Last active
June 17, 2021 09:25
-
-
Save Rishit-dagli/86b8acbe5fed93a0e33eb1201e85ed8d to your computer and use it in GitHub Desktop.
Calculate skewness and kurtosis of data in Python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Skewness and Kurtosis.ipynb", | |
"provenance": [], | |
"authorship_tag": "ABX9TyO0JqNdqpHX6M4QuzZ5NffB", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/Rishit-dagli/86b8acbe5fed93a0e33eb1201e85ed8d/skewness-and-kurtosis.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "mdOH_AyLTY3t" | |
}, | |
"source": [ | |
"# Skewness and Kurtosis\n", | |
"\n", | |
"This notebook is a foolow along for [this blog](https://www.freecodecamp.org/news/skewness-and-kurtosis-in-statistics-explained/) by me on FreeCodeCamp. We will start off by importing the [Boston Housing Datatset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) and measure skewness and kurtosis for a column in this dataset." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "PKqsDGxGQPgg" | |
}, | |
"source": [ | |
"import pandas as pd\n", | |
"from scipy.stats import skew\n", | |
"from scipy.stats import kurtosis" | |
], | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 205 | |
}, | |
"id": "Nov_ttfxQqRS", | |
"outputId": "66f112c8-bff4-4e5f-dd11-f63eb7adadbf" | |
}, | |
"source": [ | |
"column_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']\n", | |
"data = pd.read_csv('https://gist.githubusercontent.com/Rishit-dagli/61922d4f6ef284877b6600163cabc681/raw/eeb1b4191b998cdd63a39f82f8031913b7590ff1/housing.csv', \n", | |
" header=None, \n", | |
" delimiter=r\"\\s+\", \n", | |
" names=column_names)\n", | |
"data.head()" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>CRIM</th>\n", | |
" <th>ZN</th>\n", | |
" <th>INDUS</th>\n", | |
" <th>CHAS</th>\n", | |
" <th>NOX</th>\n", | |
" <th>RM</th>\n", | |
" <th>AGE</th>\n", | |
" <th>DIS</th>\n", | |
" <th>RAD</th>\n", | |
" <th>TAX</th>\n", | |
" <th>PTRATIO</th>\n", | |
" <th>B</th>\n", | |
" <th>LSTAT</th>\n", | |
" <th>MEDV</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>0.00632</td>\n", | |
" <td>18.0</td>\n", | |
" <td>2.31</td>\n", | |
" <td>0</td>\n", | |
" <td>0.538</td>\n", | |
" <td>6.575</td>\n", | |
" <td>65.2</td>\n", | |
" <td>4.0900</td>\n", | |
" <td>1</td>\n", | |
" <td>296.0</td>\n", | |
" <td>15.3</td>\n", | |
" <td>396.90</td>\n", | |
" <td>4.98</td>\n", | |
" <td>24.0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>0.02731</td>\n", | |
" <td>0.0</td>\n", | |
" <td>7.07</td>\n", | |
" <td>0</td>\n", | |
" <td>0.469</td>\n", | |
" <td>6.421</td>\n", | |
" <td>78.9</td>\n", | |
" <td>4.9671</td>\n", | |
" <td>2</td>\n", | |
" <td>242.0</td>\n", | |
" <td>17.8</td>\n", | |
" <td>396.90</td>\n", | |
" <td>9.14</td>\n", | |
" <td>21.6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>0.02729</td>\n", | |
" <td>0.0</td>\n", | |
" <td>7.07</td>\n", | |
" <td>0</td>\n", | |
" <td>0.469</td>\n", | |
" <td>7.185</td>\n", | |
" <td>61.1</td>\n", | |
" <td>4.9671</td>\n", | |
" <td>2</td>\n", | |
" <td>242.0</td>\n", | |
" <td>17.8</td>\n", | |
" <td>392.83</td>\n", | |
" <td>4.03</td>\n", | |
" <td>34.7</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>0.03237</td>\n", | |
" <td>0.0</td>\n", | |
" <td>2.18</td>\n", | |
" <td>0</td>\n", | |
" <td>0.458</td>\n", | |
" <td>6.998</td>\n", | |
" <td>45.8</td>\n", | |
" <td>6.0622</td>\n", | |
" <td>3</td>\n", | |
" <td>222.0</td>\n", | |
" <td>18.7</td>\n", | |
" <td>394.63</td>\n", | |
" <td>2.94</td>\n", | |
" <td>33.4</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>0.06905</td>\n", | |
" <td>0.0</td>\n", | |
" <td>2.18</td>\n", | |
" <td>0</td>\n", | |
" <td>0.458</td>\n", | |
" <td>7.147</td>\n", | |
" <td>54.2</td>\n", | |
" <td>6.0622</td>\n", | |
" <td>3</td>\n", | |
" <td>222.0</td>\n", | |
" <td>18.7</td>\n", | |
" <td>396.90</td>\n", | |
" <td>5.33</td>\n", | |
" <td>36.2</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" CRIM ZN INDUS CHAS NOX ... TAX PTRATIO B LSTAT MEDV\n", | |
"0 0.00632 18.0 2.31 0 0.538 ... 296.0 15.3 396.90 4.98 24.0\n", | |
"1 0.02731 0.0 7.07 0 0.469 ... 242.0 17.8 396.90 9.14 21.6\n", | |
"2 0.02729 0.0 7.07 0 0.469 ... 242.0 17.8 392.83 4.03 34.7\n", | |
"3 0.03237 0.0 2.18 0 0.458 ... 222.0 18.7 394.63 2.94 33.4\n", | |
"4 0.06905 0.0 2.18 0 0.458 ... 222.0 18.7 396.90 5.33 36.2\n", | |
"\n", | |
"[5 rows x 14 columns]" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 2 | |
} | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "6p_Xme0rSwUG" | |
}, | |
"source": [ | |
"Let calculate skewness and kurtosis for one column in this dataset" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "xUYoqFUASr9Y", | |
"outputId": "cd3f0931-15e9-4e3e-a027-95b189400508" | |
}, | |
"source": [ | |
"skew(data[\"MEDV\"].dropna())" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"1.104810822864635" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 3 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "ZpER4zjzS_LI", | |
"outputId": "62ebaafb-9080-403d-fdb6-1daa6aaba7d3" | |
}, | |
"source": [ | |
"kurtosis(data[\"MEDV\"].dropna())" | |
], | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"1.4686287722747462" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 4 | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment