-
-
Save Torment123/0867745bca348864f403164591b32a95 to your computer and use it in GitHub Desktop.
clevr_data_generation.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "clevr_data_generation.ipynb", | |
"private_outputs": true, | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyOiaq0p/OYpNIjNqEMZTVCj", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/nanlliu/ccaa9beacfbb627b2da15790c0275fa6/clevr_data_generation.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "y0RtoucqCRZc" | |
}, | |
"source": [ | |
"from google.colab import drive\n", | |
"drive.mount('/content/gdrive')" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "iumxS_FEDL3q" | |
}, | |
"source": [ | |
"%cd /content/gdrive/MyDrive/clevr-dataset-gen" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ErCuPfVSEpgp" | |
}, | |
"source": [ | |
"%cd /content/gdrive/MyDrive/clevr-dataset-gen/image_generation" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "NT-LW2iBQ2sJ" | |
}, | |
"source": [ | |
"!apt install blender\n", | |
"!apt install libboost-all-dev\n", | |
"!apt install libgl1-mesa-dev" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ojIwubdnROwZ" | |
}, | |
"source": [ | |
"blender_version = 'blender2.79' #@param [\"blender2.79\", \"blender2.80\", \"blender2.81\", \"blender2.82\", \"blender2.83\", \"blender2.90.1\", \"blender2.91.2\"] {allow-input: false}\n", | |
"gpu_enabled = True #@param {type:\"boolean\"}\n", | |
"cpu_enabled = False #@param {type:\"boolean\"}" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "BxAsAPz9SBUa" | |
}, | |
"source": [ | |
"if blender_version == \"blender2.79\":\n", | |
" download_path=\"https://download.blender.org/release/Blender2.79/blender-2.79-linux-glibc219-x86_64.tar.bz2\"\n", | |
"else:\n", | |
" raise NotImplementedError" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "AAX05CUVYyM9" | |
}, | |
"source": [ | |
"!mkdir $blender_version\n", | |
"if blender_version == \"blender2.79\":\n", | |
" !wget -O '{blender_version}.tar.xz' -nc $download_path\n", | |
" !tar xf '{blender_version}.tar.xz' -C ./$blender_version --strip-components=1\n", | |
"else:\n", | |
" raise NotImplementedError" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "Bw4p_etoY5LE" | |
}, | |
"source": [ | |
"import os\n", | |
"\n", | |
"os.environ[\"LD_PRELOAD\"] = \"\"\n", | |
"\n", | |
"!apt update\n", | |
"!apt remove libtcmalloc-minimal4\n", | |
"!apt install libtcmalloc-minimal4\n", | |
"os.environ[\"LD_PRELOAD\"] = \"/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4.3.0\"\n", | |
"\n", | |
"!echo $LD_PRELOAD" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "mo2mXUKbZPTN" | |
}, | |
"source": [ | |
"!apt install libboost-all-dev\n", | |
"!apt install libgl1-mesa-dev\n", | |
"!apt install libglu1-mesa libsm-dev" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "KG-U_Ym9aGm6" | |
}, | |
"source": [ | |
"%cd /content/gdrive/MyDrive/clevr-dataset-gen/image_generation/ \n", | |
"!echo $PWD >> blender2.79/2.79/python/lib/python3.5/site-packages/clevr.pth" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "zpVm5OzsUJ8h" | |
}, | |
"source": [ | |
"output_image_dir = YOUR_IMAGE_DIR\n", | |
"output_scene_dir = YOUR_SCENE_DIR\n", | |
"output_scene_file_path = YOUR_OVERALL_SCENE_FILE_PATH\n", | |
"output_blend_dir = YOUR_OUTPUT_BLENDER_DIR[OPTIONAL]" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "3Dc2q2_aDrit" | |
}, | |
"source": [ | |
"!sudo ./$blender_version/blender \\\n", | |
"--background --python render_images.py -- --num_images=9 --width=128 --height=128 \\\n", | |
"--render_num_samples=64 --min_objects=1 --max_objects=5 --min_pixels_per_object=100 \\\n", | |
"--output_image_dir=$output_image_dir \\\n", | |
"--output_scene_dir=$output_scene_dir \\\n", | |
"--output_scene_file=$output_scene_file_path \\\n", | |
"--output_blend_dir=$output_blend_dir \\\n", | |
"--min_dist=1 --margin=1 --use_gpu=1 &> /dev/null" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "jMKmx3nNwY5g" | |
}, | |
"source": [ | |
"import os\n", | |
"import json\n", | |
"import numpy as np\n", | |
"from PIL import Image\n", | |
"from matplotlib import pyplot as plt\n", | |
"\n", | |
"img_id = 0\n", | |
"img_path = os.path.join(output_image_dir, 'CLEVR_new_{:06}.png'.format(img_id))\n", | |
"im = Image.open(img_path).convert('RGB')\n", | |
"im = np.array(im)\n", | |
"\n", | |
"scene_path = os.path.join(output_scene_dir, 'CLEVR_new_{:06}.json'.format(img_id))\n", | |
"with open(scene_path, 'r') as f:\n", | |
" scene = json.load(f)\n", | |
"\n", | |
"obj_names = []\n", | |
"for obj in scene['objects']:\n", | |
" name = ' '.join([obj['size'], obj['color'], obj['material'], obj['shape']])\n", | |
" obj_names.append(name)\n", | |
"\n", | |
"for relation, indices in scene['relationships'].items():\n", | |
" for i, js in enumerate(indices):\n", | |
" for j in js:\n", | |
" print(obj_names[j], relation, obj_names[i])\n", | |
"\n", | |
"if len(obj_names) == 1:\n", | |
" print(obj_names[0])\n", | |
"\n", | |
"plt.figure()\n", | |
"plt.imshow(im)\n", | |
"plt.show()" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "8NDj0rURX0c1" | |
}, | |
"source": [ | |
"from PIL import Image\n", | |
"import torchvision\n", | |
"import torch\n", | |
"import numpy as np\n", | |
"from matplotlib import pyplot as plt\n", | |
"\n", | |
"images = []\n", | |
"\n", | |
"for i in range(9):\n", | |
" img_path = os.path.join(output_image_dir, 'CLEVR_new_{:06}.png'.format(i))\n", | |
" im = Image.open(img_path).convert('RGB')\n", | |
" im = np.array(im).transpose(2, 0, 1)\n", | |
" images.append(im)\n", | |
"\n", | |
"images = torch.from_numpy(np.array(images))\n", | |
"grid = torchvision.utils.make_grid(images, nrow=3)\n", | |
"\n", | |
"plt.figure(figsize = (20,20))\n", | |
"plt.imshow(grid.permute(1, 2, 0), interpolation='nearest')" | |
], | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment