import cv2
import multiprocessing
import time

import os
import numpy as np
import tensorflow as tf

from utils import FPS
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

CWD_PATH = os.getcwd()

# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
PATH_TO_CKPT = os.path.join(CWD_PATH, 'object_detection', MODEL_NAME, 'frozen_inference_graph.pb')

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(CWD_PATH, 'object_detection', 'data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
                                                            use_display_name=True)
category_index = label_map_util.create_category_index(categories)


def detect_objects(image_np, sess, detection_graph):
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

    # Each box represents a part of the image where a particular object was detected.
    boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    scores = detection_graph.get_tensor_by_name('detection_scores:0')
    classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    # Actual detection.
    (boxes, scores, classes, num_detections) = sess.run(
        [boxes, scores, classes, num_detections],
        feed_dict={image_tensor: image_np_expanded})

    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8)

    return image_np


def blend_non_transparent(face_img, overlay_img):
    # Let's find a mask covering all the non-black (foreground) pixels
    # NB: We need to do this on grayscale version of the image
    gray_overlay = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY)
    overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1]

    # Let's shrink and blur it a little to make the transitions smoother...
    overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
    overlay_mask = cv2.blur(overlay_mask, (3, 3))

    # And the inverse mask, that covers all the black (background) pixels
    background_mask = 255 - overlay_mask

    # Turn the masks into three channel, so we can use them as weights
    overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR)
    background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR)

    # Create a masked out face image, and masked out overlay
    # We convert the images to floating point in range 0.0 - 1.0
    face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0))
    overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0))

    # And finally just add them together, and rescale it back to an 8bit integer image
    return np.uint8(cv2.addWeighted(face_part, 255.0, overlay_part, 255.0, 0.0))


def main_process(input, output):
    while True:
        time.sleep(0.5)
        image = input.get()
        output.put(image)


def child_process(input, output):
    # Load a (frozen) Tensorflow model into memory.
    detection_graph = tf.Graph()
    with detection_graph.as_default():
        od_graph_def = tf.GraphDef()
        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')

        sess = tf.Session(graph=detection_graph)

    while True:
        image = input.get()
        image2 = detect_objects(image, sess, detection_graph)
        result = blend_non_transparent(image, image2)
        output.put(result)


if __name__ == '__main__':
    input = multiprocessing.Queue(5)
    output = multiprocessing.Queue(5)

    main_process = multiprocessing.Process(target=main_process, args=(input, output))
    main_process.daemon = True
    child_process = multiprocessing.Process(target=child_process, args=(input, output))
    child_process.daemon = False

    main_process.start()
    child_process.start()

    video_capture = cv2.VideoCapture(0)
    video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, 480)
    video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 360)

    while True:
        _, frame = video_capture.read()

        input.put(frame)

        cv2.imshow('Video', output.get())

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break