Skip to content

Instantly share code, notes, and snippets.

@Rishit-dagli
Last active December 20, 2020 03:53
Show Gist options
  • Save Rishit-dagli/27aa9fe80d467920d2d0faaabb8bbdc3 to your computer and use it in GitHub Desktop.
Save Rishit-dagli/27aa9fe80d467920d2d0faaabb8bbdc3 to your computer and use it in GitHub Desktop.
Understand how to use Prefetch and how you can optimize your input and training pipelines
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Prefetch.ipynb",
"provenance": [],
"authorship_tag": "ABX9TyPQa1ZxdbinJT/QujZkexhz",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/Rishit-dagli/27aa9fe80d467920d2d0faaabb8bbdc3/prefetch.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YbnFcovifzTU"
},
"source": [
"💡#TensorFlowTip\r\n",
"Use .prefetch to reduce your step time of training and extracting data\r\n",
"\r\n",
"- overlap preprocessing and model execution\r\n",
"- while the model executes training step n input pipeline is reading the data for n+1 step\r\n",
"- reduce idle time for the GPU and CPU"
]
},
{
"cell_type": "code",
"metadata": {
"id": "SqTOouW-Re91"
},
"source": [
"import tensorflow as tf\r\n",
"import time"
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Yvb3YpvkSRk4"
},
"source": [
"class ArtificialDataset(tf.data.Dataset):\r\n",
" def _generator(num_samples):\r\n",
" # Opening the file\r\n",
" time.sleep(0.03)\r\n",
"\r\n",
" for sample_idx in range(num_samples):\r\n",
" # Reading data (line, record) from the file\r\n",
" time.sleep(0.015)\r\n",
"\r\n",
" yield (sample_idx,)\r\n",
"\r\n",
" def __new__(cls, num_samples=3):\r\n",
" return tf.data.Dataset.from_generator(\r\n",
" cls._generator,\r\n",
" output_types=tf.dtypes.int64,\r\n",
" output_shapes=(1,),\r\n",
" args=(num_samples,)\r\n",
" )"
],
"execution_count": 2,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "owgpUHXNS2_V"
},
"source": [
"def benchmark(dataset, num_epochs=2):\r\n",
" start_time = time.perf_counter()\r\n",
" for epoch_num in range(num_epochs):\r\n",
" for sample in dataset:\r\n",
" # Performing a training step\r\n",
" time.sleep(0.01)\r\n",
" tf.print(\"Execution time:\", time.perf_counter() - start_time)"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9VrYgd1vTN-P",
"outputId": "24c220b0-cb47-411a-e500-24a927922318"
},
"source": [
"benchmark(ArtificialDataset())"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"text": [
"Execution time: 0.38392184499997484\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Am87LIjEZ2Bp",
"outputId": "89563cc2-26aa-408c-ac43-7fc84f45b6eb"
},
"source": [
"benchmark(\r\n",
" ArtificialDataset()\r\n",
" .prefetch(tf.data.experimental.AUTOTUNE)\r\n",
")"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Execution time: 0.19688551699999834\n"
],
"name": "stdout"
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment