\nhnAtT76Pkdn8kSUh1IFlTY+XAidm6FOXtAC4HDg127GSLqGRDB6KiMdnevGI2AXsAqjVatMTkZWA\na/tm80OWktFBYI2kVZIW0pgkHprWZwjYnLY3Ac9ERKT2wXQV0ipgDXAgzS/cB7wYEV/uxImYmdnF\naTtCiIgJSXcATwG9wP0RMSppBzAcEUM03twflDRGY2QwmI4dlfQocJjGlUXbIuKcpH8M/HPgeUnf\nTS/17yLiyU6foJmZZaPGB/lqqNVqMTw8XHQYVqBufnez2XwkaSQialn6+l5GVhm+n5FZd/nWFVYZ\nXvNg1l1OCHZR8rwltdc8mHWXS0Y2Z3mXcLzmway7nBBszlqVcLr9Ju01D2bd45KRzZlLOGbzi0cI\nNmcu4ZjNL04IdlFcwjGbP1wyMjMzwAnBKijPS13N3klcMrJK8Wpls+7xCMEqxauVzbrHCcHmrIjS\njS91Nesel4xsTooq3fhSV7PucUKwOSlilfIUX+pq1h0uGdmcuHRjNv94hGBz4tKN2fzjhGBz5tKN\n2fzikpFVkhenmXWeRwhWOV6cZtYdHiHYnBT5Cd2L08y6wyMEu2BFf0KfusLprYlJX+Fk1kFOCHbB\nilyDAL7CyaxbMpWMJG2UdETSmKTtLfYvkrQn7d8vaWXTvjtT+xFJtzW13y/pNUkvdOJELD9lWIOw\nfkUf225a7WRg1kFtRwiSeoGdwC1AHTgoaSgiDjd12wKMR8RqSYPA3cDtktYCg8A64GrgaUnXRsQ5\n4I+Be4CvdvKErPv8Cd1sfspSMtoAjEXEUQBJu4EBoDkhDABfTNt7gXskKbXvjogzwEuSxtLzPRcR\n324eSVi1lGENwsixcSclsw7KkhCWAMebHteBG2bqExETkk4Di1P7vmnHLrmQACVtBbYCLF++/EIO\ntXms6Ilts/koyxyCWrRFxj5Zjp1VROyKiFpE1Pr7+y/kUOuSMiwK86WnZp2XZYRQB5Y1PV4KnJih\nT13SAuBy4FTGY61CyvLJ3JeemnVelhHCQWCNpFWSFtKYJB6a1mcI2Jy2NwHPRESk9sF0FdIqYA1w\noDOhWxHK8sl8amL7C7e+z+Uisw5pO0JIcwJ3AE8BvcD9ETEqaQcwHBFDwH3Ag2nS+BSNpEHq9yiN\nCegJYFu6wghJjwC/AFwpqQ78+4i4r+NnaB1Vpk/mZZjYNptP1PggXw21Wi2Gh4eLDuMdz1f3mFWH\npJGIqGXp65XKdsHK9Mncycmsc5wQrLLKMsFtNl/4bqd2QcpwyemUskxwm80XHiFYZmX7RF6mCW6z\n+cAJwTIr+i6n0/meSmad5YRgmZXxE/lUEpgqFzkpmM2dE4JlVsZP5GUrY5lVmSeVLbMyXuLpiWWz\nzvEIwTIp6yfxMpaxzKrKCcEyKduE8pSpMtZjh+otb61rZtm5ZGSZlOFrM2fz+KE6jxx4hU/fu68U\nayTMqsgjBMvs49cvRenvMowOppR19GJWNU4I1tb0+YOPX7+06JB+gucRzDrDCcHaKvsncM8jmHWG\nE4K11XfpQnokIEr9CfzxQ3XOTkzy2KF6aa6CMqsSTyrbrEaOjbPjiVHOTQY9End9dF0p32i9HsHs\n4jkh2KweP1TnzFuTBBARjL95tuiQWpqaR+gBJNF36cKiQzKrHCcEm9HIsXG+Nnycqe/U6+0tb7lo\n/Yo+7vroOnp6xGQEO54Y9eWnZhfICcFm9PihOm+da6QDAZvWl+ty0+nG3zzLZASTAWfeaswlmFl2\nTgjW0vTRwSULeviVkl1uOt2N1yxmQU/jOqMA9hw8zsP7Xyk2KLMKcUKwlqo2OoBG2egTtWXnH5+b\nDO76xgsuHZll5IRgb/Pw/lfYfeCVSo0Opnz8+qXnRwnQSAouHZllkykhSNoo6YikMUnbW+xfJGlP\n2r9f0sqmfXem9iOSbsv6nFaMh/e/wu/8yfOkwUFlRgdT1q/oY8fAdfSmnBDA7gOvsPWrwx4pmLXR\ndmGapF5gJ3ALUAcOShqKiMNN3bYA4xGxWtIgcDdwu6S1wCCwDrgaeFrStemYds9pORg5Ns5jh+r8\n8EdneOPNsxw8Nk7E/9/f26PKjA6mfOqG5YyeOM1Daf5gMuCbh1/l6RdfpbaijzVXXVa6+zGZlUGW\nlcobgLGIOAogaTcwADS/eQ8AX0zbe4F7JCm1746IM8BLksbS85HhOTum+U2vjPovW8S6qy/nhROn\nc43xjTfPMnxsnMlovb9HsGPgukq+cX78+qXsOXiciaaTmww48PI4B14e55EDr1Bb0ccVHVqvUNTv\nME8+x+L0X7Yolw8xWRLCEuB40+M6cMNMfSJiQtJpYHFq3zft2CVpu91zdsTIsXE+ues5zp6b4V3P\nWuoR/Kdf/gd86oblRYcyJ1Olo99tKn81m0oOZlXxtZE6j/xGd2/JkmUOodX9wqb/F5upz4W2v/3F\npa2ShiUNnzx5ctZAW9l39PXzV8tYNr09qnQymPKpG5bz6Gf/EbesvYoe3/XOKi6PW7JkGSHUgWVN\nj5cCJ2boU5e0ALgcONXm2HbPCUBE7AJ2AdRqtQt+Z7/xmsVc0iuPEGbRI86XT/IamuZl/Yo+/vBX\na+fLhmOv/mjWMplZWeVxY8ksCeEgsEbSKuBvaUwSf2panyFgM/AcsAl4JiJC0hDwsKQv05hUXgMc\noDFCaPecHbF+RR+PbP2g5xBmee35lABmsn5F3/lz7MacUllrz53kcyxOaeYQ0pzAHcBTQC9wf0SM\nStoBDEfEEHAf8GCaND5F4w2e1O9RGpPFE8C2iDgH0Oo5O396Dc1vBmb+92DWmiKqM3au1WoxPDxc\ndBhmZpUhaSQialn6eqWymZkBTghmZpY4IZiZGeCEYGZmiROCmZkBFbvKSNJJ4FjRcSRXAj8sOog2\nyh5j2eOD8sdY9vjAMXbCxcS3IiL6s3SsVEIoE0nDWS/lKkrZYyx7fFD+GMseHzjGTsgrPpeMzMwM\ncEIwM7PECWHudhUdQAZlj7Hs8UH5Yyx7fOAYOyGX+DyHYGZmgEcIZmaWOCFkJOmnJf2ZpO+nv2e8\nXaak90j6W0n3lC1GSe+X9JykUUnfk3R7DnFtlHRE0pik7S32L5K0J+3fL2llt2OaQ4xfkHQ4/cz+\nXNKKMsXX1G+TpJCU+xUzWWKU9M/Sz3FU0sNlik/ScknfkvSd9Hv+SM7x3S/pNUkvzLBfkv5Liv97\nkq7veBAR4T8Z/gD/GdietrcDd8/S9yvAw8A9ZYsRuBZYk7avBn4AXNHFmHqBvwGuARYCfwmsndbn\nc8B/S9uDwJ6cf25ZYrwJuDRt/2aeMWaJL/W7DPg2ja+trZXwZ7gG+A7Qlx7/TMni2wX8ZtpeC7yc\n88/wQ8D1wAsz7P8I8L9ofJ/MjcD+TsfgEUJ2A8ADafsB4JdbdZK0HrgK+GZOcTVrG2NE/HVEfD9t\nnwBeAzItWpmjDcBYRByNiLPA7hRns+a49wI3S8rzSy/bxhgR34qIN9PDfTS+5a808SX/kcaHgh/n\nGNuULDH+BrAzIsYBIuK1ksUXwHvS9uXM8C2O3RIR36bxfTIzGQC+Gg37gCskvbeTMTghZHdVRPwA\nIP39M9M7SOoBfg/4NznHNqVtjM0kbaDxaelvuhjTEuB40+N6amvZJyImgNNAd78rcIbXT1rF2GwL\njU9qeWkbn6QPAMsi4okc42qW5Wd4LXCtpL+QtE/SxtyiyxbfF4HPSKoDTwKfzye0zC703+kFy/IV\nmu8Ykp4GfrbFrt/O+BSfA56MiOPd+oDbgRinnue9wIPA5oiY7ERsM71Ui7bpl7Zl6dNNmV9f0meA\nGvDzXY1o2su2aDsfX/og8vvAr+UVUAtZfoYLaJSNfoHGCOt/S7ouIt7ocmyQLb5PAn8cEb8n6YM0\nvgXyui7//7gQXf9/4oTQJCI+PNM+Sa9Kem9E/CC9mbYa7n4Q+CeSPgf8FLBQ0t9FxIyTgAXEiKT3\nAP8T+J009OymOrCs6fFS3j4Un+pTl7SAxnB9tqFzp2WJEUkfppF4fz4i8vzC3XbxXQZcBzybPoj8\nLDAk6WMRkddXDGb9Pe+LiLeAlyQdoZEgDpYkvi3ARoCIeE7Su2jcQyjP0tZsMv07vRguGWU3BGxO\n25uBb0zvEBGfjojlEbES+Nc06n0dSwYZtI1R0kLg6ym2r+UQ00FgjaRV6bUHU5zNmuPeBDwTaRYt\nJ21jTCWZ/w58LOfad9v4IuJ0RFwZESvTv719Kc48v282y+/5T2hMziPpSholpKMliu8V4OYU398H\n3gWczCm+LIaAX01XG90InJ4qEXdMnrPoVf5Do6b958D3098/ndprwL0t+v8a+V9l1DZG4DPAW8B3\nm/68v8txfQT4axpzFb+d2nbQeNOCxn+8rwFjwAHgmgJ+v+1ifBp4telnNlSm+Kb1fZacrzLK+DMU\n8GXgMPA8MFiy+NYCf0HjCqTvArfmHN8jNK76e4vGaGAL8Fngs00/v50p/ue78Tv2SmUzMwNcMjIz\ns8QJwczMACcEMzNLnBDMzAxwQjAzs8QJwczMACcEMzNLnBDMzAyA/wd+3CP1q9dtEAAAAABJRU5E\nrkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11576a240>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(tlist,pulse(tlist,[]),\".\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"tdep.num_states = 2\n",
"\n",
"tdep.set_H_0([0,0]) # zeros because we don't care about absolute energies.\n",
"\n",
"# Trying this because I know QuTip can take this kind of Hamiltonian\n",
"tdep.H_Omega_list = [[qu.Qobj([[0,1],[1,0]]),pulse]]\n",
"\n",
"Delta = 0\n",
"tdep.H_Delta = qu.Qobj([[0,0],[0,Delta]])\n",
"\n",
"tdep.c_ops = [np.sqrt(Gamma)*tdep.sigma(0,1)] "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"Result object with mesolve data.\n",
"--------------------------------\n",
"states = True\n",
"num_collapse = 0"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# added e_ops just to verify results, but not a likely use case.\n",
"tdep.mesolve(tlist,td=True,e_ops=[tdep.sigma(0,0),tdep.sigma(1,1)],opts=qu.Options(store_states=True))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118c5fb38>]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4XOV99vHvT7tkabTvu2wZWfIi28IyGGx2jFlMEiAQ\nQ0tKoQlJSJqmeUno29IkbbM0CWlDmlJeGsIeCAmEHZvFYJAXeZe8L9qt3Vosy1rmef84Y0cI7ZqZ\nM5J+n+vS5dHM0ZnbI+nWmec884wYY1BKKTV9+NkdQCmllHtpsSul1DSjxa6UUtOMFrtSSk0zWuxK\nKTXNaLErpdQ0Y1uxi8hjItIgInvdsK9LRWTngI9uEbnRHTmVUmqqEbvmsYvISqAT+K0xZr4b9xsD\nHAbSjDFd7tqvUkpNFbYdsRtjNgItA68Tkdki8oaIlIrIByKSN4Fd3wS8rqWulJqpfG2M/RHga8aY\npcC3gF9NYB+3As+4NZVSSk0hAXYHOEtEwoELgedF5OzVwa7bPgt8b4gvqzHGXD1gH8nAAuBNz6ZV\nSinf5TPFjvXs4aQxpnDwDcaYF4EXx7CPW4A/GGN63R1OKaWmCp8ZijHGtAPHRORmALEsGudubkOH\nYZRSM5yd0x2fAT4GzhORahG5C1gH3CUiu4AyYO049pcFpAPvuz+tUkpNHbZNd1RKKeUZPjMUo5RS\nyj1sOXkaFxdnsrKy7LhrpZSaskpLS5uMMfGjbee2YhcRf2Ab1hTE60baNisri23btrnrrpVSakYQ\nkYqxbOfOoZivA/vcuD+llFIT4JZiF5E04FrgUXfsTyml1MS5ayjmIeDbQMRwG4jIPcA9ABkZGW66\nWzWdHG7o4KnNlWw93kJTRw8hgX7kxIeTlxTByrnxLM2MJtBfz/crNZpJF7uIXAc0GGNKReSS4bYz\nxjyCtRYMRUVFOsdSndPX7+Qnbx3gfzYeJcDfj/OzoslPdnCqp58jDZ1sPNjIr947QmRoIGsLU7il\nKJ2CFAcDlp5QSg3gjiP2FcANIrIGCAEcIvKkMeZ2N+xbTXP9TsPXn9vJq7vruG1ZOn9/dR4xs4I+\nsU3nmT4+PNTIa3tO8OzWKn77cQV5SRHcUpTOZ5ekEhUWNMzelZqZ3PoCJdcR+7dGmxVTVFRkdFaM\nAvjRG/v5r/eO8N01edyzcvao27d19fLy7lqe31bF7uo2ggP8uG5hCuuWZ7A4PUqP4tW0JiKlxpii\n0bbzpUXA1Ayz5VgLv37/CLeenz6mUgeIDAvkjuWZ3LE8k/Ladp7eUsEfttfw++3VzEt2sK44gxsX\npxIerD/aauayZUkBPWJXTqfh2v/8kI7uXt78xkpmTaKIO8/08fLOWp4sqaC8rp1ZQf6sXZzKuuIM\nClIi3ZhaKXvpEbvyaS/tqmFfXTu/uLVwUqUOEB4cwBeKM7htWTq7qtt4qqSC35dW8/TmSgrTo1hX\nnMF1C1MIDfJ3U3qlfJsesSuvM8aw+qEPEIHX7rsYPz/3j4u3dfXy4o5qntpcyeGGThwhAXxuaRrr\nijOYkzDsrFylfJoesSuf9dGRZg7Ud/CTmxZ6pNTBGov/4ops7rwwiy3HWnhycyVPllTwv5uOU5wd\nw7rlmVxdkEhwgB7Fq+lHi1153ZMlFcTMCuL6RSkevy8RoTgnluKcWJo683l+WzVPb6ngvmd2EDsr\niJuL0vnCsgwyYsM8nkUpb9FiV17V1tXLhn0NrFueQUigd4+W48KD+fIls/mblTl8cLiJp0oq+J8P\njvLr94+wcm4864ozuDwvgQB9daua4rTYlVe9sqeWnn4nn12cZlsGPz9h1dx4Vs2Np67tNM9treLZ\nLVX8zROlJDqCuaUonc8tSSMrbpZtGZWaDD15qrxq3aMl1LV1s+Gbq3zqxUR9/U7e2d/AU5sr2Xio\nEWNgWVYMNxWlsWZBss6LVz5BT54qn9PW1UvJ0RbuWZnjU6UOEODvx1UFSVxVkERd22le3F7D70ur\n+fYLu3nw5TKumZ/MTUvTKM6O8dgJX6XcRYtdec27BxrodxquzE+0O8qIkiND+cqlc7j3ktlsr2zl\nhdJq/rSrjt9vryY9JpTPLUnjc0vSSI/RE67KN2mxK6/ZsL+BuPBgCtOi7I4yJiLC0swYlmbG8I/X\nFfBm2QmeL63iFxsO8dD6Q1w4O5bPLUnj6vlJOlSjfIr+NCqvcDoNmw43ccnc+Ck5lBEa5M+Ni1O5\ncXEq1a1dvLi9hhdKq/m753fxwB/3cGV+EjcWprBybryuGa9sp8WuvKK8rp2WUz1clBtnd5RJS4sO\n477Lc/naZXPYXtnKH3bU8OruOv60q5aYWUFcuyCZGxensCQj2ufOJaiZQYtdecXGQ40AXDRn6hf7\nWYOHajYebOSPO2v43bYqniipICMmjLWFKawtTGVOQrjdcdUMosWuvKLkaAtzE8NJcITYHcUjggL8\nuCI/kSvyE60VK8vqeWlnDQ+/e5j/fOcwC1IjWVuYwrULk0mODLU7rprmtNiVxzmdhh0VrVxf6Pkl\nBHxBREggNy1N46alaTS0d/Pyrlpe2lnLD17dxw9e3UdRZjTXLkxmzYJkEqfpHzplLy125XEHGzro\nONPH0oxou6N4XYIjhL++OIe/vjiHo42dvLanjld21/HPfyrne6+Uc35WDNctTGb1/CQSIrTklXto\nsSuPK61oBaAoa+YV+0A58eF89bJcvnpZLocbOnh19wle3VPLP75Uxj+9XEZxdgzXLkzhmvlJxIUH\n2x1XTWG6pIDyuG8+t5ONh5rY+sDlOktkCAfrO3hldx2v7K7laOMp/AQumB3LtQtSuDI/kfgILXll\nGeuSAlrsyuNW/vhd5iVH8N93jPrzOKMZYzhQ38Gru63hmmNNpxCBosxori5I4uqCJH216wyna8Uo\nn9DQ0U1lSxd3LM+0O4rPExHykhzkJTn45pVz2VfXwZtlJ3iz7MS5E6/5yQ6r5Ocncl5ihD4DUkPS\nYlcetd01vr50ho+vj5eIkJ/iID/Fwd9eOZeK5lO8VVbPG2UneGjDQX6+/iBZsWFc7Vq4bHF61JR8\nRa/yDC125VGlFa0EBfgxPyXS7ihTWmbsLO5emcPdK3No6Ojm7fJ63iyr57FNx/jvjUdJiAjmyvxE\nrsxPZHlOrNffxET5Fi125VG7qtqYn+IgKEDXT3GXhIgQ1hVnsq44k7bTvby7v4E3y07w4vYantpc\nSWigPxflxnHFvAQuPS9h2r4oTA1Pi115jNNpKK9r57NLUu2OMm1FhgaeW5ysu7efj482886+Bjbs\nq+ft8noAFqVFclleIpfPS6AgxaHj8jOAFrvymMqWLjrP9FGQ4rA7yowQEujPpedZR+nfW1vA/hMd\nbNhXz4b9DefG5RMdwVyWl8gV8xK4cHYcoUE6ZDMdabErjymrbQegQMfXvU5EmJfsYF6yg69elktT\n5xne3d/AO/sbeHlnDc9sqSQ4wI8LZseee//X7LhZejQ/TWixK48pq20jwE/ITdSVDe0WFx7MzUXp\n3FyUzpm+frYca2HDvgbeP9jIP/+pHID0mFBWzY1nZW48F86J0zcPmcL0O6c8pqy2ndzECIID9Om+\nLwkO8Ofi3Hguzo0HoLK5i/cPNfL+gUZe3F7DkyWVBPoLSzOjWTU3gVVz45mXrHPmpxItduURxhjK\natu45LwEu6OoUWTEhnFHbCZ3LM+kp8/JtooW3j/YyMaDTfzojf386I39xEcEszI3nlXnxXPxnDii\nZwXZHVuNQItdeURDxxmaOnv0xOkUExTgx4Wz47hwdhzfuQbq27vZeLCR9w82sn5fPb/fXo0I5Cc7\nWDEnjhVz4jg/K5qwIK0SX6LfDeURZbVtgJ44neoSHSHnxub7nYZd1Sf58FATmw438b+bjvHIxqME\n+guLM6K5aE4cK+bEsjAtSt/31WZa7MojymqsGTHzkiNsTqLcxd9PWJIRzZKMaO67PJeunj62Hm/l\no8NNbDrSxM/XH+Rnb0N4cADF2TFc6Cp6XdPG+7TYlUeU1baTHTeLiJBAu6MoDwkLCjg3VRKg9VQP\nHx9tZtPhJj460syG/Q0AxIUHccHsOJbnxFCcHcvseJ1W6Wla7MojyuraWJgWZXcM5UXRs4JYs8B6\nyz+AmpOnrZJ3Ff2fdtUC1tTL4uwYil1Fn5sQrguYuZkWu3K7ttO9VLWc5rZlGXZHUTZKjQrllqJ0\nbilKxxjD8eYuNh9tZvOxFjYfbebVPXUARIcFsizbKvninBjmJTm06CdJi125Xbm+4lQNIiJkx80i\nO24Wty7LwBhDdetpSs4W/bFm3iyz1rZxhAScK/qirGgKUiJ1EblxmnSxi0g68FsgCXACjxhjfjHZ\n/aqp688zYnSqoxqaiJAeE0Z6TBg3F6UDUHvyNJuPNbP5aAubj7Wwfp81Rh8c4Mei9CiKMqNZ6vqI\nCtN59CNxxxF7H/B3xpjtIhIBlIrI28aYcjfsW01BZbXtJDqC9Q2Z1bikRIXymcVpfGZxGgAN7d2U\nVrSyzfXxyMaj9Dmtt/KckxB+ruiLsmLIig3TE7IDTLrYjTF1QJ3rcoeI7ANSAS32Gaqstk2HYdSk\nJThCuGZBMte4Tsae7ulnV/VJq+yPt/Danjqe3VoFQOysIJZkRlOUGU1RVjTzUyNn9FIWbh1jF5Es\nYDGweYjb7gHuAcjI0JNq01V3bz9HGk9xdUGS3VHUNBMa5M/ynFiW58QC1nr/Rxo7rSP6462UVrSc\nW4M+0F/IT3ZQmB5FYUYUhenRM+qo3m3FLiLhwO+Bbxhj2gffbox5BHgEoKioyLjrfpVv2X+ig36n\n0fF15XF+fkJuYgS5iRHnZmA1dpyhtKKVHVWt7Kw8yfOl1Tz+cQVgvSnJovQoCtOjWJwexaL0KGKm\n6Zo3bil2EQnEKvWnjDEvumOfamrSpQSUneIjglk9P4nV861njP1Ow6GGDnZWnmRnlfXxy3cO4Rqq\nJzM2zDqqd33kpzimxRCOO2bFCPD/gH3GmJ9NPpKayspq23GEBJAWHWp3FKXw9xPykhzkJTm41XVU\nf+pMH7ur21xF30rJ0WZe2mm9eCrQX5ibGMGC1Ejmp0ayIDWS85Iiptybg7vjiH0FcAewR0R2uq77\nrjHmNTfsW00xZbXtFKREzpixTDX1zAoO4ILZsVwwO/bcdSfautlZ1cqu6jb21rTxRtmJcydmA/wG\nlH2aVfZ5Pl727pgV8yGgv8WKvn4n++vauWN5pt1RlBqXpMgQVkcms3q+NQPn7Auo9ta0scf18Wb5\nCZ7b9ueyz02MYEGq49zR/bxkh8+Uvb7yVLnNkcZTnOlzUpCqJ07V1DbwBVRnp1sOVfZvl9fzu23V\ngDXsMyc+nPwUB/nJjnP/2vGmJFrsym30xKmazoYr+5qTVtnvrWmnvK6dj48084cdNee+LiUy5BNl\nX5wd6/Gy12JXblNW205wgB85cbPsjqKUV4gIadFhpEWHnRvGAWjuPMO+ug7K69oor7UK/539DTgN\n/OaL53v8LSO12JXblNW2kZfsIEDfPUfNcLHhwVyUG8xFuXHnruvu7edgfQc58eEev3/9DVRu4XQa\n9ta0s0DH15UaUkigPwvToggP9vzxtBa7covjzafoPNPHwlR9cw2l7KbFrtxiT4114nRBmp44Vcpu\nWuzKLXZXtxEc4EdugufHD5VSI9NiV26xp7qN/BQ9caqUL9DfQjVp/U5DWW0bC1N1GEYpX6DFribt\nWFMnp3r6WZCmJ06V8gVa7GrSdldbJ04X6olTpXyCFruatD01bYQG+jPbCy+8UEqNTotdTdru6jYK\nUhz4++kin0r5Ai12NSndvf3sqW5jaWa03VGUUi5a7GpSdladpKffyflZMXZHUUq5aLGrSdl6rAWA\noiw9YlfKV2ixq0nZcryF8xIjiAqbnu/2rtRUpMWuJqyv38n2ilbOz9ajdaV8iRa7mrB9dR2c6unX\n8XWlfIwWu5qwLcet8fVl2VrsSvkSLXY1YVuPtZAWHUpyZKjdUZRSA2ixqwnpdxpKjjVTnB1rdxSl\n1CBa7GpCdla1crKrl0vOi7c7ilJqEC12NSHvHWjET2Blrha7Ur5Gi11NyLsHGliSEU1kWKDdUZRS\ng2ixq3GrbO5ib007VxUk2h1FKTUELXY1bq/trQPgmvnJNidRSg1Fi12N25921bIoPYr0mDC7oyil\nhqDFrsZlb00bZbXtfKYwxe4oSqlhaLGrcXl6SyXBAX58Zkma3VGUUsPQYldj1nKqhz/uqOH6RSlE\nhupsGKV8lRa7GrNHPzjK6d5+vrQqx+4oSqkRaLGrMak9eZrffHScNQuSmZMQYXccpdQItNjVqIwx\nPPhyGU5juH91nt1xlFKj0GJXo/rfTcd5q7yev71irk5xVGoK0GJXI3pmSyXff7WcK/MTuftiHVtX\naipwS7GLyGoROSAih0XkfnfsU9mr9uRp/va5nXznxT1cnBvPf9y6GD8/sTuWUmoMAia7AxHxBx4G\nrgSqga0i8rIxpnyy+x6su7efPqcBrHHfgQZ+9ombzMCLg77GDLnZmPc9eH8Mu7/Bm5khbxu02Sdy\nDN7HJ7cbfd+fzvTnz5wGTnb10NBxhvLadrZXtlJytBl/P+G+y+bwtctzCfTXJ3dKTRWTLnZgGXDY\nGHMUQESeBdYCbi/2f3l1H0+UVLh7t2oAfz9hbmIEX75kNrctyyAtWsfUlZpq3FHsqUDVgM+rgeLB\nG4nIPcA9ABkZGRO6o6sLksgYcPJORhgZkAE3Dt5s4NfJJ66XIbf51D7GvO+x7W+4rxm84XBZR9zf\np3Y3dKbI0EDiwoOZHR9OaJA/Sqmpyx3FPlS9fmrgwBjzCPAIQFFR0QgDC8O7KDeOi3LjJvKlSik1\nY7hj4LQaSB/weRpQ64b9KqWUmgB3FPtWIFdEskUkCLgVeNkN+1VKKTUBMngGyIR2IrIGeAjwBx4z\nxvzLKNs3Ar5yFjQOaLI7xCg04+T5ej7w/Yy+ng+mf8ZMY8yobzTslmKfykRkmzGmyO4cI9GMk+fr\n+cD3M/p6PtCMZ+nkZKWUmma02JVSaprRYndNwfRxmnHyfD0f+H5GX88HmhHQMXallJp29IhdKaWm\nGS12pZSaZmZksYtIjIi8LSKHXP9Gj7CtQ0RqROSXvpRPRApF5GMRKROR3SLyeS/kGnF5ZhEJFpHn\nXLdvFpEsT2eaQMZviki56zHbICKZvpZxwHY3iYgREa9O3xtLPhG5xfU4lonI097MN5aMIpIhIu+K\nyA7X93qNl/M9JiINIrJ3mNtFRP7DlX+3iCxxawBjzIz7AH4M3O+6fD/woxG2/QXwNPBLX8oHzAVy\nXZdTgDogyoOZ/IEjQA4QBOwC8gdtcy/wa9flW4HnvPx9HUvGS4Ew1+Uv+2JG13YRwEagBCjypXxA\nLrADiHZ9nuBrjyHWCcovuy7nA8e9nHElsATYO8zta4DXsdbaWg5sduf923bEPtpftHHu61IR2Tng\no1tEbhzhS9YCj7subwLuE5EzIvKtQftdCiQCb0024zgNzPc48Kn/izHmoDHmkOtyLdAAjPqKtEk4\ntzyzMaYHOLs880ADc78AXC6Dl6H0rFEzGmPeNcZ0uT4twVrbyJvG8jgCfB/rD3y3N8Mxtnx3Aw8b\nY1oBjDENPpjRAA7X5Ui8vH6VMWYj0DLCJmuB3xpLCRAlIsnuun87h2J+A6x2x45cv6yFxphC4DKg\niyHKWESOuy4mGmPqXJcPAL3Avw/a1g/4KfD37sg4Tufyuf5NGGljEVmGdeRyxIOZhlqeOXW4bYwx\nfUAbEOvBTIONJeNAd2EdNXnTqBlFZDGQbox5xZvBXMbyGM4F5orIJhEpERG3/B6Pw1gyPgjcLiLV\nwGvA17wTbczG+7M6Lu5YtndCjDEbB4/BishsrHdjiscq57uNMfvHueubsH5ZXxaRpEG3pYjI4CO4\nBhHpxyr3ge4FXjPGVHnioFNE1gOD8wE8MM79JANPAH9pjHG6I9twdzXEdYPnyo5pCWcPGvP9i8jt\nQBGwyqOJhrjrIa47l9F1QPFz4E5vBRpkLI9hANZwzCVYz3g+EJH5xpiTHs521lgy3gb8xhjzUxG5\nAHjCldGTvyPj4dHfFduKfRiPAF8yxhwSkWLgV1hH4ONxK/CzoY52ROS4MeYlEakXkWRjTJ2rGId6\nKnkBcLGI3AuEA0Ei0mmMcct7uhpjrhjutjHmQ0QcwKvAP7ieznnSWJZnPrtNtYgEYD0FHunpqLuN\naQlpEbkC6w/oKmPMGS9lO2u0jBHAfOA91wFFEtZByg3GmG0+kO/sNiXGmF7gmIgcwCr6rV7Id/b+\nR8t4F64RAWPMxyISgrX4lreHjYbj2eXOvXlCYYgTCFm4Ti5gledpYOeAj32u2z4L7B3i481B+0sG\nGoHAAdc9PGB/Pa5/G85+LdbJyR9jPXX71jA578S7J09/widPnv54iG2CgA3AN7yUKQA4CmTz5xNW\nBYO2+QqfPHn6Oy//PI0l42KsIatcb2YbT8ZB27+Hd0+ejuUxXA087rochzWkEOtjGV8H7nRdnodV\nmuLl7/W5fhvitmv55MnTLW69b2/+R0f6j2Od6Kib5P6+Djwywu3HXf/GukrxkOvfGFexPwQ8OsTX\nebvYP5XPdX3R2XzA7VjDRwP/EBZ6ONca4KCrGB9wXfc94AbX5RDgeeAwsAXIseFnarSM64H6AY/Z\ny76WcdC2Xi32MT6GAvwM632N9wC3+tpjiDUTZpOr9HcCV3k53zNYM9V6sY7O7wK+hDUicfYxfNiV\nf4+7v8e2LingGmN/xRgz3/X5R8DPjTHPu2ZTLDTG7BrH/kqA7xhj3h3m9uPGmKxhbnsQ6DTG/PtQ\ntyul1FRhW7GLyDNYJ1/isI6g/gl4B/gvrCGVQOBZY8z3xri/LKy/0OlmmBMkQxW76wTrNqxnDE6g\nE2tObPt4/09KKeULdBEwpZSaZmbkkgJKKTWd2TLdMS4uzmRlZdlx10opNWWVlpY2mTG856lbit31\nyrNfYK3h8Kgx5ocjbZ+VlcW2bd6YkquUUtOHiFSMZbtJD8WIiD/WtJ1rsKYY3SYi+ZPdr1JKqYlx\nxxH7uQV5AETk7II85W7Y9yccONFBzcmuc5/L4FflypAXGbwkwCdvG3i9DHn94K9hmK/59P5GyDDs\ndgwydKbBmw3c/0j7G+7/GBkaSHxEMCGB/oMDKKWmGHcU+1CL2RQP3khE7gHuAcjIyJjQHT1ZUsET\nJWN6JqImKCMmjIVpkVyWl8CaBcla9EpNQe4o9jEtZmOMeQTXm7gWFRVNaI7l36zK4aalaUPewcBp\nm+YT1w8fa+Btw3/NWPcNhqF3+OmsQ3/Np/c3eoZP39cI+xsmU7/T0Ha6h4b2M5TXtbPteCuv7K7j\nh6/v54Fr57G20G2LzimlvMAdxe7ZxWwG7jg6jLToME/sWg1gjOHjI838+M0DfP3ZnZRWtPLg9QX4\n+XlzaXWl1ES5o9i3Arkikg3UYC3+9AU37FfZRES4cE4cL2TH8MPX9/Poh8cI8PPjH6/Xc+JKTQWT\nLnZjTJ+IfBV4E2u642PGmLJJJ1O2C/D344Fr59HnNDy26RiFGVHcsCjF7lhKqVG4ZR67MeY1rHcp\nUdOMiPDAtfPYVX2SB18u4+I5cUTPCrI7llJqBLqkgBpVoL8f//qZBbSd7uWh9QftjqOUGoUWuxqT\neckObilK45ktVZxo8/b7KyulxkOLXY3ZvZfMod8YHv3gqN1RlFIj0GJXY5YeE8Y185N4vrSa7t5+\nu+MopYahxa7G5QvLMmg73cvre+vsjqKUGoYWuxqXC2bHkhkbxgul1XZHUUoNQ4tdjYuIcP3CFD4+\n0kxz5xm74yilhqDFrsZtzYJknAbeLKu3O4pSagha7Grc5iVHkB03S8fZlfJRWuxq3ESES89LYPOx\nFk736OwYpXyNFruakEvz4unpc/Lx0Sa7oyilBtFiVxOyLDuG0EB/3t3faHcUpdQgWuxqQoID/FmW\nHUPJ0Wa7oyilBtFiVxO2LDuGQw2dtJ7qsTuKUmoALXY1YednxQCw9XiLzUmUUgNpsasJW5gWSZC/\nnxa7Uj5Gi11NWEigP4vSI9lyvNXuKEqpAbTY1aQsy46hrKaNrp4+u6MopVy02NWknJ8VQ5/TsKPy\npN1RlFIuWuxqUpZmRuMnsPmYjrMr5Su02NWkRIQEkpfkoLRCi10pX6HFriZtUXoUe6rbMMbYHUUp\nhRa7coOFaZG0d/dR2dJldxSlFFrsyg0WpEYCsLu6zeYkSinQYlduMDcxgiB/P/bUaLEr5Qu02NWk\nBQX4MS85gj16xK6UT9BiV26xIC2SvTVtOJ16AlUpu2mxK7dYmBpFx5k+jjefsjuKUjOeFrtyi/mu\nE6g6zq6U/bTYlVvkJoYTHOCn4+xK+QAtduUWgf5+5Kc42K1H7EoNq6O7l54+p8fvJ8Dj96BmjIIU\nBy/tqMXpNPj5id1xlLKNMYYT7d2U17ZbH3XWR0VzF0/fXcyFs+M8ev9a7MptClIiebKkkqrWLjJj\nZ9kdRymv6HcajjZ2sre27c8lXttOa1fvuW2y42YxPyWSW4rSSYsK83gmLXblNgUpDgDKatu12NW0\n1O80HGnsZE91G3tq2thb00Z5XTtdPf2A9ZqOvKQIri5IIj/FQX6yg7xkB+HB3q1aLXblNnMTIwjw\nE8pq21izINnuOEpNyuAS31NjHZGf7rVKPDTQn/wUB7cUpTM/NZIFqZHMjp9FgL/9py612JXbhAT6\nMychnL017XZHUWpcnK4S31VtHYUPVeIFKQ4+f346C1IjWZAWyez4cPx99FySFrtyq4KUSN4/2Gh3\nDKVG1NDRzc7Kk+yssj52V7fRecZ6e8ewIKvEb13mKvHUSHJ8uMSHMqliF5GfANcDPcAR4IvGGH2P\ntBmsIMXB77dX09DeTYIjxO44SnG6p5+9tW2fKPKak6cBCPAT8pIjuHFxCoXp0SxKm3olPpTJHrG/\nDXzHGNMnIj8CvgP8n8nHUlPVwBOoWuzK24yxhlS2ny3xypMcqO+g37WGUWpUKIUZUXxxRRaF6VHM\nT40kJNBuAzxBAAAPx0lEQVTf5tTuN6liN8a8NeDTEuCmycVRU13+uWJv49K8BJvTqOmuu7efXVUn\nKa1spfR4K6WVrZx0TTOMCA5gUXoUX141m8L0KBalRxEfEWxzYu9w5xj7XwHPDXejiNwD3AOQkZHh\nxrtVviQiJJDM2DDKavUEqnK/xo4zlFa0sO14K9sqWimrbaO33zoaz4mfxVX5iRRlxrAkM4qcuPAZ\n+0K5UYtdRNYDSUPc9IAx5iXXNg8AfcBTw+3HGPMI8AhAUVGRru06jRWkOHRmjJo0p9NwqKGTbRUt\nlLqK/OzbLwYF+LEoLZK7LsqhKDOaJZnRxMwKsjmx7xi12I0xV4x0u4j8JXAdcLnRdzNWWDNjXttz\ngvbuXhwhgXbHUVNEX7+Tstp2Nh9rZvPRFrYeb6G925qpEjsriKWZ0dy+PIOlmTHMT3UQHDD9xsbd\nZbKzYlZjnSxdZYzRdzJWwJ9PoJbXtrM8J9bmNMpX9fY72V3ddq7ISytaz005zI6bxZoFyRRlxVCU\nGU1mbBgiM3NYZSImO8b+SyAYeNv1oJcYY7406VRqSitIsdZmL9NiVwOc6eu3ivxoM5uPWePkZ18A\nNCchnLWFKRTnxFKcHUOizqialMnOipnjriBq+oiPCCYhIpiyWl3Cdybr63eyq7qNjw438dGRZrZX\ntnLGtWRtXlIEtxSlUZwTy7LsGOLCZ8ZsFW/RV54qjyhIcVCmJ1BnFGMMB+s72XS4iY+ONFFytIXO\nM32IwLwkB+uKMynOiWFZVgzReqLTo7TYlUcUpESy8VAT3b390/IFIMpS3drFR4eb2XSkiU2Hm2nq\nPANAVmwYNxSmsGJ2HBfMjtUZK16mxa48oiDFQb/TcOBEB4vSo+yOo9zkZFcPm1xF/tHhJo43W3Mm\n4sKDWTEnlhWz47hwTixp0Z5fc1wNT4tdecTAE6ha7FNXv9Owq/ok7x9o5P2DjeyuPonTQHhwAMXZ\nMfzFBVmsmBPH3MRwnbXiQ7TYlUekx4QSERKgJ1CnoPr2bt4/2MjGg418cKiJttO9iMCitCi+dlku\nK+fGsTAtikAfWHdcDU2LXXmEiFgnUHVpAZ/X0+dkW0UL7x9s5P0Djew/0QFYs5uuzE9k1dx4LpoT\npyc8pxAtduUxBSmRPLW5gn6nmfLLoE43NSdP887+Bt4/0MBHR5rp6ukn0F8oyozh/mvyWJkbz7zk\nCB1emaK02JXHFKQ46O51crSxk9zECLvjzGhOp2Fn9Une2dfAhv0N7Kuznkmlx4Ty2SWprJqbwAWz\nY73+3pzKM/S7qDxm4AlULXbv6zzTx4eHGlm/r4H3DjTQ1NmDv5+wNDOa767J47K8RGbHz9Kj8mlI\ni115zOz4WQQH+FFW28aNi1PtjjMjVLV0sWFfPRv2N1BytJnefoMjJIBLzkvg8nkJrJobT1SYjpVP\nd1rsymMC/P3IS4rQJXw9yBhDWW07b+w9wVvlJzhY3wlYf1S/uCKby/ISKMqMJkBnsMwoWuzKoxam\nRfGHHTV6AtWN+p2GrcdbeLPsBG+V1VNz8jR+AsuyY/i/1+VzeV4CWXGz7I6pbKTFrjxqaWY0T5RU\ncOBEx7m3zVPj193bz0dHmnhj7wnW72ug5VQPQQF+rMyN4+tX5HLFvER92b46R4tdedTSzGgASitb\ntdjHqaO7l3cPNPJm2Qne29/AqZ5+IoIDuDQvgasLklh1XrzOYlFD0p8K5VFp0aEkRARTeryFO5Zn\n2h3H53V097JhXwOv7K5j48FGevqdxIUHcUNhClcVJHHh7Fh95yA1Ki125VEiQlFWNNsqWu2O4rNO\nnelj/b56Xt1dx3sHG+npc5IcGcLtyzO5ZkESSzKi9fyEGhctduVxSzKieW3PCerbu/WdcVy6evp4\nZ38Dr+6u4539DZzpc5LoCGZdcQbXLUxmcXo0flrmaoK02JXHFWXFAFBa0cqaBck2p7HP6Z5+3jtg\nDbNs2F9Pd6+T+Ihgbj0/nWsXplCUqWWu3EOLXXlcfrKD4AA/th2fecXe1+/kg8NNvLSjhrfK6+nq\n6Sd2VhA3LU3j2gUpLMuO0WEW5XZa7MrjggL8WJQeRWlFi91RvMIYw86qk7y0s5Y/7aql+VQPkaGB\nrC1M4fqFVpnrC4aUJ2mxK68ozo7h4XcP03a6l8jQQLvjeMSxplP8cUcNL+2s4XhzF0EBflwxL4Eb\nC1NZdV68zmZRXqPFrrzi4tx4/vOdw3x8pJnV85PsjuM2jR1neGV3LX/cWcuuqpOIwAU5sdx7yRxW\nL0jCETI9/4gp36bFrrxicUYUs4L8+eBQ45Qv9jN9/awvb+CF0io2Hmqi32nIT3bw3TV53LAolaRI\nnfmj7KXFrrwi0N+P5TmxbDzUiDFmyi0Va4xhb007z5dW8dLOWtpO95IcGcI9K3P4zOJU5uqyxMqH\naLErr7k0L4EN+xs41NA5ZYqwseMML+2s4flt1Ryo7yAowI+rC5K4eWkaK+bE6YwW5ZO02JXXXJmf\nyD/8cS9vlZ3w6WLv6XPyzv4GXiit5r0DDfQ5DYXpUfzgxvlcvyhl2p78VdOHFrvymkRHCIvSo3ir\nvJ6vXpZrd5xPOdzQyTNbKvnDjhpaTvUQHxHMXRdnc9OSNH0HKDWlaLErr1ozP4l/e30/x5pOke0D\na4b39Dl5s+wET22uoORoC4H+whXzErm5KI2VufE631xNSVrsyqvWFqbywzf284cdNXzzyrm25ahq\n6eLpLZU8v62Kps4e0qJD+fbq87h5aTrxEcG25VLKHbTYlVclRYawYnYcL26v5uuX53r15GNfvzV2\n/tTmSjYeakSAy+clsq44g5W58bpOi5o2tNiV1922LIOvPL2dd/Y3cGV+osfv70RbN89treLZrZXU\ntXWT6Ajmvsty+fz56aREhXr8/pXyNi125XVXFySSEhnCox8c9VixO52GDw838dTmCtbva6DfaVg5\nN54Hbyjg8rwEHTtX05oWu/K6AH8/7ro4h++/Us6mw02smBPntn03d57h+dJqnt5cSWVLF7Gzgrj7\n4hxuW5ZOZqz9J2uV8gYtdmWLdcUZPPbhMf71tX289JUVkzqCNsaw5VgLT22u5PW9dfT2G4qzY/jW\n1edxdUGiLr6lZhwtdmWLkEB/Hrh2Hvc+tZ1fvXeE+y4f/7z2tq5eXtxRzVObKznc0IkjJIDbl2ey\nrjiDOQk671zNXFrsyjZrFiSztjCFh9YfZG5ixJgWB3M6DSXHmnl+WzWv762ju9dJYXoUP7lpIdct\nTCE0SI/OlXJLsYvIt4CfAPHGmCZ37FPNDP/22QVUtnTx1ae3c/81edx5YdanhmWMMRxu6OS1PSd4\nYXsVVS2niQgO4HNL0rhtWQbzUyNtSq+Ub5p0sYtIOnAlUDn5OGqmCQsK4PG/WsY3n9vFD17dx28+\nOs7leQmkRIVyqqefIw2d7K45SVXLaQBWzInl7648j6sLkvToXKlhuOOI/efAt4GX3LAvNQM5QgL5\nn79Yytvl9TxRUsHvtlVzurcfEciICWNekoMvrZrNZXkJJEfqvHOlRjOpYheRG4AaY8yu0dbXFpF7\ngHsAMjIyJnO3ahoSEa4qSOKqgiSMMZzq6SfQX3RGi1ITMGqxi8h6YKizWg8A3wWuGssdGWMeAR4B\nKCoqMuPIqGYYESE8WM/rKzVRo/72GGOuGOp6EVkAZANnj9bTgO0isswYc8KtKZVSSo3ZhA+LjDF7\ngISzn4vIcaBIZ8UopZS9xBj3jIqMp9hFpBGocMsdT14c4Ot/jDTj5Pl6PvD9jL6eD6Z/xkxjTPxo\nG7mt2KcqEdlmjCmyO8dINOPk+Xo+8P2Mvp4PNONZusSdUkpNM1rsSik1zWixu6Zg+jjNOHm+ng98\nP6Ov5wPNCOgYu1JKTTt6xK6UUtOMFrtSSk0zM7LYRSRGRN4WkUOuf6NH2NYhIjUi8ktfyicihSLy\nsYiUichuEfm8F3KtFpEDInJYRO4f4vZgEXnOdftmEcnydKYJZPymiJS7HrMNIpLpaxkHbHeTiBgR\n8er0vbHkE5FbXI9jmYg87c18Y8koIhki8q6I7HB9r9d4Od9jItIgInuHuV1E5D9c+XeLyBK3BjDG\nzLgP4MfA/a7L9wM/GmHbXwBPA7/0pXzAXCDXdTkFqAOiPJjJHzgC5ABBwC4gf9A29wK/dl2+FXjO\ny9/XsWS8FAhzXf6yL2Z0bRcBbARKsF745zP5gFxgBxDt+jzB1x5DrBOUX3ZdzgeOeznjSmAJsHeY\n29cArwMCLAc2u/P+Z+QRO7AWeNx1+XHgxqE2EpGlQCLwlpdynTVqPmPMQWPMIdflWqABGPUVaZOw\nDDhsjDlqjOkBnnXlHGhg7heAy2W0ZT+9nNEY864xpsv1aQnWGkfeNJbHEeD7WH/gu70ZjrHluxt4\n2BjTCmCMafDBjAZwuC5HArVezIcxZiPQMsIma4HfGksJECUiye66/5la7InGmDoA178JgzcQET/g\np8DfezkbjCHfQCKyDOvI5YgHM6UCVQM+r3ZdN+Q2xpg+oA2I9WCmwcaScaC7sI6avGnUjCKyGEg3\nxrzizWAuY3kM5wJzRWSTiJSIyGqvpbOMJeODwO0iUg28BnzNO9HGbLw/q+MybddGHWW54bG4F3jN\nGFPliYNON+Q7u59k4AngL40xTndkG+6uhrhu8FzZsWzjSWO+fxG5HSgCVnk00RB3PcR15zK6Dih+\nDtzprUCDjOUxDMAajrkE6xnPByIy3xhz0sPZzhpLxtuA3xhjfioiFwBPuDJ68ndkPDz6uzJti90M\ns9wwgIjUi0iyMabOVYxDPZW8ALhYRO4FwoEgEek0xgx7ssvL+RARB/Aq8A+up3OeVA2kD/g8jU8/\nvT27TbWIBGA9BR7p6ai7jSUjInIF1h/QVcaYM17KdtZoGSOA+cB7rgOKJOBlEbnBGLPNB/Kd3abE\nGNMLHBORA1hFv9UL+c7e/2gZ7wJWAxhjPhaREKzFt7w9bDScMf2sTpg3Tyj4ygfWG28PPDn541G2\nvxPvnjwdNR/W0MsG4BteyhQAHMVag//sCauCQdt8hU+ePP2dl7+vY8m4GGvIKtemn71RMw7a/j28\ne/J0LI/hauBx1+U4rCGFWB/L+Dpwp+vyPKzSFC9/r7MY/uTptXzy5OkWt963N/+jvvKBNe67ATjk\n+jfGdX0R8OgQ23u72EfNB9wO9AI7B3wUejjXGuCgqxgfcF33PeAG1+UQ4HngMLAFyLHheztaxvVA\n/YDH7GVfyzhoW68W+xgfQwF+BpQDe4Bbfe0xxJoJs8lV+juBq7yc7xmsmWq9WEfndwFfAr404DF8\n2JV/j7u/x7qkgFJKTTMzdVaMUkpNW1rsSik1zWixK6XUNKPFrpRS04wWu1JKTTNa7EopNc1osSul\n1DTz/wFhcNZfCoOrzAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118a979e8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot the expectation of the two levels as a function of time.\n",
"# We'd expect very small changes given how weak the driving field is.\n",
"plt.subplot(211)\n",
"plt.plot(tlist,tdep.result.expect[1])\n",
"plt.subplot(212)\n",
"plt.plot(tlist,tdep.result.expect[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Seems to work (but had to bump up `Nt` (number of time points) up to 300"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Next, to explore the `(z,t)` integration of these equations\n",
"First, neglecting doppler broadening (i.e. stationary atoms). The following is from Ogden, Eq. 2.52 (p36).\n",
"$$\\frac{d}{dz}\\Omega(z,t') = \\mathrm{i}N(z)g \\rho_{01}(z,t')$$\n",
"where $$g=\\frac{d_{01}^2 k}{2\\epsilon_0\\hbar}$$\n",
"\n",
"Approach is:\n",
" - evaluate $\\rho_{01}$ for all time at $z=0$ (no loop necessary since only one velocity class in this prototype).\n",
" - Calculate field $\\Omega$ one space step forward via Adams-Bashforth\n",
" - evaluate $\\Omega$ one step forward based on $\\rho$."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Euler step in space is $d\\Omega = \\mathrm{i}N(z)g\\rho_{01}dz$ and the initial condition is the drive pulse at the front of the medium."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"Nz = 200\n",
"rho01 = np.zeros([Nz+1,Nt],dtype=np.complex_) # index: z, t\n",
"omega = np.zeros([Nz+1,Nt],dtype=np.complex_) #TODO: is this complex type ok?"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Set up initial conditions:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"rho01[0,:] = np.array([tdep.result.states[i][0,1] for i in range(Nt)])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"omega[0,:] = pulse(tlist,[])"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"def i_to_f(interp_in):\n",
" \"\"\"A function to convert an interp1d object to a function\n",
" TODO: find a more elegant way to do this\"\"\"\n",
" def interp_func(x,args=[]):\n",
" return np.complex128(interp_in(x))\n",
" return interp_func"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [],
"source": [
"L = 1.0\n",
"dz = L/Nz\n",
"Ng = 2*np.pi * 5 * Gamma/L #TODO: I get better agreement with 4-5 here instead of 1\n",
"for z in range(Nz-1):\n",
" #TODO: replace Euler with AB method:\n",
" omega[z+1,:] = omega[z,:] + 1j*Ng*rho01[z,:]*dz\n",
" \n",
" # here we convert omega into a function (interpolate) run linblad solver.\n",
" # AMCD: I had to use linear so I could let it extrapolate past the end\n",
" # TODO: find out why mesolve runs past t > t_max\n",
" omega_f = interp1d(tlist, omega[z+1,:], kind='linear',fill_value=\"extrapolate\")\n",
" tdep.H_Omega_list = [[qu.Qobj([[0,1],[1,0]]),i_to_f(omega_f)]]\n",
" \n",
" tdep.mesolve(tlist,td=True,e_ops=[tdep.sigma(0,0),tdep.sigma(1,1)],opts=qu.Options(store_states=True))\n",
" rho01[z+1,:] = np.array([tdep.result.states[i][0,1] for i in range(Nt)])"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Replicate Figure 2.1:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x119120f28>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAEKCAYAAAAo150IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXu4HGWV7//5EkIgFySQEGISCZLAcBEixMjv4ejhIhAZ\nJTrKMcwZyXFwIgx4cMb5jSBnxB8O80OdUWHGwYkQCTMqcLhoZgRiQJGjD5eEW0IImM1F2bDJhTAQ\nAgSys84f9VaodLp3V3dXd1dVr8/z9NNVq96qfiu9099a613vemVmOI7jOI6TH3bpdgccx3Ecx9kR\nF2fHcRzHyRkuzo7jOI6TM1ycHcdxHCdnuDg7juM4Ts5wcXYcx3GcnOHi7DiO4zg5w8XZcRzHcXKG\ni7PjZIik/1/SFxo8535Jh7WrT47jFA8XZ8dJIOkZSa9LelXSC5KukTQ65bnjgTOBf6mw/5mkxyS9\nJqlf0t9L2iPR5O+BS7K7C8dxio6Ls+PszEfNbDQwA3gvcGHK8/4HcKuZvR4bJH0Z+AvgM8AY4EPA\nLGCxJIVmi4HjJU3MpvuO4xQdF2fHqYGZvQAsIRJpACS9U9JNktZLelrS/0yc8mHgV4m2ewMXAZ8y\ns/vMbNDMHgc+QSTQHwmf8wbwAHBy22/KcZxC4OLsODWQNJlIcPvC/i7AvwOPAJOAE4EvSDolnPIe\n4InEJY4FXjCzlcnrmtl64D7g+IR5NXBkG27DcZwC4uLsODvzE0mbgGeBdcDFwf4+YLyZXWJmb5rZ\nU8D3gbnh+F7ApsR1RgMv1/iM/wRGJvY3hfMdx3FcnB2nCh8zszHAccAfAOOCfX/gnZL+M34BXwYm\nhOMvEY0rxzwFTJO0e5XPOIzgkQfGEAm24ziOi7Pj1MLMfgVcQ5RNDZEn/bSZ7ZV4jTGzU8PxFcBB\niUvcD/QDZyWvK+kEYCpwXcJ8CFG43HEcx8XZcerwHeAkSTOIxPYVSV+StIekYZIOl/S+0PZW4L/G\nJ5qZAfOAr0r6OICkI4FFwOfMrD/YRgBHA0s7dleO4+QaF2fHGYKQvHUt8DdmNgh8lCh7+2lgA3AV\n8I7Q/Frg1HgOc5hG9UtgLHBzaPMdomSy70m6LdhOA+4ys+fbf0eO4xQBRQ/3juNkgaS/A9aZ2Xca\nOOc+4Cwze7R9PXMcp0i4ODuO4zhOzvCwtuM4juPkjLriLGmKpF9KWi1plaTzg31vSUslrQnvY4Nd\nkq6Q1CdphaSj2n0TjuM4jlMm0njOW4EvmtkhwDHAuZIOBS4A7jSz6cCdYR+iikrTw2s+cGXmvXYc\nx3GcErNrvQZmNgAMhO1NklYTZZvOISrSANHUkLuALwX7tWEayb2S9pI0MVynKuPGjbP9939XK/fh\nZMg225rJdXZR3T+vjlHvnraRzT3XY5f6/+XSXSdH/7ZO+XjwwYc2mNn4dlx7z6m729bXt6Vq+/q6\nt5aY2ex29CPvNPQ/XNJUolV67gMmxIJrZgOS9g3NJhEVa4jpD7YdxFnSfCLPmilTpvCb3/ymie47\nWfG6bah57LVt6xu+3shdov/Xe2jcdtuwVwff3t701vbtLWs3N3TtERNG7bA/OGb4jvujh+2wn7y3\navcysHl1Q5/fKhNHHZK6bfzvWI/kv3MrJL+jXqLyb6aoDPX/uBH2Hvmu32VyoSpsfX0bB5+xb/2G\nwMOXP5fNH3YBSS3OYU3bm4AvmNkrb692t3PTKradUsLNbAGwAODoo4/ylPGSE//ox6K8Ze1mtqyN\nylC/9uQLO7Td3Lfj/qhp++2wP/LAaH/EhKhS5gjeFuvBMcMZ9upgaX5s0/K6bWhYoLshxMmHsmpU\nPmh1ikb+LfL8t7WHxmUm0E53SZWtLWk4kTD/0MziYgpr4/Vnw/u6YO8HpiROnwx4cQWnJrHYduSz\nqniijXiyWdBpT70W3RCZwTHDawpwt4S5UfIeXcgqiuJ0lzTZ2gKuBlab2bcShxYTlSYkvP80YT8z\nZG0fA7w81Hiz07vEnm+rNBoWLxLNDCkUgVikk68i4QLttJs0nvOxwKeBEyQ9HF6nApcR1RxeA5wU\n9iGqL/wU0Yo73wf+PPtuO87Q5P3Hsx00E87Mc4g27+T9b8wFutikydb+NdXHkSFabL6yvQHnttgv\nx8kMH4dzepVYoP3vv3h4hTCnrRTlR6HT4855wr3n5sm79xzjXnTxcHF2hiQPY56V2dsxcbZ32Wnk\nOyjKw1CZcIF22oGLs9MR8uSdpZ073E7ykrEdk6fvp4i4QHcHSbMlPRHKRV9Q5fgISdeH4/eFWh3x\nsQuD/QlJpyTsz0haGfKrlldc7/Oh/SpJ3wi2kyQ9EM55QNIJWdyblxlySsWwTW8VLvM3a5qZ8wyR\nQBdFZJzmKcs4tKRhwHeJEpL7gWWSFpvZY4lmZwEvmdk0SXOBrwOfCiWo5wKHAe8E7pB0UFizHeB4\nsx3/gSQdT1QB8wgz25IovLUB+KiZPS/pcGAJUeGtlnDP2XEKQB6GF5yhKdqDTQm86FlAn5k9ZWZv\nAtcRiWeSOUTlpQFuBE4M04PnANeZ2RYze5podtGsOp93DnCZmW0BMLN14f0hM4treawCdpc0osV7\nc8/ZcWImjjokd+HmZnHvuTsUrTpdN2Yy7DpcjJ+YWnrGVYSWF4TqklC9VPT7K87f3sbMtkp6Gdgn\n2O+tODf2dg34uSQD/iXxeQcBH5B0KfAG8Fdmtqzi8z4BPBQLeCu4ODs9gU+ncjpFEQUachvm3mBm\nM2scS1Mqulaboc49NoSo9wWWSnrczO4m0suxRKszvg+4QdK7w/RhJB1GFDY/ecg7SomHtZ22kIcw\n7FAeYBGTwjr1b1okYckrRYw+FDDMnaZU9PY2knYF3gFsHOrcOEQdwta38Ha4ux+42SLuB7YB48K1\nJ4e2Z5rZk1ncnIuzUzgqF8qAcpfwbJacekJOjtlD44ok0suA6ZIOkLQbUYLX4oo2yTLTnwR+ETzd\nxcDckM19ADAduF/SKEljACSNIvKCHw3n/wQ4IRw7CNgN2CBpL+BnwIVmltnyii7OTkuUZYw2ppeL\nkSRx77l1iug9Fwkz2wqcR5QdvRq4wcxWSbpE0mmh2dXAPpL6gL8ELgjnrgJuAB4DbgfODZnaE4Bf\nS3oEuB/4mZndHq61EHi3pEeJks/mBaE/D5gG/E2ixHW6NTGHwMecnaY9rFiYBzavTi1qg2OG1102\n0KnNa9vWNxSSbzYxDDw5LAuKNv5cNMzsVqL1HJK2ryS23wBOr3HupcClFbangCNrtH8T+JMq9r8F\n/rbRvtfDPWfHcZw24g84TjO4ODuFoJESnq165mULbbcy9uxeXza4QDuN4uLsZEIRxp4rw7tFzNiG\nfGTCO43jAu00gouz0xRFEGPwH8QscO85O/zv0UmLi7PjVMFD2zviAu04ncXF2XEKiIe2i4t7z04a\nfCqV4/QIrUyrAp9alSW9PMVq+K67MGHfUd3uRu6p6zlLWihpXZh4HduuT0y2fkbSw8E+VdLriWPf\na2fnHSdJM1XC8pAUViR6VVDagT/oOEORJqx9DTA7aTCzT5nZDDObAdwE3Jw4/GR8zMzOzq6rTt4p\nQpJYI55jp8adm/13aya07SU984ULtFOLuuIcVuPYWO1YWBfzvwE/zrhfTskZMaG1sFa1+tpOZ3Dv\nOVtcoJ1qtJoQ9gFgrZmtSdgOkPSQpF9J+kCtEyXNl7Rc0vL16/1pvsx0w1vzEqG1yeL7cIHOFhdo\np5JWxfkMdvSaB4B3mdl7iYqM/0jSntVONLMFZjbTzGaOH1+YVVAcihG+TlLvh2+ocee8T6nyrO3y\n4ALtJGlanMPamH8EXB/bzGyLmb0Yth8AngQOarWTjgONlfB0hsa953ziAu3EtOI5fwh43Mz6Y4Ok\n8ZKGhe13E62R+VRrXXSKint15ccFOntcoB1IN5Xqx8A9wMGS+iWdFQ7NZedEsA8CK8JamDcCZ5tZ\n1WQyx+kWjc717URou5WhgmYfgjxz2yk6kmZLekJSn6QLqhwfEab+9km6T9LUxLELg/0JSadUnDcs\n5E79R8J2taRHJK2QdKOk0fU+oxXqFiExszNq2P9HFdtNRFOrHGcnvIhFOfHvNXt6uUhJWkKU9rvA\nSUA/sEzSYjN7LNHsLOAlM5smaS7wdeBTkg4lcjAPA94J3CHpIDOL/5DPB1YDyZypvzCzV8Jnfws4\nD7is1me0en9evtPJlG4nizVTiATqFyPJe2JYs2TlPbuQZI8/8NRlFtBnZk+Z2ZvAdcCcijZzgEVh\n+0bgxDAFeA5wXciTehroC9dD0mTgD4GrkhdKCLOAPQCr8xkt4eU7nZ6g7J7Ia9vWe7WzElLGv9vd\nhu/KpAl7p20+TtLyxP4CM1sQticBzyaO9QPvrzh/exsz2yrpZWCfYL+34txJYfs7wF8DYyo7I+kH\nwKnAY8AX63xGS0++7jk7XWXEhJ3+/jPD5zqnw73nfNPjHvSGeMpteC1IHKvmnVrFfq02Ve2SPgKs\nC7ONdm5g9hmiMPhq3g5dp+lHw7g4Oz1JMwtAlDW0nSUu0O2hxwW6Fv3AlMT+ZOD5Wm3C9N93EFW8\nrHXuscBpkp4hCpOfIOnfkhcM49LXA5+o8xkt4eLs5IKRB+7X8DlZl/Aseli4lalrWWZuu0C3Bxfo\nnVgGTJd0gKTdiBK8Fle0WQzMC9ufBH5hZhbsc0Om9QFE037vN7MLzWyymU0N1/uFmf2JIqbB9jHn\njwKP1/mMlvAxZ8dpgImjDul60pvTu5RxDLpZwvjuecASYBiw0MxWSboEWG5mi4GrgX+V1Efkzc4N\n566SdAPR2PFW4NxEpnY1BCwKFS8FPAKcE45V/YxWcXF2SsGWtZvaOn7dCQY2r+5q6LzV9Z6T+PSq\n9uEC/TZmditwa4XtK4ntN4DTa5x7KXDpENe+C7grbG8jCnlXa1fzM1rBw9qO0yB5HnvOU1U2F5D2\n4Q8+5cfF2ek4g2OGN31urfraaaj8QavmJRZ93LlVsq4a5gLdPlygy42Ls9MQRRhvbbYQSSO495we\nF+j24QJdXlycnczJk4D7XOfG8ZrbxcIFupy4ODtOBWlD23n2nlvFw9vFYtirgy7SJcPF2alJ3sKj\nTnry+N25QLcfF+jy4FOpnLaS95rPe2hcS15imec9Zzm1KsanWLWfvE+1Gr7rbkweN6V+wx7HPWen\nI+RlHLOXhCGP3jO4B90JeunvvKy4ODu5Y9S09KU8sy7hGdOIt+9jz43jAt1+XKCLjYuzUxq2rN3U\n7S6UEhfo4uICXVxcnJ1Skpzr3InpVHn1nvMa2o5xgW4/LtDFpK44S1ooaZ2kRxO2r0p6TtLD4XVq\n4tiFkvokPSHplHZ13Ck+IyaM6nYXgNrLRzaayJZXgc6CvOQMOM3hAl080njO1wCzq9i/bWYzwutW\nAEmHEq3IcVg4558l+aOxkyva+UOVR4F279kBF+iiUVeczexu0i8cPQe4zsy2mNnTQB8wq4X+OY6T\nE9rpPbtAd4ayCbSk2SFK2yfpgirHR0i6Phy/T9LUxLGdorySpkj6paTVklZJOj/R/khJ90haKenf\nw/KRSBouaVGwr5Z0YRb31sqY83mSVoSw99hgmwQ8m2jTH2w7IWm+pOWSlq9f7yGzslFr7m8WP8Kt\nLH7RKM3M0W7We86j112JC3TxKUs1sRCV/S7wYeBQ4IwQvU1yFvCSmU0Dvg18PZxbK8q7FfiimR0C\nHAOcm7jmVcAFZvYe4Bbg/w3204ERwX408LnkQ0CzNCvOVwIHAjOAAeAfgl1V2lq1C5jZAjObaWYz\nx4/PttCB4zRK1sU28ia0eQ9tx7hAd44SCPQsoM/MnjKzN4HriKK3SeYAi8L2jcCJkkSNKK+ZDZjZ\ngwBmtglYzdsO5sHA3WF7KfCJsG3AKEm7AnsAbwKvtHpzTYmzma01s8GwAPX3eTt03Q8kS79MBp5v\nrYuO0zrdWAAjbwKdFe1ODnOB7hwFF+g0kdrtbcxsK/AysE+ac4P3+17gvmB6FDgtbJ/O21p3I7CZ\nyFH9PfD3ZpZ2KLgmTZXvlDTRzAbC7seJOg2wGPiRpG8B7wSmA/e32knH6SYjdxnftOeZtrxnJ4Q8\ny1Kq7SjtmcTLfHaOTpf7HLHrCPYfd1Da5uMkLU/sLzCzBWE7TaS2Vpshz5U0GrgJ+IKZxV7wnwJX\nSPoKkda9GeyzgEEizRsL/B9Jd5jZU7Vvqz51xVnSj4HjiP6R+oGLgeMkzQg38wzwOQAzWyXpBuAx\notj9uWbm/8OcrrBl7eaa07U6+YMUC29Za3C3CxfozpHjetwbzGxmjWNpIrVxm/4Qdn4HUYJzzXMl\nDScS5h+a2c1xAzN7HDg5tDkI+MNw6I+B283sLWCdpN8AM4GWxDlNtvYZZjbRzIab2WQzu9rMPm1m\n7zGzI8zstIQXjZldamYHmtnBZnZbK51zeoMRE8a0dH6yhGcrVcLa6QlCJNKVHnI1W1HoxNznnApG\nKSlgotgyYLqkAyTtRpTgtbiizWJgXtj+JPALM7NgnxuyuQ8gRHnDePTVwGoz+1byQpL2De+7AP8L\n+F449HvgBEWMIkoke7zVm/MKYY6TgixX1ooFuRuinHVimAt0+SiKQIcx5POAJUSJWzeE6O0lkuKx\n4auBfST1AX8JXBDOXQXEUd7beTvKeyzwaSKxrSyydYak3xIJ7/PAD4L9u8BoouHdZcAPzGxFq/fn\nS0Y6qWl3WHbkgfu1bSELp9h4iNupRiiAdWuF7SuJ7TeIkreqnXspcGmF7ddUH4/GzC4HLq9if7XW\nZ7SCe85O28nLNJ5uZGznkSJ6z+AetNNbuDg7XWFwzPBud6GqJzbUuHOWoe2y0UmBdpF2egEXZ8fp\nQfISzWgWF2in7Lg4Ox2jGysbJZeOzAL3nmvT6e/XBdopMy7OTttoZwJZO+trt3tKVZlxgXacbHBx\ndkpHI3OdezkDuF2hbRdox2kdF2enp8giY9tD2/nDBdopGz7P2XF6mCzrbSdpd+3tasQC3cvRkCIw\nfNjuTBw9vdvdyD3uOTstM/DqGgZeXZPpNUdN26+h9lkXL6knLO4916cbCYDgXrRTDlycnczIWqCd\nztDOaVUu0I7THC7OTku0Ksi1Vo3KknrTqZoNg7r3nG9coJ0i4+LsdJyi/Gj20pSqMnrP4BXFnOLi\n4uz0HFnW2HbvOR3dFGgozgOh48S4ODuZ4uPOTi1coB0nPS7OTilppBAJ1B53ThPaLov33Il623kQ\naBfp8iBptqQnJPVJuqDK8RGSrg/H75M0NXHswmB/QtIpCftCSeskPVrlep8P7VdJ+kawTZX0emL9\n5+9lcW8+z9npCO2aT+s4zeDrQxcfScOA7wInAf3AMkmLzeyxRLOzgJfMbJqkucDXgU9JOhSYCxwG\nvBO4Q9JBZjYIXAP8E3BtxecdD8wBjjCzLZL2TRx+0sxmZHl/dT3nak8Rkr4p6XFJKyTdImmvYG/L\nE4STT9KEsNtZXztPlOXBoxe85xj3oAvPLKDPzJ4yszeB64jEM8kcYFHYvhE4UZKC/Toz22JmTwN9\n4XqY2d3Axiqfdw5wmZltCe3WZX1DSdKEta8BZlfYlgKHm9kRwG+BCxPHnjSzGeF1djbddMrOiAlj\n2nr9yulUjSSF9VLWdqfIk0C7SOeacZKWJ17zE8cmAc8m9vuDjWptzGwr8DKwT8pzKzkI+EAIj/9K\n0vsSxw6Q9FCwfyD13Q1B3bC2md2djNMH288Tu/cCn8yiM045GHh1TdPl+UYeuF/qal+b+17YoZLY\na0++wMgDG6sslmTYq4Mt/VCP3GV84ddJhs4NQXSjxGctPMzdOYbvsjsTRx2StvkGM5tZ45iq2Cxl\nmzTnVrIrMBY4BngfcIOkdwMDwLvM7EVJRwM/kXSYmb1S53pDkkVC2J8CtyX2Uz1BSJofPw2tX5+P\np2jHcTpLXjxocC+6gPQDUxL7k4Hna7WRtCvwDqKQdZpzq33ezRZxP7ANGBdC4y8CmNkDwJNEXnZL\ntCTOki4CtgI/DKb4CeK9wF8CP5K0Z7VzzWyBmc00s5njx+fj6dnpLINjhne7C6lJ6+H52HPj5Emg\nwceiC8QyYLqkAyTtRpTgtbiizWJgXtj+JPALM7NgnxuyuQ8ApgP31/m8nwAnAEg6CNgN2CBpfEhO\nI3jS04GnWr25psVZ0jzgI8B/DzdLu54gnPKQtx/iSjy02R3y9nfhXnT+CWPI5wFLgNXADWa2StIl\nkk4Lza4G9pHUR+QwXhDOXQXcADwG3A6cGzK1kfRj4B7gYEn9ks4K11oIvDskR18HzAva90FghaRH\niJLOzjazagllDdHUVCpJs4EvAf/VzF5L2McDG81sMMsnCMdphi1rNw2ZaDZs01sNee97aFwqEfGx\n5/Lgy1DmGzO7Fbi1wvaVxPYbwOk1zr0UuLSK/Ywa7d8E/qSK/SbgpoY6noI0U6mqPUX8EzAGWFox\nZaotTxCOkwX1FsDIkl4XtWbIm/ecxL1op9Okydau9hRxdY22bXmCcHqTUdP2Y3Nftus0O/kmTxnc\nlbgX7XQSL9/ppKJXionA0D++jQhHGbznboTn8+xBg49HO53BxdlpinrVwYqyAEaWK1Q52ZF3gQYP\ndTvtxcXZcRrEvefOUBSBdpF22oGLs9N26oXER0wYldlnpa0uVo8sxxXLINDdoggCDS7STvb4qlRO\nVdrtLXWqXGLldKotazdn+jCQlqJPr+rmtKo8J4lV4klj9dmFXf2BNQXuOTsdI6/i1My4c1HEoiwU\nxYOOcU/aaRUXZ8epQdbej3sLrVE0gQYXaad5XJwdp0ma8Z6LLNB5iHwUUaDBM7udxnFxdgpNEYuU\nFFmg80CRBdo9aSctLs5O22h0rnOcuNXKmsxpaKSMZ73Qdq+NPefBe4biCnSMi7RTDxdnx6HzxUjc\ne26dogs0uEg7tXFxdjpOIz+qo6a114vOgma9Zxfo1imDQIOLtLMzLs5OV2lkycZm2bJ2U0vnt3PO\nahEFOi+h7ZjXbYOLdI8iabakJyT1SbqgyvERkq4Px++TNDVx7MJgf0LSKfWuKelqSY9IWiHpRkmj\ng/1sSSvDCo2/lnRoFvfm4tzjlOVHLQtaCW23MvZcRIHOI2X6W3aRro+kYcB3gQ8DhwJnVBHGs4CX\nzGwa8G3g6+HcQ4G5wGHAbOCfJQ2rc82/MLMjzewI4PfAecH+IzN7j5nNAL4BfCuL+3NxdkpHViU8\nO0nRBDpv3nNMmQQaPMO7DrOAPjN7yszeBK4D5lS0mQMsCts3AidKUrBfZ2ZbzOxpoC9cr+Y1zewV\ngHD+HoAl7YFRsb1VXJydhinKilND0UjGNqQLbbeauV00gc4rZRPomB4V6XGSlide8xPHJgHPJvb7\ng41qbcxsK/AysM8Q5w55TUk/AF4A/gD4x4T9XElPEnnO/7OJ+9wJr63tdISBzauZOOqQbncj9xS9\nBndeKFI97kZJCnQRa3jvol0b+W42mNnMGsdUxVbptdZqU8tezWHdfk0z+0wIff8j8CngB8H+XeC7\nkv4Y+F/AvBp9To17zo6ToNUpVVkIgnvQ2VBWDzpJj3rTMf3AlMT+ZOD5Wm0k7Qq8A9g4xLl1r2lm\ng8D1wCeq9Ok64GMN3kdVUomzpIWS1kl6NGHbW9JSSWvC+9hgl6QrQqbbCklHZdFRp5iUIQQe00kv\npQgCXQQPvxcEGnp2bHoZMF3SAZJ2I0rwWlzRZjFve7GfBH5hZhbsc0M29wHAdOD+WtcMujYNto85\nfxR4POxPT3zeHwKZ/Oil9ZyvIcpoS3IBcKeZTQfuDPsQZblND6/5wJWtd9MpC8kf9OQPSbuXcWx1\nOlUjZBVOLYJAF4EyTbVKQ68IdRhDPg9YAqwGbjCzVZIukXRaaHY1sI+kPuAvCTplZquAG4DHgNuB\nc81ssNY1icLgiyStBFYCE4FLwmecJ2mVpIfDZ7Qc0oaUY85mdndyflhgDnBc2F4E3AV8KdivDU8n\n90raS9JEMxvIosNO7zFq2n5tqaHdzNrOw14d7OiPno9BZ0eZx6FrUfTx6XqY2a3ArRW2ryS23wBO\nr3HupcClKa+5DTi2xnXOb7jjKWhlzHlCLLjhfd9gT5NB5zi5JYtSnlmKwMhdxrsXnRG95EFX0gve\ndJloR0JYmgw6JM2P0+PXr+/d/zBl4ncbfpvZtdq9+EUnyNpLc4HOhl4WaOidsHfRaUWc10qaCBDe\n1wV7mgw6zGyBmc00s5njx/dWqKmMxMLcqkDHK1PlmW6GB/Mm0EUNuffaOHQtkkLtYp0vWhHnZBbc\nPOCnCfuZIbvtGOBlH2928kqtYiRZrVLVjjFOD3Nnhwv0jrhI54e0U6l+DNwDHCypX9JZwGXASZLW\nACeFfYgG0p8iKof2feDPM++1k2uyDG83S7tLeDbiPbcrCckFOhtcoJ08kjZb+4wah06s0taAc1vp\nlFMsmhHjbmTOblm7qRBh80aIBbpb4eWyPCDEAt1r2dxOfvHynU7XGRwzPLMwcpYM2/TWkEtaNjKt\nag+Na6uH1m2RLgu9ON2q4wyWc1pX1nj5TqftxFXCBjavbvoao6Z59nYafDy6dTzM7eQBF2en52l0\nhaokefUAOiHSZX4I8Gxup9u4ODttIQ9JYVmQdbi90yFT96RbwwXa6RY+5uw4LdJoSc92jz9XIynQ\nrY5L95rYe7KY0w3cc3bqMtRYcTMeci1xqKxz3Y4qYZ1cAGMouvlDH3vTjXrVve6FuxftdBL3nJ2u\nMjh6WC7GbYdaBKNe1jZ0fkGMLOllwW0U96KdTuGes1MYypCxncR/4IuLe9FOu3FxdhoinhaVhmaT\nwopaKKSZCIALdHHxjO58I2lvSUslrQnvY2u0mxfarJE0L2E/WtJKSX2SrpCkoa4raaykWyStkHS/\npMMT1zpf0qNh3ecvpOm/i7PjpKCdRVJcoIuNC3RuuQC408ymA3eG/R2QtDdwMfB+YBZwcULErwTm\nA9PDa3ad634ZeNjMjgDOBC4Pn3E48Gfh+kcCH5E0vV7nXZyd0tJofe1W5jvHNDt+7gJdbNyLziVz\ngEVhexFcoWitAAAZIklEQVTwsSptTgGWmtlGM3sJWArMDist7mlm94SS1Ncmzq913UOJxBozexyY\nKmkCcAhwr5m9ZmZbgV8BH6/XeRdnpyM0Eg4fispx5zKNQ7tAFx8X6MwZJ2l54jW/gXMnxCsihvd9\nq7SZBDyb2O8Ptklhu9I+1HUfAf4IQNIsYH+iJZMfBT4oaR9JI4FT2XFZ5ap4trbTNZJ1jDtZX7vZ\nBTDSZG1Da5nb3ZgD7WSLZ3QPjQatkf/rG8xsZs1rSXcA1Z7QL0rbnSo2G8I+FJcBl0t6GFgJPARs\nNbPVkr5O5JW/SiTiW+t1zMXZ6SgDm1czcdQh3e6G47QdF+n2Y2YfqnVM0lpJE81sIISp11Vp1g8c\nl9ifDNwV7JMr7M+H7arXNbNXgM+EzxbwdHhhZlcDV4djf8eOXnlVPKzt5JpqhUjaGcquN+6c9om/\nlbnb/mNeLjwS0jUWA3H29Tzgp1XaLAFODpnWY4GTgSUhXL1J0jFBaM9MnF/1upL2krRbsH8WuDsI\nNpL2De/vIgp9/7he512cnaZJM1WqLDW2m8EF2onxhLGucBlwkqQ1wElhH0kzJV0FYGYbga8By8Lr\nkmADOAe4CugDngRuG+q6RIlfqyQ9DnwYOD/Rl5skPQb8O3BuSD4bEg9rO4WkTIlgtfDx5/Lhoe7O\nYWYvAidWsS8n8mzj/YXAwhrtDq9ir3Xde4imXFXrywca6Tu45+zkjFolNPNEI4lrrZYm9R/xcuKe\ntFMPF2enKyQXv6iW2dzNKmFZzHdOkoVAu0iXExdopxZNi7OkgyU9nHi9IukLkr4q6bmE/dQsO+w4\nWdDq6lSdmvaVxAW6nLgX7VSjaXE2syfMbIaZzQCOBl4DbgmHvx0fM7Nbs+io4xSZrFbecoEuLy7S\nTpKswtonAk+a2e8yup5TQpqtEtaOdZ2zoFHv2QXaSYOLtAPZifNcdpy3dV5YmWPhECuBzI9Lsq1f\n73+IZaaI06myHnfOGhfo8uMi3du0LM5h0vVpwP8OpiuBA4EZwADwD9XOM7MFZjbTzGaOH+8/NE5v\nkJX3DC7QvULZRHrb1kG2rN2c6tXLZOE5fxh40MzWApjZWjMbNLNtwPeJlslynO0MbF69fTv5o5Om\nbnXeaCYxLGuBdpHuDcom0s7QZCHOZ5AIaYdaozEfJ1qRw3GcNuIC3Tu4SPcGLVUIC8tfnQR8LmH+\nhqQZRCt4PFNxzCkx/RveXnlt8ri6K6Llni1rN6cqipJ2taodzmlh5apaeEWx3sKrjZWblsTZzF4D\n9qmwfbqlHjk9z4gJo4Iwjml5PvJQNLt0ZFa0S6DBi1v0Ei7S5cQrhDltIelFZ0Fep1PFNFuUJMvx\n5yT+Q917eLi7XLg4O01ROT2qGTGuV8IzD3QiY7SdAu0i3Xu4SJcDF2enI8Ri3mwhkiLQSknPdgk0\nuBfdq7hIFxsXZ6dtZB3adprHvejepVdFWtLekpZKWhPeaxXEmhfarJE0L2E/WtJKSX2SrpCkYP+m\npMdDoa1bJO0V7LMSa0o8IunjiWstlLROUurZSy7Ozk4kw81OY+TVe45xke5delCkLwDuNLPpwJ1h\nfwck7Q1cDLyfqCbHxQkRvxKYT7RG83RgdrAvBQ43syOA3wIXBvujwMyw3sRs4F8kxUnX1yTOT4WL\ns1MYupUU1slKRZ0QaPBQdy/TQyI9B1gUthcBH6vS5hRgqZltNLOXiIR3dqjXsaeZ3WNmBlwbn29m\nPzezreH8e4HJwf5awr470XRiwrG7gY2NdN7F2UlNluPFaauEdXOqU7O0upxkJwXaRbp3KYhIj4vX\nYAiv+Q2cO8HMBgDC+75V2kwCkuNv/cE2KWxX2iv5U+C2eEfS+yWtAlYCZyfEumFamufsONCeseV4\nrnMrdHP6VTOFSXY4vw1zoGvhc6N7m+T33omHNXtrWyP1CzaY2cxaByXdAVT7j35Ryuuris2GsCc/\n+yJgK/DD7Q3M7gMOk3QIsEjSbWb2Rsq+7ICLs9NW+jc821PVwrKkkwINLtJO8b57M/tQrWOS1kqa\naGYDIUy9rkqzfuC4xP5k4K5gn1xhfz5x7XnAR4ATQ9i7sl+rJW0GDgeWp76hBB7WdgpF1t5wOyuQ\ntRrehs6FuJN4uNspCYuBOPt6HvDTKm2WACdLGhsSwU4GloQw+CZJx4Qs7TPj8yXNBr4EnBaqZBLs\nB8QJYJL2Bw4mKmHdFC7OTsco4rrOeaAbAg0u0k7huQw4SdIaojUgLgOQNFPSVQBmthH4GrAsvC4J\nNoBzgKuAPuBJ3h5b/idgDLA0TJv6XrD/F+ARSQ8DtwB/bhaFIiT9GLgHOFhSv6Sz6nXew9pOV3lt\n23pG7jIeiKqEdUuI2kWrY8/br9PhEHcSD3c7RcTMXgROrGJfDnw2sb8QWFij3eFV7NNqfN6/Av9a\n49gZqTsecM/Z6TiNZn1XZmynCW23Ixms24u/d/vBJfak3Zt2nPbj4uy0nV6vFJbF2PP2a+UksuAi\n7TjtxcXZyR1pwsB5X6WqkjIKNLg37TjtwsXZyS3NTl0qmnA3w7BXB3Ml0uDetONkiYuz0xKthKxr\nVQlLSzdEuJVx5yy95+3XzJlAg3vTjpMFLs5OIUhbxjPvXnOvCHSMC7XjNEfLU6kkPQNsAgaBrWY2\nM6z0cT0wlWgS9n8LRcWdgpH0brPgdxt+y/7jDsrserEYv/bkC7kX5nbSzalWaUkKtE/L6l22bXmL\n1558odvdyD1Zec7Hm9mMRA3Uukt1Ob1FuzO2mxXmbiys0Q7vGfI5Dl0L96gdZ2jaFdZOs1SXU1Cy\nrvSVXD86794fdH++cz2KItAxSaF2sXaciCzE2YCfS3ogsZxX3aW6JM2PlwFbv95DXL1G2kIknV5s\nolO0y3vefv2CCXQSF2rHyaZ857Fm9rykfYlqjT6e5iQzWwAsADj66KN2WtXDKS7PrY1K006asHfT\n1xgcM3wnARsxYUxbF6roNFmV9qx5/SDQRYhG1KJSoH2s2ukVWhZnM3s+vK+TdAswC0izVJdTQmJh\ndvJDEZLF0uJi7fQKLYW1JY2SNCbeJlpu61HSLdXllBwX6vq0O7y9/XMKlCzWCD5e7ZSVVsecJwC/\nlvQIcD/wMzO7nRpLdTnlphkxbrQQSZbZ1a1cK8uksE4JNBR7LDoNlWLtgu0UlZbE2cyeMrMjw+sw\nM7s02F80sxPNbHp4dxfK2T6dytd13plOC3TZRTqJC3ZvImlvSUslrQnvY2u0mxfarJE0L2E/WtJK\nSX2SrpCkYP+apBVhLeefS3pn4pzjgn2VpF9VfM4wSQ9J+o80/fcKYU5bacabrhwfLWvGdrfpNZFO\nUk2wXbRLR916G6Fg1sXA+4nypS5OiPiVwHxgenjNDvZvmtkRZjYD+A/gK+FaewH/DJxmZocBp1d8\n3PlA6qpOLs5ObmlnJnM3io/Uo5Pe8w6f26MCXQ0X7VKRpt7GKcBSM9sYqlguBWaHROY9zeweMzPg\n2vh8M3slcf4oounEAH8M3Gxmvw/ttidCS5oM/CFwVdrOuzg7TdNq1a/kXOdkIZJ65FFYs6KbAu0i\nXRsX7a4xLq6HEV7z65+ynbr1NoBJQPKHrD/YJoXtSjsAki6V9Czw3wmeM3AQMFbSXaHux5mJ878D\n/DWwLW3ns5jn7DiFyswus7i3ShnmRneSegLtU712ZtuWt9jcl7q29oZEWeidkHQHUK1270Upr68q\nNhvCHm2YXQRcJOlC4Dyi0PiuwNHAicAewD2S7iUS7XVm9oCk41L2y8XZaT/Prd3YUkESiMadkxnS\nZStIkqTdxUlS9cFFOhPSeNcu4M1jZh+qdUxSmnob/cBxif3JwF3BPrnC/nyV838E/IxInPuJHiY2\nA5sl3Q0cCRwFnCbpVGB3YE9J/2ZmfzLUvXlY28kV7f6hKorX3K3wdiUe7m4/tULmHkJvmTT1NpYA\nJ0saGxLBTgaWhDD4JknHhCztM+PzJU1PnH8aEFfF/CnwAUm7ShpJlGS22swuNLPJZjYVmAv8op4w\ng3vOTofp3/Ask8dN2cE2sHk1E0cd0vC1GvWeiyLMMXnwoGPck+4+zQp0D3vmlwE3SDoL+D0he1rS\nTOBsM/usmW2U9DVgWTjnksTU33OAa4hC1LeFF8Blkg4mGj/+HXA2gJmtlnQ7sCIcu8rMHm228y7O\nTleot67z4OhhUdnJKjW2k6QV6KIJc15xkS4evep1m9mLROO/lfblwGcT+wuBhTXaHV7F/okhPvOb\nwDeHOH4XUdi8Lh7WdjpCFgljzc53LrIw5yW8XYmHux2nvbjn7BSeWHwrPeh2inInC6PkKbxdiXvS\njtMeXJydrjLw6homjo7yK17btp6Ru4xv+lpF9pCLTtKLdqF2nNbxsLaTimTBkF6nG+VE8xreroaH\nvB2ndVycnZbJugBJZXZpMqTby3W2iyTQ8LZIu1A7TuO4ODsdJ23ZzzyGR3v54aAVXKQdpzF8zNnp\nGENVCmtkrnNltbBOkQdhznNyWBp8bNoZ3PwWrzzwXLe7kXvcc3bawtp19cXT13XubTzs7Ti1cXF2\nMicW5jQCXUmt1akqvcVOe7F58Jpjijb2nAYXasfZERdnpyEa9XbTCHSeM8FHTBiVK2HuBVykHacF\ncZY0RdIvJa2WtErS+cH+VUnPSXo4vE7NrrtO3mnGW65GnLE91Lhku0XTRbm7JL1pF2un12jFc94K\nfNHMDgGOAc6VdGg49m0zmxFet7bcS6fQJAU7nnaVNmM7SacSodxbzicu1E4v0bQ4m9mAmT0YtjcB\nq4FJWXXMyTfNiGs9BjavbvicLEXURbk4uFA7ZSeTMWdJU4H3AvcF03mSVkhaGNbIrHbOfEnLJS1f\nv75nlzTrebLI2G5VUF2Ui40LtVNGWhZnSaOBm4AvmNkrwJXAgcAMYAD4h2rnmdkCM5tpZjPHj+/N\nJc3KRlbjzZUZ28lx51qh7UbFNRZkF+Vy4ePUToykvSUtlbQmvNdyFOeFNmskzUvYj5a0UlKfpCsk\nqeK8v5JkUrQmp6Sxkm4Jjun9kg5PtN1L0o2SHg95Wv9Pvf63JM6ShhMJ8w/N7GYAM1trZoNmtg34\nPjCrlc9wykEzwt3oIvH1BLcsglzkIiSdxsW6p7kAuNPMpgN3hv0dkLQ3cDHwfiKtujgh4lcC84Hp\n4TU7cd4U4CTg94nLfRl42MyOAM4ELk8cuxy43cz+ADiSaBh4SFrJ1hZwNbDazL6VsE9MNPs48Giz\nn+Hkn6zqamc9nSopxGUQ5BgX5tZwoe4p5gCLwvYi4GNV2pwCLDWzjWb2ErAUmB10bE8zu8fMDLi2\n4vxvA38NWMJ2KNFDAGb2ODBV0gRJewIfJNJLzOxNM/vPep1vpXznscCngZWSHg62LwNnSJoROv0M\n8LkWPsMpIUOV8UzD4JjhpSzEUQ8X5mypFGgvJ9oZtr75Fi8+vTZt83GSlif2F5jZgpTnTjCzAYgS\nmCXtW6XNJCCZ3dofbJPCdqUdSacBz5nZIxWR7keAPwJ+LWkWsD8wGRgE1gM/kHQk8ABwvpkNGU5s\nWpzN7NeAqhzyqVNOKvo3PMvkcVN2sNWqsT04eljPejsuyp3BxTqXbDCzmbUOSroD2K/KoYtSXr+a\nhlktu6SR4donVzl+GXB5cFZXAg8RTTkeDhwFfN7M7pN0OVGI/W+G6pgvfNHDNDqm2ypr121mwr7Z\nhJd7wXt2Ue4uLtb5x8w+VOuYpLWSJgaveSKwrkqzfuC4xP5k4K5gn1xhf54o2fkAIPaaJwMPSppl\nZi8AnwmfLeDp8BoJ9JtZPJvpRqqMf1fi5TudrlNtOlWcsd3pB4huMzhm+PaXky88uaxwLAbi7Ot5\nwE+rtFkCnBwyrccSecRLQjh8k6RjgtCeCfzUzFaa2b5mNtXMphKJ+FFm9kLIyN4tXPezwN1m9koQ\n7WclHRyOnQg8Vq/z7jk7haEytF0W79mFuJi4Z517LgNukHQWUVb16QCSZgJnm9lnzWyjpK8By8I5\nl5hZnOV6DnANsAdwW3gNxSHAtZIGicT3rMSxzwM/DOL9FMHDHgoXZycTspjjPPDqGiaOnt7QOUUU\naBfjcuJinS/M7EUiL7XSvpzIs433FwILa7Q7vNJe0WZqYvseoilX1do9DNQcO6+Gi7PTFVrN2E6S\nV4F2Ee5tXKydVvAxZ6dtrB/YupOt0sOuVqM7rrFdbdy51g9cN4UwOU7sY8ZOLXy82mkE95ydthAL\n8/qBrYyf2Jk/s1gQs/aiXWidrHGv2qmHi7PTdtII9O82/Jb9xx2U6nr15jxXimk1sXbBdfLEDomO\nLtQOLs5OG6gWzm6V120De6i5BVJciJ0iEQu1i3Rv42POTkdICnY87lytLnfaGtv+w+WUHR+b7m3c\nc3ZySVzG87Vt6xm5y/hud8dxOkqZHz7fHHyL37/yQre7kXvcc3YypZmQdrWM7WpUVgsr8w+Y0xsM\njh5W9eU47jk7NYmnNNWi0eUi6yWGNZIUFtPLC2I4+cUF1mkVF2enZbKoDjYUydB2tcQwF2gnS1xY\nnTzg4ux0haFWqIrLeNZaPrIa8Q+qi3Q5ccF0eg0XZ2cH4qpcQ5F2jDgNzZTxHGpalYt0Y7joOU4+\ncXF2Okqtcef+Dc8yedyUmuc1mrXtouM4TpHxbG0nM7IoPlJtbedq9No6z47j9BYuzk4uiYuRDJUx\n7gLtOE4tJO0taamkNeF9bI1280KbNZLmJexHS1opqU/SFZKUOPZ5SU9IWiXpG8F2kqQHwjkPSDoh\n0f6MYF8h6XapfrlDF2enazSa5V1tPNwF2nGcGlwA3Glm04E7w/4OSNobuBh4PzALuDgh4lcC84nW\naJ4OzA7nHA/MAY4ws8OAvw/tNwAfNbP3APOAfw3tdwUuB443syOAFcB59Trv4ux0nMrwd6PzpR3H\ncVIwB1gUthcBH6vS5hRgqZltNLOXgKXAbEkTgT3N7B4zM+DaxPnnAJeZ2RYAM1sX3h8ys+dDm1XA\n7pJGAAqvUcH73hOI29UkFwlhDz740IY99hj5u273o0OMI3rC6hX8fstNL91vL93r/u268O9s45I/\n2/JvaVex2V3S8sT+AjNbkPLcCWY2AGBmA5L2rdJmEpCcftIfbJPCdqUd4CDgA5IuBd4A/srMllVc\n9xPAQ7GASzoHWAlsBtYA59brfC7E2cx6pniypOVmNrPb/egUfr/lppfut5futZ2Y2eysriXpDmC/\nKocuSnuJKjYbwg6Rbo4FjgHeB9wg6d3Bw0bSYcDXgZPD/nAib/u9wFPAPwIXAn87VMdyIc6O4ziO\n0yhm9qFaxyStlTQxeM0TgXVVmvUDxyX2JwN3BfvkCvvziXNuDmJ8v6RtRFGV9ZImA7cAZ5rZk6H9\njNDXJ0O/bqDK+HclPubsOI7jlJHFRIlZhPefVmmzBDhZ0tiQCHYysCSEwzdJOiaME5+ZOP8nwAkA\nkg4CdgM2SNoL+BlwoZn9JvEZzwGHSoojxCcBQy9cgItzN0g7XlIW/H7LTS/dby/daxm4DDhJ0hoi\nQbwMQNJMSVcBmNlG4GvAsvC6JNggCkVfBfQBTwK3BftC4N2SHgWuA+YFL/o8YBrwN5IeDq99Q5LY\n/wfcLWkFkSf9d/U6rxAmdxzHcRwnJ7jn7DiO4zg5w8XZcRzHcXKGi3ObkfRMKNv2cDxfL21ZuSIg\naaGkdWH8JbZVvT9FXBHK4a2QdFT3et4cNe73q5KeS4wznZo4dmG43yckndKdXjeHpCmSfilpdShT\neH6wl/L7HeJ+S/n9OvnGxbkzHG9mMxJzJOuWlSsQ1xDK2iWodX8f5u1SePOJyuMVjWvY+X4Bvh2+\n4xlmdiuApEOBucBh4Zx/llSk5bK2Al80s0OI5nSeG+6prN9vrfuFcn6/To5xce4OacrKFQIzuxuo\nrL9Z6/7mANdaxL3AXmH+YWGocb+1mANcZ2ZbzOxpoqzPWW3rXMaY2YCZPRi2NxFN/5hESb/fIe63\nFoX+fp184+Lcfgz4eVilZH6w7VBWDqhWVq7I1Lq/WqXyysB5IZS7MDFMUZr7lTSVqMLRffTA91tx\nv1Dy79fJHy7O7edYMzuKKOR3rqQPdrtDXWSoknhF5krgQKL5iwPAPwR7Ke5X0mjgJuALZvbKUE2r\n2Mpwv6X+fp184uLcZuJVSsLKJbcQhb3WxuG+IcrKFZla99cPTEm0S5bEKyxmttbMBs1sG/B93g5t\nFv5+Q13gm4AfmtnNwVza77fa/Zb5+3Xyi4tzG5E0StKYeJuoNNyjpCsrV2Rq3d9i4MyQ1XsM8HIc\nHi0yFeOqHyf6jiG637mSRkg6gChR6v5O969ZQtnCq4HVZvatxKFSfr+17res36+Tb3zhi/YyAbgl\n+j/PrsCPzOx2ScuIVjI5C/g9cHoX+9gSkn5MVDh+nKR+ooXLL6P6/d0KnEqUOPMa8JmOd7hFatzv\ncZJmEIU0nwE+B2BmqxQVuX+MKBP4XDMb7Ea/m+RY4NPASkkPB9uXKe/3W+t+zyjp9+vkGC/f6TiO\n4zg5w8PajuM4jpMzXJwdx3EcJ2e4ODuO4zhOznBxdhzHcZyc4eLsOI7jODnDxdlxHMdxcoaLs+M4\njuPkjP8LYVnWTntaWJwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118cf4278>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(8,4))\n",
"plt.title(\"Re($\\Omega$)\")\n",
"plt.contourf(np.real(omega),np.linspace(-2*np.pi*10e-4,2*np.pi*10e-4,20), cmap=\"PiYG\", origin=\"lower\")\n",
"plt.colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"Replicate Figure 2.2 (lower):"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x119598908>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAACeCAYAAABASB8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4XFWZ7n8vGZCEQICEGYEgIIMQQkS8tMogowqiKOG5\nLUPj5baCIN2NgHrVRukGcdYWjYKAjzK0GpuWMeAAl8sUIJCE2QAaQEKAkAiGkPDdP9bayU6dmmvv\nXXvX+X7PU8+pWrX32mudOme/9X1rrXfJzHAcx3GcQWOtfjfAcRzHcfLABc5xHMcZSFzgHMdxnIHE\nBc5xHMcZSFzgHMdxnIHEBc5xHMcZSFzgHMdxnIHEBc5xHMcZSFzgnIFH0r9L+nQO9d4laZes63Uc\nJxtc4JzSI+lJSe/t8tyJwLHAD7NtFQBfA87JoV7HcTLABc4ZdI4HrjWzv+VQ99XAfpI2y6Fux3F6\nxAXOqRQxmjtD0gOSXpF0kaRNJF0naamkmyRtkDrlUOAPNXWMkzRd0kuSFko6vZu2mNky4B7goO57\n5DhOXrjAOVXkw8CBwA7AB4DrgM8CEwh/06emjn0b8EjN+b8G/ghsCkwDviZp0y7b8hCwe5fnOo6T\nIy5wThX5rpk9Z2ZPA7cCd5rZfWb2GjAD2CN17HhgafJC0vsBzOx8M3vNzH4LPE0QSySdL+lWST+V\nNErS+nEyyV8l7VqnLUvjNRzHKRkucE4VeS71/G91Xq+bev0SMC71+nDgv5IXktYC1geek7Q7sIWZ\nvQt4mBApvgq8D/hFg7aMAxZ31w3HcfLEBc4ZdB4gRmeRdwAvpF7vDywys0eAfYAbY/n1wN+Z2etm\n9nyT+ncC7s+wvY7jZIQLnDPoXAu8B0DSKGB74ChJb4pr2L4PnBmPHQ8sic9fBjZsVrGktYE9gZk5\ntNtxnB4Z2e8GOE7OXAbMlrQOQdyeBOYS0poLga+YWZJ+XAysF5+vD7zYou7Dgd+b2TNZN9pxnN6R\nmfW7DY6TK5L+jSBmi4AjzezDDY6bDPyTmR0r6bPAE2Z2eXzvEuBrZjY3dfydwInpMsdxyoMLnDNs\nkHQB8JqZfb7FMXsDfwJOMLPlkq4FJgNPAT80s0uKaK/jOL3RcgxO0laSfifpIUnzJJ0WyzeUNFPS\nY/HnBrFckr4j6fG4GHdK3p1wnDbZjTA7siFmdoaZvcvM/qeZLY9lh5nZ5mb2Thc3p6pIOkTSI/He\nfFad99eWdGV8/05J26TeOzuWPyLp4FT5xdEsYW5NXRdIejhqwAxJ49uoq2n7usLMmj6AzYAp8fk4\n4FFgZ+CrwFmx/Czg/Pj8MMLCWxG+Cd/Z6hr+8Ic//OGP/B7ACIK5wSRgNGHm7841x3wS+EF8Pg24\nMj7fOR6/NrBtrGdEfO/dwBRgbk1dBwEj4/PzU/pQt6522tfNo2UEZ2bPmtm98flSgnPDFsARwKXx\nsEuBD8bnRwCXWeAOYLx79TmO4/SVvYDHzWy+hczEFYR7dZr0Pf0XwAGSFMuvsGCM8ATweKwPM7uF\nOpOxzOxGM1sRX94BbJm6Rr262mlfx3S0TCCGrHsAdwKbmNmzEEQQ2DgetgXw59RpC2KZ4ziO0x/a\nuS+vOiaK08vARm2e24x/IGT1mrUjF91oe5mApHWBXwKfNrMlQdjrH1qnbMhMFkknAScBjB07ds8d\ndtix3aY4ObBy5RtdnTdixOAspez2d1AFBulzqiL33XfvIjObmEVd40dsZq+H4eE1eNVenAcsSxVN\nN7Pp8Xk79+VGx7R1T6+HpM8BK4CftbhGvT/QnmdAtiVwcYHsL4GfmdmvYvFzkjYzs2djCnJhLF8A\nbJU6fUtgyDqh+IufDjBlyp522223ddkFJwteXjL0H6Yd1l9vdNP3R70yv616Riytf9zKcZM6blPC\n62M7O7fb30FVaPVZ5UG7n/+gkvwNjhmzzlOZ1WnL2fVNBw8pv+tvly8zs6kNTmvnvpwcs0DSSFav\nBW3rnl6LpOOA9wMHWByAa1FXx9doRTuzKAVcBDxkZt9IvXU1cFx8fhyr/f2uBo6Nsyn3Bl5OUpmO\nU2b6IQBF0g8B7/RLxqAx6pX5ZRH5u4HtJW0raTRhEsnVNcek7+lHAb+NwnQ1MC3OstyWYJhwV7OL\nSTqE4BB0uJm9WnONenW1076OaSeC2wf4GDBH0uxY9lngPOAqSScS1gx9JL53LWEm5eMEo9oTem2k\nM3wZsXR+T1Fcp6y/3uiBjuReXrK8cCFPRK4kN/phiZmtkHQKcANhxuLFZjZP0jnALDO7mhDI/FTS\n44TIbVo8d56kq4AHCenGk81sJYCky4F9gQmSFgBfNLOLgO8RZkrOjMNZd5jZP7aoa0j7eu13KRZ6\ne4qy//RyU292w+w1RQnFpilh8FOV0L9odbiK3KiJu9zTJH3YEWPX2sgapCgzu8ag4CPPTulv6M3E\nLw8GPVUJ/fvMXx87adinLZ3icLNlZ6AZ9cp8v6E2IBG5fgj662MnDdtorldGjRrNxhvX+ZvObBrL\n4OARnFMJPIrLD4/mnEHFBc7JlTLcwDxSaE0/09Rl+BsZDuTkRVm3Tkn7S7pX0lxJl8ZlB+lrvV3S\nSklHxdf7SZqdeiyT9EF6xAXOcRownKI46L/IudDlh6QRwH8AhxL8II+RtHPNYScCL5nZW4BvEjwk\nicdNA3YBDgG+L2lEozolrUWw/JpmZrsSkqfJ8oOkLecTZkwCYGa/M7PJZjYZ2J8wA//GXvvtAuf0\nTFE3xl7SlN1GcS5yxeIilxt5eFE2qnMjwrZUj8a6ZgLpPRg/RTAOWUh9jgKuq1k/1xUucI7jrMHL\nS5Z7NDd45OFF2ah8ETBKUrJk4SiiS4mkLYAjgR80aes04PI2+9UUn0XplIKV4ya1FaH1svC72xmV\ng774uxH9WBSexheI12fk6FFMfPOmQ994igmSZqVK8vairOsfaWYmaRrwTUlrE1KNyc4C3wLONLOV\n9fyMo+3j20ilL3vBBc5x2sBFrn/4koK2WdQHL8q65WZ2O/AuAEkHATvEY6YCV0RxmwAcJmmFmf06\nvv9RYIaZvd6yt23gKUqncvRjLG44UwZh97Rlz+ThRdmwTkkbx59rEzwpfwBgZtua2TZmtg1hnO+T\nKXEDOIaM0pPgEZxTAIPyDXy4RnHQ30XhaTxt2R05elE28o88Q9L7CUHUhWb221ZtjMsStgL+kFG3\n3YvSye4beq+elJ1GZkV7VCYMV5FL6LfIpamK0GXpRTlh3Jvt8D0+M6T8J7d+yr0oa/AUpeM4HdHv\nWZZpPHXpNMNTlM6wpBePyuGcqkxThgkoCcMpdTnqTSPZdOeNhr5xa/FtKTsewTmVpVd/yl5uhmW5\nsfebsgm9R3SNKdiqS5LOlfSopIcknRrLN5A0Q9IDku6StGvqnCclzYlWXenlDl3jAueUhiI3Ns0C\nF7lAmVKWCS50a1KkVVes63jChJG3mtlOBJcTCJtlzzaz3YBjgW/XtGG/aNmVyViiC5yTGf24yfUz\ninPWpGwiBy50KYq06gL4BHCOmb0BYGaJLdfOwM2x7GFgG0mbZN/dgAvcMKeom9Kg3mQ8iluTMkZz\n4EJHsVZdANsBR0uaJek6SdvH8vuBDwFI2gvYmrBAHII7yo2S7pF0Upf9XAOfZOJUnl7su6D3TVF9\n0slQyrJurpZBmIwyau2RbLZNnUkmlMOqK/5cG1hmZlMlfQi4mOBsch7wbUmzgTnAfay28drHzJ6J\ni8RnSnrYzG6pc422aRnBSbpY0kJJc1NlX5L0dGrvnsNS79UdjHScPOl3qrJsN/KyUFbhH9CIbpGZ\nTU09pqfe68SqizatuprVuYCwYwDADGA3ADNbYmYnxG1xjgUmAk/E9xKbr4XxnL066n0d2klRXkIY\nWKzlm8n+PWZ2LTQejOy1kY5TBVzk6lPWtCUMrNDVo1CrLuDXhH3dAN4DPAogaXw8FuDjwC1mtkTS\nWEnj4jFjgYOAVUFVt7QUuBgivthmfY0GI51hQq83sl5Sjf2O4sBFrhlVELpBFbs4ppbYaj0EXJVY\ndUk6PB52EbBRtOr6J+CseO48ILHqup5o1dWozljXecCHJc0B/p0gZgA7AfMkPUyYfXlaLN8E+L+S\n7ieI5zVmdn2v/e5lDO4USccCs4B/NrOXCAOMd6SOqTeQ6TilpdfxOPAxuVaUaYF4PQZhnK4eMdN2\nbU3ZF1LPlwEfaXDuucC57dQZyxcD76tTfjshAqwtnw/s3rITHdLtLMoLCbNkJgPPAl+P5e0MZIYD\npZPiDJtZixY932UznCpRxLfjXqM48EiuCMoczSUMelQ3HOgqgjOz55Lnkn4E/Ca+bGcgM6ljOjAd\ngtlyN+1wnDLjkVxryjrbspYyRXWjR49ki60n9rsZlaCrCC7uuppwJKsHAxsNRjpOYZQlinPapwoR\nHXhUVzXaWSZwOXA7sKOkBZJOBL4aPcMeAPYDTofGg5G5td4pJf2caJJQFpFbf73RpY9OykRVhA6q\nJ3ZFelGm3v+upL/WKT9KkkmaGl8fGBd4z4k/9689pxtapijN7Jg6xRc1Ob7uYKTjVJEsJp2Apys7\npSqpy4QypTDrkfKNPJAwlHS3pKvN7MHUYau8KCVNI3hRHl2z/Gtz4CZJO8RzGtYZxWt8nbaMA04F\n7kwVLwI+EBd670qYmdnzBEW36nIKpchvu1lEcVlSlZt1mahSRAeljuoK9aKMgnoBMHRnVvgy8FVg\nWVJgZvclC72BecCbJK3da6dd4BynBVl+K3eR646qCR30RewmJDPT4yPt51i0F+UpwNVm9mz6ApL2\nALYys9/QmA8D95nZa02OaQv3onRKycpxkzKJwHr1qUzIKlUJnq7shaqlLvNg5KgRTNx0vXpvLWqy\nzUxhXpSSNiesp9t3jcqltQjb8BzfoI1I2oWQGj2o0TGd4BGckwtluoFnlar0SK48VDGi6zNFelHu\nAbwFeFzSk8CY6I4yDtgV+H0s3xu4OjXRZEuCB+WxZvbH3robcIFzCqeE4xNt4yJXLlzo2qYwL0oz\nu8bMNjWzbcxsG+BVM3uLmb1sZhNS5XcAh5vZLEnjgWuAs83stqw67QLnlJYsd/jOcsKJi1z5SITO\nxa4+ffCi7JRTCFHf/0ntUrNxl3WtwsfgnGFDVuNxkP2YHJQrrVtlfJyuPkV6UdYcs26D8n1Tz78C\nfKVZPd3gEZyTG2W8YZc1kgO/IWeNR3WOR3BOX3h97KS2BCKr2ZR5kWUkBz7DMi8GKaobOWoEEzev\nO4vSqcEjOGfYkbVg5hHJDcKNuIwM56iuSKsuSafEMpM0IVW+vqT/lnS/pHmSTki9d76kufFxdBZ9\ndoFzhiVlFzkYjGijzAwnoUtZdR0K7AwcEy240qyy6iKsVzs/npu26joE+L6kES3qvA14L/BUzTVO\nBh40s90J6+S+Lmm0pPcBUwhbsL0DOENSz2GqC9wwpoh/7iyukeVsyjRVETkXunwZJlFdoVZd0Xrr\nyTrtMGBcrHddwjq7FQSB/IOZrTCzV4D7CWLaEy5wTt8ow3q4KogceDRXFAMsdkVbdTXie8BOhAXh\nc4DTzOwNgqAdKmlMTGnux5qLyLvCJ5k4HbF48Wp7uPHje/ZCLQVZLh+A7CeeJPhygmJJ/57L9AVj\nxAg1+t+bIGlW6vX0uLE0FGjVVa9hKQ4GZgP7A9sBMyXdamY3Sno78P+A5wlbtK1oUVdLPIJz2iYt\nbvVe50leacq8GPXKfI/mBoiKRHaLzGxq6jE99V6RVl3NOAH4lQUeB54A3gphrZ2ZTTazAwmi+lir\nDrfCBc7piXZErtlNoQxpSshva508Rc6Frj9UROxqKcyqq0U7/gQcACBpE2BHYH6ctLJRLN8N2A24\nsace4wLntEmR0Voj8o7iqiZy4ELXb6oidkVbdUk6VdICQlT3gKQfx2t8GfgfkuYANwNnmtkiYBRw\nq6QHgenA38f6e0JBoPvLlCl72m23Zeav6bRJJ/+UrQSu1Xhcs5twJwJQxKLvPIU074i17Dfa4ULt\n3/uYMevc02Qrm47Yffc97IYb/zCkfLNN18/sGoNCywhO0sWSFkqamyrbUNJMSY/FnxvEckn6Tlzg\n94CkKXk23qkOWaUpixiLy1NE84zmwMfnykI6svMvHf2jnRTlJQxdj3AWcLOZbU8IM5MV7IcS8rPb\nAycBF2bTTKeftJOeLEMKM0uqLnIudIPLiBFrrfqM0w9nKC0FzsxuIcykSZNeEHgp8MFU+WVxhswd\nwHhJm2XVWMeB4mZU5i1yLnROWWiUlatz3HHxmMckHZcq31PSnJi9+05cyN1Vtk/SmyXdKOkhSQ8m\nlmGSLooWXw9I+oWkursUpOl2kskmZvYsQPyZ7NvTzcI/Z0BoFcVVYTZlLSOWzq90NAcudE5bNMrK\nrULShsAXCVZaewFfTAnhhYSsXZLBS7J+3WT7LgMuMLOd4nUWxvLTzWx3M9uNMBvzlFadynoWZTuL\nCcOB0kmSZkmatWjR8xk3wxl0il4XV/VoDvB0ltOMRlm5NAcDM83sRTN7CZgJHBKzdOuZ2e1xWcFl\nrJnVazvbF70sR5rZTAAz+6uZvRqfL4EQ/QHr0HpRedcC91ySeow/E4Vte+GfmU1PFiROmDCxy2Y4\nZaOXsbiyRnEJec/gLErowKM6ZwiNsnJpmll2LahT3qzeRnXtACyW9CtJ90m6IJo6AyDpJ8BfCIvD\nv9uqU90KXHpB4HHAf6XKj4351b2Bl5POOdUk68kjWc4o64e7SRHLFIoSOXChGzAmJFmx+Dgp/aak\nm1Lb0aQftabLjejUyqubukYC7wL+BXg7MAk4ftUBZicAmxPW3bXcUqelF6WkywnbGkyIC/e+CJwH\nXCXpREIuNNnm/FrgMILb9KsEWxbHyY1+bIiatXdlPRKRKyqqTYucT2svN3rjtUZfghY1WwdnZu9t\nWKf0nKTNzOzZmqxcmgUELUjYEvh9LN+ypjzJ3DWqt1G2bxRwn5nNj+36NbA3YRF60o+Vkq4EzgB+\n0qhP0N4symPMbDMzG2VmW5rZRWb2gpkdYGbbx58vxmPNzE42s+3M7G1mNqtV/c7gMchpyoS8J58k\nFJm2TPCobljSKCuX5gbgIEkbxMklBwE3xCzdUkl7x/GxY1kzq9dJtu9uYANJybjV/sCD8bi3wKox\nuA8AD7fqlFt1OYWTdYTQTyPmoqLHfgqdi92w4DzgQEmPAQfG10iamthsxUDmywQRuhs4JwlugE8A\nPyZk7/4IXNesXkK2b348/kfAJ+M1VhLSkzdHOy/F9wVcGsvmAJsB57TqlFt1DWPaEZpeorFm9l2t\nbprd3MyLTlWmKVpk+xnpegqzc7K00dpz8q52501XDSkfNXEXt+qqwSM4py/kcZPsdyRXpMD2I6JL\n8KjOqQoucE5u9GMsrt/7xhUdRZZB6FzsnLLiO3o7Dem3v+TrYyf17ebdC4nIFSm2Rc+6rKVW5DyN\nmR9a+Vpf0/FVwiM4J1eaiWReN8F+R3EJRactYXVE1+8vBh7dVYs+eFEeET0lZ8c1e3+Xqut6SYsl\n/abm2pJ0rqRHo0/lqa365QLnlJqqpirT9OvbdhmEDlzsKkLRXpQ3A7ub2WTgHwgzMBMuAD5Wp43H\nE9bOvTX6VF7RqlMucE5fyTOVtXLcpNIIXT+iuYSyRHWwpti54JWKQr0oo8dkMoV/LCnnEzO7GVha\n5/qfICxNeCMeV28x+hq4wDm50+tYXq/jSmUROeiv0EG5xA5c8EpE0V6USDpS0sPANYQorhXbAUfH\nlOZ1krZvdYJPMhmmlGkSwMtLlre8ufU64aQfll7N6MdElFr6PTGlHj5ZpQ1WvIotfKDeOxMkpd2j\nppvZ9OSFpJuATeuc97k2r5ylFyVmNgOYIendhAXkDa3EImsDy8xsqqQPARcTfCsb4gLnFMLixa81\nXfg9HEUOyiV0UC6xAxe8DqmSF2W6XbdI2k7SBDNb1KiN8Tq/jM9n0MKHEjxF6VSMQUpXpul36jIh\nncIsSxozTW1K09OamVGoF6Wkt6RmWk4BRgMvtGjjrwnelADvAR5t1SmP4JzCyCKKy4JE5MogKLWU\nIaJLU+boLsGjvEyou0OMpKnAP5rZx83sRUmJFyUM9aK8hLAR6XWs6UVZb+eZDxPMll8H/gYcnUw6\nkXQrYb+3deMONiea2Q2xrp9JOh34K/DxVp1yL8phSqubQJ6LvHvxqEzIKrooo8ilKYvQ1VJWsWtE\nv0UvSy/KqTttYXddcvKQ8hF7f869KGvwCM4pFe1GcVm5nJQ5moM121Umsav93Zdd8Br9TfVb+Jx8\ncYFzCierVGWWVl5lFzooX/oyTdUEL6He31nZRc9WLGPl8w/2uxmVwCeZOD3x/DNLVj2ypN2bzOtj\nJ2V6My2jeNSSTEgpsxiXfbJKM+pNZBn0ySx9sOraV9LL0aprtqQvpOoaL+kXkh6OllzvjOWTJd2R\nsvfaq1W/XOCcrqkVtU6Erp0xvk6+SWctclUQOqiG2EG1BS+hkfANiPgVbdUFcKuZTY6P9Oal3wau\nN7O3ArsDD8XyrwL/Gu29vhBfN6WnFKWkJwmWKiuBFXEB3obAlcA2wJPAR6OtizNANBOy559ZwsTN\n12tZR6tUZadkvftAFdKWaco6XlePep9TVdKa9WgmcmVPeUaOYPUat0sJ69vOrDlmlVUXgKTEquv3\nRKuuWJ5YdV3XZr2rkLQe8G6C7yRmthxIfoEGJDeW9Vm91q4hWURw+0UFTmbvtPwm4Aw+WaUsO705\n5HGTTCK6sotGmqpEdmlqo7yqRnq1VCTCK9yqC3inpPuj7dYusWwS8DzwE0n3SfqxpLHxvU8DF0j6\nM/A14OxWncojRdmOaadTYdoVr3aOyzpVCdmPy6WpmtBBNcUuYVBFLycmxLGp5HFS+k1JN0maW+dx\nRJv1Z2nVdS+wtZntDnyXsIgbQlZxCnChme0BvMLqIOkTwOlmthVwOnBRqwb3OovSgBslGfDD6Hu2\nhmJLqvdNwBkmtJOubCdVmYhcJ9+GE5HL46aYFrkqCUeV0piNGLT0ZqesXP43Fv9pXr23KmPVZWar\nvv2a2bWSvi9pQqxrgZndGd/+BasF7jjgtPj8P1lzi5269BrB7WNmU4BDgZOjaWZbSDop+aaxaNHz\nPTbDKTNZRXLQ3XhG3je/KqYwYc3IrkoiXY96kZ5Hex1RtFXXpqmZlnsRtOgFM/sL8GdJO8ZzDgCS\nNRHPECy6IFh2PdaqUz1FcGb2TPy5UNIMwsyadr4JEKO96RCcTHpph1McWS8HSNPupJNuLL3yjObS\nVDWyg8GI7mpp9nkPp6ivDYq26joK+ISkFQSrrmmp/eE+RbDkGg3MB06I5f8L+LakkcAywqzNpnRt\n1RUH/tYys6Xx+UzgHILivmBm50k6C9jQzD7TrC636iqeZpFQs2iqF4FrZ2YlNLfyqqXbAfx+fLuv\nmuClGRTBa5esxW/MmHUys9GavPUYm3nmjkPKNz55tlt11dBLBLcJYS+fpJ6fm9n1ku6mvmI7w5w8\nlg90a9BcVESXplYkqiR4tW0ddMHzyG8w6FrgzGw+YRFebfkLhCjOcYaQl8hBd9Fc+mZVdFQ3SIIH\ngy96Ca3+TvIWwBXLl/PSM3/K9RqDgntROm2T1fhbXgvBexE66K/YQX2BqLLoDRfBq8Unt5QHt+py\n+kInll6dbt3z8pLlPbtH5LmWrhPSMzSrNluzdpZmlcR6uNEHL8r1Jf13XOg9T9IJsXyypNtj2QOS\njk5d45RYv8UlBS1xgXP6RicRYTf702UpdGURvISqCp+LXmkp2ovyZODBuNB7X+Drcdbkq8CxZrZL\nrONbksbHc24D3gs81W6nPEXp9JVE5NpNWUJnsyyh99Rlmn6nMVvRSuTKKCjDeTyvRBTtRWnAuBjp\nrQu8SPAzfjS5mJk9I2khMBFYbGb3xfrb7pQLnFMK2h2Xg96FDrIXOyin4NXSjnCUQQRd9AqnHQeq\nnr0oU/V+j7AI/BlgHHC0mb2RvlhcAD4a+GO3nXKBc9oizwXe6Wu0K3LQvdBB9mIH9WfPVUH0aulE\nSIoUQxe9wOsrjGefW1bvrQmSZqVeT4+GGkDwogQ2rXPe59q8dJZelAcDswmOJNsBMyXdmlh4RZOQ\nnwLH1QpfJ7jAOaWik5RlQnp8rlexg2zd3wdF9BqRhcD0IpI+c3MNKuNFSXAnOS+6lzwu6QngrcBd\nccuca4DPm9kdjbvbGhc4JzOe/0vjKG/ipu0LFnQndNBbVJeQp+BB43VSgyR8nTDMRaksJJ6R59Hc\ni/LfUhNLDgLOjhZeSyXtDdxJ8KL8bot6/0RYL32rpE2AHYH5caLJDOAyM/vPXjvlAuf0TDNhqz2m\naKGD3sQO8he8hGazNIer+DmFUbQX5ZeBSyTNIaQ4zzSzRZL+nrDh6UaSjo/HHm9msyWdCnyGkGZ9\nQNK1ZvbxZp3q2osyS9yLsng69aJsuoN3GwJXS6dCt+q8DoWuHlnuIp6m3xtbugiWl1ETd8nMJ3LH\niSNs+gffNKR83x+/6l6UNXgE5/REN+KWPq/biA66F7taAc9K8Bp9aShK+NpZp+ci6AwnXOCcNehm\nQXUvdCt0kI3YQf0+ZxnlNYuWi476Ol2s7oJYPlasMP7y4op+N6MSuMA5LWmUnuw2emtWV7epy9o2\n9prKbCT0Wac323Va6Vf6sxf3FhfH6hBdSq4EtgGeBD5qZi/VOe444PPx5VfM7NJYvierx+CuBU4z\nM5P0EeBLwE7AXmY2K1XX2cCJwErgVDO7IW50emXqkpOAL5jZt1Ln/QtwATDRzBY165cL3DCkV/uq\nPEmLZrdiB/VFOYvxu1YRbl7je518Zv0eC0zI0trMxTJ3EkutZB/Ps6hxMklZdU0lrHO7R9LVUQgT\nq647CAJ3CGGiyVzgQ8APa+raGZgG7AJsDtwkaQczewSYHI8ZATxNmFWZnLcVcCBhwkpLXOCc0pKV\n2K2qr0EkmoXwJbST4s1LBBO6/QJTFmGsR94+oC6g+Vh1mdlDsaze9a4ws9eAJyQ9TvC3vD11zAHA\nH80s7T3VbOxAAAAFgklEQVT5TcJMynrLGIbgAud0RZbpyW6vl4XoQWuXliwFEDof58xbEBOyjOzL\nLJb1KJORdp/Iy6qrEVsQor1m50wDLk9eSDoceNrM7m/Xj9IFzqksjUQ2K+FbdZ02bcqyFsKELCb+\nFCWSCUWlwasmpDlTJauupufEBd+HA2fH12MI7TyorZZGXOCcgaNVdJm1AK66bpd+nXkJY5q8ZscW\nLZy1lHE8OW/RXb4S/ry47k5nZbTqasQCYKsm5xwK3Gtmz8XX2wHbAkn0tiVwr6S9zOwvjS6Sm8BJ\nOgT4NjAC+LGZnZfXtZzy8fRTz3d8zhZbT8yhJUPpJL2alximycPIugjRhOKXlTSj32KbUEbRbYO8\nrLqaXe/nkr5BmGSyPXBX6v1jSKUnzWwOsCptKulJYGpfZlHG2S//QZjtsgC4O862eTCP6znF0kog\nuhG3ds4rSgDTZDnWWIRYJhSx+0O7DEexrSC5WHVJOpIgdhOBayTNNrODzWyepKuAB4EVwMlmtjKe\nM4agHf+7107lFcHtBTxuZvMBJF1BmDXjAjfgdCtuedXdD1FsRNETcxpRpNBCucS2aIoS914xsxcI\nsxZry2cBH0+9vhi4uMFxu9Ypn0Fqmn/Ne+cC59YpfxXYqEV7t2n2fkJeAldvts07crqWkyOd3Jzy\nFLduyaNNZRLNbiiL0OZJ0SLeiOEs7mUgL4FrOatG0kmEhYEAfx0zZp1HcmpLP5gANM0NVwzvT/kZ\ntD4NWn+2zqqiBUvthjN+u2xCnbcG6feVCXkJXKsZMsTpq9MZQCTNGiRXb+9P+Rm0Pg1af7LEzA7p\ndxuqQt25phlwN7C9pG3jeoZphFkzjuM4jlMIuURwZrZC0imEaaUjgIvNbF4e13Icx3GceuS2Ds7M\nriWYbg5HBi316v0pP4PWp0Hrj9MHSrGjt+M4juNkTV5jcI7jOI7TV1zgekTSk5LmSJqdGJ1K2lDS\nTEmPxZ8btKqnn0i6WNJCSXNTZXX7oMB3JD0u6QFJU/rX8vo06M+XJD0dP6fZkg5LvXd27M8jkg7u\nT6sbI2krSb+T9JCkeZJOi+WV/Iya9Keyn5FTTlzgsmE/M5ucmtacbB64PXBzfF1mLiFsUJimUR8O\nJfjGbU9Yx3hhQW3shEsY2h+Ab8bPaXIcI67dePEQ4PvRaq5MrAD+2cx2AvYGTo7trupn1Kg/UN3P\nyCkhLnD5cARh00Dizw/2sS0tMbNbgBdrihv14QjgMgvcAYyP7uOloUF/GrFq40UzewJINl4sDWb2\nrJndG58vBR4iuAVV8jNq0p9GlP4zcsqJC1zvGHCjpHuiOwvUbB5IygW7QjTqQ6NND6vAKTFld3Eq\nbVyp/kjaBtiD4Npe+c+opj8wAJ+RUx5c4HpnHzObQkgLnSzp3f1uUM50s7lhGbiQsKfUZOBZ4Oux\nvDL9kbQu8Evg02bWzOSwEn2q05/Kf0ZOuXCB6xEzeyb+XEhwzd4LeC5JCTXZPLDsNOpDSxu2MmJm\nz5nZSjN7A/gRq1NcleiPpFEEMfiZmf0qFlf2M6rXn6p/Rk75cIHrAUljJY1LnhM2AJzL6s0DofHm\ngWWnUR+uBo6NM/X2Bl5O0mRlpmYM6kjC5wShP9MkrS1pW4ZuvNh3JAm4CHjIzL6RequSn1Gj/lT5\nM3LKSW5OJsOETYAZ4f+VkcDPzex6SXdTZ/PAsiLpcsJW9BMkLQC+SIMNEAnuNIcRBvpfBU4ovMEt\naNCffSVNJqS2niRupths48USsQ/wMWCOpNmx7LNU9zNq1J9jKvwZOSXEnUwcx3GcgcRTlI7jOM5A\n4gLnOI7jDCQucI7jOM5A4gLnOI7jDCQucI7jOM5A4gLnOI7jDCQucI7jOM5A4gLnOI7jDCT/HzNT\nZFNbgKSOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x118ccbfd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(7,2))\n",
"plt.title(\"Im($\\\\rho_{01}$)\")\n",
"plt.contourf(np.imag(rho01),np.linspace(-12e-4,12e-4,20), cmap=\"PuOr\", origin=\"lower\")\n",
"plt.colorbar()"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"### Plot of $\\Omega(L,t)$ (exiting pulse)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11970e4a8>]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD8CAYAAABkbJM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VFXawPHfk0JC770LQQRE0Qi4ooDSLBQVVNQVV1ZU\nUFHXgm1RkF3bWhDEF1EBFRE7rgoCoi6oSKwQAYmAEFroLZD6vH/cGwxxQiaZOzOZ5Pl+nE/mnjn3\nnMcAeXLPPfccUVWMMcaYokSFOwBjjDGRwRKGMcYYv1jCMMYY4xdLGMYYY/xiCcMYY4xfLGEYY4zx\niyUMY4wxfrGEYYwxxi+WMIwxxvglJtwBeKlOnTraokWLcIdhjDER5bvvvtupqnWLqlemEkaLFi1I\nSkoKdxjGGBNRROR3f+p5MiQlIv1EZI2IpIjIGB+fx4nIm+7ny0SkRb7P7nXL14hI3wLnRYvIDyLy\nXy/iNMYYU3IBJwwRiQYmA+cD7YChItKuQLXhwB5VbQ08DTzmntsOuAJoD/QDnnfbyzMaWBVojMYY\nYwLnxRVGZyBFVdepaiYwGxhYoM5AYIb7/m3gPBERt3y2qmao6nogxW0PEWkCXAhM8yBGY4wxAfIi\nYTQGNuU7TnXLfNZR1WxgH1C7iHOfAe4Gcj2I0RhjTIC8SBjio6zgJhuF1fFZLiIXAWmq+l2RnYuM\nEJEkEUnasWNH0dEaY4wpES8SRirQNN9xE2BLYXVEJAaoDuw+zrlnAQNEZAPOENe5IvKar85Vdaqq\nJqpqYt26Rc4KM8YYU0JeJIzlQIKItBSRCjg3secWqDMXGOa+Hwx8ps5Wf3OBK9xZVC2BBOBbVb1X\nVZuoagu3vc9U9WoPYjXGGFNCAT+HoarZInIzMB+IBl5W1WQRGQckqepc4CXgVRFJwbmyuMI9N1lE\n5gC/ANnAKFXNCTQmU/5kZGTwwQcfEBUVxeDBg8MdjjFlkpSlPb0TExPVHtwrn6699lpmzHAm4n32\n2Wf07NkzzBEZEzlE5DtVTSyqnq0lZSLe77//zmuvvcb1119P69atGTFiBLm5NrnOGK9ZwjARb8qU\nKQA88MADPPjgg6SkpNgSMcYEgSUME/E+/fRTzjnnHJo1a8ZFF11EdHQ07733XrjDMqbMsYRhItre\nvXv58ccf6d69OwC1atWiR48eljCMCQJLGCaiLV26FFU9mjAAzj//fNasWcP27dvDGJkxZY8lDBPR\nvvzyS2JjY+nSpcvRsrz3y5YtC1dYxpRJljBMRPv+++/p2LEjFStWPFp22mmnER0dbQnDGI9ZwjAR\nLTk5mfbt2x9TVqlSJU455RRLGMZ4zBKGiVh79uxh69atf0oY4AxLffvtt/Y8hjEesoRhIlZycjKA\nz4Rx6qmncuDAATZu3BjqsIwpsyxhmIh1vISRV5ZXxxgTOEsYJmL98ssvVK5cmWbNmv3pM0sYxnjP\nEoaJWL/++itt2rQhKurPf41r1KhB48aNLWEY4yFLGCZirV+/nhNOOKHQz9u3b8/KlStDGJExZZsl\nDBORcnNz2bBhAy1btiy0Tvv27Vm1apXNlDLGI5YwTETaunUrGRkZx73COPHEEzl8+DCpqakhjMyY\nsssSholI69evBzjuFUZCQgIAa9euDUlMxpR1niQMEeknImtEJEVExvj4PE5E3nQ/XyYiLfJ9dq9b\nvkZE+rpl8SLyrYj8JCLJIvKwF3GassMShjGhF3DCEJFoYDJwPtAOGCoi7QpUGw7sUdXWwNPAY+65\n7XD2924P9AOed9vLAM5V1VOAU4F+ItI10FhN2bFu3TpEhObNmxdap3HjxsTHx1vCMMYjXlxhdAZS\nVHWdqmYCs4GBBeoMBGa4798GzhMRcctnq2qGqq4HUoDO6jjo1o91X2Vn83ETsPXr19OoUSPi4+ML\nrRMVFUXr1q0tYRjjES8SRmNgU77jVLfMZx1VzQb2AbWPd66IRIvIj0AasEBVfa4kJyIjRCRJRJJ2\n7Njhwf+OiQSbNm067tVFnoSEBEsYxnjEi4QhPsoKXg0UVqfQc1U1R1VPBZoAnUWkg6/OVXWqqiaq\namLdunWLEbaJZKmpqTRp0qTIegkJCfz222/k5OSEICpjyjYvEkYq0DTfcRNgS2F1RCQGqA7s9udc\nVd0LfI5zj8MYVJXU1FQaNy54IftnrVq1Iisriy1bCv6VNMYUlxcJYzmQICItRaQCzk3suQXqzAWG\nue8HA5+pqrrlV7izqFoCCcC3IlJXRGoAiEhFoBew2oNYTRmwd+9e0tPT/brCaNGiBQAbNmwIblDG\nlAMBJwz3nsTNwHxgFTBHVZNFZJyIDHCrvQTUFpEU4A5gjHtuMjAH+AWYB4xS1RygIbBYRH7GSUgL\nVPW/gcZqyobNmzcDWMIwJsRivGhEVT8GPi5Q9s98748AQwo5dwIwoUDZz0AnL2IzZU/ek9v+JIy8\nlWwtYRgTOHvS20Sc4iSM+Ph4GjZsaAnDGA9YwjARJzU1FRGhYcOGftVv0aKFJQxjPGAJw0Sc1NRU\nGjRoQGxsrF/1LWEY4w1LGCbibN68mUaNGvldv0WLFmzcuNGexTAmQJYwTMTZtm2b38NR4CSM7Oxs\nexbDmABZwjARZ+vWrcVOGGAzpYwJlCUME1Gys7NJS0ujQYMGfp+TlzDylkQ3xpSMJQwTUXbs2IGq\nFusKI2+RQrvCMCYwljBMRNm6dStAsRJGXFwcjRo1soRhTIAsYZiIkpcwijMkBTa11hgvWMIwEWXb\ntm1A8a4wwBKGMV6whGEiSiBXGBs3biQ7OzsYYRlTLljCMBFl69at1KxZk7i4uGKd17x5c3Jyco4m\nHGNM8VnCMBGluA/t5clbtXbjxo1eh2RMueHJ8ubGhEpaWhr169cv9nl5U2s3btzIWWed5XVYZGZm\nsWTJ/1i3bh2bN9fg4ou70bFj8YbNjCntLGGYiJKWlkanTsXfKqVpU2cn4N9//93rkLj99jlMnnw7\nWVl/LD3y0ENRdO06mDfeeOzog4PGRDobkjIRJS0tjXr16hX7vCpVqlCrVi1Ph6RUldGjH+SZZy4n\nNrYhr7zyLuvXr2fmzOX85S93sWLFR5xyyim8/PI7nvVpTDh5kjBEpJ+IrBGRFBEZ4+PzOBF50/18\nmYi0yPfZvW75GhHp65Y1FZHFIrJKRJJFZLQXcZrIlpmZyd69e0uUMMC5j+Flwpg4cSITJz7CoEHD\n2bXrG6699mJatGjBX/+ayNKlj5KcnEyLFu0YPnwIV175gmf9GhMuAScMEYkGJgPnA+2AoSLSrkC1\n4cAeVW0NPA085p7bDrgCaA/0A55328sG/qGqJwFdgVE+2jTlzI4dOwBKnDCaN2/uWcJ45ZVvuf32\nOxgw4GLeeWcq8fF/Ht1t3rw5ixd/Rr16F/LGGyN5/fU5nvRtTLh4cYXRGUhR1XWqmgnMBgYWqDMQ\nmOG+fxs4T0TELZ+tqhmquh5IATqr6lZV/R5AVQ8Aq4DGHsRqIlhaWhpQ8oTRrFkzT+5hpKdncdNN\nwxFpyHPPvUJUVOH/jGrVqsiqVXPo2rUbf/vb1SxatCjg/o0JFy8SRmNgU77jVP78w/1oHVXNBvYB\ntf051x2+6gQs89W5iIwQkSQRScr7DdSUTV4kjP3797Nv376A4pg+/SUyMlby4IOTadasepH1a9Wq\nyCefzKV58zb063c5y5enBtS/MeHiRcIQH2XqZ53jnisiVYB3gNtUdb+vzlV1qqomqmpi3bp1/QzZ\nRCIvEgYE9ixGeno648c/TLdu3Rg7doDf59WoUYOJE98mO/sIffteaU+cm4jkRcJIBZrmO24CFNza\n7GgdEYkBqgO7j3euiMTiJIvXVfVdD+I0ES7QhJH/WYySuuGGV9m2bRv33TceZ1TVf+ef35bRo6ew\nZ8//eOSRR0ocgzHh4kXCWA4kiEhLEamAcxN7boE6c4Fh7vvBwGeqqm75Fe4sqpZAAvCte3/jJWCV\nqj7lQYymDEhLSyMuLo6qVauW6Py8K4yS3sfIzs5lzpxnqFjxNPr27V6iNp555q9cffXVTJgwgU8/\n/blEbRgTLgEnDPeexM3AfJyb03NUNVlExolI3jX7S0BtEUkB7gDGuOcmA3OAX4B5wChVzQHOAv4K\nnCsiP7qvCwKN1US27du3U69evWL/Zp+nfv36xMbGlvgK48svvyAzczW33nobUVEliwHg6aefQaQm\nF188nCNHbGjKRA5PnvRW1Y+BjwuU/TPf+yPAkELOnQBMKFC2BN/3N0w5VtKH9vJERUXRtGnTEieM\n6dNfoXr16owdO7jEMQDUqVObkSMn8eyzlzNmzDM888ydAbVnTKjYk94mYgSaMKDkz2Js2XKAWbPe\noWfPK6hYsWJAMQA89dQQevW6iJdeethW0DURwxKGiRheJIySPovxr3/9l5ycdHr3vjqg/vNERQlT\npjxNRkYGQ4fe50mbxgSbJQwTEVTVs4SxZcsWsrKyinXeqlVvU7lyQ0aM+EtA/efXunVrEhNv44sv\npjNjxnLP2jUmWCxhmIhw4MABMjIyPEkYubm5bNlScOZ34dLT0/n660+49tpLiInx9p/MnDkPEB1d\nj0cfvQ1n4qAxpZclDBMRAn0GI09JnsWYPHkhhw8f5vzzLw6ob1+aNKnGlCn/YvXqr5g9e7bn7Rvj\nJUsYJiJ4lTBK8izG9OmfAJXp3v3sgPouzHXXXUuHDp248cYx7N+fEZQ+jPGCJQwTNlOmTKVWrXO5\n8MInyM09/nCMVwkjbyMlf68wVJUtW+bRosV5VKlSIaC+CxMdHc1VVz3G/v0bue66qUHpwxgvWMIw\nYTFnzhxGjryBQ4d+5eOP7+bmm589bn2vEkalSpWoU6eO3wnj119/Ze/eDdxzz/kB9VuUu+/uRYMG\nPVi48BEOHjwY1L6MKSlLGCbkUlP387e/3UDXrmeyb986zjmnF++99xiZmZmFnpOXMLxYYLI4z2LM\nmfMFAD17nhtwv8cTFSW8++6/2LcvjYkTJwa1L2NKyhKGCbmbbnqR9PS9jBw5kfj4Ctxzz+1s27aN\nF154r9Bz0tLSqF69OnFxcQH3X5xnMaZPX4JIPRISEgLutyhnnnkm557bn4ceepx16/YEvT9jissS\nhgmpnJwcvvzyWWrV6sFf/5oIQL9+/YiNbca///1Goed58QxGnrytWv2Zxrp58/9o1OjsgNaOKo6R\nIyeQlbWfq656PCT9GVMcljBMSC1evJj9+zfx/PMjj5ZFRUXRsmVvtm//guzsHJ/neZ0wDh48yN69\ne49bLzU1lYyMDdx6azdP+vXHpZeeTMeOV/LDD8+ybdu2kPVrjD8sYZiQevLJ16hatRoDB/Y/pnz0\n6J6o7uXnn3/yeZ6XCcPfZzG++GIJAOedF5zptIV5992HycnJsj0zTKljCcOEzP79Gcyf/y4NGlxK\nfHz8MZ8NGtQTcK5AfPH6CgOKfhbj0Uf/R1RUFTp2PMWTfv3VqlUrLrlkOM8/P5WlSwPfg9wYr1jC\nMCHz+uuLgQNcddWflwdv1KgR1aq15tlnl/7ps5ycHHbu3Ol5wijqCiMlZQk1a55JbKwnuwAUyx13\n3I+q8Pe/Tyi6sjEhYgnDhMzKlR9SqVIl/vEP31NUq1Y9la1b/7wL3a5du1BVzxJG3bp1iYuLO27C\n2Lt3LxkZKxgyJLTDUXm6dGlKz543sHbtK6xbty4sMRhTkCUMExK5ucoHH3xI7969qVIl3medfv06\nkp39258eXPPqob08UVFRRU6tXbZsGarKkCFnedJnSbz++r3ExsYwbty4sMVgTH6eJAwR6Scia0Qk\nRUTG+Pg8TkTedD9fJiIt8n12r1u+RkT65it/WUTSRGSlFzGa8HrrrZ/YvHkTzZoNKLTOgAHOvYKV\nK4/9I/c6YcAfU2sL8/LLPwBw6qmnedZncTVs2JDBg0cyY8arzJu3JmxxGJMn4IQhItHAZOB8oB0w\nVETaFag2HNijqq2Bp4HH3HPbAVcA7YF+wPNuewDT3TJTBkyb9iEgjBhxYaF1TjyxIwBz5hw7LBWO\nhPH11z8QE9OSWrVqeNZnSYwZcw9QkZtusqsME35e3M3rDKSo6joAEZkNDAR+yVdnIPCQ+/5tYJKI\niFs+W1UzgPUikuK297Wqfpn/SsREtr17P+Tkk7vQoUP9QuskJDQHqrJgwbFTa4OVMLZu3UpmZiYV\nKvx5UcGMjO856aROnvVXUu3b12PQoFv44IPHSE6+j/bt24c7pEKpKqtXr+aHH35g5cqVpKamkpaW\nxqFDh8jJyaFixYrUqVOHunXr0qxZMzp27EjHjh1p2LAhzo8DU9p5kTAaA5vyHacCXQqro6rZIrIP\nqO2Wf1Pg3MbF6VxERgAj4I/ZL6Z02bJlC0lJy5kw4fgzfqKihHr12nHkyLHDL2lpaURFRVGrVi3P\nYmrevDmqSmpqKieccMIxn+3fv5+0tBRuuWWYZ/0FYtq0O1m0aDJjxz7E22+/Fe5wjpGZmcmnn37K\nm2++yYIFC9i+fTsAMTExNG7cmPr161O1alVEhPT0dH788Ud27NjBnj1/LH3SsGFDevXqRe/evenT\npw/16xf+S4UJLy8Shq9fDQquuVBYHX/OPS5VnQpMBUhMTLQty0qhe+/9CIDu3fsXURN6927NkiVL\njilLS0ujbt26REV5N0cj/9Tagglj/nznCqddu/BfYQDUrl2bIUNu4+WXx/Pmmz9x+eWhfS7El+3b\nt/P8888zZcoUduzYQc2aNenXrx/nnXceXbp0oU2bNj6v3PLs2bOHFStW8NNPP7F06VI+/vhjXn31\nVaKioujRowdDhw7l0ksvpWbNmiH8vzJFUtWAXsCZwPx8x/cC9xaoMx84030fA+zESRbH1M1fzz1u\nAaz0N5bTTz9dTelTv35/jYlpoTk5uUXWvf/+sSoieuDAkaNlAwcO1JNPPtnTmH799VcFdMaMGX/6\n7JJLnlVAv/tus6d9BmLDhj0K1bVRo4FhjWP37t16zz33aHx8vIqI9u/fXz/88EPNyMgIqN2cnBz9\n7rvv9IEHHtBWrVopoPHx8Xrttdfqt99+61H0pjBAkvrxM9aLX9mWAwki0lJEKuDcxJ5boM5cIO/6\nfjDwmRvkXOAKdxZVSyAB+NaDmEwpkZ6ezt69C+jbt79fC/jt2tUaVeXLL9cfLcu7wvDS8TZS2rDh\nB6Kj63HqqQ097TMQzZvX4Jpr/sGWLR+QlJQU8v5VlZkzZ5KQkMDjjz/OkCFDWL16NXPnzuWiiy46\n7tWEP6KiojjttNMYP348a9euZfny5fztb3/j7bffpnPnznTu3Jl3332X3Nxcj/6PTEkEnDBUNRu4\nGefqYBUwR1WTRWSciOTNoXwJqO3e1L4DGOOemwzMwblBPg8Ypao5ACLyBvA1cKKIpIrI8EBjNaG3\naNEiMjKOcNtthU+nze/001sD8O23KUfLtm/f7vm4dnx8PPXr1/f5LEZOzg/06tUpZCvU+uu550ZT\nq1Yt7r//nyHtd+vWrfTr149hw4Zx4okn8v333zNz5kzatGkTlP5EhMTERJ5//nk2b97MpEmT2LNn\nD5deeiknn3wyr732GtnZ2UHp2xTBn8uQSHnZkFTp07nz9RofX83vIYutW3cqoE8//fTRssqVK+tt\nt93meWxnnHGG9unT55iyQ4eOaExMjI4ZM8bz/rxw002PKqD/939fhaS/efPmad26dbVSpUo6adIk\nzcnJCUm/BWVlZemsWbO0Q4cOCmirVq101qxZYYunrCGEQ1LG+JSdnUtS0ofUqdPX7yGL+vVrUaNG\nDVJSnCuMQ4cOcejQoaDMnPH1LMZ77yWTnZ2NSOm44V3QP/85CpG6PPhgcK8yVJUnn3yS888/n/r1\n67N8+XJGjRrl6cSD4oiJiWHo0KH89NNPvP/++1SpUoUrr7ySM844g4ULF4YlpvLIEoYJmi+++Jrc\n3G1cfvlAv88REWJjT+CDD34DODpNM5gJQ/NtpPTFF85T5n/5y8me9+eFBg2qcOutY0hLW8iXX34Z\nlD6ys7MZMWIEd911F4MHD2bZsmW0a1fwWdzwiIqKYuDAgXz//fe8+uqr7Nq16+h03OTk5HCHV+ZZ\nwjBB8/77s4mPj2fsWP/uX+SJiWnGjh3Ooz3BTBjNmzcnPT2dXbt2HS2rUmUV0dExnHtua8/788q/\n/30TDRo04J57HiQ319uZ5BkZGVx22WVMmzaN++67j9mzZ1OpUiVP+/BCVFQUV199NWvWrOHpp58m\nKSmJU045hdGjRxe5MZYpOUsYJigyM3OYPv0tevS4kKpVqxbr3M6dmyHyO6oa9CsMOHam1Lp1q0hI\naE2lSrGe9+eVihUrctll9/HNN1/yn/985lm7R44cYdCgQbz33ns888wzTJgwIWxDUP6Ki4vjtttu\nY+3atYwYMYJJkyaRkJDAtGnTyMnxvXujKbnS/bfBRKznnvuCgwe3067dFcU+9+yzm3HkyEH27dsX\n8oTx+eerqFz5JM/78trDD19PdHQTHnvsQb/2Ji9KVlYWl112GfPmzePFF19k9OjRHkQZOrVr1+b5\n558nKSmJtm3bcv3119O1a9ewTEEuyyxhmKBYsGA2UVFVuPfeC4p9bpUqzg/ypKSNRxOGl+tI5SmY\nMA4ezGTfvt+Iiyv9CaNGjXgefPABdu36mnnz5gXUVm5uLtdeey0ffvghkydP5u9//7tHUYZep06d\n+PLLL5k1axabN2+mS5cu3Hrrrezfvz/coZUJljCM5zIzM1m+/B2uuGIAdeoUf/w7Otp5qG7Jkk1s\n376dmjVrBvxgmC916tShYsWKR5/FSE5eC+TQo0fpTxgA9977N1q0aMHdd/8zoHsZ999/P7NmzeJf\n//oXI0eO9DDC8BARhg4dyqpVqxg5ciSTJk3ipJNO4p133vHkaqw0OnToEJmZmUHvxxKG8dzTT89l\n9+7dXHXVVSU6PzHR+c1/586NQXloL4+IHDO1dtOmVQBccklkJIwKFSowZMiDrFyZxIMPfliiNmbO\nnMmjjz7KDTfcwJgxf9rKJqJVr16d5557jm+++YZ69eoxePBg+vfvz4YNG8IdWkA2bdrK+++/z3XX\nPUDDhgOpVKkVVatWZenSP29v7Dl/HtaIlJc9uFc61Kx5nkZHN9PMzOwSnZ+Tk6OxsbE6ZswY7dat\nm3bv3t3bAPPp3bu3du7cWVVVb7xxnAJ68ODBoPXntcOHszQmppXWrHlKsR9iW7JkiVaoUEHPPfdc\nzczMDFKEpUNWVpY+9dRTWrlyZa1UqZI+/vjjEfH/nJOTq6tXr9HJkydrhw5DNDq6qeIs0KrR0dEa\nF9dOmzW7TB9+eJyuXbu2xP3g54N7Yf8h7+XLEkb4ff99sgJ63nnjA2qnZcuWeumlQzUhIUEvu+wy\nj6L7s+HDh2uDBg1UVbV58ys1OrpZ0PoKlokTX1NAZ86c6fc5Gzdu1Lp162pCQoLu2rUriNGVLr//\n/rsOHDhQAe3YsaN+/fXX4Q7pTw4cOKBz5rytCQnXanR0k6MJombNZtq06eU6bNhTunTpUk1PT/es\nT0sYJiyuueYarVSpkm7ZsiOgdqpXP1urV++u1apV01tuucWj6P5s3DjnquLw4cNao0YnrVu3b9D6\nCpacnBxNTEzUunWb6I4dh4qsn5WVpWeddZZWrVpVV69eHYIIS5/33ntPmzRpoiKiN954o+7evTus\n8WzcuFv/9reXtXHj/hofH6+AxsbW1MaNB+uYMS9oSkqK5uYWvdpzSVnCMCG3eHGKRkfH6OjRowNu\nq2nTyzUmxrn8fuSRRzyIzrfp06croGvWrNGKFSvq6NHer1kVCi+//IUC2qtX0d+r++67TwGdNWtW\nCCIrvfbv36+33XabRkVFab169fS1114L6g/lgg4cyNBnn/1ABw8erBUqVHCHmZrpsGG36uLFizUr\nKytksVjCMCHXuPFghUq6YkXg+0gMH3770UvxF1980YPofPviC+cH7QsvTHUX9fu/oPUVbA0bDtKY\nmCq6devWQussWLBARUSHDx8ewshKt++//147d+6sgJ577rlBv+r69ddf9fLL71CROgpo3bp1dfTo\n0frOO8v92jMmGCxhmJD65JNPFdAePR7ypL0nnnjiaMKYO3euJ236smnTJgW0a9cBCui0aV8Gra9g\n+/nnNRoTE6MjRozw+fm2bdu0fv362q5dOz10qOihq/IkOztbp0yZotWrV9cKFSrogw8+6Ok9goyM\nLH3ggfe1bds+CmhMTIw2azZYx479r6anh//muyUMEzI7d+7UJk2aaNu2bXX/fm/+kT388OtHE8ay\nZcs8adOXnJwcrVChgsbGOuPGq1eHdyw7ULfccquKROn77684pjw3N1cvvvhijYuL0xUrVhRyttm2\nbZteddVVR5dQnzdvXkDtpaen6+TJk7VevZbukFMTfeih8bplyxaPIvaGJQwTEvv2HdHatXtoTEwF\nT7fSfOyxxUcTxoYNGzxr15cTTzzRHRpoqiEcwg6KlJSdKlJD69Tpd0z57NmzFdDHHnssTJFFloUL\nF2qbNm0U0Msuu0xTU1OLdf769bv1vPPGa3x8XQW0S5eu+o9/vKOHDoXuvkRxhDRhAP2ANUAKMMbH\n53HAm+7ny4AW+T671y1fA/T1t01fL0sYobVv3z5t3ty5xL7xxlc9bfuzz9YcTRiHDx/2tO2Czj//\nfAX0wgsvDGo/oTJgwH8U0Hff/VBVVbdv3661a9fWzp07h/RGaqQ7cuSIjhs3TuPi4rRy5cr6yCOP\nFDlMlZa2Q++66y6tWLGKAlqv3gW6aNEXIb2ZXhIhSxhANPAbcAJQAfgJaFegzkjgBff9FcCb7vt2\nbv04oKXbTrQ/bfp6WcIIjZycXJ0+/WM94YQTNDo6WkeOfNnzPvbv36+AVqtWzfO2Cxo1apQCOmjQ\nfUHvKxSOHMnQtm3b6gknnKCHDx8+OgsnOTk53KFFpN9++00vvvhiBbR58+b61ltv/SkB/P77Xu3W\n7Z8aE1NVRUSvvPJKfeedn8IUcfGFMmGcCczPd3wvcG+BOvOBM933McBOQArWzavnT5u+XpYwgmf3\n7n36+efog9g0AAAb4UlEQVSf66hR4zQ21rlUb9mytS5ZsiRofVasWEWbNUsIWvt5nnzyKQW0f//Z\nQe8rVBYuXKiAtmjRTQH997//He6QIt5nn32mHTt2VEDPOecc/eGHH/TgwYP66KOParVqNRXQJk0u\n1e++i7zEHMqEMRiYlu/4r8CkAnVWAk3yHf8G1AEmAVfnK3/Jba/INn29SpowXnzxRe0bX0d7V6ij\nPRJ76yWXXKK9mnfQ8yrU0TPrdtBBgwbpgHN76bmxtbVnbG3t02egDhw4UHvUbK49Ymtr1xadtX//\n/tqrQ2ftHltbu1RsphdddJFeeOGF2iOulp4TW0vP7NhdL7jgAj27SVvtFltLT6/ZVs8//3ztc9bZ\nelZMTf1LTE0955y+2rdvXz2zWmM9M6amntakk/bu3VvPbnuqdo2pqZ3iGmuvXr20V69e2rVCDe0S\nU0NPa9tVzz33XO3coLWeEVNDO1RvpT179tTuZ3TWxOjqmhhdXbt06a7du3fX06s01NOiq2v7Bu31\n7LPP1jNatdNO0dW1XYX62q1bN+3WrZueFltNT42upie3Pk07d+6sjSrX0kpEHx0eAjQxpro+0+BE\nPXDA3af7+utVu3dXzZvNNHeuc3z99X98k7t3d155UxafeMI5fuIJ53j16j/quBpIdT09tprn7RaM\nd/Ejj2u8ROlX3Yd62m6w4vW33X5xdd2pogM0a+XKUh9vJLSbnZysL7zwgtapXFkFNFZiFNALunfX\npe1PC2+8AfA3YcQQOPFRVnBJyMLqFFbua1FEn8tMisgIYAT8sVx1cW3bto2UrHQ0F3I3b2DnkTgO\n790JWYfJPLCTg78JZGRyOOcIADEbNxAXB+lHDiA5mWTu38GRTZlk7d1Pdk4GWQpZW7YAcCQnE82F\nnL07yapwiPT0g5CTRUbmIaJ27kQPH+FwbrbT7r49ZGQIh3KykNxsMjLSqXDgAJlHjpCtOWTmZpGe\nng5AhuaiCjlZmWRkRJOVm4NqLjm5uWRnZ6M5ueS6/39R6n6rnf+Ikiiio6OJlmgQIYeoo6vBZksU\nKpAdG0eNGlVp0LA5NbemUbF5R/o/cTOnV69O/fvvdxqu4v0KsvkNrNqBE9hVdMUA9ejYlvSzuyFt\nqgS9r1B6+eQEJuw7h7GzZxGze324wykToqOjueGGGzjvlzTGTZzGpirNufONx7iwdS244YZwhxd0\n4iSXABoQORN4SFX7usf3Aqjqv/PVme/W+VpEYoBtQF1gTP66efXc047bpi+JiYlqG6aY4lq3Dnbv\nhk6dIDo63NEEx5EjEB8f7igi2/r18OST8J//ON/LH36AU08F8fVrb4QRke9UNbGoel4sb74cSBCR\nliJSAeem9twCdeYCw9z3g4HP3MugucAVIhInIi2BBOBbP9s0xhNTp8Jf/hLuKIJnzhxo1Qq2bg13\nJJHr0CE4/XSYPh2++84p69SpbCSL4gg4YahqNnAzzg3rVcAcVU0WkXEiMsCt9hJQW0RSgDv448oi\nGZgD/ALMA0apak5hbQYaq4kszz0HdetCdnZw+9m7F044oexeXZx6qnMF9e/jXp+bglTh3Xdh/36o\nXBlefhl+/RXOOivckYVPwENSpYkNSZUtU6bAyJGwZQs0bBjcvrKzIcaLO3ql1P/+B2ecYcNSxXHl\nlfDGG/Doo3DPPeGOJrj8HZIqw/9ETKS74AL45BOoXj34fZXlZAFw9tnO159+cq7aGjUKbzylVUaG\nc7+nenXo0we6dnV+aTEO26LVlFrNm0O/flCp+NuC+23HDueH55w5weujtNi3D3r0gKuvhpyccEdT\n+vzvf3DKKTB6tHN87bVw661l/5eJ4rCEYUqtQ4fgn/+EJUuC10dKinMzOJhJqbSoXh2eesq5Z7Mr\n+LOVI87mzZCZCZdfHu5ISi+7h2FKrSNHoGJFGD8eHnggOH3s2gWffw7nnOMM1ZR1qs79mtjYcEcS\nfrm5MG0afPWVM/tJ1RmSKo/3eUI5rdaYoIiPhyFDoGXL4PVRuzZcemn5SBbgTAONjYUff3SGp9LS\nwh1R+Cxd6jxr9/vvztWsSPlMFsVhCcOUanPmwFVXBa/92bNh8uTgtV9aqcKyZfD3v4c7ktBKT4cX\nXnD+/88+GxYvhs8+c6bNmqLZ7RxTqu3a5Yy5t2oVnPZnzoRt22DUqOC0X1p16gRvvQUnnhjuSELn\n4EHnpva6ddChA3Tr5lxlGf9ZwjCl2s03Q1ISrF0bnPY7dYKocnqdfdFFzte9e2HBAmf4ryzatg3q\n1IEqVWD4cCdRdOsW7qgiUzn9p2IiRf36sH178NqfMMG5qV6eTZjgzAwqi1OL/+//nKuoSZOc4/vu\ncyY4mJKxhGFKtfHjg5cwMjNhzRpnZkx5Nm4c9Orl/AZeVuRN/ly3Drp0+eNqygTGEoYp1apWdabW\nBsPq1dC2LXz4YXDajxQVK8L8+c6T9Tk5ztPgkSotzbmRP26cc/zII87/W+vW4Y2rrLCEYUq1pCRn\nNsvPP3vf9qZNztcSbqNSpuStuvrII85v5B99FN54SmrmTJgxA7KynOPY2PK3omwwWcIwpVpurvOk\n98aN3rd9wQWwZ49z49s4br7ZmUG0cmW4I/GPKsyb5+xTAXDLLU7sjzwS3rjKKpslZUq1Vq2cHwZt\n23rftgjUqOF9u5Gsdm0nQec9wLZoEfTsWXpnkn3yCVx4IbRp40yNrlixfE0VDrVS+tfAGEft2vCP\nfwRnDPquu5xpluZYecniq6+cm+EDBzoPvJUWq1bBM8847/v2dZb1WLEiePe6zB8sYZhS79134Ysv\nvG/3q69gwwbv2y0rzjwTJk50noIuLT+Mf/4Z2reHBx90nq+IjoZhw6BCcLeXNy5LGKbUu/tuZz69\n1267zRnzNr6JON+fN95w3r/5Jlx3HezcGboYVJ1hsX/8w3l/8snOTozr10ODBqGLwzgCShgiUktE\nFojIWvdrzULqDXPrrBWRYfnKTxeRFSKSIiITRZz5DCIyRESSRSRXRIpcQdGUbaed5gxNeW3IEBg0\nyPt2y5q8WUa//+7MQnrooeD3mTfLac0aZ1hs5kxITXViGTXKeXLbhF6gVxhjgEWqmgAsco+PISK1\ngLFAF6AzMDZfYpkCjAAS3Fc/t3wlcAnwZYDxmTJgzhznt0ov7drlbAGbN7XWFO3uu50hobyl5idN\ncu4DrVvnXR+rVkH//s6wk6oz2eGjj5w/p6ZNvevHlEygCWMgMMN9PwPw9ftaX2CBqu5W1T3AAqCf\niDQEqqnq1+psyjEz73xVXaWqawKMzZQheb9xeiU52dl6c439LSuWdu3+GApauxaeftpZ8ReczaiW\nLnX2MfHXqlXOFcvjjzvHVas6SWnAADh82Cm74AJbdry0CDRh1FfVrQDu13o+6jQG8v8el+qWNXbf\nFyw35hj/+pfzA8PLbUVzc53nL4K510ZZ9+yzzqSB6693jl96yVnU7+KLneOdO50b0qNG/ZFE7rgD\n/vIXZyIDONuijh/vLLUO0KSJ0+aTT5aPXRAjTZHPYYjIQsDX7aX7/ezD13OWepzyYhGRETjDWjSz\nR3bLpOrVnR/wu3ZBPV+/kpRAjx7w/ffetFWeNWnyx/s774QzzvjjB/3u3c5uhunpf1xBHD7sfJ6d\n7RxffrlzL6lmvruf9mR26VVkwlDVXoV9JiLbRaShqm51h5h87d+VCvTId9wE+Nwtb1KgfIsfMReM\nbyowFZwtWot7vin9Lr3UmeLp5UN2Bw4400VL6wNpkah2bbjkkj+O27RxbpTnN2XKscfVqwc/LuOd\nQP+5zAXyZj0NAz7wUWc+0EdEaro3u/sA890hrAMi0tWdHXVNIeebcq5BA2emlJdz7S+7DM46y7v2\njCkPAk0YjwK9RWQt0Ns9RkQSRWQagKruBsYDy93XOLcM4CZgGpAC/AZ84p5/sYikAmcCH4nI/ADj\nNBFs1y4YMcLbh/c2boRGjbxrz5jyQFTLzihOYmKiJiUlhTsM47E9e6BWLXjqKbj9dm/a3LjRGUc/\n4QRv2jMmkonId6pa5DNvtvigKfVq1HD2OGjXzrs2bX6EMcVnt/xMqScCL77oLDTnhTVrnJk5K1Z4\n054x5YUlDBMRfv0VfvjBm7ZWr4a337atWY0pLhuSMhFh9GjnQbDlywNvq0UL5wEyu39hTPHYFYaJ\nCPXq/bFURKBOOQX+8x/nRroxxn92hWEiwiuvePeQ3ZIlzv4Op5/uTXvGlBeWMExE8PKJ7DvvhCpV\nYOFC79o0pjywISkTEebNg4QE+O23wNuKinLaMsYUj11hmIgg4iyfvW0btGoVWFtffeVNTMaUN3aF\nYSLCqafCa68FfmVQhhY2MCbkLGGYiFC/Plx1VeDLm3/+ubOqat7+C8YY/1nCMBFj4kRYtCiwNjZu\ndPZpCMYe4caUdZYwTMR4+OE/dmorqb594b//tbWkjCkJu+ltIkbfvoH/oG/QAC680Jt4jClvLGGY\niDFrVuBtPPWUs/rtddcF3pYx5Y0NSZmIkZkJ27cH1sbUqfDJJ97EY0x5YwnDRIw774S2bQNro08f\n52WMKb6AEoaI1BKRBSKy1v1as5B6w9w6a0VkWL7y00VkhYikiMhEd29vROQJEVktIj+LyHsiUiOQ\nOE3ZUK8e7N0b2LLkEyfC9dd7F5Mx5UmgVxhjgEWqmgAsco+PISK1gLFAF6AzMDZfYpkCjAAS3Fc/\nt3wB0EFVOwK/AvcGGKcpA266CTZvhtjYkp2/dy/8/LPtg2FMSQWaMAYCM9z3M4BBPur0BRao6m5V\n3YOTDPqJSEOgmqp+rc7G4jPzzlfVT1U12z3/G6BJgHGaMqB2bWjUqOQLES5e7CxtnpzsbVzGlBeB\nJoz6qroVwP3q6zncxsCmfMepbllj933B8oKuA+w2pWHdOhg4EL7+umTnb9vmfLVnMIwpmSIThogs\nFJGVPl4D/exDfJTpccrz930/kA28fpz4RohIkogk7dixw8+QTKSaO9fZk7skbroJDh2yp7yNKaki\nn8NQ1V6FfSYi20WkoapudYeY0nxUSwV65DtuAnzuljcpUL4lX9vDgIuA89whq8LimwpMBUhMTLSl\n5cqwhg3hvvugQ4eSt1GpknfxGFPeBDokNRfIm/U0DPjAR535QB8Rqene7O4DzHeHsA6ISFd3dtQ1\neeeLSD/gHmCAqqYHGKMpIypWhAkTIDGxZOdfcgncdZe3MRlTngSaMB4FeovIWqC3e4yIJIrINABV\n3Q2MB5a7r3FuGcBNwDQgBfiNP+5VTAKqAgtE5EcReSHAOE0ZsWQJLF1asnO/+sqZKWWMKRk5zmhP\nxElMTNSkpKRwh2GCqGtXqFYNPv20+Oe+8YZzw/uss7yPy5hIJiLfqWqR1+62lpSJKK1awcGDJTt3\n6FBvYzGmvLGEYSLK64XOlzu+X3+Fjz+Gq6+GOnW8jcmY8sLWkjLlwtKlcPvtsH9/uCMxJnJZwjAR\nZcYM5x7Gzp3FO69KFejSBZrYmgHGlJglDBNR4uPhwIHiL3M+ZAh88w1UqBCcuIwpDyxhmIjSvTss\nWFD85T22bYOsrODEZEx5YTe9TURp0MB5FVfXrnD22fDqq97HZEx5YVcYJqJkZMC998LChf6fk5UF\nmzZBixZBC8uYcsGuMExEiY2FJ56A6GjoVegqZ8eKiYEtW0q+LLoxxmEJw0SUqCj461+Lt1WrCNSv\nH7yYjCkv7HcuE3FeecV5AM9fc+fCgAGwe3fRdY0xhbOEYSJOWhqsXu1//e++g48+cp7FMMaUnA1J\nmYhz993w2WewcaN/9Xv0gLg4ewbDmEBZwjARp3Fj58G9nBzn5ndRevZ0XsaYwNiQlIk499/vrFjr\nT7IAZ1nz5OTgxmRMeWAJw0ScSpWc6bX+yMpybpC/+WZwYzKmPLCEYSLOhg3Ok9vz5hVdd/duOPFE\naNMm6GEZU+YFlDBEpJaILBCRte7XmoXUG+bWWSsiw/KVny4iK0QkRUQmunt7IyLjReRnd3vWT0Wk\nUSBxmrKlcmVYtszZ46Io9evDL78UbxquMca3QK8wxgCLVDUBWOQeH0NEagFjgS5AZ2BsvsQyBRgB\nJLivfm75E6raUVVPBf4L/DPAOE0ZUqcOPPOMM/upKFlZUIZ2ITYmrAJNGAOBGe77GcAgH3X6AgtU\ndbeq7gEWAP1EpCFQTVW/Vmdj8Zl556tq/m1uKgP2T94cJQKjR0PHjkXXHTcOatWC7Ozgx2VMWRfo\ntNr6qroVQFW3ikg9H3UaA5vyHae6ZY3d9wXLARCRCcA1wD7AJkWaYyxc6Eytveqq49dbu9ZJGDE2\ngdyYgBV5hSEiC0VkpY/XQD/7EB9lepxy543q/araFHgduPk48Y0QkSQRSdqxY4efIZlI98or8MAD\nRdd74gmYMyf48RhTHhT5e5eqFromqIhsF5GG7tVFQyDNR7VUoEe+4ybA5255kwLlW3ycPwv4COc+\niK/4pgJTARITE23oqpxITHSWCFF1hqgK07Sp8zLGBC7QexhzgbxZT8OAD3zUmQ/0EZGa7s3uPsB8\ndyjrgIh0dWdHXZN3vogk5Dt/AFCMlYNMeXD77c7Oe8dLFjt3OkNWy5aFLi5jyrJAE8ajQG8RWQv0\ndo8RkUQRmQagqruB8cBy9zXOLQO4CZgGpAC/AZ/ktesOe/2Mk2BGBxinKYPS051XYVavhlmzbJVa\nY7wS0K1AVd0FnOejPAn4e77jl4GXC6nXwUf5pYHEZcq+jRuheXN48UX4+99916lVC0aNgpNPDm1s\nxpRVNnfERKRGjZyZT+vXF16nXTuYNCl0MRlT1lnCMBEpJgZ+/vn4N7Q//9x50vukk0IWljFlmq0l\nZSLWSScdf1Ok4cPh4YdDF48xZZ0lDBOxZs+G/v19L/2RtyRIhz/dITPGlJQNSZmIlZYG//0vbNsG\nDRse+1lsLKxbZ+tIGeMlu8IwEatnT2etKF/LfuTkOF+P95yGMaZ47ArDRKyTTy58yuxdd8Hcuc5a\nUpY0jPGGXWGYiLZ4MXz66Z/Lly1zZkhZsjDGO3aFYSLa2LHO8FOfPseWT58O+/aFJSRjyixLGCai\ndekCK1b8eRHChITCzzHGlIwNSZmI9sQTzt7e+ZPF22/DiBFw5Ej44jKmLLIrDBPxsrKcBQbr13eO\nX38dkpIgLi68cRlT1ljCMBGvc2do0gQ+/NA5HjQI+va1G97GeM0Shol4Z57pDENlZkKFCjBsWNHn\nGGOKz+5hmIh3//3O3hfR0XDDDc6ihMYY71nCMBGvcWNn74tp02DqVFi5MtwRGVM2WcIwZUajRjB+\nPAwdGu5IjCmbAkoYIlJLRBaIyFr3a81C6g1z66wVkWH5yk8XkRUikiIiE929vfOfd6eIqIjUCSRO\nUz707w8PPGA3u40JlkCvMMYAi1Q1AVjkHh9DRGoBY4EuQGdgbL7EMgUYASS4r375zmuKs0/4xgBj\nNMYY44FAE8ZAYIb7fgYwyEedvsACVd2tqnuABUA/EWkIVFPVr1VVgZkFzn8auBuwBaqNMaYUCDRh\n1FfVrQDu13o+6jQGNuU7TnXLGrvvC5YjIgOAzar6U4DxGWOM8UiRz2GIyEKggY+P7vezD18jylpY\nuYhUctvu4+NzX/GNwBnWolmzZn6GZIwxpriKTBiq2quwz0Rku4g0VNWt7hBTmo9qqUCPfMdNgM/d\n8iYFyrcArYCWwE/uPfAmwPci0llVt/mIbyowFSAxMdGGr4wxJkgCHZKaC+TNehoGfOCjznygj4jU\ndG929wHmu0NYB0Skqzs76hrgA1Vdoar1VLWFqrbASSyn+UoWxhhjQifQhPEo0FtE1uLMaHoUQEQS\nRWQagKruBsYDy93XOLcM4CZgGpAC/AZ8EmA8xhhjgkScCUplQ2JioiYlJYU7DGOMiSgi8p2qJhZZ\nrywlDBHZAfwe7jhcdYCd4Q6iCBZj4Ep7fFD6Yyzt8UHZj7G5qtYtqlKZShiliYgk+ZOxw8liDFxp\njw9Kf4ylPT6wGPPYWlLGGGP8YgnDGGOMXyxhBM/UcAfgB4sxcKU9Pij9MZb2+MBiBOwehjHGGD/Z\nFYYxxhi/WMLwkL/7g7h1q4nIZhGZVJriE5FTReRrEUkWkZ9F5PIQxNVPRNa4+6L4WiI/TkTedD9f\nJiItgh1TCWK8Q0R+cb9ni0SkeWmLMV+9we4+MyGd9eNPfCJymft9TBaRWaGMz58YRaSZiCwWkR/c\nP+sLQhzfyyKSJiI+95UUx0Q3/p9F5DRPA1BVe3n0Ah4HxrjvxwCPHafus8AsYFJpig9oAyS47xsB\nW4EaQYwpGucp/xOACsBPQLsCdUYCL7jvrwDeDPGfqz8x9gQque9vKo0xuvWqAl8C3wCJpSk+nD1x\nfgBqusf1Stv3EOc+wU3u+3bAhhDHeA5wGrCykM8vwFkxQ4CuwDIv+7crDG/5sz8IInI6UB/4NERx\n5SkyPlX9VVXXuu+34CwoWeQDPQHoDKSo6jpVzQRmu3Hmlz/ut4HzCu7OGGRFxqiqi1U13T38hmMX\n1iwVMbrG4/zicCSUweFffNcDk9XZNwdV9bWYabhjVKCa+746zoKpIaOqXwK7j1NlIDBTHd8ANdyF\nYT1hCcNbRe4PIiJRwH+Au0IcG/i3f8lRItIZ5zet34IYU2H7pfiso6rZwD6gdhBjKsifGPMbTujX\nRSsyRhHpBDRV1f+GMjCXP9/DNkAbEVkqIt+ISD9Cy58YHwKuFpFU4GPgltCE5rfi/l0tliKXNzfH\n8mB/kJHAx6q6KRi/JHsQX147DYFXgWGqmutFbIV15aOs4NQ9f+oEk9/9i8jVQCLQPagR+ejaR9nR\nGN1fVJ4Grg1VQAX48z2MwRmW6oFzhfY/EemgqnuDHFsef2IcCkxX1f+IyJnAq26Mwfw3UhxB/bdi\nCaOYNPD9Qc4EzhaRkUAVoIKIHFTVQm9Shjg+RKQa8BHwgHtZG0ypQNN8x3n7oviqkyoiMThDAce7\nLPeaPzEiIr1wEnN3Vc0IUWx5ioqxKtAB+Nz9RaUBMFdEBqhqKFbs9PfP+RtVzQLWi8ganASyPATx\n5fVfVIzDgX4Aqvq1iMTjrOEU6uGzwvj1d7WkbEjKW0XuD6KqV6lqM3X2+rgTZ7zRk2ThRXwiUgF4\nz43rrRDEtBxIEJGWbt9XuHHmlz/uwcBn6t7hC5EiY3SHe/4PGBCGsfciY1TVfapaR//YZ+YbN9ZQ\nLe/sz5/z+ziTBxCROjhDVOtCFJ+/MW4EznNjPAmIB3aEMMaizAWucWdLdQX25Q1DeyKUd/jL+gtn\nXH0RsNb9WsstTwSm+ah/LaGdJVVkfMDVQBbwY77XqUGO6wLgV5x7Jfe7ZeNwfqCB84/yLZx9U74F\nTgjDn21RMS4Etuf7ns0tbTEWqPs5IZwl5ef3UICngF+AFcAVpe17iDMzainODKofgT4hju8NnJmL\nWThXE8OBG4Eb830PJ7vxr/D6z9ie9DbGGOMXG5IyxhjjF0sYxhhj/GIJwxhjjF8sYRhjjPGLJQxj\njDF+sYRhjDHGL5YwjDHG+MUShjHGGL/8PygY9972EfZQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x119625588>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"zpt = -2\n",
"plt.plot(tlist,np.real(omega[zpt,:]),'b:')\n",
"plt.plot(tlist,np.imag(omega[zpt,:]),'r:')\n",
"plt.plot(tlist,np.abs(omega[zpt,:]),'k')"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": true,
"editable": true
},
"source": [
"## Animate the field $\\Omega$"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XXWd//HXJ/vSJk3SLV3TJQXKVuil7IsDlKooOILW\nGaVqnQrK6IzO/ASXwR/O/EYclRlHZKYiY2GEgihSF6a0BUbRbokUukBpC13SJU2bNE2bZv/8/rgn\neJveNLe5J7lJeT8fj/u453zP93zP59xHbj73fM8532PujoiISJjSUh2AiIicfpRcREQkdEouIiIS\nOiUXEREJnZKLiIiETslFRERCF0pyMbM5ZrbZzLaa2V1xlmeb2RPB8tVmVhaUl5jZC2Z2xMy+32Wd\nmWa2Pljne2ZmQXmxmS0zsy3Be1EY+yAiIuFJOrmYWTrwAPBuYDrwETOb3qXafKDO3acC9wP3BeVN\nwNeAv4vT9IPAAqA8eM0Jyu8CVrh7ObAimBcRkQEkjCOXWcBWd3/T3VuAxcBNXercBCwKpp8CrjUz\nc/ej7v4S0STzNjMrBQrcfaVH7/J8BLg5TluLYspFRGSAyAihjbHArpj5KuDi7uq4e5uZ1QMlwIGT\ntFnVpc2xwfQod98btLXXzEbGa8DMFhA98iE/P3/mmWeemfAOiYgIVFZWHnD3Eb1ZN4zkYnHKuo4p\nk0idZOqfWNl9IbAQIBKJeEVFxamsLiLyjmdmO3q7bhjdYlXA+Jj5ccCe7uqYWQZQCNT20Oa4btqs\nDrrNOrvP9vc6chER6RNhJJe1QLmZTTKzLGAusKRLnSXAvGD6FuB5P8mImUG3V4OZXRJcJXYb8Eyc\ntubFlIuIyACRdLdYcA7lTmApkA487O4bzexeoMLdlwA/Ah41s61Ej1jmdq5vZtuBAiDLzG4GZrv7\nJuAO4MdALvBs8AL4JvCkmc0HdgK3JrsPIiISLnsnDLmvcy4iIqfOzCrdPdKbdXWHvoiIhE7JRURE\nQqfkIiIioVNyERGR0Cm5iIhI6JRcREQkdEouIiISOiUXEREJnZKLiIiETslFRERCp+QiIiKhU3IR\nEZHQKbmIiEjolFxERCR0Si4iIhI6JRcREQmdkouIiIROyUVEREIXSnIxszlmttnMtprZXXGWZ5vZ\nE8Hy1WZWFrPs7qB8s5ndEJSdYWbrYl6HzexvgmVfN7PdMcveE8Y+iIhIeDKSbcDM0oEHgOuBKmCt\nmS1x900x1eYDde4+1czmAvcBHzaz6cBc4GxgDLDczKa5+2ZgRkz7u4GnY9q7392/nWzsIiLSN8I4\ncpkFbHX3N929BVgM3NSlzk3AomD6KeBaM7OgfLG7N7v7W8DWoL1Y1wLb3H1HCLGKiEg/CCO5jAV2\nxcxXBWVx67h7G1APlCS47lzg8S5ld5rZq2b2sJkVJRe+iIiELYzkYnHKPME6J13XzLKA9wM/jVn+\nIDCFaLfZXuA7cYMyW2BmFWZWUVNT0330IiISujCSSxUwPmZ+HLCnuzpmlgEUArUJrPtu4I/uXt1Z\n4O7V7t7u7h3ADzmxG62z3kJ3j7h7ZMSIEb3aMRER6Z0wkstaoNzMJgVHGnOBJV3qLAHmBdO3AM+7\nuwflc4OrySYB5cCamPU+QpcuMTMrjZn9ALAhhH0QEZEQJX21mLu3mdmdwFIgHXjY3Tea2b1Ahbsv\nAX4EPGpmW4kescwN1t1oZk8Cm4A24LPu3g5gZnlEr0D7dJdNfsvMZhDtPtseZ7mIiKSYRQ8gTm+R\nSMQrKipSHYaIyKBiZpXuHunNurpDX0REQqfkIiIioVNyERGR0Cm5iIhI6JRcREQkdEouIiISOiUX\nEREJnZKLiIiETslFRERCp+QiIiKhU3IREZHQKbmIiEjolFxERCR0Si4iIhI6JRcREQmdkouIiIRO\nyUVEREKn5CIiIqFTchERkdCFklzMbI6ZbTazrWZ2V5zl2Wb2RLB8tZmVxSy7OyjfbGY3xJRvN7P1\nZrbOzCpiyovNbJmZbQnei8LYBxERCU/SycXM0oEHgHcD04GPmNn0LtXmA3XuPhW4H7gvWHc6MBc4\nG5gD/CBor9O73H2Gu0diyu4CVrh7ObAimBcRkQEkjCOXWcBWd3/T3VuAxcBNXercBCwKpp8CrjUz\nC8oXu3uzu78FbA3aO5nYthYBN4ewDyIiEqIwkstYYFfMfFVQFreOu7cB9UBJD+s68JyZVZrZgpg6\no9x9b9DWXmBkvKDMbIGZVZhZRU1NTa92TEREeieM5GJxyjzBOidb93J3v5Bod9tnzeyqUwnK3Re6\ne8TdIyNGjDiVVUVEJElhJJcqYHzM/DhgT3d1zCwDKARqT7auu3e+7wee5k/dZdVmVhq0VQrsD2Ef\nREQkRGEkl7VAuZlNMrMsoifol3SpswSYF0zfAjzv7h6Uzw2uJpsElANrzCzfzIYCmFk+MBvYEKet\necAzIeyDiIiEKCPZBty9zczuBJYC6cDD7r7RzO4FKtx9CfAj4FEz20r0iGVusO5GM3sS2AS0AZ91\n93YzGwU8HT3nTwbwmLv/T7DJbwJPmtl8YCdwa7L7ICIi4bLoAcTpLRKJeEVFRc8VRUTkbWZW2eVW\nkITpDn0REQmdkouIiIROyUVEREKn5CIiIqFTchERkdApuYiISOiUXEREJHRKLiIiEjolFxERCZ2S\ni4iIhE7JRUREQqfkIiIioVNyERGR0Cm5iIhI6JRcREQkdEouIiISOiUXEREJnZKLiIiELpTkYmZz\nzGyzmW01s7viLM82syeC5avNrCxm2d1B+WYzuyEoG29mL5jZa2a20cw+H1P/62a228zWBa/3hLEP\nIiISnoxkGzCzdOAB4HqgClhrZkvcfVNMtflAnbtPNbO5wH3Ah81sOjAXOBsYAyw3s2lAG/BFd/+j\nmQ0FKs1sWUyb97v7t5ONXURE+kYYRy6zgK3u/qa7twCLgZu61LkJWBRMPwVca2YWlC9292Z3fwvY\nCsxy973u/kcAd28AXgPGhhCriIj0gzCSy1hgV8x8FScmgrfruHsbUA+UJLJu0IV2AbA6pvhOM3vV\nzB42s6J4QZnZAjOrMLOKmpqaU90nERFJQhjJxeKUeYJ1TrqumQ0Bfgb8jbsfDoofBKYAM4C9wHfi\nBeXuC9094u6RESNGnHwPREQkVEmfcyF6tDE+Zn4csKebOlVmlgEUArUnW9fMMokmlp+4+887K7h7\ndee0mf0Q+FUI+yASKnenqu4Ym/YeZvuBo3Q4pBmMLcpl2qihTB6eT0a6LtaU01cYyWUtUG5mk4Dd\nRE/Q/0WXOkuAecBK4BbgeXd3M1sCPGZm3yV6Qr8cWBOcj/kR8Jq7fze2ITMrdfe9wewHgA0h7INI\nKOobW3l01XZ+WlnFjoON3dYrzM3kXWeMYM45pVx71kgylWjkNJN0cnH3NjO7E1gKpAMPu/tGM7sX\nqHD3JUQTxaNmtpXoEcvcYN2NZvYksInoFWKfdfd2M7sC+Biw3szWBZv6srv/BviWmc0g2n22Hfh0\nsvsgkix35yerd/IvSzdTf6yVy6aU8KkrJnHO2EKmjhxCZnoabR3OjoNHeaO6gZe2HOT516v5xbo9\njCrI5i8vnsi8y8oozM1M9a6IhMLcu54eOf1EIhGvqKhIdRhymjrc1MrfLF7H86/v57IpJXz1vdOZ\nPqagx/XaO5wXXt/PopXb+d2WAxTkZLDgqsl88opJ5GWF0akgkhwzq3T3SK/WVXIR6b39DU187KE1\nbKs5wlffexbzLisj2qt7ajbuqef+ZW+w/LX9jB2Wy9dunM4NZ4/qVVsiYUkmuaijV6SXao+28Bc/\nXM2uukZ+/IlZfPzySb1OBmePKeSheRfx5KcvZWhOBrf/dyWf+PFadhw8GnLUIv1DyUWkF5pa21nw\nSAW7ahv50byLuKJ8eCjtzppUzC//+gq++t6zWPtWLXP+9Xc8umoH74QeBjm9KLlISjW1tlPT0Jzq\nME7ZN361iYoddXznQ+dz6ZSSUNvOTE/jU1dOZvkXryZSVsTXfrGBef+1ln31TaFuR6QvKblISuyq\nbeQzP6nkrH/4Hy76p+W8799fYsPu+lSHlZBn1+/lJ6t38umrJnPjeWP6bDulhbk88slZfOPmc1j7\nVi2z7/9flm7c12fbEwmTkov0u4rttbz/+y/xv5tr+KsrJ/OlOWdy8Egzcxeu4uWddakO76Tqj7Xy\nD0s2cs7YAv7uhjP6fHtmxscumcizn7+SsuH5fPrRSr6+ZCPNbe19vm2RZCi5SL96Zdch5j28hqK8\nLH79uSv58nvO4o5rpvDzz1zOsLxM/vaJdRxrGbj/OL+9dDMHjzTzzx84r19vfCwbns9Tt1/G/Csm\n8eM/bOeDD/6B7Qd0sl8GLiUX6Tf76puYv2gtxUOyeHzBJZQNz3972ejCHL51y3lsP9jI91/YksIo\nu7du1yH+e/UObru0jHPHFfb79rMy0vjajdP54W0RdtUe48Z/f4klr3QdaUlkYFBykX7R3NbOHT+p\n5FhLOw/Pu4hRBTkn1LlsynDee14pi/6wg/pjrSmIsnvuzj1LNjJyaDZfnD0tpbFcP30Uv/n8lZwx\neiife/xl7v75eppaB+7RnrwzKblIv7j3l5t4eechvn3r+ZSPGtptvTuunsKR5jb+e9WOfoyuZy9u\nruGVXYf4wvXTGJqT+iFaxg7LZfGCS7jjmik8vmYnNz/we96sOZLqsETepuQife7Jtbv4yeqd3H71\nFN59bulJ654ztpDLp5bw2OqddHQMjHs73J37l7/BuKJc/vzCcakO522Z6Wl8ac6Z/NcnLqL6cBPv\n+/eXeGbd7lSHJQIouUgfW7frEF99ZgNXTB3O3yXYnXTrzPHsPnSMNdtr+zi6xLyweT+vVtXz1382\ndUCOXvyuM0bym89fyVmlBXx+8Tp1k8mAMPC+KXLa2Ft/jL96pIJRBdl87yMXJPz8ktlnjyI/K52f\nVVb1cYQ9c3f+dfkWxhcPrKOWrkoLc3lc3WQygCi5SJ841tLOgkcqaWxu40fzLqI4PyvhdfOyMrjh\nnNEs3biP1vaOPoyyZxU76ni1qp7br54yII9aYr3dTfZxdZNJ6g3sb4sMSk2t7Sx4tIINe+r5t7kX\nMO0kJ/C7M3v6KA43tVGxPbU3VT6ycgdDczL4wAVjUxrHqXjXmcd3k335aXWTSf/TQyMkVE2t7fzV\nIxW8tPUA933wPK6bPqpX7VxZPoKsjDSWv1Yd+thdidp/uIln1+/ltkvLBt3zVTq7yb677A0efHEb\nldvruP/DMxJ6zoyc3jo6nINHW6g+3MT+hiZqj7ZSd7SF2saW6PvRFuoaW5K+HWBwfWNkQKtpaOYz\nP6mkYkcd933wPD4UGd/rtvKzM7h8SgnLX6vmazdODzHKxD2+ZhdtHc7HLp2Yku0nq7Ob7OJJxfz9\nU69y8wO/54uzp/GpKyeTnqbnxJyuWto62FXXyM6Djew4eJSdtcfYd/gY++qbqD7czP6GJlrbT7wS\nMzPdKMrLojg/i2F5mUyKucm5N5RcJGnuznObqvnK0xs40tzK9+ZewPvOT35Ax6umjeCFzTVU1TUy\nrigvhEgT19rewWNrdnDVtBFJf8lS7ZozRrL0b67iyz9fzz8/+zorXt/Pdz90fr9/phIed2f3oWO8\nUd3AluojbD94lB0HG9lxsJG99ceIvYo/NzOd0mE5jC7I4eJJxYwqzKG0MIdRBTmMHJpNSX42RfmZ\nDMnOOOF5RAtv632MoSQXM5sD/BuQDjzk7t/ssjwbeASYCRwEPuzu24NldwPzgXbgc+6+9GRtmtkk\nYDFQDPwR+Ji7t4SxH3Jq2to7WP5aNf/1++2sfquWM0cP5dH5szirNJyul87usJXbDnJrpH//Eb7w\n+n6qDzfzjzcPzqOWrorzs3jwoxfyVGUV//eXm5jzr7/jrnefyV/MmkCajmIGtP2Hm3htXwNbqhvY\nvK+BN/YfYWt1A0djxuAryc9iQkkeF5UVMaFkHBOL85hYkseEkjxGDMlOyRNNk04uZpYOPABcD1QB\na81sibtviqk2H6hz96lmNhe4D/iwmU0H5gJnA2OA5WbWeTNEd23eB9zv7ovN7D+Cth9Mdj+kZw1N\nrWw/0Mhr+w6z6s2D/G7LAWoamhlTmMM975vORy+ZGOoVVdNGDqUoL5NVb9ZyaxJdbL3xi3W7KcnP\n4pozRvTrdvuSmXFrZDyXTC7hSz97la/+YgPPrNvNP//5uUwdeeoXXUj4qg83sb6qnvW769mwO/q+\nP+Z5R8OHZDNt1BBujYxn2qihTBs1hPKRQynMS/2oEV1Zsk+4M7NLga+7+w3B/N0A7v7PMXWWBnVW\nmlkGsA8YAdwVW7ezXrDaCW0C3wRqgNHu3tZ12905Z9xQ//mdF5xQfup7fvwap/rR9eqT9riTCa1w\n0voJNOZET/61Ba+OmB3OSDMKcjIZPjSborxMjL75ZfRGdQNHmtu4YMKwPttGV20dHVTurGPU0BzK\nSgZ3l1h3HKemoZmdtY20dzhjh+UyZlguaSn4hftO1dbRQUNTG0ea2zja3MbRlvbjLr3PzUwnPzuD\n/Kx08rIzyMtKJzOtfy/wtU/+ptLdI71ZN4xusbHArpj5KuDi7uoESaEeKAnKV3VZt/Oaz3htlgCH\n3L0tTv3jmNkCYAHAWaV5HOvmUsxuv0oJfsfsJHM9rdCbr3FC65ykkh03cfLWDMjMTCM/zUhPM7Iy\n0sjJSCcnK43czPR++WdfkJtJbWMLzW0d5GSk9/n2AGqPtuAe/ZV4ujKMkUNzKMrLYvvBo1QdOsaB\nIy1MKMnr0x8L71SO09wWTSYNTa00NLUd9z8pNzOdwtxM8rPSGZKdQV52BumDPNGHkVzifQJdfxd3\nV6e78njp+WT1Tyx0XwgsBIhEIn7+134fr5oMcIerG5h7/2/51ozz+NBF/dM19tf/uZKawmZWfPpq\nGORf8J5kAuXAnjdq+OqvNrF11xEunVzCV288i7PH9P9jBU4X7R3Oa3sPU7G9lrU76qjcXse+w9HH\nVA/NzuDCiUVEJhYRKSvmvHGF5GcP0GurPtn7v/8w9qgKiP3WjwO6PmSis05V0C1WCNT2sG688gPA\nMDPLCI5e4m1LTiPlI4dQkp/FyjcP9ktyqaprZPVbtXzx+mkpOQmaKldPG8Hln7+Sx9fs5LvL3uDG\nf3+JWy4cx+euLWd8sa4q60ljSxvrdh5i7fY6KnbU8vLOQxxpjnawjCnMYdakYi4qK2LmxGLOGD30\nHXEpeBjJZS1QHlzFtZvoCfq/6FJnCTAPWAncAjzv7m5mS4DHzOy7RE/olwNriB6hnNBmsM4LQRuL\ngzafCWEfZIAyMy6ZXMLKbQdx9z7/h//LV/YCcPMguiM/LBnpaXzs0jLeP2Ms339+C4v+sIOnX97N\nLTPH8dl3TVWSibH/cBMVO+qoCJLJxj2Hae9wzODM0QV84IKxRMqiRyZjh+WmOtyUSDq5BOdQ7gSW\nEr1s+GF332hm9wIV7r4E+BHwqJltJXrEMjdYd6OZPQlsAtqAz7p7O0C8NoNNfglYbGb/CLwctC2n\nsUumlPDr9XvZcbDxuKdX9oXnNu3j3LGF7+h/pIW5mXzlvdP55BWTePDFbSxes4unKqt43/lj+MTl\nZZw3bliqQ+xXHR3OtpojVOyoY+32Wip31LHjYCMAOZlpzBg/jM9cM4WZE4u4cGIRBQPgeT8DQdJX\niw0GkUjEKyoqUh2G9NLmfQ3c8K+/5du3ns8tM/tuZOL9DU1c/P9W8LfXTeNz15b32XYGm331TSz8\n7Zs8WbGLI81tRCYWcdtlZcyePoqczP65yKI/HWtpZ92uQ/xxZx2VO6KvzqFQSvKziJQVcVFZMZGy\nYqaXFpCVcfoO0WhmKb1aTKRPlY8cQkFOBpU7avs0uax4bT/u0ccIy5+MLszhH943nb+9vpyfVlTx\n4z9s53OPv0xBTgbvnzGGD144jhnjhw3Kc1Tuzr7DTW8nkcoddWzac5i24Bb3qSOH8O5zRnPhxGhC\nKSvJG5T7mQpKLjLgpaUZF04s6vMRkpdtqmZ8cS5njtYNhfEMzcnkk1dM4uOXlbHyzYP8tCLaXfbf\nq3ZSWpjD7OmjmH32aC4qKx6wv+Y7b1J8NeYmxZrgJsXOLq5PXz2ZyMRiLpgwjGF5iT8qQo6n5CKD\nQmRiES9uruFQY0uffOGPNrfx0tYDfPTiifpl2oO0NOPyqcO5fOpwDje18tzGap7buI8nKnaxaOUO\ncjPTiZQVccnkEi6eVMz0MQX9Pqr0keY2tu4/wpbqBrbsP8Ib1Q1s3HP47USSZtGjkqvKR3Du2AIu\nnFjEWaUFA/6ZPYOJkosMCjMnFgPwx511/NmZ4Xdb/W5LDS1tHeoSO0UFOZncMnMct8wcx7GWdn63\npYY/bDvIym0H+Zelm4HorUJTRgzh7DEFTB4+hLLheUwsyae0MIeS/KyEn1Dayd1paG6j7mgLew41\nUVXXyO5Dx6iqO8buumPsrI3Od8pKT2PyiHyunDqcc8cVcu7YwpQkvHcafboyKMwYP4z0NKNie98k\nl+c2VjMsL5OLyopCb/udIjcrndlnj2b22aMBOHCkmXU7D7FhTz0bdh+mYnsdz6w78ba0orxMivKz\noqM/ZKaRHby3O7S2ddDa3kFLeweNLe0camzhUGPr2+dEYo0qyGbssFwiZUV8ZOR4ykcNpXzkECYU\n551yApPkKbnIoJCblc7ZYwqo2BH+eZe29g6e37yfPztjpP4JhWj4kGyumz7quAfGNbW2s6u2kbcO\nHKW6oZkDDc0cONLMocZWmtvaaWrtoLmtnQNH2khLM7LT08jOTGNITgZjCtMpys+KJqO8LIrysygt\nzGHssFxKh+WQ3U/DA0lilFxk0Jg5sYjHVu+kpa0j1BPGa7fXcaixVV1i/SAnMz16RNGLR1/L4KKf\naTJoRCYW09zWwcY99aG2u2xTNVkZaVw17fQZXl8k1ZRcZNCIBOdDKkPsGnN3lr22jyumDh+4gweK\nDEJKLjJojCrIYVxRbqj3u7y+r4FdtcfUJSYSMiUXGVQiE4uo3FlHWMMWLdtUjRlce9bIUNoTkSgl\nFxlUZpYVU9PQzK7aYz1XTsCyTdXMGD+MkUNzQmlPRKKUXGRQiUyMnnep2FGbdFt764+xfne9usRE\n+oCSiwwq00YNZWh2Rij3uyzfVA3A7Omjk25LRI6n5CKDSnqaccHEIipDOKn/3KZqJg/PZ+rIISFE\nJiKxlFxk0IlMLOKN/Q1vP2OjNw43tbLqzYPqEhPpI0ouMuhEJhbhHh3Esrde3FxDa7sruYj0ESUX\nGXRmTIgOYplM19iyTdWU5GdxwQQNVCnSF5JKLmZWbGbLzGxL8B73m2pm84I6W8xsXkz5TDNbb2Zb\nzex7FjxIw8z+xcxeN7NXzexpMxsWlJeZ2TEzWxe8/iOZ+GVwysvKYHppQa+vGGtp6+DF1/dz3Vmj\nSE/Ts1tE+kKyRy53ASvcvRxYEcwfx8yKgXuAi4FZwD0xSehBYAFQHrzmBOXLgHPc/TzgDeDumCa3\nufuM4HV7kvHLIDVzYhHrdh2itb3jlNdd+eZBGprb1CUm0oeSTS43AYuC6UXAzXHq3AAsc/dad68j\nmjjmmFkpUODuKz16u/Ujneu7+3Pu3hasvwrouweny6A0c2IRTa0dbNpz+JTXfXb9XoZkZ3BF+fA+\niExEIPnkMsrd9wIE7/HG0BgL7IqZrwrKxgbTXcu7+iTwbMz8JDN72cz+18yu7C4wM1tgZhVmVlFT\nU5PY3sig0dtBLNvaO1i6cR/XnjWSnEw9/0Okr/SYXMxsuZltiPO6KcFtxOvU9pOUx277K0Ab8JOg\naC8wwd0vAL4APGZmBfE26u4L3T3i7pERIzSU+ummtDCXscNyT/m8y+q3aqlrbOXd55T2UWQiAgk8\nLMzdr+tumZlVm1mpu+8Nurn2x6lWBVwTMz8OeDEoH9el/O1noAYn/m8Erg26zXD3ZqA5mK40s23A\nNKCip/2Q08/Fk4t5/vX9tHd4wifmf7N+L3lZ6Vxzhn5wiPSlZLvFlgCdV3/NA56JU2cpMNvMioIT\n+bOBpUE3WoOZXRJcJXZb5/pmNgf4EvB+d2/sbMjMRphZejA9mehFAG8muQ8ySF1zxkgONbbyStWh\nhOq3dzhLN+7jXWeoS0ykryWbXL4JXG9mW4Drg3nMLGJmDwG4ey3wDWBt8Lo3KAO4A3gI2Aps40/n\nVr4PDAWWdbnk+CrgVTN7BXgKuD2mLXmHuap8OGkWvSEyEWvequXAkRbefa7GEhPpa0k9es/dDwLX\nximvAD4VM/8w8HA39c6JUz61m+39DPhZEiHLaWRYXhYzxg/jxc37+cL103qs/4uXd5Obmc67ztCz\nW0T6mu7Ql0HtuumjeLWqnqq6xpPWa2xp49fr9/Le80r1OGORfqDkIoPajeeOAeDXr+49ab3/2bCP\nI81t3DpTt0yJ9AclFxnUJpTkcf64Qn756p5u67g7i/6wncnD85k1qbgfoxN551JykUHv/TPGsmH3\nYTbsro+7vHJHHa9U1fOJy8sIhq8TkT6m5CKD3i0zx5GXlc7Dv38r7vIfvLiNwtxMPqguMZF+o+Qi\ng15hbiYfioznl6/sYVft8Sf2X9pygOdf388d10whL0sn8kX6i5KLnBYWXDWZrPQ0vvz0eoIBHahv\nbOVrz2xgXFEuH7+sLLUBirzDKLnIaWHMsFz+z5wz+d2WA3z56fWseauW+YvWUlXXyHc/NEN35Iv0\nM/UTyGnjY5dMpPpwEz94cRuPr9nFkOwMvn3r+bpCTCQFlFzktJGWZvyfOWfyvvPHsOPgUWZOLGbE\n0OxUhyXyjqTkIqeds0oLOKs07pMYRKSf6JyLiIiETslFRERCp+QiIiKhU3IREZHQKbmIiEjolFxE\nRCR0Si4iIhK6pJKLmRWb2TIz2xK8F3VTb15QZ4uZzYspn2lm681sq5l9z4Lx0M3s62a228zWBa/3\nxKxzd1B/s5ndkEz8IiLSN5I9crkLWOHu5cCKYP44ZlYM3ANcDMwC7olJQg8CC4Dy4DUnZtX73X1G\n8PpN0NaUwRwhAAAK30lEQVR0YC5wdlD3B2amQaNERAaYZJPLTcCiYHoRcHOcOjcAy9y91t3rgGXA\nHDMrBQrcfaVHh7F9pJv1u25vsbs3u/tbwFaiCUtERAaQZJPLKHffCxC8j4xTZyywK2a+KigbG0x3\nLe90p5m9amYPxxzpdNfWCcxsgZlVmFlFTU3NqeyTiIgkqcfkYmbLzWxDnNdNCW4j3nNl/STlEO0u\nmwLMAPYC3+mhrRML3Re6e8TdIyNGjEgwVBERCUOPA1e6+3XdLTOzajMrdfe9QTfX/jjVqoBrYubH\nAS8G5eO6lO8Jtlkds40fAr+KaWt8vHVERGTgSLZbbAnQefXXPOCZOHWWArPNrCjo3poNLA260RrM\n7JLgKrHbOtcPElWnDwAbYrY318yyzWwS0YsA1iS5DyIiErJkh9z/JvCkmc0HdgK3AphZBLjd3T/l\n7rVm9g1gbbDOve5eG0zfAfwYyAWeDV4A3zKzGUS7vLYDnwZw941m9iSwCWgDPuvu7Unug4iIhMw6\nnzd+OotEIl5RUZHqMEREBhUzq3T3SG/W1R36IiISOiUXEREJnZKLiIiETslFRERCp+QiIiKhU3IR\nEZHQKbmIiEjolFxERCR0Si4iIhI6JRcREQmdkouIiIROyUVEREKn5CIiIqFTchERkdApuYiISOiU\nXEREJHRKLiIiEjolFxERCV1SycXMis1smZltCd6Luqk3L6izxczmxZTPNLP1ZrbVzL5nZhaUP2Fm\n64LXdjNbF5SXmdmxmGX/kUz8IiLSN5I9crkLWOHu5cCKYP44ZlYM3ANcDMwC7olJQg8CC4Dy4DUH\nwN0/7O4z3H0G8DPg5zFNbutc5u63Jxm/iIj0gWSTy03AomB6EXBznDo3AMvcvdbd64BlwBwzKwUK\n3H2luzvwSNf1gyOZDwGPJxmniIj0o2STyyh33wsQvI+MU2cssCtmviooGxtMdy2PdSVQ7e5bYsom\nmdnLZva/ZnZlkvGLiEgfyOipgpktB0bHWfSVBLdhccr8JOWxPsLxRy17gQnuftDMZgK/MLOz3f3w\nCRs1W0C0y40JEyYkGKqIiIShx+Ti7td1t8zMqs2s1N33Bt1c++NUqwKuiZkfB7wYlI/rUr4npu0M\n4M+BmTGxNAPNwXSlmW0DpgEVceJeCCwEiEQiXZOWiIj0oWS7xZYAnVd/zQOeiVNnKTDbzIqCE/mz\ngaVBN1qDmV0SnFu5rcv61wGvu/vbXWdmNsLM0oPpyUQvAngzyX0QEZGQJZtcvglcb2ZbgOuDecws\nYmYPAbh7LfANYG3wujcoA7gDeAjYCmwDno1pey4nnsi/CnjVzF4BngJuj2lLREQGCIteqHV6i0Qi\nXlFxQs+ZiIichJlVunukN+vqDn0REQmdkouIiIROyUVEREKn5CIiIqFTchERkdApuYiISOiUXERE\nJHRKLiIiEjolFxERCZ2Si4iIhE7JRUREQqfkIiIioVNyERGR0Cm5iIhI6JRcREQkdEouIiISOiUX\nEREJnZKLiIiETslFRERCl1RyMbNiM1tmZluC96Ju6s0L6mwxs3kx5f9kZrvM7EiX+tlm9oSZbTWz\n1WZWFrPs7qB8s5ndkEz8IiLSN5I9crkLWOHu5cCKYP44ZlYM3ANcDMwC7olJQr8MyrqaD9S5+1Tg\nfuC+oK3pwFzgbGAO8AMzS09yH0REJGTJJpebgEXB9CLg5jh1bgCWuXutu9cBy4gmBtx9lbvv7aHd\np4BrzcyC8sXu3uzubwFbiZ+cREQkhTKSXH9UZ3Jw971mNjJOnbHArpj5qqDsZN5ex93bzKweKAnK\nVyXSlpktABYEs0fMbHMP2+yt4cCBPmq7Lwy2eEEx94fBFi8MvpgHW7wAZ/R2xR6Ti5ktB0bHWfSV\nBLdhccq8l+sk3Ja7LwQW9rCdpJlZhbtH+no7YRls8YJi7g+DLV4YfDEPtnghGnNv1+0xubj7dSfZ\ncLWZlQZHLaXA/jjVqoBrYubHAS/2sNkqYDxQZWYZQCFQG1Me29aenvZBRET6V7LnXJYAnVd/zQOe\niVNnKTDbzIqCE/mzg7JE270FeN7dPSifG1xNNgkoB9YkuQ8iIhKyZJPLN4HrzWwLcH0wj5lFzOwh\nAHevBb4BrA1e9wZlmNm3zKwKyDOzKjP7etDuj4ASM9sKfIHgKjR33wg8CWwC/gf4rLu3J7kPyerz\nrreQDbZ4QTH3h8EWLwy+mAdbvJBEzBY9IBAREQmP7tAXEZHQKbmIiEjolFxOUaJD3gR1C8xst5l9\nvz9j7BJDj/Ga2QwzW2lmG83sVTP7cIpinRMM67PVzOKN9tDtsECpkEC8XzCzTcFnusLMJqYizi4x\nnTTmmHq3mJmbWcovnU0kZjP7UPBZbzSzx/o7xi6x9PR3McHMXjCzl4O/jfekIs6YeB42s/1mtqGb\n5WZm3wv251UzuzChht1dr1N4Ad8C7gqm7wLuO0ndfwMeA74/kOMFpgHlwfQYYC8wrJ/jTAe2AZOB\nLOAVYHqXOp8B/iOYngs8kcLPNZF43wXkBdN3pDLeRGMO6g0Ffkv0huXIQI+Z6FWjLwNFwfzIAR7v\nQuCOYHo6sD3Fn/FVwIXAhm6Wvwd4luh9hpcAqxNpV0cupy6RIW8ws5nAKOC5foqrOz3G6+5vuPuW\nYHoP0fuVRvRbhFGzgK3u/qa7twCLicYeq7thgVKhx3jd/QV3bwxmVxG9LyuVEvmMIXp157eApv4M\nrhuJxPxXwAMeHV4Kd493v11/SSReBwqC6UJSfK+eu/+W6H2E3bkJeMSjVgHDgvsaT0rJ5dQdN+QN\ncMKQN2aWBnwH+Pt+ji2eHuONZWaziP7i2tYPscVKZJig44YFAjqHBUqFUx3WaD7RX3+p1GPMZnYB\nMN7df9WfgZ1EIp/zNGCamf3ezFaZ2Zx+i+5EicT7deCjwW0YvwH+un9C67XeDOGV9Nhip6UQhrz5\nDPAbd9/VHz+sQ4i3s51S4FFgnrt3hBHbqWw+TlnX6+R7M5RQX0k4FjP7KBABru7TiHp20piDH0X3\nAx/vr4ASkMjnnEG0a+waokeHvzOzc9z9UB/HFk8i8X4E+LG7f8fMLgUeDeLt7+9conr1vVNyicOT\nH/LmUuBKM/sMMATIMrMj7t7tCdQUx4uZFQC/Br4aHPr2t0SG9uluWKBUSGgoIjO7jmiSv9rdm/sp\ntu70FPNQ4BzgxeBH0WhgiZm93917PcZUkhL9u1jl7q3AWxYdpLac6E3b/S2ReOfzp5HhV5pZDtFB\nLVPZnXcyvRp2S91ip67HIW/c/S/dfYK7lwF/R7S/sk8SSwJ6jNfMsoCnicb5036MLdZaoNzMJgXx\nzCUae6zuhgVKhR7jDbqY/hN4f4rPA3Q6aczuXu/uw929LPjbXUU09lQlFkjs7+IXRC+ewMyGE+0m\ne7Nfo/yTROLdCVwLYGZnATlATb9GeWqWALcFV41dAtR7/EelHC+VVykMxhfRPv4VwJbgvTgojwAP\nxan/cVJ7tViP8QIfBVqBdTGvGSmI9T3AG0TP93wlKLuX6D84iH4Jf0r0OT5rgMkp/lvoKd7lQHXM\nZ7oklfEmEnOXui+S4qvFEvycDfgu0WGh1gNzB3i804HfE72SbB0wO8XxPk70CtFWokcp84Hbgdtj\nPt8Hgv1Zn+jfhIZ/ERGR0KlbTEREQqfkIiIioVNyERGR0Cm5iIhI6JRcREQkdEouIiISOiUXEREJ\n3f8Hd1pkF78F1QgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11966c4a8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.animation import FuncAnimation\n",
"\n",
"fig, ax = plt.subplots()\n",
"xdata, ydata = [], []\n",
"ln, = plt.plot([], [], animated=True)\n",
"ln2, = plt.plot([], [], animated=True)\n",
"\n",
"def init():\n",
" ax.set_xlim(-0.5, 1)\n",
" ax.set_ylim(-0.01,0.01)\n",
" return ln,\n",
"\n",
"def update(frame):\n",
" ln.set_data(tlist, np.real(omega[frame,:]))\n",
" ln2.set_data(tlist, np.imag(omega[frame,:]))\n",
" return ln,\n",
"\n",
"ani = FuncAnimation(fig, update, frames=range(200),\n",
" init_func=init, blit=True, interval=30)\n",
"\n",
"ani.save('omega.mp4', writer=\"ffmpeg\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video controls src=\"omega.mp4\" loop=1 width=50%/> \n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video controls src=\"{0}\" loop=1 width=50%/> \n",
" \"\"\".format('omega.mp4')\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"deletable": true,
"editable": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment